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Abstract

An improved model which accounts for backlash effects is proposed for the dynamics of spur
gear systems. This dynamic model is mainly developed for the purpose of real time control. The
complicated variation of the meshing stiffness as a function of contact point along the line of action
is studied. Then the mean value is used as the stiffness constant in the improved model. Two
simulations, free vibration and constant load operation, are performed to illustrate the effects of
backlash on gear dynamics. Also given are comparisons of the simulation results with that of the
Yang and Sun’s model. This model is judged to be more realistic which can be used in real time
control to achieve high precision.

Nomenclature

point of intersection between the line of action and the base circle of gear |

point of intersection between the line of action and the base circle of gear 2
point of intersection between the line of action and the addendum circle of gear 2
=ED=p,, region of double-tooth contact

point of intersection between the line of action and the addendum circle of gear 1
Young’s modulus of elasticity

normal contact force

second moment of inertia of gear j about its center of rotation

point of contact along line of action

center of gear j

pitch point

damping coelficient in a gear mesh

damping factor used in Yang and Sun’s model

coefficient of restitution

face width

"h&&.ﬁ"d\ggx.'*;'jmcgﬁw>

h,  radial distance measured from the dedendum circle 1o the addendum circle of gear j
hp;  radial distance measured from the dedendum circle to the base circle of gear j

he;  radial distance measured from the dedendum circle to the meshing point of gear j

k  mesh stiffness constant

ki spring constant of the jth tooth on gear i

1 length of AB

p»  base pitch



rqj  radius of the addendum circle on gear j
ry;  radius of the base circle on gear j
rqi  radius of the dedendum circle on gear j
t,j tooth thickness of gear j measured along the addendum circle
tyj  tooth thickness of gear j measured along the base circle
tp  tooth thickness at the pitch circle
dpn  deflection due to bending caused by F, sin ¢
opp  deflection due to bending caused by F, cos ¢
0y deflection due to the flexibility of gear tooth foundation
ép  Hertzian deflection due to the compression between gear teeth
é;  deflection due to shear
pressure angle = 20 degree
v Poisson’s ratio
¥;  rotation angle of gear j measured from O;C
«;  rotation angle of the jth tooth on gear i measured from O;A
6;  angular displacement of gear j

&  applied torque on gear j
1 Introduction

Gear trains are commonly used in robot manipulators and other kind of servomechanisms
to amplify actuator torque and also to transmit power from one shaft to another. However, the
backlash between meshing gear tecth can cause impact, reduce system stability, generate noise and
undesired vibrations. The uncertainty caused by backlash will also decrease the repeatability and
accuracy of a geared servomechanism. With the increasing demand of high precision, accurate
dynamic modeling and control of geared servomechanisms become very important. Hence the
effects of backlash, one of the main nonlinearities in a geared system, on the dynamics of a geared
mechanism are studied in this paper.

The dynamics of spur gear systems has been investigated by numerous researchers (Remmers,
1971; Tobe and Takatsu, 1973; Rebbechi and Crisp, 1981; Ozguven and Houser, 1988; Comparin
and Singh, 1989; Kahraman and Singh, 1989). A literature survey reveals that little effort has
been made on the understanding of the effects of gear backlash and/or clearance on the dynamics
of mechanical systems. Hunt and Crossley (1975), Herbert and McWhannell (1977), and Lee and

Wang (1983) contributed to the understanding of the effects of impact and damping coefficient
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estimation on the dynamics of intermittent motion mechanisms. Goodman (1963) proposed a
method of calculating the dynamic eftects caused by backlash in a mechanism. Dubowsky and
Freudenstein (1971) created a rectilinear dynamic model, called the "Impact Pair,” for mechanical
systems with clearance. By extending Dubowsky and Freudenstein’s model, Azar and Crossley
(1977) investigated the dynamic behavior of a spur gear system with backlash using both computer
simulations and experimental verification. Yang and Sun (1985) developed a circular model which
is different from the rectilinear gear model introduced by Azar and Crossley for spur gear system
with backlash. They also proposed an analytic method to estimate the stiffness constant and
damping factor in two meshing gears.

