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Majorana bound states have been a topic of active research over the last

decades. In the perspective of theoretical physics, Majorana bound states, which are

their own antiparticles, are zero-energy quasi-particle excitations in exotic supercon-

ductive systems. From a technological perspective, Majorana bound states can be

utilized for the implementation of fault-tolerant quantum computation due to their

topological properties. For example, two well-separated Majorana bound states can

form a fermionic qubit state, the quantum information of its occupancy is stored in

a nonlocal way, being robust against local decoherence. Also since Majorana bound

states obey non-Abelian statistics, quantum gates can be implemented by braiding.

Such gate operations are robust because small deviations in braiding trajectories do

not affect the braiding results.

So far the most promising platform for the realization of Majorana bound

states is the one-dimensional semiconductor-superconductor nanostructures. The

hallmark of the existence of Majorana bound states in such systems is a quan-

tized zero-bias conductance peak in the tunneling spectroscopy for a normal-metal-

superconductor junction. Although quantized zero-bias conductance peaks that



resemble the theoretical prediction have been observed in several experimental mea-

surements, confusing aspects of the data muddy the conclusion. One source of con-

fusion results from the existence of another type of excitation in these systems, i.e.,

the topologically trivial near-zero-energy Andreev bound states. These excitations

mimic many behaviors of the topological Majorana bound states. In this thesis,

we first investigate the tunnel spectrsocopy signatures of both Majorana and An-

dreev bound states. Then we discuss multiple proposals for differentiating between

Majorana and Andreev bound states.

In Chapter 1, we give an overview for Majorana bound states in the context of

both spinless p-wave superconductors and spin-orbit coupled nanowires in proximity

with an s-wave superconductor. We also show how the existence of a zero-energy

Majorana bound state leads to a quantized zero-bias conductance peak in tunneling

spectroscopy at zero temperature. In Chapter 2, we discuss possible physical mecha-

nisms responsible for the discrepancy between minimal theory of Majorana nanowire

and real experimental observations. Specifically, we focus on the effect of dissipa-

tion inside the heterostructure. In Chapter 3, we show that a near-zero-energy An-

dreev bound state may arise quite generically in the semiconductor-superconductor

nanowire in the presence of a smooth variation in chemical potential. Although such

Andreev bound states are topologically trivial, they mimic the behaviors of the topo-

logical Majorana bound states in many aspects. In Chapter 4, we discuss multiple

proposals for distinguishing between trivial Andreev bound states and topological

Majorana bound states in the normal-metal-superconductor junction. In Chapter 5,

we discuss a proposal for future experiments, i.e., a normal-superconductor-normal

junction for a Coulomb blockaded superconductor. In this proposal, one can directly

measure the topological invariant of the bulk superconductor. Finally Chapter 6

concludes the thesis.
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Chapter 1

Introduction

Majorana fermion was proposed in 1937 to be an elementary particle which

is its own antiparticle [1]. Although 80 years have passed, Majorana fermions have

yet to be detected as an elementary particle in high-energy physics. On other

hand, in the context of condensed matter physics, people discovered that Majorana

fermions [or equivalently Majorana bound states (MBS)] can be found as emergent

zero-energy quasi-particle excitations inside the defects of some exotic p-wave su-

perconductor [2, 3, 4, 5, 6, 7, 8]. What’s more, on the side of applied technology,

these MBSs in exotic superconductors can be utilized to work as quantum com-

puting due to two of their unique properties [9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

First, as two well-separated MBSs can form a nonlocal fermionic state, the quantum

information of its occupancy is nonlocal and robust against any local decoherence

effect. Second, MBSs of topological superconductors obey non-Abelian statistics

when they are exchanged. So such type of braiding can implement quantum gates

in a topological sense, because a small deviation in the braiding trajectory does not

alter the braiding result.

Earlier proposals for MBS in condensed matter physics all require an exotic

type of p-wave pairing in the superconductor(SC), which is quite rare in the real
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nature world. Later on, however, people came up with the idea of heterostruc-

tures [19, 20, 21, 22, 23, 24]. In all these seminal works, a conventional s-wave

superconductor is proximitized to a spin-polarized metallic phase, and the lowe-

energy effective theory is a p-wave superconductor. These experimentally accessible

proposals opened a new chapter for the field of Majorana fermions in condensed mat-

ter physics. Based on these proposals, a huge number of experimental progresses

have been made in the following years [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].

The excitement of the subject is also reflected in a number of review and popular

articles [37, 38, 39, 40, 41, 42, 43, 44, 45].

Among these proposals, the most feasible one is the one-dimensional spin-

orbit coupled(SOC) semiconductor nanowire proximitized by an s-wave SC in the

presence of an external Zeeman field parallel to the axis of the nanowrie [20, 21,

22, 23]. When the Zeeman field exceeds the critical value, the superconductor will

enter the topological phase and host a pair of MBSs at the wire ends. The most

direct experimental measurement to detect MBSs is the tunneling spectroscopy of

a normal-metal-supercoductor (NS) junction. In the presence of the mid-gap MBS,

the tunnel conductance through the junction will show a zero-bias conductance

peak(ZBCP) of height 2e2/h at zero temperature [46, 47, 48, 49, 50]. Indeed, such

predicted ZBCPs have been observed in many experimental setups. But there are

still many discrepancies between theory and experiment. What’s more, even in the

absence of disorder, a smooth confinement potential could lead to a near-zero-energy

Andreev bound state(ABS), mimicking most features of MBS.

In this thesis, we first discuss possible mechanisms that could explain the
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discrepancy between theoretical prediction and experimental facts. We then talk

about smooth potential-induced near-zero-bias peaks. Although they are topolog-

ically trivial ABS, they mimic most of the features of the topological MBS. We

further give some theoretical proposal to differentiate these ABS and MBS. Finally,

we go beyond NS junction and discuss a proposal for NSN junction, which measures

the topological invariant in a direct way.

1.1 Spinless p-wave superconductivity

We first introduce a toy model whose low-energy effective Hamiltonian is de-

scribed by unpaired Majorana fermions. This toy model was first proposed by A. Y.

Kitaev in 2001 [2], which is the first theoretical model that hosts Majorana fermions

in a one-dimensional nanowire system. Although it requires some stringent condi-

tion and therefore looks rather unrealistic, it captures most of the essential physics

that will be helpful to the discussion of other heterostructure models. The Kitaev’s

model is a one-dimensional chain consisting of L� 1 sites:

HK =
∑
j

[
− t(a†jaj+1 + a†j+1aj)− µ

(
a†jaj −

1

2

)
+ ∆ajaj+1 + ∆a†j+1a

†
j

]
. (1.1)

Here t is a hopping amplitude, µ a chemical potential, and ∆ = |∆|eiθ the induced

SC gap. We can hide the dependence of the phase parameter into the definition of
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electron creation and annihilation operators as

aj → eiθ/2aj, a†j → e−iθ/2a†j. (1.2)

Furthermore, every electron creation and annihilation operator can be decomposed

into two Majorana operators

γ2j−1 = (aj + a†j)/
√

2, γ2j = (aj − a†j)/
√

2i, j = 1, 2, ..., N (1.3)

which satisfies the relations

γ†m = γm, {γm, γl} = δml, m, l = 1, 2, ..., 2N. (1.4)

In terms of these Majorana operators, the Hamiltonian becomes

HK = i
∑
j

[
− µγ2j−1γ2j + (t+ |∆|)γ2jγ2j+1 + (−t+ |∆|)γ2j−1γ2j+2

]
. (1.5)

There are two distinct universality classes for this model, which can be represented

by the following two special cases.

(a) The trivial case (insulator): |∆| = t = 0, µ < 0. Then

HK = −iµ
∑
j

γ2j−1γ2j. (1.6)

The Majorana operators γ2j−1, γ2j from the same site j are paired together to form
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(a) trivial phase:

�1 �2 �3 �4 ... �2L�1 �2L

(b) topological phase:

�1 �2 �3 �4 ... �2L�1 �2L

Figure 1.1: Schematic of the Kitaev chain with two distinct universality classes:

(a) trivial phase with |∆| = t = 0, µ < 0, and (b) topological phase with |∆| =

t > 0, µ = 0. The blue circle denotes the sites for the electrons, while the purple

dots denotes the Majorana operators. Red lines represents the coupling between

Majorana operators.

a ground state with the occupation number 0 on each site, and therefore the phase

is an insulator.

(b) The topological case (TSC): |∆| = t > 0, µ = 0.

HK = it
∑
j

γ2jγ2j+1. (1.7)

Now the Majorana operators γ2j, γ2j+1 from different sites are paired together. If

we define a new fermionic operator

ãj = (γ2j + iγ2j+1)/
√

2, ã†j = (γ2j − iγ2j+1)/
√

2, (1.8)
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and the Hamiltonian becomes

HK = t
∑
j

(ã†j ãj −
1

2
). (1.9)

Ground states should satisfies ãj|ψ〉 = 0 for j = 1, 2, ...N−1. On the other hand, the

Majorana operators at the two ends of the nanowire, i.e., γ1 and γ2L remain unpaired,

because they do not even enter the Hamiltonian. So if we define a fermionic mode

in terms of these two Majorana operators:

b = (γ1 + iγ2L)/
√

2, b† = (γ1 − iγ2L)/
√

2, (1.10)

the ground state of the wire would be degenerate:

b|ψ0〉 = 0, b|ψ1〉 = |ψ0〉. (1.11)

These two ground states have opposite fermionic parity. |ψ0〉 has an even fermionic

parity and |ψ1〉 has an odd parity. It might seem that the two cases are special

with fine-tuned parameters. However, they correspond to two distinct universality

classes in this model. The phase in each universality class goes to the other only

when the bulk gap in the system closes. So the conclusion holds for a quite general

choice of parameters.
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Figure 1.2: (a) Schematic of the one-dimensional SOC semiconducting nanowire

proximitized by an s-wave SC. A Zeeman field is applied in parallel to the axis of

the wire. (b) Band structure for one-dimensional hybrid nanowire (before proximity

SC is included).

1.2 Superconductor-semiconductor hybrid nanowire

The proposal of SOC semiconducting nanowires in proximity with s-wave SC

in the presence of external Zeeman field is so far the most promising proposal for

realizing MBS in one-dimensional systems [20, 21, 22, 23]. The schematic is shown

in Fig. 1.2(a). Almost all of the experimental groups nowadays are using such

hybrid nanowire setups to search for MBS, because every single ingredient in the

proposal is easy to access in the experimental lab. This thesis also focus on such

hybrid nanowire structures, and therefore it is helpful to see why such type of one-

dimensional nanowire can host MBS in the topological regime. The second quantized

Hamiltonian for the superconductor-semiconductor hybrid nanowire is (~ = 1)

HNW =
1

2

∫
dxΨ†(x)HBdG(x)Ψ(x),

HBdG(x) =

(
− 1

2m∗
∂2
x − iαR∂xσy − µ

)
τz + VZσx + ∆τx, (1.12)
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where m∗ is the effective mass, αR the SOC, µ the chemical potential, VZ the

Zeeman spin splitting field, and ∆ induced SC gap. The Nambu spinor is Ψ(x) =[
c↑(x), c↓(x), c†↓(x),−c†↑(x)

]ᵀ
. Before the inclusion of SC, we first transform the

Hamiltonian of the SOC nanowire into the momentum space, and diagonalize the

single-particle Hamiltonian to get the band structure ε±(p) and eigenvectors. If we

further assume that the chemical potential lies inside the Zeeman gap, there is only

one Fermi point in half of the Brillouin zone and only the lower band is occupied.

Now if we add the s-wave SC, the nanowire would be topological. We see this by

looking at the Hamiltonian projected onto the lower band:

HP =
∑
p

ε−(p)c†−(p)c−(p) + ∆−(p)c†−(−p)c†−(p) + H.c., (1.13)

where the projected order parameter ∆−(p) = iαRp∆/
√
α2
Rp

2 + V 2
Z has p-wave sym-

metry. The superconductor-semiconductor hybrid nanowire is effectively a spinless

p-wave superconductor if only the lower band is occupied. A more careful calculation

shows that the condition for the superconductor to become topological is

VZ >
√

∆2 + µ2. (1.14)

When the Zeeman field is larger than the critical value
√

∆2 + µ2 and the hybrid

nanowire has open boundary, a pair of MBSs forms, with one being located at each

end.
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1.3 Perfect Andreev resonance of Majorana bound state

The most direct method of detecting MBS inside a topological superconduc-

tor is to measure the tunneling differential conductance through an NS junction.

Figure 1.3 shows the schematic of such an experimental setup. Due to the fact that

MBS is an zero-energy mode, and that Majorana fermion is its own anti-particle,

the corresponding differential conductance through the NS junction would show a

peak of height 2e2/h at zero-bias voltage. Here we show the derivation of such a

conductance feature using S-matrix method.

Quantum-mechanically, people can describe transport through the NS inter-

face as a scattering problem. An incoming wave function Ψin propagates in the left

metallic electrode, until it is reflected back at the interface with the superconductor,

turning into an outgoing wave function Ψout. They are associated by the reflection

matrix:

Ψout = r(V )Ψin,

r(V ) =

ree reh

rhe rhh

 . (1.15)

When the voltage in the normal metal V is less than the gap of the superconductor,

there is no propagating mode inside the superconductor. All incoming electrons

or holes will be reflected to the same electrode. Therefore, the reflection matrix is
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V

normal metal superconductor

Figure 1.3: Schematic of the normal metal-superconductor(NS) junction. A bias

voltage V is applied to the normal electrode (purple), while the superconductor

electrode (blue) is grounded. A tunnel barrier (grey) lies at the interface between

the two electrodes.

unitary:

r†r = 1,

|ree|2 + |rhe|2 = |reh|2 + |rhh|2 = 1. (1.16)

As we are considering a SC system, particle-hole symmetry is another cru-

cial constraint for the scattering problem. Particle-hole symmetry relates the pos-

itive and negative eigenfunctions by an anti-unitary operator P = τxK: Ψ(−E) =

PΨ(E). Thus the corresponding reflection matrices are related by:

τxr
∗(−V )τx = r(V ). (1.17)

A special point is the zero-bias voltage V = 0, which relates the reflection matrix
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to itself:

τxr
∗
0τx = r0, (1.18)

where r0 = r(0) is the reflection matrix at zero-bias voltage. Next, we focus on a

quantity

Q = det(r0). (1.19)

The particle-hole symmetry

Q = det(r0) = det(τxr
∗
0τx) = det(r0)∗ = Q∗ (1.20)

constrains Q to be real. Unitarity constrains Q to be uni-modular,

1 = det(r†0r0) = |det(r0)|2 = |Q|2. (1.21)

Thus Q can only take two possible values

Q = det(r0) = |ree|2 − |rhe|2 = ±1. (1.22)

Along with the unitarity condition Eq. (1.16), we see that at zero-bias voltage, the

reflection is either perfect normal reflection |ree| = 1 or perfect Andreev reflection

|rhe| = 1. The latter corresponds to the existence of MBS in the topological super-
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conductor, which leads to the quantized zero-bias conductance:

G0 = 1− |ree|2 + |rhe|2 = 2|rhe|2 = 2e2/h. (1.23)

So we see that for an NS junction, a quantized ZBCP of height 2e2/h forms at zero

temperature, provided that a MBS exists in the superconductor.
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Chapter 2

Realistic simulation of Majorana nanowire

In this chapter, we carry out a realistic simulation of Majorana nanowires in

order to understand the latest high quality experimental data [30, 34, 35] In the

process, we develop a comprehensive picture for what physical mechanisms may be

operational in realistic nanowires leading to discrepancies between minimal theory

and experimental observations (e.g., weakness and broadening of the zero-bias peak

and breaking of particle-hole symmetry). Our focus is on understanding specific

intriguing features in the data, and our goal is to establish matters of principle

controlling the physics of the best possible nanowires available in current experi-

ments. We identify dissipation, finite temperature, multi-subband effects, and the

finite tunnel barrier as the four most important physical mechanisms controlling the

ZBCP. Our theoretical results including these realistic effects agree well with the

best available experimental data in ballistic nanowires.

A recent tunneling experiment by Zhang et al. [30, 34, 35] in ballistic InSb

nanowires in proximity to superconducting NbTiN provides by far the best mea-

sured ZBCP in the literature, with the measured ZBCP values reaching almost

0.5e2/h above the background conductance. In addition, the measured tunneling

conductance in Ref. [30, 34, 35] shows remarkable qualitative agreement with the
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theoretical predictions in terms of magnetic field and gate voltage dependence, pro-

viding perhaps the strongest phenomenological evidence for the predicted existence

of MBSs in nanowires. However, there are still some issues in the data [30, 34, 35]

which appear to be incompatible with theoretical expectations. First, the ZBCP is

still a factor of 5 smaller than the quantized MBS value in spite of the quoted ex-

perimental temperature being very low (∼ 50 mK). Second, the ZBCP is broad cov-

ering essentially all of the topological gap instead of being sharply localized at zero

bias. Third, the measured tunneling conductance manifestly breaks particle-hole

(p-h) symmetry, which is considered to be an exact symmetry in superconductors.

