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Optical processors have potentially a major advantage over electronic proces-

sors because of their tremendous bandwidth. Massive parallelism is another inherent

advantage of optical processors. However, it is traditionally demonstrated with free

space components and seldom used for integrated optical signal processing. In this

thesis, we consider spatial domain signal processing in guided wave structures, which

brings a new dimension to the existing serial signal processing architecture and takes

advantage of the parallelism in optics. A novel class of devices using holograms in

multimode channel waveguides is developed in this work.

Linear optical signal processing using multimode waveguide holograms (MWHs)

is analyzed. We focus on discrete unitary transformations to take advantage of the

discrete nature of modes in multimode waveguides. We prove that arbitrary unitary

transformations can be performed using holograms in multimode waveguides. A

model using the wide-angle beam propagation method (WA-BPM) is developed to

simulate the devices and shows good agreement with the theory. The design princi-



ple of MWH devices is introduced. Based on the design principle, BPM models are

used to design several devices including a mode-order converter, a Hadamard trans-

former, and an optical pattern generator/correlator. Optical pattern generators are

fabricated to verify the theory and the model. Also, the bandwidth and fabrication

tolerance of MWH devices are also analyzed.

Also, we examine the nonlinear optical switches which allow the integration

of MWHs into modern optical communication networks. A simple optical setup

using an imaged 2-D phase grating is developed for characterization of the complex

third-order nonlinearity χ(3) to identify suitable nonlinear materials for integrated

optical switches. This technique provides a reliable way to characterize χ(3) as new

materials are constantly being developed.

Finally, we demonstrate the concept of optical switching using XPM in seg-

mented semiconductor optical amplifiers (SOA) based on the proven technology of

semiconductor waveguides. Segmented SOA switches allow the counter-propagation

of control and signal pulses in the switch and avoid the problem of parasitic oscilla-

tions encountered in high gain SOA switches. A prototype device is experimentally

characterized to demonstrate the concept, and a model is developed to obtain opti-

mal parameters for future devices.
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Bibliography 144

vii



LIST OF TABLES
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Chapter 1

Introduction

1.1 Motivation

One major reason for considering optical signal processing is its bandwidth

(speed) advantage over electronic processors. With the increase in the transmis-

sion speed in modern optical communication systems, the application of optical

signal processing in optical communication systems has been an active area of re-

search. An important class of operation involves efficient processing of optical pat-

terns consisting of multiple bits (words). The ability to process optical patterns

allows the realization of optical pattern recognition, and more general tasks such as

matrix-vector multiplication. Matrix transformations such as the discrete Fourier,

the Hadamard, and the Haar transformations are useful for spatial signal processing

such as spectrum analyzing, filtering, coding and so on [1][2].

In optical communications, the signals are generally transmitted serially using

guiding structures in the form of amplitude or phase encoded bits. Most of the

current effort in optical pattern processing uses linear or nonlinear effects in single

mode waveguide structures. A common approach for high speed processing is the

time domain bit by bit logical operation using nonlinear optical gates [3] just like in

electronic processors. Another approach for optical pattern recognition is the cross-

correlation technique [4]-[8], using either a nonlinear holographic medium [4][5],

1



nonlinearity in semiconductor optical amplifiers [7][8], or linear delay line matched

filters [6] to perform cross-correlation. However, the serial computation approach is

inefficient when more complicated processing such as matrix-vector multiplication

is needed.

The inefficiency of the serial computation approach for matrix-vector multi-

plication is illustrated by the following example. Matrix-vector multiplication can

be viewed as multiple cross-correlations in which a vector is cross-correlated with

the individual rows of a matrix. Consider multiplication of 8-bit words at 160 Gb/s

(the word rate is thus 160/8=20 G/s) with an 8 × 8 matrix as an example, which

involves 56 additions for calculating the 8 dot products using electronic processors.

This would require a processor speed of 56×20 G = 1.12 T calculations per second.

Even for 4-bit words, the electronic processor speed has to exceed 480 G calculations

per second. Modern desktop computers typically run at a clock rate of 2 GHz. Only

super computers consisting of multiple parallel processors or dedicated processing

chips using parallel architecture can deliver the required processing, which leads us

to explore the possibility of parallel optical signal processing using integrated optics.

1.2 Parallel processing using linear optics

In addition to speed, another advantage of optical signal processing is its

massive parallelism (connectivity). With parallelism, it is possible to complete com-

plicated computations in a single operation. For example, in image processing, an

entire image can be processed all at once using optical systems, instead of sequential

2



processing of each pixel. This advantage is well known and has been explored mainly

in the spatial domain signal processing, leading to the development of holography,

spatial light modulators, optical neural networks, and many other interesting appli-

cations [1][2]. Traditionally, spatial domain optical signal processing is performed

using free space optics [9][10], which involves bulky optics in contrast to the small

guided wave components used in optical communications. As a result, parallelism is

rarely utilized in guided wave optical signal processing. Until recently, little effort

has gone into spatial domain signal processing in guided wave structures [11][12]. In

this thesis, we consider spatial domain signal processing in guided wave structures,

which brings a new dimension to the existing serial signal processing architecture

and takes advantage of the parallelism in optics.

1.3 Nonlinear optical processing

There is a limit to the types of operations that can be performed with linear

transformations. For many applications, we would also like to be able to implement

Boolean algebra, thresholding, and gating functions, which require nonlinear optics.

The thresholding function enables the digitization of signals. The gating function

allows serial to parallel conversion of optical signals as explained in section 1.6. These

applications have been demonstrated using nonlinearity in fibers and semiconductor

waveguides [15][16] or using spectral holography with nonlinear optics [17].

The general requirement for these nonlinear operations is for the light to ac-

quire a π phase shift in the processor. For integrated optical processors, strong
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nonlinearities are required at short waveguides in order to obtain π phase shift.

The development of semiconductor optical amplifier (SOA) [18] technology enables

the realization of various integrated nonlinear optical processors. The main draw-

back of a SOA based switch is that extra power is required to maintain gain in the

waveguides. No extra power would be required for materials with a sufficiently large

third order nonlinearity, χ(3) [19]. One class of promising materials for integrated

nonlinear processors is nonlinear polymers with a fast refractive index nonlinearity.

Unfortunately, we have no suitable nonlinear polymers for practical implementation

at present. Instead, the focus is on characterizing the nonlinearity of new ma-

terials as they are constantly being developed through DARPA’s super molecular

photonics (MORPH) program. Also, new semiconductor materials grown by the

molecular beam epitaxy (MBE) facility in the Laboratory for Physical Sciences are

being tested.

1.4 Scope of this thesis

In order to utilize the parallelism of optics for signal processing in guided wave

structures, it is natural to consider multimode waveguides. In chapter 2, linear

optical signal processing using multimode waveguide holograms (MWHs) [13][14]

is analyzed. The MWH consists of a multimode channel waveguide with a surface

relief hologram fabricated on top on the waveguide. We focus on discrete unitary

transformations to take advantage of the discrete nature of modes in multimode

waveguides. We prove that arbitrary unitary transformations can be performed
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using holograms in multimode waveguides. Different functionalities are explored,

and the limitations of this class of devices are analyzed in chapter 3.

Also, we examine the nonlinear optical switches which allow the integration of

MWHs into modern optical communication networks. We consider a simple switch

configuration using cross-phase modulation (XPM) [20] in nonlinear waveguides.

For integrated optics, strong nonlinearities are required in the waveguides. In chap-

ter 4, a simple optical setup using an imaged 2-D phase grating [21] is developed

for characterization of the complex third-order nonlinearity χ(3) to identify suitable

nonlinear materials for integrated optical switches. A nonlinear polymer is charac-

terized using this technique.

Finally, we demonstrate the concept of optical switching using XPM in seg-

mented semiconductor optical amplifiers (SOA) based on the proven technology of

semiconductor waveguides in chapter 5. A prototype device is experimentally char-

acterized to demonstrate the concept, and a model is developed to obtain optimal

parameters for future devices.

The subsequent sections provide a brief review of past work relating to this

thesis.

1.5 Discrete spatial optical signal processing in multimode waveg-

uides using linear optics

We focus on processing of optical patterns using integrated optics. A particular

important class of operation that includes correlation, discrete Fourier transforms
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and Hadamard transforms involves multiplication of vectors by unitary matrices.

Many of these operations have been demonstrated with coherent spatial signals using

conventional free space holography, and this technology is described in various texts

[1]-[10], [22]. Planar holographic techniques using slab waveguides combine both the

advantages of traditional holography and integrated optics [23]. In this thesis, we

develop the theory necessary for designing holograms within guided mode structures

to create compact devices that perform unitary operations.

The discrete Fourier and the Hadamard transforms have been proposed using

single-mode star networks [24] [25] as shown in Fig. 1.1 or multimode interference

(MMI) waveguides [26]. Also, it has been shown that arbitrary unitary operation

can be realized with combinations of beam splitters, phase shifters, and mirrors

[27]. The holographic approach is another versatile technique for implementation of

different transformations which can be readily implemented using integrated optics.

Linear transformations using a holographic matrix-vector multiplier incorporating a

slab waveguide with integrated 2-D lenses has been demonstrated in photorefractive

waveguides under the assumption of undepleted inputs as shown in Fig. 1.2 [28].

In this thesis, we develop the theory for MWHs, which is described in chapter 2.

By implementing holograms in a multimode channel waveguide, we take advantage

of the discrete nature of the modes for efficient realization of discrete mathematical

operations. Modeling, fabrication, and analysis of MWHs are presented in chapter

3. Unlike the previously described approach [28], our method does not require

waveguide lenses and couples all of the input optical power to the output.
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Figure 1.1: Star network that performs an eighth-order discrete Fourier transform.
The circles represent 3 dB couplers; the boxes represent added phase shifts of value
−q2π/N , where q is the integer shown in the box [25].

Figure 1.2: Architecture for a holographic integrated optical vector-matrix multiplier
[28].
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Figure 1.3: Schematic of an optical processor with serial to parallel conversion using
splitter, delay lines, and fast optical switch.

1.6 Nonlinear optical switches using cross-phase modulation (XPM)

in nonlinear waveguides

The parallel processing architecture considered in this thesis are different from

the common serial architectures used in modern optical communication system. In

order to utilize the spatial domain processors in traditional serial architectures,

serial to parallel conversion and nonlinear switching functions are also needed [17].

A straightforward way of implementing serial to parallel conversion using splitter

and delay lines is illustrated in Fig. 1.3. In this architecture, optical switches are

needed to select the processed pulses for further optical or electrical processing.

A simple configuration to perform all optical switching is to use cross-phase

modulation (XPM) [20] in nonlinear waveguide (NLWG) followed by a filter as

illustrated in Fig. 1.4. The equations for pulse propagation in nonlinear waveguide

are derived in chapter 5. It will be shown that the nonlinearity in refractive index is

responsible for the switching function. In this thesis, we describe a simple method to

identify materials for the NLWG and explore all optical switching using a segmented
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Figure 1.4: Schematic of an optical switch using XPM and optical filtering. NLWG:
nonlinear waveguide.

semiconductor optical amplifier (SOA) as the NLWG.

1.6.1 Study of materials for ultrafast nonlinear switches

The requirement on the nonlinear switches is that the response has to be fast

enough for operation in modern optical communication systems (typically < 10 ps).

The ultrafast refractive nonlinearity in optical fibers has been used as the NLWG

in Fig. 1.4 to demonstrate all optical demultiplexing [29] [30]. In these approaches,

the signal spectrum is broadened by the pump induced frequency shift via XPM

and then selected by appropriate filters. The main drawbacks of these schemes is

that relatively long fibers are required. For example, 3.4 km of fiber was used in ref.

[29], and 5 km of fiber was used in ref. [30]. Recently, 80 Gb/s demultiplexing using

2 m of highly nonlinear fiber was reported [31]. Although great length reduction is

achieved by the development of highly nonlinear fibers, it is still desirable to perform

the switching function using integrated optics.

For an integrated solution, materials with large nonlinear index coefficient need
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to be identified. The nonlinear index coefficient, n2, is proportional to the real part

of the third order nonlinearity, χ
(3)
1111 of materials; the imaginary part of χ

(3)
1111 causes

loss due to two photon absorption and limits the effective distance of the waveguide

[20]. Degenerate four-wave mixing (DFWM) [32] is a sensitive technique for studies

of the χ(3) of nonlinear materials. Typically, the measured signal is proportional

to |χ(3)|2, but the phase of χ(3) is not available. A simple optical arrangement for

the measurement of the complex χ
(3)
1111 [21] using DFWM with an imaged 2-D phase

grating is developed and described in chapter 4.

1.6.2 Ultrafast optical switching using XPM in semiconductor optical

amplifiers

The gain/loss and index dynamics in a semiconductor optical amplifier (SOA)

make it a possible candidate for the NLWG in Fig. 1.4. However, the nature of the

nonlinearity in SOAs is different from the ultrafast refractive nonlinearity in fibers.

The fast nonlinearity associated with saturation is accompanied by slow relaxation

[18] which limits its application in high speed operations. Spectral filtering can be

used to mitigate the effect of slow relaxation [33]. A simple scheme [34] for ultrafast

optical switching using nonlinearities in semiconductor waveguide has been recently

demonstrated using the same configuration as in Fig. 1.4; and it was followed by

reports from other groups [35] [36]. Similar to the optical switches based on re-

fractive nonlinearity, this approach also uses a frequency shift induced by transient

nonlinear phase shift; and a filter is used to select the signal with frequency shift
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and to reject the signal without frequency shift. This technique allows ultrafast gate

operation unrestricted by the slow nonlinearity relaxation. However, this technique

also presents a number of issues. First of all, high gain is required in the ampli-

fier, which can result in parasitic oscillation in the system. Second, strong control

and weak signals co-propagate in the SOA. Their separation requires a very high

contrast filter, which is difficult to implement in integrated optics. Also, for many

applications that require cascaded gates, it is not desirable to operate at different

wavelengths for the control and the signal.

The problem with co-propagating switches can be alleviated with a short loss

section and a longer gain section as will be explained in chapter 5. In the same chap-

ter, we describe the theory, modeling, and experiment of ultrafast optical switching

using SOAs based on this general scheme. A improved design for using a segmented

SOA with a long amplifier section and a short saturable absorber section is proposed.

Optical sampling technique is used to test a prototype device for demonstration of

the operating principle.
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Chapter 2

Theoretical Analysis of Multimode Waveguide Holograms (MWHs)

2.1 Introduction

In this chapter, discrete unitary transformations using computer generated

volume holograms in multimode channel waveguides are analyzed. The general case

of mode transformations in Fig. 2.1 is considered first. The input can be considered

as a linear combination of the waveguide modes. The amplitude of these modes

can be expressed in vector form as A. The multimode waveguide with multimode

waveguide hologram (MWH) transforms the input mode amplitude vector A(0) to

the output mode amplitude vector A(L) through the unitary matrix H. We will

use coupled mode theory [37] to show that arbitrary unitary mode transformations

can be performed on coherent spatial signals using the MWHs.

Next, an architecture for optical matrix-vector multiplication as shown in Fig.

2.2 is discussed, where the amplitudes of light in the access waveguides represent the

input and output vectors. In this case, the MWH transforms the input vector P(0)

to the output vector P(L) through the unitary matrix U. It is shown that arbitrary

unitary matrix-vector multipliers can be implemented using MWHs in multimode

interference (MMI) devices [38] without the need for waveguide lenses (see Fig. 1.2).

The general design approach of MWHs is discussed, and an intuitive design
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Figure 2.1: Schematic of unitary mode transformer using MWH. Ai(0) and Ai(L)
are the amplitudes of the ith mode at the input and output, respectively. H is the
unitary matrix representing the MWH.

Figure 2.2: Schematic of matrix-vector multiplier using MWH. Pi(0) and Pi(L) are
the amplitudes of the ith single mode access waveguide at the input and output,
respectively. U is the unitary transform matrix of the device.

13



method for MWHs is outlined. For matrix-vector multipliers at imaging lengths

[38] of the MMIs, it is shown that the imaging property of MMIs can be used to

simplify the calculation of MWHs to perform the desired transformations. We also

mathematically show the equivalency of these two design approaches.

2.2 Wave equation for electric field in optical waveguides

In this section, the fundamental equations describing electromagnetic wave

propagation in dielectric optical waveguides are summarized.

