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Understanding objects in complex scenes is a fundamental and challenging problem

in computer vision. Given an image, we would like to answer the questions of whether

there is an object of a particular category in the image, where is it, and if possible, locate

it with a bounding box or pixel-wise labels. In this dissertation, we present context driven

approaches leveraging relationships between objects in the scene to improve both the

accuracy and efficiency of scene understanding.

In the first part, we describe an approach to jointly solve the segmentation and

recognition problem using a multiple segmentation framework with context. Our ap-

proach formulates a cost function based on contextual information in conjunction with

appearance matching. This relaxed cost function formulation is minimized using an effi-

cient quadratic programming solver and an approximate solution is obtained by discretiz-

ing the relaxed solution. Our approach improves labeling performance compared to other

segmentation based recognition approaches.

Secondly, we introduce a new problem called object co-labeling where the goal

is to jointly annotate multiple images of the same scene which do not have temporal



consistency. We present an adaptive framework for joint segmentation and recognition to

solve this problem. We propose an objective function that considers not only appearance

but also appearance and context consistency across images of the scene. A relaxed form

of the cost function is minimized using an efficient quadratic programming solver. Our

approach improves labeling performance compared to labeling each image individually.

We also show the application of our co-labeling framework to other recognition problems

such as label propagation in videos and object recognition in similar scenes.

In the third part, we propose a novel general strategy for simultaneous object detec-

tion and segmentation. Instead of passively evaluating all object detectors at all possible

locations in an image, we develop a divide-and-conquer approach by actively and se-

quentially evaluating contextual cues related to the query based on the scene and previous

evaluations—like playing a “20 Questions” game—to decide where to search for the ob-

ject. Such questions are dynamically selected based on the query, the scene and current

observed responses given by object detectors and classifiers. We first present an efficient

object search policy based on information gain of asking a question. We formulate the

policy in a probabilistic framework that integrates current information and observation to

update the model and determine the next most informative action to take next. We further

enrich the power and generalization capacity of the Twenty Questions strategy by learn-

ing the Twenty Questions policy driven by data. We formulate the problem as a Markov

Decision Process and learn a search policy by imitation learning.



CONTEXT DRIVEN SCENE UNDERSTANDING

by

Xi Chen

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Professor Larry S. Davis, Chair/Advisor
Professor Rama Chellappa
Professor James Reggia
Professor Ramani Duraiswami
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and Professor Héctor Corrada Bravo for agreeing to serve on my thesis committee and for

sparing their invaluable time reviewing the manuscript.

I also would like to thank those collaborators that make this dissertation possible:

Dr. Abhinav Gupta and Dr. Arpit Jain offered me a lot of guidance during my early stage

of my PhD research which pointed out my direction in my PhD research. He He and I had

a lot of helpful discussions to brainstorm and formulate the “20 questions” parts of the

thesis. Without their generous help and collaboration, I could not move as far either on

my research work or the projects. Special thanks to Dr. Ming-Yu Liu, Dr. Oncel Tuzel,

iii



Prof. Gregory Shakhnarovich and Prof. Qixing Huang for their mentoring during my

research internships. I really enjoyed working with them and learned a lot from them. I

also thank lots of other group members, Zhuolin, Vlad, Ruiping, Bhejat, Choi, ... for their

valuable discussions.

And I would like to thank all my colleagues in the computer vision laboratory that

have enriched my graduate life in many ways: Huimin, Ruonan, Guangxiao, Jun-Cheng,

Le Kang, Fan, Joe, Muzi, Ang, Brandyn, HyungTae, Ejaz, Sameh, Sravanthi, Varun...I

thank lots of my friend in Maryland and in other parts of the world, your accompany

made my Ph.D. exploration much more enjoyable.

I owe my deepest thanks to my family - my mother and father who have always

stood by me and guided me through my career, and have pulled me through against im-

possible odds at times. Words cannot express the gratitude I owe them.

It is impossible to remember all, and I apologize to those I’ve inadvertently left out.

This dissertation will be impossible without you.

Lastly, thank you all!

iv



Table of Contents

List of Figures viii

List of Abbreviations x

1 Introduction 1
1.1 Image Parsing and Object Recognition . . . . . . . . . . . . . . . . . . . 3

1.1.1 Pixel Based Approaches . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Fixed Segmentation Approaches . . . . . . . . . . . . . . . . . . 4
1.1.3 Joint Segmentation and Recognition . . . . . . . . . . . . . . . . 4
1.1.4 Multiple Segmentation using Context . . . . . . . . . . . . . . . 5

1.2 Object Co-Labeling in Multiple Images . . . . . . . . . . . . . . . . . . 6
1.3 Object Detection and Localization . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Context in Object Detection . . . . . . . . . . . . . . . . . . . . 7
1.3.3 Object Detection in 20 Context Related Questions . . . . . . . . 8

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Piecing Together the Segmentation Jigsaw using Context 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Constructing the Segment Graph . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Piecing together the Segments . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Constraints on Segment Selection . . . . . . . . . . . . . . . . . 22
2.5.2 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



3 Object Co-Labeling in Multiple Images 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Constructing the Segment Graph . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Colabeling segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.1 Constraints on Segment Selection . . . . . . . . . . . . . . . . . 43
3.5.2 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6.1 Co-label Objects in the Same Scenes . . . . . . . . . . . . . . . . 47
3.6.2 Label Propagation in Video Sequences . . . . . . . . . . . . . . . 49
3.6.3 Semantic Segmentation in Similar Scenes . . . . . . . . . . . . . 50

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Searching for Objects with Information Gain-based Twenty Questions Strategy 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Search for Objects in 20 Questions . . . . . . . . . . . . . . . . . . . . . 63

4.4.1 Context Driven Search Policy . . . . . . . . . . . . . . . . . . . 63
4.4.1.1 Information about the Query . . . . . . . . . . . . . . 65
4.4.1.2 Information about the Scene . . . . . . . . . . . . . . . 65

4.4.2 Updating Responses and Context . . . . . . . . . . . . . . . . . 66
4.4.3 Context Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.4 Output Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5.1 Dataset and Evaluation Metrics . . . . . . . . . . . . . . . . . . 70
4.5.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.2.1 Object Hypotheses . . . . . . . . . . . . . . . . . . . . 70
4.5.2.2 Feature Representation and Classification . . . . . . . . 71

4.5.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.4.1 Comparison with Exhaustive Search . . . . . . . . . . 74
4.5.4.2 Comparison with Random Search . . . . . . . . . . . . 76

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Learning to Detect Objects in Twenty Questions 78
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.1 Learning the Policy by Imitation . . . . . . . . . . . . . . . . . . 86
5.4.2 Context Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4.3 Update Responses and Search Area . . . . . . . . . . . . . . . . 89

vi



5.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5.1 Object Proposals . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5.3 Feature Representation . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.6.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.6.2 Speed-accuracy tradeoff . . . . . . . . . . . . . . . . . . . . . . 93
5.6.3 Detection precision . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.6.4 Search space accuracy . . . . . . . . . . . . . . . . . . . . . . . 95
5.6.5 Simultaneous detection and segmentation . . . . . . . . . . . . . 95

6 Conclusion 101
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . 103

Bibliography 105

vii



List of Figures

2.1 Comparison of our multiple segmentation-based “jigsaw puzzle” approach
to fixed and multiple segmentation algorithms . . . . . . . . . . . . . . . 12

2.2 Improvement in spatial support with merging. . . . . . . . . . . . . . . . 18
2.3 Illustration of our “jigsaw puzzle” approach and framework. . . . . . . . 20
2.4 PASCAL VOC’09 labeling results . . . . . . . . . . . . . . . . . . . . . 24
2.5 LabelMe dataset results - columns 1, 3 and 5 show the original image with

object labels obtained by our algorithm and columns 2, 4 and 6 show the
corresponding image segmentation. . . . . . . . . . . . . . . . . . . . . 26

2.6 Qualitative results of our algorithm with and without merging. Columns
(a) and (d) are original images. Columns (b) and (e) show the labeling
performance without merging. Columns (c) and (f) show performance
with merging. Best viewed in color. . . . . . . . . . . . . . . . . . . . . 30

3.1 Object Co-labeling for multiple images. Column (a) shows the original
images taken of the same scene, (b) is the groundtruth labeling, (c) the
results of single image parsing and (d) our co-labeling framework. Given
images of the same scene, object co-labeling can correctly label the major
objects even when appearance models failed to parse images. . . . . . . . 34

3.2 Illustration of our colabeling approach . . . . . . . . . . . . . . . . . . . 39
3.3 Qualitative labeling results of two subsets in SUNY Buffalo datasets.

Columns (a) to (d) correspond to the original image, groundtruth labeling,
single image parsing results and co-labeled results. Best viewed in color. . 48

3.4 Qualitative labeling results of two subsets in our MSRC co-label dataset.
Columns (a) to (d) correspond to the original image, groundtruth labeling,
single image parsing results and co-labeled results. Best viewed in color. . 51

4.1 Illustration of our sequential search for objects in 20 context driven ques-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Flow chart of our context driven object searching algorithm . . . . . . . . 61

viii



4.3 Examples of our context vote maps. Each pair of images corresponds to
the original image and the vote-based probability map of object location
from observed context. From (a) - (d) are the vote maps from water to
boat, sky to boat, road to car and grass to cow, respectively. Best viewed
in color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Qualitative results for detection and segmentation of the MSRC object
classes. Columns (a) to (d) correspond to the original image, groundtruth
label, probability map of the query object given by exhaustive search and
by our sequential search respectively. The probability map from red to
blue corresponds to the probability from high to low. Best viewed in color. 75

5.1 Illustration of our sequential search for query objects in 20 context-driven
questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Flowchart of our context driven object searching algorithm . . . . . . . . 87
5.3 Illustration of our context voting model . . . . . . . . . . . . . . . . . . 90
5.4 Speed-accuracy tradeoff: mAP vs. number of amortized evaluated object

proposals on Pascal VOC dataset. . . . . . . . . . . . . . . . . . . . . . 96

ix



List of Abbreviations

UMIACS University of Maryland Institute for Advanced Computer Studies
SVM Support Vector Machine
IPFP Integer Projected Fixed Point
QP Quadratic Programming
CNN Convolutional Neural Network
mAP mean average precision

x



Chapter 1: Introduction

Understanding objects in complex scenes is a central and challenging problem in

computer vision. With the surge of real world applications of computer vision, it is essen-

tial for computers to better understand the world it perceives from cameras and sensors,

especially in scenarios such as self-driving cars and robots. Also it would help people

to understand, organize and discover interesting patterns from the tremendous amount of

images online. Specifically, given an image, we would like to answer the questions of

whether there is an object of a particular category in the image, where is it, and if pos-

sible, locate it with a bounding box or pixel-wise labels. To address these questions, the

computer vision community has been working on problems defined as object detection,

object recognition, image parsing and semantic segmentation. Typical object detection

and recognition approaches usually consider only the appearance of the object in a single

image. However, due to variation in data distribution, occlusion and viewpoint change,

object models may not always capture the appearance of objects and ambiguity arises.

In contrast, in the real world objects never occur in isolation; they co-vary with other

objects and particular environments, providing a rich source of contextual associations to

be exploited by the visual system. Instead of looking at objects in the world exclusively

based on their individual appearance, humans views a scene as a whole picture with rich
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relations between objects. It has been shown in various studies on visual cognition [1, 2],

computer vision [3,4] and cognitive neuroscience [5,6] that contextual information affects

the efficiency of the search for and recognition of objects. Such studies are the intuition

and inspiration of our work the this thesis to exploit the rich contextual information for

scene understanding problems.

In this dissertation, we address the important yet challenging problems of scene un-

derstanding by utilizing context information. We focus on the tasks of object recognition

and detection. We will first introduce these problems of scene understanding, then discuss

the role of context in object recognition and detection. We then present context driven ap-

proaches leveraging spatial relationships between objects in the scene to improve both the

accuracy and efficiency of scene understanding.

The main contributions of this dissertation are:

• Object recognition with context in multiple segmentation: we propose to con-

sider both appearance and context cues in a multiple segmentation framework that

can jointly segment and label the image with an efficient optimization scheme.

• Co-label objects in multiple images: we propose to label objects in multiple im-

ages of the same or similar scene to improve recognition by leveraging the appear-

ance and context consistency across images.

• Object detection in Twenty Questions: we propose a novel general strategy for

object proposal-based object detection. Instead of passively evaluating all object

detectors at all possible locations in an image, we develop a divide-and-conquer

approach by actively and sequentially evaluating contextual cues related to the

2



query based on the scene and previous evaluations—like playing a “20 Questions”

game—to decide where to search for the object.

1.1 Image Parsing and Object Recognition

We define image parsing to be the task of decomposing an image into its constituent

visual patterns. We focus on parsing the image into semantic objects. The problem of

image parsing has a long history in computer vision dating back to the 1970’s. Unlike

Marr’s sequential processing pipeline, where segmentation from bottom-up cues preceded

recognition, Tenenbaum and Barrow proposed Interpretation-Guided Segmentation [7]

which labeled image regions using constraint propagation to arrive at a globally consistent

scene interpretation. This was followed by development of complete scene understanding

systems such as ACRONYM [8] and VISIONS [9]. During the last decade, researchers

in visual recognition have made significant advances in object recognition due to better

appearance modeling techniques and visual context. These approaches can be broadly

categorized into three categories based on how interactions between segmentation and

recognition are modeled:

1.1.1 Pixel Based Approaches

These approaches model the problem of visual recognition at the pixel level [10–

13] and therefore the problem of segmentation is solved implicitly (neighboring pixels

belonging to different class represent boundary pixels). One of the major shortcomings

of pixel-based approaches is that many objects (such as cars) are defined in large part by
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their shape and therefore categorization at the pixel-level using local appearances without

global shape analysis performs poorly.