Fourth, the data do not reflect the expected “Majorana oscillations” [51, 52, 53, 54]

as a function of magnetic field arising from the overlap of the two MBSs localized

at the two ends of the nanowire. In addition, the finite-field topological gap is soft

precisely where the ZBCP shows up. It is, therefore, unclear whether the measured

tunneling conductance in Ref. [30, 34, 35] could be taken as unequivocal evidence

in support of the existence of non-Abelian MBSs in nanowires.

In this chapter we carry out a realistic simulation of Majorana nanowires

in order to understand the data of Ref. [30, 34, 35] and, in the process, develop a

comprehensive picture for what physical mechanisms in realistic nanowires may lead

to discrepancies between minimal theory and experimental observations (e.g., the

breaking of p-h symmetry). There have been earlier works [53, 55, 54, 56, 57, 49, 58,

59, 60, 61, 62, 63] simulating various realistic aspects of Majorana nanowires, but

our work has little overlap with them since our focus is on understanding specific

intriguing features in the data of Ref. [30, 34, 35], and our goal is to establish matters
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of principle controlling the physics of the best possible nanowires available in current

experiments. Our reason for focusing on Ref. [30, 34, 35] is not only the high quality

of its data with the large ZBCP and hard zero-field proximity gap, but also the fact

that the ballistic nanowires used in Ref. [30, 34, 35] are relatively disorder free, thus

eliminating the need to consider extrinsic disorder effects [64, 65, 66, 67, 68, 69, 70,

71, 72, 73].

2.1 Theoretical model

We use the following low-energy effective Hamiltonian for the Majorana nanowire [20,

22, 23]

Ĥ =
1

2

∫
dxΨ̂†(x)HNW Ψ̂(x),

HNW =

(
− ~2

2m∗
∂2
x − iαR∂xσy − µ

)
τz + VZσx + ∆τx − iΓ, (2.1)

where Ψ̂ =
(
ψ̂↑, ψ̂↓, ψ̂

†
↓,−ψ̂†↑

)T
, and σµ(τµ) are Pauli matrices in spin (particle-hole)

space. Some parameters are fixed by experimental measurements [30, 34, 35], e.g.

effective mass m∗ = 0.015me, induced SC gap ∆ = 0.9meV, and nanowire length

∼ 1.3µm. Zeeman energy is VZ [meV] = 1.2B[T ], based on an estimation gInSb ' 40.

The unknown parameters are spin-orbit coupling αR, chemical potential µ, and the

phenomenological dissipation parameter Γ [74] (which is further discussed below).

The lead and barrier are also described by Eq. (2.1), but without the last two terms

on the right-hand side, and with an additional on-site energy E that represents gate
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(a) (b)

Figure 2.1: (a) Best-fitting conductance. Gate voltage in the lead is assumed to give

Elead = −20 meV. The narrow barrier has width D = 20 nm and height Ebarrier = 30

meV. (b) Linecuts from the data in (a) with vertical offsets 0.02 × 2e2/h. Inset

zooms into the region close to the topological phase transition with vertical offsets

0.01× 2e2/h.

voltage. Multi-subband effect is introduced by constructing two separate nanowires

with different chemical potentials.

2.2 Best-fit conductance plot

Figure 2.1 shows the calculated conductance for the NS junction with optimal

parameters, which agrees well with the data in Ref. [30, 34, 35]. The spin-orbit

coupling parameter αR, which controls the splitting of the ZBCP in a finite nanowire,
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is chosen to be as large as αR = 0.5 eVÅ, since “Majorana oscillation” is not observed

in experiments [30, 34, 35]. Chemical potentials of the two bands are tuned as µ1 = 1

meV, µ2 = 5 meV, such that within the regime 1.3 . VZ < 3 meV, only one band is

topological. Due to such a difference in Fermi momentum of the two bands, barrier

potential affects them differently: increasing barrier width would give larger side

peaks, assuming the ZBCP is kept the same. Thus in order to match the data in

Ref. [30, 34, 35] quantitatively, we choose a narrow barrier. The temperature in

Fig. 2.1 is chosen to be T = 50 mK consistent with the quoted temperature in the

experiment [30, 34, 35], and changing T to 100 mK does not change the results

in Fig. 2.1(higher-T results are shown in Fig. 2.2). Dissipation of each band is

assumed to depend on Zeeman field: Γ1 = 0.05(1 + 0.2VZ) meV, Γ2 = 0.05(1 + VZ)

meV such that the side peaks are less obvious at large Zeeman energies, as observed

experimentally (other choices for dissipation, including constant Γ, do not make

any qualitative difference). One interesting feature is that a dip in conductance

at zero bias grows into a peak when the system undergoes a topological phase

transition [blue cutlines in Fig. 2.1(b)]. This general phenomenon is consistent with

experimental observations [25, 27, 26, 28, 29, 75, 30, 32]. We also reproduce the

finite-field soft gap feature as observed in Ref. [30, 34, 35] and other experiments.

2.3 Finite temperature

Finite temperature is one of the mechanisms that can explain the signifi-

cant discrepancy between the theoretically predicted T = 0 quantized conductance
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(a) T = 0.0meV (b) T = 0.01meV (c) T = 0.05meV (d) T = 0.1meV

Figure 2.2: Tunneling conductance at different temperatures without dissipation.

Finite temperature broadens the ZBCP and lowers its peak value simultaneously,

without breaking any p-h symmetry. Chemical potential of the first band is µ1 = 0

meV. Only (a) is calculated by KWANT; others are generated by convolution.

(2e2/h) and the much lower value observed experimentally. The conductance at fi-

nite temperature is computed from the zero-temperature conductance (assuming we

neglect the voltage dependence of the barrier) by a convolution with the derivative

of Fermi distribution:

GT (V ) = −
∫
dEG0(E)f

′

T (E − V ). (2.2)

As shown in Fig. 2.2, with rising temperature, conductance profiles, including the

ZBCP, get broadened and peak values go down without breaking any p-h symmetry.

In this paper we consider temperature up to 0.1 meV ∼ 1.2 K [e.g., Figs. 2.2(d) and

2.4] Without dissipation, however, such a ZBCP width is then simply the thermal

broadening.
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(a) Γ = 10−4meV (b) Γ = 0.01meV (c) Γ = 0.05meV (d) Γ = 0.1meV

Figure 2.3: Tunneling conductance with various dissipation at zero temperature.

Dissipation lowers the peak value of ZBCP and broadens its width. Furthermore,

it breaks p-h symmetry in conductance at finite energies. Chemical potential of the

first band is µ1 = 0 meV. All the four plots are generated by KWANT.

2.4 Dissipation

As we will argue later in the chapter, dissipation through a fermionic bath [74]

appears critical to understanding certain features in the conductance data. Physi-

cally the dissipation considered here not only includes energy loss but also loss of

fermions as in the presence of a fermion bath. At magnetic fields beyond the critical

magnetic field, the superconductor becomes populated with vortices containing nor-

mal cores that can behave as a fermion bath. Additionally (and more importantly at

lower magnetic fields) such dissipation may potentially arise from the combination

of disorder and interaction. Disorder can lead to subgap states in the middle of the

wire, which would not be visible in conductance. Electrons in the process of An-

dreev reflections from bound states at the end of the wire can decay into these deeper

bound states through the interactions. This effectively leads to dissipation similar

19



to a fermion bath. The parent superconductor itself in the presence of disorder and

vortices provides an additional dissipative mechanism. All these microscopic mech-

anisms are summarized phenomenologically into an imaginary part of the on-site

energy (i.e., Γ) in Eq. (2.1). Numerical simulations including dissipation are shown

in Fig. 2.3: dissipation broadens the conductance profile, including the ZBCP, and

lowers their peak values (and also softens the gap somewhat). Furthermore, dis-

sipation introduces p-h asymmetry into the conductance at finite energies, while

the ZBCP is still p-h symmetric. This interesting phenomenon can be understood

according to Refs. [76, 77, 78], where it is shown that for a tunneling system with

a nonequilibrium distribution, the p-h symmetry of the conductance profile is re-

spected only if there is no extra bath (i.e., no dissipation). In contrast, with an

extra bath causing dissipation which is much larger than the tunneling amplitude,

the result goes back to the standard theory of electron tunneling in the NS junc-

tion [79], i.e., conductance at positive (negative) energy is proportional to electron

(hole) density of states at that energy, which is not necessarily p-h symmetric. We

believe this is what is going on in the Majorana nanowire experiments where p-h

symmetry breaking seems generic. Here we ignore p-h asymmetry caused by the

unequal barrier due to voltage bias, since such trivial effect should be minimal for

p-h asymmetry at low voltage [80] (and can also be easily experimentally checked).

As Fig. 2.3 shows, when dissipation is negligible [Fig. 2.3(a)], the conductance is p-h

symmetric. With increasing dissipation, p-h asymmetry shows up more explicitly

until when the dissipation is large enough such that the ratio between conductance

at positive and negative biased voltage reaches some limit, which is the ratio of elec-
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tron and hole weight of the BdG eigenfunction at that energy. However, regardless

of dissipation, the ZBCP profile itself is always p-h symmetric, because MBS always

has equal electron and hole weights. We therefore conclude that dissipation has

qualitatively the same effect on the ZBCP strength (see Fig. 2.4) as finite temper-

ature: both broaden and lower the ZBCP without breaking its p-h symmetry, and

it is thus difficult to disentangle the two effects from the ZBCP. For conductance at

finite energies, dissipation produces p-h asymmetry while temperature does not.

2.5 Temperature versus dissipation effects on ZBCP

Following the previous discussion, Fig. 2.4 gives a quantitative comparison,

showing how the peak value and full width at half maximum (FWHM) of ZBCP vary

with dissipation and temperature respectively. Both effects give almost identical

variation of ZBCP profile, indicating that the huge discrepancy between the quoted

temperature (∼ 50mK) and the peak value of ZBCP can be explained by dissipation

mechanism, since at T = 50mK (without any dissipation) the ZBCP value should

be close to 2e2/h.

2.6 Particle-hole asymmetry at superconducting gap

While the inclusion of dissipation allows the possibility of p-h symmetry break-

ing it does not guarantee it, e.g., the conductance in the so-called tunneling (dissi-

pation dominated) limit to a conventional BCS superconductor without spin-orbit

or Zeeman fields [81] is known to be p-h symmetric. However, in the experimental
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Figure 2.4: The peak value and FWHM of ZBCP for temperature and dissipation.

Data points on the red curve are obtained at increasing temperature but without

dissipation, while points on the blue curve are obtained with increasing dissipation

at T = 0. VZ = 2 meV, µ1 = 0 meV.

data [30, 34, 35], the SC gap at positive and negative biased voltages shows explicit

p-h asymmetry. From the conventional theory of an s-wave superconductor, the

p-h symmetry at and in the vicinity of the SC gap is due to the pair of Bogoliubov

quasi-particles with the same excitation energy above and below the Fermi surface,

and the small ratio of ∆/µ [79]. For the second band with µ2 = 5meV, the second

condition is well satisfied, but its large SC coherence length would bring in signif-

icant finite-size effect. Therefore the quasi-particle pairs might not have the same

excitation energy, causing p-h asymmetry at the order of (ξ/L). Put in another way,

the p-h asymmetry at the SC gap arises because dissipation is less than the level

spacing of the finite nanowire. In addition, the way of p-h symmetry breaking is

random, i.e., either the electron or hole part could have larger contribution, depend-

ing on the relative position of the pair of quasi-particle excitations. Based on these

arguments, the p-h asymmetry of the SC gap in the second band should decrease
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with increasing nanowire length. For the first band (µ ∼ 1 meV), its large SC gap

compared to the Fermi energy and the missing of the excitation branch below the

Fermi surface at some threshold energy both can cause p-h asymmetry.

2.7 Conclusion

Through realistic simulations of Majorana nanowires and detailed comparison

with recent experiments [30, 34, 35] we have identified dissipation, temperature,

multi-subband, and finite barrier as the important physical mechanisms controlling

MBS tunneling conductance properties. Our theoretical results agree well with

recent experimental data including the puzzling observation of the breaking of the

particle-hole symmetry.
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Chapter 3

Andreev bound states in Majorana nanowire

In this chapter, we theoretically consider the interplay between Andreev and

Majorana bound states in disorder-free quantum dot-nanowire semiconductor sys-

tems with proximity-induced superconductivity in the presence of spin-orbit cou-

pling and Zeeman spin splitting (induced by an external magnetic field). The

quantum dot induces ABSs in the SC nanowire which show complex behavior as

a function of magnetic field and chemical potential, and the specific question is

whether two such ABSs can come together forming a robust zero-energy topolog-

ical MBS. We find generically that the ABSs indeed have a high probability of

coalescing together producing near-zero-energy midgap states as Zeeman splitting

and/or chemical potential are increased, but this mostly happens in the nontopolog-

ical regime below the topological quantum phase transition(TQPT) although there

are situations where the ABSs could indeed come together to form a zero-energy

topological MBS. The two scenarios (two ABSs coming together to form a non-

topological almost-zero-energy ABS or to form a topological zero-energy MBS) are

difficult to distinguish just by tunneling conductance spectroscopy since they pro-

duce essentially the same tunneling transport signatures. We find that the “sticking

together” propensity of ABSs to produce an apparent stable zero-energy midgap
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state is generic in class D systems in the presence of superconductivity, spin-orbit

coupling, and magnetic field, even in the absence of any disorder. We also find that

the conductance associated with the coalesced zero-energy nontopological ABS is

non-universal and could easily be 2e2/h mimicking the quantized topological Majo-

rana zero-bias conductance value.

A key experimental paper by Deng et al. has recently appeared in the con-

text of ZBCPs in semiconductor-superconductor hybrid systems [31], which forms

the entire motivation for the current theoretical work. In their work, Deng et al.

studied tunneling transport through a hybrid system composed of a quantum dot-

nanowire-superconductor, where no SC is induced in the quantum dot (i.e., the su-

perconductivity is induced only in the nanowire). In Fig. 3.1, we provide a schematic

of the experimental system, where the dot simply introduces a confining potential

at one end of the nanowire which is covered by the superconductor to induce the

proximity effect. Such a quantum dot may naturally be expected to arise because

of the Fermi energy mismatch of the lead and the semiconductor much in the way

a Schottky barrier arises in semiconductors. Reducing the potential barrier at the

lead-semiconductor interface to produce a strong conductance signature likely re-

quires the creation of a quantum dot as shown in Fig. 3.1. Thus a quantum dot

might be rather generic in conductance measurements, i.e., one may not have to in-

troduce a real quantum dot in the system although such a dot did exist in the set-up

of Ref. [31]. The quantum dot may introduce ABSs in the nanowire, and the specific

issue studied in depth by Deng et al. is to investigate how these ABSs behave as

one tunes the Zeeman spin splitting and the chemical potential in the nanowire by
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applying a magnetic field and a gate potential respectively. It is also possible that

the ABSs in the Deng et al. experiment arise from some other potential fluctuations

in the nanowire itself which is akin to having quantum dots inside the nanowire

arising from uncontrolled potential fluctuations associated with impurities or inho-

mogeneities. (We consider both cases, the dot being outside or inside the nanowire,

in this work.) The particular experimental discovery made by Deng et al., which

we theoretically examine in depth, is that ABSs may sometimes come together with

increasing Zeeman splitting (i.e., with increasing magnetic field) to coalesce and

form zero-energy states which then remain zero-energy states over a large range of

the applied magnetic field, producing impressive ZBCPs with relatively large con-

ductance values ∼ 0.5e2/h. Deng et al. speculate that the resulting ZBCP formed

by the coalescing ABSs is a direct signature of MBSs, or in other words, the ABSs

are transmuting into MBSs as they coalesce and stick together at zero energy. It is

interesting and important to note that the sticking together property of the ABSs at

zero energy depends crucially on the gate voltage in Deng et al. experiment, and for

some gate voltage, the ABSs repel away from each other without coalescing at zero

energy and at still other gate voltages, the ABSs may come together at some spe-

cific magnetic field, but then they separate out again with increasing magnetic field

producing a beating pattern in the conductance around zero bias. Our goal in the

current work is to provide a detailed description of what may be transpiring in the

Deng et al. experiment within a minimal model of the dot-nanowire-superconductor

structure elucidating the underlying physics of ABS versus MBS in this system. In

addition, we consider situations where the quantum dot is, in fact, partially (or
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Figure 3.1: A schematic plot of the junction composed of lead and quantum dot-

nanowire-superconductor hybrid structure. A semiconductor (SM) nanowire is

mostly covered by a parent s-wave superconductor. One fraction of the nanowire is

not covered by the SC and is subject to a smooth confinement potential. This part

(encircled by the red dash line) between the lead and the superconducting nanowire

is called quantum dot.

completely) inside the nanowire (i.e., the dot itself is totally or partially supercon-

ducting due to proximity effect), which may be distinct from the situation in Deng

et al. experiment [31] where the quantum dot is not likely to be proximitized by

the superconductor although any potential inhomogeneity inside the wire would act

like a quantum dot in general for our purpose. Specific details of how the ABSs

arise in the nanowire are not important for our theory as most of the important new

qualitative features we find are generic as long as ABSs are present in the nanowire.