The electromagnetic fields inside a optical waveguide satisfy Maxwell’s equa-

tions: [39]

∇×E = −µ0
∂H

∂t
, (2.1)

∇×H = (ǫ0n
2)

∂E

∂t
, (2.2)

∇ · (H) = 0, (2.3)

∇ · (n2E) = 0, (2.4)

where E is the electric field, H is the magnetic field, ǫ0 and µ0 are the permittivity

and permeability of vacuum, and n is the refractive index profile of the waveguide.

In the above expressions, we assume that the waveguide has no current source or

free charge (J = ρ = 0).

Next, assuming the electromagnetic field oscillates at an angular frequency ω,

we obtain the following phasor expressions for E and H,

E(r, t) = Re{Ē(r) exp(jωt)}, (2.5)
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H(r, t) = Re{H̄(r) exp(jωt)}. (2.6)

With these expressions, we can rewrite the Maxwell’s equations (2.1)-(2.4) in terms

of Ē and H̄ as,

∇× Ē = −jωµ0H̄, (2.7)

∇× H̄ = jω(ǫ0n
2)Ē, (2.8)

∇ · (H̄) = 0, (2.9)

∇ · (n2Ē) = 0. (2.10)

By computing the curl, ∇×, of (2.7) and using the vector identity, ∇× (∇× Ē) =

∇(∇ · Ē) −∇2Ē, we obtain the vectorial wave equation for the electric field, Ē

∇2Ē + ∇
(

1

n2
∇(n2) · Ē

)
+ k2

0n
2Ē = 0, (2.11)

where k0 is the wave number in vacuum and is related to the speed of light in

vacuum, c, as

k0 = ω
√

ǫ0µ0 =
ω

c
. (2.12)

When the index profile n is constant in the medium, or when the spatial

variation of n is small over distances of the order of wavelength, the vectorial wave

equation (2.11) can be reduced to the wave equation (Helmholtz equation) for Ē,

∇2Ē + k2
0n

2Ē = 0. (2.13)

This approximate form of the wave equation is used throughout the analysis in this

thesis.
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2.3 Waveguide modes

Now, we consider a waveguide whose structure is uniform in the z direction.

Assuming the electric field has a particular polarization, say parallel to x, we can

write,

Ē = x̂φ(x, y) exp(−jβz), (2.14)

where β is the propagation constant to be determined. The exponential factor

exp(−jβz) contains all the z dependence, so that φ(x, y) is z-independent. Substi-

tuting (2.14) into (2.13), we obtain,

∇2
⊥φ + (k2

0n
2 − β2)φ = 0, (2.15)

where ∇2
⊥ is the Laplacian in the lateral directions and is expressed as

∇2
⊥ =

∂2

∂x2
+

∂2

∂y2
. (2.16)

The solutions to the eigenvalue equation (2.15) are the modes of the multimode

waveguide, and the propagation constant, β can be calculated from the eigenvalue.

The waveguide supports a finite number of guided modes, and the unconfined radi-

ation modes are not considered in the subsequent analysis.

2.4 Two-dimensional representation of the multimode waveguides

The multimode waveguides considered in this thesis (refer to Fig. 2.1 and 2.2)

are single-moded in the y direction, and the x dimensions are much larger than the y

dimensions. It is justified to assume that the modes have the same y-axis behavior

everywhere in the waveguides [38]. A 2-D representation is used to analyze the
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multimode waveguides hereafter. The 2-D representation can obtained from the 3-

D multimode waveguide by several methods. The effective index method (Appendix

A) is used in our analysis.

In the 2-D representation, the guided modes φ(x)’s are the solutions to the

eigenvalue equation (2.15) with (∂/∂y) = 0. The scalar electric field in a M-mode

multimode waveguide can thus be written as a superposition of the guided modes

as

E(x, z, t) =
M∑

1

amφm(x) exp(−jβmz + jωt), (2.17)

where am represents the amplitude corresponding to the mth guided mode, and

ω is the optical frequency. The guided modes are normalized with the following

condition [37],
∫ +∞

−∞
φmφndx =

2ωµ

|βm|
δmn, (2.18)

such that the power carried by the mth mode is represented by |am|2.

Consider a step index multimode waveguide of width Wm, ridge (effective)

refractive index nr , and cladding (effective) refractive index nc as shown in Fig.

2.3. The waveguide supports M lateral modes with mode numbers m = 1, 2, · · · , M

at wavelength λ. The lateral wavenumber km and the propagation constant βm are

related by the dispersion relation,

k2
m + β2

m = k2
0n

2
r , (2.19)

with

k0 =
2π

λ
(2.20)

km =
mπ

We
. (2.21)
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Figure 2.3: 2-D representation of a step-index multimode waveguide.

The approximation here is that the effective width We is the same for all the guided

modes, which essentially treats the multimode waveguide as a planar-mirror waveg-

uide [40]. This approximation is only used for explanation of the Talbot [41] or

self-imaging effect described in the next section, and is not used for the hologram

design described in the later sections.

The effective width We takes into account the lateral penetration depth of

mode fields associated with the Goos-Hähnchen shifts at the boundaries. For high

index contrast waveguides (after the effective index method is applied), the pene-

tration depth is very small so that We ≃ Wm. The propagation constants βm can
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be calculated from (2.19)-(2.21),

βm ≃ k0nr −
m2πλ

4nrW 2
e

. (2.22)

The propagation constants in a step-index multimode waveguide show a quadratic

dependence with respect to the mode number m. We define Lπ as the beat length

between the fundamental and first-order modes and obtain,

Lπ =
π

β1 − β2
≃ 4nrW

2
e

3λ
. (2.23)

The propagation constant spacing can be written as

(β1 − βm) ≃ (m − 1)(m + 1)π

3Lπ

. (2.24)

2.5 Self-imaging properties of multi-mode interference (MMI) de-

vices

The multimode interference device consists of a central section of multimode

waveguide to support a large number of modes, with single mode access waveguides

attached at the input and output planes to couple light in and out of the device as

shown in Fig. 2.4.

Consider an input field Ψ(x, 0) at the input of the multimode waveguide, it

can be decomposed into the guided modes as

Ψ(x, 0) =
M∑

1

amφm(x), (2.25)

where the excitation coefficients am can be evaluated by

am =

∫
Ψ(x, 0)φm(x)dx
√

φ2
m(x)dx

. (2.26)
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Figure 2.4: Schematics of a N × N MMI coupler.

The field at position z can thus be written as

Ψ(x, z, t) =
M∑

1

amφm(x) exp(−jβmz + jωt). (2.27)

Factoring out the phase of the fundamental mode and ignoring the time dependence

iωt, the field becomes,

Ψ(x, z, t) =
M∑

1

amφm(x) exp[j(β1 − βm)z]. (2.28)

At distance z = L, the following expression is obtained by substituting (2.24) into

(2.28),

Ψ(x, z, t) =
M∑

1

amφm(x) exp

[

j
(m − 1)(m + 1)π

3Lπ
L

]

. (2.29)

Before imaging properties of MMI are analyzed, two useful properties are given
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here:

(m − 1)(m + 1) =






even for m odd

odd for m even

, (2.30)

φm(−x) =






φm(x) for m odd

−φm(x) for m even

. (2.31)

Equation (2.29) shows that the field at z = L will be an image of the input field if

exp

[

j
(m − 1)(m + 1)π

3Lπ
L

]

= 1 or (−1)m. (2.32)

The first condition produces a direct replica of the input field [41]. Using relation

(2.31), the second condition produces a mirror image of the input field with respect

to x = 0. The conditions in (2.32) are fulfilled when

L = p(3Lπ) with p = 0, 1, 2, · · · (2.33)

for p even (direct image) and p odd (mirror image), respectively.

From the analysis above, it can be seen that by designing the multimode

waveguide section of MMI at specific imaging lengths, the direct or mirror image

of the input electric field can be replicated at the output. Detailed analysis can

be used to show that multiple images can also be obtained at distances other than

the single image lengths with specific splitting ratios and phase relations [42]. As a

result, MMI devices have found broad applications in beam splitters and couplers

[43] [44].

The self-imaging effect comes from the quadratic dependence of the propa-

gation constant to the mode number as approximated by (2.22). For the devices
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simulated and fabricated in the subsequent sections of this thesis, we calculated

the propagation constants of the guided modes of the full 3-D waveguide structure

using a full-vectorial finite difference optical mode solver [45] and found excellent

agreement with the approximation.

2.6 Unitary mode transformations using MWHs

The formalisms introduced in the preceding sections are used to develop the

theory for multimode waveguide holograms (MWHs) in the remainder of this chap-

ter.

The propagation of the electric field in an M -mode multimode channel waveg-

uide with imbedded MWH in Fig. 2.1 is considered. The hologram is implemented

as a weak perturbation to the effective index of refraction nc of the core of the mul-

timode waveguide. The electric field in the perturbed multimode waveguide can be

written using the superposition of the unperturbed waveguide modes as

E(x, z, t) =
M∑

1

Ai(z)φi(x) exp(−jβiz + jωt), (2.34)

where Ai represents the amplitude. The hologram is chosen to be of the following

form

∆n(x, z) = f0(x) +
∑

i6=j

fij(x) exp[−j(βi − βj)z]. (2.35)

The first term adds different phase shifts to the modes depending on their overlap

integrals, and the second term represents phase gratings that couple the modes.

Each term of the series has an arbitrary amplitude profile and a phase that follows

the beating between modes. For the index perturbation to be a real function (energy
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conservation) and physically realizable, we also require f0 to be a real function and

fij = (fji)
∗. The coupled mode theory involves substituting (2.34)-(2.35) into the

wave equation (2.15) and collecting the synchronous terms to obtain the following

set of M coupled equations:

dAi

dz
= −j

∑
κijAij , (2.36)

where the coupling coefficients are given by

κii =
ωǫ0nc

2

∫
f0(x)φ2

i dx; (2.37)

κij =
ωǫ0nc

2

∫
fij(x)φiφjdx (i 6= j). (2.38)

The coupled mode equations in (2.36) can be expressed in matrix form as

dA

dz
= −jKA, (2.39)

where the ith row and jth column of the M × M matrix K is κij , and A =

[A1(z)A2(z)...AM (z)]T . The solution to (2.39) is

A(z) = exp(−jKz)A(0) = H(z)A(0). (2.40)

The requirements imposed on f0 and fij makes K an Hermitian matrix, that is

K† = K. As a result, H = exp(−jKz) is a M × M unitary matrix. The operation

in Fig. 2.1 can thus be described as a unitary matrix H transforming the input

mode amplitude vector A(0) to the output mode amplitude vector A(L). Since

each component of K corresponds to an independent grating, changing the shape

and strength of the hologram through f0 and fij allows us to generate arbitrary
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unitary matrices. One specific approach for calculating f0 and fij will be described

in section 2.8.

The derivations above assume energy conservation in the waveguide (real index

perturbation). Non-unitary transformations can be implemented by introducing

either gain/loss or additional channels in the waveguide. It is beyond the scope

of this thesis to analyze the non-unitary transformations, rather we focus on the

analysis and design of arbitrary unitary transformations using MWHs.

2.7 Unitary matrix-vector multiplication using MWHs

Consider the matrix-vector multiplier using MWHs in Fig. 2.2. N symmetric

single mode input and output waveguides are attached to the M -mode multimode

waveguide of length L. This is similar to an N × N multimode interference (MMI)

coupler except that the device incorporates a hologram and the self-imaging property

is not required for the device to function.

The input and output vectors are represented by the amplitudes of the input

and the output waveguides. First consider the multimode waveguide behavior of the

device without the hologram. The fields at the input and the output waveguides

can be decomposed into the guided modes of the multimode section as in (2.25).

Since (2.25) can be interpreted as a discrete spatial Fourier transform [38] of the in-

put/output vectors, the amplitudes of the waveguides P(0) = [P1(0)P2(0)...PN(0)]T

and output waveguides P(L) = [P1(L)P2(L)...PN (L)]T can be related in matrix form
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as

P(L) = (VBVT )P(0), (2.41)

where

VT =





exp(−jβ1L) 0 · · · 0

0 exp(−jβ2L) · · · 0

...
...

. . .
...

0 0 · · · exp(−jβML)





. (2.42)

B is a M × M diagonal unitary matrix that describes the phase change resulting

from the propagation of a distance of L of each guided mode, and V is a M × M

unitary matrix that relates the vectors P at the input and output waveguides to

mode amplitudes vectors. When the number of modes M in the multimode section

is greater than the number of access waveguides N , the expressions for P(0) and

P(L) can be zero padded to account for the ”virtual” waveguides.

When a hologram is incorporated into the multimode waveguide, equation

(2.41) is combined with (2.40) which describes the unitary mode transformation in

Fig. 2.1 to yield,

P(L) = (VBHVT )P(0) = UP(0). (2.43)

This is a vector-matrix multiplication mapping an input vector P(0) to an output

vector P(L) through a unitary matrix U determined by the MWH. To generate an

arbitrary U, H is found by

H = BTVTUV. (2.44)
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2.8 Design of MWHs

From the previous derivations, the calculation of MWHs to perform the desired

transformations involves determining the grating shapes, strengths, and periods

in (2.35) such that the resulting MWH gives the desired matrix H in (2.40) for

unitary mode transformation and in (2.44) for matrix-vector multiplication. Here,

an intuitive design method in which the gratings are generated by the interference

of propagating beams is discussed. This method involves using the interference

patterns of the guided modes to calculate individual grating elements in (2.35). A

special case of this method to design a matrix-vector multiplier using the imaging

property of MMIs is also discussed.

2.8.1 MWHs calculated using the guided modes as the basis sets

By analogy to formation of a hologram by the interference of two waves, we

consider the interference of guided modes i and j. The interference pattern that

couples mode i and j can be described by

φiφj exp[−j(βi − βj)z] + c.c.. (2.45)

When the gratings in the hologram (2.35) are in the form of (2.45), that is, fij =

gijφiφj, the coupling coefficients κij are proportional to the grating strengths gij. By

calculating the interference patterns between guided modes, gratings corresponding

to each components of K in (2.39) are obtained. The hologram can then be deter-

mined by simply varying the grating strength according to the required coupling

coefficients.
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2.8.2 Matrix-vector multipliers calculated using the eigenvectors of

MMI (a special case when the multimode waveguide is at imag-

ing length)

The general method outlined in 2.8.1 can be used to design matrix-vector

multipliers as long as (2.44) can be satisfied. Self-imaging of multimode waveguide

is not essential. However, the design can be simplified when the length of the

multimode waveguide is equal to its imaging length.

In section 2.5, we derived the self-imaging property, which describes the re-

production of a single or multiple image of the input field profile at periodic interval

along the propagation direction of a multimode waveguide [38]. First of all, by

choosing the length of the multimode waveguide to be equal to the self-imaging

length Limg, the problem can be simplified since the matrix B in (2.41) becomes

the identity matrix. For an N × N MMI coupler, there are N orthogonal eigen-

vectors that represent the patterns at input, output, and any intermediate imaging

planes [46]. These eigenvectors are obtained by sampling the guided mode profiles

corresponding to each access waveguides. Instead of using the M guided modes as

a basis set to design the hologram as discussed in 2.8.1, the gratings are calculated

directly from the interference patterns between these N eigenvectors. The strengths

of these gratings are proportional to the coupling coefficients in the N × N ma-

trix, K, which now directly relate the amplitudes of the input waveguides P(0) and

output waveguides P(Limg) by

P(Limg) = exp(−jKLimg)P(0). (2.46)
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2.9 Comparison of two different design approaches

Here, we show that by writing the eigenvectors of MMI in the form of the

mode amplitude vectors and going through the calculations from (2.41) to (2.44),

the hologram calculated using (2.46) is mathematically equivalent to the hologram

calculated using the general method in 2.8.1. The advantage of the method in 2.8.2

is its simplicity when the beam propagation method is used to design the hologram

as discussed later in the examples in chapter 3.

First, we derive the relation between the eigenmodes and guided modes. From

(2.25), we know that the matrix relating the eigenmodes (N basis) to the guided

modes (M basis) can be written as

VT =





a11 a21 · · · aM1

a12 a22 · · · aM2

...
...

. . .
...

a1M a2M · · · aMM





. (2.47)

Consider the N basis eigenmodes (eN )i and (eN)j , in the N basis, they are N × 1

unit vectors with 1’s in the ith and the jth elements, respectively. The eigenmodes

can be zero padded and be expressed in terms of the guided modes using the M
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basis through

(eM) = VT





0

...

(eN)

...

