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Due to the current crisis on global warming and species extinction, scientists

and economists have proposed to quantify ecosystem goods and services to establish

policies that can preserve the ecosystem, provide better livelihood to the local stake-

holders, and benefit society. The overarching question for this dissertation study is,

“How to quantify the trade-offs between carbon sequestration, total timber har-

vested, and habitat provision for sustaining biodiversity?” In particular, when i.

different management regimes; ii. carbon prices; and iii. natural disturbances; in-

teract with each other. The first step is to develop a model that quantifies the

relationship between forest management activities and the amount of timber har-

vested annually. To provide a general understanding of the relationship, the study

area for the first step is at the county level for the whole state of North Carolina.

The following 2 steps involve more specific studies to include the interaction between

management activities, natural disturbances, species competition during the forest



succession process. Therefore, a species-rich, heterogeneous area with an active

timber industry, located in western part of North Carolina, the Grandfather Ranger

District was chosen. The second step is to quantify the outcomes and analyze the

trade-offs between the ecosystem services under different management scenarios,

coupled with the influences from natural disturbance. The third step combines the

result from the second step with different carbon prices and interest rates to obtain

a fine scale and spatial analysis of the resulting revenue.

The dissertation is the first step of research in developing a dynamic model that

fully couples the social and forest ecological system. Besides the potential uses for

fulfilling the requirements of carbon accounting, the result from the first step of the

dissertation is the maps of annual volume of harvested timber of various types. The

maps can be used to further study to analyze the relationship between the amount

of timber harvested as a result of different policies and prices at different places.

The second step demonstrated a way to quantify the trade-offs between the selected

ecosystem services under different forest management regimes and influences from

natural disturbances events. Maps of revenue from both selling the carbon credit

and harvested timber for scenarios of different carbon prices and interest rates were

produced in the last step. The choice of future timber production as a result of

carbon and roundwood prices can partly be understood by utilizing the maps from

the first step in this dissertation. If the factors affect individual choices of harvest at

the local level and those affect the supply of harvested timber at the regional level are

understood, then a dynamic model that consists of management decisions, natural



disturbance, ecosystem service valuation policies, and forest ecosystem response

can be developed. Such model can help better understand the ecosystem services

valuation policy on the financial well-being of foresters and the health of the forest

ecosystem.
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Change; chapter 3 was coauthored with Stephen Prince, Caren Dymond, Wemin

Xi, George Hurtt, and Giovanni Baiocchi and is prepared to submit to the Jour-
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publication.

ii



Dedication

To my parents: Ms. LEUNG Man Wah and Mr. LING Yue Wah

AND

To my aunt & uncle: Ms. LING Yuen Yee and Mr. HUI Chan Sun

AND

To our mother Earth

iii



Acknowledgments

I would like to thank all my dissertation committee members Professors Gio-

vanni Baiocchi, Klaus Hubacek, George Hurtt, Eugenia Kalnay, Stephen Prince,

and Dr. Chengquan Huang for their patience and helpful advice in improving the

dissertation and paper publications.

The Landsat images used in Chapter 2 of this dissertation were accessed

through GLOVIS of the U.S. Geological Survey. We thank Tony Johnson, James

Bentley, Ronald Piva, Kenneth Skog, James Howard, James Smith, Carol Perry,

and Christopher Woodall of USDA Forest Service assisted with the TPO data. We

would also like to thank Anna Alberini, Thao Duong, Cheng Fu, Stephen Prince,

Khaldoun Rishmawi, and the seminar participants at the 2014 AGU Fall Meeting

for helpful comments and suggestions in the publication of Chapter 2.

For the work in Chapter 3, I would like to thank Jason A. Rodrigue of the

USDA Forest Service at the Pisgah National Forest for helpful comments on the

possible management practices used in the area; Eric Gustafson and Robert Scheller

for suggestions and comments with the Landis model. We also thank Henry Ferguson

at the USDA for help with the soil data; Nicholas Larson of the USDA Forest Service

at the Pisgah National Forest, Stephen Prince, George Hurtt, and the seminar

participants at the 2015 AGU Fall Meeting.

I would also like to thank Georgia Martin and Dorothea Brosius for the help

on Latex typesetting; Professor Anna Alberini for helpful advice.

iv



Most importantly, I have been supported by the research lab led by Dr.

Chengquan Huang. This study was made possible by projects funded by USGS,

NOAA, and the Carbon Cycle Sciences and Land Cover and Land Use Change

Programs of NASA.

v



Table of Contents

List of Tables x

List of Figures xii

List of Abbreviations xiv

1 Introduction 1
1.1 What are the dynamics between the ecological and economic systems? 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Definition of terms in context . . . . . . . . . . . . . . . . . . 3
1.2.2 Status of current research and scientific motivation . . . . . . 5
1.2.3 Scale of the study . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.4 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.5 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Estimating Annual Influx of Carbon to Harvested Wood Products Linked to
Forest Management Activities Using Remote Sensing 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Model framework . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Statistical model linking roundwood production to forest dis-

turbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Study area and data used . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Calculating roundwood carbon content by type . . . . . . . . 21
2.3.3 Alternative Approaches of Estimating Annual Production . . . 22
2.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.4.1 Model selection and validation of estimation results . 22
2.3.4.2 Comparison with estimates in other studies . . . . . 23
2.3.4.3 Carbon content change by roundwood type over time 27
2.3.4.4 Comparison with other estimation methods . . . . . 30

vi



2.4 Uncertainties and limitations . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Implications for forest carbon accounting . . . . . . . . . . . . 33
2.5.2 Policy implications . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Spatially Explicit Assessment of the Impact of Forest Management Regimes
on Forest Ecosystem Services in a Species-Rich Area 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Management scenarios and targets . . . . . . . . . . . . . . . 46
3.2.3 Model description . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.4 Impact on carbon sequestration, roundwood harvested , and

habitat provision . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.5 Calibration, validation, and sensitivity analysis . . . . . . . . 51

3.2.5.1 Model uncertainty and statistical analyses . . . . . . 52
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Calibration, validation, and sensitivity analysis results . . . . 53
3.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2.1 Effect of treatments on carbon sequestration . . . . . 60
3.3.2.2 Effect of treatments on roundwood harvested . . . . 62
3.3.2.3 Spatial pattern of the effect of treatments . . . . . . 71

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.4.1 Implication on conservation policy . . . . . . . . . . . . . . . . 75

4 Mapping revenue from forest carbon subsidies and roundwood sales for
different management regimes–with biophysical processes included 77
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 Study area and management scenarios . . . . . . . . . . . . . 81
4.2.2 Calculation of revenue . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2.1 Revenue from selling wood products . . . . . . . . . 83
4.2.2.2 Carbon credits and discount rates . . . . . . . . . . . 84

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.1 Revenue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.1.1 How do different carbon credits affect revenue? . . . 85
4.3.1.2 Spatial patterns of revenue . . . . . . . . . . . . . . 88

4.3.2 Important vs invasive species . . . . . . . . . . . . . . . . . . 91
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.1 Importance of the spatial resolution . . . . . . . . . . . . . . . 91
4.4.2 Implication on policies on carbon subsidy and forest habitat

sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vii



5 Discussion 96
5.1 Major findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.5 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A Appendix for Chapter 2 109
A.1 Model Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.1.1 Model Selection Strategy . . . . . . . . . . . . . . . . . . . . . 109
A.1.2 Industrial Roundwood Production Unit Conversion . . . . . . 112
A.1.3 Dependent and Independent Variables . . . . . . . . . . . . . 113
A.1.4 Possible Interactions Effects . . . . . . . . . . . . . . . . . . . 115
A.1.5 Model Comparison Result . . . . . . . . . . . . . . . . . . . . 117
A.1.6 Model Result for Roundwood Production . . . . . . . . . . . . 120

A.2 Uncertainty and Error Propagation . . . . . . . . . . . . . . . . . . . 120
A.2.1 Error Propagation in Linear Trend . . . . . . . . . . . . . . . 122
A.2.2 Contribution From the Input Data . . . . . . . . . . . . . . . 123

A.3 Calculation of NC’s Roundwood Production Share of the Continental
US . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.4 Conversion of Wood Volume to Wood Mass . . . . . . . . . . . . . . 125
A.5 Comparison with Other Estimation Approaches . . . . . . . . . . . . 125

A.5.1 Comparison with Linear Interpolation . . . . . . . . . . . . . 126
A.5.2 Comparison with approaches using a Conversion Factor . . . . 132

A.6 Analysis of the Impact of Hurricanes . . . . . . . . . . . . . . . . . . 133

B Appendix for Chapter 3 136
B.1 Land Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
B.2 Initial Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
B.3 Climate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
B.4 Species Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
B.5 DOM pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
B.6 Ecoregion Species DOM Parameters . . . . . . . . . . . . . . . . . . . 140
B.7 DisturbFireTransferDOM . . . . . . . . . . . . . . . . . . . . . . . . . 140
B.8 DisturbOtherTransferDOM . . . . . . . . . . . . . . . . . . . . . . . . 141
B.9 DisturbFireTransferBiomass . . . . . . . . . . . . . . . . . . . . . . . 141
B.10 DisturbOtherTransferBiomass . . . . . . . . . . . . . . . . . . . . . . 141
B.11 MaxBiomassTimeSeries . . . . . . . . . . . . . . . . . . . . . . . . . . 141
B.12 Root Dynamics Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
B.13 ANPPTimeSeries and Probability of Establishment . . . . . . . . . . 143

B.13.0.1 parametrization of the PnET model . . . . . . . . . 143
B.14 Classification of Commercial and Ecological Importance . . . . . . . . 144

B.14.1 Calculation of relative commercial price . . . . . . . . . . . . . 144

viii



B.15 Harvest Prescription for each Management Area . . . . . . . . . . . . 146

ix



List of Tables

2.1 Comparison between previously published values and the estimates
in this study for annual carbon influx to roundwood through forest
harvest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Carbon in different roundwood types in each ecoregion, averaged over
1986-2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Information of species simulated in this study . . . . . . . . . . . . . 45
3.2 Harvest regimes simulated in this study . . . . . . . . . . . . . . . . . 47
3.3 Model sensitivity analysis of the change in aboveground biomass density 59
3.4 Stimulation results for ecosystem services . . . . . . . . . . . . . . . . 61
3.5 Comparison of the effective numbers derived from the average Shan-

non’s Diversity Index . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 NPV revenue for different management regimes and regions . . . . . . 86
4.2 Comparing revenue of other forest management regions

with that at the Congressional Designation Roadless (CDR) region . 87
4.3 Number of trees (thousand/ha) presence for different management

regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.1 Root mean square error (RMSE) results of tests conducted, AIC
values of each model, and RMSE for additional pulpwood in each
ecoregion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.2 Proportion of roundwood produced in North Carolina to that of the
continental United States in each RPA report . . . . . . . . . . . . . 129

A.3 RMSE of using TPO years 2005, 2007, and 2009 to backward project
the first 3 available TPO years (1992, 1994, and 1995) . . . . . . . . . 130

A.4 RMSE of using TPO years 1992, 1994, and 1995 to forward project
the most recent 3 available TPO years (2005, 2007, and 2009) . . . . 131

A.5 Comparison of average C in roundwood between the proposed esti-
mation method in this study and others . . . . . . . . . . . . . . . . 133

x



A.6 Mean square error (MSE) results of cross validation for roundwood
production estimates by reserving one year as testing for all
roundwood estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.7 Factorial analysis of MSE between years with and without hurricane
damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B.1 Management practices employed by the USFS in each management
area (MA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.2 Management practices employed by the USFS in each management
area (MA) Continue . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

xi



List of Figures

1.1 Conceptual diagram of interaction between forest ecological and
economic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 State of North Carolina (the study area), with Grandfather Ranger
District highlighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Spatial distribution of carbon in roundwood products and amount of
carbon per unit forest area, averaged over 1986-2009 for each county . 26

2.2 Time series of carbon in roundwood, with contribution from different
types from 1986 to 2009 by ecoregion . . . . . . . . . . . . . . . . . . 29

2.3 Time series of carbon in roundwood for different ecoregions using
different estimation approaches . . . . . . . . . . . . . . . . . . . . . 31

3.1 Ecozones in the Grandfather District, North Carolina . . . . . . . . . 42
3.2 Plot for calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Comparison of modeled aboveground biomass and FIA aboveground

biomass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4 Plot for validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Change in biomass for different management regimes for the entire

Grandfather Ranger District . . . . . . . . . . . . . . . . . . . . . . . 63
3.6 Time series of the sawlog and pulpwood harvest density for different

management regimes for the entire Grandfather Ranger District . . . 65
3.7 Frequency distributions of species 100 years after each management

regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.8 Average and standard deviation of species age in each ecozone for

different management scheme . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Forest ownerships in the Grandfather District, North Carolina . . . . 82
4.2 Spatial pattern of the forest owner revenue . . . . . . . . . . . . . . . 89
4.3 Detail analysis of the spatial pattern of the revenue at the selected

regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xii



A.1 Scatterplots of county survey data plotted against the model’s
predicted values for each type of roundwood product and all available
years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.2 Boxplot of MSE CV results . . . . . . . . . . . . . . . . . . . . . . . 134

B.1 Management Areas (MAs) designated by the US Forest Service (USFS)146

xiii



List of Abbreviations

α alpha
β beta

VCT Vegetation Change Tracker
IPCC Intergovernmental Panel on Climate Change
USFS United States National Forest Service
NLCD National Land Cover Database
REDD+ Reduced Emissions through Avoided Deforestation and Forest

Degradation
NIPF Non Industrial Private Forest
HWP Harvested Wood Product

xiv



Chapter 1: Introduction

1.1 What are the dynamics between the ecological and economic

systems?

With the pressure on increasing human population, conservation efforts have

shifted beyond merely preservation into encompassing humans’ need and demand

on ecosystem services provision (Daily & Matson, 2008). Human utilization of nat-

ural resources clearly has effects on the natural processes that produce them, so

understanding the interaction between the ecosystem and the economic system is

one of the most important elements in designing policies on sustainability (Carpen-

ter et al., 2009). While resource management is generally practiced in sustainable

systems, and can be quantified in financial terms, other components often cannot

and are therefore not considered (Nelson & Daily, 2010). For example, commercial

forestry depends on the natural process of tree growth. This is followed by indus-

trial processing to make a saleable product, the price of which can be know with

high precision. The only other costs for the foresters are harvest, processing, and

management of the forest for future harvests. However, the costs to society of loss of

carbon fixation, effects on biodiversity and recreational use of the forest, for exam-
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ple, are not quantified, in fact cannot easily be quantified in most cases (Daily et al.,

2000). Those factors that do not have market values, however, are currently being

considered in policy making and these may have important effects on the cycle from

forest growth, through harvest and sale back to forest management to sustain the

supply of marketable wood products. These policies include, for example, subsidies

for carbon sequestration paid to forestry enterprises (which can be quantified mone-

tarily), creation of conservation reserves, tourism, and policies intended to preserve

biodiversity – which cannot be easily quantified. Furthermore, these actions may

induce feedbacks and even instabilities.

1.2 Objectives

The specific forest ecosystem services focused in this dissertation study are car-

bon sequestration, roundwood production, and habitat provision for sustaining bio-

diversity. The overarching question for this dissertation study is, “How to quantify

the trade-offs between carbon sequestration, total timber production, and habitat

provision for sustaining biodiversity?” In particular, when i. different management

regimes; ii. carbon prices; and iii. natural disturbances; interact with each other.

Since each step can be complex, process and economic models will be adapted and

linked to enable the effects of subsidies, roundwood price, and forest disturbances

(see figure 1.1 for details). Specifically:
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1. How do forest management activities contribute to the amount of harvested

wood products?

2. How to quantify the contribution of forest management activities to the carbon

storage in roundwood products?

3. How are the carbon sequestration and species composition impacted by natural

disturbances and various management regimes in a species-rich environment?

4. How do different management regimes affect the trade-offs between carbon

sequestration, roundwood production, and habitat provision for sustainability?

5. How do different carbon credits and interest rates affect the income of foresters

spatially?

6. Which management regime would the foresters likely to adopt if they were to

maximize their profit?

1.2.1 Definition of terms in context

• Ecosystem services: The Millennium Ecosystem Assessment report defined

“ecosystem services” as “the benefits people obtain from ecosystems” and

classified four types of services that the ecosystems provide to society (Mil-

lennium Ecosystem Assessment, 2005). A lot of those services do not have

commercial values or traded in markets. There is a trade-off between some

3



Figure 1.1: Conceptual diagram of the interaction between the forest ecological and
economic systems. The green boxes are the interaction within the natural system
and its resulting ecosystem goods (commercial products). The purple boxes indicate
the external forces from the government and the market that would influence the
economic revenue of the landowners. The red boxes show the actions of the landown-
ers that may be influenced as the result of the economic revenue they received, which
will in turn influence the forest ecology.
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ecosystem services: a policy that favors one may cause an unintentional loss

of another.

• Ecosystem resilience: It is the ability of the ecosystem to return to its similar

structure and functioning before disturbances. Under the influences of climate

change and human intervention, a forest may not be able to recover and to

provide the same ecosystem services as before the disturbance events (Reyer

et al., 2015).

• Feedback and interaction between ecological and economic systems: Forest

policies and management practices influence the provision of forest ecosystem

services, which would influence the income of the foresters. Foresters in turn

may change their management practices.

1.2.2 Status of current research and scientific motivation

A spatial model that includes forest succession, species competition, man-

agement regimes, and natural disturbances allows more realistic simulation of the

impact of the forest landowners’ reaction as a result of ecosystem services valuation

policy. When there is an additional source of income based on carbon sequestration,

foresters are going to alter their management regimes if their goal is to maximize

their profit. The alternation in the management regimes will affect the forest com-

position and structure. Hence, the suitability of a forest in providing habitat to

sustain biodiversity. Currently, there is not enough understanding of the feedback
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between the impact of ecosystem valuation policies on ecosystem services provision

and the ecosystem structure, especially with the influence from climate change and

natural disturbances (Guerry et al., 2015).

A complex mechanistic forest succession model is needed to understand espe-

cially the impact of natural and anthropogenic disturbances on “biodiversity”. There

has been a debate between ecologist and economist when trying to value “biodiver-

sity” (see Bartkowski et al. (2015) and Farnsworth et al. (2015) for example), as

the meaning and definition of this term is unclear. Research often lacks sufficient

components for evaluating “biodiversity”. A complex forest succession model that

includes species interaction can provide more comprehensive way to value ecosystem

services that relate to the quality of habitat. Previously studies of this system have

been highly simplified, for examples, the studies by Touza et al. (2008), Niinimäki

et al. (2013), and Mäkipää et al. (2014), are not spatial and do not include species

competition and forest succession, or the influences of natural disturbances, such

as wind and fire. Even spatially explicit tools, such as InVEST (Tallis & Polasky,

2011), only considers a simple growth and yield model in understanding the trade-

offs between timber production and carbon sequestration of forest ecosystem. These

models and tools are only useful for making general policies, but to investigate the

impact of forest management on the interaction of tree species, a more complex

model is needed (Tallis & Polasky, 2011).
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1.2.3 Scale of the study

Identification of scales, the stakeholders, and especially to whom the benefits

of the systems services accrue, allows the analysis of potential conflicts in environ-

mental management (Hein et al., 2006; Spies & Johnson, 2003). Currently, there

are two approaches that have been used for generating the general ecosystem service

assessments at scales that are meant to influence policy decisions. The first one is a

broad-scale assessment of multiple services. It extrapolates the value estimation per

unit area by biome to entire regions or planet based on habitat types. The value

is estimated by summing the value of marketed ecosystem services and the esti-

mation of the willingness-to-pay of individuals for non-marketed ecosystem services

(Costanza et al., 1997). However, it does not allow for analyses of service provision

and changes in value under new conditions. The second one is a fine-scale assess-

ment of a single service in a small area with an ecological production function that

depends on local ecological variables. However, it lacks both the scope and scale

that are relevant to policy decision making (Nelson et al., 2009). In addition, the

analysis may be overwhelmed by the information volume at a fine level of details

(Spies & Johnson, 2003). To combine the rigor of the fine-scale studies with the

breath of the broad-scale assessment, a scale that includes all the studied ecosystem

goods and services and environmental management activities is the optimal spatial

scale in coupling research on ecological processes with ecosystem services valuation

(De Groot et al., 2010; Müller et al., 2010). The physical scale of the ecosystem
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function and the scale at which humans value the goods and services provided are

not necessarily the same (De Groot et al., 2002; Hein et al., 2006). In the case of

forestry, the non-industrial private forest (NIPF) and industrial forest owners typ-

ically lack the incentive to manage their land to provide ecosystem services, such

as carbon sequestration, because the benefits are public goods (Nelson et al., 2008).

For the valuation of carbon sequestration, the beneficiaries are at a higher, global

level, the payments of subsidies will occur on the government level to make it more

profitable for the landowners to manage their forest to sequester more carbon (Nel-

son et al., 2009). Environmental management activities such as timber harvesting,

and the broad-range effects such as natural disturbances on a forest, are mostly con-

centrated at the landscape scale (Müller et al., 2010; Scheller & Mladenoff, 2007).

Landscape ecology can be used to address this problem because it explicitly links

ecological processes and management (Moorcroft et al., 2001).

1.2.4 Study area

Like most of the Eastern forests, North Carolina (NC) forests nowadays are in-

tensively managed to provide goods and services for humans (Brown & New, 2012).

But unlike other states, several attributes of North Carolina favors the successful im-

plementation of forest-based carbon sequestration policy: productive soil, abundant

privately-owned working forest, diverse forest species composition, accessible to in-

vestment capital to support forestry activities and a large forestry-related economy

(North Carolina Division of Forest Resources, 2010). In addition to the availabil-
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ity of Landsat-derived forest disturbance data (Huang et al., 2015)), these factors

provide an opportunity to test the dynamic between forest landowners management

decision, carbon dynamics, and the trade–offs between timber products and carbon

credit in North Carolina.

1.2.5 Dissertation outline

The work of my dissertation is organized in three parts, from Chapters 2 to

4, as follows: The goal of chapter 2 is to develop a quantifiable link between forest

management activities and different types of roundwood harvested. An empirical

model was developed that links between forest management activities and annual

carbon flux from forest biomass to the harvested wood product pool from 1986 to

2010. This study utilized time series of historical forest disturbance maps obtained

from the Landsat time series stack (Huang et al., 2010), a forest-type classification

map obtained from the NC GAP study (McKerrow et al., 2006), and the timber

product output survey that provides county-level non-continuous time period of the

timber (roundwood) harvested (U.S. Department of Agriculture, 2015). The study

in this chapter is the first step in developing a roundwood production function that

relates to forest management activities. Since the study does not involve any detail

mechanistic process, the study area is at the county level for the whole state of NC

(figure 1.2).