3.1 Theoretical model

It may be important here to precisely state what we mean by a “quantum

dot” in the context of our theory and calculations. The “quantum dot” for us is

simply a potential fluctuation somewhere in or near the wire which produces ABSs in
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the system. This “quantum dot”, being strongly coupled to the nanowire (perhaps

even being completely inside the nanowire or arising from the Schottky barrier at

the tunnel junction), does not have to manifest any Coulomb blockade as ordinary

isolated quantum dots do. In fact, our theory does not include any Coulomb blockade

effects because the physics of ABS transmuting into MBS or not is independent of

Coulomb blockade physics (although the actual conductance values may very well

depend on the Coulomb energy of the dot). The situation of interest to us is when

the confined states in the dot extend into the nanowire (or are entirely inside the

nanowire) so that they become ABSs. In situations like this, perhaps the expression

“quantum dot” is slightly misleading (since there may or may not be any Coulomb

blockade here), but we use this expression anyway since it is convenient to describe

the physics of ABSs being discussed in our work.

The proximitized nanowire and the normal lead have exactly the same BdG

Hamiltonian as Eq. (2.1), except in some discussions and calculated results we also

replace the SC pairing term by a more complex self-energy term to mimic renormal-

ization effects by the parent superconductor [82]:

Σ(ω) = −λωτ0 + ∆(VZ)τx√
∆(VZ)2 − ω2

,

∆(VZ) = ∆0

√
1− (VZ/VZc)2 (3.1)
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The quantum dot Hamiltonian is

HQD =

(
− ~2

2m∗
∂2
x − iαR∂xσy + V (x)− µ

)
τz + VZσx,

V (x) = VD cos(
3πx

2l
) (3.2)

where V (x) is the confinement potential. (We have ensured that other models for

confinement potential defining the dot do not modify our results qualitatively.) The

quantum dot size l is only a fraction of the total nanowire length L. The quan-

tum dot is non-SC at this stage although later (in Sec. 3.4) we consider situations

where the dot could have partial or complete induced superconductivity similar to

the nanowire. We emphasize that there is no disorder in our model distinguishing

it qualitatively from earlier work [83, 84, 85] where class D zero bias peaks in this

context arise from disorder effects. Given this quantum dot-nanowire model, our

goal is to calculate the low lying energy spectrum and the differential conductance

of the system varying the chemical potential and the Zeeman splitting in order to

see how any dot-induced ABSs behave. The specific goal is to see if we can qual-

itatively reproduce the key features of the Deng et al. experiment in a generic

manner without fine-tuning parameters. Our goal is not to demand a quantitative

agreement with the experimental data since too many experimental parameters are

unknown(confinement potential, chemical potential, tunnel barrier, superconductor-

semiconductor coupling, spin-orbit coupling, effective mass, Lande g-factor, etc.),

but we do want to see whether ABSs coalesce generically and whether such coa-

lescence around zero energy automatically implies a transmutation of ABSs into
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MBSs.

3.2 Tunneling differential conductance

In nanowire tunneling experiments quantum dot physics is quite generic, and

it may appear at the interface between the nanowire and the lead due to Schottky

barrier effects as mentioned previously, since all that is needed is a small potential

confinement region in between the lead and the wire which is non-SC. In our model,

the only role played by the quantum dot potential is to introduce ABSs in the

nanowire, and hence, if an experiment observes in-gap ABS in the superconducting

nanowire, we model that by a “quantum dot” strongly coupled to the nanowire.

In this section, we calculate the differential conductance of generic hybrid struc-

tures, for which the Hamiltonian is a combination of the nanowire Eq. (2.1) and the

quantum dot Eq. (3.2).

3.2.1 Scan of Zeeman field

The calculated differential conductance through the dot-nanowire hybrid struc-

ture as a function of Zeeman field at various fixed chemical potentials (µ = 3.0, 3.8, 4.5 meV)

is shown in Fig. 3.2. Finite temperature T = 0.02 meV is introduced by a convo-

lution between zero-temperature conductance and derivative of Fermi-Dirac distri-

bution as Eq. (2.2). In each panel of Fig. 3.2, a pair of ABS-induced conductance

peaks at positive and negative bias voltage tend to come close to each other when

the Zeeman field is turned on. At finite Zeeman field (∼ 1.5 meV), these two ABS
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Figure 3.2: The calculated differential conductance through the dot-nanowire hy-

brid structure as a function of Zeeman field at various fixed chemical potentials

(µ = 3.0, 3.8, 4.5 meV) at T = 0.02 meV. (a)-(c) Conductance color plot as a

function of Zeeman field and bias voltage. (d)-(f) “Waterfall” plots of conductance

line cuts for different VZ (increasing vertically upward by 0.1 meV for each line)

corresponding to panels (a)-(c), respectively. (g)-(i) Calculated zero-bias conduc-

tance corresponding to panels (a)-(c), respectively. Note that these results include

self-energy renormalization correction for the proximity effect.
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peaks either cross zero bias and beat [Figs. 3.2(a) and (b)] or stick with each other

near zero energy [Fig. 3.2(c)], all of which are similar to the observations in the Deng

et al. experiment [31]. However these near-zero-energy peaks, especially the ZBCP

formed by sticking of two ABSs, are all topologically trivial ABS peaks in Fig. 3.2

because VZ <
√
µ2 + ∆2 with the Zeeman splitting explicitly being less than the

critical value necessary for the TQPT. We emphasize that experimentally the TQPT

critical field is unknown whereas in our theory we know it by definition. If we did

not know the TQPT point, there was no way to discern (just by looking at these

conductance plots) whether the ZBCP in Fig. 3.2 arises from trivial or topological

physics! The generic beating or accidental sticking behavior from the coalesced ABS

pair is the consequence of the renormalization of the bound states in the quantum

dot in proximity with nanowire in the presence of Zeeman splitting and spin-orbit

coupling, which has little to do with topology and Majorana. All we emphasize here

is that coalescence of ABS pairs into a ZBCP [as in Fig. 3.2(c)] cannot be construed

as ABSs merging into MBSs without additional supporting evidence. In Figs. 3.2(d)-

(f) we provide further details by showing “waterfalls” patterns of conductance for

increasing VZ corresponding to the results in Figs. 3.2(a)-(c), respectively, whereas

in Figs. 3.2(g)-(i) we show the calculated zero-bias conductance as a function of VZ

for results in Figs. 3.2(a)-(c), respectively.
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Figure 3.3: Calculated differential conductance through the hybrid structure as a

function of chemical potential at various Zeeman fields at T = 0.02 meV. In (a) and

(b), the ABS conductance peaks repel away from each other without coalescing at

zero energy. In (c) the ABS peaks come together at some specific magnetic field, and

beat with increasing chemical potential. In (d) ABS peaks beat and stick with each

other. However, all of these near-zero-energy peaks are topologically trivial because

VZ <
√
µ2 + ∆2. In panels (e)-(h) we show the calculated zero-bias conductance

corresponding respectively to panels (a)-(d) as a function of chemical potential at

fixed VZ . Note that the TQPT happens here at low VZ < 2.0 meV (not shown).

3.2.2 Scan of chemical potential

Calculated differential tunnel conductance through the dot-nanowire hybrid

structure as a function of chemical potential at various Zeeman fields at T =

0.02 meV is shown in Fig. 3.3. In Fig. 3.3(a) and (b), the ABS-induced conductance

peaks repel away from each other without coalescing at zero energy. In Fig. 3.3(c)

the ABS peaks come together at some specific magnetic field, and beat with increas-

ing chemical potential. In Fig. 3.3(d) ABS peaks beat and stick with each other. All

these features are similar to observations in the Deng et al. although the relevant

variable in the experiment is a gate voltage whose direct relationship to the chemical

potential in the wire (our variable in Fig. 3.3) is unknown, precluding any kind of

direct comparison with experiment [31]. But all of these near-zero-energy peaks are
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topologically trivial in our results of Fig. 3.3 because VZ <
√
µ2 + ∆2 everywhere.

We show in Figs. 3.3(d)-(f) the calculated zero-bias conductance corresponding to

Figs. 3.3(a)-(c) respectively. Again, sticking together of ABSs at zero energy pro-

ducing impressive ZBCP peaks are not sufficient to conclude that topological MBSs

have formed. In Fig. 3.3, all the results are nontopological.

We note that the ABSs sticking to almost zero energy and producing trivial

ZBCPs generically happen only for larger values of chemical potential (as should

be obvious from Figs. 3.2 and 3.3) with the ABSs tending to repel away from each

other or not quite stick to zero [e.g., Figs. 3.3(a) and (b)] for µ < ∆. We find this

to be a general trend. Unfortunately, the chemical potential is not known in the

experimental samples.

3.3 Understanding near-zero-energy ABS from reflection ma-

trix theory

The absence of level repulsion in symmetry class D enhances the likelihood

of a pair of levels sticking together at zero energy as some parameter such as the

Zeeman splitting or the chemical potential is varied as discussed throughout this

chapter. Despite this generic fact associated with symmetry class D that describes

systems containing Zeeman splitting, spin-orbit coupling and superconductivity, the

range of Zeeman splitting over which the spectrum sticks is not guaranteed to be

large. In fact, the range of Zeeman field is typically not large for most disordered

Hamiltonian [83]. In the experiment [31] and in our simulations (with quantum dots,
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but no disorder), however, the zero-sticking propensity of trivial ABSs extends over

a large range of Zeeman splitting (VZ).

A more specific mechanism that provides a relatively robust (compared to the

usual disordered class D) near-zero-energy states within symmetry class D involves

the so-called smooth confinement [86, 55, 87]. The essential idea is that large Zeeman

splitting (VZ) compared to SC pairing (∆) suppresses conventional s-wave pairing

compared to p-wave pairing leading to a tendency for the formation of Majorana

states at the end of the system for each spin-polarized channel in the nanowire.

However, the end potential typically scatters between the different channels and

gaps the Majorana fermions out, i.e., an MBS splitting develops. If the inter-channel

scattering between different channels is weak then this Majorana splitting is small

and there is a near-zero-energy state in such a potential. This near-zero-energy

mode is, however, nontopological as it is arising from split Majorana modes at the

wire end. Thus, the ABS producing the ZBCP is a composite of two MBSs, only

one of which contributes to tunneling, leading to a robust almost-zero mode in the

trivial regime.

In subsection 3.3.1, we will first show the energy spectra for the quantum

dot-proximitized nanowire hybrid structure using various parameters (e.g., chemical

potential µ, nanowire length L, dot length l, etc.) in order to show the trend of

zero-energy sticking in the parameter regime. Second in subsection 3.3.2, we use

reflection matrix theory to explain why such zero-sticking bound states exist in the

relevant parameter regime.
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Figure 3.4: Energy spectra for hybrid structures with various parameters. (a): µ =

4.5 meV, nanowire length L = 1.0 µm, dot length l = 0.3 µm. (b): µ = 12.0 meV,

L = 1.0 µm, l = 0.3 µm. (c): µ = 12.0 meV, L = 4.0 µm, l = 0.3 µm. (d):

µ = 12.0 meV, L = 4.0 µm, l = 1.0 µm.

3.3.1 Energy spectra for hybrid structures with various parameters

We show the energy spectra for various hybrid structures in Fig. 3.4. The few

relevant parameters we focus on and thus vary between panels are chemical potential

µ, length of the nanowire L, length of the quantum dot l, while all other parameters,

e.g. pairing potential ∆0 = 0.9 meV and etc., are kept the same as the default

values introduced in the previous sections. Fig. 3.4(a) shows the energy spectrum

of a typical hybrid structure discussed in the previous sections, with the parameters

conforming to the known values in the realistic experimental setup. There is a

finite range of Zeeman splitting over which the energy of the topologically trivial
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ABSs stick around zero. Through Fig. 3.4(b) to (d), we step by step increase the

chemical potential µ, the length of the semiconductor-superconductor nanowire L,

and the length of the quantum dot l. Finally with all the three parameters µ, L, l

large in Fig. 3.4(d), the energy of the trivial ABS is even closer to zero energy,

and even more strikingly, the range of Zeeman splitting for such near-zero-energy

ABSs becomes extremely large, starting from a few times the pairing potential up

to the chemical potential. The trend of decreasing ABS energy and increasing range

of zero-energy sticking shown by Fig. 3.4(a) to (d) indicates that Fig. 3.4(a) and

Fig. 3.4(d) are essentially adiabatically connected. In the following subsection, we

will discuss why there exist such near-zero-energy ABSs over such a large range

of Zeeman field in large µ, L, l limit using reflection matrix theory. Since realistic

situation is adiabatically connected to this large µ, L, l limit, our understanding will

also apply to most of the hybrid structures discussed in previous sections. Note that

this discussion also explains why the zero-sticking of ABSs mostly arises in the large

chemical potential regime.

3.3.2 Understanding zero-energy sticking from reflection matrix the-

ory

In the previous subsection, numerical simulations show strong evidence that

the energy of the ABSs approaches zero energy and the range of such near-zero-

energy sticking increases with increasing chemical potential, increasing nanowire

length, and increasing quantum dot length. Thus, here we try to understand this
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phenomenon using reflection matrix theory. The setup is shown in Fig. 3.5, which

is almost identical to that shown in Fig. 3.1. An imaginary piece of semiconductor

is added between the quantum dot and the semiconductor-superconductor nanowire

for the discussion of the reflection matrix theory. This imaginary semiconductor

can also be regarded as a part of the quantum dot but with nearly homogeneous

potential. For the propagating incoming mode in the normal lead, the total reflection

matrix from the dot-nanowire structure is

r = rb + t′ (rSC + rSCrQDrSC + ...) t

= rb + t′ (1− rSCrQD)−1 rSCt, (3.3)

where rb is the reflection matrix for the incoming modes in the lead reflected by

the barrier, t is the transmission matrix for the lead modes transmitting to the

semiconductor, rSC is the reflection matrix for the semiconductor modes reflected

by the proximitized nanowire, rQD is the reflection matrix for the semiconductor

modes reflected by the quantum dot, and t′ is the is the transmission matrix for

the semiconductor modes transmitted to the lead. The near-zero-energy differential

conductance is

G =
e2

h
Tr
(

1̂− r†eeree + r†herhe

)
=

2e2

h
Tr
(
r†herhe

)
, (3.4)

where rhe is the Andreev reflection matrix from the hybrid structure. The last

step holds due to the unitarity of the total reflection matrix when bias voltage is
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Figure 3.5: A schematic for the NS junction setup for the discussion of reflection

matrix theory.

below the superconducting gap. The Andreev reflection is contained in the second

term of Eq. (3.3), and the pole of (1− rSCrQD)−1 corresponds to the peak of the

differential conductance. On the other hand, the pole of the reflection matrix is also

the condition for the formation of a bound state, i.e., a bound state forms when

Det (1− rSCrQD) = 0 (3.5)

is satisfied.

In the large Zeeman field limit, i.e., VZ � ∆, αR, the spin-orbit-coupled

nanowire can be thought of as two spin-polarized bands with a large difference

in chemical potential and Fermi momenta. When considering the scattering process

between the effectively spin-polarized semiconductor and the semi-infinite supercon-

ductor, the momentum must be conserved in the limit of Andreev approximation

∆ � µ. The constraint of momentum conservation prohibits the normal reflection

between either the same or the other spinful channel due to the large difference in

Fermi momenta between two channels. Thus the scattering process between semi-
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conductor and the superconductor can be thought of as effectively two independent

perfect Andreev reflection processes among each spin-polarized channel. So the

reflection matrix for each channel can be written as

rSC =

 0 eiα

e−iα 0

 . (3.6)

For the scattering process between the semiconductor and the quantum dot, when

the dot potential is smooth, the normal reflection only connects the Fermi level

within the same spinful channel, and thus again the two spin-polarized bands of the

semiconductor can be thought of as independent of each other. So the reflection

matrix for each band can be written as

rQD =

eiβ 0

0 e−iβ

 . (3.7)

The numerical evidence for the form of rSC and rQD are shown in Fig. 3.6, which is

consistent with our argument in the large Zeeman field and Andreev approximation

limit. It is easy to see that such zero-bias reflection matrices satisfy the condition for

the formation of a bound state, i.e., Eq. (3.5). It indicates that in the large Zeeman

field and Andreev approximation limit, the semiconductor-superconductor nanowire

can be seen as consisting of two nearly spin-polarized p-wave superconductors, and

each of them holds a MBS at the wire end. Since the interchannel coupling between

the two p-wave superconductors is weak in the presence of a smooth dot potential
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Figure 3.6: Matrix elements for the reflection matrices from the semiconductor-

superconductor nanowire and the quantum dot, with chemical potential µ =

12 meV, VZ = 8 meV. The upper panels are the Andreev reflection between each

spinful channel with in index 0 and 1 [i.e., the |eiα| in Eq. (3.6)] as a function of

nanowire length. In the long nanowire limit, the Andreev reflection becomes perfect.