0





. (2.48)

Using (2.47) and (2.48), (eM)i and (eM)j can be obtained

(eM)i =





ai1

ai2

...

aiM





, (eM)j =





aj1

aj2

...

ajM





. (2.49)

And the field expressions of these two eigenvectors are

E(eM )i
=

M∑

k=1

aikφk exp(−jβkz)

E(eM )j
=

M∑

k=1

ajkφk exp(−jβkz). (2.50)

Now, we calculate the hologram using the eigenmodes first. In the N basis,

the N ×N hologram K calculated using these two eigenmodes is a zero matrix with

1’s in the ijth and the jith elements.

K =





0 · · · · · · · · · 0

...
. . .

. . . 1
...

...
. . . 0

. . .
...

... 1
. . .

. . .
...

0 · · · · · · · · · 0





N×N

. (2.51)
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With (2.49) and (2.50), we can calculate the same hologram using the guided

modes. The interference pattern (hologram) between these two eigenmodes is

|E(eM )i
+ E(eM )j

|2 − |E(eM )i
|2 − |E(eM )j

|2. (2.52)

In matrix form, it is

H =





ai1 + aj1 0 · · · 0

0 ai2 + aj2 · · · 0

...
...

. . .
...

0 0 · · · aiM + ajM





×





ai1 + aj1 ai2 + aj2 · · · aiM + ajM

ai1 + aj1 ai2 + aj2 · · · aiM + ajM

...
...

. . .
...

ai1 + aj1 ai2 + aj2 · · · aiM + ajM





−





ai1 0 · · · 0

0 ai2 · · · 0

...
...

. . .
...

0 0 · · · aiM









ai1 ai2 · · · aiM

ai1 ai2 · · · aiM

...
...

. . .
...

ai1 ai2 · · · aiM





−





aj1 0 · · · 0

0 aj2 · · · 0

...
...

. . .
...

0 0 · · · ajM









aj1 aj2 · · · ajM

aj1 aj2 · · · ajM

...
...

. . .
...

aj1 aj2 · · · ajM





. (2.53)

This hologram (M-basis) can be transformed into the basis set of the eigen-
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modes (N -basis) by

V exp(H)VT = exp(VHVT ). (2.54)

Now, we calculate HVT first

HVT =





ai1 + aj1 0 · · · 0

0 ai2 + aj2 · · · 0

...
...

. . .
...

0 0 · · · aiM + ajM





×





0 . . . 1 · · · 1 · · · 0

0 . . . 1 · · · 1 · · · 0

...
...

...
...

...
...

...

0 . . . 1 · · · 1 · · · 0





−





ai1 0 · · · 0

0 ai2 · · · 0

...
...

. . .
...

0 0 · · · aiM









0 . . . 1 · · · 0

0 . . . 1 · · · 0

...
...

...
...

...

0 . . . 1 · · · 0





−





aj1 0 · · · 0

0 aj2 · · · 0

...
...

. . .
...

0 0 · · · ajM









0 . . . 1 · · · 0

0 . . . 1 · · · 0

...
...

...
...

...

0 . . . 1 · · · 0





31



=





0 . . . ai1 + aj1 · · · ai1 + aj1 · · · 0

0 . . . ai2 + aj2 · · · ai2 + aj2 · · · 0

...
...

...
...

...
...

...

0 . . . aiM + ajM · · · aiM + ajM · · · 0





−





0 . . . ai1 · · · 0

0 . . . ai2 · · · 0

...
...

...
...

...

0 . . . aiM · · · 0





−





0 . . . aj1 · · · 0

0 . . . aj2 · · · 0

...
...

...
...

...

0 . . . ajM · · · 0





=





0 . . . aj1 · · · ai1 · · · 0

0 . . . aj2 · · · ai2 · · · 0

...
...

...
...

...
...

...

0 . . . ajM · · · aiM · · · 0





. (2.55)

The hologram in terms of the eigenmodes is thus

VHVT =





a11 a12 · · · a1M

a21 a22 · · · a2M

...
...

. . .
...

aM1 aM1 · · · aMM









0 . . . aj1 · · · ai1 · · · 0

0 . . . aj2 · · · ai2 · · · 0

...
...

...
...

...
...

...

0 . . . ajM · · · aiM · · · 0
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=





0 · · · · · · · · · 0

...
. . .

. . .
. . .

...

...
. . .





0 · · · · · · · · · 0

...
. . .

. . . 1
...

...
. . . 0

. . .
...

... 1
. . .

. . .
...

0 · · · · · · · · · 0





N×N

. . .
...

...
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0





M×M

=





0 · · · · · · · · · 0

...
. . .

. . .
. . .

...

...
. . . K

. . .
...

...
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0





M×M

. (2.56)

It is obvious that the hologram is a grating coupling the ith and the jth

eigenmodes. Compare (2.56) and (2.51), it can be concluded that the holograms

calculated using two methods are mathematically equivalent.

2.10 Discussion

For a specific unitary transformation, the hologram is not unique. The grating

shapes and strengths can be adjusted to suit specific design considerations as long

as the overlap integrals in (2.37) and (2.38) yield the desired coupling coefficients.
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While a set of MWHs can be physically different but mathematically equivalent,

one should not expect each member of this set to perform equally. This is because

any figure of merit based on physical performance such as tolerance and bandwidth

will be based on physical realization of the structure such as waveguide dimension

or index contrast. It is beyond the scope of this work to categorize or evaluate the

various design approaches that are possible, rather we focus on a specific design

approach to demonstrate the concepts of this class of devices in the next chapter.
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Chapter 3

Modeling, Fabrication, and Analysis of Multimode Waveguide

Holograms (MWHs)

3.1 Introduction

The design principle of MWH devices was introduced in the previous chapter.

Based on the design principle, beam propagation models are used to design several

devices including a mode-order converter, a Hadamard transformer, and a optical

pattern generator/correlator. Optical pattern generators are fabricated to verify

the theory and the model. Also, the bandwidth and fabrication tolerance of MWH

devices are also analyzed using a specific design example.

From the previous chapter, the design of MWHs involves the calculation of the

interference patterns between either the guided modes of the multimode waveguides

or the eigenmodes of the MMI couplers. In order to verify the hologram design, we

have to model the propagation of beams in the MWH devices. Waveguides with

nonuniform structures such as the MWH devices cannot be treated with analytical

methods. For our simulations, we choose the beam propagation method (BPM),

which has been developed for the analysis of nonuniform structures as bends, tapers,

and crosses in the beam propagation direction.

The finite difference beam propagation method (FD-BPM) has been shown
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to be accurate, computationally efficient, and stable compared to the conventional

fast fourier transform beam propagation method (FFT-BPM) [47]. A multi-step

wide-angle scheme developed by Hadley [48] [49] described in the next section is

used for our simulations.

3.2 Finite difference wide-angle beam propagation method (WA-BPM)

Here, we use the slowly varying amplitude approximation to obtain an approx-

imate form of Helmholtz equation for the beam propagation simulation [39].

The scalar Helmholtz equation is

∇2Ψ + k2
0n

2Ψ = 0. (3.1)

In the slowly varying envelop approximation, the wave function of the light Ψ prop-

agating in the +z direction is separated into the slowly varying envelope function φ

and the very fast oscillatory phase term exp(−jβz) as

Ψ(r) = φ(r) exp(−jβz), (3.2)

where

β = nrefk0. (3.3)

nref is the reference index, for which the refractive index of the substrate or the

cladding is generally used. Substituting (3.2) into (3.1), we obtain

∂2φ

∂z2
− 2jβ

∂φ

∂z
+ ∇2

⊥φ + (k2
0n

2 − β2)φ = 0, (3.4)

where ∇2
⊥ is the Laplacian in the lateral directions and is expressed as

∇2
⊥ =

∂2

∂x2
+

∂2

∂y2
. (3.5)
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Substituting (3.3) into (3.4), we have

2jβ
∂φ

∂z
− ∂2φ

∂2z2
= ∇2

⊥φ + k2
0(n

2 − n2
ref)φ. (3.6)

If the second derivative of the wave function is neglected, then (3.6) is reduced to

2jβ
∂φ

∂z
= ∇2

⊥φ + k2
0(n

2 − n2
ref)φ. (3.7)

This is called the Fresnel approximation or the paraxial approximation. The parax-

ial approximation is limited in treating wide-angle propagation. Beams containing

appreciable Fourier components at angles of more than a few degrees from the prop-

agation axis experience substantial phase errors. For the analysis of our multimode

waveguides, the wide-angle formulation is required.

The wide-angle formulation (3.6) can be written as

2jβ
∂φ

∂z
− ∂2φ

∂2z2
= Pφ, (3.8)

where

P = ∇2
⊥ + k2

0(n
2 − n2

ref). (3.9)

Equation (3.8) can be rewritten in the form

∂

∂z

(

1 +
j

2β

∂

∂z

)

φ = − j

2β
Pφ, (3.10)

and therefore

∂φ

∂z
=

− j
2β

P

1 + j
2β

∂
∂z

φ. (3.11)

Equation (3.11) suggests the recurrence relation

∂

∂z

∣∣∣∣
n

=
− j

2β
P

1 + j
2β

∂
∂z
|n−1

. (3.12)
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Using (3.12) in the denominator of (3.11), we obtain a propagator of the form

∂φ

∂z

∣∣∣∣
n

= −j
N

D
φ, (3.13)

where N and D are polynomials in P . Equation (3.13) is a Padé (n,d) approximation

of the true Helmholtz operator. The most useful low-order Padé operators are shown

in table 3.1.

Table 3.1: Useful low-order Padé approximants for the Helmholtz oper-

ator

order N
D

(1,0) P
2β

(1,1)
P
2β

1+ P

4β2

(2,2)
P
2β

+ P2

4β3

1+ 3P

4β2
+ P2

16β4

(3,3)
P
2β

+ P2

2β3
+ 3P3

32β5

1+ 5P

4β2
+ 3P2

8β4
+ P3

64β6

If (3.13) is discretized using standard centered differencing, we obtain

D(φm+1 − φm) =
−j∆z

2
N(φm+1 − φm), (3.14)

which can be rewritten as

φm+1 =
D − j(∆z/2)N

D + j(∆z/2)N
φm. (3.15)

Since N and D are polynomials in P , (3.15) can be recast in the form

φm+1 =

∑n
0 ξiP

i

∑n
0 ξ∗i P

i
φm. (3.16)
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ξ1 = P 0 = 1 and the other ξ’s are easily determined from the coefficients of the

polynomials N and D. Since a polynomial of degree n can always be factored in

terms of its n roots, equation (3.16) can be written as

φm+1 =
(1 + a1P )(1 + a2P ) · · · (1 + anP )

(1 + a∗
1P )(1 + a∗

2P ) · · · (1 + a∗
nP )

φm. (3.17)

The parameters in (3.16) and (3.17) can be easily related. For example, in our

simulation, a Padé (3,3) operator is used, we have

a1 + a2 + a3 = ξ1

a1a2 + a2a3 + a1a3 = ξ2

a1a2a3 = ξ3. (3.18)

In general, determination of a’s requires a one-time solution of an nth-order complex

algebraic equation. From equation (3.17), it is apparent that a propagator can be

decomposed into a multistep algorithm as

φm+ i
n =

(1 + aiP )

(1 + a∗
i P )

φm+ i−1

n . (3.19)

where i = 1, 2, · · · , n. In the simulation, the a’s are obtained by solving the following

equations

a1 + a2 + a3 = ξ1 =
1

4β2
(5 − jβ∆z)

a1a2 + a2a3 + a1a3 = ξ2 =
1

8β4
(3 − j2β∆z)

a1a2a3 = ξ3 =
1

64β6
(1 − j3β∆z). (3.20)

The beam propagation is then calculated by the multistep algorithm. Programming

of the BPM algorithm is discussed in Appendix B.
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3.3 Two design examples of MWH devices

Based on the design principle, two devices are designed and simulated using

2-D wide-angle beam propagation method (WA-BPM) using the Padé (3,3) ap-

proximant operator. The effective indices of the waveguide core (1.516) and of the

cladding region (1.0) are estimated using the effective index method in accordance

with the fabrication technique used later for experimental demonstration. In the

simulations presented here, the hologram is modeled as smooth perturbations to the

effective index of the waveguide core.

3.3.1 Mode-order converter

A mode-order converter based on MWH using the configuration in Fig. 2.1

is proposed and simulated. The design method described in section 2.8.1 is used

to calculate the hologram for an anti-diagonal matrix in (2.40) that converts the

mode-order in the multimode waveguide. The width of the waveguide is 16 µm

and the length is 1.5 mm. The maximum index modulation depth is approximately

0.003. The slices of the BPM simulation are illustrated in Fig. 3.1 for four different

mode conversion pairs, Fig. 3.1(a) shows TE00 to TE30, Fig. 3.1(b) shows TE10 to

TE20, Fig. 3.1(c) shows TE20 mode to TE10, and Fig. 3.1(d) shows TE30 to TE00.

The advantage of the proposed approach is that the MWH mode converter is only

1.5 mm long. This device is more than ten times more compact then the mode

converter made from multichannel branching waveguides [50].
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Figure 3.1: Normalized intensity slices of the BPM simulation showing the evolution
of modes along the proposed MWH mode-order converter.
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3.3.2 Hadamard transformer

The Hadamard transformer is capable of recognizing multiple phase-modulated

labels as demonstrated recently using a star network [51]. Using the matrix-vector

multiplier configuration, a Hadamard transformer is proposed and simulated. The

transfer matrix of a 4 × 4 Hadamard transformer is described by

1

2





1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1





(3.21)

The MWH is designed using the eigenvectors of the MMI coupler to calculate the

grating as described in section 2.8.2. The width of the multimode section of the

MMI coupler is 16 µm, and the length is chosen to be at the first imaging length

of 2052 µm. The maximum index modulation depth is approximately 0.003. It can

be seen from the BPM simulation in Fig. 3.2 that four orthogonal phase modulated

spatial patterns are mapped into four different ports as described by the matrix in

(3.21). This approach offers the advantage of compactness and does not require

optical crossings (see Fig. 1.1) as encountered in the star network approach [24]

[25].

3.4 Spatial optical pattern generator/correlator

In this section, the concept and theory of a spatial optical pattern genera-

tor/correlator is introduced. An experimental verification of the MWH theory and
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Figure 3.2: Normalized intensity slices of the BPM simulation of four phase modu-
lated patterns in a MWH Hadamard transformer.
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Figure 3.3: Schematic of a MWH optical pattern generator/correlator using MMI.
(a) the stored pattern is regenerated when light is coupled into the reference bit
port. (b) the reference bit is reconstructed with an amplitude that is proportional
to the correlation of the incoming pattern and the stored pattern.

the BPM model using fabricated optical pattern generators will be described in the

subsequent sections.

The concept of a MWH optical processor is illustrated in Fig. 3.3. The N ×N

MMI coupler with MWH in the figure is at the self-imaging length. In analogy to

traditional holograms, one input port is designated as the reference bit, and the

other ports are used to represent the image, which in this case is an N − 1 bit

spatial pattern. When light is coupled into the reference bit port, as shown in Fig.

3.3(a), the stored N − 1 bit spatial pattern is reconstructed at the output ports.

On the other hand, when the N − 1 bit spatial pattern is coupled into the device

as shown in Fig. 3.3(b), the reference bit is reconstructed with an amplitude that

is proportional to the correlation of the incoming pattern and the stored pattern.
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3.4.1 Solution for the output of optical pattern generator/correlator

(MWH processor)

The pattern generator/correlator (MWH processor) is designed by the inter-

ference of the reference bit R and the stored pattern S as outlined in section 2.8.2.

The combination of these two patterns can be written as a single vector, W = R+S.

In the following calculations, W is a unit vector(|W|2 = 1).

As described in section 2.8, the interference patterns between any two eigen-

vectors correspond to individual grating components in the hologram. For W =

[W1, W2, · · · , WN ], the corresponding hologram of length l can thus be written as,

exp(−jKl). (3.22)

The coupling matrix K is related to individual components of W as

K = CK̃ = C





W1W1 W1W2 W1W3 · · · W1WN

W2W1 W2W2 W2W3 · · · W2WN

W3W3 W3W3 W3W3 · · · W3WN

...
...

... · · · ...

WNW1 WNW2 WNW3 · · · WNWN





, (3.23)

where C is the coupling efficiency. We calculate the following matrix product first,

K̃K̃ = |W|2





W1W1 W1W2 W1W3 · · · W1WN

W2W1 W2W2 W2W3 · · · W2WN

W3W3 W3W3 W3W3 · · · W3WN

...
...

... · · · ...