1.1.2 Fixed Segmentation Approaches

These approaches classify individual regions in some fixed image segmentation

based on region color, texture and shape [14–16]. However, obtaining semantically mean-

ingful segmentations without top-down control is well beyond the state of the art.

1.1.3 Joint Segmentation and Recognition

These approaches jointly solve segmentation and recognition. Approaches such

as [17,18] obtain multiple segmentations of the image and model the problem of segmen-

tation and recognition as the selection of segments based on their matches to semantic

classes. On the other hand, approaches such as [19–21] start from an imperfect segmen-

tation and then refine it iteratively by optimizing a cost function defined on segments and

appearance matching. One of the shortcomings of these approaches is that they tend to

get stuck in local minima due to local refinement. [22,23] proposed super pixel based ap-

proaches where the class labels are inferred based on local appearance and context using

CRFs. Such approaches fail to incorporate higher level shape information; additionally

learning CRF’s parameters has proven to be difficult. In [24] segmentation was combined

with the responses of sliding window object detectors for image labeling to avoid fragility

of segmentation.
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1.1.4 Multiple Segmentation using Context

For object recognition, there has been a recent trend to simultaneously address seg-

mentation and recognition. However, these methods use only appearance features to se-

lect segments and the best overall labeling is constructed in a greedy manner. They ignore

context, which is important for accurate segment selection and labeling.

To address the shortcomings of the previous approaches of image parsing, in the

first part of the thesis, we describe an approach to jointly solve the segmentation and

recognition problem using a multiple segmentation framework using context. We pro-

pose an approach to select the best segmentation and labeling in a single optimization

procedure that utilizes context to perform segment selection and labeling coherently. To

overcome the fragmentation problem, we allow connected segments to be merged based

on local color, texture and edge properties. We also include mid-level cues to constrain

the solution space - for example, the segment merging step leads to overlapping segments,

and we restrict global solutions to exclude overlapping segments (avoiding the possibil-

ity of multiple labeling for pixels). By incorporating contextual relations between region

pairs, we find the subset of segments that best explains the image.

We formulate a cost function based on contextual information in conjunction with

appearance matching. This relaxed cost function formulation is minimized using an effi-

cient quadratic programming solver and an approximate solution is obtained by discretiz-

ing the relaxed solution. Our approach improves labeling performance compared to other

segmentation based recognition approaches.
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1.2 Object Co-Labeling in Multiple Images

With the recent surge in photos and videos taken from hand-held devices and those

shared online, many of which are taken of the same scenes, the need to automatically

label objects in such image sets has emerged. Traditional approaches to recognition typ-

ically consider only a single test image using appearance and contextual cues. However,

modeling relationship between objects is difficult as they are also viewpoint dependent

and do not generalize well.

We introduce a new problem called object co-labeling where the goal is to jointly

annotate multiple images of the same scene which do not have temporal consistency.

We present an adaptive framework for joint segmentation and recognition to solve this

problem. We propose an objective function that considers not only appearance but also

appearance and context consistency across images of the scene.Our approach improves

labeling performance compared to labeling each image individually. We also show the

application of our co-labeling framework to other recognition problems such as label

propagation in videos and object recognition in similar scenes.

1.3 Object Detection and Localization

1.3.1 Background

Object detection is the task that deals with detecting instances of semantic objects

of a certain class (such as humans, buildings, or cars) in digital images and videos. Some

common approaches to object detection are based on applying gradient based features
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over densely sampled sliding windows [60], which are very inefficient since they eval-

uate up to hundreds of thousands of windows in an image, and false positive detections

arise. To reduce the number of windows evaluated, category independent object pro-

posals [61–63] have been proposed which generate a small number of high quality re-

gions or windows that are likely to be objects. These approaches dramatically reduce the

number of candidates and reduce false positive detections. Using these object propos-

als [73, 74, 79] train and apply deep neural network models to learn the feature extractor

and classifiers, and achieve state-of-the-art performance on the Pascal VOC detection

challenge. However, such category independent proposals do not adapt to different query

classes and still lead to a significant amount of unnecessary detector computation.

1.3.2 Context in Object Detection

Context is not only helpful in parsing objects in the scene, but also enhances object

detectors by eliminating false positives and improving precision [37]. The sources of con-

textual information can be in the form of global scene context, ground plane estimation,

geometric context in the form of 3D surface orientations, relative location, 3D layout,

spatial support and geographic information.

Usually, context-sensitive methods rely on holistic models that consider relations of

the query object with all other object classes in the scene at the same time. This is highly

inefficient since many non-informative contextual objects have to be queried. We propose

a new strategy for simultaneous object detection and segmentation in the scene.
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1.3.3 Object Detection in 20 Context Related Questions

Instead of evaluating classifiers for all possible locations of objects in the image, we

develop a divide-and-conquer approach by sequentially posing questions for computer

to answer given query and the image, like playing a “Twenty Questions” game. Such

questions are dynamically selected based on the query, the scene and current observed

responses given by object detectors and classifiers. We present an efficient object search

policy that considers the most informative questions for both the query and the scene. This

policy is driven by a semantic contextual model which sequentially refine the search area

for the query. We first formulate the policy in one probabilistic framework that integrates

the current information and history observation to update the model and determine the

next most informative action to take. We then generalize the decision making capability

of the policy by formulating the problem as a Markov Decision Process (MDP) and learn

the policy by imitation learning fully driven by data. Experiments show promising results

compared with baselines of exhaustive search, searching for objects in random sequences

and random locations.

1.4 Organization

The dissertation is organized as follows. In Chapter 2, we present an approach to

jointly solve segmentation and recognition problem for scene labeling. We formulate the

problem as similar to solving jigsaw puzzle and propose an Integer Programming based

solution. In Chapter 3 we study the problem called object co-labeling where the goal is to

jointly annotate multiple images of the same scene. In Chapter 4, we propose a sequential
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approach to detect and locate the query class objects in the image which dynamically

selects questions at each step. The policy is based on maximizing the information gain

of a question based on the query, the scene and the current observations. In Chapter 5

we formulate the object detection problem as a Markov Decision Process and provide

an imitation learning based approach to learn a policy to decide the next context cues to

query. In Chapter 6, we conclude and explore future research directions.
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Chapter 2: Piecing Together the Segmentation Jigsaw using Context

2.1 Introduction

We describe an approach that jointly segments and labels the principal objects in

an image. Consider the image in Figure 2.1. Our goal is to locate and pixel-wise label

the principal objects such as car, building, road and sidewalk. One approach is to first

segment the image, then perform recognition using appearance and context. However,

there are generally no reliable algorithms for segmentation. For example, for the image

shown in Figure 2.1, segmentation algorithms will generally not combine the roof and the

body of the car into one segment due to differences in appearances. Therefore, there has

been a recent trend to simultaneously address segmentation and recognition.

For example, some recent approaches construct the segments by selectively merging

superpixels while simultaneously labeling these elements. However, at the superpixel

level global image features such as shape cannot be easily employed. So, while these

approaches show high performance for “stuff”-like objects such as grass - they often

fail to identify objects which require shape cues for identification. To harness shape

features, approaches such as [19,20] have instead started with an initial segmentation and

then refined these segments iteratively. However, the modifications are generally local in

nature and tend to get stuck in local minima.
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To overcome these problems, recent approaches have advocated the use of multiple

segmentations [18, 25]. Recognition, then, involves selecting the best segments. These

methods use only appearance features to select segments and the best overall labeling is

constructed in a greedy manner. They ignore context, which is important for accurate seg-

ment selection and labeling. For example, the window of the car is labeled as “airplane”

because the context from other scene elements such as road, sidewalk and building are

ignored.

We propose an approach to select the best segmentation and labeling in a single

optimization procedure that utilizes context to perform segment selection and labeling

coherently. To overcome the fragmentation problem, we allow connected segments to

be merged based on local color, texture and edge properties. We also include mid-level

cues to constrain the solution space - for example, the segment merging step leads to

overlapping segments, and we restrict global solutions to exclude overlapping segments

(avoiding the possibility of multiple labeling for pixels). By incorporating contextual re-

lations between region pairs, we find the subset of segments that best explains the image.

For example, in Figure 2.1, our approach correctly selects the combined region of win-

dow and body segments and labels it as “car”. The labeling of the window segment as

“airplane” is not chosen due to contextual constraints from sidewalk, road and building.
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Figure 2.1: Comparison of our approach to fixed and multiple segmentation algorithms.

Our approach solves the problem of segmentation and recognition jointly using appear-

ance and context. The figure shows how global contextual relations help to select the

whole car segment subset over other fragmented pieces of car, as their association does

not satisfy context.
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The contributions of our work are: (a) An approach to incorporate contextual infor-

mation in a multiple segmentation framework, and (b) Increasing the spatial support1 of

image labeling by constructing additional segments from a base pool, at the cost of only

a small increase in segment pool size.

2.2 Related Work

The problem of image parsing has a long history in computer vision dating back

to the 1970’s. Unlike Marr’s sequential processing pipeline, where segmentation from

bottom-up cues preceded recognition, Tenenbaum and Barrow proposed Interpretation-

Guided Segmentation [7] which labeled image regions using constraint propagation to

arrive at a globally consistent scene interpretation. This was followed by development of

complete scene understanding systems such as ACRONYM [8] and VISONS [9]. During

the last decade, researchers in visual recognition have made significant advances in ob-

ject recognition due to better appearance modeling techniques and visual context. These

approaches can be broadly categorized into three categories based on how interactions

between segmentation and recognition are modeled:

Pixel Based Approaches: These approaches model the problem of visual recogni-

tion at the pixel level [10–13] and therefore the problem of segmentation is solved implic-

itly (neighboring pixels belonging to different class represent boundary pixels). One of

the major shortcomings of pixel-based approaches is that many objects (such as cars) are

defined in large part by their shape and therefore categorization at the pixel-level using

1Spatial support measures the quality of pool of segments as compared to ground truth. The score is

higher if the segments in the ground-truth find segments in the pool with high overlap.
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local appearances without global shape analysis performs poorly.

Fixed Segmentation Approaches: These approaches classify individual regions in

some fixed image segmentation based on region color, texture and shape [14–16]. How-

ever, obtaining semantically meaningful segmentations without top-down control is well

beyond the state of the art.

Image Parsing (Joint Segmentation and Recognition): These approaches jointly

solve segmentation and recognition. Approaches such as [17, 18] obtain multiple seg-

mentations of the image and model the problem of segmentation and recognition as the

selection of segments based on their matches to semantic classes. On the other hand,

approaches such as [19–21] start from an imperfect segmentation and then refine it itera-

tively by optimizing a cost function defined on segments and appearance matching. One

of the shortcomings of these approaches is that they tend to get stuck in local minima due

to local refinement. [22,23] proposed super pixel based approaches where the class labels

are inferred based on local appearance and context using CRFs. Such approaches fail to

incorporate higher level shape information; additionally learning CRF’s parameters has

proven to be difficult. In [24] segmentation was combined with the responses of sliding

window object detectors for image labeling to avoid fragility of segmentation.

2.3 Overview

Multiple segmentation approaches construct a pool of initial segments by varying

the controlling parameters of a segmentation algorithm or by starting from a coarse seg-

mentation and iteratively refining the segmentation by merging or further segmenting
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initial segments. They generally assume that each object will be well segmented at some

parameter setting or level. [26] pointed out that merging small connected subsets (pairs

and triples) of base segments improves recognition performance. However, the algorithm

in [26] employed manually choosing the segments to merge. One could simply join all

possible pairs and triples of connected segments but this would lead to an explosion in

the segment pool size. In contrast, we construct a “good” set of mergings using a clas-

sifier which rejects combination which are unlikely to correspond to “complete” objects

(section 4).

We organize these segments into a hierarchical segment graph for recognition. The

graph structure allows us to impose constraints that reduce the combinatorics of the search

process - for example, that a solution cannot include overlapping segments, since this

could lead to pixels being given multiple labels.

Given the segment graph, we compute pairwise and higher-order constraints on

selection of segments. We then formulate a cost function which accounts for local ap-

pearance and enforces pair-wise contextual relationship consistency (such as sky above

water, road below car, etc). Directly optimizing this cost function is NP hard so the cost

function is approximately minimized by first relaxing the selection problem. The relaxed

problem can be solved efficiently by quadratic programming (QP). The relaxed solution is

then discretized to obtain the final labeled segmentation (section 5). Finally, we evaluate

the performance of our approach with previously reported methods (section 6).
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2.4 Constructing the Segment Graph

Obtaining the Initial Segment Pool: We use the hierarchical segmentation algo-

rithm from [27] to construct the segment pool. To increase the robustness of the segmen-

tation algorithm, we use the stability based clustering analysis of [28]. Stability analysis

selects segments which are stable under small perturbations (noise) to the image.

In the first step, image is segmented and the segments in the first hierarchical level

are added to the segment pool. Then each of these segments is iteratively segmented and

the smaller segments are added to the segment pool until any of the following condi-

tions are met. (1) The segment size is too small (< 2% of total image pixels). (2) The

integrated edge strength along the boundary of the segment (obtained by Berkeley edge

detector [29]) is below a threshold. (3) The number of leaf nodes in the segment subgraph

rooted at the original segment exceeds a threshold.

This procedure gives us initial segment pool over which we will perform segment

selection.

Merging Segments: The base segmentation algorithm seldom produces segments

that directly correspond to the objects in the image. Hence, we merge small (2 and 3) con-

nected sets of segments from the segment pool to obtain a better collection of segments.

But allowing all possible segment merges would explode the size of the pool. To limit the

number of pairs and triples merged, we learn a function that scores these small subsets

from a training set of fully labeled images.

A Support Vector Regression (SVR) [30] model using radial basis functions is

learned from the training images to score potential merges. We compute color, texture
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and edge features similar to those used by Hoiem et. al. [31] for each segment of an ob-

ject. Based on these features, the SVR predicts whether the segments should be merged

or not. Training images are segmented using the segmentation algorithm described above

and a segment pool is obtained for each image. Objects which are broken into mul-

tiple segments are determined using the ground truth segmentation. These fragmented

objects provide positive examples and the negative examples are obtained using random

samplings from the training data. For a testing image, each adjacent pair and connected

triple2 of segments is evaluated for merging using the regression model learned, providing

a score for each merging. The pairs and triples with scores above a threshold are added to

the segment pool.