The lower panels are the normal reflection between each spinful channel [i.e., the

|eiβ| in Eq. (3.7)] as a function of dot length.

at the wire end, the two MBSs from two channels do not gap out each other, they

form a near-zero-energy ABS.

Although the above discussion assumes large chemical potential, long semiconductor-

superconductor nanowire, and long quantum dot, the conclusion well applies to the

realistic situation with intermediate value of chemical potential, finite length of the

nanowire and quantum dot, since these two situations are adiabatically connected

with each other. This conclusion is explicitly verified by the extensive numerical

results presented in this work.

41



3.4 Quantum dots as short-range inhomogeneity

So far in this chapter, our theoretical analysis has focused on quantum dots

explicitly created at the end of a nanowire (see Fig. 3.1). In this case the quantum

dot is normal (i.e., non-SC), while the rest of the wire is proximity-coupled to the

parent SC. However, in general the quantum dot could be unintentional, i.e., the

experimentalist may be unaware of its presence near the wire end, and it could

be partially or completely covered by the SC. For example, such a situation may

arise if a potential well with a depth of a few meV forms near the end of the

proximitized segment of the wire. Similar phenomenology emerges in the presence

of a low (but wide enough) potential barrier. After all, there is no easy way to rule

out shallow potential wells (and low potential barriers) inside the nanowire or near

its ends. In this context, we emphasize that a better understanding of the profile

of the effective potential along the wire represents a critical outstanding problem.

It turns out that all our results obtained so far still apply qualitatively even if

the quantum dot is partially or completely inside the nanowire. In these cases we

obtain exactly the same type of low-energy ABSs that have a tendency of sticking

together near zero energy, thus producing ZBCPs that mimic MBS-induced ZBCPs.

We present these results in detail below. We are providing these results here in

order to go all the way from an isolated non-SC dot at the wire end (as in the

previous sections of this paper) to a situation where the dot is inside the wire and

is completely superconducting. We explicitly establish that the main results of the

previous sections can be obtained everywhere within this range, i.e. from isolated
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Figure 3.7: (a) Schematic representation of hybrid structure. (b) Effective potential

as a function of position for a wire with a quantum dot near its left end. In the

calculations the length of the quantum dot region is 250 nm, while the rest of the

wire is 1 µm long. Note that the length parent superconductor (SC) can be varied,

so that the quantum dot region can be uncovered, partially covered, or completely

covered by the SC. (c) Smooth non-homogeneous effective potential. The peak at

the left end of the wire represents the tunnel barrier.

dots to dots completely inside the nanowire. In fact, this behavior is rather generic

in non-homogeneous semiconductor nanowires [87]. Finally, in this section we pay

special attention to the profile of the ZBCPs associated with the almost-zero-energy

ABSs. The key question that we want to address is whether or not a quantized

ZBCP (i.e., a ZBCP with a peak height of 2e2/h) can be used as a hallmark for the

MBSs expected to emerge beyond a certain critical field.

In Fig. 3.7, we represent schematically the hybrid structure [panel (a)] and

the effective potential [panel (b)] corresponding to three different situations that

we consider explicitly in this section using exactly the same model parameters: dot

entirely outside the proximitized segment of the nanowire, dot completely inside the

nanowire (i.e., the whole dot is superconducting), and dot partially covered by the

parent superconductor. The depth of the potential well in the quantum dot region

is about 1 meV and its length is 250 nm. The coupling between the quantum dot
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Figure 3.8: Dependence of the low-energy spectrum on the applied Zeeman field for

a nanowire with a quantum dot near the left end (see Fig. 3.7). (a) Quantum dot

outside the superconducting region. (b) Quantum dot half-covered by the parent

superconductor. (c) Completely covered quantum dot. The induced gap is ∆ind =

0.25 meV and the chemical potential µ = −2.83∆ind, which corresponds to a critical

Zeeman field of about 0.75 meV. The zero-temperature conductance along various

constant field cuts marked “1”, “2”, and “3” are shown in Fig. 3.9.

and the rest of the wire is controlled by the height of the corresponding potential

barrier [see panel (b) in Fig. 3.7]. In addition, the coupling depends on how much of

the dot is covered by the superconductor. The parameters used in our calculations

correspond to intermediate and strong coupling regimes. We note that replacing the

potential well from Fig. 3.7 (b) with potential barrier of a height several times larger

than the induced gap ∆ind leads to low-energy features similar to those described

below for the potential well. Finally, for comparison we also consider a nanowire

with a smoothly varying non-homogeneous potential [panel (c) in Fig. 3.7].
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In Fig. 3.8 we show the calculated low lying energy spectra for three cases:

(a) normal dot (i.e. uncovered by the SC), (b) half-covered dot, and (c) fully-

covered dot. The system is characterized by an induced gap ∆ind = 0.25 meV and

a chemical potential µ = −2.83∆ind. The corresponding critical field associated

with the topological quantum phase transition, VZc ≈ 3∆ind = 0.75 meV, is sig-

naled by a minimum of the quasiparticle gap, as expected in a finite length system.

First, we note that all three situations illustrated in Fig. 3.8 clearly show trivial

almost-zero-energy ABSs in a certain range of Zeeman field (lower than the critical

field). However, the Zeeman field V ∗Z associated with the first zero-energy cross-

ing is significantly lower in the case of an uncovered dot [panel (a)] as compared

to the partially-covered dot [panel (b)] and especially the fully covered dot [panel

(c)]. Consequently, the range of Zeeman field corresponding to almost-zero-energy

ABSs gets reduced with increasing the coverage of the quantum dot by the SC.

Another key feature is the dependence of the energy of the ABS at VZ = 0 on the

dot coverage. For the fully covered dot [panel (c)], this energy is practically ∆ind.

In fact, by proximity effect, all the states that “reside” entirely under the parent

SC have energies (at VZ = 0) equal or larger than the induced gap for the corre-

sponding band. By contrast, the zero-field energy of the ABSs in the half-covered

[panel (b)] and uncovered [panel (a)] dots is significantly lower that induced gap.

To obtain such a state it is required that a significant fraction of the corresponding

wave function be localized outside the proximitized segment of the wire. We find

that, quite generically, strongly coupled dots that are uncovered or partially covered

(when the uncovered fraction is significant) can support ABSs that i) have energies
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at VZ = 0 much smaller than the induced gap and ii) are characterized by “merging

fields” V ∗Z significantly lower than the critical value VZc. Consequently, in hybrid

systems having strongly coupled dots at the end it is rather straightforward to ob-

tain low-energy ABSs that merge toward zero and generate MBS-like ZBCPs in the

topologically trivial regime, way before the TQPT. In a real system it is possible

that superconductivity be suppressed by the magnetic field before reaching the crit-

ical value VZc. In such a scenario, a robust ZBCP that sticks to zero energy over

a significant field range is entirely caused by (topologically trivial) merging ABSs,

rather than (non-Abelian) MBSs.

Next, we address the following question: can one discriminate between a MBS-

induced ZBCP and a trivial, ABS-induced ZBCP based on the height of the peak at

zero temperature? More specifically, does the observation of a quantized peak guar-

antee its MBS nature? In short, the answer is no. However, observing a quantized

ZBCP that is robust against small variations of parameters such as the Zeeman field,

the chemical potential, and external gate potentials provides strong indication that

the peak is probably not generated by merging ABSs partially localized outside the

proximitized segment of the wire, i.e. scenarios (a) and (b) in Fig. 3.8. The results

that support this conclusion are shown in Fig. 3.9. Each panel in Fig. 3.9 shows

the (low-energy) differential conductance at T = 0 for three different values of the

Zeeman field marked “1”, “2”, and “3” in the corresponding panel of Fig. 3.8. Gen-

erally, the largest value of the ZBCP obtains for Zeeman fields corresponding to the

first zero-energy crossing, V ∗Z , marked “1” in Fig. 3.8. In this case, the maximum

height exceeds 2e2/h. However, for the fully covered dot (bottom panel) the excess
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Figure 3.9: Differential conductance as function of the bias voltage for a quantum dot

not covered by the superconductor (top panel), a half-covered dot (middle panel),

and a fully-covered quantum dot (bottom panel). Each panel shows low-energy

conductance peaks for three different values of the Zeeman field marked “1”, “2”,

and “3” in the corresponding panel of Fig. 3.8.

conductance consists of a very narrow secondary peak that would be practically un-

observable at finite temperature. In fact, we find that in the case of a fully covered

dot, at low-temperature, the conductance peak height is practically quantized in

both the trivial regime (field cuts “1” and “2”) and the topological regime (field cut

“3”), regardless of whether the ZBCP is split or not. By contrast, for the uncovered

and the half-covered dots (top and middle panels, respectively) the peak height can

have any value between 0 and 4e2/h in the trivial regime and becomes quantized
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Figure 3.10: Dependence of the low-energy spectrum from Fig. 3.8 (b) on the

orientation of the applied magnetic field. Top: Magnetic field oriented along the

z axis (i.e. perpendicular to the wire and the effective SO field, see inset). The

spectrum is identical to panel (b) from Fig. 3.8. Middle and bottom: Rotating

the field in the x-y plane destroys the property of the ABSs to coalesce into stable

nearly zero energy modes. In addition, the spectrum becomes gapless above a certain

(angle-dependent) value of the Zeeman splitting.

in topological regime. Of course, a quantized ZBCP can be obtained even in the

trivial regime at certain specific values of the Zeeman field, but its quantization is

not robust against small variations of the control parameters (e.g., Zeeman splitting,

chemical potential, SC gap).

A key requirement for the realization of topological superconductivity and

MBSs in semiconductor-superconductor hybrid structures is that the applied mag-

netic field be perpendicular to the effective Rashba spin-orbit(SO) field. More specif-

ically, the MBSs are robust against rotations of the applied field in the plane per-
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pendicular to the SO field, but become unstable as the angle between the applied

and the SO fields (which corresponds to π/2−θ in the inset of Fig. 3.10) is reduced.

The natural question is whether the nearly-zero ABS modes induced by a quantum

dot (or other type of inhomogeneity) show a similar behavior. We find that the

coalescing ABSs (and, more generally, the low-energy spectrum) are insensitive to

rotations of the applied field in the plane perpendicular to the effective SO field (i.e.

the x-z plane in Fig. 3.10). This property is illustrated by the spectrum shown in

the top panel of Fig. 3.10 corresponding to a field oriented along the z-axis. Note

that this spectrum is identical to Fig. 3.8 (b), which corresponds to a field oriented

along the x-axis. By contrast, when the field is rotated in the x-y plane, the nearly-

zero ABS mode becomes unstable (see the middle and bottom panels in 3.10). In

addition, the spectrum becomes gapless above a certain (angle-dependent) value of

the Zeeman splitting. We conclude that the coalescing ABSs behave qualitatively

similar to the MBSs with respect to rotations of the field orientation. To further

support this conclusion, we calculate the low-energy spectra of the wire-dot system

in the Majorana regime for two different orientations of the applied magnetic field.

The results are shown in Fig. 3.11. We note that rotating the field in the x-z plane

(i.e. the plane perpendicular to the SO field) does not affect the spectrum. By

contrast, rotating the field in the x-y plane changes the low-energy features in a

manner similar to that discussed in the context of coalescing ABSs.

Before concluding this section, we compare a hybrid system having a (strongly

coupled) quantum dot near one end with an inhomogeneous system with a smooth

effective potential as shown in Fig. 3.7 (c). In the language of Ref. [87], this would
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Figure 3.11: Dependence of the low-energy spectrum on the field orientation for a

wire-dot system in the Majorana regime. The model parameters are the same as in

Fig. 3.8 (b), except the chemical potential, which is set to µ = −0.25∆ind. The top

panel corresponds to a field oriented along the wire (or any other direction in the

x-z plane), while the bottom panel corresponds to an angle θ = π/3 in the x-y plane

(see inset of Fig. 3.10). Note the similarity with the bottom panel from Fig. 3.10.

correspond to a long-range inhomogeneity, in contrast to the quantum dots which

can be viewed as short-range inhomogeneities. The low-energy spectrum of the

non-homogeneous system is shown in Fig. 3.12. At zero field, the energy of the

ABS is lower than the induced gap as a result of the nanowire being only partially

covered (about 90%) by the parent superconductor, as discussed above. Note the

striking absence of a minimum of the quasiparticle gap, which would signal the

TQPT in a homogeneous system. The merging ABSs form a very robust nearly-zero

mode, which, according the analysis in Ref. [87], consists of partially overlapping

MBSs. The low-energy differential conductance corresponding to the nearly-zero

mode in Fig. 3.12 is shown in Fig. 3.13 (as function of the Zeeman field for three

different values of the bias voltage) and Fig. 3.14 (as function of the bias voltage

for three different Zeeman fields marked “1”, “2”, and “3” in Fig. 3.12). The
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Figure 3.12: Low-energy spectrum as function of the applied Zeeman field for a

system with smooth non-homogeneous effective potential [see Fig. 3.7, panel (c)].

The length of the parent SC is the same as in the case of half-covered quantum

dot (i.e. a segment of the wire of about 125 nm is not covered). Note the robust

(nearly) zero-mode and the absence of a well defined minimum of the quasiparticle

gap corresponding to the crossover between the trivial and the “topological” regimes.

low-bias differential conductance traces shown in Fig. 3.13 have values between 0

and (almost) 4e2/h. In particular, the differential conductance exceeds 2e2/h in the

vicinity of the first zero-energy crossing, VZ ≈ 0.3 meV (see Fig. 3.12). However, in

practice it would be extremely difficult to observe a ZBCP larger than 2e2/h at finite

temperature. This is due to the fact that the contribution exceeding the quantized

value forms a very narrow secondary peak (see Fig. 3.14, left panel), similar to the

completely covered dot shown in Fig. 3.9. We interpret the double-peak structure

of the ZBCP as resulting from the partially-overlapping MBSs that form the ABS.

The broad peak is generated by the MBS localized closer to the wire end (which is

strongly coupled to the metallic lead), while the narrow additional peak is due to

the MBS localized further away from the end (which is weakly coupled to the lead).

Finally, we note that the low conductance values in Fig. 3.13 are due to the splitting

of the ZBCP. However, the maximum value of the ZBCP is practically quantized at

very low (but finite) temperature, as evident from the results shown in Fig. 3.14.
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Figure 3.13: Dependence of the low-energy differential conductance on the Zeeman

splitting for the non-homogeneous wire with the spectrum shown in Fig. 3.12. The

black, orange, and red lines correspond to a bias voltage Vbias = 0.05, 0.15, and

0.75 µV, respectively.

In summary, the results presented in this section lead us to the following

conclusions. First, semiconductor-superconductor hybrid systems having strongly-

coupled quantum dots at the end of the wire, which can be viewed as systems with

short-range potential inhomogeneities, generate ABSs that, quite generically, tend to

merge at zero energy with increasing Zeeman field, but still within the topologically-

trivial regime. Second, ABSs with energies at VZ = 0 significantly lower than the

induced gap and low values of the merging field V ∗Z are likely to generate extremely

robust topologically-trivial ZBCPs. Third, measuring a quantized ( to 2e2/h) ZBCP

does not provide definitive evidence for MBSs (although finding ZBCP quantization

which is robust over variations in many parameters, e.g., magnetic field, chemical

potential, tunnel barrier, carrier density, would be very strong evidence for the ex-

istence of MBS). However, trivial conductance peaks generated by merging ABSs

having wave functions partially localized outside the superconducting region are

generally expected to produce ZBCPs with heights between 0 and 4e2/h. In this
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Figure 3.14: Zero temperature differential conductance as function of the bias volt-

age for three different values of the Zeeman field marked “1”, “2”, and “3” in Fig.