WNW1 WNW2 WNW3 · · · WNWN





= K̃. (3.24)
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We can expand (3.22) as

exp(−jKl) = exp[(−jCl)K̃] =

[

I + (−jCl)K̃ +
(−jCl)2

2!
K̃2 + · · ·

]

. (3.25)

With input pattern P(0), the expression for the output is

Pout = exp(−jKl)P(0). (3.26)

Using (3.24) and (3.25), we can rewrite (3.26) as

Pout = P(0) +

[

(−jCl) +
(−jCl)2

2!
+ · · ·

]

K̃P(0)

= P(0) + [exp(−jCl) − 1][W · P(0)]W. (3.27)

Since we know W = R + S, the solution for the optical processor is thus,

Pout = P(0) + [(R + S) · P(0)][exp(−jCl) − 1](R + S). (3.28)

As a reminder here, P(0) is the input pattern, R is the reference bit, S is the

stored pattern, l is the length of the hologram, and the coupling efficiency, C, is

proportional to the index modulation depth. For pattern generation, P(0) = R,

and it can be seen from (3.28) that the intensity of the generated pattern S is

proportional to [1 − cos(Cl)]. For pattern correlation, since R and P(0) do not

overlap at the input waveguides, the intensity of the generated reference bit R is

proportional to

[S ·P(0)]2[1 − cos(Cl)], (3.29)

which is proportional to the correlation of the stored pattern and the input pattern.
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Figure 3.4: Simulated interference pattern between the reference bit and the stored
pattern. This interference pattern is proportional to the index variation in the MWH
processor.

3.4.2 Simulation of optical pattern generator/correlator

MWH processors with 4-bit stored patterns are designed using our theory and

simulated by the BPM model. The index of refraction variation of the 6 × 6 MWH

processor is proportional to the intensity pattern of the write pattern, which consists

of the reference bit and the stored pattern as described in the previous section. The

index variation of constructed hologram is proportional to the intensity pattern

shown in Fig. 3.4. The output waveguides are placed at the mirror image plane as

can be seen in the figure. When the incoming pattern matches that of the stored

pattern, the reference bit is reconstructed (circled) as can be seen in Fig. 3.5. The

amplitude of the reconstructed reference bit is expected to be proportional to the

correlation of the incoming pattern and the stored pattern.
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Figure 3.5: Reading the hologram with index variation proportional to the intensity
pattern in Fig. 3.4. The incoming pattern is the same as the stored pattern.

Optical pattern correlation of intensity modulated patterns

The simulated correlation outputs of a MWH correlator with (1 1 1 1) stored

pattern using different 4-bit intensity modulated input patterns are shown in Fig.

3.6. The correlation outputs are normalized and compared with ideal correlation

results. It can be seen from the figure that the correlation result is close to ideal

correlation as predicted by the derivation using coupled mode theory. This shows

that our theory is valid.

Optical pattern correlation of phase modulated patterns

Using phase modulated input patterns, the correlation outputs of the MWH

correlator are simulated. The wavelength dependence of the MWH correlator is

also investigated at the same time. As shown in Fig. 3.7, close to ideal correla-
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Figure 3.6: Simulated correlation results of a MWH correlator with the stored pat-
tern (1 1 1 1). Square: MWH correlator; Circle: ideal correlation.
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Figure 3.7: Correlation results and wavelength dependence of a MWH correlator.

tion performance can be observed at the designed operating wavelength (1550 nm).

Degraded correlation performance can be observed when the wavelength is detuned

from the designed wavelength.

Effect of hologram and index modulation depth

The effect of the hologram length in the MMI coupler is also investigated.

Holograms are written on different fractions of the total length of the MMI coupler.

The correlation output of the matched pattern for different hologram lengths is

recorded. The simulated data are fit with (3.29) and plotted in Fig. 3.8(a). The

parameter C in (3.29) is proportional to the depth of index modulation. The index

modulation depth is varied in the simulation with fixed hologram length. The
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Figure 3.8: Simulated effects of (a) hologram length and (b) index modulation depth
on the reference bit output. Square: WA-BPM simulation; Curve: Fit using (16).

simulation result and the fit with (3.29) are shown in Fig. 3.8(b).

MWH with binary index modulation

The smooth index modulation used in the analytical theory is difficult to obtain

in lithographically fabricated devices. The feasibility of lithographically fabricated

devices is investigated by simulations of the MWH pattern generator/correlator with

binary index modulation as illustrated in Fig. 3.9. Small differences are found in the
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Figure 3.9: Pattern correlation using a MWH correlator designed for stored pattern
(1111) with binary index modulation

generation/correlation properties, but the overall device performance is not affected.

3.5 Experiment

The MWH pattern generators were fabricated using passive waveguides on

a Si wafer. 4.6 microns of SiO2 was used for the bottom cladding layer. The core

consists of a 2.4 µm layer of CycloteneTM (BCB), and the upper cladding is air (Fig.

3.10). This asymmetric waveguide design was selected so that index variations for

each hologram could be created lithographically by etching shallow indentations

on the top of the CycloteneTM surface (Fig. 3.11). The waveguide and hologram

pattern was transferred using conventional photolithography using i-line projection

52



Figure 3.10: The layered structure of fabricated MWH pattern generators

aligner and reactive ion etching (RIE). The device width is 16 µm (Fig. 3.12), and

the length of the device is chosen at the first mirror-imaging length, 1026 µm (Fig.

3.13). Devices were probed by coupling a CW laser at 1560 nm into the reference

bit port as shown in Fig. 3.14. The output was imaged with an Electrophysics

MicronViewer 7290 IR camera. It can be seen from Fig. 3.15 that the patterns

stored in the MWH pattern generator were reconstructed as predicted by coupled

mode theory and WA-BPM simulation.

By varying the wavelength of the CW laser, the wavelength dependent diffrac-

tion efficiency of the device was measured. The light was coupled into the reference

bit port of a pattern generator with 001 pattern. Fig. 3.16 shows a measurement of

the output intensity profile of pattern generators with and without hologram using a
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Figure 3.11: Plan-view SEM micrograph of a section of a MWH pattern generator.
The shallow etched computer generated pattern is visible on the surface of the
device.
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Figure 3.12: Optical microscope picture showing the width and access waveguides
of fabricated MWH pattern generators. The hologram patterns are visible on the
multimode waveguides.
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Figure 3.13: Optical microscope picture showing the whole length of fabricated
MWH pattern generators. The hologram patterns are visible on the multimode
waveguides. The reference bit inputs are on the right side, and the generated pattern
outputs are on the left side.

Figure 3.14: Schematic of the experimental setup to measure the spatial pattern
stored in the MWH pattern generator. The output spatial pattern is imaged with
an IR camera.
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Figure 3.15: Experimental results of 3 bit spatial pattern generation by MWH
pattern generator.
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Figure 3.16: Output intensity profile of a pattern generator without embedded holo-
gram measured with a scanning lensed fiber.

scanning lensed fiber. When light was coupled into a pattern generator without em-

bedded hologram, the output shows the reference bit only. When light was coupled

into a pattern generator with 001 hologram, most of the reference bit is scattered

into the 001 output pattern as shown in Fig. 3.17.

The intensity of the ”1” bit in the generated pattern was recorded as a function

of wavelength and plotted in Fig. 3.18. The results from WA-BPM simulation are

also plotted, and good agreement between the BPM model and the measured data

can be seen in the figure. An estimation of the bandwidth of MWH devices can

be obtained using co-directional coupling theory [53] as shown in the next section.

Using the fabricated device parameter, the FWHM of the spectral response for mode

coupling between the lowest and the highest order modes is calculated to be ∼ 40
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Figure 3.17: Output intensity profile of a pattern generator with 001 hologram
measured with a scanning lensed fiber.
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Figure 3.18: Wavelength dependence of the diffraction efficiency of a MWH pattern
generator patterned with 001 pattern.

nm. In reality, the MWH device consists of multiplexed gratings with different

periodicity, and wavelength dependence of the self-imaging property also needs to

be taken into consideration. The excellent agreement between our BPM model and

experimental data shows that different effects are predicted correctly by our model.

Our BPM model is thus a valuable tool for designing and analyzing these devices.

3.6 Analysis of MWH length, bandwidth, and fabrication tolerance

In the theoretical analysis, it is assumed that the Bragg conditions are satisfied

for every grating element, and only the synchronous terms are collected to obtain

(2.36). The validity of the condition and the effect of the crosstalk between gratings
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can be considered qualitatively as follows. Considering two grating vectors kji =

βj − βi and kki = βk − βi, when the jth mode is present, grating kji scatters it into

the ith mode, however, a small fraction of its power is also scattered by the grating

kki into the ith mode. The fraction of the ith mode from grating kki is the crosstalk

and can be estimated by [52]

(κL)2 sin2(δL)

(δL)2
, δ ≫ κ (3.30)

where κ is the coupling coefficient of the grating, L is the length of the grating, and

δ = βk − βj . For a multimode channel waveguide of width W and core index nc , δ

can be estimated using (2.22) as

δ =
πλ

4ncW 2
(k2 − j2), (3.31)

where λ is the wavelength. Equations (3.30) and (3.31) give an estimate of the range

of coupling coefficient for the Bragg condition approximations to be valid. Also, it

can be seen from (3.30) that when δL is sufficiently large, the crosstalk is negligible.

Using the location of the second zero of (3.31) as a measurement of selectivity as in

ref. [52], the requirement on the minimum length of the hologram Lmin is

Lmin ≥ 2π

δ
=

8ncW
2

λ(k2 − j2)
≥ 8ncW

2

3λ
. (3.32)

The simulated and fabricated device in this thesis are designed to be at the first

mirror image length, 4ncW
2/λ, and the first direct image length, 8ncW

2/λ, of the

multimode waveguides, with the MWHs covering the whole lengths of the devices.

Although the self-imaging property is not essential for this class of devices, it offers a
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simplified design method for MWH as described in 2.8.2 and satisfies the minimum

length requirement of (3.32).

The specific polymer waveguide system chosen for the experiment is used to

investigate the fabrication tolerances and scalability of the MWH devices. The

spatial pattern generator/correlator described in section 3.4 and demonstrated in

experiments is used in the simulations. First, the fabrication tolerance on the lateral

shift between the MMI coupler and the hologram is investigated since they are

fabricated in two different lithography steps. Using the BPM model, the diffraction

efficiency and the discrimination capability are calculated and plotted in Fig. 3.19.

The discrimination capability is defined as

1 − max|c|2
|a|2 , (3.33)

where c is the cross-correlation and a is the auto-correlation.

From (2.37) and (2.38), the lateral shift can be estimated as errors to the

coupling coefficients due to the change in the overlap integrals. Since the MWH is

designed using the eigenvectors of the MMI in this example, the error to the coupling

coefficient is estimated using the change in the overlap integral of these eigenvectors

due to the lateral shift. The input waveguides are well separated in this case, and

the eigenvectors can be approximated using the guided modes of the single mode

access ports. This way, each coupling coefficient is affected by the same amount and

the effect of the lateral shift can be estimated as a change to the overall coupling

efficiency, C, in (3.29). With these approximations, C can be written as a function
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Figure 3.19: BPM simulation and theoretical results on the effect of hologram lateral
shift on the diffraction efficiency and the discrimination capability of the MWH
pattern generator/correlator.
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of the lateral shift ∆x as

C(±∆x) = C0

∫
Φ2(x)Φ2(x ± ∆x)dx

∫
Φ4(x)dx

, (3.34)

where C0 is the coupling efficiency when the lateral shift is zero, and Φ is the

mode of the single mode access ports. Since the lateral shift only affects the overall

coupling coefficient, it is not surprising that the discrimination capability in Fig.

3.19 is almost constant with the lateral shift in the range of -0.5 to 0.5 µm offset. A

theoretical prediction of the diffraction efficiency is obtained using (3.34) in (3.29)

and plotted in Fig. 3.19.

For applications in modern high-speed optical communications systems, the

scalability and bandwidth of the MWHs are investigated. The MWH consists basi-

cally of multiplexed long period gratings on a MMI coupler. The wide transmission

bandwidth of long period grating structure is well documented in the literature [54].

The spectral dependence of these long period gratings can be determined by the

expressions [53] derived for co-directional coupling. The ratio of power coupled into

mode n from mode m is given by

Pn

Pm
=

sin2

[

κmnL

√
1 +

(
δ

κmn

)2
]

1 +
(

δ
κmn

)2 , (3.35)

where δ is the detuning from the grating period, κmn is the coupling coefficient, and

L is the grating length. Assuming maximum power transfer, that is, κmnL = π/2,

the FWHM ∆λ of the spectral response given approximately by (3.35) is [53]

∆λ =
0.8λ2

L∆nmn
, (3.36)
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Figure 3.20: Bandwidth (a) and fabrication tolerance (b) of the polymer MMI cou-
pler used in our experiment. The practical scaling of these devices is limited by
the proportionality between the number of ports and the sensitivity to wavelength
detuning and fabrication tolerance.
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where ∆nmn is the difference in the effective indices of modes m and n. From (2.22),

we obtain,

∆nmn =
(n2 − m2)λ2

8ncW 2
, (3.37)

where nc is the core index, and W is the waveguide width. The simulated and

fabricated waveguides are designed to be at the first mirror image length, 4ncW
2/λ,

and the first direct image length, 8ncW
2/λ. Substituting these into (3.36), we have

∆λ ∼ 1.6λ

(n2 − m2)
. (3.38)

It is obvious that the bandwidth decreases for modes that are far apart. For the

simulated and fabricated devices, the number of supported guided modes is around

8. It can be seen that the ∆λ is ∼ 40 nm for mode coupling between modes 1 and 8.

For high speed applications, the decrease in bandwidth limits the number of modes

in the MWH devices.

From our simulations, the optical bandwidth and fabrication tolerances of the

MMI coupler are the dominating factor in the performance of the MWH devices we

considered in this thesis. The scalability of the MWH devices to perform transfor-

mation on large sized input vectors is thus determined by the scalability of MMI

couplers. Using the formalism introduced by Besse et. al. [55], the bandwidth and

fabrication tolerances of the polymer MMI coupler at the first mirror image length

(N = M in ref. [55]) are analyzed. The calculated results are shown in Fig. 3.20.

The optical bandwidth and fabrication tolerances are inversely proportional to the

number of ports. It can be seen from the figure that devices with larger than 8

ports will be difficult to fabricate using current fabrication technology owing to the
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rapid rise in excess loss. The examples given here are only applicable to the specific

material system chosen for this demonstration. It is worth noting that these limita-

tions can be relaxed if a different material system with smaller core/cladding index

contrast is chosen. However, the multimode waveguide has to support at least the

same number of guided modes in order to perform the same transformations. The

tradeoff will thus be increased device size.

3.7 Application to optical pattern recognition

The optical pattern generator/correlator analyzed in section 3.4 computes the

correlation of the incoming patterns with a single stored pattern. In order to recog-

nize multiple patterns using this configuration, multiple MWH devices are required.

A more efficient way for pattern recognition in which a MWH can be used to recog-

nize multiple patterns is described in this section. We begin this section by consider

the unitary transformation property of MWH devices.

If we look at the 4× 4 Hadamard transform matrix (3.21) as an example, it is

obvious that each row of the matrix represents a four bit phase modulated pattern,

and the output at each port represents the correlation of the incoming pattern and

the stored pattern. So, the 4×4 Hadamard matrix computes the correlations of the

incoming pattern with the four stored patterns simultaneously. Since the MWH is

mathematically represented by an unitary matrix, the only restriction on the stored

patterns is that the four stored patterns have to be orthonormal.
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3.7.1 Pattern recognition of 4-bit phase modulated patterns

For 4-bit phase modulated patterns, there are 24 = 16 possible variations,

which are not all orthogonal. If the absolute phase is neglected, rather we focus on

the phase difference between adjacent bits, the variations can be reduced by half,

for example, ( 1-1 1 1) and (-1 1-1-1) are now considered the same. These eight

variations can then be separated into two orthogonal groups as in table 3.2.

Table 3.2: Patterns are separated into two orthogonal groups. The cor-

relation between any two patterns within a group is 0.

group1 group2

±( 1 1 1 1) ±( 1 1 1-1)

±( 1 1-1-1) ±( 1 1-1 1)

±( 1-1 1-1) ±( 1-1 1 1)

±( 1-1-1 1) ±(-1 1 1 1)

Each group can be stored in a MWH with the rows of the unitary matrix

represented by the patterns of the individual group. Any incoming patterns can be

correlated simultaneously with all eight pattern using the schematic shown in Fig.

3.21 with two MWHs.
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Figure 3.21: Schematic for 4-bit pattern correlation using two MWHs.