2triples of segments are constructed by evaluating merging of a segment from the initial pool with an

adjacent segment formed from the pairwise merging step.
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Figure 2.2: Graph on top shows the improvement in spatial support with increase in pool

size. Image below the graph shows the instances where SVR model correctly merged

fragmented segments of objects in the pool to complete the object segment.
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We evaluated the merging scheme on the 256 test images in the MSRC dataset.

Figure 2.2 shows the spatial support in the pool with increasing pool size. The pool size

is increased by lowering the threshold at which mergings are accepted. To demonstrate

that the SVR learns an informative merging function, we compare the spatial support

metric when the segment pool is enlarged using random merges (red curve in Figure 2.2).

Although spatial support increases (which it obviously must), it does so at a much slower

rate than the SVR.

Construction of the Segment Graph: The pool of segments are then arranged

in a hierarchical graph structure to which our inference algorithm will subsequently be

applied. The graph structure is constructed as follows: The root node is assigned to the

whole image. A segment Si is a child of segment Sj if segment Si ⊂ Sj . If two segments

Si and Sj are subsets of a Sk then both the segments are children of segment Sk. The

segments which have no smaller segment subsets are leaf nodes.
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Figure 2.3: Our approach: We first create a pool of segments using multiple segmenta-

tions of an image and merging some of the connected pairs and triples of these segments.

These segments are arranged in a graph structure where path constraints are used to ob-

tain selection constraints. An example of a path constraint is shown using green edges:

only one segment amongst all the segments in the path can be selected. The magenta

arrow shows that two segments which overlap cannot be selected simultaneously. Finally,

the QP framework is used to find the set of segments, together with their labels, which

minimizes the cost function given the constraints
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2.5 Piecing together the Segments

Our goal is to select a set of segments from the pool such that each segment has

high overlap with a ground-truth segment and is assigned its correct label.

We formulate a cost function which evaluates any possible selection and labeling

of segments from the pool. Each segment, Si in the pool is associated with a binary

variable X i which represents whether or not the segment is selected. With each selected

segment we also associate a set of C binary variables, (X i
1...X

i
C), which indicates the

label associated with the segment. X i
j = 1 represents that segment i is labeled with class

j. Our goal is to choose X i such that the cost-function J is minimized, where J is

defined as:

J =
∑
i,j

−w1AijX
i
j −

∑
i

w2SiX
i +
∑
i,j

∑
k,l

w3X
i
jPijklX

k
l (2.1)

The cost function consist of three terms. The first term uses an appearance based

classifier to match the appearance of selected segments with their assigned labels. The

second term is the explanation reward term which rewards the selection of segments pro-

portional to their size. The third term is a context satisfaction term which penalizes assign-

ments which do not satisfy the contextual relationships learned from the training data. We

discuss each of these terms below. The weight w1,w2,w3 are obtained by cross validation

on a small dataset and for our experiments we use 1, 1.5 and 0.5 respectively.
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2.5.1 Constraints on Segment Selection

While there are 2NS possible selections (where NS is the number of segments in

the pool), not all subsets represent valid selections. For example, if segment i is selected

and assigned label j, then other segments which overlap with segment i should not be

selected to avoid multiple labeling of pixels. Figure 2.3 shows the overlap constraint by

a magenta arrow where the two car segments which overlap cannot be chosen simulta-

neously. Similarly, two segments along a path from the root to any leaf node cannot be

selected together. Figure 2.3 shows one such path constraint in green, where selection of

the car and its subset segments simultaneously is prohibited.

These constraints are represented as follows:

0 ≤ X i +Xk ≤ 1 ∀(i, k) ∈ O (2.2)

0 ≤ Xp1 +Xp2 ....Xpm ≤ 1 ∀p ∈ P (2.3)

where O represents the set of pairs of regions in the graph that overlap spatially and

P represents the set of paths from the root to the leaves in the segment graph. Additional

constraints that are enforced while minimizing the cost function J include:

0 ≤ X i ≤ 1 (2.4)∑
j

X i
j = X i (2.5)

These constraints allow only one label to be assigned to each selected segment.
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2.5.2 Cost Function

We now explain the individual terms in the cost function.

Appearance Cost: The first term in the cost function evaluates how well the ap-

pearance of the selected segment i associated with label j matches the appearance model

for class j. For computing Aij , we learn an appearance model from training images using

a discriminative classifier over visual features. We use the appearance features from [31]

and learn a discriminative probabilistic-KNN model as in [32] for classification.

Explanation Reward: This term rewards selecting a segment proportional to its

size, represented by Si. This term avoids the trivial solution where no segment gets se-

lected by the algorithm.

Contextual Cost: The third term evaluates the satisfaction of contextual relation-

ships for a given selection of segments and their label assignment. We model context

by pair-wise spatial and contextual relationships as in [14]. If segment i is assigned to

class j and segment k is assigned to class l, Pijkl measures the contextual compatibility

based on co-occurrence statistics of classes j and l. We also evaluate spatial contextual

compatibility by extracting the pairwise-differential features as in [14] for segments i and

k and comparing them with a learned model of differential features for labels (j, l). For

example, if the labeling is such that sky occurs below water then the penalty term is kept

high and vice-versa. The penalty term is defined as:

Pijkl = C1 exp(
(di,k − µj,l)2

2σ2
j,l

) + C2 exp(−αMj,l) (2.6)

where C1, C2 and α are constants. di,k is the differential feature between segment i
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Figure 2.4: PASCAL VOC’09 labeling results. Columns (a) and (d) - original images.

Columns (b) and (e) show the performance of appearance based approach without context.

Columns (c) and (f) show the performance of our algorithm with context. Best viewed in

color.

and segment k. µj,l is the mean differential feature obtained from training between class

labels j and l. The termMj,l represents the co-occurrence of classes j and l, also obtained

from training. We employ eight differential features - ∆x,∆y,∆µred,∆µgreen,∆µblue,∆µbrighter,

adjacency and overlap.
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2.5.3 Optimization

For optimizing the cost function, we relax the binary variables X i and X i
j to lie in

[0, 1]. We use the Integer Projected Fixed Point (IPFP) algorithm [33] to minimize the

cost function.

The solution generally converges in 5-10 steps, which makes it very efficient, while

outperforming current state-of-the-art methods for inference. IPFP solves quadratic opti-

mization functions of the form:

x′∗ = argmax(x′TMx′) s.t.Ax′ = 1, x′ ≥ 0 (2.7)

To use the IPFP algorithm, we transform the original equation 1 into 7 through the

following substitution: x′ = ( 1
X ) and M =

(
0 (A+S)T /2

(A+S)/2 −P

)
. The path constraints

discussed in section 5.1 are incorporated as constraints in a linear solver during step 2 of

the optimization algorithm.

In the second step, the relaxed solution is then discretized to obtain an approximate

solution. Here, higher probability segments are selected first and assigned their class

labels as long as segment selection constraints are satisfied.

2.6 Experiments

We evaluated the performance of our algorithm on three standard dataset: Label Me

subset (used in [16]), PASCAL VOC 2009 [34] and MSRC [11].
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Table 2.1: Performance comparison of our algorithm against previous approaches on

PASCAL VOC09 dataset.

Hierarchical

CRF [23]

Hierarchical CRF

with CO [23]

Ours

w/o Context

w/Merging

Ours

w/Context

w/o Merging

Ours

Context

w/Merging

Background 77.7 82.3 76.4 61.2 85.8

Aeroplane 38.3 49.3 25.6 37.3 39.8

Bike 9.6 11.8 8.0 5.5 7.6

Bird 24.0 19.3 14.2 20.6 18.4

Boat 35.8 37.7 47.3 36.0 45.0

Bottle 31.0 30.8 8.1 14.6 8.4

Bus 59.2 63.2 30.5 30.8 44.6

Car 36.5 46.0 53.7 55.3 66.1

Cat 21.2 23.7 50.1 46.8 54.2

Chair 8.3 10.0 18.6 10.6 11.2

Cow 1.7 0.5 9.1 4.2 10.3

Table 22.7 23.1 48.5 40.2 52.7

Dog 14.3 14.1 10.9 11.3 15.2

Horse 17.0 22.4 15.8 17.3 23.5

MBike 26.7 33.9 33.8 29.0 39.2

Person 21.1 35.7 47.3 36.1 50.8

Plant 15.5 18.4 10.2 9.1 11.5

Sheep 16.3 12.1 15.7 29.3 31.5

Sofa 14.6 22.5 11.2 12.8 19.8

Train 48.5 53.1 48.6 47.4 40.4

TV 33.1 37.5 35.2 38.2 48.9

Average 27.3 30.8 29.5 28.3 34.5
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Table 2.2: Performance comparison of our algorithm against other approaches on La-

belMe dataset.

Texton-

boost

MRF

based

Jain

et.al. [16]

Ours(no Con-

text,Merging)

Ours(Context,no

Merging)

Ours(Context,

Merging)

pixel wise 49.75 54.2 59.0 65.23 71.9 75.6

class wise 20 30.2 – 38.5 43.5 45
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LABEL-ME: [16] used a subset of LABEL ME containing 350 images - 250 train-

ing and 100 testing. The dataset contains 19 classes. Performance is measured using the

two standard measures from [16]. For comparison, we also evaluate four approaches in

addition to those compared in [16] (1) Our multiple segmentation framework, but without

contextual information. (2) A fully connected MRF-model similar to [15], which per-

forms recognition using context on a fixed segmentation obtained using stability analysis.

(3) A Texton-boost approach 3 without the CRF model, and 4) our method applied to the

initial segment pool, but without the SVR merged segments.

Figure 2.5 shows a few qualitative examples of our approach. When context is

not utilized many small segments are mislabeled and matched to wrong object classes.

However, when context is added many of these errors are eliminated.

Table 2.2 shows the quantitative performance of our approach compared with these

four methods and [16] using the two standard evaluation metrics. Our approach has a

pixel-wise accuracy of 75.6%; when only appearance is used the performance falls to

65.23%. This shows that contextual information is critical not only for recognition but

also for segment selection. As expected, the fixed segmentation MRF model has a low

pixel-wise accuracy of 54.2%. The publicly available version of Texton-boost achieves

just 49% pixel-wise accuracy. This is because Texton-boost relies on pixel-based appear-

ance models. These are adequate for modeling regions like ‘grass’ and ‘sky’ but perform

poorly for objects whose recognition requires cues such as shape.

3http://jamie.shotton.org/work/code/
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PASCAL VOC 2009: The PASCAL VOC 2009 dataset [34] consists of 1499 im-

ages which is split into 749 images for training and 750 images for validation. We fol-

low the protocol used by [23] to compare against the state of the art, and use the same

evaluation metric as [23]. Table 5.1 shows the class wise performance of our approach

compared with the other approaches. Our approach outperforms previous approaches on

many classes which shows that it generalizes to a large number of object classes. Our bet-

ter performance on classes like Car, Cat, Horse, Sheep, Cow, Monitor, Dog and Person

supports our contention that a multiple segmentation approach performs better on object

classes for which shape is important. Table 5.1 also shows that both context and merging

improves recognition by choosing segments which have better spatial support.

Figure 2.4 shows some qualitative results on VOC 2009. Columns (b) and (e) show

the labeling performance of our algorithm solely based on appearance. The algorithm

using only appearance leads to a variety of errors such as the wing of the airplane being

labeled as boat, the ground in the horse image as dining table, and the painting above the

sofa as a person. Columns (c) and (f) show the performance of our approach with context.

Figure 2.6 compares qualitative results of our algorithm with and without mergings and

elucidates the importance of merging for better recognition. For example, in the sign

image, the parts of the sign board are labeled as water and building but after merging

them, it is correctly labeled as sign board.

MSRC dataset: Our algorithm achieved 75% (pixel-wise) and 68.7%(classwise)

on the MSRC dataset, which is comparable to state-of-the-art results except [23]. MSRC

is relatively simple and does not significantly benefit from the use of multiple segmenta-

tions. Our approach performs better than [23] for classes like bird, car and cow, where
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multiple segmentation and merging helps by creating segments whose shapes are closer

to class models, but performs poorer on “stuff” classes such as grass and sky.

2.7 Conclusion

We described an approach for simultaneous segmentation and labeling of images

using appearance and context. The optimization criteria developed was solved by relaxing

the discrete constraints and employing a quadratic programming method. The relaxed

solution was then discretized (and additional constraints were introduced) using a greedy

algorithm. Experiments on three well studied datasets demonstrated the advantages of the

method.
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Chapter 3: Object Co-Labeling in Multiple Images

3.1 Introduction

With the recent surge in photos and videos taken from hand-held devices and those

shared online, many of which are taken of the same scenes, the need to automatically label

objects in such image sets has emerged. Traditional approaches to recognition typically

consider only a single test image [35]. However, due to variation in data distribution,

occlusion and viewpoint change, object models may not always capture the appearance

of objects and ambiguity arises. Recently, context information has also been modeled

to capture relationships between objects at the semantic level to reduce such ambigui-

ties [28, 36, 37]. However, modeling relationship between objects is difficult as they are

also viewpoint dependent and do not generalize well [16].
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Figure 3.1: Object Co-labeling for multiple images. Column (a) shows the original im-

ages taken of the same scene, (b) is the groundtruth labeling, (c) the results of single

image parsing and (d) our co-labeling framework. Given images of the same scene, ob-

ject co-labeling can correctly label the major objects even when appearance models failed

to parse images.
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Consider the example in Figure 3.1. These images of vehicles are taken of the

same scene but at different times. Due to occlusion, the learned vehicle model does

not classify vehicles in all the frames correctly. However, if we consider these images

together, we find that they share similar appearance and space-time consistency with the

surrounding objects and background. So, even though a region in one image may not look

like a car to the car detector, it might be visually similar to the region in another image

corresponding to the same car that the car detector responds to strongly . This example

explains the motivation of our work. We are trying to answer the question - “Can we do

better inference using information from other images of the objects in related scenes?”