3.12.

regime, an accidental quantized peak will not be robust against small variations of

the control parameters. By contrast, if the wave function is entirely inside the prox-

imitized region, the ZBCP is (practically) quantized and cannot be distinguished

from a MBS-induced conductance peak by a local tunneling measurement. In this

case, a minimal requirement for the Majorana scenario is to be able to reproduce

the (robust) ZBCP by performing a tunneling measurement at the opposite end of

the wire, in the spirit of Ref. [53]. Finally, our fourth conclusion is that very similar

phenomenologies can be generated using rather different effective potentials (i.e., the

effective “quantum dot” leading to the ABS could arise from many different physical

origins and could lie inside or outside the nanowire). A better understanding of the

profile of the effective potential along the wire (which can be obtained, for example,

by performing detailed Schrodinger-Poisson calculations) represents a critical task

in this field.
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3.5 Conclusion

Our conclusion is that in strongly-coupled dot-nanowire hybrid structures

(and in the presence of superconductivity, Zeeman splitting, and spin-orbit cou-

pling) ABSs generically coalesce around zero energy producing zero-bias tunneling

conductance values that mimic Majorana properties, although the physics is non-

topological. In fact, the transport properties of such “accidental” almost zero-energy

trivial ABSs in class D systems are (locally) difficult to distinguish from the con-

ductance behavior of topological MBSs. We show that this zero-energy-sticking

behavior of trivial ABSs (superficially mimicking topological Majorana behavior)

persists all the way from an isolated (i.e. non-SC) quantum dot at the end of the

nanowire to a quantum dot completely immersed inside the nanowire (i.e. super-

conducting) as long as finite Zeeman splitting and spin-orbit coupling are present.

Our theory thus connects the recent observations of Deng et al. [31] to the earlier

observations of Lee et al. [88], who studied ABSs in a SC dot (not attached to a

long nanowire), establishing that the physics in these two situations interpolates

smoothly. In both theses cases ZBCPs may arise from trivial ABSs in the presence

of superconductivity, spin-orbit coupling, and Zeeman splitting. Of course, in a

small quantum dot, the concept of MBSs does not apply because of strong overlap

between the two ends whereas in the Deng et al. experiment (i.e. in a dot-nanowire

hybrid system) the ZBCP may arise from either trivial ABS or topological MBS.

We establish, however, that in both cases the ABS can be thought of as overlap-

ping MBSs, and hence the generic zero-sticking property of the ABS arises from the
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combination of spin-orbit coupling, spin splitting, and superconductivity. An im-

mediate (and distressing) conclusion of our work is that the observation of a ZBCP

(even if the conductance value is close to the expected 2e2/h quantization) cannot

by itself be construed as evidence supporting the existence of topological MBSs. In

particular, both trivial ABSs and topological MBSs may give rise to zero-bias peaks,

and there is no simple way of distinguishing them just by looking at the tunneling

spectra. Since the possibility that a given experimental nanowire may contain inside

it some kind of accidental quantum dot can never be ruled out, the tunneling con-

ductance exhibiting zero-bias peaks in any nanowire may simply be the result of the

existence of almost-zero-energy ABSs in the system. Our work shows this generic

trivial situation to be a compelling scenario, bringing into question whether any of

the observed ZBCPs in various experiments by themselves can be taken as strong

evidence in favor of the existence of MBSs since the possibility that these ZBCPs

arising from accidental trivial ABSs cannot a priori be ruled out. Consequently,

a ZBCP obtained by tunneling from one end of the wire cannot be accepted as

a compelling topological Majorana signature (even when the height of the peak is

quantized at 2e2/h), since a likely alternative scenario is that the zero-bias peak is,

in fact, a signature of a trivial ABS associated with a strongly coupled quantum dot

or other type of inhomogeneity (unintentionally) present in the system. One must

carry out careful additional consistency checks on the observed ZBCPs in order to

carefully distinguish between ABS and MBS.
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Chapter 4

Differentiation between Majorana and Andreev

bound states

As discussed extensively in Chapter 3, trivial ABSs arising from chemical

potential variations could lead to ZBCPs at finite magnetic field in class D nanowires,

precisely mimicking the predicted ZBCPs arising from the topological MBSs. This

finding raises a serious question on the efficacy of using ZBCPs, by themselves, as

evidence supporting the existence of topological MBSs in nanowires. In this chapter,

we provide specific experimental protocols for tunneling spectroscopy measurements

to distinguish between ABS and MBS without invoking more demanding nonlocal

measurements which have not yet been successfully performed in nanowire systems.

In particular, we discuss three distinct experimental schemes involving response of

the ZBCP to local perturbations of the tunnel barrier, overlap of bound states from

the wire ends, and most compellingly, introducing a sharp localized potential in the

wire itself to perturb the ZBCPs.

Clearly, the definitive distinction between topological MBS and trivial ABS

must await a nonlocal measurement involving braiding and interferometry. Here, we

have a less ambitious goal. We explore experimental avenues within the tunneling

spectroscopy measurements in order to provide plausible distinctive features between
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Figure 4.1: A schematic of the NS junction considered in this chapter. In Sec. 4.1, we

test the stability of ZBCPs by varying the amplitude of the confinement potential.

In Sec. 4.2, we also consider the interplay of a pair of confinement potential-induced

ABSs located at both wire ends. The proposal of taking advantage of a sharp

potential (red curve) to distinguish MBS and ABS is discussed in Sec. 4.4

ABS- and MBS-induced ZBCPs. Although such local transport measurements are

unlikely to be absolutely definitive in distinguishing between ABS and MBS, they

have the considerable advantage of being doable right away, thus, if successful,

providing substantial boost to the MBS interpretation of ZBCP. In fact, some such

transport-based proposed distinctions between ABS and MBS have already been

discussed in the literature [89, 90, 91]. For example, the robustness of ZBCP strength

(i.e., the conductance value at zero-bias voltage and its precise quantization) and

location (i.e. precise zero voltage) with varying magnetic field and tunnel barrier

strength is an indicator for MBS [36, 89], and this aspect is studied in some depth

in the current work because of its importance and experimental feasibility.

We describe through extensive numerical simulations of the tunneling conduc-

tance three different physical scenarios in the context of using tunneling spectroscopy

aimed at distinguishing between ABS and MBS. The first one, mentioned above, is
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the sensitivity of the ZBCP to variations in the tunnel barrier potential. In general,

the ZBCP arising from ABS (MBS) should be more (less) sensitive to the tunnel

barrier, enabling a direct method of distinguishing ABS from MBS. The second

topic is the interplay of two MBSs or ABSs localized at the two wire ends to see

how the ZBCP is affected when two bound states overlap to some extent with the

expectation that there are significant differences in the “overlap physics” between

the two cases. The third topic, which is the most important new idea introduced in

this work, is the sensitivity of the tunneling ZBCP to the introduction of a sharp

local potential in the wire. The MBS should be insensitive to a sharp local po-

tential since the MBS entanglement is topological and nonlocal whereas the ABS

should be strongly affected by the sharp local perturbation, thus allowing for a clear

distinction between ABS and MBS.

4.1 Variation of tunnel gate potential

4.1.1 Energy spectra for hybrid structures with ABS and MBS-induced

zero modes

We first calculate the energy spectra for quantum dot-superconductor hybrid

nanostructure, and the numerical results are in Fig. 4.2. Fig. 4.2(a) is the calculated

spectrum as a function of chemical potential at fixed VZ = 2.0 meV for VD = 4 meV

in Eq. (3.2) with topological MBS-(or trivial ABS-) induced zero modes at small

(large) chemical potential regimes. Now, we ask how this spectrum evolves if we

only vary VD keeping everything else exactly the same. Fig. 4.2(b) presents the MBS
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Figure 4.2: (a) Calculated energy spectrum of a hybrid structure as a function of

chemical potential µ with fixed Zeeman splitting VZ = 2.0 meV. Critical chemical

potential is at µc ' 1.8 meV with red (green) lines indicating topological (trivial)

zero modes. (b) Fixed chemical potential in the topological regime µ = 0.5 meV

< µc, to see how MBSs vary with the depth of the quantum dot. (c) Fixed chemical

potential in the non-topological regime µ = 4.5 meV > µc, to see how near-zero-

energy ABSs vary with the depth of the quantum dot.

spectrum (i.e., at small chemical potential) as a function of dot depth, showing that

it is robust against change of dot depth. By contrast, Fig. 4.2(c) shows the ABS

spectrum (i.e., large chemical potential) as a function of the dot potential depth,

clearly showing that the ABS “zero mode” is not stable and oscillates (or splits) as

a function of the dot potential. So varying the dot depth (e.g., by experimentally

changing gate potential) will be a stability test distinguishing topological MBSs and

non-topological ABSs. Note that it is possible (even likely) that the original ABS-

induced ZBCP will split as the dot potential changes whereas a new trivial zero mode

could appear, but the stability (or not) of specific ZBCPs to gate potentials could be

a powerful experimental technique for distinguishing trivial and topological ZBCPs.

Of course, experimentally tuning the dot potential by an external gate may turn

out to be difficult in realistic situations, but modes which are unstable to variations

in gate potentials are likely to be trivial ABS-induced ZBCPs.
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4.1.2 Conductance for hybrid structures with ABS and MBS-induced

zero modes

Figure 4.3: Differential conductance as a function of the dot depth for hybrid struc-

tures at various but fixed chemical potential and Zeeman field. (a)-(c) All the hybrid

structures are in the topological regime, i.e., all the zero-bias or near-zero-bias con-

ductance peaks are MBS-induced. (d)-(f), all the hybrid structures are topologically

trivial, i.e., the zero-bias or near-zero-bias conductance peaks are ABS-induced.

We also show the calculated differential conductance through the hybrid struc-

tures as a function of the depth of the quantum dot and bias voltage, as shown in

Fig. 4.3. The conductance color plots in the upper panels (a)-(c) are for topological

nanowires, i.e., VZ > VZc =
√
µ2 + ∆2, and thus all the zero-bias or near-zero-bias

conductance peaks are MBS-induced. Such ZBCPs are stable against the variation

of the depth of the quantum dot. With the increase of the Zeeman field, ZBCPs will

be split and form Majorana oscillations as a function of the dot depth. By contrast,

the conductance color plots in the lower panels (d)-(f) are for topologically trivial

nanowires (VZ < µ), and thus all the near-zero-bias conductance peaks are ABS-
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induced. These nontopological near-zero-bias peaks also show beating patterns as

a function of the dot depth, which is quite similar to the patterns for Majorana os-

cillations, although the origin is nontopological. But the crucial difference between

the two situations is that ABS-induced oscillations are not guaranteed to cross zero

bias for a variation of the parameter choice, e.g., increasing chemical potential as

shown in (e) and (f), while for MBS-induced oscillations, although the amplitude

of oscillation will increase with parameters in the nanowire (e.g., Zeeman field), the

oscillation itself is sure to pass through zero-bias voltage. The difference between

the two situations rises from the crucial fact that ABS-induced ZBCPs are almost

zero modes involving (always) some level repulsion whereas the MBS-induced ZBCP

oscillations arise from the splitting of a true zero mode in the infinite wire limit.

4.2 Interplay between bound states from two ends

Now we study how the interaction between two MBSs or two ABSs would

affect the differential conductance. We vary the degree of the overlap between

two end states by comparing long and short wires, and the schematic is shown

in Fig. 4.1. The numerical result is shown in Fig. 4.4. Figure 4.4(a) shows the

differential conductance for an extremely long topological nanowire, where the two

MBSs are faraway from each other and thus we can think of the wire effectively as

containing a single MBS at the interface between the lead and the nanowire. Thus

in the topological regime (large VZ), a ZBCP forms exactly at zero-bias voltage. In

Fig. 4.4(b), the length is shortened such that there is more overlap between the two
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Figure 4.4: Differential conductance for nanowires with two MBSs or two ABSs.

(a) long topological nanowire with L = 3.0 µm, µ = 0.7 meV. (b) short topological

nanowire with L = 0.4 µm, µ = 0.7 meV. (c) long trivial nanowire with L = 3.0 µm,

µ = 4.5 meV. (d) short trivial nanowire with L = 0.8 µm, µ = 4.5 meV. Note that

in (c) and (d), there is a smooth confinement potential VD = 4.0meV on both sides

of the nanowire, while VD = 0 for (a) and (b)
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MBSs at wire ends, thus causing oscillations as a function of Zeeman splitting in the

ZBCP at large Zeeman field regime. Figure 4.4(c) and (d) show the situation for the

topologically trivial nanowires, for which there is a smooth confinement potential at

each end of the nanowire so that two ABSs are formed inside the wire. Figure 4.4(c)

shows the differential conductance for a long nanowire, which is quite similar to the

single confinement potential case, i.e., a sticky ZBCP forms at large Zeeman field

regime purely from nontopological mechanism. When the length is shortened, as in

Fig. 4.4(d), the two ABSs strongly interact with each other and gap out each other,

thus destroying the near ZBCP over a large range of the Zeeman field.

4.3 Interplay between bound states and external dot state

Another way to distinguish ABS and MBS is considered in Refs. [90, 91, 92]

where an external dot state interacts with the fermionic state inside the nanowire.

Reference [90, 91, 92] use the interaction between a quantum dot state and MBS or

ABS at the same end to distinguish MBSs from ABSs. The basic idea is that since

the ABS could be considered as a pair of MBSs at the same end, these two MBSs

would be expected to have similar overlap with the quantum dot, which would be

very different from the interaction with a single MBS at each end where only one

MBS would strongly interact with the quantum dot. Therefore, in this sense the

interaction of the quantum dot can be used to probe “non-locality” assuming that

the tunneling matrix elements between the different MBSs involved are controlled

by distance.
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Figure 4.5: The anticrossing structures around zero energy are shown for (a) a

MBS interacting with a dot induced state, and (b) an ABS interacting with a dot

induced state. Note the identical qualitative nature of the zero energy anticrossing

behaviors in the two cases, making it impossible to conclude whether an MBS or an

ABS is involved in the anticrossing pattern. The parameters of the nanowire in (a)

is L = 0.4µm, µ = 0.0meV. For the nanowire in (b), L = 1.3µm, µ = 4.5meV with

the smooth potental being 0.3µm long.
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Specifically the “non-locality” tested in these Refs. [90, 91, 92] is really the

ratio of coupling of the two MBSs ( that constitute the ABS or are at the ends

of the wire) to the quantum dot. The ABSs considered in this work, arising from

the smooth potential, are constituted by two MBSs which are produced by states

at different Fermi momenta. Therefore these MBSs constituting the ABS, despite

being spatially local relative to the quantum dot, have rather different couplings to

the quantum dot or leads. For such ABSs the quantum dot would only couple to one

of the MBSs producing the measurement proposed in Refs. [90, 91] and measured in

recent experiments Ref. [92] leading to very similar results as expected from isolated

MBSs. In Fig. 4.5 we show our numerical results for situations (1) where the external

dot state interacts with a MBS [Fig. 4.5(a)] as considered in [90, 91], and (2) where

the external dot state interacts with an accidental potential fluctuation-induced

ABS [Fig. 4.5(b)]. The results of Fig. 4.5 show that the two situations give rise to

essentially identical anticrossing patterns making it impossible to distinguish ABS

from MBS in this case. Note that despite the fact that the two MBSs forming in

the ABS here are at the same end of the wire as opposed to being at opposite ends,

our results show that tunneling from one end cannot distinguish the two situations.

This is because the tunneling matrix element generically couples one of these MBSs

more strongly with the tunneling lead, thus effectively manifesting a single-MBS

type tunneling current in spite of the bound state being a combination of two MBSs

close together. We conclude therefore that the anticrossing behaviors of MBSs and

ABSs with dot induced states can be similar, and thus no definitive conclusion can

be drawn from such anticrossing patterns about the existence or not of MBSs.
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Figure 4.6: (a) Energy spectrum for a Majorana nanowire with µ = 0 meV in the

presence of a smooth confinement. The parameters for the nanowire is L = 1.3µm,

∆ = 1.0 meV, VD = 4.0 meV, and lD = 0.3 µm. Thus the nanowire enters the topo-

logical regime at VZc ' 1.0 meV hosting a pair of MBSs. (b) A zoom-in spectrum

at Zeeman field where the bound state of the confinement potnetial interacts with

the MBSs, showing the anti-crossing feature. (c) Energy spectrum for a Majorana

nanowire with µ = 4.5 meV in the presence of a smooth confinement. The other

parameters are the same as (a) Thus the nanowire enters the topological regime at

VZc ' 4.6 meV hosting a pair of MBSs. Note that in the nontopological regime,

there are near-zero-energy ABSs because of the smooth confinement condition being

satisfied. (d) A zoom-in spectrum at Zeeman field where the dot state interacts with

the MBSs, showing the avoided-crossing feature.
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In Fig. 4.6 , we show more details on our calculated interplay between MBS

and ABS in an applied smooth potential. At zero chemical potential, there is no

trivial ABS near zero energy in the presence of the smooth potential [Figs. 4.6(a)

and (b)], and all we have is the approximate ZBCP associated with the MBS for

VZ > VZc. The smooth potential does, however, produce well-defined finite energy

ABSs [which come close together anticrossing with each other at VZ ' 2.8 meV

> VZc ' 1 meV in Figs. 4.6(a) and (b)]. Near this ABS anticrossing, the MBS and

ABS interact mildly, but nothing much happens at µ = 0 except that both ABS and

MBS are clearly visible in the spectra. The situation, however, changes substantially

when we go to finite chemical potential [Figs. 4.6(c) and (d)] with µ = 4.5 meV.