The goal of chapter 3 is to assess the impact of forest ecosystem services as

the result of different forest management regimes and influences from natural dis-
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Figure 1.2: The state of North Carolina is the study area of Chapter 2 of the
dissertation. The Grandfather Ranger District (GRD), highlighted in yellow, is the
study area of Chapters 3 and 4.

turbance. Specific forest ecosystem services for the study are: carbon sequestration,

roundwood output, and habitat provision for sustainability, which is a function of

the forest species composition. The study utilized a spatially explicit, landscape-

scale forest succession model, Landis-II (Scheller & Mladenoff, 2007), to include the

complex forest succession processes in simulating the possible future outcome for

different management scenarios. Because the study involves detail forest succes-

sion processes and species interaction, as well as natural disturbances, the area of

study is the Grandfather Ranger District (GRD) located in western North Carolina

(figure 1.2, area highlighted in yellow).

The goal of chapter 4 is to analyze the impact of different carbon credits and

interest rates on the income of different forest areas with different management goals

for different management scenarios. This study combines the result from chapter

3 to obtain a fine scale analyze of the resulting income as a result of different

carbon pricing. Since the result at such fine scale is the most relevant to the local
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stakeholders, it can be used to analyze the possible impact and hence, to deduce

the possible future management regimes applied.

Chapter 5 concludes the finding of this dissertation, its implications, and pos-

sible further developments of the research completed in this dissertation.
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Chapter 2: Estimating Annual Influx of Carbon to Harvested Wood

Products Linked to Forest Management Activities Using

Remote Sensing

Abstract A new framework, based on Landsat time series data and forest

inventories, was developed to estimate the carbon in roundwood harvested from

forest management activities, which will enter the HWP pool and remain stored

in end uses and landfills. The approach keeps the distinction between the carbon

from different types of roundwood sources, which allows for better integration with

the regional HWP carbon lifetime information. Existing methods that are based on

large scale regional/national values and linear interpolation of data gaps, can provide

only very approximate carbon estimates. The model was applied to a US state using

county level data, but can also suit different areas as long as sufficient harvest records

are available for calibration. The results can be used to study managed forests and

evaluate the impact of forest policies on the carbon cycle at a detailed scale. The

estimated quantity of carbon in roundwood harvest provides an upper bound on the

gross carbon added to HWP in use, prior to deductions from losses. The results

can also be coupled with mill processing efficiency estimate and wood product life
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cycle analysis to better understand the effect of forest management activities on the

carbon cycle.

2.1 Introduction

There is a growing recognition in the carbon accounting and climate policy

literature of the importance of harvested wood products (HWP) as a carbon sink

as well as substitutes for some of the fossil-intensive products. HWP has also been

proposed as a means to store carbon (Lippke et al., 2011; Ruddell et al., 2007; Zeng,

2008). Ellison et al. (2011) proposed a post-Kyoto framework that includes both

conserving forests and promoting the use of HWP as a rcarbon sink, so that timber-

rich countries, whether developing or developed, can come to an agreement of a

carbon trading and crediting system that can both preserve forests and recognize the

importance of carbon stored in HWP. Along the same lines, the most recent IPCC

report acknowledges the tradeoffs between the importance of forest as a carbon

sink, its importance in maintaining ecological diversity and the reservoir role of

HWP (Smith & Bustamante, 2014, chapter 11).

The newly released IPCC Guideline for estimating anthropogenic greenhouse

gas (GHG) emissions due to land-use and cover changes encourages the adoption of

best practice in producing transparent and verifiable data of complete annual time

series and detailed spatial coverage of the impact of forest management activities

and natural disturbances on the GHG fluxes (IPCC, 2014, section 2.2.2–2.2.4). It

also sets out provisions for estimating the share of HWP originating from domestic
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forests under different management regimes1. The major steps are: estimate the

fraction of roundwood harvest in a forest management activity; estimate the fraction

of the roundwood (industrial roundwood2) harvest that will serve as the feedstock

of HWP; and finally, break down the fraction of roundwood products into different

primary wood products in-use or in land fill using regional specific look-up tables

(IPCC, 2014, section 2.8.1.2).

The United States, also provides similar guidelines for forest landowners to

report the contribution of their harvest to the HWP. The latest USDA guidelines

(Hoover et al., 2014) state that the estimation can start from the wood products

in-use (Skog et al., 2004; Smith et al., 2006) or, alternatively, from roundwood

production data (Smith et al., 2006). Relevant lookup tables can then be used by

forest landowners to estimate the fate of the carbon stored after harvest over the

next 100 years (Hoover et al., 2014). This approach requires reliable spatial and

temporal information on roundwood production for its implementation. Current

approaches to estimating the carbon stored in the HWP provide estimates either

at a national or regional level (see, e.g., Apps et al., 1999; Donlan et al., 2012;

Heath et al., 2011; Karjalainen et al., 1994; Masek et al., 2011; Pan et al., 2011;

Stockmann et al., 2012; Zhou et al., 2013), or for specific forests (Profft et al., 2009)

1on Afforested or Reforested lands; harvest yield from Deforested lands is excluded (section 2.5

and section 2.6 in the IPCC report(IPCC, 2014))
2Roundwood is further divided in industrial and non-industrial. Non-industrial roundwood is

fuelwood that is assumed to be burned within a year after harvest. Only industrial roundwood

serves as a feedstock to HWP.
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over a few years. Other studies do not provide the contribution of forest management

activities (Adams et al., 2006) or detailed information on the types of roundwood

produced (Huang et al., 2015) which is needed for further analysis of the dynamics

of roundwood production and life cycle analysis, to improve accounting of long-term

carbon stored.

This chapter proposes a method of estimating the annual influx of carbon to

different types of roundwood from forest management activities3 by integrating re-

mote sensing with the limited forest inventory data on timber production. Results

can serve as a starting point for determining the fraction of carbon in HWP that re-

mains in end–use and in landfill by using specialized look-up tables, e.g. Smith et al.

(2006), or more specific life cycle assessments. The proposed framework provides a

direct link between forest management activities and carbon flux to the HWP pool

that can help implement the latest IPCC guidelines into practice (IPCC, 2014, p.

O10). Spatially linking roundwood harvest with forest activities in domestic forests

constitutes the first step in estimating the fraction of HWP contribution from each

forest activity. Particularly the one from forest land conversion to other land uses

(deforestation), as carbon stored in HWP resulting from deforestation is assumed

to oxidize instantaneously according to the IPCC guidelines, and thus has to be

excluded. To fulfill the specific definitions of deforestation stated in section 2.6

of the Guidelines (IPCC, 2014), additional detailed land-use classification informa-

3Forest management activities, such as harvest and salvage logging, which contribute to round-

wood production, are observed as forest disturbance events in remotely sensed images.
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tion is needed to exclude the HWP contribution from deforestation in the proposed

framework. The next section describes the approach in more details.

2.2 Methods

2.2.1 Model framework

This study links the carbon in the HWP with forest disturbance areas detected

from remote sensing images. The estimation method provides an upper bound of the

carbon that enters the HWP pool, because some roundwood is left in the mill during

processing. The current methods use field survey-based inventories of roundwood

but these are not available every year. In the proposed method, missing years of

production are estimated using remotely sensed forest disturbance maps, calibrated

with survey data from the forest inventory. Often survey based inventories of round-

wood produced are not available every year. Forest disturbance maps showing forest

changes with the associated intensities, which is directly related to biomass change,

are updated annually from 1985 to present for the continental United States and

Canada. These maps are derived from Landsat time series stack using the Vegeta-

tion Change Tracker (VCT) algorithm by Huang et al. (2010). In areas where timber

harvest is the major cause of forest change, the maps can be used to estimate the

time series of different roundwood types production. The area of disturbed forest

with its associated intensity are partitioned between softwood, hardwood, or mixed

forest disturbance by using a land cover classification map. Hardwood and softwood
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forests disturbed areas are used to estimate the corresponding type of roundwood

production, while mixed forest disturbed areas are used to estimate both the hard-

wood and softwood roundwood production. The amount of each type of roundwood

produced at the county level is converted to mass of carbon equivalent using infor-

mation provided by Smith et al. (2006).

2.2.2 Statistical model linking roundwood production to forest dis-

turbance

A regression model that captures the unobserved area–specific (e.g., difference

in biophysical factors, forest size, climate, and management style) and time-specific

characteristics (e.g., prices and meteorological event affecting all areas) was used to

link the production of different roundwood types with the observed area of disturbed

forest and its associated disturbance intensities (see Appendix A.1 for details on the

model selection strategy). The equation of the model can be written as:

Yit = αi + βXit + τt + εit (2.1)

where Yit, in this specific case, is the roundwood production survey data by species

and by geographic location (e.g., county), i indexes unit-areas and t the time period.

Xit denotes the area of forest disturbance in each of the forest type (such as hard-

wood or softwood or mixed) available and the degree of disturbance intensity in each

unit area of the analysis. The index of disturbance intensity is divided into different

classes based on its values, ranging from slight thinning to complete clear-cutting.
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αi denote the unit-areas effects, β is the vector of partial effects, τt the time specific

effects, and εit the standard random error term. If the αs and τs are treated as fixed,

the model can be estimated by Ordinary Least Squares (OLS) using dummy vari-

ables (see Wooldridge (2010), for example, for more details on Panel Data Models).

It is assumed that the disturbance areas in each type of forest only contribute to

the production roundwood of the corresponding species type and disturbance areas

in mixed wood forest contribute to that of both species types. The observed distur-

bance area for each forest type in each unit area is further partitioned according to

the disturbance intensity of the pixel which can distinguish between clear-cutting

and different degrees of harvesting. The larger the forest disturbance index value,

the more severe the forest disturbance (Huang et al., 2009).

2.3 Case study

2.3.1 Study area and data used

This model was applied to North Carolina (NC). Located in the Southeastern

United States, NC forests are intensely managed for timber harvesting (Williams

et al., 2014). The Forest Service divides NC into four regions: Northern Coastal

Plain (NCP), Southern Coastal Plain (SCP), Piedmont, and Mountain. Those four

regions match the U.S. Environmental Protection Agency Level III ecoregions (Grif-

fith et al., 2002), except that the Coastal Plain is divided into North and South.

The four regions differ in topography, land use, land ownership, demography, and
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tree species (North Carolina Division of Forest Resources, 2010, chap.2). Based

on calculation using the data in the Resources Planning Act Assessment reports

(USDA, 2015), NC accounted for about 4.3% of the roundwood production of the

continental United States (see Appendix A.3 for details). Like other states in the

southeast, most of the forest disturbance occurred can be assumed to be timber

harvest.

The first step of this framework is to estimate the annual production of each

roundwood type for each county, which serves as the dependent variable of the model

(Yit). The types of roundwood production estimated in this study are: sawlog (in-

cluding veneer), pulpwood, and fuelwood of softwood and hardwood. The amount of

roundwood produced in each NC county is available in the Southern Research Sta-

tion (SRS) Timber Product Output (TPO) report (U.S. Department of Agriculture,

2015). Except for pulpwood, data on the production of other types of roundwood

are not available for every year. The additional pulpwood data will be used to val-

idate the results of the model estimation (see Appendix A.1.3 for details on data

availability). Since, in this specific application, the available forest inventory data is

completely missing for the years without surveys, the time specific effect of the gen-

eral model (τt) could not be estimated for those years. In addition, for the specific

application in this study, the intensity values were divided into four classes based

on their distribution.

The independent variables of the model are the annual forest disturbance area

with the associated index of disturbance intensity (Xit), which are available from
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1985 to 2010. Annual forest disturbance area was calculated using the VCT algo-

rithm (Huang et al., 2010). In this model, the annual disturbed forest area is divided

into four categories based on the associated pixel-level disturbance intensity calcu-

lated by using the IFZ value4, henceforth, “Magnitude” (Huang et al., 2010, section

3.3.3.2). Forest disturbance events that happened in National Parks were excluded,

because they do not yield any roundwood product for sale in the commercial mar-

ket (Weinberg & Reilly, 2008, chap. 11, sect. 11.04) and are most likely a result

of natural disturbances. The disturbed forest area in each category is partitioned

into hardwood, softwood, or mixed forest using the GAP Analysis map NC (McK-

errow et al., 2006). The land cover map classifies forest areas of different vegetation

communities based on the National Land Cover Dataset and local ground surveys

(McKerrow et al., 2006). Based on the vegetation community information provided,

the dominant vegetation in each community was classified as hardwood or softwood.

For forest classes5 that both softwood and hardwood as the dominant vegetation,

were classified as mixed forest. How the area of the disturbed mixed forest con-

tributes to the production of both hardwood and softwood was determined by an

empirical comparison of different model specifications: To select the “best” model,

i.e, a model that fits the data well but avoids overfitting it, thus making the model

not applicable to other years and areas, a criterion (AIC) that includes a penalty

for increasing the number of parameters and two cross-validation procedures based

4“IFZ” stands for “integrated forest z-score”, which is a forest index calculated based on the

spectral information of the Landsat images, see (Huang et al., 2010) for details.
5Wetland forests are excluded.
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on leaving sample year and area data out were used (see Appendix A.1.5 for further

details).

2.3.2 Calculating roundwood carbon content by type

To obtain the carbon enters the HWP pool, roundwood production, measured

in cubic meters, was converted into carbon mass units using the method described

in Smith et al. (2006). Volume of roundwood production was converted to dry

mass by wood green specific gravity as in Miles & Smith (2009) (See Appendix A.4

for details). Dry mass was converted to carbon equivalent mass using the standard

carbon fraction coefficient of 0.5 (Smith et al., 2006). The unit used for the estimated

mass of carbon in roundwood was in kilotonne6. The fate of the carbon in HWP will

ultimately depend on the type of roundwood and the processing efficiency in mills.

The amount of roundwood carbon that is added to HWP in end uses in a given

year and will remain in end uses or in landfills in subsequent years can be estimated

using tables 6, 8, 9 and D6 in Smith et al. (2006) or tables in Hoover et al. (2014) or

other equivalent estimates. Although estimating the permanence of carbon in each

type of HWP is outside the scope of this paper, the study results, which provide

the link to the spatial and temporal dimensions of forest management activities, can

serve as the starting point for a complete life cycle analysis of carbon in HWP.

61 kilotonne = 109 grams.
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2.3.3 Alternative Approaches of Estimating Annual Production

The result obtained in this study was a time series of carbon mass per year for

different types of roundwood based on the production estimates between 1986 and

2009. Two other methods that are employed by the empirical literature to provide

estimates of annual time series of roundwood production capable of producing, at

least in principle, species details and spatial information, are the linear interpola-

tion of missing values between available data points (see, e.g., Adams et al., 2006;

Bolkesjø et al., 2010; Donlan et al., 2012), and the use of country specific conversion

factors between areas affected by harvest and roundwood production volumes, as

in Masek et al. (2011). (See AppendixA.5 and discussion section below for more

details).

2.3.4 Results

2.3.4.1 Model selection and validation of estimation results

Cross-validation was used to assess the ability of alternate models to accurately

predict harvest in years where survey data on harvest is available. Generally, this

type of model suffers from variance-bias trade-off since, as the number of variables

and interaction terms are increased the residual variance decreases, but such “over

fitted” models tend to have low accuracy when applied to different data. Getting

the correct balance is crucial for this study as the amount of roundwood harvested
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for the years with no production data were estimated. To choose a model that

takes both aspects into account, variance and bias can be combined to form the

mean squared error (MSE). The model that minimizes MSE was selected, see for

example, Clark & Pregibon (1993) by splitting the available sample into 10 equally

sized parts (folds). One part was left out and the remaining 9 parts were used for

training to estimate the model and tested it on the tenth (see Appendix A.1.5 and

table A.1 for details). Plots of the estimated value versus the actual TPO survey

value indicated that the final model fitted the data well for each type of roundwood

product (fig. A.1).

2.3.4.2 Comparison with estimates in other studies

The estimated total roundwood production in carbon mass in this chapter

was compared with published values from other studies of carbon removed from the

live biomass due to forest harvest. Currently, other similar studies are done at the

national level. Though downscaling introduces some errors, the results shown in

table 2.1 gives a rough idea of how the estimates in this study compare with other

studies.

table 2.1 shows that, at least for this application, other estimates available

are not too far off the estimated aggregated values for NC, when properly rescaled,

but nevertheless lack details useful to combine with existing HWP carbon life cycle

tables (e.g. Hoover et al., 2014; Smith et al., 2006) to estimate the fate of carbon

after removal from the forest.
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A map of the average annual carbon influx (upper bound) to all types of HWP

between 1986 and 2009 and a map rescaled by the forest area in each county were

produced (figure 2.1). These two maps are analogous to those in Zhou et al. (2013),

except for the level of details and time span. When forest area is taken into account,

the NCP region has a more intense carbon influx to the HWP pool, which agrees

with Zhou et al. (2013).
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Table 2.1: Comparison between the previously published values and estimates in this study for the annual carbon influx
to roundwood through forest harvest (in Mt C/yr); with 95% confidence interval. The “Coverage” column indicates the
share of roundwood production for North Carolina (NC) compared to that for the continental US for the corresponding
time period. The “Downscale Estimate” column indicates a downscaled value to NC from continental US estimates.

Published US Harvest Reference Coverage Downscale estimate This estimate
Source (Mt C/yr) Period (% of US†) (Mt C/yr) (Mt C/yr)

Turner et al. (1995) 124 1980–1989 4.50 5.58 5.88 ± 0.11§

Heath & Smith (2004) 105 1953–1996 4.50 4.73 5.73 ± 0.07¶

Williams et al. (2012) 107 2005 4.14‡ 4.43 4.86 ± 0.13
Zhou et al. (2013) 128 2002-2010 4.14‡ 5.29 4.74 ± 0.05�

†
In terms of conterminous US.

‡
Average percentage for the years 2002 and 2007 were used for downscaling.

§
Estimation period is from 1986–1989.

¶
Estimation period is from 1986–1996.

�
Estimation period is from 2002–2009.
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(a) Carbon in roundwood (b) Carbon in roundwood per unit forest area

Figure 2.1: Spatial distribution of (a) the carbon in roundwood products and (b) the carbon in roundwood per unit forest
area, averaged over 1986-2009 for each county in North Carolina. Estimates in this study are comparable with the findings
in Zhou et al. (2013), but are obtained at a finer spatial scale over longer time period. Maps are generated using the
Maps(Brownrigg & Minka, 2011) and the Classint(Bivand et al., 2009) packages in R.
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Table 2.2: Carbon in different roundwood types in each ecoregion, averaged over
1986-2009 (in kt C/yr, ± margin of error, rounded to whole numbers.) The Forest
Service divides North Carolina into four regions: Northern Coastal Plain (NCP),
Southern Coastal Plain (SCP), Piedmont (Pied.), and Mountain (Mount.). Types of
roundwood are: HS=Hardwood Sawlog; HP=Hardwood Pulpwood; HF=Hardwood
Fuelwood; SS=Softwood Sawlog; SP=Softwood Pulpwood; SF=Softwood Fuelwood.

Roundwood C in Roundwood by Ecoregion (kt C/yr)
type NCP SCP Pied. Mount. Whole State

HP 251±8 325±11 141±6 82±4 799±16
HS 143±3 211±3 312±5 220±3 886±7
HF 107±2 148±3 145±4 89±3 489±6
SP 301±12 474±18 138±16 24±2 936±28
SS 676±11 931±12 461±11 125±4 2193±21
SF 19±0.3 28±0.4 13±0.3 3±0.1 64±1

All Types 1498±19 2117±25 1210±21 543±7 5367±9

2.3.4.3 Carbon content change by roundwood type over time

The results showed that the annual carbon influx to different roundwood types

from forests (figure 2.2) in the Southern Coastal Plain was the highest and the

Mountain the lowest (table 2.2).

This is consistent with the species distribution in each region and differences

in land ownership7 that affect production. Carbon stored in the HWPs that come

from sawlog remains in use or in landfill the longest (Smith et al., 2006), which

means that, in NC, HWP can be a potential carbon sink. Carbon mass also shows

7According to the NC Forest Service (2010): “The Mountains have the highest proportion

of publicly owned timberland in the state, mainly because this region includes the Pisgah and

Nantahala National Forests. The Mountains have fewer large cities and urban development than

the states other regions.”
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a decreasing trend over time of the carbon flux to roundwood for each region. To

quantify the trends and associated uncertainties, a weighted least square approach

was used (see Appendix A.2.1 for details). The temporal trends of carbon in round-

wood in all ecoregions were negative and greater than the residual variances. The

average decreasing trend of all these regions was about 1.5%/yr. These findings

were strengthened when the estimates of production for all years in this study were

included.

To corroborate this finding, the trends of other factors that are known to be

closely related to roundwood production were examined, such as the number of

roundwood processing mills and the historical forest landownership pattern. From

1990 to 2007, the number of roundwood processing mills in NC decreased at an

annual rate of 4.7 %/year (North Carolina Division of Forest Resources, 2010, chap.

4). Result of the decreasing trend of roundwood production shown in this study is

also consistent with the change in the timberland ownership distribution. In fact, the

timberland ownership in NC has shifted: while the percentage of the forests owned

by the private individuals did not change much, the industrial holding of the forest

land has decreased by 7% between 2002 and 2007, which is part of the decreasing

trend since 1980. Moreover, the share of public landownership has increased by

about 10% during the same period (Brown & New, 2012). The management goal

of industrial forestland owners is typically to apply intensive forest management to

harvest timber, while that of the public owners is to provide collective benefits, such

as those from biodiversity and ecosystem services (Brown & New, 2012).
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Figure 2.2: Time series of carbon in roundwood, with contribution from different
types from 1986 to 2009 by ecoregion. Red tick marks on the x-axis indicate the
years when the TPO data are available. Error bars represent 95% confidence inter-
val for the total estimated carbon content. Average percentage change per year of
carbon influx to HWP, ± margin of error, for each ecoregion were as follows: NCP:
−1.09 ± 0.64 %/year; SCP: −1.06 ± 0.43 %/year; Piedmont: −1.77 ± 0.60 %/year;
Mountain: −1.79±0.50 %/year. The Forest Service divides North Carolina into four
regions: Northern Coastal Plain (NCP), Southern Coastal Plain (SCP), Piedmont,
and Mountain. Types of roundwood are: HS=Hardwood Sawlog; HP=Hardwood
Pulpwood; HF=Hardwood Fuelwood; SS=Softwood Sawlog; SP=Softwood Pulp-
wood; SF=Softwood Fuelwood. Plots are generated using the ggplot2 (Wickham,
2009) package in R.
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2.3.4.4 Comparison with other estimation methods

The comparison of the annual time series of carbon in roundwood in different

ecoregions estimated using the proposed approach with that obtained using the con-

version factor and the linear interpolation of the TPO record is shown in figure 2.3

(see section 2.3.3 for the rationale).