We introduce a new problem that we call object co-labeling. Given a set of images of

the objects in the same scene, the goal of co-labeling is to locate and pixel-wise label the

principal objects such as car, building and road in all images. We will demonstrate that

our framework generalizes well to other similar applications, such as label propagation in

videos and semantic segmentation and annotation in similar scenes.

We propose an approach to select the best segmentation and labeling in a single

optimization procedure that utilizes low-level information across all the images to perform

segment selection and object labeling coherently. We build on the multi-segmentation

frame work proposed in [38]. We first segment the images; to overcome the fragmentation

problem, we allow connected segments to be merged based on local color, texture and

edge properties. We then include the mid-level cues to constrain the solution space -

for example, the segment merging step leads to overlapping segments, and we restrict

global solutions to exclude overlapping segments (avoiding the possibility of multiple

labeling for pixels). By incorporating label coherence between region pairs with low
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level correspondence determined by SIFT flow [39], we find the subset of segments that

best explains the images. For example, in Figure 3.1, the bus in the first image is labeled

as “Building” when labeled in isolation. However, due to its strong correspondence with

other bus segments in other images of the scene, it is correctly labeled as bus by our

approach.

The contributions of our paper are: (a) a general framework for object co-labeling

which allows us to segment and pixel-wise label objects from multiple images; (b) a novel

approach to co-label objects in a multiple segmentation framework in multiple images, (c)

a novel objective function that can be optimized efficiently to perform segment selection

and co-labeling across all images in the same scene . (d) a co-labeling framework that can

be generalized to other recognition tasks such as label propagation in video sequences

and semantic segmentation and labeling of object categories in similar scenes.

3.2 Related Work

Our paper is related to and inspired by several other problems in computer vision.

Scene alignment: One of the basic problems of computer vision in multiple images

is scene alignment. Optical flow is proposed in [40] for the correspondence problem

between two adjacent frames in dynamic scenes in video sequences. It is a dense sampling

in the temporal domain to align temporally continuous frames. In order to cope with

more general scene matching problems, [39] proposed SIFT Flow. It establishes dense

correspondence of SIFT descriptors in different images by using discontinuity-preserving

optical flow. This method provides a robust low-level correspondence for images and is

36



shown to outperform traditional optical flow algorithms. But it is based on a pixel-level

matching that can not capture the object level information, and thus only works when two

images are very similar.

Image Parsing: Many approaches have been proposed to annotate image for scene

understanding. A common pipeline is to first segment the image and then infer labels

by adding contextual relations between segments [16, 36, 41]. To overcome fixed seg-

mentation issues, joint segmentation and recognition frameworks have been proposed

[20, 38, 42]. [43] proposed a framework to label road scenes, where they learn models

from limited training data and adapt to new scenes during testing. Some approaches by-

pass the segmentation step and directly transfer labels from training data. [44] further ex-

tends SIFT Flow for non-parametric scene parsing by retrieving images of similar scenes

in the training set and transfer the labels to the query in a Markov Random Field. How-

ever, they need to retrieve over 20 training images per query, and only work well when

the retrieved training images are similar to the query. [45] proposed a non-parametric

image parsing algorithm that also doesn’t require training. They transfer information at

the superpixel level using complex features.

Label Propagation: The goal of label propagation is to automatically annotate the

video given a few annotated frames. [46] proposed an Expectation Maximization (EM)

based approach to automatically propagates labels through frames. [47] uses a weighted

combination of motion, appearance and spatial continuity evidence to propagate labels in

frames and uses graph cut to minimize the energy. However, all these approaches assume

temporal consistency and small object motion which is not true in our case. [48] proposed

an approach that first classifies images then propagates labels based on a similarity metric,
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but their goal is medical image classification. Our problem is more general as it requires

annotating images which do not share temporal consistency and we are annotating multi-

class pixel labels in complex scenes.

Cosegmentation Our work is inspired by some of the recent works in “co-segmentation” [49,

50]. In co-segmentation, the goal is to automatically segment images of similar scenes in

a joint manner. [51] extended the cosegmentation approach to multi-class segmentation.

We extend this problem of co-segmenting images to co-labeling images. Th multiple fore-

ground co-segmentation (MFC) problem studied by [52], [53], [54] and [55] is similar

in spirit where the goal is to segment K foreground objects in M images. In these works,

objects (girl and baby) belonging to same semantic class (person) can be labeled as dif-

ferent foregrounds in MFC problem. So cosegmentation does not address the problem of

labeling the foreground semantically. Moreover, the goal of co-segmentation problem is

not scene understanding. Our problem is dense pixel labeling and scene understanding,

where we model the relationships between semantic objects.
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Figure 3.2: Our approach: We first create a pool of segments using multiple segmentations

for each image. These segments are arranged in a graph structure where path constraints

are used to obtain selection constraints. An example of a path constraint is shown using

green edges: only one segment amongst all the segments in the path can be selected. We

then define a co-labeling consistency cost based on the strength of SIFT flow connection

between segments in different images, shown as the red edges in the figure, where the

width of each edge denotes the SIFT flow similarity. Finally, a QP framework is used

to find the set of segments, together with their labels, which minimizes the cost function

given the constraints
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3.3 Overview

Our framework is shown in Figure 3.2. Our approach starts by constructing a pool

of multiple segments for each image. Our multiple segmentation approach, similar to

[56], constructs a pool of initial segments by varying the controlling parameters of a

segmentation algorithm or by starting from a coarse segmentation and iteratively refining

the segmentation by merging or further segmenting initial segments. In contrast to [56]

where segments are manually chosen to merge, we construct a good set of mergings [38]

using a classifier which rejects combinations which are unlikely to correspond to complete

objects (section 3.4). The final segment graph is organized in a hierarchical manner to

impose constraints for selection.

Given the segment graph, we then compute the pairwise low level correspondences

between each pair of segments in different images using SIFT flow. The two images may

contain different object instances captured from different viewpoints, placed at different

spatial locations or may be taken at different scales. In addition, some objects present in

one image might be missing in other images. Thus, it is suitable for our co-label task to

establish correspondences between different segments. However, to our knowledge, there

are very few works to use SIFT flow to establish superpixel level correspondence. We

first compute SIFT flow between each pair of images. Then the correspondence between

each pair of segments in the two images is estimated as the ratio of number of pixels in

one segment flowing to the other.

After computing the low level correspondence graph, we formulate a cost function

which accounts for local appearance and enforces pairwise consistency of segments be-
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tween the images. Directly optimizing this cost function is NP hard. Therefore, the cost

function is approximately minimized by first relaxing the selection problem. The relaxed

problem is solved efficiently by quadratic programming (QP). The relaxed solution is then

discretized to obtain the final labeled segmentation (section 3.5.2). Finally, we evaluate

the performance of our approach with previously reported methods (section 4.5).

3.4 Constructing the Segment Graph

We used the hierarchical segmentation algorithm from [57] to construct the segment

pool. We then learn a merging function as described in [38] to obtain a better pool of

segments using color, texture and edge features similar to those used by Hoiem et. al. [31]

for each segment of an object. This learned merging function improves the spatial support

of our segments and now the goal is to select subset of segments which are consistent

across images. We organize the segments of each image into a hierarchical segment

graph for recognition. The graph structure allows us to impose constraints that reduce

the combinatorics of the search process - for example, that a solution cannot include

overlapping segments, since this could lead to pixels being given multiple labels. Pairwise

constraints on selection of segments are computed given the segment graph. The path

constraints in the segment graph hierarchy guarantee that each pixel in the images is

labeled once and only once.
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3.5 Colabeling segments

In the co-labeling stage, the goal is to select and label segments from all the images

at the same time. Given a pool of segments from all images and the hierarchical graph

of multiple segmentations for each image, our goal is to select a set of segments from the

pool such that each segment has high overlap with a ground-truth segment and infer the

best labels that are consistent across all images.

We formulate a cost function which evaluates the subset selection and labeling of

segments from the pool. Given M test images I = I1, ..., IM , each segment, Si in the

pool is associated with a binary variable X i which represents whether or not the segment

is selected. With each selected segment we also associate a set of C binary variables,

(X i
1...X

i
C), where X i

j = 1 represents that segment i is labeled with class j. Our goal is to

choose X i such that the cost-function J is minimized, where J is defined as:

J = −w1

∑
In

∑
i,j

AijX
i
j + w2

∑
In,Im

∑
i,j

∑
k,l

X i
jPijklX

k
l (3.1)

where In, Im ∈ I,m 6= n and Si ∈ In, Sk ∈ Im.

The cost function consist of two terms. The first term uses an appearance based

classifier to match the appearance of selected segments with their assigned labels. The

second term is a label consistency constraint which gives high penalty to the segments

in two images that do not have a strong low level connection. We discuss each of these

terms below. The weights w1 and w2 are obtained by cross validation on a small dataset

and for our experiments we use 1 and 0.1 respectively.
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3.5.1 Constraints on Segment Selection

While there are 2NS possible selections (where NS is the number of segments in the

pool), not all subsets represent valid selections. For example, if segment i is selected and

assigned label j, then other segments which overlap with segment i should not be selected

to avoid multiple labeling of pixels. Similarly, two segments along a path from the root

to any leaf node cannot be selected together. Figure 3.2 shows one such path constraint

in green, where selection of the bus and its subset segments simultaneously is prohibited.

These constraints are represented as follows:

0 ≤ X i +Xk ≤ 1 ∀(i, k) ∈ On (3.2)

0 ≤ Xp1 +Xp2 ....Xpm ≤ 1 ∀p ∈ Pn (3.3)

where On represents the set of pairs of regions in the graph that overlap spatially and

Pn represents the set of paths from the root to the leaves in the segment graph in image

In ∈ I. Additional constraints that are enforced while minimizing the cost function J

include:

0 ≤ X i ≤ 1 (3.4)∑
j

X i
j = X i (3.5)

These constraints allow only one label to be assigned to each selected segment.

3.5.2 Cost Function

We now explain the individual terms in the cost function.
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Table 3.1: Our superpixel features

Feature Descriptors

Type Name Dimension

Color

RGB 3

HSV values 3

Hue 6

Saturation 4

Texture
DOOG filters and stats 15

Texture Histogram 100× 2

Shape and Location

Normalized x and y 8

Bounding box size relative to image size 2

Segment size ratio to the area of the image 1

SIFT SIFT Histogram 100× 2
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Appearance Cost: The first term in the cost function evaluates how well the ap-

pearance of the selected segment i associated with label j matches the appearance model

for class j. For computing Aij , we learn an appearance model from training images using

a discriminative classifier over visual features. We use the appearance features for super-

pixels from [45] and learn a discriminative probabilistic-KNN model as in [32, 58] for

classification.

Consistency Cost: The second term evaluates the satisfaction of label consistency

between segments in different images. Given the SIFT flow of each pair of images in the

test set, we can obtain a correspondence strength for each pair of segments between them.

Then we assign a cost according to these edge strengths between segments, giving high

penalty to those with weak correspondence and reward to those with strong correspon-

dence. The penalty term is defined as:

Pijkl = exp(
−αφ(Si, Sk)

2

2σ2
) (3.6)

where α and σ are constants (α = 0.05 and σ = 0.5 in our experiments). φ(Si, Sk)

is the low level similarity between segment Si and segment Sk in two different images.

We estimate the SIFT flow similarity between superpixels in the following way. Let

fSi 7→Sk
: R2 7→ R2 be the SIFT flow from Si to Sk, then φ is defined as the ratio of the

number of pixels in Si flowing to Sk:

φ(Si, Sk) =
||fSi 7→Sk

(Si) ∩ Sk||0
max{||Si||0, ||Sk||0}

(3.7)
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3.5.3 Optimization

To optimize the cost function, we relax the binary variables X i and X i
j to lie in [0,

1] and use the Integer Projected Fixed Point (IPFP) algorithm [33] to minimize the cost

function. The solution generally converges in 10-15 steps which is reasonable for the

problem size. IPFP solves quadratic optimization functions of the form:

x′∗ = arg max(x′TMx′) s.t.Ax′ = 1, x′ ≥ 0 (3.8)

To use the IPFP algorithm, we transform the original equation 1 into 8 through the fol-

lowing substitution: x′ = ( 1
X ) and M =

(
0 AT /2
A/2 −P

)
. The path constraints discussed

in section 5.1 are incorporated as constraints in a linear solver during step 2 of the op-

timization algorithm. In the second step, the relaxed solution is discretized to obtain an

approximate solution. Here, higher probability segments are selected first and assigned

class labels as long as segment selection constraints are satisfied.

The optimization scheme above is efficient for inference. The bottleneck of the

running time is the calculation of SIFT flow dense matching, which takes approximately 3

to 5 seconds for each pair of images of size 640×320. Once the SIFT flow is precomputed,

the batch inference of about 100 images in a sequence takes about 3 seconds with our

Matlab implementation.

3.6 Experiments

We evaluate our co-labeling algorithm on three tasks: co-labeling objects in the

same scene, where we train the appearance model on fully-annotated multiclass training
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image sets then test on images of the same scenes; object segmentation and recognition in

similar scenes, where the objects in each subset are in the same categories and in similar

but different scenes; and multiclass label propagation in video sequences, in which the

labels of one or two frames are given and the labels are propagated to the rest of the

frames in video sequences. In these experiments, we use the combination of features

from [45] and [31]. Table 3.1 shows our features setting in detail.

3.6.1 Co-label Objects in the Same Scenes

In this task, we use the SUNY Buffalo 24-class Dataset [47], one of the multi-

class video pixel label propagation benchmarks, to evaluate our co-labeling algorithm.