3.7.2 Analysis on pattern recognition of 2N -bit binary phase modu-

lated patterns

The same principle can be applied to longer patterns. We consider 2N -bit phase

modulated patterns. If we neglect the absolute phase as in the 4-bit example, the

number of patterns is 22N

/2 = 2(2N−1). The number of MWHs needed to implement

a correlator for all patterns is thus

2(2N−1)

2N
= 2(2N−N−1). (3.39)

It can be seen that when N is greater or equal to 3, the number of MWHs required

for correlation becomes vary large, which makes signal distribution a challenge. It

is obvious that a correlator consisting of multiple MWHs for long bit length pattern

is difficult to implement with current fabrication technology.
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Now, we analyze the contrast ratio of correlation defined as

R =
|a|2

max|c|2 , (3.40)

where |a| is the auto-correlation and |c| is the cross-correlation. For matching pat-

terns, the auto-correlation of each 2N -bit pattern is

|a|2 = 2N . (3.41)

The maximum value of cross-correlation with unmatched patterns can be calculated

by consider the cross-correlation between two patterns with 1 bit difference. The

result is thus

max|c|2 =
1

2N
(2N − 2)2. (3.42)

The contrast ratio for 2N bit patterns is then

R =

(
2N

2N − 2

)2

. (3.43)

For 4 bits pattern, N = 2, the contrast ratio is 4; for 8 bits pattern, N = 3, the

contrast ratio is 16/9; and it can be seen that the contrast ratio decrease quickly

with the increase of N .

3.7.3 Bit-error rate of pattern recognition with ideal correlators

Pattern recognition is achieved by either optically or electronically determining

a match between the incoming pattern and the stored pattern. A threshold level,

vth, somewhere between von = |a|2 and voff = max|c|2 has to be set in order for a

decision to be made. An error occurs when a match falls below the threshold or when
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a mismatch exceeds the threshold due to the noise on the incoming pattern. One

common approach to quantify the error is to divide the number of errors occurring

over a time interval by the number of pulses transmitted during this interval, which

is called the bit-error rate (BER). In the following analysis, the MWH is assumed

to be perfect without fabrication errors.

To estimate the bit error rate, we assume each bit bm of the incoming pattern

is an independent random variable with variance σ2. The output on at each port of

the 2N bit correlator can be written as

on =
1√
2N

2N∑

1

cbm, (3.44)

where c = ±1. The variance of Cbm, where C is a constant, is C2 times the variance

of bm; and the variance of the sum of independent random variables is the sum of

the individual variances. As a result, the variance of on is

(
σ2

2N

)

2N = σ2, (3.45)

which is the same as the variance of the individual bit.

By assuming the noise on individual bits has a Gaussian distribution function,

the BER can be estimated as [56]

BER ≈ 1√
2π

e−Q2/2

Q
. (3.46)

The parameter Q is defined as

Q =
vth − voff

σoff
=

von − vth

σon
. (3.47)

A Q value of 6 or higher corresponds to a BER of 10−9 or less, which is considered

to be errorless in telecommunication standards.
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For MWH correlators, σon = σoff = σ, we define

V = von − voff =
4(2N − 1)

2N
. (3.48)

where (3.41) and (3.42) are used. By setting vth midway between von and voff , we

have from (3.47) and (3.48)

Q =
V

2σ
=

2(2N − 1)

2Nσ
. (3.49)

It can be seen that as the pattern length increases, the Q parameter reaches an

upper limit limN→∞ Q = 2/σ (”2” in the equation because one bit difference in

phase modulated pattern causes 2 bits difference in correlation). The amplitude

and phase noise of each bit, quantified by σ2 in our analysis ultimately determines

the BER of pattern recognition, which is expected since a ideal correlator is assumed.

3.7.4 BER considering MWH imperfections

From the analysis in section 3.6, we know that the effect of grating cross

talk does not affect BER when the length of the hologram is sufficient. Although

the lateral shift of the hologram does not significantly affect the discrimination

capability, it causes an overall decrease in the diffraction efficiency. The fabrication

error and wavelength detuning analyzed in section 3.6 also introduces excess loss.

The decrease in diffraction efficiency or excess loss cause the von signal to fall below

the threshold level vth, which is set when the MWH is assumed to be perfect. An

error in recognition may result from these losses. Here, we analyze the BER caused

by MWH imperfections.
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We consider a more general case for both amplitude and phase modulated

patterns. For a N bit pattern, the auto-correlation is von = |a|2 = N ; and the cross-

correlation with the pattern with one bit difference is voff = max|c|2 = (N −1)2/N .

The threshold level setting midway between von and voff is thus

vth =
2N2 − 2N + 1

2N
. (3.50)

The loss L causes von to decrease to LN , and the corresponding Q defined by (3.47)

thus decreases as

Q = Qp
(2L − 2)N2 + 2N − 1

2N − 1
, (3.51)

where Qp is the Q when the MWH is assumed to be perfect.

Assuming Qp = 8, which corresponds to a BER of 10−15, the degradation of

BER for different pattern lengths due to loss is calculated using (3.51) in (3.46)

and plotted in Fig. 3.22. From Fig. 3.19 and Fig. 3.20, it can be seen that with

this particular material system we analyzed, the excess loss caused by small lateral

hologram shift, fabrication error, and wavelength detuning can severely degrade

the BER of the correlator. Thus, implementation of MWH correlator in optical

communication systems for long pattern correlation is a big challenge using current

fabrication technology.
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Figure 3.22: Degradation of BER due to loss caused by MWH imperfections.
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Chapter 4

Measurement of the third order nonlinearity χ(3)

4.1 Introduction

Using the third-order nonlinear optical properties of materials for optical

switching has been an active area of research. The nonlinear index coefficient, n2,

is proportional to the real part of the third order nonlinearity, χ
(3)
1111 of materials;

the imaginary part of χ
(3)
1111 causes loss due to two photon absorption and limits the

effective distance of the waveguide [20]. Knowledge of the phase and magnitude

of the nonlinearity of a material is important in determining its device potential.

A simple and reliable method to determine the nonlinear optical properties is thus

valuable.

Two experimental techniques are commonly used to determine the χ(3) of

materials. A common technique is the Z-scan method [57]. In Z-scan, the trans-

mittance of a sample is measured through a finite aperture as the sample is moved

along the propagation path of a focused Gaussian beam. The advantage of the Z-

scan technique is that the sign and amplitude of χ(3) can be deduced from such a

transmittance curve. So, it is particularly useful when the nonlinear refraction is

accompanied by nonlinear absorption (imaginary part of χ(3)). However, in order

to obtain a measurable signal on a thin sample, relatively high intensities and large

material nonlinearities are often required. The other technique is the degenerate
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four-wave mixing (DFWM) technique [32], which is a sensitive technique for studies

of the χ(3) of nonlinear materials. Typically, the measured signal is proportional to

|χ(3)|2, but the phase of χ(3) is not available. Additional measurements are needed

to determine the real and imaginary parts of χ(3) using DFWM technique, such as

the phase-mismatched DFWM method [58].

In this chapter, a simple optical arrangement for phase sensitive detection of

DFWM to characterize the real and imaginary parts of χ(3) is demonstrated. This

technique can potentially improve the sensitivity of the common DFWM technique

by using the coherent detection scheme, which, at the same time, offers phase infor-

mation of the nonlinearity. A processable polyacetylene sample is characterized at

a wavelength of 1.5 µm using this technique.

4.2 Degenerate four-wave mixing model

Consider degenerate four wave mixing (ω1 = ω2 = ω3 = ω4 = ω) in an

isotropic material, the third-order susceptibility with the choice of frequencies given

by χijkl(ω = ω1 + ω2 − ω3) can be represented as [19]

χijkl(ω = ω + ω − ω) = χ1122(ω = ω + ω − ω)(δijδkl + δikδjl)

+χ1221(ω = ω + ω − ω)(δilδjk). (4.1)

The nonlinear polarization from degenerate four-wave mixing is given by

Pi(ω) = 3ǫ0

∑

jkl

χijkl(ω = ω + ω − ω)Ej(ω)Ek(ω)El(−ω). (4.2)
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Figure 4.1: Energy level diagrams showing the (a)one photon resonant and (b) two
photon resonant contributions to the nonlinear polarization.

Using (4.1) in (4.2), we obtain

Pi = 6ǫ0χ1122Ei(E · E∗) + 3ǫ0χ1221E
∗
i (E · E), (4.3)

which can be written in vector form as

Pi = 6ǫ0χ1122(E · E∗)E + 3ǫ0χ1221(E · E)E∗. (4.4)

The two contributions to P can be represented in terms of energy diagrams in Fig.

4.1. Part (a) shows the one-photon-resonant contribution described by the first

term in (4.4). Part (b) shows the two-photon-resonant contribution described by

the second term in (4.4).

Now, consider degenerate four-wave mixing with the total field given by

E = E1 + E2 + E3 + E4, (4.5)
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where

E1(r, t) =
1

2
A1(r) exp[j(ωt − k1 · r)] + c.c.

E2(r, t) =
1

2
A2(r) exp[j(ωt − k2 · r)] + c.c.

E3(r, t) =
1

2
A3(r) exp[j(ωt − k3 · r)] + c.c.

E4(r, t) =
1

2
A4(r) exp[j(ωt − k4 · r)] + c.c.

(4.6)

Phase matching is automatically achieved since

k4 = k1 + k2 − k3. (4.7)

Using (4.5) in (4.4), collecting the phase matched terms, and assuming E4 ≪ E1,2,3,

we obtain the nonlinear polarization in the direction of beam 4

PNL
4 = 3ǫ0χ1122[(E3 · E∗

2)E1 + (E1 · E∗
2)E3] + 3ǫ0χ1221(E1 · E3)E

∗
2

= 3ǫ0(2χ1122 + χ1221)E1E
∗
2E3. (4.8)

When all incident beam polarizations are the same, (4.8) generates a polarization

parallel to the field whose scalar amplitude is written as

P NL
4 = 3ǫ0χ1111E1E

∗
2E3, (4.9)

where χ
(3)
1111 = 2χ1122 + χ1221 (For simplicity, we’ll refer to χ

(3)
1111 as χ(3) from now

on). This is the third-order nonlinearity measured in our experiment.

Each of the interacting waves obeys the wave equation

∇2E − µǫ
∂2E

∂t2
= µ

∂2

∂t2
PNL. (4.10)
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Substituting (4.9) into (4.10) and making use of the slowly-varying amplitude ap-

proximation, we obtain

dA4

dz
= −j

3ω

8cn
χ(3)A1A

∗
2A3. (4.11)

Assuming the pump beams are undepleted, the DFWM signal, beam 4, after a

nonlinear sample of thickness L is thus proportional to

I4 = C
ω2

ǫ4
0n

4
0c

4
|χ(3)|2L2I1I2I3 = mI1I2I3, (4.12)

where C is a proportionality constant.

In our experiment, a reference material with known nonlinearity χ
(3)
ref and

thickness Lref is first measured to obtain the proportionality constant mref . Then,

the same measurement is carried out on the sample to obtain msam. By comparing

the proportionality constants, mref and msam, the absolute value of χ(3)
sam can be

calculated as

|χ(3)
sam| = |χ(3)

ref |
(

msam

mref

)1/2
Lref

Lsam

(
nsam

nref

)2

. (4.13)

4.3 Different Phase-matching geometries of degenerate four-wave mix-

ing (DFWM)

In our experiment, the forward phase-matched geometry as illustrated in Fig.

4.2 is used. With this geometry, the three incident beams (of frequency ω), labeled

as 1, 2, and 3 generate the output beam , 4, via χ(3). The phase matching geometry

is similar to the folded BOXCARS arrangement in coherent anti-Stokes Raman

spectroscopy (CARS) [59].
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Figure 4.2: Illustration of the forward phase-matched geometry.

In the planar BOXCARS arrangement, the phase matching diagram is illus-

trated in Fig 4.3. In order to separate the pump and generated beams, it is generally

arranged that the pump beams and the generated beam are orthogonally polarized.

However, the crossing beams do not need to be coplanar to achieve phase matching.

In the folded BOXCARS arrangement as shown in the same figure, the planar BOX-

CARS phase matching diagram can be folded along the center line, and the phase

matching condition can still be maintained. The advantage of this arrangement is

that the beams are now completely separated spatially.

The difficulty in implementing this geometry experimentally is to obtain good

spatial and temporal overlap of the interacting beams, which usually requires so-

phisticated setup of beam steering optics and delay lines for spatial and temporal

alignment. In our experiment, a 2-D phase grating is designed to generate the beam

geometry, which also assures proper spatial and temporal overlap of the interacting

beams. A detailed description of the 2-D grating is given in section 4.5. The use of
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Figure 4.3: Planar and folded BOXCARS phase-matching diagram.

a 2-D phase grating also allows the coherent detection of DFWM which allows the

characterization of complex χ(3). Coherent detection of DFWM is described next.

4.4 Coherent detection of DFWM

As shown in (4.13), only the absolute value of χ(3)
sam can be obtained in the

direct DFWM measurement. Also, in the case when the nonlinearity is small, it

becomes challenging to detect the weak DFWM signal with good signal-to-noise

ratios (SNR’s).

Coherent detection has long been recognized as a method to achieve signal

amplification [60]. In the coherent detection scheme, a reference field, Eref is mixed

coherently with the diffracted DFWM signal, EDFWM , the total intensity on the
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detector is

I = Iref + IDFWM + 2
√

IrefIDFWM cos θ, (4.14)

where θ is the phase difference between the reference field and the DFWM signal. In

addition to the improved SNR, another advantage of the coherent detection scheme

is that the detected signal is now phase sensitive. By varying the phase of the

reference field, the full complex field of the DFWM signal can be measured.

There are difficulties in practical implementation of the coherent detection

scheme. One of the problems is that the reference and the DFWM beams have

to be overlapped temporally and spatially, which requires careful alignment. A

more challenging problem is to stabilize the relative phase between the reference

and the DFWM beams. In general, active stabilization with feedback control is

used to ensure phase stability [60]. However, the disadvantage is the considerable

complexity and added cost over the direct detection scheme.

4.5 Coherent detection using diffractive optical elements

Recently, optical heterodyne detection spectroscopy using diffractive optical

elements for passive phase stabilization has been proposed and demonstrated by

several groups [61]-[63]. A typical schematic of this technique is shown in Fig. 4.4.

In these schemes, one pump beam and one probe beam either angle or wavelength

separated are incident on a 1-D diffraction grating to generate the required beam

geometry using the ±1 diffraction order. The beams are then imaged on to the sam-

ple with transmission or reflective optics with the other diffraction orders blocked.
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Figure 4.4: Optical arrangement for heterodyne detection spectroscopy.

The use of diffractive optics ensures the spatial overlap of the interacting beams

automatically. The stabilization of the phase between the reference and diffracted

beams is achieved passively without any additional components, and the spatial and

temporal overlap of the reference and diffracted beams is also obtained without the

need of additional alignment.

4.6 2-D phase grating

In our experiment, a 2-D phase grating is designed to generate the four beams

required for coherent detection of DFWM signal. The schematic of the 2-D grating is

illustrated in Fig. 4.5. The phase shift between adjacent grating elements is π such

that most of the diffracted beams go into the (±1,±1) orders and the (0,0) order

is suppressed. Fig. 4.6 shows the calculated diffraction pattern of the 2-D phase

grating in Fig. 4.5, it can be seen that the (0,0) order is completely suppressed

and most of the power is equally diffracted into the (±1,±1) orders as expected.

83



Figure 4.5: Schematic of the 2-D grating used in the experiment. The relative phase
between adjacent grating element is π.

The four beams in the (±1,±1) orders form the required beam geometry for our

experiment.

The 2-D grating fabricated on fused silica is shown in Fig. 4.7. The diffraction

pattern probed with a He-Ne laser is shown in Fig. 4.8. Since the probe laser is

far from our design wavelength of 1.5 µm, the phase shift between adjacent grating

elements is no longer π and strong (0,0) order can be seen in the picture. We

measured the diffraction efficiency into the (±1,±1) orders using a CW laser at 1.5

µm and found the efficiency to be around 70% (total power in the four (±1,±1)

order beams).
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Figure 4.6: Calculated diffraction pattern of the grating in figure 3.4

Figure 4.7: 2-D diffraction grating fabricated on fused silica.
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Figure 4.8: The diffraction pattern of HeNe laser scattered by the 2-D grating in
Fig. 4.7

4.7 Measurement of χ(3)

4.7.1 Experimental setup

The schematic of the experimental setup for direct detection of DFWM sig-

nal is illustrated in Fig. 4.9. The schematic for coherent detection is similar to this

schematic and will be described in later sections. The laser source used in the experi-

ment is an OPA (Spectra-Physics OPA800-C) pumped by a regenerative Ti:sapphire

amplifier (Spectra-Physics Hurricane system). The system generates 130 fs output

pulses at 1525 nm with a repetition rate of 1 kHz. A half-wave plate and a polarizer

are used to control the light intensity into the DFWM experimental setup. A small

amount of the beam is deflected onto a photodetector before entering the setup to

monitor the input power. The beam is focused onto the 2-D phase grating with

grating period 40 µm using a spherical lens with 20 cm focal length. After the 2-D

grating, the beam is diffracted into four replicas (±1,±1 diffraction orders) with
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Figure 4.9: Schematic of the Direct detection of |χ(3)|.