The results show that the estimates using the conversion factor approach range

from values of about 1/3 of that using either the linear interpolation approach or

the proposed estimation method for the Mountain region to about 1/12 of that in

the Northern Coastal Plain (NCP) region (figure 2.3). Between 1992 and 2009,

the carbon in roundwood estimated by linear interpolation in each ecoregion is

always higher than that estimated in this study by 0.33 Mt C/yr or 6.2%/yr. The

comparison based on ecoregions is shown in Appendix table A.5.

One of the disadvantages of the linear interpolation method is that it cannot

estimate beyond the available years of the forest inventory data. When the inventory

data is limited, the extension to the linear interpolation method is to combine with

extrapolation. Adams et al. (2006) used both linear interpolation and extrapolation

to estimate the annual roundwood production for different regions in the US. Their

method was applied to NC when there are only three years of TPO data available

and compared their extrapolation results with the estimates in this study (see sec-

tion Appendix A.5.1 for details). The results (see tables A.3 and A.4) show that

the estimation results were substantially better than the estimation using the linear
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Figure 2.3: Time series of carbon in roundwood for different ecoregions using dif-
ferent estimation approaches. The “Remote Sensing” legend label refers to the
estimation method detailed in this paper; The “Linear Int./Ext.” label refers to
linear interpolation and extrapolation used to fill gaps in the TPO survey data;
The “Conversion Factor” label refers to the estimation method based on the con-
version factor conversion factors between areas affected by harvest and roundwood
production volumes as calculated by Masek et al. (2011) to estimate roundwood
production based on forest disturbance area. Red tick marks on the x-axis indi-
cate the years when the TPO data are available. The Forest Service divides North
Carolina into four regions: Northern Coastal Plain (NCP), Southern Coastal Plain
(SCP), Piedmont, and Mountain.
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interpolation–extrapolation method when only a few years of the TPO survey data

are available for calibration. In addition, the estimates of roundwood production in

some counties were negative when extrapolation was used. When linear extrapola-

tion of the TPO data as taken into account, from 1986 to 2009, the estimate was

0.40 Mt C/yr or 7.4%/yr higher than the estimate in this study.

2.4 Uncertainties and limitations

To account for the uncertainty associated with the proposed model, the 95%

confidence interval for each of the county-level estimates was calculated and prop-

agated these uncertainties into the ecoregion-level analysis. In general, the un-

certainty in the estimates will reflect the quality of the data and the amount of

information available in terms of observations and variables (see Appendix A.2 for

details).

Another potentially significant source of uncertainty in the model is repre-

sented by natural disturbances. The regression approach used in this study, linking

timber production to different types of disturbance intensity index using nonlinear

interaction terms and area specific circumstances is basically used to calibrate the

model. Because of this built-in flexibility, the proposed framework can adapt to dif-

ferent circumstances. For the case study in this chapter, besides harvest, the most

common forest disturbance is related to wind storms (Masek et al., 2011; Williams

et al., 2014). Natural disturbance events in North Carolina, typically hurricanes,

was tested whether they would affect the estimates. Results show no evidence that
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hurricanes adversely affect the predictive power of the model (see Appendix A.6 for

details). In the proposed framework, if more detailed and specific information on

natural disturbance events is available, the prediction accuracy can improve sub-

stantially. For example, if to apply to regions with high fire occurrence, such as

California, additional data, such as the fire mask from the LANDFIRE program

will be needed to mask out the areas disturbed by fires.

The data requirements limit the application of this model to areas where there

are more than two years of subnational level, roundwood production survey data for

the different wood types. Also this model may not provide accurate carbon estimates

in places where land tenure is not well defined or where significant unreported logging

occurs.

2.5 Discussion and conclusions

2.5.1 Implications for forest carbon accounting

This study demonstrates the use of remote sensing information and local wood

production survey data, coupled with statistical model to estimate of annual carbon

influx from forest management activities to the HWP pool. It translates disturbed

forest areas at fine spatial resolution into carbon influx to the HWP pool, which

is critical for assessing the impact of forest disturbance on the carbon cycle as it

can detect management activities happened in smaller areas (IPCC, 2014, p. 2.58).

The proposed approach can also help in addressing one of the important goals of

33



the North American Carbon Program and the CarbonNA project (Kasischke et al.,

2013) that has so far proven to be a major challenge in regional and global carbon

cycle research as pointed out by (Liu et al., 2011). The model produced results

that are comparable with other down-scaled models (for comparison) estimation

results such as those by Zhou et al. (2013) and also with other indicators, such

as decreasing in the number of wood processing mills and timberland areas. Other

conventional estimation methods, such as those based on conversion factors for forest

area changes to carbon in roundwood or linear interpolation of missing data, either

do not provide sufficient spatially detailed estimates or are not reliable when only

limited wood production survey data is available.

Both linear interpolation and conversion factor have substantial shortcomings.

Linear interpolation does not have a sound physical basis for estimating production

in missing years, as it does not provide any link between forest disturbance events

and roundwood production, and cannot be used outside the range of years used

for calibration. The conversion factor method is based on coarse–scale average

roundwood harvest rate in volume per hectare and does not distinguish between

the production of different roundwood types. One application that more general

methods cannot address, is the 30m Landsat resolution which, as suggested by the

IPCC Guidelines(IPCC, 2014, section 2.2.6.2), is able to link large area processes

such as regional carbon sequestration with the human activities smaller than 1

ha that are missed in all other methods. In this study the carbon in roundwood

produced was estimated. Since not all of the roundwood produced ends up as
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primary wood product, due to wood residues left in the mill during processing,

this is an upper limit of the forest carbon influx to the HWP in–use or in landfill.

The estimate, when combined with data from the lookup tables as from the USDA

report, that return the average amount of carbon in HWP that ends in use/landfill

over time after harvest (Hoover et al., 2014), can provide a link between forest

management activity and carbon stored in HWP.

2.5.2 Policy implications

Estimation method proposed in this chapter can help countries to fulfill the

newest IPCC estimation guideline to include the contribution of HWP to the change

of carbon stock in forests, because it provides a link between the Carbon in HWP

and forest management activities (IPCC, 2014, section 2.8.1.2). The guidelines were

developed to support the implementation of the second commitment period of the

Kyoto Protocol (Decision 2/CMP.7)8 which recommends to “explore more compre-

hensive accounting of anthropogenic emissions by sources and removals by sinks

from land use, land-use change and forestry” for better forest carbon accounting.

In the proposed framework framework, countries can estimate HWP production

coming from domestic forest-related activities (step 2.1, section 2.8.1 in the IPCC

Guidelines (IPCC, 2014)). Once the deforested areas are identified, besides using the

ratio of the deforested area to the total disturbed area (equation 2.8.3 in the IPCC

8The document is available at http://unfccc.int/resource/docs/2011/cmp7/eng/10a01.

pdf
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Guidelines(IPCC, 2014)) to derive the annual fraction of HWP carbon contribution

from deforestation9, the country can also use the proposed approach to achieve this

by evaluating the estimated regression function using the deforested areas only as

input. If roundwood harvested as a result of deforestation is also reported in the

forest inventory data, then the estimate could be more accurate.

The proposed modeling framework could help countries to develop domestic

management policies aimed at meeting their carbon storage goals in both standing

forest biomass and HWP. For example, Zhu et al. (2010) and Lippke et al. (2011)

envision a multidisciplinary approach that includes remote sensing in assessing car-

bon dynamics (including HWP carbon) in land-use change and land-management

activities. The approach could also encourage the adoption of Kyoto type carbon

accounting frameworks as the inclusion of HWP could help local forest-based in-

dustries in timber-rich countries. In this sense, this improved modeling framework

can be used to provide new information to contribute to a more complete complete

carbon crediting and trading system as the one proposed by Ellison et al. (2011).

9According to the 2013 IPCC Guideline, “Deforestation” is the direct human–induced conver-

sion of forested to non–forested land (section 2.6.1).
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Chapter 3: Spatially Explicit Assessment of the Impact of Forest

Management Regimes on Forest Ecosystem Services in

a Species-Rich Area

Abstract To quantify the impact of different management regimes on selected

ecosystem services, specifically, carbon sequestration, roundwood harvested, and

forest habitat provision for sustaining biodiversity in a species-rich area, a spatially-

explicit, mechanistic model was applied at the Grandfather Ranger District, located

in the Southern Appalachians in North Carolina, USA. The management regimes

consist of 2 baseline scenarios: no harvest with complete fire suppression, and no

harvest with no fire suppression; 2 harvest methods: various level of clearcutting

(Aggressive) and various level of selective harvest (Moderate). The 2 harvest meth-

ods are simulated for scenarios with both no fire suppression and complete fire

suppression. The results show that i. although the Aggressive regimes yield about

15 times more harvested roundwood, such regimes result in the forest average tree

age and standard deviation of tree age to be about 20 years younger than those in

the baseline scenarios and the Moderate regimes; ii. the Aggressive regimes also

result in a higher proportion of both ecologically desirable and invasive species; iii.
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Active planting plays a more important role in increasing the proportion of ecologi-

cally desirable species than opening up the canopy as a result of fire. iv. When fire

is not suppressed, the forest aboveground biomass becomes a carbon source; v. The

Moderate regimes have higher annual carbon sequestration rate in the aboveground

forest biomass for about 12% when fire is completely suppressed. vi. Certain eco-

zones are especially sensitive to fire and the Aggressive regimes. This case study

shows that a spatially explicit, mechanistic model applied is especially helpful in

quantifying ecosystem service trade-offs in a species rich forest. It not only al-

lows multiple management regimes applied to various locations in a single scenario,

but also provides quantitative spatial information on the relative number of species

present and age composition. More comprehensive understanding of the impact of

different management regimes on the quality of the forest habitat was gained, which

allows forest managers to design some innovative management regimes and policy

makers implement some form of crediting system that can balance the ecosystem

goods and services that a forest provides. Additionally, the ability to distinguish be-

tween sawlog and pulpwood harvested allows more accurate estimate on the income

of the forest owners and better account for forest carbon cycle.
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3.1 Introduction

To effectively manage a forest such that the goods and services provided are

balanced, quantitative understanding the impact of different forest management

regimes on forest dynamics is essential. Particularly the interaction and feedback

between the ecological processes and the management regimes applied, because it

can result in spatial and temporal difference in the trade-offs (Seppelt et al., 2011).

Having a robust understanding of such feedback and interaction can help predict if

a particular policy instrument would succeed or fail (Carpenter et al., 2009). The

forest ecosystem services focused in this study are carbon sequestration, roundwood

harvested, and provision of habitat to sustain biodiversity.

The relative effect of specific management schemes, such as the choice of species

and method of harvesting on ecosystem carbon sequestration over time remains a

major uncertainty in measurement of the terrestrial carbon sink (Davis et al., 2009;

McKinley et al., 2011; Nunery & Keeton, 2010), especially in temperate forests. In

addition to landowners management practices, natural disturbances such as wind

storms and fire also have important impact in changing forest carbon dynamics

and vegetation structure (Running, 2008). A systematic way of understanding the

linkage between forest management decisions, natural disturbances, and the carbon

cycle can help further analysis of the possible fate of the forest carbon cycle with

different management practices.

Some management schemes favor one aspect of ecosystem service over the
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others (Schwenk et al., 2012). For example, intensive management like clear-cutting,

would yield the highest volume of roundwood harvested, but results in a large patch

of even-aged trees, which could negatively impact the habitat quality (Keenan &

Kimmins, 1993). A management regime that focuses on carbon sequestration may

be at the expense of other ecosystem services, such as timber production and habitat

quality (Schwenk et al., 2012; Seidl et al., 2007).

Results from model simulations can inform policy makers of the impact of dif-

ferent management options on the forest. Information that would be the most useful

to forest managers must be spatially explicit and at the landscape scale Müller et al.

(2010); Scheller & Mladenoff (2007), because only these allow managers to under-

stand the effect of the treatments in different areas, especially areas with special

conservation interests (Gustafson, 2013; Scheller & Mladenoff, 2007). The two ma-

jor advantages of using a mechanistic model in comparison to an empirical model

are 1. different conditions, such as management regimes and climate pattern, that

have not happened before can be simulated; 2. the interaction between the man-

agement or disturbances and the underlying physical processes of forest succession

can be better understood. Those are important elements for analyzing the impact

of the new management regimes on ecosystem services trade-offs, the location of the

trade-offs, and the possible interaction and feedback between human modification

and the ecosystem (Howe et al., 2014).

Two harvest regimes, along with the decision of fire suppression, were simu-

lated to understand the possible ecosystem service trade-offs. The working hypothe-
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sis is that clearcutting is the more advantageous for profit-oriented forestry, because

it is more cost effective than selective harvest (Keenan & Kimmins, 1993). An alter-

native harvest regime that selective harvests slightly less area than the clearcut and

aims at both preserving the environment and sustainable roundwood harvest was

tested whether it would benefit the habitat and carbon sequestration at the expense

of the amount of roundwood harvest.

The objectives of this study were to understand the management impact on 1.

carbon sequestration by the standing forest biomass; 2. the amount of roundwood

(sawlog and pulpwood) harvested over the 100 years for each management regime;

3. forest species composition and age structure. The working hypothesis is that an

improved forest management scheme, including harvesting and the choice of species

planted, could achieve higher level of carbon sequestration (Pan et al., 2011; Ruddell

et al., 2007) and habitat quality (Kusumoto et al., 2015) compared to business-as-

usual.

3.2 Material and methods

3.2.1 Study area

To understand the impact of different management regimes coupled with

species competition, a region that is located in a species-rich area that has an active

timber industry and facing increasing pressure to harvest commodities was cho-

sen(Fox et al., 2007). The Grandfather Ranger District (GRD) within the Pisgah

41



.

Ecozones
Acidic Cove
Dry Oak-Hickory
High Elevation Red Oak
Mesic Oak-Hickory
Northern Hardwood
Oak Heath
Pine-Oak Heath
Rich Cove
Shortleaf Pine-Oak
Spruce-fir
Unclassified
White Pine-Oak Heath0 8 16 24 324

km

Figure 3.1: Ecozones in the Grandfather District (highlighted in yellow), North
Carolina, USA. Red boundary indicates the Southern Appalachian Region.

National Forest is about 777 km2 and is located in the eastern edge of the Southern

Blue Ridge Ecological Province, in North Carolina, southeastern USA (Fig. 3.1).

The elevation of the GRD ranges from 314m to 1810m and it changes sharply

within a short distance: 1200m vertical change in less than 6.5 km horizontal dis-

tance (U.S. Department of Agriculture, Forest Service National Forests in North

Carolina, 2011). The sharp difference in topography results in diverse vegetation

composition (Pittillo et al., 1998) that supports high richness of animal diversity.

The GRD consists of 12 ecozones (Simon et al., 2005) (Fig. 3.1), each has its own

ecological concern. In particular, ecozones “Pine-Oak Heath”, “White Pine-Oak

Heath”, “Shortleaf Pine-Oak”, “Rich Cove” and “Acidic Cove” all depart from a
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desirable condition to a very high degree: either with a large percent of invasive

species, undesirable species composition, or with tree stands that are even-aged due

to historical management methods (U.S. Department of Agriculture, Forest Service

National Forests in North Carolina, 2011).

Field data

The field data used in this study were obtained from the US Forest Service

(USFS) Forest Inventory Analysis (FIA) data version 6.0.1 (U.S. Department of

Agriculture, Forest Service, 2016), available for 1974 to 2015. The FIA data consists

of assessment of field plots, each 1 acre (0.4 ha), that provide information on the

entire plot, comprising tree age, species, site condition, forest type, and estimated

biomass for individual trees. An acre (0.4 ha) sample is assessed, on average, for 6000

acre (2428.1 ha) of forest and was designed to provide an unbiased representation

of forest types. Plots for the eastern states are censused every 5-7 years. This study

only uses the plots that are located in forestland, from 2002 to 2015.

Precise locations of the plot centers are not provided: owing to the need to

avoid identification of specific landowners and to protect the plots from damage.

Locations are provided within 1 mile (1.6 km) of the exact plot location. Some

plots located in the private forest are swapped with other plots of similar conditions

within the same county. Since the plots are swapped with nearby plots of similar

forest conditions, the data remain valid for the forest type measured. Therefore, not

having the precise location information does not affect the use of the FIA data in
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this study. Biomass is estimated using the allometric equation provided by Jenkins

et al. (2003).

Species

Twenty of the most abundant tree species, according to the FIA data provided

in the southern Appalachian region in North Carolina were chosen in this analysis

(table 3.1). Ecological and commercial ranks were provided by local experts, based

on the species contribution to its community and on the amount of volume sold

and products made respectively. Based on the ranks, species were classified into 4

ecological classes, in which Class A is the most ecologically preferable, while Class

D is the least. Both Class A and Class D contain 3 species each. Class A consists of

Pitch Pine, White Oak, and Eastern Hemlock. Particularly, Eastern Hemlock is a

keystone species in riparian forests and acidic coves. Species are also classified into 5

commercial classes, in which Class I is the most economically valuable, while Class

V is the least. Specifically, the three species in Class D: Yellow Poplar, Eastern

White Pine, and Red Maple are aggressive native species with capability to displace

other species, in which, the first two are also the top 2 ranked commercial species.
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Table 3.1: The 20 species simulated in this study. “Comm Rank” and “Eco Rank” stand for “Commercial Rank” and
“Ecological Rank” respectively. They are provided by local experts based on resulting harvested timber products and the
contribution to its community of each species. Smaller rank index indicates higher rank. “Comm Class” and “Eco Class”
group the commercial rank and the ecological rank into 5 and 4 classes respectively.

Common Scientific Code Comm Comm Eco Eco
Name Name Rank Class Rank Class

Pitch Pine Pinus rigida Mill. PIRI 9 III 1 A
White Oak Quercus alba L. QUAL 3 I 2 A
Eastern Hemlock Tsuga canadensis (L.) Carr. TSCA 16 III 3 A
Sweet Birch Betula Lenta L. BELE 8 II 4 B
Table Mountain Pine Pinus pungens Lamb. PIPU 11 III 5 B
Chestnut Oak Quercus prinus L. QUPR 6 II 6 B
Northern Red Oak Quercus rubra L. QURU 4 I 7 B
American Beech Fagus grandifolia Ehrh. FAGR 13 IV 8 B
Pignut Hickory Carya glabra (Mill.) Sweet CAGL 14 IV 9 B
Sourwood Oxydendrum arboreum (L.) DC. OXAR 19 V 10 C
Flowering Dogwood Cornus florida L. COFL 20 V 11 C
Blackgum Nyssa sylvatica Marsh. NYSY 15 IV 12 C
Black Cherry Prunus serotina Ehrh. PRSE 7 II 13 C
Black Locust Robinia pseudoacacia L. ROPS 18 V 14 C
Scarlet Oak Quercus coccinea Muenchh. QUCO 17 IV 15 C
Black Oak Quercus velutina Lam. QUVE 5 I 16 C
Virginia Pine Pinus virginiana Mill. PIVI 10 III 17 C
tuliptree/ yellow poplar Liriodendron tulipifera L. LITU 1 I 18 D
red maple Acer rubrum L. ACRU 12 IV 19 D
eastern white pine Pinus strobus L. PIST 2 I 20 D
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3.2.2 Management scenarios and targets

Six management scenarios were simulated, which consists of 2 baseline scenar-

ios when no harvest occurs–no disturbance and fire is the only disturbance, 2 sce-

narios with different harvest regimes when fire is complete suppressed or completely

allowed (table 3.2). The 2 harvest regimes are “Aggressive” and “Moderate”. The

“Aggressive” regime consists of clear-cutting and shelterwood harvesting. Clearcut

occurs in lands that are privately owned and in publicly owned non-ecologically

sensitive lands; shelterwood harvest occurs in lands that are ecologically sensitive

and publicly owned lands. The “Moderate” regime mimics the practice of the US

Forest Services in the National Forest for the public forest, which include shelter-

wood harvest and selectively harvest certain species in different areas. Managers

in privately-owned forest would conduct selective logging for the 3 economically

valuable tree species and replant them, but the area of harvest varies depending

on its protection status classified by the North Carolina GAP study (McKerrow

et al., 2006). No harvest takes place in the Congressional Designated Roadless ar-

eas, where the federal law prohibits any forest management activity such as logging

or road construction to occur. Harvest occurs every 5 years for both of the harvest

regimes. Details of the harvest regimes used in each specific management area are

provided in Appendix table B.1. This study adopts the current harvest rotation of

the Southern Appalachian area of 80 years (Fox et al., 2007), which means that all

harvested sites grow at least 80 years since its previous harvest.
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Table 3.2: Two harvest regimes simulated in this study.

Regimes Private Public Ecology Roadless

Aggressive Clearcut 2.5% area per

year: Select most

economically valuable

sites +

Plant the 3 most

economically valuable

species

Clearcut 1-2.5% area per

year: Select most

economically valuable

sites +

Plant the 3 most

ecologically preferable

species

Shelterwood harvest

0.5% area per year:

Select most economically

valuable sites +

Plant the 3 most

ecologically preferable

species

No harvest

Moderate Selectively cut 0.1-2.5%

area per year: Select

most economically

valuable sites +

Plant the 3 most

economically valuable

species

Shelterwood harvest +

Planting Red Oak and

Pitch Pine or

1-2% area per year:

Selectively harvest the 3

most ecologically

undesirable species of

0.4 ha for each site

0.5% area per year: Cut

understories or +

0.24% area per year

Shelterwood harvest and

Planting Red Oak and

Pitch Pine

No harvest
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Fire was the most frequent natural disturbance in the Southern Appalachian

region before the USFS started suppressing fires. The complete fire suppression

regime that the USFS currently implements (Flatley et al., 2013) was simulated,

and, for comparison, also the natural fire regime based on the historical fire data

in Xi et al. (2009). All management scenarios were simulated with and without fire

suppression. Also, scenarios of complete fire suppression (no disturbance) and no

harvest (no fire suppression) were simulated to assess the cumulative impact.