This dataset contains 8 video clips with 70 to 88 frames each, with pixel-wise labeled

groundtruth. Each clip is taken in one scene with either the camera or the objects moving.

To show that our algorithm can work without temporal adjacency, we evenly sampled 20

frames in each video to form our test data. Tabel 3.2 shows our colabel results on the 8

subsets. We compare our results with the label propagation algorithm in [47] and show

improved results compared to theirs. Figure 3.3 and Table 3.2 shows some qualitative and

quantitative results on this data. Our colabeling algorithm achieves better performance

in 7 out of 8 subsets, and outperforms the benchmark method in global and classwise

measures. Moreover, for all subsets, our colabeling algorithm outperforms the accuracy

of single image parsing, showing that co-labeling improves label accuracy for objects in

the same scene.
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Bus Container Garden Ice Paris Salesman Soccer Stefan Global

[47] 35.86 76.66 66.09 60.84 67.98 77.95 84.15 59.93 63.46

Single label 70.14 83.16 69.68 88.91 61.76 70.66 82.49 85.01 79.86

Colabel 75.75 89.97 74.24 90.41 68.52 75.68 87.43 90.04 84.33

Table 3.2: Quantitative results of colabeling objects in the same scene on SUNY Buffalo

dataset, compared with the method in [47].

(a) (b) (c) (d) (a) (b) (c) (d)

Legend ship water ground tree body sky sign void building face

Figure 3.3: Qualitative labeling results of two subsets in SUNY Buffalo datasets.

Columns (a) to (d) correspond to the original image, groundtruth labeling, single image

parsing results and co-labeled results. Best viewed in color.
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Bus Container Garden Ice Paris Salesman Soccer Stefan Global

[47] 40.59 94.7 64.12 60.04 67.95 76.75 82.25 59.59 66.7471

Single label 68.74 81.03 67.89 74.47 60.73 64.77 83.21 85.44 75.52

Colabel 72.61 86.15 70.23 81.68 66.49 72.76 88.08 89.13 80.36

Table 3.3: Quantitative results of video label propagation on SUNY Buffalo dataset, com-

pared with the method in [47].

25 Frames 50 Frames 100 Frames

Single Label 76.99 76.24 73.11

Label Propagation using Colabel 81.76 81.33 77.40

Table 3.4: Performance of label propagation in CamSeq01.

3.6.2 Label Propagation in Video Sequences

Our co-labeling framework can be applied to label propagation in video sequences.

In this task, the labels of the first two frames are given for each video sequence, then

propagated to the remaining frames. Instead of using a fully-connected pairwise cost,

we only have edges between adjacent frames in video label propagation. We test on two

video datasets with semantic pixel labels. The first is the SUNY Buffalo dataset we used

for colabeling. The second is the CamSeq01, a 101-frame sequence from the CamVid

dataset [59]. Table 3.3 and Table 3.4 show quantitative results on each dataset. We can

see that even without explicitly modeling temporal consistency, our co-labeling algorithm

still outperforms the baseline video label propagation algorithm on both datasets.
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3.6.3 Semantic Segmentation in Similar Scenes

Our co-labeling algorithm is also capable of labeling objects of the same semantic

category in different but similar scenes. In this experiment, we test on a subset of the

MSRC 21-class dataset [11]. The data is divided in a standard train-test split, but we

further divide the original 21 categories in test sets into finer subsets that shares a similar

scene type to form our MSRC Co-label dataset (See Figure 3.4). Table 5.3 and Figure 3.4

shows the quantitative and qualitative results of our framework, compared to labeling

each image individually. This shows that our co-labeling algorithm works not only for

objects in the same scene but can also generalize to object segmentation and recognition

in different but similar scenes in a challenging multi-class multi-object dataset.

We compare our supervised joint object segmentation and recognition in multiple

images of similar scene type with the recent work in [51]. They proposed an approach

for weakly supervised multiclass cosegmentation, where the images of the same object

categories (and mostly share a similar scene) are jointly segmented and classified given

weak labels. We evaluate the performance of [51] in the fully supervised multi-class seg-

mentation and classification task on our MSRC co-labeling dataset. We first cosegment

image sets in similar scenes using the settings in [51] then perform multi-class recognition

using the same feature as in Table 3.1. We tried different values of K and the results are

in Table 3.6. We can see that our co-labeling algorithm outperforms their performance in

the object co-labeling task. Moreover, [51] needs users to provide semantic class labels

of the test set of images. In contrast users in our approach just need to feed in a collection

of test images of similar scenes without the need to provide class labels. So our approach
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Figure 3.4: Qualitative labeling results of two subsets in our MSRC co-label dataset.

Columns (a) to (d) correspond to the original image, groundtruth labeling, single image

parsing results and co-labeled results. Best viewed in color.

requires less user interactions while achieving higher pixelwise accuracy compared to that

in [51].
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Single Label Colabel

grass 92.2 92.2

cow 42.5 58.5

sky 99.5 99.1

house 60.0 66.3

tree 77.9 64.3

sheep 46.1 56.3

flower 43.0 55.9

ground 82.3 78.8

book 51.0 81.1

dog 25.7 40.6

body 38.5 35.4

head 50.3 58.0

car 58.3 55.4

bike 69.3 72.7

plane 35.3 39.0

global 67.6 72.1

classwise 58.1 63.6

Table 3.5: Quantitative results of colabeling objects in our MSRC Co-labeling datasets.
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[51],K = 4 [51],K = 6 Colabel

grass 81.9 84.1 92.2

cow 15.0 13.2 58.5

sky 97.0 95.5 99.1

house 36.5 31.2 66.3

tree 27.7 50.1 64.3

sheep 9.1 22.2 56.3

flower 34.9 30.1 55.9

ground 25.0 78.7 78.8

book 33.5 35.9 81.1

dog 0.0 16.6 40.6

body 3.4 46.6 35.4

head 0.1 45.8 58.0

car 8.2 17.4 55.4

bike 7.0 14.4 72.7

plane 3.2 25.6 39.0

global 45.8 51.1 72.1

classwise 25.5 40.5 63.6

Table 3.6: Quantitative results of colabeling objects in our MSRC Co-labeling datasets,

compared with [51]
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3.7 Conclusion

We addressed the problem of object co-labeling, in which we aim to segment and

label multiple images of the same (or similar) scene(s) joinly. We propose a framework

that can jointly perform segment selection and labeling using appearance and low level

SIFT flow correspondence. The optimization criteria developed was solved by relaxing

the discrete constraints and employing a quadratic programming method. Experiments on

three well studied datasets demonstrated the advantages of the method.
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Chapter 4: Searching for Objects with Information Gain-based Twenty

Questions Strategy

4.1 Introduction

Object detection and segmentation in complex scenes is a central and challenging

problem in computer vision. Given an image, for example, Figure 5.1, our goal is to

answer the query: is there a car in the scene, and if yes, to locate it with a bounding box

or pixel-wise labels. This problem is usually tackled by running multiple object detectors

exhaustively on densely sampled sliding windows [60] or category-independent object

proposals [61–63]. Such methods are time-consuming since they need to evaluate a large

number of object hypotheses. In addition, due to variations in data distribution, occlusion

and viewpoint change, object models may not always capture the appearance of objects

and ambiguity arises. In the example of Figure 5.1, since the viewpoint and the scale

of the cars are not similar to those in common training images, it is difficult for the car

detector to recognize and locate them.

Instead of checking all hypotheses indiscriminately and exhaustively, humans only

look for a set of related objects in a given context. Context information has been modeled

to capture relationships between objects at the semantic level to reduce ambiguities from
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unreliable detection results [64–66]. For example, because roads and buildings often co-

occur with cars, knowing the existence of these objects can help us infer the locations

of cars. Usually, context-sensitive methods consider relations of the query object with

all other object classes in the scene at the same time. This is highly inefficient since

many non-informative contextual objects have to be queried. For instance, in Figure 5.1,

knowing the top of the scene is sky is not very helpful to distinguish whether there is a

car or a boat since both can be under the sky; while observing a road instead of water in

the lower part gives a strong indication of the existence of cars. And if we know there is

road, we do not need to ask about water. We note that the set of related object classes and

the order of asking questions about them is dynamic given a specific query in the scene

and knowledge of previous observations. This motivates us to raise the question: can we

utilize context information to locate query objects more accurately and more efficiently?

In this chapter, we propose a context-driven strategy to sequentially and dynami-

cally select the most informative object class to detect, and outputs detection result of the

query object when evidence from the context is strong enough. Our detector selection

strategy adapts to different queries and scenes. Specifically, at each step, we make a de-

cision about which detector to run based on responses from previous object detectors and

contextual classifiers. Our spatial-aware contextual model then refines the search area for

the query object and updates posterior probabilities for each class. This process is iter-

ated until there is little gain in further evaluating new detectors. Finally, we run the query

object detector in the output search area and use a unified probabilistic model to combine

the result with previously obtained contextual information. To the best of our knowledge,

this work is the first to handle the challenging task of simultaneous object detection and
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Figure 4.1: Illustration of our sequential search for objects in 20 context driven questions.
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segmentation in complex scenes using an active divide-and-conquer approach fully driven

by semantic context.

The contributions of this chapter are:

• a dynamic, closed-loop policy to decide the most informative action at each step

considering both the query object and the scene

• a general and unified probabilistic framework incorporating responses from multi-

class object detectors and contextual classifiers to update the model and conduct

inference

• a data-driven context model that not only encodes co-occurrence but also spatial

relations by efficient weighted vote maps from exemplars.

4.2 Related Work

Sequential Testing. The “20 question” approach to pattern recognition dates back

to Blanchard and Geman [67], motivated by the large number of possible explanations

in scene interpretation. They formally studied coarse-to-fine search in the theoretical

framework of sequential hypothesis testing, and proposed optimal strategies considering

both the cost and effectiveness of each test. Although they did not consider contextual

information, their work provides a theoretical foundation for the design of sequential

algorithms.

There are several works [68] on classifying objects by running classifiers sequen-

tially in an active order. [69] proposed an information gain based approach to iteratively
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pose questions for users and incorporate human responses and computer vision detector

results for fine-grained classification. [70] formulated object classification as a Markov

decision process, where actions are the detector to deploy next. The model maintains a

belief of object classes and keeps updating it based on new observations. They used rein-

forcement learning to train the detector selection policy, which becomes expensive when

the number of classes and data size is large due to exploration. However, these approaches

only focus on classifying objects. They have not addressed the challenging problem of

simultaneous segmentation and localization of objects in a multi-class scene as we do in

this chapter, and did not exploit inter-object context.

[71] applied a sequential decision making framework to window selection. The

next window is selected based on votes of previously evaluated windows. However, the

voting process needs to look up nearest neighbors in hundreds of thousands of exemplar

window pairs in the training set because their context is at the exemplar/instance level,

which is highly inefficient. In contrast, our context modeling is semantically aware so

we do not compute nearest neighbors over hundreds of thousands of windows in a high

dimensional descriptor space to retrieve the voters, we only need votes from a few re-

gions within the search space of context class instead of sampling hundreds of windows

in [71]. Our context model achieves good accuracy while greatly reducing computational

complexity.

Object Detection. A common approach to object detection is based on applying

gradient based features over densely sampled sliding windows [60].Such methods achieve

good results on classes like human and vehicles, but they are very inefficient since they

evaluate thousands of windows in an image, and false positive detections arise. To reduce
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the number of windows evaluated. [72] proposed a subwindow search based on a branch-

and-bound scheme and only evaluates the high scoring windows. Recently, category in-

dependent object proposals [61–63] have been proposed to generate a small number of

high quality regions or windows that are likely to be objects. These approaches dramat-

ically reduce the number of candidates and reduce false positive detections. Using these

object proposals [73, 74] train and apply deep neural network models on large datasets to

learn the feature extractor and classifiers, and achieve state-of-the-art performance on the

Pascal VOC detection challenge.

Object Recognition using Context. Context has been shown to improve object

recognition and detection. Model-based approaches learn the appearance of semantic cat-

egories and relations among them using a parametric model. In [11, 64–66, 75], CRF

models are used to combine unary potentials based on visual features extracted from su-

perpixels with neighborhood constraints and low level context. Inter-object context in the

scene has also been shown to improve recognition [38,65]. Most of these context models

are used as post-detection smoothing after all classifiers are run as unary potentials, and

then they are jointly incorporated in inference regardless of their importance to different

kinds of objects and scenes. Our framework, in contrast, evaluates the informativeness of

context in an active loop before classifications of all objects are made, and goes beyond

simple co-occurrence statistics.
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segmentation
voting
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action = ?
ask question

stop

Information gain
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area

start

Figure 4.2: Flow chart of our context driven object searching. We first generate region hy-

potheses using object proposal algorithms, then the policy evaluates the current state and

iteratively selects the most informative question considering both the scene and the query.

Afterwards, the possible search locations are updated and the posterior probabilities of

each category are updated for the next state.
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4.3 Overview

Our framework is shown in Figure 5.2. Given an image X and a query object class

cq, our goal is to determine whether and where it occurs in the image by sequentially pos-

ing and answering questions about object and context. To reduce the searching complex-

ity, our approach is based on object segment hypotheses generated by stable segmentation

algorithms [27] or category independent object proposals [63]. Features for the scene and

objects classification are precomputed. Initially classes with high cooccurrence with the

query class will be assigned to the “20 questions set” U = {q1, q2, ..., qM} where M is

the maximum number of questions to ask. Our goal is to learn a closed-loop policy that

makes decisions dynamically given computed context information. A closed-loop policy

is one that takes the previous feedbacks into consideration, while an open-loop policy is

one that makes decisions independently from the previous actions [70]. We design a dy-

namic closed-loop policy to select the most informative next action by exploiting signal

in the current scene and integrating observations over time. After the action is taken, the

policy updates the posterior probability of the query class and the observed classes given

the observations of responses so far, and evaluates the information gain. If the informa-

tion gain is small, we use the output policy (See Section 4.4.4), to output the reduced

possible search space for the query object, and then run the object detector for the query

class together with the obtained context probabilities. We describe our search policy and

context modeling in Section 4.4.1 and Section 5.4.2 respectively, then present the imple-

mentation details in Section 4.5.2. Finally we evaluate the performance of our approach

in Section 4.5.
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4.4 Search for Objects in 20 Questions

Given an image X = {x(i, j)} and a query object class cq, our goal is to output

the detection and localization results of the query class in the scene. We model it in a

reinforcement learning framework, where we design two policies: one is for sequential

searching driven by context, and the other is the output policy. In this framework, we

have a state s(t) = (X,Rt) ∈ S that includes the image X and the observation Rt at time

t. Our search policy π(s(t), at) : S → A maps the current state to the next action at in

the action space A.