Now near-zero-energy trivial ABSs exist in the nontopological VZ < VZc = 4.6

meV regime, as can be seen for 1.5meV < VZ < 2.5meV and again for 4meV

< VZ < 4.5 meV in Fig. 4.6(c). For VZ > VZc, we see the usual ZBCP arising

from the topological MBS (which manifests Majorana splitting oscillations in these

results). The interesting region is 5.2meV < VZ < 5.5 meV [see Fig. 4.6(d)] in

the topological regime, where there is a pair of finite-energy ABSs anticrossing at

mid-gap. These ABSs also interact with the MBS, but the effect is rather small

with a small distortion (“repulsion”) of the ABS energy dispersion as a function of

VZ [' 5.4meV in Fig. 4.6(d)]. It is unclear if such small modifications in the ABS

spectrum due to the interplay between ABS and MBS in the topological regime

can be detected in experiments where there is invariable level broadening arising

from temperature, disorder, and dissipation. The key problem in the experiments of

course is that neither VZc nor µ is known, and hence the topological regime, which
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is uniquely defined theoretically through VZc, is unknown experimentally and can

only be inferred based on the observation of a near-zero-bias peak in the spectra. As

one can see, in Fig. 4.6(c) and (d), a zero-bias peak could happen at VZ ' 1.5− 2.5

meV , 4 - 4.5 meV, and > 4.6 meV – the first two zero modes are ABS whereas

the last one is MBS which we know theoretically only because we know the precise

location of VZc ' 4.6 meV.

4.4 Sharp potential

Our fourth proposal for differentiating between MBS and ABS-induced ZBCPs

is to apply a sharp localized potential inside the smooth confinement potential (red

dash line in Fig. ??). To understand the effect of a sharp potential on the ABS, note

that the pinning of ABSs to near zero energy relies on the ABS being composed of a

pair of MBSs from states with different Fermi wavelengths [30]. Smooth confinement

ensures that the MBSs couple to the lead with very different strengths leading to the

MBS-like behavior of the ABS because one MBS (out of the pair forming the ABS)

always couples more strongly to the tunneling lead. The introduction of a sharp

potential should break the conservation of momentum that prevents the coupling

of the pair of MBSs that constitute the ABS and lead to the ABS splitting away

from zero energy. In contrast the sharp potential would have no impact on the single

MBS in the topological nanowire because the coupling to the other Majorana, which

is at the other end of the wire, should be exponentially suppressed by the length

of the wire. To verify this expectation we consider topological and nontopological
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Figure 4.7: The differential conductance for nanowires without a sharp potential

(left panels) and with the presence of a sharp potential (right panels). The sharp

potential has height Vs = 20 meV, width a = 25 nm, and is located at x0 = 0.22 µm.

(a, b) There is a smooth confinement potential at the junction interface, and µ =

0. A MBS-induced ZBCP forms at large Zeeman field. (c, d) There is a smooth

confinement potential at the junction interface, and µ = 4.5 meV. An ABS-induced

ZBCP forms at large enough Zeeman field but the peak disappears when a sharp

potential is present. (e, f) There is no confinement potential, and µ = 0.7meV.
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Figure 4.8: Energy spectra and wavefunctions for nanowires with length L =

1.3 µm and s-wave pairing ∆ = 0.7 meV. A smooth confinement potential with

VD =4.0 meV and length lD = 0.3 µm may exist at the left end of the nanowire.

A sharp square potential of height 40 meV may lie between 0.2 < x < 0.25 µm as

a perturbation. (a) Energy spectrum for a simple nanowire of chemical potential

µ = 0.7 meV. (b) The same nanowire as (a) but perturbed by a sharp potential.

The sharp square potential is of height 40 meV and lies between 0.2 < x < 0.25 µm.

(c) the wavefunction for MBS for the nanowire with sharp potential. (d) the wave-

function for the first excited bound state confined to the left of the sharp potential.

(e) energy spectrum for a trivial nanowire with µ = 4.5 meV in the presence of a

smooth confinement. The smooth confinement potential with VD =4.0 meV and

length lD = 0.3 µm is located at the left end of the nanowire. (f) the same trivial

nanowire as (e) but perturbed by a sharp square potential as (b).
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nanowires in the presence or absence of a sharp potential. The numerical simulations

for the corresponding differential conductance are shown in Fig. 4.7. Figure 4.7(a)

shows the conductance for a topological nanowire with a smooth confinement po-

tential at the junction interface. A MBS-induced ZBCP forms after the topological

phase transition at large enough Zeeman field. In Fig. 4.7(b), a sharp potential is

added inside the smooth confinement potential. Note that the inclusion of such a

sharp potential changes some finite-voltage features, e.g., the gap closing pattern

becomes less prominent and an additional bound state at finite energy leads to a

strong resonance peak at finite voltage. However, the MBS-induced ZBCP at large

Zeeman field is immune to the sharp potential due to its nonlocal topological nature.

By contrast, the ABS-induced trivial ZBCP [Fig. 4.7(c)] disappears when a sharp

potential is introduced, as in Fig. 4.7(d). The elimination of the near-zero-energy

ABSs happens because of the breakdown of the smooth confinement condition (nec-

essary for creating ABS). As a comparison, we also show the influence of the sharp

potential on a nanowire without any confinement potential, as shown in Fig. 4.7(e)

and 4.7(f). Similar to the situation in Fig. 4.7(a) and 4.7(b), the inclusion of a sharp

potential only alters the conductance features at finite voltages without affecting the

MBS-induced ZBCP in any essential way.

To further illustrate the effect of a sharp potential perturbation on the Ma-

jorana nanowire, we show the corresponding energy spectra and wavefunctions in

Fig. 4.8. Figure 4.8(a) shows the energy spectra for a pristine Majorana nanowire,

while Fig. 4.8(b) shows the spectrum for the nanowire with a sharp potential at one

end. The difference between the two energy spectra is minor. The first difference
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is that the amplitude for the MBS oscillation is larger in the perturbed nanowire.

This happens because the MBS oscillation amplitude is an indicator for the de-

gree of overlap between the MBSs at two wire ends. The larger MBS oscillation in

Fig. 4.8(b) means a shorter distance between the two MBSs. This is confirmed in

Fig. 4.8(c) where the nonlocal MBS wavefunction only resides on the right hand side

of the sharp potential. The second difference between Fig. 4.8 (a) and (b) is an ad-

ditional bound state at finite energy. This bound state arises from the confinement

between the wire end and the sharp potential. The corresponding wavefunction is

shown in Fig. 4.8(d), which is localized at one end. In Fig. 4.8 (e) and (f), we show

the energy spectra for the nanowires with smooth potential at one wire end. In

contrast with the pristine nanowire case, the energy spectra for the nanowire with

smooth potential is strongly affected by the inclusion of a sharp potential perturba-

tion. In the absence of any sharp potential, Fig. 4.8 (e) shows that there can be a

near-zero-energy ABS in the topologically trivial regime. However, this near-zero-

energy ABS is easily gapped out by a sharp potential located inside the smooth

potential, as shown in Fig. 4.8 (f). So by a closer investigation of the energy spectra

and wavefunctions, we find that MBSs are more robust than the ABSs against sharp

potential perturbations, while smooth potential-induced ABSs easily disappear due

to the presence of a sharp potential which efficiently manages to separate the ABS

into distinct MBSs.
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4.5 Conclusion

We have suggested, and validated through numerical simulations, simple tun-

neling experiment protocols in semiconductor-superconductor hybrid structures in

order to provide a local distinction between trivial Andreev and topological Majo-

rana bound states. Although any definitive evidence for such a distinction must

come from nonlocal measurements in the future, the experiments proposed in the

current work have the advantage of being immediately accessible experimentally.

In particular, the sharp potential (Sec. 4.4) can be introduced during the growth

of the nanowire enabling a prima facie distinction between ABS and MBS through

a relatively straightforward transport measurement. Note that the sharp potential

can be atomistically sharp, and can be easily introduced during the nanowire growth

phase by suitable growth interruption on a few atomic sites to create a local defect.

We conclude by providing an outlook as well as a status update for the Majo-

rana nanowire semiconductor-superconductor hybrid structures. Early experimental

(2012-2014) observations of ZBCPs in nanowires used samples which are manifestly

strongly disordered, and the ZBCPs in these experiments are likely to be simple

zero-bias disordered peaks in class D systems [83, 93, 94, 71]. In these experiments,

the SC gap was extremely soft and extremely weak and the ZBCP covered the

whole gap. These experiments on imperfect samples are better thought of in terms

of class D disorder peaks. But the recent experiments (2016-2018), starting with

Deng et al. [31], are in clean epitaxial samples with a hard SC gap, where the issue

of ABS versus MBS discussed become relevant [89]. The key question is whether
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the ZBCPs in these epitaxial hard-gap, low-disorder samples arise from ABSs or

MBSs. Unfortunately, as emphasized in this chapter and elsewhere, the ZBCP by

itself cannot decisively settle this question since the location of the TQPT (i.e., the

value of VZc in a sample) is a priori not known, and thus, one can never be sure

whether a ZBCP, even an extremely beautiful one as in Ref. [36] with a conductance

equal to the expected quantized value of 2e2/h, arise from MBS or ABS. Of course,

if the ZBCP is seen often with the quantized conductance and the quantization is

always stable to variations in VZ and/or µ, the confidence in the existence of MBS

increases substantially, but most experimental ZBCPs are results of experimental

fine tuning, and as such, may arise from either MBS or ABS. Our current proposals,

if experimentally implemented successfully, will greatly enhance the confidence in

the existence of MBS in nanowires, but the only definitive way of establishing the

existence of topological MBS is to produce a topological qubit with the appropriate

non-Abelian braiding properties. Unfortunately, experiments are very far from this

goal. Short of seeing successful non-Abelian braiding, one can look for end-to-end

Majorana oscillation correlations as proposed in Ref. [53]. Unfortunately, even such

correlation experiments have not yet been successfully performed, mainly because

of problems with fabricating samples where tunneling from both wire ends can be

successfully carried out (i.e., a true NSN system with tunneling possible from both

ends). This is the context in which our proposed much simpler experiments make

sense. The advantage of our proposals is that these experiments can be done now.

The disadvantage is that, even if these experiments are successful, they would only

enhance (perhaps substantially) our confidence level that the observed ZBCPs arise
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from MBSs – a definitive evidence must still await the successful anyonic braiding

measurement in a topological qubit.
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Chapter 5

Beyond NS junction–Coulomb blockaded

topological superconductor

In the previous chapters, we focused on how to detect a hybrid Majorana

nanowire by observing the ZBCP in an NS junction. This is so far the most com-

monly performed experiment by multiple groups. However, as we discussed, it is

very difficult to pin down the presence of MBSs in the Majorana nanowire simply

by such NS junction measurements, since other nontopological origins for ZBCPs

like smooth-confinement-induced ABSs cannot completely be excluded in principle.

The reason is that NS junction conductance measurement is in principle a local

measurement of the wavefunction amplitude at the interface between lead and the

nanowire. It will detect a ZBCP of height 2e2/h due to the particle-hole symmetry

for the MBS, but it does not measure any bulk topological property of the nanowire.

So in this chapter, we discuss another type of theoretical proposal which measures

the topological invariant of the bulk superconductor in a more direct and definitive

way.

A measure of the topological response that was originally proposed by Semenoff

and Sodano [95, 96, 97, 98] involves measuring the coherent transport of electrons

or “teleportation” of electrons through TSC wires with MBSs at the ends. It was
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Liang Fu who realized that a charging energy is essential to the measurement of the

teleportation signature using conventional transport property [99]. In the proposal,

it is shown that near the Coulomb blockade resonance voltage, a single electron can

tunnel from the left lead to the MBS at the left end of a Coulomb blockaded TSC

nanowire, and then tunnel into the right lead from the MBS at the right end. Such

a process of such single electron tunneling in and out of the TSC is coherent in

nature. So if another nanowire is set up as a reference arm, and a magnetic flux is

threading through the ring-shape device, the differential conductance through the

NSN junction will show oscillating patterns due to the Aharanov-Bohm (AB) effect.

What’s more, for the TSC with opposite fermion parity, i.e., whether the fermionic

state associated with the two MBSs is occupied or not, there is a π-phase shift in

the oscillatory conductance pattern. Therefore, A-B effect with π-phase shift would

be the hallmark of a Coulomb blockaded TSC ring.

Although the proposal is nice and elegant, there are still a couple of pitfalls

for practical conductance measurement. First, Fu’s teleportation proposal considers

the low-energy effective theory for the TSC which is composed of MBSs only. In

practice, however, the transmission quasiparticle transmission above the SC gap

may also come in. Although their effects can be eliminated in the long wire limit,

the precise value of the coherence length of the SC in the real experimental setup is

unknown. Second, fermion parity of the TSC is not the only possible mechanism for

π-phase shift in the conductance interference pattern. Nontopological reasons like

trivial quantum dot can also lead to similar conductance interference patterns [100,

101, 102, 103, 104].
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Figure 5.1: Set-up for probing Coulomb blockade transport through a TSC ring.

The TSC ring is gated to allow resonant transport of a Cooper pair. Inserting a

flux (entering via the junction) through the ring is expected to change the Fermion

parity of the ring only in the TSC phase. The change in fermion parity pushes the

ring off of resonant transport leading to a 2Φ0-periodic flux dependent transport

only when the ring is in a TSC phase. Increasing the transmission is expected to

screen the charging energy of the ring and suppress the 2Φ0-periodicity of the TSC

phase.

Here, we give a proposal in which the topological invariant of a SC will show

up explicitly as 2Φ0-periodic oscillation in the tunneling conductance through the

coulomb blockaded NSN junction. Another advantage of such an experimental setup

is that the amplitude of such topological oscillation can be tuned by varying the

transmission of the junction (represented by red dashed lines in Fig. 5.1). There-

fore, we can know whether the oscillation is due to the topological property of the

SC, or to a trivial quasi-particle transmission above the SC gap. Flux-dependent

periodic conductance oscillations, i.e., AB oscillations, have already been measured

in a related semiconductor ring geometry [105, 106, 107], which makes this an exper-

imentally interesting possibility to study. We first consider transport through the

TSC ring in Fig. 5.1 in weak tunneling where the rate equation formulation is used
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for describing Coulomb blockade transport [108]. The ring is assumed to be gated

into the resonant transmission regime for Cooper pair transport. The topological

superconducting nature of the ring ensures that the parity of electrons on the ring

changes [2, 3] on the insertion of a single SC flux quantum through the junction.

The change in electron parity translates into a 2Φ0-periodic oscillation of the con-

ductance as seen in Fig. 5.2 (plot b). Following this, we account for the screening

of the Coulomb blockade in the intermediate tunneling regime by generalizing the

well-known Ambegaokar-Eckern-Schön(AES) model [109] for the description of the

SC Coulomb blockade to the case of SC rings (shown in Fig. 5.1). From this de-

scription we show that the thermodynamic properties of the system, in the weak

charging energy limit, depend explicitly on the topological invariant of the TSC

ring [2]. From an analytic continuation of imaginary time correlations, we find that

the 2Φ0-periodic part of the conductance oscillations are screened (plot c in Fig. 5.2)

and are virtually eliminated (plot d in Fig. 5.2) in the strong tunneling limit where

the conductance oscillations are just Φ0-periodic. The dependence of the conduc-

tance on the transmission through the ring allows us to clearly differentiate the

non-topological 2Φ0 oscillations (plot a) and 2Φ0-periodic topological conductance

oscillations (plot b) from Fig. 5.2. Finally, we talk about the conductance through

the NSN junction in the limit of no Coulomb blockade.
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(a) L = 0.4µm, Gmax = 2.20e2/h
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(d) L = 2.4µm, Gmax = 1.06e2/h

Figure 5.2: Conductance as a function of the magnetic flux Φ through the SC ring,

as transmission through the ring, which determines Gmax is varied. (a) shows 2Φ0-

periodic oscillations for a short non-topological SC ring due to the conventional AB

effect. (b) shows topological 2Φ0-periodic oscillations of a long TSC ring at small

conductance Gmax so as to be in the strong Coulomb blockaded regime. (c) shows

the conductance of the TSC ring as Gmax is increased, which in turn reduces the

topological 2Φ0-periodic oscillations. (d) shows that the 2Φ0-periodic oscillations

are completely eliminated in the long TSC ring at large Gmax, where there is no

Coulomb blockade.