3.2.3 Model description

Forest change over 100 years was simulated using a spatially explicit, forest

succession model, Landis-II, for each of the management scenarios described above

(table 3.2). The 150m resolution was chosen to balance between the need of includ-

ing the interactions between the ecological processes and the forest management

regimes applied and computing limitations. Landis-II is a mechanistic forest suc-

cession model that can be used to simulate forest response to different disturbances

and provide spatially explicit results that are based on the interactions of species

productivity, mortality, reproduction, natural disturbances and management activi-

ties (Scheller et al., 2007; Scheller & Mladenoff, 2004). Since it is a spatially explicit

model, Landis-II can simulate inter- and intra-species competition at a broad scale

(> 105 ha), including processes such as seed dispersal in the landscape and other

succession processes (Scheller et al., 2007). To account for the carbon and biomass

dynamics in the forest during the succession process, the Forest Carbon Succes-
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sion extension version 2.0 (Dymond et al., 2016) was used. Detail studies of the

sensitivities of the model are given by Simons-Legaard et al. (2015) and de Bruijn

et al. (2014) and in particular they identified the maximum biomass and maximum

ANPP, were the parameters to which the model was most sensitive.

The two extensions to the core model were used to simulate the impact of the

harvest and fire disturbances were the Base Harvest and the Base Fire. The Base

Harvest version 3.0 allows the simulation of different harvest methods, areas har-

vested, and rotation length (Gustafson et al., 2000). Wildfires are generated based

on the physical characteristics of each ecozone in the Base Fire extension version

3.0.3 (He & Mladenoff, 1999). Details on how the model input and parameters were

obtained are provided in Appendix B.

3.2.4 Impact on carbon sequestration, roundwood harvested , and

habitat provision

The impacts of different management schemes on the 3 ecosystem services were

quantified using the output from the model to understand the trade-offs. Carbon

sequestration in the aboveground standing biomass is defined by the net change of

carbon in the forest biomass in between simulation years 1 and 100. The net change

was divided by 100 to obtain the annual carbon sequestration by the aboveground

forest biomass.

The Forest Carbon Succession Extension in Landis-II provides information on
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the carbon in the trunk and branches of the tree that goes to the harvested product

pool (Dymond et al., 2016). The volume of roundwood harvested is estimated by

converting the annual carbon flux to the harvested product pool of each species to

volume. The roundwood specific gravity used to convert from biomass to volume

is the average specific gravity of both hardwood and pulpwood in the Southeastern

US, 0.49 m3/g (Smith et al., 2006). Harvested roundwood is divided into sawlog and

pulpwood harvested. For species that belong to commercial classes I-III (table 3.1),

the harvested trunk was considered as harvested sawlog while the harvested branches

portion was considered as harvested pulpwood. All the harvest for Virginia Pine and

for species that belongs to commercial classes IV and V is considered as harvested

pulpwood.

Provision of habitat to maintain biodiversity is more difficult to quantify. The

Shannon’s diversity index (Shannon, 1948) was used to assess the tree species abun-

dance and richness after 100 years. However, the Shannon’s diversity index alone

does not account for the ecological values of species (Hurlbert, 1971) and the species

age structure, both are important indicators of the desirability of a forest habitat

that can sustain biodiversity (Noss, 1999; Tews et al., 2004). Therefore, in addition

to reporting the Shannon’s diversity index, the frequency distribution of all species

for the entire GRD, the average and the standard deviation of age of all species

for the entire GRD and individual ecozones at the end of the simulation year for

all management scenarios were analyzed. The preferred condition is a high number

of Class A species, low number of Class D species, older age, and high standard
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deviation of age that indicates a high age diversity.

3.2.5 Calibration, validation, and sensitivity analysis

The predictive ability of the Landis-II model depends on how close the simu-

lated forest succession results were to field data. Calibration was done at the plot

level and also at the forest type level for each species, while validation was done at

the plot level. For the GRD, there are total of 9 forest types. For 2002 to 2015,

each forest type has about 4 to 5 plot-level aboveground biomass values, for a total

50 data points. At the species-level aboveground biomass, each species is present

in at least one forest type for one year for FIA data ranges from 2002 to 2010. On

average each species is present in 5 forest types for 3 to 4 years, with total of 367

data points. The Forest Carbon Succession Extension of the model was simulated

for 14 years. The average biomass of the first 9 years of the simulation result was

used to calibrate with that from the FIA data version 6.0.1 (U.S. Department of

Agriculture, Forest Service, 2016) in between 2002 and 2010. The simulation re-

sults of the later 5 years were used as validation by comparing against the values

of the 2011 to 2015 FIA data. Data used for both calibration and validation are

located in areas that had not experienced any forest disturbance between 1990 and

2010. Areas that have not had any disturbance event occurred between 1990 and

2010 were selected for calibration of the Forest Carbon Succession extension. Maps

of the disturbance history in the GRD were obtained from the forest disturbance

history maps derived from the Vegetation Change Tracker (VCT) algorithm (Huang
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et al., 2010). The resulting biomass time series from the simulation of Forest Carbon

Succession extension was converted to dry biomass using the species-specific Specific

Gravity values in Miles & Smith (2009).

For sensitivity analysis, the maximum ANPP and the maximum biomass of

each species were altered by 10% in the calibration process, as those two parameters

are shown to be the most influential in the model (Simons-Legaard et al., 2015;

Thompson et al., 2011). The changes in the aboveground biomass with the original

data in simulation years 0, 50, and 100 were compared. The initial data for maximum

biomass of each species were obtained based on the data used in Thompson et al.

(2011). Values for maximum ANPP were obtained from simulation of the PnET-II

model de Bruijn et al. (2014); Xu et al. (2009). Details for input parameters used

in the PnET-II model are available in the Appendix B.13.

3.2.5.1 Model uncertainty and statistical analyses

Each management scenario is simulated for five times to account for the

between-run variability, which captures the stochastic component of Landis-II (Thomp-

son et al., 2011). The range of the model output values can be used to compare

the significance of the difference between management regimes. The contribution

of the uncertainties in input parameters were analyzed using sensitivity analysis. A

more comprehensive sensitivity analysis for all the input parameters was done by

Simons-Legaard et al. (2015), albeit in a null landscape in North America.

The Shannon’s diversity index, used as a metric of diversity, is on a logarithmic
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scale that indicates the entropy of the area rather than other aspects of diversity, so

it is difficult to compare the values between management regimes. To compare the

magnitudes of the Shannon’s diversity index of two scenarios, the effective numbers

of species, as calculated by taking the exponent of the Shannon’s diversity index,

of two scenarios were calculated to compare their differences on a linear scale (Jost,

2006; MacArthur, 1965). The student t-test was used to compare the significance

of the difference between the index in any two scenarios (Hutcheson, 1970).

3.3 Results

3.3.1 Calibration, validation, and sensitivity analysis results

For the plot-level calibration and validation, the distributions of the plot-

level aboveground biomass density of the FIA data and the model simulation were

compared (Fig. 3.2) and the student t-test was used to compare the means of the

two distributions. For the FIA data used for calibration, the mean was 140.2 t/ha

and that of the model simulation is 141.0 t/ha. The 95% confidence interval was

-17.8 and 16.2, and t-value was -0.09. Since the t-value lies within the confidence

interval and the p-value was 0.93, the t-test results show that the hypothesis that

the means of the two distributions are equal cannot be rejected.

In addition to the aboveground biomass density at the plot-level, that at the

forest-type level per species was also examined to ensure the species-level above-

ground biomass density is calibrated. The plot of the simulation aboveground
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Figure 3.2: Model was calibrated using the plot-level aboveground biomass of the
FIA data for 2002-2010 (black line, mean=140.2 t/ha) and simulation results for
the first 9 years (red line, mean=141.0 t/ha). The two lines show the Kernel density
estimation of the 2 distributions. The results from the Student t-test indicate that
the two means are not significantly different.
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biomass density of the first 14 years against the corresponding FIA data (Fig. 3.3)

shows that the relationship between the simulated result and the FIA data is gen-

erally good: Slope of the regression line is 0.90, and 95% confidence interval of the

slope was 0.78 and 1.03, where 1 lies within the interval. The adjusted r-square of

the regression line is 0.65, with p-value less than 0.01. Although there are some un-

derestimations of Northern Red Oak (QURU) and Yellow Poplar (LITU) for some

area and overestimation Sweet birch (BELE) for some data point, most of the data

points fall within the 95% prediction interval. Note that about half of the FIA data

points are distributed around the lower end of the aboveground biomass density.

Both of the species-level aboveground biomass density of the FIA data and the sim-

ulated model results are not normally distributed (Shapiro-Wilk test was performed

on both data set, with both of the p-values less than 0.01, which implied the null

hypothesis that the data sets are normally distributed are rejected). However, the

number of data points for both datasets is 109. With that few number of data point

and the GRF is a small region in the Southern Appalachian, it is not unreasonable

to have datasets that are not normally distributed. Nevertheless, since all studied

species and forest types are included in the calibration, the FIA data used in the

calibration have provided sufficient information.

For validation, the simulated average aboveground biomass density value is

162.5 t/ha while that of the FIA is 171.7 t/ha (Fig. 3.4). The t statistics is -0.57,

which lies within the 95% confidence interval of -41.5 and 23.0, and p-value was 0.57.

The t statistics results show that the hypothesis that the means of the two distri-
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Figure 3.3: Comparison of the modeled aboveground biomass and the FIA above-
ground biomass for 13 years of simulation for places where no disturbance had
occurred in between 1990 and 2010. Total number of data points is 113. Each data
point represents the average biomass of a species in a community in a given year.
Species codes in the legend are identified in Table 3.1. Orange line represents the
1:1 relationship and the red line represents the linear regression of the model and
the FIA data. Slope of the regression line is 0.65, with p-value less than 0.01. The
outer pair of the red dash lines is the 95% prediction interval, while the inner pair
is the 95% confidence interval.
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Figure 3.4: The plot-level aboveground biomass of the FIA data for 2011-2015 (black
line, mean=162.5 t/ha) was used to validate the model results by comparing it with
that for the last 5 years out of 14 years of the model simulation results (red line,
mean=171.7 t/ha). The results from the Student t-test indicate that the two means
are not significantly different. The two lines show the Kernel density estimation of
the 2 distributions.

butions are equal cannot be rejected. Additionally, the aboveground forest biomass

of the nearby undisturbed hardwood forest at the Coweeta Hydrologic Laboratory

was 139.9 t/ha in the study conducted in the 1970s (Day & Monk, 1974). Although

the study time period is different, the biomass of the model simulation for earlier

years is 141.0 t/ha, which is similar to that at the Coweeta study site.

Maximum ANPP and maximum biomass were chosen for analyzing the sensi-

tivity of the model. For 10% change in the maximum ANPP results in ±0-2% change

in the aboveground biomass density, while 10% change in the maximum biomass re-

57



sults in ±7.5-10% change in the aboveground biomass density (Table 3.3). The

changes of the influences over time of the two parameters are opposite from one

another: While the change in the maximum ANPP value has less influence in year

50 when compared to year 0 and year 100, that for the maximum biomass has the

most influence in year 50 when compared to the other 2 years.
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Table 3.3: Sensitivity analysis of the change in aboveground biomass density (AGB) by altering two parameters for simu-
lation years 0, 50, and 100. “Original”, the scenario which there is no forest disturbance (complete fire suppression) was
served as the basis of comparison.

Year 1 Year 50 Year 100
Parameter Change AGB (t) Change(%) AGB (t) Change(%) AGB (t) Change(%)

Original 0 222.24 0 319.15 0 369.35 0
Max ANPP -10% 217.19 -2.27 318.18 -0.31 361.93 -2.01
Max ANPP +10% 227.78 2.49 319.17 0.01 375.07 1.55

Max Biomass -10% 205.52 -7.52 287.56 -9.90 338.34 -8.40
Max Biomass +10% 239.40 7.72 349.86 9.62 398.76 7.96
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3.3.2 Simulation Results

3.3.2.1 Effect of treatments on carbon sequestration

In this study, fire suppression is the most important factor in the management

in terms of the impact on the carbon sequestration by the forest standing biomass

after 100 years (Table 3.4). If fire is completely suppressed, all the management

schemes result a net carbon gain in the standing biomass in the landscape. As ex-

pected, the Aggressive regimes, which consist of different level of clear-cutting or

shelterwood harvest, make the forest be a smaller carbon sink or a bigger carbon

source when compared with other management regimes or the baseline scenarios:

when fire is suppressed, the aboveground biomass of the forest serves as an about

13%/yr smaller carbon sink in the Aggressive regime than those in the Moder-

ate regime and the baseline; When fire is not suppressed, the forest release about

13%//yr more carbon in the Aggressive regime than that in the baseline scenario

and about 8%/yr more compared with the Moderate regime. When fire is sup-

pressed, the Moderate regime sequester similar amount of carbon compared with

the baseline. But when fire is not suppressed, the Moderate regime releases about

5%/yr more carbon compared to the baseline. However, when sawlog harvested is

considered, the loss of carbon in both harvest regimes when fire is not suppressed

is indeed transferred to the long-term product pool (sawlog), where the carbon can

be stored for about 100 years (Smith et al., 2006).
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Table 3.4: Average annual carbon sequestration rate in the standing biomass in the 100-year simulated time period, average
annual harvested sawlog, pulpwood densities, and harvested area over 100-year period for different management regimes.
The Shannon’s Diversity Index, the average and standard deviation of age of all the species are reported for the landscape
at the end of the 100-year period. The reported values are the average ± the standard deviation of the 5 model runs.
Negative numbers indicate a loss.

Regime Fire Sequestered
(t C/ha/yr)

Sawlog
(m3/ha/yr)

Pulpwood
(m3/ha/yr)

Harvested
Area (ha/yr)

Diversity
(Shannon’s)

Avg. Age
(yr)

SD Age
(yr)

NoDist N 0.74± 0.00 0 0 0 2.32± 0.00 73.13± 0.02 45.23± 0.01
Aggressive N 0.64± 0.01 3.62± 0.02 2.60± 0.02 522.65± 14.77 2.47± 0.00 57.52± 0.70 43.23± 0.12
Moderate N 0.73± 0.00 4.95± 0.11 3.45± 0.10 34.38± 1.03 2.34± 0.00 72.76± 0.02 45.23± 0.01

Fire Y -0.126± 0.01 0 0 0 2.59± 0.00 51.70± 0.47 44.31± 0.14
Aggressive Y -0.14± 0.01 4.15± 0.06 2.87± 0.05 554.25± 13.65 2.50± 0.01 35.87± 0.35 34.71± 0.14
Moderate Y -0.13± 0.02 4.73± 0.19 2.69± 0.16 34.80± 1.48 2.61± 0.00 51.20± 0.47 44.09± 0.33
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The time of the aboveground biomass density (fig. 3.5) shows that fire is a

major factor in determining the annual change of carbon in biomass. The trends

of the biomass density of the Moderate regimes are very similar to the baseline

scenarios. Although the Aggressive regimes have biomass density trends that are

almost always lower than the counterparts, in around years 85-90, the biomass

densities of the Aggressive regimes, whether fire is suppressed or not, are slightly

higher than their counterparts. The reasons could be because in the Aggressive

regimes, two out of the three most invasive plants are planted more frequently than

in the Moderate regimes as they are among the most commercially desirable species.

The minimum harvesting time for a stand is 80 years. By around years 85-90, the

stands that were planted in the beginning of the model simulation would have had

grown to mature, but were harvested shortly after, which can be observed especially

in the time series of complete fire suppression.

3.3.2.2 Effect of treatments on roundwood harvested

Figure 2.1(b) from chapter 2 shows that the harvest density of the forest-

land in the corresponding counties of the GRD in between 1986 and 2010 is about

0.08m3/ha/yr to 3.67m3/ha/yr, which is similar to those found in this chapter (ta-

ble 3.4). Although the volume of roundwood harvested per hectare in both of the

Moderate regimes harvested is more than that in the Aggressive regimes, when ac-

counting for the actual areas that were harvested, the Aggressive regimes actually

yield more roundwood volume (table 3.4). When fire is completely suppressed, the
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Figure 3.5: Change in biomass for different management regimes for the entire
Grandfather Ranger District. The error bars indicate the 3 standard deviation of
the 5 repeated model runs for each management scenario.
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Moderate regime harvested 36.7%/ha/yr more sawlog and 32.7%/ha/yr more pulp-

wood than in the Aggressive regime. When fire is not suppressed, the Moderate

regime harvested about 14.0%/ha/yr more sawlog and 6.3%/ha/yr less pulpwood

than in the Aggressive regime. However, when harvested area is considered, the

Moderate regime only produce 9% of the sawlog and pulpwood harvested in the

Aggressive regime when fire is completely suppressed; and 7.2% of the sawlog and

5.9% of the pulpwood harvested when fire is not suppressed.

Another interesting result is that the Aggressive regime has more roundwood

harvested when fire is not suppressed than when fire is completely suppressed:

17.7%/yr more sawlog and 14.6%/yr more pulpwood harvested. However, the Mod-

erate regime behaves the opposite: 3.3%/yr less sawlog and 21.1%/yr less pulpwood

when fire is not suppressed compared with than when fire is completely suppressed.

The time series of roundwood harvested per hectare (figure 3.6) shows that the

sawlog harvested density in the Aggressive regimes fluctuate less than those in the

Moderate regimes. Another noticeable thing is that the roundwood harvested per

hectare in the Aggressive regimes exhibit a general decline over time, except for the

peak in sawlog harvested around year 90 when no fire suppression. There is a sharp

increase in sawlog harvested per hectare in the Moderate regimes in between year 22

and year 60. Pulpwood harvested per hectare in the Moderate regimes started out as

about half of those in the Aggressive regimes, but the amounts become comparable

to the Aggressive regimes after year 30 and suppressed those in the Aggressive

regimes after year 80.

64



Figure 3.6: Time series of the sawlog and pulpwood harvest density for different
management regimes for the entire Grandfather Ranger District. When taken into
account of the harvested area, the annual volume harvested in the Aggressive regimes
are about 15 times higher than that in the Moderate regimes.
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Effect of treatments on provision of sustaining biodiversity

To understand how well the habitat’s provision in sustaining biodiversity, the

forest species diversity as indicated by 1. the Shannon’s diversity Index, 2. the

relative number of species, 3. the average age, and 4. the variation of the age

structure that is shown as the age standard deviation were examined.

The Shannon’s diversity index values are higher when fire is not suppressed.

When fire is completely suppressed, the Aggressive regime result in a higher Shan-

non’s diversity index than those of the baseline and the Moderate regime, but when

fire is not suppressed, the index resulted from the Aggressive regime is the lowest

(table 3.4). The student t statistics are all bigger than 1.96, which means that

the difference in the Shannon’s diversity index as the result of different manage-

ment regimes, although varies, are significant (table 3.5). In particular, when fire

is not suppressed, the Moderate regime is 12% more diverse than the same regime

with complete fire suppression, but the Aggressive regime is only 1% more diverse

when there is no fire suppression than the same regime when the fire is completely

suppressed. Except for the Aggressive regime in the case when there is no fire sup-

pression, which results in the landscape to be 3% less diverse than the baseline, all

the other harvest regimes result in a more diverse landscape than the baseline.

The frequency distribution of species at the end of 100 years of the simulation

for different management regimes (figure 3.7) shows that the Moderate regimes do

not change the species ranking that is based on frequency compared to the baseline
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Table 3.5: Comparison of the effective numbers derived from the average Shannon’s
Diversity Index of the 5 model runs for the entire Grandfather Ranger District.
The numbers on the top are the percentage difference of the effective number of
species between the management regimes listed in the first column and those in
the first row (the base). The numbers at the bottom with parenthesizes are the
student t-statistics values when comparing the Index of the corresponding pairs of
regime: “NoDist”=No disturbance; “Fire”=Fire only; “AgFire”=Aggressive with
Fire; “AgNF”=Aggressive with complete fire suppression; “MdFire”=Moderate
with Fire; “MdNF”=Moderate with complete fire suppression.

NoDist MdNF AgNF Fire AgFire MdFire
NoDist 0

(—)

MdNF
2%
(32)

0
(—)

AgNF
16%
(288)

6%
(253)

0
(—)

Fire
30%
(412)

11%
(384)

5%
(194)

0
(—)

AgFire
20%
(291)

7%
(262)

1%
(59)

-3%
(117)

0
(—)

MdFire
33%
(449)

12%
(420)

6%
(234)

1%
(33)

4%
(151)

0
(—)
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scenarios. In the case of complete fire suppression, the Aggressive regime has a

higher equitability of species distribution and higher percentage of the ecologically

preferred species than the baseline and the Moderate regime. However, it also has

higher proportion of invasive species. Similarly, when fire is not suppressed, although

the equitability of species distribution is similar for all management regimes, the

Aggressive regime still has a higher proportion of both ecologically desirable and

invasive species when compared with the baseline and the Moderate regime. In

contrary, although the Moderate regimes actively remove the 3 invasive species, their

proportion is not that different from that in the baseline scenarios. Because the 3

most commercially desirable species (LITU, PIST, QUAL) were intensely planted

in the privately owned forest and the 3 most ecologically desirable species (PIRI,

QUAL, TSCA) were intensely planted in the publicly owned forest for the Aggressive

regimes, they all have higher proportion than those in the baseline scenarios and

the Moderate regimes. The higher proportion of the more desirable species, both

commercially or ecologically, is the result of active planting more than of the opening

up of canopy due to clearcut. Fire also opens up canopy, but based on the results of

the baselines and the Moderate regime, opening up canopy does not really change the

ranking of the four most abundant species. Additionally, the other 2 commercially

desirable species (QURU and QUVE) that are not actively planted have much lower

proportion than those that were actively planted. Although QURU (Northern Red

Oak) was planted occasionally in the Moderate regime, it only yields slightly higher

frequency than that in the baseline scenarios and the Aggressive regimes. The
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introduction of more invasive species and lowering the average and the standard

deviation of age of forest species agrees with field observation of the clearcut forest

in the area (Leopold et al., 1985).