4.4.1 Context Driven Search Policy

Our search policy is shown in Algorithm 1. During test time, our policy repeatedly

selects an action at ∈ A, executes it, and obtains response rt at time step t, and then

selects the next action. The set of actions A = {a1, ..., aC , STOP}, where ai :=“ask

questions qi”, and qi :=“where is class ci”, or stop and apply the output policy to evaluate

the final results once the information gain is too small.

Formally, at each time step t, we select a question qt and take action at to evaluate

it. Let Rt = {r1, r2, ...., rt} be the observations of responses to the actions taken at time

1...t, where the response rt = p(ct|X) is the detection or classification probability of

class ct corresponding to question qt. We propose a policy to use maximum information

gain of both the scene and the query object as the criterion to select qt. Such criteria are

commonly used in decision theory, require no training and few parameters, and can easily

adapt to different query classes and scenes.
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Algorithm 1 Context Driven Object Search Policy
Input: X , cq

Initialization: R0 = ∅,A = {a1, ..., aC , STOP}, H(c|X,Rt) = 0, Xc = X, c = {1, .., C}

while |A| > 0 and do

ct, I∗ = argmaxci,I I(c; ci|X,Rt)

if I∗ < δ then

at := STOP

break

end if

at := run classifier/detector of ct

A ← A\at

for Xs ∈ Xct do

p(ct|Xs)← at

end for

for c ∈ C do

for s ∈ Xct do

for i-th region pair (sict, s
i
c) ∈ training set do

p(c|ct, Xs)← vote(sict, s
i
c)

end for

end for

p(ct|c,X)← p(c|ct, X)p(ct|X)

p(Rt+1|c,X)←
∏t

i=1 p(ci|c,X)

p(c|X,Rt+1)← p(Rt+1|c,X)p(c|X)

H(c|X,Rt+1)← Entropy(p(c|X,Rt+1))

end for

rt := observation after at

Rt+1 = Rt ∪ rt

I ← p(rt|X,Rt)(H(c|X,Rt ∪ rt)−H(c|X,Rt))

end while

Output p(cq|X,Rt)
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We define I(c; ri|X,Rt), the expected information gain of posing the additional

question qi as follows:

I(c; ri|X,Rt) = λIcq(c; ri|X,Rt) + (1− λ)Iscene(c; ri|X,Rt) (4.1)

where Icq(c; ri|X,Rt) and Iscene(c; ri|X,Rt) are expected information gain for the query

class and scene respectively. λ is the parameter to balance query and the scene informa-

tion, which can be learned or determined via cross validation.

4.4.1.1 Information about the Query

To select the most informative question that leads to an answer regarding the query

object, we define the information gain for the scene based on posing question qi as:

Icq(cq; ri|X,Rt)

= Er[KL(p(cq|X, ri ∪Rt)||p(cq|X,Rt))]

= pcq(ri|X,Rt)(H(c|X, ri ∪Rt)−H(c|X,Rt))

(4.2)

where H(cq|X,Rt) is the entropy of p(cq|X,Rt)

H(cq|X,Rt) = −
1∑

cq=0

p(cq|X,Rt) log p(cq|X,Rt) (4.3)

4.4.1.2 Information about the Scene

Besides the query class, our information gain based policy also considers context

consistency in the scene and selects the context class that is both relevant and easy to find

in the scene for making a decision about the query. The information gain for the scene by
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posing question qi is defined as:

Iscene(c; ri|X,Rt)

= Er[KL(p(c|X, ri ∪Rt)||p(c|X,Rt))]

= pscene(ri|X,Rt)(H(c|X, ri ∪Rt)−H(c|X,Rt))

(4.4)

where H(c|X,Rt) is the entropy of p(c|X,Rt)

H(c|X,Rt) = −
C∑
c=1

p(c|X,Rt) log p(c|X,Rt) (4.5)

In the following sections we will discuss each term in the information gain and

how they integrate observation of detector responses and context over time and space to

finalize the decision.

4.4.2 Updating Responses and Context

To make use of the observed responses from taken actions, we propose a simple

framework that alternates between exploration in action space and updating the current

state. The key is to compute p(c|X,R), where R is a sequence of responses from the

actions taken:

p(c|X,Rt) =
p(Rt|c,X)p(c|X)

Z
(4.6)

where Z =
∑C

c p(R
t|c,X)p(c|X) is the partition function. This term evaluates the prob-

ability of the true class c given observed responses and the current image. The responses

of detectors depend on different query classes c and the specific image X . We assume

the detectors are trained independently per category, thus the aggregated responses can be
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modeled as:

p(Rt|c,X) =
∏
t

p(rt|c,X) (4.7)

where p(rt|c,X) = p(ct|c,X) is context and scene dependent model for having detec-

tion response rt at time step t. We present the details about how we model context in

Section 5.4.2.

Similarly, we define p(ri|X,Rt) in Equation 4.2 and 4.4 as

pcq(ri|X,Rt) =
∑

cq={0,1}

p(rt|cq, X)p(cq|X,Rt) (4.8)

and

pscene(ri|X,Rt) =
C∑

cq=1

p(rt|c,X)p(c|X,Rt) (4.9)

4.4.3 Context Modeling

Since our task is not only to detect the object but also refine the search space of the

query in the image as accurately as possible, conventional modeling of context as simple

co-occurrence statistics is inadequate. Instead we present a data-driven location aware

approach to represent the spatial correlation between the objects and the scene.

Here we formulate the context p(ct|c,X) as a posterior of the probabilistic vote map

p(c|ct, Xs) defined on each pixel (xi, xj) ∈ X over the image, and the responses of class

ct after action at:

p(ct|c,X) =
∑
s∈Xct

p(c|ct, Xs)p(ct|Xs) (4.10)

Given a refined search space Xct ∈ X of a context class ct at time t, we formalize

p(c|ct, X) as a weighted vote from the cooccurring region pairs of class ct and c in training
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scenes. Let (sict , s
i
c) be the i-th pair of co-occurring regions of class ct and c, and bict and

bic be the corresponding bounding boxes. We can now define the probabilistic vote map

p(c|ct, X) as:

p(c|ct, Xs)s∈Xct
=

1

Zc

∑
i

W (sict , s; θ
W ).T (bict , b

i
c) (4.11)

where s ∈ Xct is a region within the search space of the context class ct. Zc is the

normalization function. W (.) is a kernel measuring similarity of region s with a training

region si. T (bict , b
i
c) models the transformation from bict to bic, including translation and

scaling. Figure 4.3 shows a few examples of the vote maps. We can see that with the

exemplar based and semantically aware voting, the resulted vote maps give more accurate

search area of the query objects.

The final context probabilistic vote map is given by

p(ct|c,X) =
∑
s∈Xct

p(ct|Xs)
∑
i

W (sict , s; θ
W ).T (bict , b

i
c)

(4.12)

where p(ct|Xs) is the probabilities of s as class ct after taking the action at to run classi-

fication at time t.

4.4.4 Output Policy

Our search policy stops when the information gain is smaller than a threshold δ (set

at 0.1 per pixel in our implementation). If the classifier of the query is already run in

oberservation Rt, then it will directly output the probability p(cq|X,Rt) as the detection

result. Otherwise the policy will output the p(cq|X,Rt) as the reduced search area for the

query class detector, and run the detector only over the area for the detection results.
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grass

cow
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(a)

(c) (d)

Figure 4.3: Examples of our context vote maps. Each pair of images corresponds to

the original image and the vote-based probability map of object location from observed

context. From (a) - (d) are the vote maps from water to boat, sky to boat, road to car and

grass to cow, respectively. Best viewed in color.
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4.5 Experiment

4.5.1 Dataset and Evaluation Metrics

We evaluate the efficacy of our sequential object detection approach on the MSRC

dataset [11], which is a multi-class dataset with full annotation, containing multiple ob-

jects and context classes in the images. We select the object classes as the queries and

encode the context in a lookup table of their features and pairwise transformation between

each cooccurring region pairs.

The results are evaluated using the APr and APrvol measures, similar to [74], where

the APr score is the average precision of whether a hypothesis overlaps with the groundtruth

instance by over 50%, and the APrvol is the volume under the precision recall (PR) curve,

which is more suitable for the simultaneous segmentation and detection task.

4.5.2 Implementation Details

4.5.2.1 Object Hypotheses

We use the category independent object proposals generated using the algorithm

in [63]. Since our context driven search policy reduces the search space, we only need

30-50 object hypotheses in one image. Because these object hypotheses mainly cover the

objects in the image, we also generate other regions for context classes using the finest

level of the multiple segmentations similar to that in [38]. The total number of superpixels

is around 50 in each images.
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4.5.2.2 Feature Representation and Classification

We extract region features and classify them for object classes using the deep neural

network model in [74] fine-tuned on Pascal VOC 2012. For context classifiers we use a

subset of the appearance features for superpixels from [45] and learn one-vs-all SVM

models for classification. The features we use are shown in Table 4.1.

4.5.3 Baselines

We compare our method to three baselines: exhaustively running classifiers from [74]

on all the regions and output classification scores; searching for objects in randomly sam-

pled location; and searching for the object by asking questions in random order, regardless

of the query and the scene.

Table 4.1: Our superpixel features for context classification

Type Name Dimension

Color

RGB 3

HSV values 3

Hue 6

Saturation 4

Texture
DOOG filters and stats 15

Texture Histogram 100× 2

Shape and Location

Normalized x and y 8

Bounding box size relative to image size 2

SIFT SIFT Histogram 100× 2
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[74] Ours [74] Ours [74] Ours

GT GT
MCG

N=20

MCG

N=20

MCG

N=40

MCG

N=40

cow 60.7 71.3 72.8 75.2 77.6 79.6

sheep 92.9 92.9 80.2 83.0 80.8 80.8

bird 53.2 66.7 40.7 43.8 51.2 59.2

chair 92.9 92.9 29.3 26.6 39.3 39.6

cat 100.0 100.0 60.0 78.9 60.0 78.9

dog 100.0 100.0 68.8 83.4 70.9 84.0

boat 63.6 60.7 21.4 22.9 22.3 27.1

body 41.0 45.0 21.2 26.0 30.1 24.2

car 76.3 77.4 44.5 51.4 52.8 59.3

bike 100.0 100.0 11.0 16.7 18.1 25.0

plane 92.9 92.9 36.4 37.5 45.7 54.8

mean 79.4 81.8 44.2 49.6 48.9 55.7

Table 4.2: Comparison with exhaustive detection on MSRC object classes in APr. All

numbers are %.
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[74] Ours [74] Ours [74] Ours

GT GT
MCG

N=20

MCG

N=20

MCG

N=40

MCG

N=40

cow 48.2 57.0 55.0 59.1 57.0 61.1

sheep 85.8 89.7 65.2 70.3 64.0 65.9

bird 55.2 65.4 38.9 36.6 41.8 48.3

chair 85.0 90.3 39.0 38.6 42.9 47.8

cat 97.8 100.0 52.5 60.5 51.7 62.1

dog 99.1 100.0 59.0 60.0 59.8 61.3

boat 62.9 62.9 28.6 30.1 28.1 31.4

body 34.7 40.1 22.4 24.4 24.3 23.3

car 71.4 79.8 41.6 43.1 45.0 46.1

bike 90.6 95.4 33.4 33.8 33.4 37.4

plane 83.1 89.2 40.0 41.9 40.9 45.4

mean 74.0 79.1 43.2 45.3 44.5 48.2

Table 4.3: Comparison with exhaustive detection on MSRC object classes in APrvol. All

numbers are %.
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4.5.4 Results

4.5.4.1 Comparison with Exhaustive Search

Table 4.2 and Table 4.3 shows the quantitative results on the MSRC object classes

in APr and APrvol metrics respectively, comparing our sequential object search approach

with an exhaustive search using the same classifiers trained in [74], where “GT” denotes

using ground truth segmentation as input object proposals and “MCG” are the one gen-

erated from [63]. We can see that given the correct localization provided by groundtruth

regions, the baseline classifier achieved high scores similar to our context driven search

method. But when performing detection using object proposals in multiple locations, our

context driven approach outperforms the baseline exhaustive approach. We also notice

that our performance using 20 MCG proposals even outperforms that of the baseline us-

ing 40 regions, in both APr and APrvol. This shows that our method is more efficient

in searching by greatly reducing the number of object proposals needed while achieving

higher accuracy.

Figure 4.4 shows some qualitative results for detection and segmentation of the

MSRC object classes. We can see that using our sequential search approach, the local-

ization of objects is more accurate because of a refined search area, while the ambiguities

have been reduced given observed context.
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(a) (b) (c) (d) (a) (b) (c) (d)

Figure 4.4: Qualitative results for detection and segmentation of the MSRC object classes.

Columns (a) to (d) correspond to the original image, groundtruth label, probability map

of the query object given by exhaustive search and by our sequential search respectively.

The probability map from red to blue corresponds to the probability from high to low.