70% efficiency. All the other diffractive orders are blocked with a mask. The beams

are arranged in the folded-BOXCARS geometry and are 1X imaged onto the sam-

ple with the telescope consisting of two identical spherical lenses with 10 cm focal

lengths. Beam 2 is chopped at 500 Hz before the sample to eliminate pump-probe

contamination [63]. The use of a 2-D phase grating ensures both phase matching

and the spatial and temporal overlap of the DFWM signal and the reference field.

After the sample, a spherical lens with 10 cm focal length is used to collimate the

beams. By blocking the unwanted beams and scattered light, only the reference

beam and the DFWM is allowed into the detection system consisting of a polar-

izer and a photodetector. The electrical signal from the photodetector is sent into a

lock-in amplifier which is phase-locked with the optical chopper. In this experiment,

a 520 µm thick fused silica is chosen as the reference material for comparison with

the nonlinear polymer sample. The χ(3) of fused silica has been well characterized

to be 1.5 × 10−14 esu [64][65].
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4.7.2 Direct detection of |χ(3)|

In the direct detection experiment (Fig. 4.9), the reference field (beam 4)

is blocked before the sample, and the DFWM signal is generated in the direction

of beam 4 with an intensity proportional to |χ(3)|2I1I2I3. In traditional DFWM

experiment, locating the direction of the DFWM signal is challenging since the signal

is weak. In our experimental setup, since the DFWM is generated collinearly with

beam 4, by simply unblocking beam 4, the detection system can be easily aligned,

and irises can be placed accurately to block the unwanted beams and scattered light.

The DFWM signal of a 100 µm thick processable polyacetylene polymer provided by

the Georgia Tech Department of Chemistry (Joseph Perry, Seth Marder, and Joel

Hales) is measured and compared to a fused silica reference. Fig. 4.10 shows the

cubic dependence of the DFWM signal to the input beam intensity. The magnitude,

|χ(3)|, of the nonlinear polymer is calculated to be (7.0± 0.05)× 10−11 esu from the

measurement.

4.7.3 Coherent detection of χ(3)

The experimental arrangement used for coherent detection of χ(3) is illustrated

in Fig. 4.11. In the coherent detection experiment, the reference field (beam 4) is

unblocked and mixed with the DFWM signal on the detector. A 150 µm thick cover

slip (CS-1) is mounted on a rotation stage and inserted into the path of the reference

field to control the relative phase between reference and signal. An additional cover

slip (CS-2) and half-wave plates are inserted into the beam paths to ensure the
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Figure 4.11: Schematic of the coherent detection of χ(3).

proper temporal overlap and to adjust the intensity of the reference and signal

beams on the detector.

Using 4.14, the coherent detection signal can be described by the following

equation,

I = IDFWM + Iref + 2
√

IDFWM + Iref cos(θi + ∆θ). (4.15)

∆θ is the phase difference between reference and signal due to cover slip rotation and

θi = θ0+φi, where χ(3) = |χ(3)| exp(jφi). The DC signal Iref is removed by chopping

beam 2. Rotation of the cover slip changes the path lengths of the reference beam

in air and in cover slip as shown in Fig. 4.12, which introduces phase difference

between the reference and signal beams. The phase difference ∆θ is related to the

cover slip rotation angle by [66]

∆θ =
2πd

λ

[

ncs

(
1

cos β
− 1

cos β0

)

− na

(
cos(α − β)

cos β
− cos(α0 − β0)

cos β0

)]

, (4.16)

where ncs is the refractive index of the cover slip, na is the refractive index of air,

d is the cover slip thickness, λ is the wavelength, α and β are the incident and
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Figure 4.12: Path length difference introduced by cover slip rotation.

transmission angles at the air and cover slip interface and are related by na sin α =

ncs sin β.

The interference signals of the polyacetylene film and the reference fused silica

are plotted and fit with the above expressions in Fig. 4.13. The phase of the

nonlinear polymer is calculated to be 21.0◦±1.2◦ by comparing the fit parameters.

4.8 Nonlinear refractive index, nonlinearity coefficient, and nonlinear

absorption coefficient

The third order nonlinearity χ(3) is responsible for the nonlinear refractive

index which can be used for ultrafast switching as described in chapter 1. In the
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Figure 4.13: Interferograms of the coherent detected DFWM signals of polyacetylene
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literature, the nonlinearity is usually quantified in terms of nonlinear refractive index

n2 or in terms of nonlinearity coefficient γ, and the nonlinear absorption is quantified

by the two-photon absorption coefficient α2. In this section, the relation between

these quantities are summarized.

The nonlinear refractive index n2 is defined as

n = n0 + n2I, (4.17)

where n0 is the linear refractive index and I is the intensity of the optical field. The

parameter n2 has units of m2/W and is related to the real part of χ(3) as [20]

n2 =
3Reχ(3)

4ǫ0cn2
0

. (4.18)

Here, ǫ0 = 8.8542×10−12 F/m and c = 2.998×108 m/s. Normally, χ(3) is measured

in the electrostatic units (esu) and can be converted in SI units as

χ(3)

[
m2

V2

]

=
(

4π

9
· 10−8

)
χ(3)[esu]. (4.19)

With this, n2 is related to χ(3) as

n2

[
m2

W

]

=
π

3ǫ0cn2
0

10−8Reχ(3)[esu]. (4.20)

For nonlinearity in optical fibers, it is customary to evaluate the nonlinearity

using the nonlinearity coefficient γ (W−1km−1), which is defined by

γ =
n2ω0

cAeff

, (4.21)

where Aeff is the effective core area and is normally in the range of 50-80 µm2 for

optical fibers in the 1.5 µm region [20]. The corresponding nonlinearity coefficient

can vary from 2-30 W−1km−1 if we use n2 ≈ 3 × 10−20 m2/W [65].
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Similarly, the two-photon absorption coefficient is defined as

α = α0 + α2I, (4.22)

where α0 is the linear absorption coefficient. The parameter α2 has units of m/W

and is related to the imaginary part of χ(3) as [20]

α2 =
3ωImχ(3)

2ǫ0c2n2
0

. (4.23)

When α2 is measured in the electrostatic units, it is related to χ(3) as

α2

[
m

W

]
=

2πω

3ǫ0c2n2
0

10−8Imχ(3)[esu]. (4.24)

From the magnitude and phase of the measured χ(3) of the polyacetylene sam-

ple, we calculated the n2 to be 5.3 × 10−17 (m2/W), and the α2 to be 1.7 × 10−10

(m/W). Previous switching experiments using common dispersion shifted fibers

[29][30] require several kilometers of fibers for sufficient nonlinearity. A recent

switching experiment [31] using highly nonlinear fiber with γ=1100W−1km−1 re-

quires only 2 meters of fiber. With the polyacetylene measured in the experiment,

the length can be further reduced from meters by a factor of 10. Another factor of

10 can be obtained by the reduction of waveguide dimension. However, it is still

insufficient for integrated components.

A more realistic figure of merit taken into account of two-photon absorption

can be obtained as follows. For a third-order nonlinear material to provide a useful

phase change before light is substantially absorbed, it is essential that the two-

photon figure of merit T = α2λ/n2 be less than 1 [67]. For the polyacetylene
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sample, the figure of merit T is calculated to be 4.8, which is insufficient for photonic

switching applications.

4.9 Discussion on DFWM measurement using 2-D phase grating

DFWM measurement using 2-D phase grating combines both the sensitivity

of DFWM scheme and the passive phase stability using diffractive optical elements.

This setup is applicable over a wide wavelength range as long as enough power is

obtained in the (±1,±1) orders. The spatial and temporal overlap can be obtained

easily.

This setup does not provide time-resolved nonlinearity information, which can

be obtained in sophisticated systems with optical delays. In the experiment, the

insertion of a 150 µm cover slip into any one or two of the interacting beams elim-

inates the DFWM signal completely, which ensures no slow effects is present. To

completely identify the individual χijkl components in (4.4), individual control of the

polarization of interacting beams is needed [58]. To implement individual polariza-

tion control in the current setup is difficult since the spacing between the interacting

beams is only ∼ 1 cm.
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Chapter 5

Optical switching using cross-phase modulation (XPM) in

semiconductor optical amplifiers (SOAs)

5.1 Introduction

Optical switching using optical nonlinearities is very important for optical sig-

nal processing applications. The nonlinearity of SOAs has been exploited for optical

switching by many researchers [68]-[70]. In order to achieve ultrafast switching in

SOAs, it is necessary to eliminate the problem of slow relaxation in semiconductors.

In this chapter, we demonstrate a simple configuration for ultrafast switching in

segmented SOAs. We start with a theoretical description of nonlinear pulse prop-

agation in nonlinear waveguides; the nonlinearity in SOA is then introduced; and

the experiment and modeling of the switch are presented.

5.2 Nonlinear pulse propagation in single mode optical waveguide

The electric field of a pulse in a single mode nonlinear optical waveguide can

be written as

E(x, y, z, t) = φ(x, y)A(z, t) exp[−j(β0z − ω0t)] + c.c., (5.1)
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where φ is the waveguide mode, β0 = n(ω0)ω0/c, and A is the slowly varying envelope

of the pulse. The electric field obeys the wave equation

∇2E − µ0
∂2D

∂t2
= 0, (5.2)

where D represents the total displacement field, including both the linear and non-

linear contributions. Now, we introduce the Fourier transforms of E(z, t) and D(z, t)

as in ref. [19]

E(z, t) =
∫ ∞

−∞
Ẽ(z, ω) exp(jωt)

dω

2π
, (5.3)

D(z, t) =
∫ ∞

−∞
D̃(z, ω) exp(jωt)

dω

2π
. (5.4)

The Fourier components Ẽ(z, ω) and D̃(z, ω) are related by,

D̃(z, ω) = ǫ(ω)Ẽ(z, ω), (5.5)

where the dielectric constant describes both the linear and nonlinear contributions.

In the frequency domain, the wave equation becomes

∇2Ẽ +
ω2

c2

ǫ(ω)

ǫ0

Ẽ(z, ω) = 0. (5.6)

This equation can be written in terms of the Fourier component of A(z, t), which is

given by

Ã(z, ω′) =
∫ ∞

−∞
A(z, t) exp(−jω′t)dt, (5.7)

and is related to Ẽ(z, ω) by

Ẽ(z, ω) ≃ φ(x, y)Ã(z, ω − ω0) exp(−jβ0z). (5.8)
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Substituting (5.8) into (5.6) and dropping the ∂2/∂z2 term, we obtain the following

two equations for φ and Ã

∇2
⊥φ +

(
ω2

c2

ǫ

ǫ0
− β2

0

)

φ = 0, (5.9)

and

−2jβ0
∂Ã

∂z
+ (β2 − β2

0)Ã = 0. (5.10)

Eq. (5.9) is the eigenvalue equation that gives the mode profile φ of the waveguide.

The propagation constant β can be solved using first-order perturbation theory.

Since β only differs from β0 by a small amount, we can approximate (5.10) as

Ã(z, ω − ω0)

∂z
+ j(β − β0)Ã(z, ω − ω0) = 0. (5.11)

The propagation constant β can be expanded as

β = β0 + ∆βNL + β1(ω − ω0) +
1

2
β2(ω − ω0)

2 + · · · , (5.12)

where ∆βNL is the nonlinear contribution to the propagation constant. In (5.12), β1

is the reciprocal of the group velocity, and β2 is the dispersion of the group velocity

as

β1 =
dβ

dω

∣∣∣∣∣
ω=ω0

≡ 1

vg(ω0)
, (5.13)

β2 =
d2β

dω2

∣∣∣∣∣
ω=ω0

= − 1

vg

dvg

dω

∣∣∣∣∣
ω=ω0

. (5.14)

Introducing (5.12) into (5.11), we obtain

∂Ã

∂z
+ j∆βNLÃ + jβ1(ω − ω0)Ã +

1

2
jβ2(ω − ω0)

2Ã = 0. (5.15)
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By transforming this equation from the frequency domain to the time domain, we

obtain the pulse propagation equation:

∂A

∂z
+ β1

∂A

∂t
+

1

2
jβ2

∂2A

∂t2
− j∆βNLA = 0. (5.16)

In the next section, we discuss the nonlinear contribution to ∆βNL from non-

linearities in SOAs.

5.3 Pulse propagation in semiconductor optical amplifiers

In semiconductor optical amplifiers (SOAs), the medium response to the op-

tical field is described by the carrier density rate equation [18]

∂N

∂t
= D∇2N +

I

qV
− N

τc
− a(N − N0)

h̄ω0
|E|2, (5.17)

where N is the carrier density, D is the diffusion coefficient, I is the injection current,

q is the electron charge, V is the active volume, τc is the spontaneous carrier lifetime,

h̄ω is the photon energy, a is the gain coefficient, and N0 is the transparency carrier

density.

The dielectric constant ǫ is given by

ǫ = ǫ0(n
2
b + χ), (5.18)

where nb is the background index accounting for dielectric waveguiding in SOAs.

The nonlinear susceptibility χ represents the gain of the material due to carrier

injection and is generally a complex number. The imaginary part is related to the

gain/loss in the SOA, and the real part accounts for the phase shift. A simple
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phenomenological model is used to describe the complicated relation between the

carrier density N and χ. In this model, the relation between χ and N is given by

χ(N) = − n̄c

ω0

(α + j)a(N − N0), (5.19)

where n̄ is the effective mode index, and the linewidth enhancement factor α ac-

counts for the carrier induced index change.

The susceptibility χ contributes a nonlinear term ∆βNL to the propagation

constant (5.12). The nonlinear contribution is

∆βNL =
ω0Γ

2n̄c
χ, (5.20)

where Γ is the optical confinement factor defined by the fraction of optical energy

inside the active region. By neglecting the group velocity dispersion term in (5.16),

the equation describing pulse propagation in SOA is then

∂A

∂z
+

1

vg

∂A

∂t
= j

ω0Γ

2n̄c
χA − 1

2
αlossA, (5.21)

where αloss is the waveguide loss.

By neglecting carrier diffusion and averaging (5.17) over the active region, the

carrier-density rate equation is simplified to

∂N

∂t
=

I

qV
− N

τc
− g(N)

h̄ω0
|A|2, (5.22)

where the gain is defined by

g(N) = Γa(N − N0). (5.23)

Combining (5.22) and (5.23), we obtain

∂g

∂t
=

g0 − g

τc
− g|A|2

Esat
, (5.24)
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where Esat = h̄ω0σ/a is the saturation energy of the amplifier, and σ is the mode

cross section (σ = wd/Γ). The small-signal gain is defined by

g0 = ΓσN0(
I

I0
− 1), (5.25)

where I0 = qV N0/τc is the transparency current.

Since A in (5.21) represents the power, we can write A in terms of the am-

plitude and phase as A =
√

P exp(jθ), where P (z, t) and θ(z, t) are the amplitude

and phase, respectively. Combining (5.21) through (5.24), and transforming to a

reference frame moving with the pulse, τ = t − z/vg, we obtain the following set of

equations describing nonlinear pulse propagation in SOAs:

∂P

∂z
= (g − αloss)P, (5.26)

∂θ

∂z
= −1

2
αg, (5.27)

∂g

∂t
=

g0 − g

τc
− gP

Esat
. (5.28)

Eq. (5.27) shows the origin of the self-phase modulation (SPM) and cross-phase

modulation (XPM). The time dependence of the gain g(z, τ) leads to a temporal

modulation of the phase. The gain saturation and recovery is described by (5.28).