Base on the species distribution and the Shannon’s diversity index, it seems

that the Aggressive regimes provide a more desirable habitat for sustainability. How-

ever, if the age distribution of the trees are also considered, the average age of the

forest in the Aggressive regimes is about 15 years younger when compared to the

baseline scenarios and the Moderate regimes (table 3.4). The trees in that regime

also have a smaller standard deviation of age, which means that the habitat under

the Aggressive regime does not result in trees of different ages that can provide

different niches for various animal species. The more desirable species distribution

and the higher Shannon’s diversity index in the Aggressive regimes may just be

reflecting the condition of the forest when it is in the earlier forest succession stage.
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Figure 3.7: Frequency distributions of species 100 years after each management regime. Panels on the left column are
management regimes with complete fire suppression, while those on the right are management regimes without fire suppres-
sion. Bars in red indicate the 3 most ecologically undesirable species, while bars in greens indicate the 3 most ecologically
preferable species. Each bar indicates the average frequency of a species for running the models for 5 times. Error bars
indicate 3 standard deviations of the mean for the 5 model runs, which accounted for 99.7% of the variations and visually
more visible.
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3.3.2.3 Spatial pattern of the effect of treatments

Effect of the management schemes on the species age and the standard devi-

ation of age also vary by ecozone (fig. 3.3.2.3). The average age and the standard

deviation of age for the Aggressive regimes are the lowest when compared with

regimes of the corresponding fire status, but ecozones 2,3,4,5,6,11 are particularly

sensitive. Specifically, ecozones 2,4, and 11 are suffered from having trees that are

evenly aged (U.S. Department of Agriculture, Forest Service National Forests in

North Carolina, 2011). For ecozones with special concerns (ecozones “Acidic Cove”,

“Pine-Oak Heath”, “White Pine-Oak Heath”, “Rich Cove” and, “Shortleaf Pine-

Oak”: ecozones 4, 5, 6, 10, and 11 in fig. 3.3.2.3), the Moderate regimes would

result in older average tree age in those ecozones. Ecozones 5 (“Pine-Oak Heath”),

6 (“White Pine-Oak Heath”), and 11 (“Shortleaf Pine”) are especially sensitive to

fire regime, where the average and standard deviation of age are much lower if fire

is not suppressed.
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(a) Complete fire suppression (b) No fire suppression

Figure 3.8: Average and standard deviation of species age in each ecozone for different management scheme. Each code
corresponds with each ecozone as follows: 1. “Northern Hardwood”; 2. Mesic Oak-Hickory”; 3. Oak Heath”; 4. “Acidic
Cove”; 5. “Pine-Oak Heath”; 6. “White Pine-Oak Heath”; 7. “Spruce-Fir”; 8. “High Elevation Red Oak”; 9. “Unclassified”;
10. “Rick Cove”; 11. “Shortleaf Pine-Oak”; 12. “Dry Oak-Hickory”.
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3.4 Discussion

Ecosystem services trade-offs

This study quantifies the trade-offs between the ecological services of the forest

as a carbon sink, provision of wood products, and habitat for organisms of all

types. The importance of this was acknowledged in the most recent IPCC report

(Smith & Bustamante, 2014). The two harvest regimes were implemented in this

study: “Aggressive” that consists of various forms of clearcutting; and “Moderate”

that consists of various forms of species selection harvest that closely mimics the

harvest regimes of the US Forest Service in the public lands. The Aggressive regime

was a milder form of harvest prescription compared to the historical clearcutting

in the Appalachian regions (Yarnell, 1998). Thus, the Moderate regimes can be

viewed as restoration management regimes. This study is an example of scientific

understanding of restoration actions on forest ecosystem and quantification selected

ecosystem services trade-offs, which has been noted by Benayas et al. (2009) as

relevant to conservation science.

Although the amount of roundwood harvested in the Aggressive regimes is

larger than that in the Moderate regimes, the amount of harvested sawlog and

pulpwood per hectare in the Aggressive regimes exhibit slight decreasing trends over

time, but those for the Moderate regimes are slightly increasing (figure 3.6). The

larger amount of roundwood harvested in the Aggressive regimes is due to more areas
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being harvested. The working hypothesis is that clearcutting is more cost effective

than selective harvest (Keenan & Kimmins, 1993). However, the slowly decreasing

trends may be an indication of the decrease in productivity and tree quality over

time for the Aggressive regime, which is a sign that clearcutting may not be able

to sustain a long-term high quality roundwood production. The decreasing trends

for the roundwood harvested density would be higher if the clear-cutting areas per

year is higher and occurs more frequently.

One of the advantages of using a landscape scale mechanistic model in a

species-rich area, such as in this study, is that some aspects of habitat diversity

can be calculated.While only the contribution of the forest trees to diversity is simu-

lated, many other plant and animal species depend on, and differentiate between, the

different tree species, their density and sizes. Here, the number of species, the num-

bers of individuals of each species, the age distribution and ecological importance

rank were used to explore various aspects of diversity. These three are important

characteristics that can complement one another in determining the quality of the

habitat and biodiversity when evaluating ecosystem services trade-offs (Farnsworth

et al., 2015). Specifically, in this study, although the Aggressive regimes result in

the higher percentage of ecologically desirable species and higher Shannon’s diver-

sity index, other results show that the regimes also yield lower number of individual

trees, and the average and standard deviation tree age overall (see table 3.4 and

figure 3.7). The spatially explicit nature of the model also shows certain ecozones

are more vulnerable to fire and the Aggressive regime (figure 3.3.2.3), especially for
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some of them that require ecological restoration. The conclusion is that despite

clear-cutting yields more roundwood harvested and higher proportion of ecological

desirable tree species, the resulting forest would not be able to provide as many

different ecological niches for various species as that resulting from the management

regime that consists of various forms of species selection harvest.

3.4.1 Implication on conservation policy

Having a spatially explicit and qualitative information on habitat provision for

sustaining biodiversity can help forest managers design a management regime that

can balance the trade-offs between the ecological services of the forest as a carbon

sink, provision of wood products, and habitat for organisms of all types for different

parts of the forest (Benayas et al., 2009). Depending on the desired outcome, policy

makers can provide subsidies or increase taxation to encourage forest managers to

switch the forest management regime Masek et al. (2011).

Also because the results are spatially explicit, they can be used to inform forest

management planning. For example, the Nantahala and Pisgah National Forests

Land Resource Management Plan that is currently in the drafting process that

describes the desired condition in each ecozone (National Forests in North Carolina,

USFS, 2016). For example, the study results agree with the report that in the Pine-

Oak Heath (ecozone 5) and Shortleaf Pine ecozones (ecozone 11), fire suppression

determines the tree age structure, but are able to provide quantitative information

on those selected ecosystem service trade-offs. The study results (figure 3.3.2.3)
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provide the ranges of possible tree age and its variation as a result of complete and

no fire suppression, which could be used to inform the forest manager on how much

to control burning in those ecozones.

The model inputs used in this study assume that the temperature and atmo-

spheric CO2 concentration in this study only fluctuate within the level of the past

50 years. The future increase in the values of these two variables may increase tree

growth, and possibly fire size and frequency, but these are beyond the scope of this

study. Additionally, thinning is not simulated in this study, although it is a very

common practice that allows the trunk of desirable trees to increase faster and to

maximize the profit (Keyser & Brown, 2014). Accounting for the carbon flux to

the harvested wood product pool from thinning and the impact of climate change

coupled with different management regimes in a species rich area could be included

in a future study. Nevertheless, the framework in this study provides forest man-

agers a comprehensive spatially explicit information to understand the impacts of

different management regimes on the trade-offs of the selected ecosystem services.

The results can also combined with other models to understand the impact on, for

examples, animal diversity and landscape aesthetic.
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Chapter 4: Mapping revenue from forest carbon subsidies and round-

wood sales for different management regimes–with bio-

physical processes included

Abstract Carbon subsidies is one of the policies that governments are using to

encourage forest landowners to manage their forest not just for maximizing timber

harvest, such as the REDD+ program. Utilizing maps to perform scenario analysis

of possible revenue of different landowners as a result of various environmental sub-

sidies has been used to understand the effects of ecosystem service valuation policies.

This study shows paying foresters at US$0.75(tCO2e)
−1, which is way lower than

the social price of carbon, is an enough incentive for them to manage the forest

for carbon sequestration. Even if subsidies are paid on the number of important

species present, to maximize the revenue, foresters would still adopt some form of

clearcutting regimes, but maybe plant more important species. The lessons are

1.using the social costs as the basis for subsidizing forest management may not be

the most effective carbon subsidies to the foresters in terms of encouraging them

to manage their forest for carbon sequestration; and 2. the subsidy of preserving

the forest carbon in the biomass has to be higher than that of the annual carbon
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sequestration if the goal of the policy makers is to prevent clearcut.

4.1 Introduction

Under the pressure of population growth and the increasing demand on ecosys-

tem services, one of the ways to satisfy both conservation needs and the livelihoods

of local people is by valuation of ecosystem services (Daily et al., 2000). Timber

production and carbon sequestration are two of the ecosystem services that a forest

provides. Timber production results ecosystem goods that is a manufactured capi-

tal, so the value of timber production could be fully captured in market. However,

carbon sequestration is a regulating service that its value is not fully captured in

market in terms comparable to other manufactured goods (Costanza et al., 1997;

Nelson et al., 2008; Nelson & Daily, 2010). As a result, carbon sequestration, as

public goods, is not commonly considered by forestland managers (De Groot et al.,

2010).

To encourage forest owners to manage their forest not just for maximizing

profit by harvesting timber, governments and organizations are starting to imple-

ment policies on providing subsidies on ecosystem services that are not commer-

cially valued. The most common ones are subsidies on carbon. Programs such

as the United Nations Collaborative Programme on Reducing Emissions from De-

forestation and Forest Degradation (REDD+) (UN–REDD Programme, 2016) in-

cludes developed countries paying developing countries to preserve their forests or

the implementation of Cap-and-Trade Program in California that provides the forest
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owners (mostly within the United States) credit for carbon offsets (California Envi-

ronmental Protection Agency Air Resources Board, 2016). However, some studies

shows that subsidies that are solely based on carbon sequestration may have nega-

tive impact on the tree species diversity, such in the case of REDD+ (Phelps et al.,

2012).

As carbon crediting for forest owners becomes more popular as a mean to

mitigate climate change, numerous research has been conducted to understand the

impact of different carbon prices and interests rates on the revenue of the foresters

under different management scenarios. Current research is mostly either based on

bioeconomic models that ignore the complex dynamics of forest growth and succes-

sion (e.g. Caparrós (2009)), or based on single tree species that cannot account for

species competition during the succession process (for examples, Buongiorno et al.

(2012); Niinimäki et al. (2013)). None of these research is spatially explicit, which

means that the results are not applicable to most forest landscapes in the world.

In addition,having the information of the species composition of each management

scheme allows policy makers to understand the impact of the carbon credit on the

habitat, if foresters adopt the management scheme that maximizes their profit based

only on revenue from carbon credit and roundwood product selling. There is also a

demand of accurately mapped and validated of land cover to understand the impact

of ecosystem services valuation (Foody, 2015).

The physical scale of the ecosystem function and the scale at which humans

value the goods and services provided are not necessarily the same (De Groot et al.,
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2010, 2002; Hein et al., 2006). Environmental management activities such as timber

harvesting, and the broad-range effects such as natural disturbances on a forest, are

mostly concentrated at the landscape scale (Müller et al., 2010; Scheller & Mladenoff,

2007), which is a scale that consists of various land cover types and ecosystems

that include human activities and natural disturbances. Its precise resolution and

extend vary depending on the research question (Turner, 2005; Turner et al., 1989).

. Landscape ecology can be used to address this problem because it explicitly links

ecological processes and management (Mladenoff, 2004).

The objective of this paper is to study the ecosystem service trade-offs with

the integration of forest succession processes at different carbon prices to understand

the impact of different forest management regimes on the revenue of foresters and

the number of individuals of the important and the invasive species. A spatially-

explicit forest succession model, Landis-II (Scheller et al., 2007), has been employed

in a species rich temperate forest to understand the impact of different management

regimes on selected ecosystem services trade-offs at 150m resolution (Chapter 3, this

dissertation). Two groups of carbon prices were used in this study: the social cost of

carbon, and the market price of carbon, with different interest rates, to understand

which carbon prices and regimes would provide different forest owners the maximum

revenue.
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4.2 Methods

4.2.1 Study area and management scenarios

The area of study was the Grandfather Ranger District (GRD) located in

the Southern Appalachian Mountains in western North Carolina, USA. The area is

characterized by the rapid change of terrain and diverse in tree species. The area

is divided into 4 regions based on the management goal and the land ownership

(figure 4.1). The 4 districts are: publicly-owned forest (“public”), privately-owned

forest (“private”), ecologically important habitats (“ecology”), and Congressionally

Designated Roadless (CDR) area (“roadless”). The CDR is area where no harvest or

any management activity can take place. The management scenarios consist of two

harvest regimes: “Aggressive” and “Moderate” (table 3.2), which the “Aggressive”

regime consists of various level of clearcut and the “Moderate” regime consists of

various level of selective harvest. The variation in harvest size and species depends

upon the district where the area belongs to.

20 tree species were included in this study (table 3.1), with 3 of them are

ecologically important (Class A) and another 3 are invasive (Class D).

81



.

Ownership
Public
Ecology
Private
Roadless0 8 16 24 324

km

Figure 4.1: Forest ownerships in the Grandfather District (highlighted in yellow),
North Carolina, USA. Red boundary indicates the Southern Appalachian Region.

4.2.2 Calculation of revenue

Revenue of the foresters in this case comes from both forest carbon credits they

received from the carbon sequestration of their forest and from selling the lumber

harvested from forest. Currently, the forest carbon trading market that is going

to be implemented is the California Cap-and-Trade Program, which uses the U.S.

Forests Compliance Offset Protocol to support the increased carbon sequestered in

forests (California Environmental Protection Agency Air Resources Board, 2015).

Carbon credits are paid to the forest owner in two aspects: “permanence” and

“additionality”. “Permanance” is the carbon stock of a forest that can be maintained
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100 years after the base year; “Additionality” is the additional carbon sequestered in

the forest due to the growth of biomass. The unit of the carbon credit is converted

from dollar per tonne of carbon-dioxide-equivalent to dollar per tonne of carbon to

calculate the carbon stored and sequestered by the forest. Year 2000 was established

as forest carbon baseline. In this study, the credit is not given to the carbon stored in

the long-term roundwood products. The net present values (NPV) of all the revenue

are reported based on 2015. i.e. the future revenue worths less in the present due

to discount rate. Base on the area of each management region, the total revenue is

normalized to $/ha.

4.2.2.1 Revenue from selling wood products

The revenue for selling the wood product is based on the stumpage prices of

sawlog and pulpwood(Extension Forestry, Extension Forestry). The units of the

selling prices are converted to $/m3 from $/thousandboardfeet and $/cord using

the conversion factors available in UNECE (2010). The present selling prices were

calculated based on the average of the real stumpage prices of both sawlog and

pulpwood in western NC from 2005 to 2015. This is a simple assumption that the

real stumpage prices in the recent 10 years have remain relatively stable. The future

selling prices are assumed to be fixed. The real prices for sawlog, and pulpwood were

obtained by using the not seasonally adjusted producer price indices of “Lumber

and wood products” (WPU08) and “Pulp, paper, and allied products” (WPU09)

respectively to adjust for the impact of inflation. The data can be obtained from the
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Bureau of Labor Statistics (Bureau of Labor Statistics, Bureau of Labor Statistics).

The average prices for sawlog and pulpwood are US$204.4/m3 and US$16.5/m3

respectively. The prices are reported in 2015 dollar-value.

4.2.2.2 Carbon credits and discount rates

The social costs of carbon and the market prices of carbon were used in this

study. The estimates of the social cost of carbon varies. Rogelj et al. (2013) estimates

the probability distribution of the social cost of carbon (in 2012 value) associated

for specific future temperature increase targets. The more probable social cost is be-

tween US$20 and $40 per tonne of carbon-dioxide-equivalent emissions [(tCO2e)
−1].

The social costs of carbon (in 2015 value) provided by the US EPA for annual

interest rates of 5%, 3%, and 2.5% are US$10(tCO2e)
−1, US$36(tCO2e)

−1, and

US$56(tCO2e)
−1 respectively (Interagency Working Group on Social Cost of Car-

bon, United States Government, 2015). The social costs of carbon (in 2015 value)

used in this study are US$15(tCO2e)
−1, US$45(tCO2e)

−1, and US$150(tCO2e)
−1.

The other set of carbon prices used was is the carbon price in a voluntary car-

bon exchange market– the Chicago Climate Exchange (CCX). About 2 years before

the end of the CCX market, the carbon price had dropped below US$1 (tCO2e)
−1

(Intercontinental Exchange, 2016). The 4 market prices used in this study are: US$1

(tCO2e)
−1, US$0.75(tCO2e)

−1, US$0.5(tCO2e)
−1. and US$0.25(tCO2e)

−1.

There are much debates in the discount rate of carbon–see Stern (2007), Nord-

haus (2007), and Dietz & Stern (2008) for examples. People who think long term
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issues such as climate change caused by carbon emission should have a lower dis-

count rate, while others who believe in technological breakthrough in the near future

think the discount rate should be higher. The annual discount rates used in this

study are 0%, 1% and 5%.

4.3 Results

4.3.1 Revenue

4.3.1.1 How do different carbon credits affect revenue?

Results were analyzed by comparing the impact of the carbon credit and dis-

count rate, the method of management, fire suppression scheme, and the nature

of the land ownership on the revenue. In general, the proportion of revenue from

selling carbon credit is higher than that from selling the harvested wood, except for

the privately-owned forest in the Aggressive regimes. Also, for the market prices

of carbon, some form of harvesting always results in high revenue than not har-

vesting at all, as indicated by the CDR always has the lowest revenue regardless of

management regime (table 4.1).

Even when the carbon credit is US$150(tCO2e)
−1, only in the Moderate regime

with no fire suppression, the revenue in the CDR is higher than the privately owned

forest, almost equal to that for the public forest, but still less than that for the

ecologically sensitive area that still conduct a minimal amount of harvest (table 4.2).

85



Table 4.1: NPV revenue (k$/ha) at different management regimes and regions
of management (“Roadless” indicates the Congressional Designated Roadless area
where no human activities occur. The first row indicates the carbon credit
(in 2015 US dollar per tonne of carbon-dioxide-equivalent emissions). “Ag-
Fire”=Aggressive With Fire; “AgNF”=Aggressive with complete fire suppression;
“MdFire”=Moderate with Fire; “MdNF”=Moderate with complete fire suppression.

≤ $0.50 $0.75 and $1

Management Region Total Carbon Wood Total Carbon Wood
AgFire Public 15.1 9.3 5.8 27.5 21.6 5.8
AgFire Ecology 9.8 8.4 1.4 21.0 19.6 1.4
AgFire Private 26.0 10.6 15.4 40.2 24.8 15.4
AgFire CDR 7.8 7.8 0.0 18.3 18.3 0.0
AgNF Public 12.1 5.4 6.7 19.4 12.7 6.7
AgNF Ecology 5.6 4.2 1.4 11.1 9.7 1.4
AgNF Private 25.1 7.4 17.8 35.0 17.2 17.8
AgNF CDR 3.4 3.4 0.0 8.0 8.0 0.0

MdFire Public 8.2 7.8 0.4 18.6 18.2 0.4
MdFire Ecology 8.2 7.9 0.3 18.7 18.4 0.3
MdFire Private 7.2 7.1 0.1 16.6 16.5 0.1
MdFire CDR 7.8 7.8 0.0 18.2 18.2 0.0
MdNF Public 4.1 3.7 0.5 9.0 8.6 0.5
MdNF Ecology 4.0 3.6 0.3 8.8 8.5 0.3
MdNF Private 3.6 3.5 0.1 8.4 8.2 0.1
MdNF CDR 3.4 3.4 0.0 8.0 8.0 0.0
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Table 4.2: Comparing revenue of other forest management regions with that at
the Congressional Designation Roadless (CDR) region where no management activ-
ity occurs.“AgFire”=Aggressive With Fire; “AgNF”=Aggressive with complete fire
suppression; “MdFire”=Moderate with Fire; “MdNF”=Moderate with complete fire
suppression.

Management Region Revenue (k$/ha)

AgFire Public 3717
AgFire Ecology 3365
AgFire Private 4266
AgFire Roadless 3134
AgNF Public 2176
AgNF Ecology 1663
AgNF Private 2960
AgNF Roadless 1372

MdFire Public 3113
MdFire Ecology 3156
MdFire Private 2821
MdFire Roadless 3113
MdNF Public 1469
MdNF Ecology 1456
MdNF Private 1413
MdNF Roadless 1375
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4.3.1.2 Spatial patterns of revenue

The spatial pattern of the revenue from different management regimes using

carbon credit of US$45(tCO2e)
−1 and the annual discount rate of 1% is shown in

figure 4.2. The Moderate regimes result in less difference in revenue for different

management regions. Such kind of spatial map may be of interest to forest owner

on the ground. For instance, the private forest on the northeastern edge and that

on the middle of the northwestern edge of the Grandfather Ranger District may be

interested to know that if they practice the Aggressive regime even with complete fire

suppression yields higher revenue than the Moderate regime with no fire suppression.

In the privately -owned forest located on the middle of the northwestern edge

of the Grandfather Ranger District, there are some patches within the forest that

are publicly owned (figure 4.3). Some of the publicly owned forest patches receive

equally high revenue compare to that particular privately owned forest in the sur-

rounding, while some patches have obviously lower revenue. Further contact with

the Forest Service is needed to determine whether the lower revenue in some of

the publicly-owned patches is due to the difference in productivity or management

regimes.
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Figure 4.2: Spatial pattern of the forest owner revenue for carbon credit of US$45(tCO2e)
−1 and annual discount rate of

1, with harvest rotation of 80 years. The top row is the management scenarios when there is no fire suppression and the
bottom row is when the fire is completely suppressed. Figures on the left column are the Moderate regimes and those in
the right column is the Aggressive regime. Red boxes indicate the area that is going to be examined in more detail.
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Figure 4.3: More detail analysis of the spatial pattern of the revenue at the selected regions from figure 4.2 (area in red
box). The top row is the management scenarios when there is no fire suppression and the bottom row is when the fire is
completely suppressed. Figures on the left column are the Moderate regimes and those in the right column is the Aggressive
regime.
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4.3.2 Important vs invasive species

The Aggressive regime generally yield more trees that belong to either Class

A or Class D, except for the CRD where no harvest occur (table 4.3). Consider

the CRD, if an area has no harvest or planting occur, fire suppression yields more

than double of Class A and Class D compared with those when fire is completely

suppressed. Regardless of management regime, the number of trees belong to Class

D is more than those belong to Class A.