Best viewed in color.
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4.5.4.2 Comparison with Random Search

Table 4.4 shows the quantitative results on the MSRC object classes comparing our

approach with random location searching and random order searching, in APr and APrvol

metrics respectively. The random location search is performed by running detectors on

randomly sampled locations, while the random sequence search is searching for objects

by asking a fixed number of randomly selected questions and updating the search location

sequentially. Given the same object proposals, we can see that random search approaches

lead to more false object locations and gives poor detection and segmentation results. We

can also see that without our context driven search model, the random sequential search

policy gives the poorest results, showing the importance of having context in the searching

process.

Mean APr Mean APrvol

Random Sequence 5.9 8.2

Random Location 7.7 8.9

Ours 55.7 48.2

Table 4.4: Comparison with random search in APr and APrvol on MSRC. All numbers are

%

4.6 Conclusion

We presented an efficient object search policy that determines the most informative

questions for both the query and the scene. This policy is driven by a semantic context
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model using location voting maps. We formulate the policy in one probabilistic frame-

work that integrates current information and the history of observations to update the

model and determine the next most informative action to take. Experiments show the

efficacy of our algorithm compared with baselines of exhaustive search and searching for

objects in random locations or in a random sequence.
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Chapter 5: Learning to Detect Objects in Twenty Questions

5.1 Introduction

Object detection and segmentation in complex scenes is a central and challenging

problem in computer vision and robotics. This problem is usually tackled by running mul-

tiple object detectors exhaustively on densely sampled sliding windows [60] or category-

independent object proposals [61–63]. Such methods need to evaluate a large number of

object hypotheses indiscriminately, and can easily introduce false positives if exclusively

considering local appearance.

Instead of checking all hypotheses exhaustively, humans only look for a set of re-

lated objects in a given context [1]. Context information is an effective cue for humans

to detect low-resolution or small objects in cluttered scenes [76]. Many contextual mod-

els have been proposed to capture relationships between objects at the semantic level to

reduce ambiguities from unreliable independent detection results. However, such meth-

ods still need to evaluate the high order co-occurrence statistics and spatial relations of

the query object with all other object classes in the scene, some of which may not be

informative and even introduce unwanted confusion.

By contrast, humans do not process the whole scene at once: human visual per-

ception is an active process that sequentially samples the optic array in an intelligent,
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task-specific way [77]. Research in neuroscience has revealed that when humans search

for a target, those objects that are associated to the query will reinforce attention with the

query and weaken recognition of unrelated distractions [78]. For instance, in Figure 5.1,

when we search for cars, knowing the top of the scene is sky does not help distinguish

whether the image contains a car or a boat since both are equally likely to be under the

sky; on the other hand, observing a road instead of water in the lower part gives a strong

indication of the existence of cars. Therefore, in order to find cars, humans tend to first

look for roads instead of sky; additionally, if we cannot find cars on the road, we may

want to look beside the buildings because cars are likely to park next to them. This mo-

tivates us to raise the question: can object detection algorithms decide where to look for

objects of a query class more efficiently and accurately by exploring a few related context

cues dynamically, similar to humans?

To this end, we propose a generic strategy for object proposals-based object detec-

tion to explore the search space dynamically based on learned contextual relation, which

achieves better speed-accuracy tradeoff. We formulate the object detection problem as a

Markov Decision Process (MDP), and use imitation learning to learn a context-driven pol-

icy that sequentially and dynamically selects the most informative context class to explore

based on past observations, and gradually refine the search area for the query class.

We show our framework in Figure 5.2. Specifically, like playing a 20 Questions

game, at each step the policy asks for information about a context class such as road or

building based on the query (e.g. car) and responses from previous contextual classifiers.

We then run the detector/classifier of the selected context class. Based on the responses,

we further refine the search area for the query class using spatially-aware contextual mod-
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els. This process of contextual querying and search area refinement is repeated until the

policy determines that sufficient contextual information has been gathered and decides to

stop. Finally, we run the query object detector in the refined search area and output the

result. Besides asking for contextual information, our policy can reject a query early to

avoid unnecessary computation if it determines that there is little chance of the query ob-

ject being in the scene. The early rejection decision can be taken even before running any

object detector; therefore we can eliminate a large amount of unnecessary computation.

To demonstrate the efficacy of our idea, we implement our algorithm based on the

Simultaneous Detection and Segmentation (SDS) [74] framework, but our algorithm is

generic and can be extended to different object proposal-based methods such as [79] and

[80]. Object detection experiments on the PASCAL VOC dataset show that our algo-

rithm produces a search area that has better overlap with the target object by leveraging

its context, thus significantly eliminating 45% of object proposals and 36% of total eval-

uation time compared to an exhaustive detection approach. Even with less computation,

our method achieves mean average precision (mAP) higher than the exhaustive search

method. To the best of our knowledge, this is one of the first few approaches that solve

the challenging task of simultaneous object detection and segmentation in complex scenes

in an MDP framework by actively acquiring and leveraging task-specific contextual in-

formation.

5.2 Related Work

Sequential Testing. The “20 question” approach to pattern recognition dates back
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Query: car

Q1: Where's the road?

road     detector

response

update

state

search area observed response

State

Q2: Where's the building?

building     detector

response

search area observed response

State

STOP
final search area for car

car detected!

run car     detector

update

state

policy policypolicy

Figure 5.1: Illustration of our sequential search for query objects in 20 context-driven

questions.
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to [67], motivated by the scene interpretation problem with a large number of possible

explanations. Their work provides a theoretical foundation for the design of sequential

algorithms. “20 questions” approaches recently have been used to generate questions for

users in applications such as image binary segmentation [81] and “visual Turing test” [82].

But such methods involve humans in the loop during test time, which is expensive and

hard to scale up. There have been recent attempts to model the computational processes

of visual attention [83] for object recognition. Such methods focus on low level salience

and are tested in simple scenarios such as MNIST dataset.

There are several models [68] of objects classification that operate by running clas-

sifiers sequentially in an active order. [69] proposed an information gain based approach

to iteratively pose questions for users and incorporates human responses and computer

vision detector results for fine-grained classification. [70] formulated object classifi-

cation as a Markov decision process to select classifiers under given time constraints.

However, these approaches only focus on classifying objects. They have not addressed

the challenging problem of simultaneous segmentation and localization of objects in a

multi-class scene as we do in this work, and did not exploit inter-object spatial context.

Object Detection. Some common approaches to object detection are based on ap-

plying gradient based features over densely sampled sliding windows [60], which are very

inefficient since they evaluate up to hundreds of thousands of windows in an image, and

false positive detections arise. To reduce the number of windows evaluated, category in-

dependent object proposals [61–63] have been proposed which generate a small number

of high quality regions or windows that are likely to be objects. These approaches dramat-

ically reduce the number of candidates and reduce false positive detections. Using these
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object proposals [73, 74, 79] train and apply deep neural network models to learn the

feature extractor and classifiers, and achieve state-of-the-art performance on the Pascal

VOC detection challenge. However, such category independent proposals do not adapt

to different query classes and still lead to a significant amount of unnecessary detector

computation.

Object Recognition using Context. Context has been shown to improve object

recognition and detection. In [11, 66], CRF models are used to combine unary poten-

tials based on visual features extracted from superpixels with neighborhood constraints

and low level context. [84] shows that using contextual information can improve ob-

ject detection using CRF models. However these approaches evaluate the high order

co-occurrence statistics with all other object classes appearing in the scene altogether,

some of which may not be informative. Our framework, in contrast, only evaluates the

most related context in an active sequence before classifications of all objects are made,

and goes beyond simple co-occurence statistics. [71] applied a sequential decision mak-

ing framework to window selection by voting for the next window. However, the voting

process needs to look up nearest neighbors in hundreds of thousands of exemplar window

pairs in the training set because their context is purely based on appearance similarity at

the instance level, which is highly inefficient. By contrast, our model is based on context

between semantic classes, which greatly reduces computational complexity.
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5.3 Problem Formulation

Given an image X and a query class cq (q ∈ 1, .., C, where C is the total number of

object classes), we detect instances of the query class by sequentially choosing one con-

text class to detect, and reduce the search area for the query class based on the responses

of the context class detectors. The sequential decision-making problem can be formulated

as a Markov Decision Process (MDP).

Definition 1. The Object Detection MDP is defined by the tuple (S,A, T (.), R(.), γ):

• The state st = (X t, Ot), where X t is the search area for the query at time t (ini-

tially X0 is the entire image X), Ot = {o1, o2, . . . , ot} is a sequence of observed

responses from applied contextual classifiers;

• The action set A = {a1, . . . , aC , Stop,Reject}, where ai corresponds to running

the detector of class ci, Reject corresponds to deciding that the query class does not

occur in the image and terminate the process, and Stop terminates querying context

classes and applies the detector of the query class on the current search area;

• The state transition function T (s′|s, a) defines a next-state distribution after action

a is taken in state s;

• The reward function R(s, a)→ R evaluates how good it is to take action a in state

s;

• The discount factor γ is a constant controlling the tradeoff between greedily maxi-

mizing the immediate reward and the long term expected reward.

We define the reward R as the immediate gain in an intersection/union model of the
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search space:

R(st, at) =
X t+1 ∩Xq

X t+1 ∪Xq

− X t ∩Xq

X t ∪Xq

(5.1)

where X t+1 is the updated search area after executing action at in state st, determined by

the context models described in the Approach section. Xq is the groundtruth mask of the

query object instances in the image.

The query agent follows a policy π : S → A that determines which action to take

in a given state. Given an optimal policy π∗ which yields a state-action sequence that

maximizes the discounted cumulative reward, the optimal Q-value is recursively defined

as Q∗(st, at) = R(st, at) + γmaxat+1 Q
∗(st+1, at+1), where at is chosen by π∗ and γ is

the discount factor. Our goal is to learn the optimal policy for the object detection MDP.

5.4 Approach

We show our framework in Figure 5.2. Given a query, we first generate object

hypotheses as well as a small number of regions corresponding to contextual classes, then

the policy sequentially either a) rejects the occurrence of the query, b) poses a question

about a context class, or c) stops and runs the query detector. After an action is taken,

the search locations are updated based on the responses and new posterior probabilities

of each category are computed to update the state. In this section, we first present the

imitation learning algorithm for learning a policy that plays the twenty questions game;

we then describe how to refine the search area of the query given responses of contextual

classifiers evaluated by previous questions.
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5.4.1 Learning the Policy by Imitation

Typically, MDPs are solved by reinforcement learning (e.g., Q-learning [85], RE-

INFORCE [86]). However, given our exponential search space, such trial-and-error ap-

proaches can take too long to converge. It is also difficult to specify a reward function

for the policy because the underlying true reward is hard to model. We therefore take

the imitation learning approach [87], where we assume direct supervisory signals from an

oracle are available and learn to mimic the oracle’s behavior.

Assuming we know the optimal Q-values, the optimal policy is straightforward

π∗(s) = arg max
a∈A

Q∗(s, a). (5.2)

To learn Q∗, we assume the optimal Q-values are given by an oracle at training time; thus

we reduce to learning a linear approximation:

Q∗(s, a) = θTπφ(s, a), (5.3)

where φ(s, a) = φ((X t, Ot), a) is a feature representation of the state consisting of the

search area X t and observations Ot after executing actions a1, ..., at. This can be solved

by standard supervised learning algorithms.

We compute the oracle’s action sequence by breadth-first search with pruning. The

action sequence that maximizes the discounted cumulative reward in the terminal state

is selected as the oracle’s action sequence. We then collect examples {(st, at, Qt)} from

the oracle’s trajectory for policy training. However, collecting examples from the oracle’s

trajectory only may result in mismatch in distributions of training and test data, since the

learned policy may go to states the oracle never visited. To solve the mismatch problem,
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action = ?
ask question

stop
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Policy:
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Where's the road?

Figure 5.2: Flowchart of our context driven object searching algorithm.We first gen-

erate region hypotheses using object proposal algorithms, then the policy evaluates the

current state and iteratively selects the action maximizing the Q-value function. After-

wards, the possible search locations are updated and the posterior probabilities of each

category are evaluated for the next state.
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we encourage exploration by searching multiple times with random starting states. Due

to the large number of negative states for rejection, we sample the negative states by

early pruning when the immediate reward is negative, which imitates the action of early

rejection. After example collection, we train the policy (predict the optimal Q-values) by

ridge regression.

5.4.2 Context Modeling

Since our task is not only to detect instances of the query object but also to refine the

search space of the query in the image as accurately as possible, conventional modeling of

context as simple co-occurrence statistics is inadequate. Instead we present a data-driven

location-aware approach to represent the spatial correlation between the objects and the

scene.

We capture the spatial relationships in a non-parametric manner. Figure 5.3 il-

lustrates our model. During training, the bounding box of a region si indexed by i is

represented by bi = (xi, yi, σi) with x, y as its center location and σ as the scale w.r.t.

the image. For each pair of co-occurring regions belonging to class ck and cl respec-

tively, we index this pair as j and store corresponding displacement vector Tj = T (bjk, b
j
l )

which includes translation (∆x,∆y) and change of ratio in two directions between the

two boxes.

During test time, we define Xc ⊂ X as the exploration area for context which

excludes the observed regions of other contextual classes in the image. Let si ⊂ Xc

be the context region i in a test image. Given an action ak to detect context class ck at
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time t, to model the context between class ck and another class cl, we model the context

p(ck|cl, X) as the posterior of the probabilistic vote map p(cl|ck, Xc) defined for each

pixel in the image, and the responses of class ci after action ai:

p(ck|cl, X) = p(ck|cl, Xc) =
∑
si⊂Xc

p(cl|ck, si)p(ck|si)
p(cl|si)

(5.4)

where p(ck|si) is the probabilities of si as class ck after taking the action ak to run classi-

fication at time t.