When waveguide loss is negligible, (5.26)-(5.28) can be solved in a closed form

as follows. (5.26) and (5.28) can be integrated over the length of the amplifier L to

obtain

Pout(τ) = Pin(τ) exp[h(τ)] (5.29)

θout(τ) = θin − 1

2
αh(τ), (5.30)
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where h(τ) is the integrated gain over the pulse profile and can be written as

h(τ) =
∫ L

0
g(z, τ)dz. (5.31)

Integrating (5.28), we obtain the following differential equation for h(τ),

dh

dτ
=

g0L − h

τc

− Pin(τ)

Esat

[exp(h) − 1]. (5.32)

The output pulse can then be obtained by solving for the gain (5.32) numerically,

and then applying the solution to the input pulse profile Pin.

Using typical parameters for SOAs, we simulated the propagation of a 2.77 ps

(full width at half maximum, FWHM) Gaussian pulse in a SOA with 32.4 dB gain

by solving (5.26)-(5.28). The time dependent gain and phase shift are illustrated in

Fig. 5.1. It can be seen in Fig. 5.1(a) that the gain is quickly saturated within the

duration of the pulse, and then slowly recovers with time constant τc. From (5.27),

we know that the gain saturation of the amplifier by the pulse is accompanied by a

phase shift as illustrated in Fig. 5.1(b). The phase shift is the result of the increase

in refractive index caused by the decrease of carrier density as the gain saturates.

5.4 Optical switching using XPM in SOAs

5.4.1 Operating principle

Now, we consider a optical switch with control pulses (strong) and signal pulses

(weak) of different wavelengths propagating in the SOA as illustrated in Fig. 5.2.

As the gain is saturated by the control pulse, the refractive index seen by the signal

pulse increases. The phase change consists of a fast saturation within the duration
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Figure 5.1: The time dependent gain (a) and phase shift (b) of a SOA with a 2.77
ps pump pulse.

of the control pulse and a slow recovery as illustrated in Fig. 5.1. If the pulse

width are much shorter than the carrier lifetime τc, we can ignore the frequency

shift resulting from the slow recovery. Focusing on the fast increase of phase, such a

monotonic change in phase is equivalent to a red shift in the signal light frequency

described by the chirp

∆ω(τ) =
dθ

dτ
. (5.33)

Thus, when the control pulse is aligned with the signal pulse, the signal pulse is

shifted to longer wavelength. With a filter aligned with the shifted spectrum, the

signal pulses with or without frequency shift can be selected. In this scheme, the

switching time is not limited by the slow recovery time of the SOA.

5.4.2 Experiment on XPM in SOAs

To experimentally demonstrate this principle of operation, a CW laser is used

as the probe light, and a mode-locked (ML) semiconductor laser is used as the pump
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Figure 5.2: Schematic of a optical switch using XPM in SOA.

Figure 5.3: Experimental setup for characterizing the XPM induced frequency shift
in SOA.

light as illustrated in Fig. 5.3. ML laser generates pulses with pulse width of 2.77 ps

(FWHM) with a repetition rate at around 10 GHz at a wavelength of 1550 nm. The

wavelength of the CW laser is 1560 nm. To ensure the four-wave mixing product is

negligible, the wavelength separation of the pump and probe light has to be large

enough so that the inverse of the beating frequency between the two field is much

smaller than the carrier lifetime.

The amplitude and phase of the CW laser are modulated by the time depen-

dent gain and phase similar to Fig. 5.1 caused by the pump pulse. The measured

modulated CW output using a 45 GHz optical detector is shown in Fig. 5.4. The
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Figure 5.4: The modulated CW output resulting from XGM in a commercial SOA.

fast saturation of the gain and the slow recovery is evident in the figure. It can

been seen in the figure that additional structure exists at the bottom of the gain

saturation curve. These features can be explained by the ultrafast phenomena in-

cluding carrier heating, spectral hole burning, and two photon absorption [71]. The

spectrum of the modulated CW light at different pump powers is shown in Fig. 5.5.

As predicted by theory, the spectrum is broadened by the XPM effect. A significant

red shift can be seen in the figure which is attributed to the fast saturation; and the

overall spectrum is blue shifted due to the slow recovery. The additional feature in

the blue shifted part of the spectrum can be explained by the ultrafast phenomenon

mentioned above.
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Figure 5.5: Broadening of the CW probe spectrum by the XPM induced frequency
shift in a commercial SOA.

5.4.3 Characterization of the gain in SOAs

To obtain the SOA parameters for modeling, we first characterize the CW

gain of the SOA with respect to pump pulse power using the setup in Fig. 5.6. In

order to measure the gain, we first find the transparency current I0 of the SOA. The

transparency current is found by measuring the input power versus output power

at different bias current level. When the bias current is below the transparency, the

SOA acts as a saturable absorber, and we can see an positive curvature. When the

bias current is above the transparency, the SOA acts as a saturable amplifier, and

we can see an negative curvature. When the bias current is at transparency, we see

a linear relation. The output power at transparency serves as the base value for gain
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Figure 5.6: Experimental setup for characterizing the SOA gain as a function of
pump pulse power.

measurement with all the connection and coupling loss taking into consideration.

The gain is then calculated by dividing the output power at different input power

with the base output value at the corresponding input power.

With fixed CW power, the CW gain of the SOA is measured as a function of

the pump pulse input power. The results are plotted in Fig. 5.7 at two different

injection current levels. The measured gain then is used in the modeling described

in subsequent sections.

5.4.4 Modeling of XPM in SOAs

The model solves for the time dependent gain and phase as described in section

5.2. By varying the pump pulse power and the corresponding CW gain, we simulated

the spectrum of the modulated CW signal. The result is shown in Fig. 5.8, a

qualitative agreement between the simulation and the measured spectrum in Fig.

5.5 can be seen. By placing bandpass filters (Gaussian shaped filter with FWHM

of 1.5nm) at different positions of the modulated CW spectrum, the filtered output

is simulated and shown in Fig. 5.9. It can be seen that pulses can be obtained

when the filter is placed sufficiently far away from the CW center wavelength. The
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Figure 5.7: Measured SOA gain at two difference bias currents.

transmitted signal shape after the filter corresponds to the switch response when

the CW signal is replaced by pulses. Thus, short switching window can be obtained

using this configuration. Fast operation unlimited by the carrier time can thus be

obtained using filter assisted frequency shift in SOAs.

5.5 Optical switching using XPM in segmented SOAs

For good switching performance, the filter has to be far enough from the signal

frequency to suppress the slow recovery components and the unchirped fundamental

frequency. Another way to suppress the slow recovery is to use a narrow bandwidth

filter, however, this limits the application of the switch in high speed systems. It is

obvious that a sufficient amount of frequency shift must be obtained in the device for
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Figure 5.8: Modeled broadening of the CW probe spectrum by the XPM induced
frequency shift.
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Figure 5.9: Modeling of filtered outputs of frequency shifted CW spectrum.
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high speed operation. From (5.33), it is obvious that a shorter control pulse produces

larger frequency shift and a shorter switching window, however, the control pulse has

to be longer then the signal pulse for efficient switching. Increasing the phase shift

θ is another way of increasing the switching time. From (5.30), it is obvious that a

large linewidth enhancement factor α and large integrated gain h are beneficial.

The discussions so far only concern gain saturation in SOAs, however, the

same equations can also be used to describe loss saturation in SOAs by considering

the gain g in (5.28) as loss. When the SOA is reverse biased, it becomes a saturable

absorber [7][8]. If the reversed biased SOA is used in the scheme shown in Fig. 5.2,

the refractive index decreases as the loss is saturated by the pulse. As a result,

instead of a red shift, the frequency shift described by (5.33) is now to the blue side.

Fast switching can then be obtained by placing a filter in the blue side of the signal

spectrum. From previous experiments [7][8], it is more efficient to obtain higher loss

by increasing reverse bias in a short waveguide section then to obtain higher gain

by increasing injection current or by increasing amplifier length. Thus, a saturable

absorber is potentially a better candidate for high speed operations.

We propose using a segmented SOA with a long gain section to amplify the

control pulse and a short saturable absorber section for the switching function.

With the gain/loss combination, the total gain in the device can be kept low and

thus avoid the problem of parasitic oscillation from the combination of amplified

spontaneous emission and internal reflection [72]. The segmented SOA also allows

counter-propagation of control and signal in the device as will be explained in later

sections. This provides spatial separation of the control and signal. In the following
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Figure 5.10: Microscope picture of the segmented SOA.

section, we explore the switching operation of SOAs with segmented gain and loss

sections.

5.5.1 Segmented SOA

The top view of the segmented SOA is shown in Fig. 5.10. The device is

composed of a six quantum well active region and a 3 µm wide ridge waveguide.

The segments are defined by three separated gold contacts. The length of the

right section is 635 µm, the middle section is 400 µm, and the left section is 85

µm. The separation creates electrical isolation between the segments and allows

individual control of the bias condition of each segment. In our experiment, the left

two sections are connected and reverse biased by a voltage source as a saturable

absorber; and the right section is biased by a current source to amplify the control

pulse. The built-in amplifier section allows lower power operation of the switch.

The switching happens in the saturable absorber section using the blue shift caused

by XPM.

The device used in the experiment was originally designed as a laser, as a
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result, no anti-reflection coating is applied to the facet. When operating the device,

the total gain has to be kept below the lasing threshold of the device. In the

experiments and simulations presented below, the total gain is always kept equal to

or lower than the total loss.

5.5.2 Counter-propagation in segmented SOA

In the previous discussions, the signal is cross-modulated by the co-propagating

pump pulse. The signal is modulated by the integrated gain/loss h in (5.31), which

is independent of the length of the device and spatial distribution of gain/loss in the

device. If the signal and control pulse are co-propagated in a segmented SOA, the

gain and loss segment cancels out each other since only the spatially independent

total gain/loss is seen by the signal. Now, we consider the modified case where the

signal and control are counter-propagating.

Using the formalism in section 5.3, the counter-propagating signals in seg-

mented SOA can be described by

∂A1

∂z
+

1

vg

∂A1

∂t
=

1

2
(1 − jα)gA1, (5.34)

∂A2

∂z
− 1

vg

∂A2

∂t
=

1

2
(1 − jα)gA2. (5.35)

The gain is related to the signals by

∂g

∂t
=

g0 − g

τc

− g(|A1|2 + |A2|2)
Esat

, (5.36)

where we assume the wavelengths of the signal and control are different enough that

their beating can be neglected. By transforming to a reference frame moving with

113



A1 as before, we obtain

∂A1

∂τ
=

1

2
(1 − jα)gA1, (5.37)

∂A2

∂z
− 1

vg/2

∂A2

∂τ
=

1

2
(1 − jα)gA2, (5.38)

∂g

∂τ
=

g0 − g

τc
− g(|A1|2 + |A2|2)

Esat
. (5.39)

The amplitude and phase of the output of A1 can be expressed as in (5.29) and

(5.30) by

P1out(τ) = P1in(τ) exp[h(τ)] (5.40)

θ1out(τ) = θ1in − 1

2
αh(τ), (5.41)

where the device response h(τ) is obtained by solving (5.38) and (5.39) over the

length of the device. The signal now sees the integrated effect of the pump pulse at

different spatial location of the segmented device over the length of the device. If

the pulse width is shorter than the transit time through the device, any effect that

occurs faster than the transit time through the device is averaged out. As a result,

if the device is longer then the pulse, the switching performance is limited by the

length of the device. On the other hand, if the device is shorter than the pulse, the

switching performance is limited by the pulse width.

In the counter-propagating scheme, the interaction time between the signal

and control is twice the transit time through the device. As can be seen in (5.38),

in the reference frame moving with A1, A2 is effectively moving at half the group

velocity, vg, thus the interaction time is doubled.

Fig. 5.11 shows the schematics of a CW signal modulated by the control
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pulse in a two segments SOA. The control pulse first saturates the gain section,

which causes a decrease in gain (trace(a)). The control pulse then saturates the

loss section, which increase the gain (trace(b)). If the gain is equal to loss, and

the sections have the same recovery time, the recovery of gain and loss section

compensates each other, and the integrated gain over the length of the device is

thus described by trace(c). The transmission of the CW signal is modulated by the

integrated gain, while its phase is also modulated by the same profile as related by

the linewidth enhancement factor, α, in (5.41). The corresponding frequency shift

described by the chirp in (5.33) is shown in trace(d). As described before, since the

transit time through both sections is longer then the pulse width, the saturation

time is determined by twice the transit time through the segments. Thus, the time

constants in the figure are related to the segments lengths by τg = 2Lg/vg and

τl = 2Ll/vg. If the segment is short such that the transit time trough it is shorter

than the pulse width, the time constant is then twice the pulse width.

Since the loss segment is shorter than the gain segment, a larger chirp in

the blue side is expected as shown in trace(d). When a filter is aligned with the

blue shifted part of the spectrum, a switching window corresponds to the loss satura-

tion/positive chirp part will appear. When a filter is aligned with the red shifted part

of the spectrum, a switching window corresponding to the gain saturation/negative

chirp part will appear.
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Figure 5.11: XGM and XPM in a two segments SOA. It is assumed that the gain
equals loss, and the gain and loss sections have the same recovery time. Trace(a)
shows the saturation and recovery of the gain segment. Trace(b) shows the satura-
tion and recovery of the loss segment. Trace(c) shows the integrated effect of the
gain and loss segments. Trace(d) show the corresponding chirp. The saturation
time window is determined by the transit time through the segments since the pulse
width is assumed to be shorter than the transit time.
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Figure 5.12: Experimental setup for characterizing the XPM induced frequency shift
in segmented SOA.

5.5.3 Experimental demonstration of spectral broadening from XPM

in segmented SOA

The device used in the experiment is the same one as shown in Fig. 5.10. The

experimental setup for characterizing the spectrum broadening of CW signal in a

segmented SOA is illustrated in Fig. 5.12. ML laser generates pulses with pulse

width of 2.2 ps (FWHM) with a repetition rate at around 10 GHz at a wavelength

of 1566 nm. The wavelength of the CW laser is 1579 nm. The control pulse and the

CW laser are coupled into the device using lensed fibers on x-y-z stages. The gain

section of the device is forward biased at 120 mA, and the loss section is reverse

biased at 1.75 V. Fig. 5.13 shows the spectral broadening with various control pulse

energy. A larger broadening in the blue side of the spectrum is observed from the

measurement, which indicates larger loss than gain when the linewidth enhancement

factor is considered to be equal in both segments.
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Figure 5.13: Broadening of the CW probe spectrum by the XPM induced frequency
shift in a segmented SOA.
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The switching window is measured by filtering the CW signal with a tunable

bandpass filter (3 dB bandwidth ∼ 1.7 nm). The unfiltered CW spectrum with

∼ 0.3 pJ pump is shown in Fig. 5.14 together with the CW spectrum without

pump pulse. The effect of spectral broadening from XPM is evident in the figure.

We first align the filter with the center of the spectrum and then move it to the

blue side (-1.5 nm from the center) of the spectrum. The filter shape and position

is measured and plotted together with the broadened CW spectrum in Fig. 5.15.

The filtered outputs are amplified with an EDFA and measured using a 45 GHz

detector on an optical sampling scope. The results are shown in Fig. 5.16. The

measured output is convolved with detector response and does not represent the

real output. From the data, it is clear that the switching window is aligned with

the loss saturation/positive chirp part as predicted.

In order to obtain better temporal resolution unlimited by the detector re-

sponse, optical sampling technique is used, and a pulsed laser is used in place of

the CW laser in Fig. 5.12. The modified experimental setup is illustrated in Fig.

5.17. When the two pulsed lasers have the same repetition rate, the probe pulse can

sample the device temporal response by changing the relative time delay between

the probe and pump pulses. Instead of varying the time delay, a small difference ∆f

is introduced in the repetition rate f of the two pulsed lasers; and the relative delay

between the probe laser and the pump laser is in effect modulated with frequency

∆f . The material response repeating every 1/f seconds is now sampled with a rep-

etition rate of ∆f . The signal can now be detected with a sensitive low bandwidth

detector. The resolution of this technique is limited by the temporal width of the
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Figure 5.14: Measured effect of XPM induced frequency shift to the CW probe
spectrum in a segmented SOA.
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Figure 5.15: Measured filter shape and position with respect to the broadened
spectrum. BPF 1 is aligned with the center of the spectrum. BPF 2 is -1.5 nm
from the center of the spectrum. The black dashed curve shows the normalized
amplitude of the broadened CW spectrum.
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Figure 5.16: Measured outputs on an optical sampling scope corresponding to dif-
ferent filter positions. BPF 1 is aligned with the center of the spectrum. BPF 2 is
-1.5 nm from the center of the spectrum.
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Figure 5.17: Experimental setup for characterizing the XPM induced frequency shift
in segmented SOA using optical sampling technique.

probe pulse. In our experiment, the wavelength of the pump laser is 1560 nm, the

wavelength of the probe laser is 1577 nm, both lasers have a repetition rate of ∼10.4

GHz, the difference frequency ∆f is 5 kHz, and both lasers have a pulse width of

2.2 ps.