4.4 Discussion

4.4.1 Importance of the spatial resolution

Due to the species and topographic heterogeneity of the area, the revenue

variation varies greatly depending on the area. This study, all the private lands

were classified as one entity. However, in real life, private lands are often owned

by different owners. The fine resolution estimate, at 150m, allows landowners on

the ground to understand the potential impact of different policy on their revenue.

Figure 4.3 shows an example of the heterogeneity nature of the revenue. If the

study and the model results are conducted in a coarser resolution, then a lot of

the difference in revenue earned will not be observed. Such analysis may be useful

for policy makers at the state or national level, however, it lacks useful information

for the local stakeholders, i.e. forest landowners, to understand how various carbon
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Table 4.3: Number of trees (thousand/ha) belong to Class A or Class D pres-
ence for different management regime at different management region. “Ag-
Fire”=Aggressive With Fire; “AgNF”=Aggressive with complete fire suppression;
“MdFire”=Moderate with Fire; “MdNF”=Moderate with complete fire suppression.

Management Region Class A Class D

AgFire Public 19.4 4.7
AgFire Ecology 12.1 6.1
AgFire Private 9.3 15.9
AgFire CRD 4.2 6.4
AgNF Public 26.8 15.1
AgNF Ecology 18.6 15.2
AgNF Private 13.0 23.0
AgNF CRD 8.2 16.9

MdFire Public 4.6 6.5
MdFire Ecology 4.3 6.0
MdFire Private 4.6 7.3
MdFire CRD 4.1 6.3
MdNF Public 8.5 16.4
MdNF Ecology 8.3 16.6
MdNF Private 8.0 16.0
MdNF CRD 8.3 16.9
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credit policies may impact them so that they can make a more inform decision

to manage their forest. In addition, because the revenue calculation is based on

a calibrated and validated detail forest succession model that account for natural

disturbances and species competition, the expected outcome will be more accurate

than the results based on the carbon and roundwood production derived from a

simple growth and yield model.

4.4.2 Implication on policies on carbon subsidy and forest habitat

sustainability

Currently there are two systems in accounting for carbon credit, the social cost

of carbon and the market price of carbon. The social cost of carbon accounts for the

possible monetized damages as a result of different level of increase in temperature

(Greenstone et al., 2013), which is more than US$15(tCO2e)
−1, in 2015 US dollar.

However, regardless of the carbon credit, the Aggressive regime with no fire suppres-

sion result in the highest revenue for the whole region. This management regime

has the most forest disturbed compared to other regimes. It results in less number

of trees and the youngest average age of forest. Younger trees sequester more car-

bon compared to older trees. Under the carbon payment system used in this study,

where the amount of subsidy provided to the additional carbon sequestered and

that to the carbon that are retained in the forest biomass is the same, then one of

the possible outcomes is that foresters may do more frequent clearcutting and grow
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more invasive and fast-growing species to maximize their revenue on both selling

the harvested roundwood and on selling the carbon credit.

The other interesting result is that unless the carbon credit is as high as

US$150(tCO2e)
−1, then some form of harvesting still results in higher revenue in

this case study. Since the NPV of the revenue from wood harvesting remains the

same regardless of the change in carbon credit based on the assumption in this

study, the proportion of wood harvesting revenue consists of only a small percentage

of the total revenue when carbon credit is more than US$15(tCO2e)
−1. One of the

possible reasons for the revenue at the CDR is almost always the lowest is due

to the productivity of the area. Although the study area is relatively small and

the CRD is geographically close to other management regions, the heterogeneity

nature of the landscape shows that the proximity cannot be used to assume similar

productivity of the forest. This also proves the importance of high resolution study

in the heterogeneous and species rich areas.

Rogelj et al. (2013) finds that the probability of achieving the 2◦C increase

before the end of the century increase from 50% to 66% if the carbon price in-

creases from $20 per tonne of carbon-dioxide-equivalent emissions [(tCO2e)
−1] to

US$40(tCO2e)
−1 with some limit on energy demand or some future technological

breakthrough and if the cost are implemented right now; a carbon price of higher

than US$150(tCO2e)
−1 to achieve the objective with a probability of more than 66%

if there is no limit on energy use or delay in implementing to impose any cost on car-

bon. The result shows that paying the foresters more than US$0.75(tCO2e)
−1 is not

94



needed to encourage foresters to consider managing carbon for their forests. If the

carbon subsidies to the foresters equal to the social cost of carbon, at US$40(tCO2e)
−1,

the question would be, is 98% of that payment more than the overhead cost of ac-

counting and monitoring carbon in a forest? If that is the case, then what could be

a more efficient use of the excess money?

The results also show that the higher the discount rate, the lower the NPV of

the total revenue. The analyze of the discount rate echoes with the comments of

Stern (2016) that the discount rate is central to the discussion of climate change miti-

gation. Although Rogelj et al. (2013) considers carbon price of less than US$1(tCO2e)
−1

as “the absence of any serious mitigation efforts”, if the only other completing rev-

enue is selling harvested roundwood, then paying foresters at US$0.75(tCO2e)
−1 is

an enough incentive for them to manage the forest for carbon sequestration based

on the result of this study. Future research needs to be done to understand what if

the carbon subsidies also apply to the sawlog harvested and the interaction between

roundwood prices and carbon subsidies. The number of trees in the important and

invasive does not completely reflect the ability of a habitat to sustain biodiversity.

Even if there are subsidies on the number of important species present, to maximize

the revenue, foresters would still adopt the Aggressive management regimes while

planting more ecologically important species. If the goal of the policy makers is to

prevent clearcut, other indicators would have to be considered.
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Chapter 5: Discussion

5.1 Major research questions answered

The dissertation research aims to advance systematic understanding of the

combined impact of both natural disturbances and management on forest carbon

dynamics, species diversity, and roundwood production in the context of improving

carbon offset policy. Specifically, I answered the following questions:

1. How do forest management activities contribute to the amount of harvested

wood products?

In chapter 2, an empirical model that links forest management activities with

the amount of harvested wood product was developed. The results show that

the eastern part of NC contributes the most of the roundwood produced in the

state during 1986 to 2010. In particular, when forest area is taken into account,

the northern Coastal Plain contributed the most to roundwood production.

2. How to quantify the annual contribution of forest management activities to

the carbon storage in different types of roundwood products at county level and

why is it important?
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Remote sensing detected forest disturbance maps were combined with other

data to develop a spatially explicit relationship between forest management

activities and roundwood harvested (chapter 2). Previous approaches to esti-

mating the carbon stored in the HWP provide estimates either at a national

or regional level (see, e.g., Apps et al., 1999; Donlan et al., 2012; Heath et al.,

2011; Karjalainen et al., 1994; Masek et al., 2011; Pan et al., 2011; Stockmann

et al., 2012; Zhou et al., 2013), or for specific forests (Profft et al., 2009) over

a few years. Other studies do not provide the contribution of forest manage-

ment activities (Adams et al., 2006) or detailed information on the types of

roundwood produced (Huang et al., 2015) which is needed for further analysis

of the dynamics of roundwood production and life cycle analysis, to improve

accounting of long-term carbon stored. The latest IPCC Guidelines (IPCC,

2014) called for study for fine scale (1ha) level of study that links forest man-

agement activities to carbon flux to the HWP pool. Not only does it affect

carbon credit trading between countries, but also forest carbon accounting in

both the standing forest biomass and estimation of the carbon decay rate in

the HWP pool.

3. How are the carbon sequestration and species composition impacted by natural

disturbances and various management regimes in a species-rich environment

at landscape scale (∼ 2ha resolution)?

Chapter 3 shows that the fire regime influences the most on carbon sequestra-
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tion and species composition than harvest intensity: Fire suppression result in

the forest standing biomass acting as a carbon sink, and it creates more prefer-

able tree age distribution in some ecozones. Harvest regime that consists of

various clearcut yields most harvested roundwood, but results in the least

amount of carbon sequestered by the forest standing biomass. However, car-

bon stores in the long term product pool (sawlog) for another 100 years. This

harvest regime on the one hand lowers the number of trees, the average and

the standard deviation of tree age in the forest, on the other hand increases the

proportion of both ecologically important and invasive tree species. Its impact

on the desirability of the habitat for wildlife species needs further research.

4. How do different carbon credits and interest rates affect the revenue of foresters

spatially?

Results in chapter 4 show that spatial difference in revenue is more pronounced

in the Aggressive management regimes or when fire is not suppressed (fig-

ure 4.2). Further investigation is needed to understand whether the spatial

difference in revenue is influenced more by the productivity of a particular

area or the levels of carbon credit.

5. Which management regime would the foresters likely to adopt if they were to

maximize their revenue?

Results in Chapter 4 show that the management regime that consists of various

clearcut and no fire suppression maximizes the revenue compared to manage-
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ment regimes that consist of selective species harvest or scenarios when fire is

completely suppressed. This can by explained by because clearcutting results

in younger trees in the forest and higher amount of roundwood harvested.

Revenue from both increasing carbon sequestration rate and selling more har-

vested roundwood is much higher than the revenue coming from retaining the

forest biomass for 100 years. Although the proportion of revenue from selling

harvested roundwood is low as the payment of carbon credit increase above

US$0.75(tCO2e)
−1 (2015 dollars), performing some form of harvest always re-

sult in higher revenue per hectare than areas that have no harvest at all. This

may be due to the difference in productivity of the forest owned by different

entity.

5.2 General discussions

The dissertation research quantify the trade-offs between carbon sequestration,

total timber harvested, and habitat provision for sustaining biodiversity, as well as

to understand the revenue of the foresters at different location for various carbon

payment scenarios. To achieve this goal, a research framework that combines remote

sensing, statistical model, spatially explicit mechanistic forest succession model was

developed.

General relation between forest management activities and annual production

of sawlog and pulpwood at the county level is needed to provide general under-

standing of the spatial pattern, the trend of roundwood production, and the harvest

99



density in the area so that the impact of the factors that vary spatially, such as

biophysical factors, prices, and disturbances, on roundwood production can be un-

derstood. It can also be used to compare the historical harvest pattern with that in

the future simulated scenarios. For instance, the model simulated average annual

harvested volume per hectare in chapter 3 (table 3.4) agrees with the harvest density

of the forestland in the corresponding counties of the GRD in between 1986 and 2010.

Figure 2.1(b) in chapter 2 shows that it is about 0.08m3/ha/yr to 3.67m3/ha/yr.

Chapter 3 analyzes the trade-offs between carbon sequestration by forest biomass,

sawlog and pulpwood harvested, species diversity, the proportion of each species in

the landscape, the average forest tree age and the ability of the forest in providing

different niches of habitats for different species, as indicated by the standard devi-

ation of the forest tree age, for different management regimes. The last 4 served as

indicators of the habitat in sustaining biodiversity. When fire is not suppressed, the

aboveground forest biomass becomes a carbon source, which implies that fire sup-

pression decision is a more important factor compared to the harvest regime adopted

when determining whether the forest biomass would be a carbon source or a carbon

sink. Harvest essentially removes some of the carbon that was originally stored in

the biomass to various types of product pools: the IPCC Guidelines assume the

turnover time of carbon stored in pulpwood is 3 years on average and that in sawlog

is 100 years on average (IPCC, 2006). The two harvest regimes implemented in

this study: “Aggressive” consists of various forms of clearcutting; and “Moderate”

consists of various forms of species selection harvest that closely mimics the harvest
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regimes of the US Forest Service in the public lands. The Aggressive regime is a

milder form of harvest prescription compared to the historical clearcutting in the

Appalachian regions (Yarnell, 1998). Thus, the Moderate regimes can be viewed

as restoration management regimes. Results in chapter 3 shows that although the

yield of harvested roundwood in the Aggressive regimes are higher than that from

the Moderate regimes due to the area harvested is larger, the decreasing trend in

the volume harvested per hectare over time shows that such method of harvest may

not be able to sustain a long-term high quality roundwood production. In addition,

although the Aggressive regimes do not result in the decrease in the proportion of

ecologically important species, such regimes increase the proportion of ecologically

undesirable species. Moreover, the decrease the average and standard deviation of

tree age compared to the baselines and the Moderate regimes implied that the re-

sulting forest landscape became less able in providing different ecological niches for

species.

The results in chapter 4 shows that if the subsidy for retaining the biomass

for 100 years is the same as that for the amount of annual carbon sequestered, then

that may not be enough of an incentive to prevent clearcutting. Even if there is an

additional subsidies on the number of ecologically important species presence, it will

not prevent clearcutting. The carbon prices used in this chapters are the market

prices, which are US$0.25, 0.50, 0.75, and 1(tCO2e)
−1 (2015 dollars), and the social

costs, which are US$14, 45, and 150 (tCO2e)
−1 (2015 dollars). When carbon credit

is more than US$0.75(tCO2e)
−1 (2015 dollars), then the proportion of revenue com-
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ing from selling the carbon credit is already much higher than that coming from

selling the harvested roundwood. Various studies, for examples, Rogelj et al. (2013)

and Interagency Working Group on Social Cost of Carbon, United States Gov-

ernment (2015), indicate the social cost of carbon is around US$20-$40(tCO2e)
−1

(2015 dollars). A question would be whether paying the foresters at the social cost

of carbon is efficient in encouraging foresters to manage their forest also for carbon

sequestration. Results from chapter 4 show that the unintended consequence of

carbon subsidize policy is that it seems to encourage more clearcutting, even if part

of the carbon credit is paid for maintaining the same amount of carbon stored in

the forest biomass in the same sites (at 150m resolution) for 100 years. Because

clearcutting does not decrease the proportion of ecologically important species if

they are planted, a credit on the presence of ecologically important species does not

prevent foresters from clearcutting. Forest carbon credit payment programs such as

the REDD+ and the California Cap-and-Trade program need to reconsider if equal

credit should be given to carbon sequestration and retaining the same amount of

carbon stored in forest biomass.

5.3 Implications

Chapter 2 demonstrates a statistical method that can quantify the annual

relationship between forest management activities and the amount of roundwood

harvested at the county level. In particular, the types of harvested roundwood was

distinguished as sawlog and pulpwood, which sawlog is a long–term carbon pool of
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about 100 years (IPCC, 2006). The research in chapter 2 established a framework

that uses remote sensing images, forest inventory data, and land cover type map

that links annual county-level forest management activities to the carbon flux to

the long term pool in the harvested wood product (HWP), when combined with the

allometric tables such as developed by Smith et al. (2006), can be used to estimate

the amount of carbon flux to the long term HWP. The provision of a consistent

fine scale information can improve the current method of carbon accounting (Zhu

et al., 2010). It is also one of the important goals of the North American Carbon

Program (Kasischke et al., 2013). Such method can also help countries to fulfill

the newest IPCC estimation guideline (IPCC, 2014) to include the contribution of

Harvested Wood Product (HWP) to the change of carbon stock in forests. It could

help countries to develop domestic management policies aimed at meeting their

carbon storage goals in both standing forest biomass and HWP. The annual time

series maps of roundwood production can be further used to study the interaction

between the management policies, change in roundwood prices, and the amount of

roundwood harvested.

In a species-rich heterogeneous forest, a spatially explicit mechanistic forest

succession model that can account for the biophysical factors of different ecozones,

influences from natural disturbances, and species competition during the forest suc-

cession process is needed to provide an accurate quantitative estimate of ecosystem

services trade-offs under possible new management regimes that may be used in the

future (Gustafson, 2013). Additionally, chapter 3 demonstrates how such model,
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which accounts for the characteristics and behaviors of different species, is needed

to provide a more comprehensive view of the forest habitat, because it can provide

multiple indicators that reflect the capability of forest habitat provision for sustain-

ing biodiversity. The definition of the term “biodiversity” is ambiguous, as there

is no single indicator that can represent the meaning of the term and the scientific

definition of this term is often differ from what the majority of the public perceives

(Farnsworth et al., 2015), so there has been difficulties in quantifying the quality of

the habitat and resulted in a debate between ecologist and economist when trying to

use a single indicator such as the number of species presence to value “biodiversity”

(see Bartkowski et al. (2015) and Farnsworth et al. (2015) for example). Results

from such detail-level models can help resolve some of the dispute in valuation of

biodiversity.

Chapter 4 uses the result from chapter 3 to map the revenue for scenarios of

different carbon prices and interest rates. It shows the revenue of the foresters under

different carbon subsidies for different forest management scenarios. The analysis in

chapter 4 is a step in advance in spatially explicit carbon and timber valuation tool,

such as InVEST, as it included the forest succession processes in accounting the

carbon sequestered and the timber harvested (Tallis & Polasky, 2011). In addition

to revenue information, the result also include the impact on the forest habitat under

different management regimes. Results in this chapter provide more than just the

species presence, but also the age structure and the proportion of each species, can

help further advance the study in biodiversity valuation because it allows further
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cost-benefit analysis (Farnsworth et al., 2015).

The dissertation is the first step of research in developing a dynamic model

that fully couples the social and forest ecological system. If the factors affect indi-

vidual choices of harvest at the local level and those affect the supply of harvested

timber at the regional level are understood, then a dynamic model that consists

of management decisions, natural disturbance, ecosystem service valuation policies,

and forest ecosystem response can be developed. Such model can help better under-

stand the ecosystem services valuation policy on the financial well-being of foresters

and the health of the forest ecosystem.

5.4 Limitations

The idea of ecosystem service valuation is often criticized as anthropocentric:

human beings are valuing agents that translate the basic ecological structures and

processes into values to help guide decisions (De Groot et al., 2010). However,

valuation is not a solution or an end in itself: it is one of the tools in a larger

political decision making (Daily et al., 2000). This dissertation work is the first step

allowing us to develop a fully coupled model that takes into account of the interaction

between the forest ecosystem and the possible change of the management regimes

as a result of exogenous environmental policies such as the introduction of carbon

price. The model can be applied globally at the landscape level. The possible

changes in management practices for the forest landowners are based on very simple

assumptions. For example, the cost of harvest is not accounted for and the future
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roundwood real price is assumed to be constant. Also, land use or land cover change

is not taken into consideration, which means the opportunity cost of the land is

zero. In addition, to understand the decision process of the landowners, survey of

the landowners’ response must be conducted to simulate a more realistic response

to the policy. Nevertheless, if more detailed social studies were done to adjust those

assumptions, it will be possible to inform policy at much finer scales, approaching

that of the individual forest managers while, at the same time, providing realistic

scenarios that can be used by all the stakeholders.

5.5 Future directions

The following are proposed projects for further continuation:

1. Create a dynamic model that fully couples the social and ecological system

Further study can be done in understanding the factors affect individual

choices of harvest at the local level and those affect the supply of harvested

timber at the regional level.

2. Include more ecosystem services and possibility of land-use change

Besides habitat provision and carbon sequestration, forests also act to improve

groundwater quality and attract tourists. Those additional ecosystem services

can also be added to the model. In addition to managing the forest, the

forest landowners could also convert the forest into other land-use, such as

agriculture or urban. The possibility of land conversion can be factored into
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the opportunity cost of the forest, which can also be incorporated in analyzing

the possible response of the landowners.

3. Examine the effect of scale

Forest ecosystems and human agents are never homogeneous. However, policy

on taxation or carbon subsidy usually come from a coarser scale. There has

been no study that quantify the possible difference if the ecosystem dynamics

is applied at a coarse resolution with details of the impact being averaged

compared to if the ecosystem dynamics is analyzed at a landscape scale, like

objectives 1-3 in section 1.2. Other spatial forest succession model, such as the

Ecosystem Demography (ED) Model described in (Moorcroft et al., 2001), has

been applied at the global scale, which can be used as a comparison to under-

stand the effect of scale in analyzing the impact of ecosystem service valuation

policy on the ecosystem and the economic benefits of the stakeholders.

4. Application to data-poor areas

One of the difficulties in ecological modeling is the limitation on data. To

avoid more complication on the developing stage, the fully coupled model de-

scribed would be applied to the forest systems in the United States as pioneer

studies. A lot of ecological-sensitive forests are located in developing countries,

where a lot of ecological data are not available. Moreover, forest landowners

in the tropical developing countries will receive subsidy from developed coun-

tries to preserve their forest under the REDD+ scheme (Phelps et al., 2012).
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Field work and remote sensing data would have to be incorporated to apply

this model in data-poor areas. Nevertheless, a fully coupled spatially explicit

ecological-economic model applied in developing countries can help assess the

REDD+ program.

108



Appendix A: Appendix for Chapter 2

A.1 Model Development

A.1.1 Model Selection Strategy

A regression model that captures the unobserved area–specific (e.g., difference

in biophysical factors, forest size, climate, and management style) and time-specific

characteristics (e.g., prices and meteorological event affecting all areas) was used to

link the production of different roundwood types with the observed area of disturbed

forest and its associated disturbance intensities. The equation of the model can be

written as:

Yit = αi + βXit + τt + εit (A.1)

where Yit, in this specific case, is the roundwood production survey data by species

and by geographic location (e.g., county), i indexes unit-areas and t the time pe-

riod. Xit denotes the area of forest disturbance in each of the forest type (such as

hardwood or softwood or mixed) available and the degree of disturbance intensity

in each unit area of the analysis. The index of disturbance intensity is divided into

different classes based on its values, ranging from slight thinning to complete clear-
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cutting. αi denote the unit-areas effects, β is the vector of partial effects, τt the

time specific effects, and εit the standard random error term. If the αs and τs are

treated as fixed, the model can be estimated by Ordinary Least Squares (OLS) using

dummy variables (see Wooldridge, 2010 (Wooldridge, 2010), for example, for more

details on Panel Data Models). It is assumed that the disturbance areas in each

type of forest only contribute to the production roundwood of the corresponding

species type and disturbance areas in mixed wood forest contribute to that of both

species types. The observed disturbance area for each forest type in each unit area

is further partitioned according to the disturbance intensity of the pixel which can

distinguish between clear-cutting and different degrees of harvesting. The larger the

forest disturbance index value, the more severe the forest disturbance (Huang et al.,

2009).

Four models have been tested to estimate roundwood production from the area

of forest disturbance with magnitude. The aim is to compare different models in

terms of consistency, efficiency, and unbiasness in order to choose the correct form

of the model to estimate the production of different timber types. The four models

used to estimate A.1 (for details see, e.g., Wooldridge, 2010):

1. The pooled Ordinary Least Square (OLS) model

2. The Fixed Effect model

3. The Random Effect model

4. The Two-way Fixed Effect Model

110



The following tests were used to determine the preferred form of the model

based on the guidelines from (Hsiao, 1986) and (Verbeek, 2008). Each test is per-

formed in all six types of roundwood and the two total roundwood types.