We can now define the probabilistic vote map p(cl|ck, si). Let (sjk, s
j
l ) be the j-th

training pair of co-occurring regions of class ck and cl, and bjk and bjl be their correspond-

ing bounding boxes. Let sik ⊂ Xc be the context region i detected as class ck in the test

image. We retrieve those training pairs (sjk, s
j
l ) between class ck and cl and compute the

RBF kernel W (.) measuring the similarity of the features of train/test segments of class

ck as W (sik, s
j
k; θ

W ), where θW is the kernel parameter. We then formalize p(cl|ck, Xc) as

a weighted vote from the co-occurring region pairs of classes ck and cl in training scenes.

p(cl|ck, si) =
1

Zc

∑
i

∑
j

W (sik, s
j
k; θ

W ).T (bjk, b
j
l ) (5.5)

where Zc is the normalization function.

5.4.3 Update Responses and Search Area

After taking action at and receiving response ot = p(ct|c,X) from context class

ct, we integrate the response into observations from the previous sequence of actions.

Assuming the detectors and context classifiers are trained independently per category, the
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Figure 5.3: Our context voting model. The first row shows example training pairs of

the sky and the boat. The second row shows the test image and the weighted voting map.

The arrows denote applying the weighted displacement vectors T (bjk, b
j
l ) from the training

pairs to the test pairs of sky and boat (highlighted in yellow and blue respectively).
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aggregated responses can be modeled as:

p(Ot|c,X) =
∏
t

p(ct|c,X) (5.6)

We then update the search area for the query class cq in a probabilistic framework:

p(cq|X,Ot) =
p(Ot|cq, X)p(cq|X)

Z
(5.7)

where Z =
∑Ct

c p(Ot|c,X)p(c|X) is the partition function, p(c|X) is obtained by taking

actions and running context classifiers over the context segments, andCt = {c1, c2, ..., ct, cq}

are the set of observed contextual classes.

5.5 Implementation Details

5.5.1 Object Proposals

We use MCG object proposals from [63] as object candidates. Since the object pro-

posals mainly cover the objects, we also generate a small number (20∼30 per image) of

segments using the stable segmentation algorithm from [28] to cover regions correspond-

ing to contextual classes. To reduce computational overhead, our context voting step uses

only the stable segments. The stable segmentation gives a coarse level of object/context

division and reduces the computational complexity of context voting compared to the

large number of finer object proposals, while still maintaining semantic spatial informa-

tion.
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5.5.2 Datasets

We conduct our experiments on the Pascal VOC dataset [88], a standard benchmark

for object detection. Since the original dataset does not provide annotation for segmen-

tation of contextual classes, we train our policy using the Pascal Context dataset [84]

which fully annotates every pixel of the Pascal VOC 2010 train and validation sets, with

additional contextual classes such as sky, grass, ground, building, etc. We use the 33

context classes from [84] and train our policy on the Pascal Context training set, and test

our algorithm and baselines on the validation set. We also test our policy on the MSRC

dataset [11] to show our algorithm can generalize to different data.

5.5.3 Feature Representation

To classify object proposals, we extract region features and classify them using

the deep neural network model in [74] fine-tuned on Pascal VOC 2012. For the policy

action classifiers, we use the same model to extract features for states represented by the

masks of search area X t and observed area Ot in state st, then concatenate the features as

inputs to the policy. For context classifiers we use a subset of the appearance features for

superpixels from [45] and learn one-vs-all SVM models for classification.
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5.6 Experiments

5.6.1 Baselines

We compare with two recent popular exhaustive detection baselines, RCNN [73]

and SDS [74]. RCNN adapts the CNN pertained for image classification [89] to the task

of object detection by fine-tuning the network on warped object bounding boxes, then

applies the network to extract CNN features on each object proposal for detection. SDS

further extends RCNN to the task of segmentation by training and testing on region-based

proposals. Both approaches need to extract features and run class-specific detectors ex-

haustively on all object proposals. We implement our algorithm based on the SDS frame-

work. We also compare with random search which randomly samples the same number

of object proposals for detection, window selection driven by context in [71], detection

using object proposals in selective search [62] and objectness [90]. For average preci-

sion we also compare with a recently proposed contextual model in [84] which considers

global and local context in a Markov Random Field framework based on a deformable

part-based (DPM) model. This model has high computational cost since it needs to eval-

uate hundreds of thousands of windows as well as the context deformation term between

all context boxes in the graph.

5.6.2 Speed-accuracy tradeoff

Figure 5.4 shows on the Pascal VOC 2010 dataset the average precision (mAP)

performance VS the (amortized) number of detectors/classifiers evaluated on the object
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proposals. The amortized number of proposals consists of not only the resulting proposals

for the query, but also the average overhead evaluation including context classifiers and

the Q-value evaluations on the state masks, so it reflects the total computational cost. Our

algorithm has significantly reduced both the number of object proposals for the query and

the total computation time. Compared to the SDS, the reduction of the proposals for the

object is 45%, and the overall reduction of time is 36%. Empirically it takes SDS about

13.3s to evaluate features for 2000 proposals for a class. With our algorithm, the average

number of object proposal drops 45% resulting in computation of around 7.1s, plus about

0.8s for evaluating Q-values and 0.6s for context detectors. This is 36% reduction in

amortized run time. With increasing numbers of object proposals, our algorithm can

achieve even better results than exhaustive methods due to the reduction of false positives.

We also see the random search approach performs poorly, showing the effectiveness of

our context driven search approach.

In comparison to [71] which closely relates to our approach, context class lookup

in [71] between 2.55 and 5.7s+0.26s to update the vote map, while our method only takes

0.6s, achieving 7x∼10x speedup. Although we use MCG object proposals that are already

highly precise in object location, we still achieve 45% reduction on average.

5.6.3 Detection precision

Table 5.1 shows the classwise mAP of our 20 questions approach with other context

based methods and their corresponding baselines. We compare our model with SDS and

RCNN as well as [84] denoted as “Pascal 20/30 Context” in the table, and deformable
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part-based model with context denoted as “DPM(+context)”. Both the SDS and the 20

question methods start with 2000 object proposals per image. Our 20 question detection

approach outperforms exhaustive search baselines SDS and RCNN as well as DPM based

context approaches while reducing 45% of proposals.We can see that classes that empir-

ically appear with more context with other objects in the scenes have significant gain in

precision over exhaustive search, such as boat, car, chair, cow, sofa etc..

5.6.4 Search space accuracy

To measure the quality of our predicted search areas, we evaluate the mean inter-

sect vs. union (IU) of the search area produced by our 20 questions approach with the

groundtruth objects. We also compare with the search area of the original detector, pro-

duced by the union of the object proposals with high scores. The mean IU of the original

detectors, our 20 questions approach and the oracle are 64.12%, 73.9% and 78.2% re-

spectively. We can see that our approach significantly improves the accuracy of overlap

between the predicted search area and the target query object. We also find that the mean

IU of the 20 questions search space is close to that predicted by the oracle trajectory,

which shows that our imitation learning has learned a good policy that closely mimics the

oracle’s behavior.

5.6.5 Simultaneous detection and segmentation

Given that we employ segment based object proposals generated by [63], our de-

tection system can also perform segmentation. We compare our algorithm with [74] in
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Figure 5.4: Speed-accuracy tradeoff mAP vs. number of amortized evaluated object

proposals on Pascal VOC dataset. Best viewed in color.
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Table 5.1: Avg. detection precision of ours and other algorithms on PASCAL VOC10

dataset.

DPM
DPM+

33 Context

Pascal

20 Context

Pascal

33 Context
RCNN SDS SDS+20Q

Plane 44.3 46.4 46.9 49.8 69.9 67.3 66.8

Bike 51.3 50.8 50.1 48.8 64.2 63.6 64.3

Bird 7.1 7.5 9.2 12.0 48.0 47.1 48.9

Boat 8.0 8.2 9.5 10.8 30.2 33.1 36.1

Bottle 21.8 21.2 30.1 29.1 26.9 34.3 32.2

Bus 56.0 55.3 57.2 55.2 63.3 67.2 67.7

Car 41.2 41.6 44.1 45.6 56.0 55.8 56.5

Cat 18.4 20.0 30.7 32.0 67.6 74.6 70.4

Chair 13.8 14.7 12.7 14.2 26.8 24.9 28.1

Cow 11.7 11.8 15.1 12.6 44.7 44.8 58.3

Table 10.4 11.6 12.9 13.7 29.6 35.7 37.2

Dog 13.5 13.9 14.2 16.6 61.7 62.7 60.5

Horse 38.3 37.9 35.6 39.8 55.7 62.5 64.7

MBike 42.7 40.2 44.8 44.2 69.8 64.8 65.9

Person 44.6 45.1 44.0 45.1 56.4 59.1 52.1

Plant 3.7 4.2 4.9 8.2 26.6 26.9 26.7

Sheep 27.0 24.1 30.6 35.3 56.7 54.2 57.8

Sofa 24.3 27.6 20.1 26.0 35.6 40.7 46.6

Train 38.0 40.8 42.2 42.3 54.4 61.3 62.9

TV 32.2 33.9 34.8 34.3 57.7 55.7 53.3

Mean 27.4 27.8 29.5 30.8 50.1 51.8 52.9
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Table 5.2: APr performance on PASCAL VOC10 dataset.

SDS SDS+20Q

Plane 68.2 66.7

Bike 52.1 55.0

Bird 51.6 52.2

Boat 30.7 33.3

Bottle 34.2 32.1

Bus 66.7 67.2

Car 52.4 53.7

Cat 70.9 66.9

Chair 21.0 24.2

Cow 39.6 53.8

Table 30.7 32.0

Dog 58.8 56.9

Horse 55.2 54.1

MBike 54.0 53.3

Person 55.5 49.6

Plant 25.0 25.1

Sheep 56.4 58.1

Sofa 33.3 35.1

Train 61.2 61.3

TV 58.4 55.5

Mean 48.8 49.3
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Table 5.3: APr performance on MSRC dataset.

cow sheep bird chair cat dog boat body car bike plane mean

SDS 87.4 87.6 49.6 52.2 75.0 72.3 49.2 62.5 73.0 80.7 93.8 71.9

SDS+20Q 88.4 93.8 45.8 48.3 82.6 76.7 51.7 65.5 79.0 85.2 95.7 73.2
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the simultaneous detection and segmentation task using the AP r metric proposed in [74].

Table 5.2 and Table 5.3 show the performance on Pascal VOC10 and the MSRC datasets

respectively. We outperforms the SDS approach on both datasets, showing our 20 ques-

tions algorithm can generalize well from the detection to the segmentation task, as well

as generalize to other datasets such as MSRC.
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Chapter 6: Conclusion

6.1 Summary

In this dissertation, we studied the problem of employing context for scene under-

standing. We addressed the core problems of scene understanding and computer vision

including object recognition, object detection and semantic segmentation, and explored

different approaches to leverage contextual information to enhance improve recognition

and detection.

In Chapter 2, we presented an approach to jointly solve the segmentation and recog-

nition problem using a multiple segmentation framework. We formulated the problem as

segment selection from a pool of segments, assigning each selected segment a class la-

bel. Previous multiple segmentation approaches used local appearance matching to select

segments in a greedy manner. In contrast, our approach formulates a cost function based

on contextual information in conjunction with appearance matching. This relaxed cost

function formulation is minimized using an efficient quadratic programming solver and

an approximate solution is obtained by discretizing the relaxed solution. Our approach

improved labeling performance compared to other segmentation based recognition ap-

proaches.

In Chapter 3, we introduced a new problem called object co-labeling where the goal
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is to jointly annotate multiple images of the same scene which do not have temporal con-

sistency. We presented an adaptive framework for joint segmentation and recognition to

solve this problem. We proposed an objective function that considers not only appear-

ance but also appearance and context consistency across images of the scene. A relaxed

form of the cost function is minimized using an efficient quadratic programming solver.

Our approach improved labeling performance compared to labeling each image individ-

ually. We also showed the application of our co-labeling framework to other recognition

problems such as label propagation in videos and object recognition in similar scenes.

Experimental results demonstrated the efficacy of our approach.

In Chapter 4 and Chapter 5 of the dissertation, we proposed a novel general strategy

for object proposal-based object detection. Instead of passively evaluating all object de-

tectors at all possible locations in an image, we developed a divide-and-conquer approach

by actively and sequentially evaluating contextual cues related to the query based on the

scene and previous evaluations—like playing a “20 Questions” game—to decide where

to search for the object. The policy driven by a semantic contextual model sequentially

refines the search area for the query.

We formulated this strategy in two different ways. In Chapter 4, we presented an

efficient object search policy that considers the most informative questions for both the

query and the scene. The policy sequentially selects the question by maximizing the infor-

mation gain based on the query, the scene and current observed responses given by object

detectors and classifiers. This approach has few parameters and requires no learning. In

Chapter 5, we further enhanced the framework by modeling object detection as a Markov

Decision Process. The policy is learned by imitation learning fully driven by data. We
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apply the 20 questions approach in the recent framework of simultaneous detection and

segmentation. Experimental results on the Pascal VOC dataset showed that our algorithm

reduces about 45% of the object proposals and 36% of average evaluation time while im-

proving average precision compared to exhaustive search. Our learned search policy also

achieves better speed-accuracy tradeoff than random search.

6.2 Future Research Directions

In future, we would like to continue the research of scene understanding in these

possible directions:

• General 20 Questions: we would like to introduce more general form of the ques-

tions to extract information and guide the scene understanding process. For exam-

ple, instead of only asking binary questions about where is a context class, we can

design an algorithm for attributes based questions such as “is it composed of metal

material?”

• Visual Common Sense: we would like to incorporate high level knowledge mined

from language and text databases to help computers reason about the visual world.

For example, knowing a cat likes to lie on soft surface and bed has soft surface,

we can infer the location of cat lying in a bedroom scene even if we do not have

training samples showing a cat lying on the bed.

• Subgraph selection in 20 questions: currently in our 20 questions framework, at

each step only one context question can be selected. This is not very stable because

a wrong selection and response of context class may negatively impact decisions
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afterwards. This approach will also be intractable when the number of possible

classes are very large. So instead of querying one context class only, we would

like to select multiple context classes as questions that are most informative to the

query, and consider the interactions between the context classes themselves as well

as between context and the object.
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