The device response is measured with a tunable bandpass filter (3 dB band-

width ∼ 1.7 nm) at different positions of the output probe pulse spectrum. Fig. 5.18

shows the positions and shape of the filter along with the probe spectrum. Fig. 5.19

shows the device response when the filter is tuned to the blue side (BPF1-3) and

aligned with the center (BPF4); and Fig. 5.20 shows the device response when the

filter is tuned to the red side (BPF5-8). The 1/f ≈ 100 ps repetition period is down

sampled to 1/∆f = 200 µs. In Fig. 5.19 and 5.20, the time axis is re-normalized

to 100 ps and shown as the delay ∆τ between the pump and the probe pulses. The

gain saturation time (∼ 12 ps) and loss saturation time (∼ 10 ps) correspond to
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twice the transit time through the respective sections. It is clear that the loss is

larger than gain in the device, which results in the overshoot of loss saturation. As

predicted by theory, when the filter is tuned to the blue side, a switching window

corresponding to loss saturation/positive chirp part is obtained. The filtered output

indicates insufficient filter discrimination since the spectral width of the sampling

pulse is larger than that of the CW laser used in the previous experiment; and

the filter 3 dB bandwidth is ∼ 1.7 nm. When the filter is tuned to the red side,

no clear switching window can be seen. This indicates insufficient negative chirp,

which could result from the slightly longer transit time through the gain section;

small gain in the gain section; or small linewidth enhancement factor correspond-

ing to the gain saturation. The experimental result clearly indicates that the loss

saturation is indeed more efficient for XPM switching applications in these devices.

5.5.4 Simulation of counter-propagation in segmented SOA

A simple model is developed to simulate the switching performance using the

counter-propagating scheme in Fig. 5.11. The integrated device response h(τ) is

solved using finite difference method [73] by choosing the relation between time and

spatial steps as ∆z = (vg/2)∆τ , where N is an integer. The spatial step ∆z is

chosen so that the corresponding ∆τ is shorter than the pulse width so that the

response is not limited by the transit time. In each propagation step, instead of

using a first-order difference approximation as in ref. [73], the differential equations

(5.37)-(5.39) are solved numerically. The calculated fields are stepped in time and
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Figure 5.18: Measured bandpass filter (BPF) positions with respect to the probe
spectrum (dashed black line).
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Figure 5.19: Measured outputs using optical sampling technique corresponding to
different filter positions in the blue side (BPF1-3) and center (BPF4) of the spec-
trum. The filter labels correspond to the filter positions in Fig. 5.18.
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Figure 5.20: Measured outputs using optical sampling technique corresponding to
different filter positions in the red side of the spectrum. The filter labels correspond
to the filter positions in Fig. 5.18.
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used as the input for the next spatial step. The integrated device response h(τ) is

obtained after transition through the whole length of the device.

The schematics shown in Fig. 5.11 are simulated using the model. A device

with 300 µm loss segment and 600 µm gain segment is simulated. The gain and

loss segments are assumed to have the same unsaturated gain/loss of 25dB, the

same saturation energy of 10 pJ, the same linewidth enhancement factor of 5, and

the same recovery time. The index of refraction of the waveguide is assumed to be

3. The 300 µm saturable absorber section is chosen such that the corresponding

transit time is 3 ps, and the corresponding switching window is thus close to twice

the transit time at 6 ps.

The input control pulse has a Gaussian shape with FWHM of 2 ps. The CW

signal, presented by a delta function in spectrum, is assumed to be weak compared

to the control pulse. The XGM modulated CW signal output is shown in Fig. 5.21.

The asymmetrical shape is determined by the transit time through the gain and

loss segments. It can be seen that the time interval from normalized intensity 1 to

minimum intensity is twice the transit time, 6 ps, through the 600 µm gain section.

The time interval from the minimum back to 1 is again twice the transit time, 3 ps,

through the 300 µm loss section. The corresponding chirp is shown in Fig. 5.22,

which agrees with the prediction in Fig. 5.11.

The spectrum broadening of the CW signal is shown in Fig. 5.23. As expected,

a larger blue shift is seen in the spectrum since the loss segment is shorter than

to gain segment. Increasing control pulse energy results in larger broadening as

predicted, and the simulated data shows a qualitative agreement with experimental
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Figure 5.21: Simulated CW signal output modulated by XGM in a segmented SOA.
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Figure 5.22: Simulated chirp of the CW signal by XPM in a segmented SOA.
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Figure 5.23: Simulated broadening of the CW signal spectrum by the XPM induced
frequency shift in a segmented SOA.

data in Fig. 5.13.

The switching window is simulated by filtering the output with a bandpass

filter (assuming a Gaussian shaped filter with 3 dB bandwidth of 1.5 nm). The

pump pulse energy is 0.3 pJ. The result of the filtered output with the filter shifted

-2.2 nm from the center of the spectrum is shown in Fig. 5.24 together with the

unfiltered output and the corresponding chirp. It can be seen that a clear switching

window ∼ 6.5 ps is obtained by placing the filter in the blue shifted part of the

spectrum. The window corresponds to the loss saturation/positive chirp part of the

unfiltered output, which is expected since the filter only select the blue shifted part

of the signal. The switching window again is limited by the transit time through
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Figure 5.24: Simulated switching window by the XPM induced frequency shift in a
segmented SOA.

the loss segment of the SOA.

To further investigate the effect of the length of loss segment on the switching

performance, the switching window is simulated by varying the loss segment length

while keeping the total device length, the gain, and the loss constant. The control

pulse is a Gaussian pulse with FWHM of 2 ps, and the pulse energy is 0.3 pJ. The

bandpass filter is a Gaussian shaped filter with 3 dB bandwidth of 1.5 nm detuned

2.2 nm to the blue side of the spectrum. Loss segment lengths of 50 µm, 100 µm, 300

µm, and 500 µm are simulated. The results are shown in Fig. 5.25. For the 50 µm

and 100 µm loss segments, the transit time is shorter than the pulse width of 2 ps,

the window is approximately twice the pulse width of the control signal. For longer

loss segments, the switching window grows linearly with the transit time. While the
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Figure 5.25: Simulated switching windows by the XPM induced frequency shift in
segmented SOA with different loss segment lengths.

gain and loss are the same in all four cases, shorter segments lead to larger positive

chirp, as a result, more energy is transmitted through the blue shifted filter. The

simulation verifies the limit on switching window by both the segment length and

the pulse width.

Various control pulse widths are also simulated with varying segment length.

The simulated FWHM of the resulting switching window are shown in Fig. 5.26.

The simulation results provide a guideline for optimizing switch design for high speed

applications. It can be seen that with a loss segment of 200 µm, ≤ 6 ps switching

window can be obtained with ≤ 2 ps control pulses, which allows demultiplexing of

160 Gbps data steams.
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Figure 5.26: Simulated FWHM of switching windows for various control pulse widths
with different loss segment lengths for the counter-propagating geometry.
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5.6 Conclusion

The concept of optical switching using XPM in SOAs is investigated. Using

a commercial SOA, the spectral broadening from XPM in SOA is measured, which

agrees well with the theoretical model. For more efficient switching performance, a

segmented SOA with gain and loss segment is proposed. The gain segment lowers

the required switching power, and a short loss segment provides a short switching

window. Experimental results with a prototype segmented devices agree well with

theoretical prediction. A model is developed to analyze the switching performance

of the device. The simulations show that a 6 ps or less switching window can be

obtained with loss segment smaller than 200 µm in a counter-propagation geometry.
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Chapter 6

Conclusion

6.1 Accomplishments

We set out to investigate the feasibility of integrated linear optical signal pro-

cessing using holograms in multimode waveguides. We demonstrated, for the first

time, that using multimode waveguide hologram (MWH), arbitrary unitary trans-

formations can be implemented efficiently without the need of integrated waveguide

lenses. We also developed a recipe for MWH design using the beam propagation

method (BPM).

For the development of nonlinear components for optical signal processing, we

developed a simple optical setup for characterization of the complex χ(3) of nonlinear

materials based on an imaged 2-D phase grating. This technique provides a reliable

way to measure χ(3) as new materials are constantly being developed.

Also, we proposed and demonstrated the operation principle of an optical

switch based on segmented SOAs. It allows the implementation of counter-propagation

geometry in the switch, and avoids the problem of parasitic oscillations in switches

using high gain SOAs.

The following section provides a brief summary of this thesis.
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6.2 Summary

In order to implement useful signal processing operations, it is necessary to

develop novel linear and nonlinear integrated optical components. The different

aspects of linear and nonlinear optical signal processing investigated in this work

are summarized in this section.

Implementation of arbitrary unitary transformation using MWH is presented

in this thesis. We take advantage of the parallelism of optics and perform linear

operations using MWHs. In chapter 2, it is proven that arbitrary unitary trans-

formations can be performed by holograms in multimode waveguides. The general

design principle of unitary mode transformation and unitary matrix-vector multi-

plier using MWH devices is presented. A special design case using the self-imaging

property of multimode waveguide is also identified. It is also shown that the design

method using the self-imaging property is equivalent to the general design principle.

In chapter 3, a WA-BPM model using Padé (3,3) approximant operator is de-

veloped to simulate and design MWH devices. A mode-order converter, a Hadamard

transformer, and a optical pattern generator/correlator are designed and simulated.

The model shows good agreement with the theory. 3-bit optical pattern generators

are designed using the WA-BPM model and fabricated using polymer waveguides.

Characterization of the fabricated devices verifies the theory and model. The model

is used to investigate the bandwidth and fabrication tolerances of MWH devices. It

is shown that devices with larger than 8 ports will be difficult to fabricate with cur-

rent technology. For applications to pattern recognition, the degradation in BER

136



due to device imperfection is analyzed. The device performance is shown to be

closely related to bandwidth and fabrication tolerances.

Unfortunately, none of the existing nonlinear polymers are adequate for in-

tegrated nonlinear processing. Since new materials are being made available to

us through the DARPA’s MORPH program, we constructed a simple and reliable

setup for characterization of complex χ(3). In chapter 4, a simple optical setup for

characterizing the complex χ(3) of nonlinear materials using DFWM with a imaged

2-D phase grating is presented. The absolute value of |χ(3)| is obtained by compar-

ing the diffraction efficiency of the nonlinear sample to that of the reference fused

silica sample. By passive phase stabilization with the 2-D phase grating, coherent

detection of the DFWM signal is performed using the same setup. By changing the

phase of the reference beam, the phase of χ(3) is obtained. A polyacetylene sample

is measured with this setup. Its nonlinearity is 7.0×10−11 esu with a phase of 21.0◦.

Although we do not have nonlinear polymers with sufficiently large χ(3) for

integrated optical switches, the large carrier dependent index change in SOAs allows

us to implement optical switching with available material. In chapter 5, ultrafast

optical switching using XPM in SOAs is investigated. The operating principle is

first experimentally verified with a commercial SOA with high gain. Switches with

high gain would lead to parasitic oscillations in the system. As an alternative, a

segmented SOA with a long amplifier section and a short saturable absorber section

is proposed. This configuration allows counter-propagation of the signal and control

pulses; and parasitic oscillations can be avoided since the whole device doesn’t have

to be operated at high gain. The concept of counter-propagation in segmented SOA
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is presented. A prototype device is characterized using optical sampling technique

to demonstrate the principle. A model is developed to obtain optimum parameters

for future devices.

6.3 Discussions and future work

Discrete unitary transformations have many applications in signal processing.

Discrete Fourier transform (DFT), the discrete Hartley transform (DHT) are very

useful for 1-D and 2-D signal processing applications. The discrete cosine transform

(DCT) is the most efficient transform for compression of speech and image data.

Many algorithms have been developed for efficient computation of the DFT, DHT,

and the DCT [74] by breaking the transformation of long patterns into multiple

transformations of smaller patterns. The importance of these transformations leads

to the development of dedicated electronic chips designed for matrix-vector multi-

plication. However, the speed of these chips are still limited. An example given in

ref [75] is a 16×16 analog matrix-vector multiplier with a operating frequency of

500 kHz.

All of the aforementioned transformations can be implemented with a single

MWH using parallel processing in integrated optics. The processing speed of the

MWH processors is basically limited by the bandwidth of the multimode waveg-

uides as shown in our simulations. Recent work [76] shows that the bandwidth still

exceeds 1 GHz when the port number is 128 when assuming no fabrication error.

Our simulations also indicate the inverse proportionality between the port number
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and the bandwidth/fabrication tolerance. Although the size of the MWH proces-

sors is limited by the fabrication technology, it is obvious that an optical processor

using MWH offer tremendous bandwidth advantage over electronic processors. Fu-

ture work would involve identifying suitable algorithms to implement long pattern

unitary transformations using multiple transformations of smaller pattern with in-

tegrated MWH processors.

Possible implementation of programmable matrix using electro-optic materials

can also be considered. In particular, new electro-optic polymers with high χ(2)

are under development, which could make implementation of programmable MWH

devices possible. Future development of high χ(3) materials could allow us to replace

the SOAs, which would dramatically reduce power consumption of future processors.

139



Appendix A

Effective Index Method

Here, we discuss the effective index method, which allows the analysis of 3-D

step index optical waveguides using 2-D slab optical waveguides.

The scalar wave equation (2.15) is

∇2
⊥φ + k2

0(n
2(x, y) − n2

eff )φ = 0, (A.1)

where neff is the effective index to be determined. Assuming there is no or little

interactions between the x and y field components, the wave function φ(x, y) can be

written by variable separation as

φ(x, y) = f(x)g(y). (A.2)

Substituting (A.2) into (A.1) and dividing through by φ(x, y), we obtain

1

f(x)

d2f(x)

dx2
+

1

g(y)

d2g(y)

dy2
+ k2

0(n
2(x, y) − n2

eff ) = 0. (A.3)

Let

1

g(y)

d2g(y)

dy2
+ k2

0n
2(x, y) = k2

0N
2(x), (A.4)

we have

1

f(x)

d2f(x)

dx2
− k2

0n
2
eff = −k2

0N
2(x). (A.5)

The two equations above can be rewritten as

1

g(y)

d2g(y)

dy2
+ k2

0[n
2(x, y)N2(x)] = 0, (A.6)
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we have

1

f(x)

d2f(x)

dx2
+ k2

0[N
2(x) − n2

eff ] = 0. (A.7)

Equation (A.6) describes the first step of the effective index calculation. First,

we replace the 3-D structure Fig. A.1(a) with a combination of 2-D slab waveguides

as in Fig. A.1(b). For each slab waveguides, the effective index N along the y axis

is calculated.

Then, the effective index profile N(x) calculated using (A.6) is used to model

the 3-D waveguide using the 2-D slab waveguide in Fig. A.1(c). The beam propa-

gation is solved by using the effective index profile in the 2-D wave equation (A.7).

Appendix B

Programming of the WA-FD-BPM using Padé (3,3) approximate

operator

The theory of the multistep WA-FD-BPM using Padé approximations is de-

scribed in section 3.2. Here, we describe the FD expression of the algorithm.

First, the x and z coordinates are discretized as follows,

x = p∆x, (B.1)

z = m∆z, (B.2)

where p and m are integers. The corresponding discretized wave function φ(x, z)
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Figure A.1: Concept of the effective index method.
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and index profile n(x, z) are

φ(x, z) → φm
p , (B.3)

n(x, z) → nm
p . (B.4)

The next step is to discretize the propagator (3.19), which is repeated here

φm+ i
n =

(1 + aiP )

(1 + a∗
i P )

φm+ i−1

n . (B.5)

The operator P in the propagator is

P = ∇2
⊥ + k2

0(n
2 − n2

ref). (B.6)

The two terms of Pφp are expressed as

∂2φp

∂x2
=

1

∆x

(
φp+1 − φp

∆x
− φp − φp−1

∆x

)

=
φp+1 − 2φp + φp−1

(∆x)2
, (B.7)

and

k2
0(n

2 − n2
eff )φp = k2

0[n
2
p − n2

eff ]φp. (B.8)

So, the operator can be calculated using the following expression,

Pφp =
φp+1 − 2φp + φp−1

(∆x)2
+ k2

0[n
2
p − n2

eff ]φp. (B.9)

With the expression for Pφp, the algorithm simply involves applying the propagator

on φm multiple times to obtain φm+1 as described by (3.19).
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