5.1 Strong Coulomb blockade

While the structure in Fig. 5.1 is reminescent of the interferometric telepor-

tation measurement that would show 2Φ0-periodic conductance oscillations for a

topological state, it will be more convenient to think about the transport in terms

of Andreev transport through a TSC ring similar to the one considered from the

fractional Josephson effect. The fractional Josephson effect leads to a change in the
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ground state charge of the TSC ring in Fig. 5.1 as the flux in the ring is changed by a

SC flux quantum [3, 2]. In fact, this behavior uniquely characterizes the TSC state.

This change in the ground state charge can be measured using Coulomb blockade

transport through the ring in Fig. 5.1. By tuning the gate voltage to a degeneracy

of even charge states of the ring so that Cooper pairs can be transported across the

ring. For this value of gate voltage, the odd charge sector is non-degenerate and

is essentially insulating in the strong Coulomb blockade limit. For conventional SC

dots [108, 110], this gate voltage would correspond to a resonance of Cooper pair

transport. In the case that the ring is in the TSC phase, the ground state has an

odd number of electrons for fluxes that are odd multiples of Φ0. The conductance

through the ring is thus suppressed for fluxes Φ that are odd multiples of Φ0 resulting

in a 2Φ0 flux periodicity of the conductance of the ring.

The 2Φ0 flux periodicity for the conductance in the TSC state of the ring can

be seen directly from the numerical result Fig. 5.2 (plot b). The conductance of the

TSC ring in the strong Coulomb blockade ( or equivalently weak tunneling ) regime

can be computed within the semi-classical approximation using the rate equation

formalism analogous to previous work on conventional SC quantum dots [108]. In the

limit of weak tunneling and low temperatures ( compared to charging energy ), we

can restrict attention to three charge states 0, 1 and 2 electrons ( in the background

of 2N electrons ) with occupation probabilities π0,1,2. Since the odd (i.e. charge 1)

state is off-resonant in energy, it does not conduct and the conductance is found to
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be essentially proportional to the even occupation (π0 + π2) and is written as

G(Φ) = (π0 + π2)2g0 +Gd(Φ), (5.1)

where Gd(Φ) is an electron co-tunneling process that does not depend on the occu-

pation probabilities πj and is exponentially small in the limit of a large ring (L� ξ,

where ξ is the coherence length). g0 is the local Andreev reflection probability in

the symmetric case in the limit of weak charging energy ( compared to gap ∆ ),

which has a weak but Φ0-periodic flux dependence. In contrast the occupation

factor π0 + π2 ≈ {1 + 1
2
e−β∆parity(Φ)}−1, where ∆parity(Φ) is the energy difference

between even and odd Fermion parity ground states, is 2Φ0 periodic because of the

2Φ0 periodicity of ∆parity. This parity of ∆parity is a necessary consequence of the

change in the Fermion parity of the ground state from even to odd and back with

every insertion of a SC flux quantum Φ0 into the ring. The resulting conductance

G(Φ) for the TS ring is plotted in Fig. 5.2 (plot b) and shows a 2Φ0 periodicity of

conductance.

5.2 Weak and intermediate Coulomb blockade

5.2.1 Partition function: Generalized AES model for NSN junction

The ability to clearly distinguish the 2Φ0 oscillation arising from the TSC phase

(Fig. 5.2 plot b) and the nontopological AB oscillations (Fig. 5.2 plot a) depends on

being able to turn on and off the Coulomb blockade in a single device. We show that
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this can be done by taking advantage of the screening of the Coulomb interaction

that results from raising the tunnel coupling between the leads and the quantum

dot (or TSC ring in Fig. 5.1). Such a quenching of charging energy, which depends

on quantum coherent charge fluctuations between several charge states, has been

demonstrated in related setups such as conventional metallic quantum dots [111]

and also Majorana nanowires [112] using Bosonization. Below we generalize the

AES [109, 113] approach to the class D superconducting quantum dots.

The starting point of the derivation of the AES model is the partition function

for the Coulomb blockaded NSN junction as shown in Fig. 5.1. Using Feynman’s

imaginary-time path integral formalism [114, 115], the partition function is

Z =

∫
DψDψe−S,

S = S0 + Sg + Sc + Slead,

S0 =
∑
αβ

∫
dxψα(x)

[
∂τδαβ + hαβ(r)− µδαβ

]
ψβ(x),

Sg = −g
∫
dxψ↓ψ↑ψ↑ψ↓(x),

Sc = Ec

∫ β

0

dτ
[
N(τ)−Ng

]2

,

Slead =
∑
α=↑↓

∑
a=L,R

∫ β

0

dτ2dτ1ψα(τ2, ra)Σ
0
a(τ2 − τ1)ψα(τ1, ra),

Σ0
a(τ) =

−Γa/β

sin(πτ/β)
, Γa = πt2ad(εF , a) (5.2)

where S0 is the semiconductor or bare metal in the island, Sg is the point-like attrac-

tive pairing interaction which is responsible for the SC effect, Sc is the capacitive
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charging energy of electrons on the island, and Slead is the self-energy obtained by

integrating out the electrons in the Normal-metal leads. ψα(x) is the Grassmann

field for electrons on the island with spin α and time-space argument x = (τ, r).

The imaginary time τ is bounded from 0 to inverse temperature β. rL,R are the

locations at the edge of the island where electron tunneling between the lead and

the semiconductor takes place, as shown in Fig. 5.1. Σ0
a(τ) is the self-energy from

the lead with ta being the tunneling amplitude between lead-a and the SC island,

and d(εF ) being the local density of states at the end of the lead that is closer to

the SC island. The detailed derivation of the self-energy term is in Appendix. A.

Next, we need to decompose the quartic terms (Sg and Sc) into quadratic forms of

Grassmann fields. We perform the Hubbard-Stratonovich transformation twice so

that

Z =

∫
DψDψD∆D∆DV e−S,

S = Ssc + Slead +

∫
dx
|∆(x)|2

g
+

∫
dτ
V (τ)2

Ec
,

Ssc = S0 +

∫
dx
[
∆(x)ψ↑ψ↓(x) + ∆∗(x)ψ↓ψ↑(x)

]
− i
∫
dτV (τ)

[
N(τ)−Ng

]
. (5.3)

Here ∆(x) is the bosonic complex auxiliary field introduced by the Hubbard-Stratonovich(HS)

transformation of the pairing interaction, and the physical meaning of ∆(x) is the

SC order parameter. We can ignore the spatial dependence of the order parame-

ter since a priori there is no supercurrent in the island. We also approximate the

amplitude by the mean-field value and ignore the massive fluctuations. Therefore
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the SC order parameter can be simplified as ∆(x) ' ∆0e
iφ(τ). On the other hand,

V (τ) is the bosonic real auxiliary field introduced by the HS transformation of the

charging energy term, and the corresponding physical meaning is the source-drain

voltage. After the HS transformation, our action becomes quadratic in terms of

the Grassmann fields. But before we integrate out the electrons, we first perform a

gauge transformation so that the new Grassmann field absorbs the phase of the SC

order parameter:

ψ′α = eiφ(τ)/2ψα,

ψ
′
α = e−iφ(τ)/2ψα,

∂τ → ∂τ − i
φ(τ)

2
,

Σa(τ2 − τ1) = Σ0
a(τ2 − τ1)e

i
2

[φ(τ2)−φ(τ1)]. (5.4)

Note how the boundary condition for the Grassmann field changes after the gauge

transformation. To be specific, the boundary condition of the gauged Grassmann

field

ψ′α(β) = eiφ(β)/2ψα(β) = −eiφ(0)/2+iπnwψα(0) = (−)nw+1ψ′α(0), (5.5)

is anti-periodic (periodic) boundary condition if the winding number of the SC phase

is even (odd). This alternative boundary condition is crucial when we integrate out

the electrons on the SC island. Another consequence of such a gauge transformation

is the deviation of the chemical potential, i.e., δµ(τ) = i
[
φ̇(τ)

2
+ V (τ)

]
. The simple
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fact that the hybrid nanowire (semiconductor+proximity SC) has a large density

of electrons suppresses the chemical potential fluctuation and therefore locks the

voltage and phase field by V (τ) = − φ̇(τ)
2

, which is also called Josephson relation.

Now the partition function becomes

Z =

∫
DψDψDφe−S =

∑
nw

∫
nw

Dφ
∫
DψDψe−Snw [ψ,ψ,φ],

Snw [ψ, ψ, φ] =

∫
dτ
( φ̇2

4Ec
− i

2
Ngφ̇

)
+
∑
α,a

∫
dτ2dτ1ψσ(τ2, ra)Σa(τ2, τ1)ψα(τ1, ra)

+
∑
αβ

∫
dxψα

[
∂τδαβ + hαβ(r)− µδαβ

]
ψβ + ∆0

∫
dx
(
ψ↑ψ↓ + ψ↓ψ↑

)
. (5.6)

Now we can integrate out the electrons (see Appendix. B for details) and get the

partition function for the NSN junction in terms of only the SC phase

Z =
∑
nw

Z
P (nw)
BCS

∫
nw

Dφ(τ)e−Snw [φ],

Snw [φ] = S0
φ −

1

2
Tr log(1−GscΣ),

S0
φ =

∫ β

0

dτ

(
φ̇2

4Ec
− iNg

φ̇

2

)
. (5.7)

Here Z
P (nw)
BCS is the partition function for the isolated BCS mean-field SC. It depends

only on the parity of the winding number P (nw) = nw mod 2. Gsc,Σ are the

superconductor Green’s function and the self-energy from lead both in the Nambu

basis. The integral over the phase variable Dφ is split into winding number sectors

labelled by nw, which is defined by the boundary conditions of the superconducting

phase as φ(β)− φ(0) = 2πnw. Here Z
P (nw)
BCS is the partition function of the isolated
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superconducting ring within the BCS approximation, i.e., ignoring charging energy,

which is included in the kinetic action of the phase. The partition function within

the BCS approximation depends only on the parity of the winding number P (nw) =

nw mod 2, since this parity sets the boundary conditions on the Grassmann field

ψ. As a result, the BCS partition function of the isolated ring for different winding

number parities is related as

Z1
BCS = Z0

BCSsign Pf(HBCS)
∏
m

tanh
(βεm

2

)
, (5.8)

where HBCS is the BCS mean-field Hamiltonian in the Majorana basis [2] for the

isolated ring in Fig. 5.1 and εm > 0 are the excitation energies of HBCS.

The ratio Z1
BCS/Z

0
BCS contribution to the partition function is of particular

interest because the factor sign Pf(HBCS), where HBCS is the BdG Hamiltonian

of the SC ring, is closely related to the topological invariant of the SC ring [2].

Specifically, the TSC phase is uniquely determined to be topologically non-trivial

if sign Pf(HBCS) flips between +1 to −1 on insertion of a SC flux quantum into

to the ring shown in Fig. 5.1. For a long SC ring, all other contributions to the

conductance such as g0 are Φ0-periodic. This leads to a 2Φ0-periodic contribution

to the partition function and ultimately to the total conductance G of the system

as a unique property of the TSC phase.

Coupling of the ring to the metallic lead in Fig. 5.1 appears in the partition

function Eq. (5.7) through the term GscΣ, where Gsc is the Green’s function of the

ring associated with HBCS. To simplify this lead coupling term in the action, we
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assume the SC gap of HBCS to be larger than both the charging energy and the

temperature such that the SC Green’s function Gsc can be assumed to be local in

both time and space. Additionally assuming that the lead self-energy Σ is smaller

than the gap ∆ ∼ G−1
sc , we can expand the trace term in Eq. (5.7) up to quadratic

order of GscΣ, and the effective action for each winding number sector of the system

becomes

Snw [φ] = S0
φ +

∑
a

ga

∫
dτ1dτ2

β2

1− cos[φ(τ1)− φ(τ2)]

sin2[π(τ1 − τ2)/β]
, (5.9)

where ga ∼ Tr[GscΣaGscΣa] is the local conductance through either metallic lead to

SC ring, as shown in Fig. 5.1. This effective action is an important result in our work,

which is identical the dissipative tunneling action first derived by AES [109, 113].

It includes the effect of phase fluctuation in the Coulomb blockaded SC for which

the charge quantization is apparent. What’s more, what makes it different from the

conventional AES action is the inclusion of a topological invariant in the ratio of

odd/even winding number sector partition function, i.e., Z1
BCS/Z

0
BCS. In this sense,

we may call the generalization “topological AES action”.

5.2.2 Conductance

While the partition function Eq. (5.7) for the NSN junction in Fig. 5.1 has a

clear dependence on the topological invariant through Eq. (5.8), the most convenient

observable associated with direct experimental measurement is the dc conductance.

However, the conductance for tunneling junction is notoriously difficult to calcu-

88



late than thermodynamic averages, because it requires analytic continuation of the

response functions from imaginary to real times or frequencies. To avoid the dif-

ficulty of direct analytic continuation, we take advantage of the fact that the dc

conductance in the symmetric case (i.e., gL = gR = g0) can be aproximated by the

interpolation formula of a two-point phase correlator [116]

G ' g0G(β/2),

G(τ) = 〈eiφ(τ)e−iφ(0)〉. (5.10)

It gives a reasonable approximation for the conductance over the entire range of

parameters, e.g., temperature T , bare conductance g0, and reference electron number

Ng. Using the winding number decomposition of the partition function in Eq. (5.7),

the conductance G can be expressed as

G = g0

[
G0 +

∑
nw 6=0

(
Gnw − G0

)
Znw
Z0

1 +
∑

nw 6=0
Znw
Z0

]
, (5.11)

where Gnw and Znw are the two-point correlation function and partition function

for the particular winding number sector nw. As shown in Appendix.C, Znw is

suppressed by high temperature as e−π
2n2
wT/EC ( in addition to tunneling ) so that

we can restrict the summation to nw = 0,±1:

G ' G0 +
(
G1 −G0

)Z1

Z0

+ (1→ −1). (5.12)
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The ratio Z±1/Z0 computed in the Appendix.C is

Z±1

Z0

= sign Pf(HBdG)
∏
m

tanh
(βεm

2

)
e±iπNge−

π2

βEc e−2g0 . (5.13)

It shows that in addition to a high temperature suppression, Z±1 is also suppressed

compared to Z0 as the tunnel conductance g0 is increased beyond g0 > 1, which can

be achieved for multi-channel metallic lead. While Eq. (5.12) contains a topological

contribution proportional to Z±1/Z0, this contribution can only be substantial only

if G1 − G0 is comparable to G0. Considering the fact that the conductance G is

related to the phase correlator [Eq. (5.10)], we find (see Appendix C) that G1 and

G0 have opposite signs according to the equation

Gnw ' (−1)nwg0Cnw

C|nw| =
∏
p′n>0

exp
{
− 1

βp′2n
8Ec

+ g0(|n′p| − |nw|)Θ(|n′p| − |nw|)

}
, (5.14)

where p′n = 2πn′p/β, with n′p = 1, 3, 5, ....

5.3 No Coulomb blockade

The 2Φ0-periodicity in the Coulomb blockade limit despite being quite unique

to the TSC phase can also arise from the conventional AB effect [117, 118, 119],

which is contained in the Gd contribution in Eq. (5.1). This contribution does not

depend on the occupation probabilities πj and is not affected by the Coulomb block-

ade. Therefore, we expect that the conventional AB type contribution to the con-
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ductance can be isolated from studying the conductance in the absence of Coulomb

blockade [117, 118].

The conductance in the absence of Coulomb blockade can be computed by

assiging a classical chemical potential to the superconductor and considering the

device in Fig. 5.1 as two conductances in series. Specifically, the current in each

lead L,R can be expressed in terms of the voltage difference Vj=L,R of the lead j

and the SC as Il =
∑

j GljVj, where Glj are a set of condutances of an NSN junction

that may be computed from the scattering matrix [120]. The total conductance of

the so-called floating superconductor system can be shown to be [121, 122, 123]

G =
GLLGRR −GLRGRL

GLL +GRR +GLR +GRL

, (5.15)

where the NSN junction conductances Gjl can be computed numerically using

KWANT for a Majorana nanowire model as a function of flux Φ. As seen from

plot a in Fig. 5.2, the off-diagonal conductance GLR, GRL (which are closely related

to Gd) in a short wire, leads to a 2Φ0 periodicity of the conductance for the Majo-

rana nanowire (whether or not in the TS phase). This can be interpreted to be a

result of the conventional AB effect resulting from quasiparticles interfering around

the ring. Such non-local transport of quasiparticles is expected to be suppressed in

the case of a long wire, which shows conventional (i.e. Φ0) periodicity of conduc-

tance even in the TSC phase as seen from plot d in Fig. 5.2. Thus the doubled flux

periodicity arising from the TSC phase can be distinguished from that arising from

the AB effect by comparing the conductance with and without Coulomb blockade.
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5.4 Discussion and Conclusion

In this chapter, we propose an NSN junction with a Coulomb blockaded SC

ring being connected by two metallic leads. We show that in the intermediate

Coulomb blockade regime, the topological invariant of the SC ring will explicitly

show up in the tunnel conductance through the junction. For a TSC ring, the con-

ductance shows a 2Φ0-periodic pattern as a function of the magnetic flux thread-

ing through the Coulomb blockaded SC ring. What’s more, such a 2Φ0-periodic

pattern in conductance can be amplified (reduced) by decreasing (increasing) the

transmission through the junction. Therefore we can differentiate the 2Φ0-periodic

contribution between TSC and trivial quasi-particle transport. We emphasize that

our proposal deals with the bulk property of the SC ring, and thus is robust against

any local trivial mechanisms like disorder or trivial ABSs and etc.
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Chapter 6

Conclusion

One-dimensional superconductor-semiconductor nanowire is a topic of active

research over the last decade. It is so far the most feasible platform to host non-

Abelian Majorana bound states and therefore can implement fault-tolerant topologi-

cal quantum computation. Since the early theoretical proposal, a lot of experimental

progress has been achieved, making it an exciting and dynamic field of research.