1. Test for heterogeneity

The F Test was used to test the potential unobserved heterogeneity in the unit

areas. In R, the pFtest function in the plm package was used to perform this

test (Croissant & Millo, 2008). Results of the test on all models shows that

all the p-values are less than 0.01, which suggest to reject the null hypothesis.

2. Unit Root Test

The Augmented Dickey-Fuller (ADF) Unit Root Test was used to test whether

the variables used are stationary over time. The null hypothesis of the test

is that the series is not stationary (has a unit root) over time. The adf.test

function in the tseries package in R (Trapletti & Hornik, 2007) was used to

perform the test. Results of the test on all models shows that the p-values are

less than 0.01, which suggest to reject the null hypothesis. Since the series has

no unit root, the within estimator can be used to estimate the model.

3. Hausman Test

The Hausman Test was used to test whether the Random Effect or the Fixed

Effect Model should be used. The phtest function in the plm package does this

test (Croissant & Millo, 2008). Results of the test on all models shows that

the p-values are all less than 0.01, which suggest to reject the null hypothesis.
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The fixed effect model should be used.

4. Test for Time Effect

The F test was used to test the significance of the time effect (Greene, 2007,

chap. 9). In R, the pFtest function in the plm package does this test (Croissant

& Millo, 2008). Results of the test on all models shows that the p-values are

all less than 0.01, which suggest to reject the null hypothesis. Time effect

should be taken into account.

A.1.2 Industrial Roundwood Production Unit Conversion

All the units of the industrial roundwood production are converted to cubic

meter. In the website that contains the TPO reports and the other two publications

that contain TPO data of 1992 and 1994, the unit of reporting is in thousand

cubic feet. Conversion factor of 1 cubic meter equals to 35.3147 cubic feet is used

to convert thousand cubic feet to thousand cubic meter. On the other hand, for

the annual pulpwood production records in the 80s, the unit of reporting is in

standard cords. The conversion factor of softwood pulpwood is 72.5 cubic feet per

cord and that of hardwood pulpwood is 76.6 cubic feet per cord in North Carolina,

according to the reports of the North Carolina assessment of TPO and use (Cooper

& Mann, 2009; Cooper et al., 2011; Howell & Brown, 2004; Johnson & Brown, 1999;

Johnson, 1994; Johnson & Brown, 1996, 2002; Johnson et al., 1997). The unit for

the annual pulpwood production records in the 80s was converted to cubic feet and

112



then converted to cubic meter.

A.1.3 Dependent and Independent Variables

The dependent variables used in the model of this study are the survey of

the volume of each type of timber (roundwood) produced in each county, called the

Timber Product Output (TPO) record. Data are available for eight years: 1995,

1997, 1999, 2001, 2003, 2005, 2007, and 2009. Data of additional two years, 1992

and 1994, are available in two assessment reports in print (Johnson, 1994; Johnson

& Brown, 1996). Sawlog and pulpwood, of both softwood and hardwood types,

consist of about 85% of roundwood production in North Carolina. Although fuel-

wood is considered as a by-product for timberland management (Cooper & Mann,

2009), it consists about 10% of the total industrial roundwood production (Cooper

& Mann, 2009; Cooper et al., 2011; Howell & Brown, 2004; Johnson & Brown, 1999,

1996, 2002; Johnson & Steppleton, 1997). Other miscellaneous products, such as

chips, post, poles, and pilings consist of about 1% of the total roundwood pro-

duced(Cooper & Mann, 2009; Cooper et al., 2011; Howell & Brown, 2004; Johnson

& Brown, 1999, 1996, 2002; Johnson et al., 1997). Because the miscellaneous prod-

ucts consist of such small percentage of the roundwood produced and do not fit in

either the sawlog, pulpwood, or fuelwood type, their annual volume production are

not estimated in this study. Additional pulpwood data are available every year in

the Southern Pulpwood production reports in print (Howell, 1993; Howell & Hart-

sell, 1995; Hutchins Jr., 1991; Hutchlns Jr., 1989; Johnson & Steppleton, 1997, 2000,
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2004, 2006, 2008; Johnson et al., 2010; May, 1988; Vissage, 1991; Vissage & Miller,

1992).

The independent variables used in the model of this study are the forest dis-

turbed area per county and its associated disturbance intensity. The disturbance

intensity information is obtained from the Forest Index of the VCT product (Huang

et al., 2010) (henceforth, “Magnitude”). It indicates the severity of the forest dis-

turbance. The values of the forest disturbance magnitude range from 1 to 255. The

higher the value, the more intense the disturbance. Plots of the distribution of the

annual disturbance magnitude are used to analyze how to categorized the magnitude

data. Based on the change in slope and the general understanding of the nature

of the data, the disturbance magnitude are divided into 4 categories based on the

range of the values: a. less than 30; b. 30–60; c. 61–90; d. greater than 91. The

impact of the disturbance events with magnitude values in category a are the least

severe, which is likely to be thinning; that with magnitude values in category d are

the most severe, which is likely to be clear-cutting. Categories b and c have the dis-

turbance severity somewhere in between, which could be selective logging. A given

disturbance area in a county is petitioned into the above four categories stated. It

is assumed that the disturbance occurred in the same type of forest would yield the

same type of industrial roundwood. The next section provides details of how to use

the disturbed mixed wood forest area as a variable in the model to estimate the

production of both hardwood and softwood roundwood.

The definition of a recording year is different for the TPO data and the forest
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disturbance events. Forest disturbance data are obtained from the satellite remote

sensing product, the Vegetation Change Tracker (VCT) , which captures the distur-

bance events occur some time during the growing season (May to September) to the

next growing season—Disturbance events happen in the months after the growing

season in the end of a calendar year will be counted as disturbance in the following

year. However, TPO data record timber production based on calender years. In

order to reconcile the time difference between the forest disturbance data and the

TPO data, two years of forest disturbance data are used as the independent vari-

ables to estimate roundwood production. The next section provides details of how

to use the time difference in the forest disturbance area as a variable in the model

to best estimate the production of both hardwood and softwood roundwood.

A.1.4 Possible Interactions Effects

Three models were used to account for both, the impact of disturbance on

mixed wood forest, and the timing of the disturbance events by varying the combi-

nation of the independent variables. In the first model, the independent variables

are the disturbance areas in the mixed wood forest and the disturbance areas in

both softwood and hardwood forests. No interaction terms were included in the

models. For the second model, the main purpose is to test the interaction between

the timing of harvest. Lastly, the third model is to test whether there is any in-

teraction between hardwood or softwood forest disturbance with that in the mixed

wood forest.
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Let Y be the roundwood production; XE be the disturbance area in earlier

half of the year of either the hardwood or the softwood forest and ME be that of

the mixwood forest; XL be the disturbance area in earlier half of the year of either

the hardwood or the softwood forest and ML be that of the mixwood forest; αi are

dummy variables for each county; subscripts i and j indicate the category of the

magnitude which the forest disturbance belongs to, where j and k are integers range

between 1 and 4.

1. The equation for the model with no interaction looks as follow:

Y = α +
∑
j

βj(XE +ME)j +
∑
j

δj(XL+ML)j (A.2)

2. The equation for the model with possible interactions between disturbances

in different time period looks as follow:

Y = α +
∑
j

βj(XE +ME)j +
∑
j

δj(XL+ML)j

+
∑
j

∑
k

γjk(XE +ME)j(XL+ML)k

(A.3)

The hypothesis is that the forest harvest amount in earlier months of the year

may affect that of the latter months of the year.

3. The equation for the model with possible interactions with mixwood forests
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looks as follow:

Y = α +
∑
j

βjXEj +
∑
j

δjMEj +
∑
j

γjXLj + ζjMLj

+
∑
j

∑
k

ηjkXEjMEk +
∑
j

∑
k

ξjkXLjMLk

(A.4)

The hypothesis is that the disturbance events occur in the softwood or hard-

wood forests may influence the amount of harvest in the mixed wood forests.

A.1.5 Model Comparison Result

To select the best functional form for the model, the second-order corrected

Akaike Information Criterion (AIC), the regression root mean square errors (RMSE),

and the ten-fold cross validation RMSE were used. AIC is a goodness of fit measure.

Model with lower AIC is preferred (Verbeek, 2008, chap. 3). The second-order

corrected AIC (henceforth, AICc) is the extension of the AIC that takes into account

the number of parameters in relation to the number of observation. When the

number of observation is large enough, the second-order corrected AIC converges

to AIC. The AICc function in the qcpR package in R (Ritz & Spiess, 2008) was

used to calculate the second-order corrected AIC value for each model. The RMSE

values for the robust regression result are calculated using the RMSE function in

the qcpR package in R (Ritz & Spiess, 2008). The regression RMSE values shows

the difference between the estimation value and the survey values. The lower the

regression RMSE value, the better the model. The major problem of increasing
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the number of independent variables is, although it increases the goodness of fit, it

tends to cause over-fitting. The best functional form of the model should not only

increase the goodness of fit, but also not cause the over-fitting problem.

To test the stability and the validity of the models, ten-fold cross validation and

leave-one-year out cross validation were performed. For the ten-fold cross validation,

90% of the data are used as training while 10% of the data are used for testing. This

is used to prevent over-fitting. The average RMSE of each model was reported. The

leave-one-year out cross validation was used to test if the model can be used to

estimate the roundwood production when the survey data do not exist. Not only

a smaller RMSE value is preferred for both validations, but also the values should

be close to that of the regression analysis if the model is consistent. In addition

to the two cross validation analyses, the more complete pulpwood data was also

used to compare the validity of the models in the years when the data is missing.

County-level pulpwood data are available for every year in the southeastern US.

The estimation results for both hardwood and softwood pulpwood by each model

are tested against the annual data provided by the US Forest Service. The RMSE

values of hardwood pulpwood and softwood pulpwood of each model are reported,

in addition to the RMSE of both types of pulpwood in each ecoregion.

Although the AICc values for the model that has no interaction between inde-

pendent variables are the highest for most types of roundwood, that may be caused

by over-fitting. From different types of RMSE values, independent variables that

consist of interaction terms between the disturbances in softwood and hardwood
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forest with mixwood forest is the best form of the model. It has the lowest RMSE

values for different tests for most of the roundwood product type. Although for

hardwood pulpwood, it does not have the lowest RMSE values for all the tests,

especially when the estimation is split according to forest survey regions, it has the

lowest RMSE for most of other wood types.

A good sign that all the models are consistent and can be used to estimate

roundwood production for the years when the TPO data do not exist is that the

regression RMSE values are very similar to that in the leave-one-year-out test and

in the 10-fold cross validation.
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A.1.6 Model Result for Roundwood Production

The first step in getting the annual carbon influx to the HWP is to obtain the

annual roundwood production at the county level. Figure A.1 shows the scatter-

plots of survey data plotted against the model’s predicted values for each type of

roundwood product. The estimates for all the are combined in one plot. The plots

show that most of the points for each type of the roundwood are scattered symmet-

rically about a 45 degree line. For hardwood pulpwood (HP), the plot shows that

the model cannot make a good prediction for some of the more extreme values of

the HP produced.

A.2 Uncertainty and Error Propagation

When calculating the state-level estimation confidence interval, the rules of

error propagation have to be applied. The calculation follows the rules stated in

Chapter 3 in An Introduction to Error Analysis: The Study of Uncertainties in

Physical Measurements (Taylor, 1996). The general formula for error propagation

is as follow:

For measurements x1, x2, ..., xn with uncertainties δx1, δx2, ..., δxn, q is a function of

x1, x2, ..., xn, where q = f(x1, x2, ..., xn). The the uncertainty in q is:

δq =

√
(
∂q

∂x1
δx1)2 + ...+

∂q

∂xn
δxn)2 (A.5)

In the case of this study, each county has an estimate of roundwood production
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Figure A.1: Scatterplots of county survey data plotted against the model’s pre-
dicted values (in thousand cubic meter) for each type of roundwood product and
for all available years. Estimation values against the TPO survey value for each
type of roundwood production (in thousand cubic meter). The orange-colored line
represents the one-to-one line.
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xn and a related uncertainty, δxn, where n is an index indicating the nth county

and uncertainty is the margin of error, which equals to the difference between the

upper limit of the 95% confidence interval and the best estimate of roundwood

production. Because the variables used in the model are log transformed, the state-

level roundwood production, q, is calculated as follow:

q = ex1 + ex2 + ...+ exn , (A.6)

where ∂q
∂xn

= exn . Then, the uncertainty of q is:

δq =
√

(ex1δx1)2 + ...+ (exnδxn)2 (A.7)

For the annual roundwood production (t) that consists of the sum of the annual

production of softwood products (a) and hardwood products (b), its is margin of

error is calculated as follow:

t = SoftSG ∗ (a1 + a2 + a3) +HardSG ∗ (b1 + b2 + b3) (A.8)

δt =
√

(SoftSG ∗ (a1 + a2 + a3))2 + (HardSG ∗ (b1 + b2 + b3))2 (A.9)

where SoftSG and HardSG are the specific gravity of softwood and hardwood re-

spectively.

A.2.1 Error Propagation in Linear Trend

To test if there is any trend in the total roundwood production over the years,

the weighted least square fit is used to fit the time series of the total roundwood
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production. The weighted least square fit is the generalization of the least square

fit where inverse of the uncertainty of each estimation is the weight, w, and is used

to calculate the parameters and the uncertainty of the fit. If there is no uncertainty

in the measurement, the equation of the weighted least square fit converges to least

square fit (Taylor, 1996, chap. 8). Let the equation of the fit line be y = mx+ c and

the weight of the ith measurement as w = 1/(σi)
2, where σi is the standard deviation

of the ith measurement; the calculation of the slope, m, and its uncertainty, σm, is

as following:

m =

∑
wx2

∑
wy −

∑
wx

∑
wxy

∆
, (A.10)

where ∆ =
∑
w
∑
wx2 − (

∑
wx)2

σm =

√∑
wx2

∆
(A.11)

If the absolute value of the uncertainty of the slope of the trend line is greater than

the absolute value of the slope of the trend line, then any trend calculated for the

total roundwood production is insignificant.

A.2.2 Contribution From the Input Data

Contribution to the estimation errors also comes from the input data that were

used in the model. Huang et. al (2010) (Huang et al., 2010) summarizes three types

of contribution to the error of the disturbance maps: it is difficult to detect non-

standing clearing, such as thinning, by the current version of the VCT algorithm;

some crop fields and wetlands are misclassified as forest; marginal forests in semiarid
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environment are difficult to distinguish from other cover types. Misclassification

was minimized by using an independent forest classification map (McKerrow et al.,

2006) to augment VCT. While this map also has errors, the combination was found

to reduce crop and wetland errors. Errors in semiarid forests are not applicable to

NC. Advances in detection technology and methods of analysis can be expected to

improve the VCT algorithm and could reduce the impact of the errors in the future.

The timber survey data (TPO) data used to calibrate the model in this study

are based on reports from the wood processing mills. However, the uncertainty

associated with these data is not known. While the “miscellaneous” roundwood

class in the TPO report was not considered in this study, its share of the total

roundwood production was negligible. Although it is not likely to have affected

the results described here, the omission of this class could affect the method when

applied elsewhere.

A.3 Calculation of NC’s Roundwood Production Share of the Con-

tinental US

In order to calculate the percentage of the roundwood production of NC out

of that for the continental United States, the roundwood output data of NC and

the continental United States from the Resources Planning Act (RPA) Assessment

reports were used. The RPA Assessment reports were available for years 1997, 2002,

and 2007. Data for the 2010 report will not be used. The data for the production
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of NC are obtained from the Core Table 2—Volume of industrial timber harvested

by timber product, major species group and year and the data for the production

of the continental United States are obtained for the ”Total removals” column of

the RPA fact sheet. All of those data can be obtained at the TPO website(U.S.

Department of Agriculture, 2015). Results of the percentage calculation are shown

in table A.2.

A.4 Conversion of Wood Volume to Wood Mass

Volume of roundwood product can be converted to mass by using the green

specific gravity (SGgr). SGgr is density of wood divided by the density of water

(ρw) based on wood dry mass associated with green (freshly cut) tree volume, so it

is unit-less Miles & Smith (2009). Density of water is 1 g/cm3 = 1t/m3. Therefore,

mass of dry wood (M), in tons, can be obtained as follows:

M = Volume · SGgr · ρH2O, (A.12)

A.5 Comparison with Other Estimation Approaches

There are two other estimation approaches that can give the same level of detail

as the method used in this paper, namely, linear interpolation of the TPO survey

data and conversion factor of forest disturbance area to volume of reoundwood

produced. However, their estimation results are either in shorter length of time

period or lack the details of different roundwood type.
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A.5.1 Comparison with Linear Interpolation

The linear interpolation method cannot estimate the roundwood production

beyond the range of years of the survey data. Since the roundwood data are only

available after 1992, linear interpolation can only obtain the production estimate

for the missing years between 1992 and 2009. To extend the estimate beyond the

available survey years, linear extrapolation of the data has to be used in combination

with linear interpolating the data. Because there are some increasing trends in some

of the roundwood in some counties, if linear extrapolation/extrapolation method

used in Adams et. al (2006) (Adams et al., 2006) was followed to obtain estimation

of the roundwood production in the 80s, then some of the estimations would be

negative.

Experiments were performed to compare the proposed method with the linear

interpolation/extrapolation method in terms of estimating the past and the future

roundwood production based on limited years of TPO data. For both the estima-

tion in this study and the linear interpolation/ extrapolation methods, the first 3

available TPO years were used to estimate each of the last 3 years of TPO data, and

the last 3 available TPO years data were also used to estimate each of the 3 earliest

TPO data. For most of the states that are not in the Southern region, the TPO

data availability can be as limited as to three years before 2009 (U.S. Department of

Agriculture, 2015). The robust trimmed mean squared error approach was used

to calculate the root mean square error (RMSE) of each estimation years with the
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TPO values. Tables A.3 and A.4 show the results of the RMSE of the comparison.

It shows that estimation results using the proposed method in this study is signifi-

cantly better than those using the linear interpolation/extrapolation method when

limited number of years of survey data is available.
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Table A.1: The first and second sections of the table (this page) show the root
mean square errors (RMSE) of the tests described above and the AIC values of each
model; the third section (next page) shows the RMSE for the additional pulpwood
data in each ecoregion. The Add Pulp columns (this page) show the RMSE using
the additional pulpwood data as testing. All the RMSE values are based on log-
transformed models. For the wood types, HP=Hardwood pulpwood, HS=Hardwood
sawlog; HF=Hardwood Fuelwood; SP=Softwood pulpwood, SS=Softwood sawlog;
SF=Softwood Fuelwood. For the forest survey regions: NCP=Northern Coastal
Plain; SCP=Southern Coastal Plain. Numbers with * indicate the lowest value
among models.

Wood
Type

Test
Type

No
Int.

Add
Pulp

Time
Int.

Add
Pulp

Mix
Int.

Add
Pulp

HP Reg. 1.94 2.04 1.84∗ 1.97∗ 1.88 2.00
HS 0.84 0.82 0.82∗

HF 0.55 0.53 0.52∗

SP 2.40 2.31 2.37 2.28∗ 2.22∗ 2.31
SS 0.67 0.65∗ 0.65
SF 0.66 0.64 0.64∗

HP 10-Fd. CV 1.70 1.60∗ 1.65
HS 0.84 0.83 0.82∗

HF 0.59 0.56 0.56∗

SP 2.34 2.31 2.16∗

SS 0.60 0.58 0.58∗

SF 0.71 0.69 0.69∗

HP Time CV 1.83 1.74∗ 1.78
HS 0.76 0.75 0.75∗

HF 0.54 0.52 0.51∗

SP 2.15 2.11 2.08∗

SS 0.63 0.62∗ 0.62
SF 0.64 0.63 0.62∗

HP AICc 4403∗ 4339 4446
HS 2730∗ 2737 2792
HF 1565 1547∗ 1588
SP 4833∗ 4850 4780
SS 2267 2247∗ 2315
SF 1846∗ 1862 1923
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Table A.1 (cont’d)

Wood
Type

Test
Type

No
Int.

Add
Pulp

Time
Int.

Add
Pulp

Mix
Int.

Add
Pulp

Survey
Region

HP NCP 1.05 1.12 1.08∗

HP SCP 1.30 1.29∗ 1.30
HP Piedmont 1.70 1.70 1.68∗

HP Mountain 3.58 3.36∗ 3.49
SP NCP 0.91∗ 0.93 0.93
SP SCP 1.42∗ 1.43 1.46
SP Piedmont 2.30 2.29 2.29∗

SP Mountain 3.87 3.79∗ 3.86

Table A.2: Proportion of the roundwood produced in North Carolina to that of the
continental United States in each RPA report

Year NC US Percentage

1997 9.54E+05 2.12E+07 4.50
2002 8.53E+05 2.02E+07 4.22
2007 8.59E+05 2.12E+07 4.05
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Table A.3: RMSE in thousand cubic meter of using TPO years 2005, 2007, and 2009 to backward project the first 3
available TPO years (1992, 1994, and 1995) using Linear Interpolation/Extrapolation method and the estimation method
in this study. The Forest Service divides North Carolina into four regions: Northern Coastal Plain (NCP), Southern Coastal
Plain (SCP), Piedmont (Pied), and Mountain (Mont). Types of roundwood are: HS=Hardwood Sawlog; HP=Hardwood
Pulpwood; HF=Hardwood Fuelwood; SS=Softwood Sawlog; SP=Softwood Pulpwood; SF=Softwood Fuelwood.