In Chapter 1, we gave an introduction of MBS in TSC. We focused on two

models – one is the spinless p-wave superconductor (Kitaev chain), and the other is

the SOC semiconductor-superconductor nanowire. The latter would be the theme

for the rest of the thesis. We also discussed the most important experimental signal

for the existence of MBS, i.e., a ZBCP of height 2e2/h in the tunnel conductance

through the NS junction.

In Chapter 2, we carried out a realistic simulation of Majorana nanowires

in order to understand the high quality experimental data [30, 34, 35]. In the

process, we developed a comprehensive picture for what physical mechanisms may

be operational in realistic nanowires leading to discrepancies between minimal theory

and experimental observations. We especially analyzed the role of dissipation in the

nanowire to explain the weakness and broadening of the ZBCP and breaking of
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particle-hole symmetry.

In Chapter 3, we discussed the possible existence of topologically trivial ABS

induced by a smooth potential in disorder-free hybrid nanowires. They are also

near-zero-energy bound states and resemble the MBS in the tunnel conductance

spectra, although these smooth-potential-induced ABS are nontopological. For com-

pleteness, we considered the case of a smooth potential being located outside the

nanowire and the case of inhomogeneous potential extending all the way into the

nanowire. We find these two cases are adiabatically connected, with only the range

of Zeeman field for the ABS being different. So such a topologically trivial ABS

is very generic in superconductor-semiconductor nanowires, and one has to exclude

these ABS before the confirmation of MBS.

In Chapter 4, following the discussion in Chapter 3, we gave multiple proposals

for how to differentiate between ABS and MBS in the context of NS junction.

Through extensive numerical simulations, we show how the variation of the tunnel

potential, the variation of the effective length of the nanowire, the variation of an

external dot state, and most importantly, the inclusion of a sharp potential would

change the tunnel conductance spectra in cases with ABS or MBS.

In Chapter 5, we went beyond NS junction and gave a theoretical proposal

to directly measure the topological invariant of the SC. The proposed experimental

setup is an NSN junction with coulomb blockaded SC ring being located in the

middle. The conductance would show a 2Φ-periodic oscillation as a function of the

magnetic flux threading through the SC ring, if the SC is in the topological phase.

Another advantage of such a junction is that we can differentiate the 2Φ-periodic
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oscillation from topology and from quasi-particle transport, by simply varying the

transmission transparency from the metallic leads.

In this thesis, we investigated signatures of both Majorana and Andreev bound

states. One of our important finding is that smooth-potential-induced ABS can exist

generically, and mimic many behaviors of MBS in the tunnel conductance spectra.

Therefore people should be very cautious about interpreting the ZBCP as the indi-

cation of MBS, since it may also arise from trivial ABS. Based on the experimental

status nowadays, we discussed several practical proposals to differentiate between

ZBCPs induced by ABS and MBS. For future experiments, we also gave theoretical

proposals that can detect the topological invariant of TSC in a direct way.
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Appendix A

Self-energy from the normal-metal lead

In this appendix we derive the self-energy from the normal-metal lead in Chap-

ter. 5. When an electronic system is coupled to a normal-metal lead, the influence

from the lead on the system can be summarized in a term called self-energy. In

this appendix, we call this electronic system ‘dot’ without loss of generality. The

expression of self-energy shows up in a clear way in the path integral formalism.

The partition function for the total system including the dot and the lead is

Z =

∫
DψLDψLDψ0Dψ0e

−S0−SL−HT

SL =

∫
dxψL(∂τ + hL)ψL(x)

HT =

∫
dτ
[
− tψL(τ, R)ψ0(τ, r0)− t∗ψ0(τ, r0)ψL(τ, R)

]
, (A.1)

where S0 (SL) is the action for the dot (lead), and HT describes the process of a

single electron tunneling between r0 in the dot and R in the lead. x = (τ, r) is the

space-time argument of the Grassmann field for electrons. We then complete the

square for fields in the lead, i.e.,

SL +HT = −
∫

(ψL +

∫
ψ0t

∗G)G−1(ψL +

∫
Gtψ0) +

∫
ψ0t

∗Gtψ0, (A.2)
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where G = −∂τ−hL is the Green’s function for the isolated lead. Now by integrating

out the electrons in the lead, the partition function becomes

Z ∝
∫
Dψ0Dψ0e

−S0−SSE ,

SSE =

∫ β

0

dτ2dτ1ψ0(τ2, r0)Σ(R, τ2 − τ1)ψ0(τ1, r0),

Σ(R, τ2 − τ1) = t∗G(R, τ2 − τ1)t, (A.3)

where Σ(R, τ2 − τ1) is the self-energy from the lead. Note that although the self-

energy is local in space, it is nonlocal in time, as a typical electron will itinerate in

the lead before tunneling back to the dot. We can further calculate the closed form

of the self-energy by working in the frequency representation.

Σ(R, iωn) = t2G(r, iωn) = t2〈R|(iωn − hL)−1|R〉

' t2d(εF )|〈R|kF 〉|2
∫
dξ

1

iωn − ξ
= −iΓ sgn(ωn), (A.4)

where iωn = (2n + 1)π/β and Γ = πt2d(εF )|〈R|kF 〉|2. Here d(εF ) is the density of

states of the lead at Fermi energy, and 〈R|kF 〉 is the wavefunction amplitude at R.

On the other hand, to calculate the self-energy in the temporal representation,

we first introduce an exponential ultra-violet suppression factor e−|ωn|/Λ and set Λ
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to infinity at the end of the calculation, i.e.,

∑
ωn

sgn(ωn)e−iωnτe−|ω|/Λ =
∑
ωn>0

[
e(−iτ−Λ−1)ωn − e(iτ−Λ−1)ωn

]
=

e−iτπ/β

1− e−iτ2π/β
− eiτπ/β

1− eiτ2π/β
=

−i
sin(πτ/β)

. (A.5)

Thus we obtain the self-energy term in the temporal representation:

Σ(τ) ' 1

β

∑
ωn

Σ(iωn)e−|ω|/Λe−iωnτ =
−Γ/β

sin(πτ/β)
. (A.6)
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Appendix B

Partition function of the mean-field SC

In this appendix, we calculate the partition function for the BCS mean-field su-

perconductor with either anti-periodic or periodic boundary condition in imaginary

time. The partition function is

Znw
BCS =

∫
DψDψe−S,

S =
∑
αβ

∫
dxψα

[
∂τδαβ + hαβ(r)− µδαβ

]
ψβ + ∆0

∫
dx
(
ψ↑ψ↓ + ψ↓ψ↑

)
. (B.1)

To integrate out the electrons, we first transform the complex Grassmann numbers

to real (Majorana) Grassmann numbers:

ψa(τ) =
[
γa1(τ) + iγa2(τ)

]
/
√

2

ψa(τ) =
[
γa1(τ)− iγa2(τ)

]
/
√

2,

{γai, γbj} = 0, (B.2)
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where a, b denote the combined indices of space and spin, and i, j = 1, 2. Thus the

partition function becomes

Znw
BCS =

∫
DΓ(τ)e−S,

S =
1

2

∫
dτΓT (τ)

[
∂τ + iAsc

]
Γ(τ), (B.3)

where Asc is real and anti-symmetric. Asc can be further transformed into a nearly

diagonal form D by an orthogonal transformation:

D = WAscW
T =

∑
⊕ Dm =

∑
⊕

 0 εm

−εm 0

 ,

χ = WΓ, (B.4)

with εm ≥ 0 being the single-particle excitation energies of the superconducting

system and det(W ) =±1. So the partition function can be written as

Znw
BCS =

∫
Dχ(τ)J(W )e−S,

S =
1

2

∫
dτχT (τ)

(
∂τ + iD

)
χ(τ), (B.5)

where the Jacobian for the orthogonal transformation is

J(W ) = det(W )dim(1τ ), (B.6)
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for which dim(1τ ) is the dimension of the imaginary time space, which can be also

obtained from the Fourier space. We perform the Fourier transformation for the

Majorana Grassmann numbers:

χ(τ) =
1

β

∑
ωn

χ(ωn)e−iωnτ ,

χ(−ωn) = χ(ωn), (B.7)

where ωn is odd(even) for even(odd) winding numbers. However χ(ωn) is no longer

self-adjoint, so in order to have self-adjoint Grassmann numbers, we make one more

unitary transformation

χ+(ωn) =
1√
2

[
χ(ωn) + χ(−ωn)

]
,

χ−(ωn) =
−i√

2

[
χ(ωn)− χ(−ωn)

]
, (B.8)

for ωn > 0. Note that the zero-frequency mode χ0, if there exists, is already self-

adjoint. Now we can see that dim(1τ ), which is equal to dim(1ω), is an even number

for odd frequencies (even winding numbers), since the total space in frequency rep-

resentation is the direct sum of 2-dimensional subspaces spanned by χ±(ωn) for

positive ωns, while dim(1τ ) is an odd number for even frequencies (odd winding

numbers) due to the additional 1-dimensional subspace spanned by χ0. Thus the
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Jacobian for the orthogonal transformation is

J(W ) = det(W )nw . (B.9)

Now we are ready to calculate the partition function. First we calculate the odd

frequency (even winding number) case, for which the partition function is

Zeven
BCS =

∫
Dχe−S,

S =
1

2

∑
ωn>0

∑
m

χTω,mBω,mχω,m, (B.10)

where

Bω,m =

 0 ωn

−ωn 0

⊗ 1 + 1⊗

 0 iεm

−iεm 0

 =



0 iεm ωn 0

−iεm 0 0 ωn

−ωn 0 0 iεm

0 −ωn −iεm 0


,

χω,m = (χ(ωn,m,+), χ(ωn,m,−))
T . (B.11)

The result for the Grassmann integral is

Zeven
BCS =

∏
ω>0,m

PfBω,m =
∏
ω,m

(iωn − εm) =
∏
m

exp
∑
ωn

log(iωn − εm) =
∏
m

(
1 + e−βεm

)
,

(B.12)
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where we have relabeled the frequencies to include the negative Matsubara frequen-

cies again. We ignore some unimportant prefactor, since finally the quantity to our

interest is only related to the ratio of partition function, where the unimportant con-

stant would cancel. On the other hand, for even frequency (odd winding number)

case, the partition function is

Zodd
BCS = det(W )

∫
Dχe−S,

S =
1

2

∑
m

( ∑
ωn>0

χTω,mBω,mχω,m + χT0,miD0mχ0,m

)
, (B.13)

where Bω,m is identical to Eq. (B.11), and iDm is defined in Eq. (B.4). So the

partition function becomes

Zodd
BCS = det(W )PfD

∏
ωn 6=0,m

(iωn − εm) = det(W)sgnPfD
∏
ωn,m

(iωn − εm)

= sign Pf(Asc)
∏
m

(
1− e−βεm

)
= P(HBCS)

∏
m

(
1− e−βεm

)
(B.14)

where the mod of PfD, i.e.
∏

m εm, is absorbed in the product of (iωn−εm) as iωn =

0, and P(HBCS) is the parity of the ground state of the mean-field superconductor

as shown in Eq. (B.1). We see that the BCS partition function depends only on the

parity of the winding number P (nw). In this work, the most relevant quantity is

the ratio of the partition function between winding number one and zero, which is

Z1
sc/Z

0
sc = P(HBCS)

∏
m

tanh(βεm/2). (B.15)
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Appendix C

Partition function and two-point correlation

function for a particular winding number sector

In this appendix, we calculate the two-point correlation function for a par-

ticular winding number sector. First we show that the total expectation value can

always decomposed as weighted sum of expectation value in a particular sector.

The total partition function for the NSN junction can be written as the sum

of partition functions in each topological sector:

Z =
∑
nw

Znw ,

Znw = Z
P (nw)
BCS

∫
nw

Dδφe−S[φ]. (C.1)

Note that Znw includes both the partition function of the BCS mean-field SC with

anit-periodic or periodic boundary condition and the corresponding phase fluctua-

tions. Thus if we need to calculate the expectation value for any function of the
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phase at some particular time point, i.e., F [{φ(τi)}], the value will be

〈F 〉 =
1

Z

∑
nw

ZP (nw)
sc

∫
nw

DδφF [{φ(τi)}] e−S[φ] =
1

Z

∑
nw

∫
nw
DδφF [{φ(τi)}] e−S[φ]∫

nw
Dδφe−S[φ]

Znw

=

∑
nw
〈F 〉nwZnw∑
nw
Znw

= 〈F 〉0 +

∑
nw 6=0

(
〈F 〉nw − 〈F 〉0

)
Znw
Z0

1 +
∑

nw 6=0
Znw
Z0

' 〈F 〉0 +
(
〈F 〉1 − 〈F 〉0

)Z1

Z0

+ (1→ −1) +O
(Z2

Z0

)
, (C.2)

where the expectation value 〈F 〉nw for a specific topological sector nw is defined as

〈F 〉nw =

∫
nw
DδφF [{φ(τi)}] e−S[φ]∫

nw
Dδφe−S[φ]

. (C.3)

In the last step of Eq. (C.2), we assume
Z|nw|≥2

Z0
� Z±1

Z0
� 1 so that topological

sectors with winding number |nw| ≥ 2 can be ignored.

To calculate Znw , we write the phase trajectory in the specific topological

sector nw as

φnw(τ) = 2πnwτ/β + δφ(τ), (C.4)

where δφ(β) = δφ(0), and the action for the topological sector nw is

S =

∫ β

0

dτ

(
φ̇2

4Ec
− iNg

φ̇

2

)
+ g0

∫ β

0

dτ1dτ2

β2

1− cos(φ(τ1)− φ(τ2))

sin2(π(τ1 − τ2)/β)

=
π2n2

w

βEc
− iπnwNg +

∫ β

0

dτ
δφ̇2

4Ec
+ g0

∫ β

0

dτ1dτ2

β2

1− cos(2πnw(τ1 − τ2)/β + (δφ(τ1)− δφ(τ2)))

sin2(π(τ1 − τ2)/β)
.

(C.5)
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If the charging effect is weak or intermediate, i.e., βEc ≤ 1, the phase fluctuation

in the action Eq. (C.5) is suppressed. Thus it is legitimate to expand the phase

fluctuations in the term proportional to g0 in Eq. (C.5) up to the quadratic order,

such that the g0-term becomes

g0

∫ β

0

dτ1dτ2

β2

[
A0(τ1 − τ2) + A(τ1 − τ2)(δφ2

1 − δφ1δφ2)− 2B(τ1 − τ2)δφ1

]
, (C.6)

where

A0(τ) =
1− cos(2πnwτ/β)

sin2(πτ/β)
,

A(τ) =
cos(2πnwτ/β)

sin2(πτ/β)
,

B(τ) =
sin(2πnwτ/β)

sin2(πτ/β)
. (C.7)

It is easy to calculate these integrals using Fourier transformation, and the resulting

expression for the partition function is

Znw = Z
P (nw)
BCS exp

{
− π2n2

w

βEc
− 2g0|nw|+ iπnwNg

} ∏
pn>0

π
βp2n
2Ec

+ α(ipn)
. (C.8)

In a similar way, we can calculate the two-point correlation function

Gnw(τ) = ei2πnwτ/β〈ei[δφ(τ)−δφ(0)]〉nw = ei2πnwτ/β exp
{
−
∑
pn

2− 2 cos(pnτ)
βp2n
2Ec

+ α(ipn)

}
. (C.9)
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At τ = β/2,

Gnw(β/2) = eiπnwC|nw|

C|nw| =
∏
p′n>0

exp
{
− 1

βp′2n
8Ec

+ g0(|n′p| − |nw|)Θ(|n′p| − |nw|)

}
, (C.10)

where p′n = 2πn′p/β, with n′p = 1, 3, 5, ....
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