Linear Interpolation/Extrapolation Estimates in this study

Year NCP SCP Pied Mont Total NCP SCP Pied Mont Total

1992

HP 140.0 107.1 85.5 81.8 105.0 38.4 42.1 21.8 23.4 32.5
HS 69.5 67.7 80.9 107.9 80.4 21.3 30.0 45.5 22.6 25.3
SP 35.0 58.3 29.6 29.3 39.3 122.1 90.4 145.1 9.8 103.1
SS 192.3 188.0 122.5 64.1 151.0 127.4 131.2 65.5 41.1 99.0

1994

HP 116.0 102.4 76.4 74.2 93.4 38.2 49.3 26.8 32.9 37.7
HS 57.5 57.7 69.9 87.2 67.7 24.7 27.2 21.9 21.5 24.2
SP 121.3 87.3 55.4 44.1 77.2 44.3 53.6 54.4 33.8 47.9
SS 190.6 192.4 96.7 66.7 146.5 64.4 52.1 70.6 15.1 56.4

1995

HP 105.6 94.5 68.1 73.4 86.0 37.2 48.3 32.1 28.7 37.8
HS 51.0 54.9 65.8 79.7 62.8 24.2 30.5 22.7 17.1 24.8
SP 100.0 85.4 53.8 29.1 69.1 45.6 58.8 62.5 10.5 50.1
SS 157.2 166.7 85.9 58.9 124.9 93.6 68.4 64.1 33.0 67.7
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Table A.4: RMSE in thousand cubic meter of using TPO years 1992, 1994, and 1995 to forward project the most recent 3
available TPO years (2005, 2007, and 2009) using Linear Interpolation/Extrapolation method and the estimation method
proposed in this study. The Forest Service divides North Carolina into four regions: Northern Coastal Plain (NCP),
Southern Coastal Plain (SCP), Piedmont (Pied), and Mountain (Mont). Types of roundwood are: HS=Hardwood Sawlog;
HP=Hardwood Pulpwood; HF=Hardwood Fuelwood; SS=Softwood Sawlog; SP=Softwood Pulpwood; SF=Softwood Fuel-
wood.

Linear Interpolation/Extrapolation Estimates in this study

Year NCP SCP Pied Mont Total NCP SCP Pied Mont Total

2009

HP 95.4 105.4 75.7 52.4 85.9 17.8 18.2 28.0 24.9 23.1
HS 71.8 65.0 57.7 77.7 67.3 18.3 30.4 35.7 16.6 27.6
SP 266.6 361.6 197.2 103.0 253.9 128.9 88.1 40.0 12.4 78.8
SS 389.3 414.6 245.3 185.6 322.6 295.1 267.5 60.6 44.8 197.3

2007

HP 84.3 94.7 67.4 45.0 76.4 26.5 30.9 31.0 32.1 30.3
HS 59.3 54.4 49.8 61.5 55.7 15.1 28.1 21.2 19.0 22.1
SP 247.5 314.9 178.3 88.8 225.8 90.4 80.1 13.9 13.8 55.5
SS 360.0 379.4 213.6 160.9 292.6 126.0 142.9 47.8 36.9 99.7

2005

HP 71.5 128.6 90.1 54.9 94.3 42.3 83.0 36.6 48.6 56.9
HS 37.7 48.9 43.8 57.9 47.3 16.4 28.3 18.3 24.5 22.6
SP 228.2 282.3 148.3 73.8 200.5 62.4 45.4 20.8 20.3 38.6
SS 294.3 331.8 183.6 143.6 249.5 103.4 105.5 40.0 21.0 76.8
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A.5.2 Comparison with approaches using a Conversion Factor

Although using the conversion factor approach can estimate roundwood pro-

duction as far back as when the forest disturbance area information exist, it cannot

provide the detail information of the types of roundwood produced. Conversion

factor for the southeastern United States calculated by Masek et. al (2011) Masek

et al. (2011) is 100 m3/ha, which is used to estimate the total amount of annual

roundwood production. The conversion factor is not only a very general estimation

for regions in North America, but also derived from the total roundwood production,

which includes both softwood and hardwood. Thus, it cannot be used to estimate

different types of roundwood. The range of the dates of forest disturbance areas cal-

culated by VCT starts from a day in the growing season (May–September) and ends

at a day in the next growing season. Any forest disturbance event happens after

the end of the growing season would be captured as the disturbance event for the

following year. The comparison for carbon in HWP with other estimation method is

based on calendar year. In order to reconcile the timing difference between the VCT

data and the calendar year, for the estimation using conversion factor, the annual

forest disturbance area in a calendar year is calculated by taking the average of the

two years of the forest disturbance areas. In addition, since the estimation from the

conversion factor method is for both hardwood and softwood, when converting the

volume of the total roundwood production to carbon mass, the average value of the

specific gravity of hardwood and softwood was used.

132



Table A.5: Comparison of the average C in roundwood (in Mt C/year) between
the proposed estimation method in this study and others: CF=Conversion Factor;
LI=Linear Interpolation.

C in Roundwood by Ecoregion (Mt C/yr)

NCP SCP Piedmont Mountain Total

CF -1.36 -1.81 -0.72 -0.38 -4.27
LI 0.05 0.14 0.08 0.06 0.33

A.6 Analysis of the Impact of Hurricanes

Besides harvest, the most common forest disturbance in North Carolina is

related to wind storms . For the period in this study study, NC was hit by hurricanes

in most years1. For the years when TPO data is available, only 1992, 1997, 2001, and

2007 have not experienced significant hurricane related disruptive events. In 1999,

two major hurricanes have made landfall. More detailed cross-validation results were

added to assesses the model’s predictive accuracy for years with reported hurricanes

(see, Table A.6 and SI). The mean square error (MSE) of the model estimates were

compared with the corresponding TPO data for each year used as testing while the

rest of the years as training dataset.

The similarity in the MSE between years shows that the hurricanes did not

significantly affect the relation between forest disturbance areas and roundwood

production overall during the study period (see Figure A.2). A factorial analysis

1See, e.g., http://nc-climate.ncsu.edu/climate/hurricanes/landfalling.php or https:

//www.nccrimecontrol.org/Index2.cfm?a=000003,000010,000025,000185,001329.
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Table A.6: Mean Square Error (MSE, in square of 103 cubic meter) results of cross
validation for roundwood production estimates by reserving one year as testing for
all roundwood estimates. Production units are thousand cubic meter. Years with
no significant hurricane landfalls are marked in GreenYellow.

Softwood Hardwood

Year Pulp Sawlog Fuel Pulp Sawlog Fuel

1992 4.27 0.80 1.24 0.58
1994 2.21 0.57 1.44 0.43
1995 2.07 0.40 0.39 1.44 0.45 0.54
1997 2.07 0.43 0.65 1.30 0.78 0.53
1999 1.97 0.46 0.46 1.13 0.31 0.44
2001 1.74 0.45 0.68 2.67 0.66 0.44
2003 1.50 0.80 0.70 2.03 0.92 0.47
2005 1.41 0.59 0.50 2.96 0.82 0.78
2007 1.84 0.71 0.68 2.04 0.94 0.42
2009 1.72 0.97 0.90 1.55 1.57 0.43

Figure A.2: Boxplot of MSE CV results. YES means year with a hurricane, NO
otherwise
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Table A.7: Factorial analysis of the MSE between years with and without hurricane
damage

Df Sum Sq Mean Sq F value Pr(>F)
wood type 5 22.47 4.49 19.48 0.0000
hurricane 1 0.20 0.20 0.88 0.3536
wood type:hurricane 5 0.89 0.18 0.78 0.5723
Residuals 44 10.15 0.23

confirms that the variability of MSE between years with and without hurricane

damage, is not significantly different from within variability, therefore no evidence

showed that hurricanes adversely affect the predictive power of the model.

For coastal counties that are frequently impacted by hurricanes, the county-

specific dummy variable (alpha) in the model would have taken that into account.

It is important to note that for forests affected by wind damage, about 15% of the

fallen trees will be harvested immediately after the events as salvage logging (Mc-

Nulty, 2002). This management practice mitigates the contribution of wind damage

to roundwood harvest. In the proposed framework, if more detailed and specific

information on natural disturbance events is available, the prediction accuracy can

improve substantially.
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Appendix B: Appendix for Chapter 3

B.1 Land Types

To simulate the interactions between plant communities, species with unique

attributes are grouped into ecoregions, where the ecological and geological characters

are similar. The fine resolution of ecological zone of Western North Carolina of

Simon et al. (2005) was used. Eleven ecological zones were classified for the Southern

Appalachian upland forest community, in addition to one ecological zone that is not

classified. In addition to ecozone, Landis-ii also requires initial community files that

define the species present, its location, and it age. The initial community map is the

forest type defined by the North Carolina GAP Analysis project (McKerrow et al.,

2006), which further classifies forest type based on the National Land Cover Data

(NLCD) 2001 data by using local forest maps and survey.

B.2 Initial Condition

Age values for individual species that are present in the study area. Indi-

vidual tree species fall into the different initial community types in the study area

of Western North Carolina were obtained from the data from 2002 to 2010 in the
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forest inventory and analysis (FIA) database (U.S. Department of Agriculture, For-

est Service, 2016). Although the FIA does not provide the exact location of the

measurement sites, the data can be used as samples of the forest type where a site

belongs to and the FIA values can be applied to the whole of that type. The age for

the tree species that has the breast height diameter of less than 3 inches is consid-

ered to be aged 10. For those trees that FIA does not provide age information, the

growth index curve from Carmean et al. (1989) for each species is used to estimate its

age. The Site Index Curve equation requires height, site index, and species-specific

parameters to obtain the age value of specific tree. The species-specific parame-

ters were obtained from the Southern Variant OverviewForest Vegetation Simulator

(Keyser, 2008). For the species-specific parameters that are not available for some

species, the values of those of the species from the same genius group that have

similar physiology are used as substitution. For those species that the FIA database

does not provide the height or the site index value, the average value of the same

species in the same initial community type will be used. Age estimations will be

grouped into age class cohort that is equal to the succession time step, which is 10

years. For example, trees of age 1-10 will be referred to as age 10. 36 tree species

were present in the study area between 2002 and 2010 according to the plot data

from the FIA. Twenty species are used in the simulation. They are selected based

on abundance.
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B.3 Climate Data

No climate change scenario will be simulated in this study. The monthly

temperature and precipitation input data for each ecoregion are the monthly average

data from 1980 to 2010 acquired from the PRISM climate data website at resolution

of 0.0417 degree (PRISM Climate Group, Oregon State University, 2004). The

standard deviations from the mean of both the temperature and precipitation data

for each ecoregion were calculated as part of the input data.

B.4 Species Parameters

One of the required species parameter is leaf longevity. The information of leaf

longevity for five of the species in this study are available from the study conducted

in the Coweeta Hydrological Laboratory, North Carolina by Hwang et. al (2014)

(Hwang et al., 2014). The five species are Nyssa sylvatica (Blackgum), Acer rubrum

(Red Maple), Oxydendrum arboreum (Sourwood), Quercus prinus (Chestnut Oak),

Quercus rubra (Northern Red Oak). The leaf longevity information is obtained by

averaging the annual difference between the spring budding date and the fall leaf-off

date of each branch. For other deciduous trees that the information is not available,

the leaf longevity values are assumed to be the average of that of the closest species.

For other evergreen species, the leaf longevity is obtained from the gymnosperm

database (Earle, 2016).

The age-related mortality parameters of the oak trees are estimated based
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on the study by Greenberg et al. (2011). The study finds that the red oak group

(Northern read oak, Scarlet oak, Black oak) that dies of declined-related cause is

on average, 108 years old, and that of the white oak group (White oak, Chestnut

oak) is 138 years old. The starting ages of the age-related mortality of other species

are determined by when the tree height growth slows down from the growth Site

Index Curves in Carmean et al. (1989). For the two pine species (Table Mountain

pine and Pitch pine) that do not have the Site Index curve, the average value of the

mortality curve shape parameter of the other pine species was used. For the rest

of the species that do not have the Site Index Curve available in Carmean et al.

(1989), the dbh and height are plotted against age for the Western North Carolina

FIA plot. The age when the growth slows down is when the age-related mortality

begins.

According to the USDA definition of sawtimber tree, the d.b.h for softwoods

and hardwoods must be at least 9 inches and 11 inches respectively (cite). And

the minimum d.b.h. for both softwood and hardwood pulpwood is 6 inches (15cm)

according to the information in the Woodland Owner Notes (Bardon, 2002). The age

of each species present in the FIA data of Western North Carolina was determined

using the site index ( B.2). The minimum age of a species that its dbh reaches around

6 inches (between 5.7 and 6.3 inches) is used as the minimum age for merchantable

stems.
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B.5 DOM pool

The DOM pools table requires the input of proportion of carbon in the decay

material that transferred to the atmosphere for each DOM and soil pool. The values

are obtained from Kurz et al. (2009).

B.6 Ecoregion Species DOM Parameters

The base decay rate in each pool and the Q10 value for a reference temperature

of 10 ◦C of each species are obtained from Kurz et al. (2009). Russell et. al (2014)

(Russell et al., 2014) provides the decay rate of the down dead wood of diameter

greater than or equal to 7.62 cm for the species in the forest of the eastern United

States. It corresponds with the ”snag stem” pool and the ”snag other wood pool”.

The values provided by this study are used as the ”snag other wood pool” base

decay rate. The ”snag stem” decay rate is approximated as 2.5% more than than

of the ”snag other wood pool” based on the values reported in Kurz et al. (2009).

If the value of the species is not reported in the study, then either the average value

of the species in the same genus is used, or the average value of that species wood

type. Base decay rate for other pools are obtained from Kurz et al. (2009).

B.7 DisturbFireTransferDOM

No carbon is transferred to the product sector after fire.
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B.8 DisturbOtherTransferDOM

15% of the carbon in the snag stem is transferred to the product sector after

windthrow events to indicate possible salvage logging (McNulty, 2002).

B.9 DisturbFireTransferBiomass

No carbon is transferred to the product sector after fire.

B.10 DisturbOtherTransferBiomass

15% of the carbon in the merchantable part pf the woody pool is transferred

to the product sector after windthrow events to indicate possible salvage logging

(McNulty, 2002).

B.11 MaxBiomassTimeSeries

Values of the maximum biomass are obtained from Thompson et al. (2011).

For species that are not mentioned in their paper, their maximum biomass value

are assumed to be 250Mg/ha. The unit is converted to g/m2 in the input file. The

value of each species is the same for all ecoregions and periods.
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B.12 Root Dynamics Table

The values for root dynamics of yellow poplar are obtained from estimations

of the results reported in Harris et al. (1980). The percentage of biomass of the root

system of American beech (Fagus grandifolia) are obtained from Santantonio et al.

(1977). The study also reports that roots comprised 28 % of the forest biomass

in oak-hickory and eastern white pine forests (Harris et al., 1980). The dominant

species in those forest are red oak, white pine, black oak, red maple, and scarlet

oak. Black cherry, white oak, and hemlock are the sub-canopy species, although

found less frequently (Simon et al., 2005). The average root to shoot ratios under

different light treatments of red oak, red maple, black oak, and black cherry of 2-

year-old are obtained from Gottschalk (1985). Root to shoot ratio data of chestnut

oak, northern red oak, and white oak are also available from Rebbeck et. al (2011)

(Rebbeck et al., 2011). Final root to shoot ratio for Northern red oak is the average

of data in Gottschalk (1985) and Rebbeck et al. (2011). Root to shoot ratio of

pitch pine is obtained by averaging the values for different treatments and sites in

Greenwood et al. (2002). Root to shoot ratios of Table Mountain Pine, Eastern

Hemlock, and Virginia Pine are obtained from Neufeld et al. (2000). Root to shoot

ratio of flowering dogwood and white oak are available in Riley Jr (2001). Root to

shoot ratio of pignut hickory and white oak are available in Arnold & Struve (1993).

Final root to shoot ratio for white oak is obtained by averaging the values in Arnold

& Struve (1993), Rebbeck et al. (2011), and Riley Jr (2001). Root to shoot ratio
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of black locust is obtained from Mebrahtu & Hanover (1991). Root to shoot ratio

of blackgum is obtained from Butterfield et al. (2004). The root to shoot ratio for

sourwood is estimated by averaging the root to shoot values for all hardwood species

in the study. The proportion of the fine wood and coarse wood which dies annually

and will be added to the DOM pool are assumed to be 99% and 2% based on the

estimation from the results by Edwards & Harris (1977).

B.13 ANPPTimeSeries and Probability of Establishment

Values for aboveground net primary production and the probability of estab-

lishment in each ecoregion are obtained from using the estimates from the PnET

model for Landis-ii (Xu et al., 2009).

B.13.0.1 parametrization of the PnET model

Latitude of each ecoregion is obtained by calculating the centroid of the areas

that belong to the same ecoregion. The water holding capacity for each ecoregion

is obtained by the averaging the values of Root Zone Available Water Storage of

all the soil map units located within each ecoregion in the gSSURGO map of North

Carolina (Soil Survey Staff, 2015). The Root Zone Available Water Storage takes

into account of the root zone depth of each of the soil component so that its values

represent the volume of plant available water that is store of the soil. The monthly

CO2 concentration data is obtained from the Mauna Loa records. The values are
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calculated by averaging the corresponding monthly records in between 1980 and

2010. The climate input variables are obtained by averaging of the corresponding

variables in all ecoregions. The PAR value is obtained by averaging the PAR values

for North Carolina in June and in December available in Aber & Freuder (2000).

B.14 Classification of Commercial and Ecological Importance

Both the commercial rank and the ecological rank, as well as the associated

use of each species and the associated role of each species are provided by the forest

ranger in the National Forest. The commercial rank is based on the worth of the

final product that each harvested species is likely to yield. The ecological rank is

based on the role of each species in the forest habitat. For both of the ranks, the

lower the index, the more preferable the species.

B.14.1 Calculation of relative commercial price

In order to understand the relative economic values of the species each Com-

mercial Class, the relative commercial prices of hardwood sawlog, softwood salog,

hardwood pulpwood, and softwood pulpwood were calculated. Instead of under-

standing the real commercial value of a species, the relative commercial price was

calculated so that the model can prioritize stands that have the highest commercial

values when selecting sites for harvesting. Based on the commercial rank of the

species, each one of them are assigned to one of the roundwood type that their
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harvested products are likely to become. Species that belong to Commercial Class

V has a relative commercial price of zero, because all of them are not economically

valuable. Relative commercial price was calculated based on the average nominal

stumpage price of each types of roundwood product from 1976 to 2014. Price data

is available at Bardon (2016). Since the price of sawlog is provided based on thou-

sand board feet (MBF), while that of the pulpwood based on standard cord, the

price unit was converted to be based on MBF using the conversion factor provided

by Timber Mart South for the southern United States. The conversion factor for

softwood is 1 MBF=2.798 standard cord and that for hardwood is 1 MBF=3.02

standard cord (South, 2007). The nominal price of each type of roundwood product

between 1976 and 2014 was averaged to calculate the relative prices. The price of

the most expensive roundwood type, softwood sawlog, is normalized to $100/MBF,

and the other types are normalized accordingly. Based on the commercial ranking

and the information on the associated use of each species, the most likely end use

of the merchantable part of a species was estimated. For species rank that is big-

ger than 17, they are not likely to provide any economic incentive for foresters to

harvest. Each species was assigned a relative price the same as that of its likely

end use. The relative price of softwood sawlog is normalized to $100/MBF. Accord-

ingly, that for softwood pulpwood, hardwood sawlog, and hardwood pulpwood is

$25/MBF, $88/MBF, and $22/MBF respectively.
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Figure B.1: Management Areas (MAs) designated by the US Forest Service (USFS).

B.15 Harvest Prescription for each Management Area

The USFS divides the District into different management areas (MAs) (fig B.1).

In which, areas with MA codes 8, 12, and 14 are considered as ecologically sensitive

areas (National Forests in North Carolina, USFS, 2016).

Each MA has different harvest prescription for both the Aggressive and the

Moderate management regimes. The harvest prescriptions in the Aggressive man-

agement regime assumes the whole area is profit maximizing by lowering the cost

146



and maximizing the yield. Both the privately-owned and privately-own forests would

employ the clear-cut harvest of different levels of intensity. Ecologically sensitive

areas would employ the shelterwoof harvest. In the Moderate management regime,

the goal is to maintain sustainable timber harvest while preserving the integrity of

the forest landscape. Specifically, publicly-owned forest would employ the manage-

ment practices similar to that of the USFS, while the privately-owned forest would

employ selective harvest of the economically desirable species.
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Table B.1: Management practices employed by the USFS in each management area (MA). The MA code corresponds with

the MA show in figure B.1. MA codes that are not listed indicate no harvest taken place.

Code Goal Aggressive Moderate

1 Sustainable timber supply 2.5% area/yr Ecological Clearcut 0.48% area/yr Shelterwood harvest

and 2% area/yr Group selection

2 Provide a remote forest setting 1% area/yr Ecological Clearcut 0.5% area/yr of cutting understory

5 Scenery with management for timber 1% area/yr Ecological Clearcut 0.36% area/yr Shelterwood harvest and

1% area/yr Group selection

6 Maximum timber yield

(privately owned)

2.5% area/yr Economical Clearcut 2.5% area/yr Selective harvest

7 Scenery without management for

timber

1% area/yr Ecological Clearcut 0.05% area/yr of Group selection

and 0.1% area/yr of Cutting understory

8 Backcountry 0.48% area/yr Shelterwood harvest 0.05% area/yr of cutting understory

10 low activities (Riparian) 1% area/yr of Ecological Clearcut 0.5% area/yr of Cutting understory

12 Black bear habitat

(less than 10ha per harvest)

0.48% area/yr Shelterwood harvest 0.24% area/yr Shelterwood harvest

and 1% area/yr Group selection
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Table B.2: Continue table.

Code Goal Aggressive Moderate

13 Scenery with management for timber 1% area/yr Ecological Clearcut 0.36% area/yr Shelterwood harvest

and 1% area/yr Group selection

14 Wilderness area 0.48% area/yr Shelterwood harvest 0.1% area/yr of cutting understory

15 Sustainable timber supply 2.5% area/yr of Ecological Clearcut 0.60% area/yr Shelterwood harvest

and 2.5% area/yr Group selection

1000 Maximum timber yield

(privately owned)

2.5% area/yr Economical Clearcut 2.5% area/yr Selective harvest

2000 Maximum timber yield

(privately owned, with some land

protection requirement)

1% area/yr Ecological Clearcut 1% area/yr Selective harvest

3000 Maximum timber yield

(privately owned, with strong land

protection requirement)

0.48% area/yr Shelterwood harvest 0.1% area/yr of cutting understory

and 0.1% area/yr Group selection
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For the privately owned areas, if they are not located in the permanently

protected areas according to the Land Stewardship data in the NC GAP analysis

(McKerrow et al., 2006), then shelterwood harvest and group selection of higher

level, just like those MAs designated for sustainable timber supply, were assumed

to be practiced in those areas.
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Daily, G., Söderqvist, T., Aniyar, S., Arrow, K., Dasgupta, P., Ehrlich, P. R., C.,
F., Jansson, N. K., Levin, S., Lubchenco, J., Mäler, K.-G., Simpson, D., Starrett,
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