The above mentioned studies on backlash had concentrated on the models of the instantaneous
impact phenomena of a simple gear pair of such complexity that the models are not suitabel for the
purpose of control. Hence, it is the objective of this study to establish a simplified dynamic model
for real time control. To build an accurate dynamical model, parameters used in the model need to
be estimated correctly. In a gear model, the meshing stiffness constant is difficult to estimate since
it involves a very complicated phenomenon. The subject has been studied extensively by several
researchers (Timoshenko and Baud, 1926; Nakada and Utagawa, 1956; O’Donnel, 1960; Matsuz
et al., 1969; Elkholy, 1985; Tavakoli and Houser, 1986). Yang and Sun (1985) proposed a method
to estimate the stiffness. However, in the Yang and Sun model, only the deflection due to Hertzian
stress was considered, while all the other effects such as bending moment, shear stress, etc. were
neglected. In this paper, it will be shown that the deflection due to Hertzian stress only constitutes
to a small fraction of the overall deflection. Hence, the accuracy of Yang and Sun’s model becomes
questionable. It will also be shown that a mean-value stiffness constant can be used to accurately
predict the dynamics of a geared system with clearance. We expect that this simplified model can

be used for real-time control to improve the accuracy of a geared servomechanism.

2 Dynamic Model with Backlash Consideration

The basic structure of a single degree-of-freedom (DOF) gear pair is shown in Figure 1. The
shafts of the two gears are assumed to be rigid and the only compliance considered in this model is
the compliance of gear teeth. The mesh compliance, which will be examined later, consists of the

effects of bending moment, shear stress, foundation inclination, and Hertzian contact compression
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on a gear tooth. To make the model more realistic, backlash eftfects between two meshing gears will
be considered. Backlash, which causcs discontinuous phenomena and impact effects on dynamics,

brings one uncertainty to the dynamic model of a single DOF system.
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0O,
Figure 1: A gear pair in mesh

For convenience, some symbols and definitions will be made first. Backlash, b, will be defined
as the clearance mecasured along the line of action of a gear pair as shown in Figure 2, Note that
this definition of backlash is a little difterent from the definition found in some textbooks (Martin,
1982). But the difference is negligible. We define 0 and £; to be positive in the clockwise direction,
and 6, and ¢; to be positive in the counterclockwise direction. The neutral position of a gear pair is
defined as the position where the centerline of a tooth in the drive gear 1 and the center of a tooth
space on the driven gear 2 are both coincident with the centerline of the two gear centers. The
approach portion is the part from the first point of contact to the pitch point on the line of action and

the recess portion is the part from the pitch point to the last point of contact. Due to backlash, there



are two kinds of contact: front-side contact occurs when the leading edge of gear 1 meshes with
the trailing edge of gear 2, and back-side contact occurs when the trailing edge of gear 1 meshes
with the leading edge of gear 2, as shown in Figure 2.

g

Gear 1 (Driver)

ot

Front-side Line of Action

Contact

<" Back-side
contact

Gear 2 (Follower)

0O,

Figure 2: Geometrical relation in meshing gear pair

A modified rotary model for dynamics of spur gear systems with backlash consideration is
proposed here. The dynamics of such a system as shown in Figure 2 can be divided into three
cases according to whether the two meshing gears are under the front-side contact, separation, or
back-side contact. In what follows, we shall neglect the frictional forces at the point of contact and
at the journal bearings.

Case(1): Front-side contact
When 10, — 1,20, > b, the leading edge of gear 1 contacts with the trailing edge of gear 2 as

shown in Figure 2. The equations of motion can be written as

1101 = gl—Fnrhl (1)



L, = &+F,p 2)

where
F, = kér + c6F 3)
and where
o = Il —rnbr—>b €]
SF = rbl()l - "bzgz (5)

denote the dynamic transmission error and the relative speed along the line of action, respectively.
Case(2): Separation
When b > r;, 0, — 1,20, > -b, separation occurs and there is no torce of interaction between the

two gears. Therefore the equations of motion are given by

L0, £ (6)

&2 (7)

LU,

Cuase(3): Back-side contact
When 7,10, — 120, < =D, the trailing edge of gear 1 meshes with the leading edge of gear 2.

The equations of motion are given by

LU, = & +Furp (8)
Li, = &—Fury )
where
F, = kép + cbg (10)
and where
op = 1l —rnli-Db (11)
op = raly—rib) (12)

are the dynamic transmission error and the relative speed along the line of action, respectively. The

stiffness function, k, and the damping coefficient, ¢, will be discussed in following sections.



3 Stiffness Constant Estimation

Yang and Sun (1985) developed a rotary model for the dynamic analysis of a spur gear system
with backlash. They also proposed an analytic method to estimate the mesh stiffness constant.
In the Yang and Sun’s model, they only considered the Hertzian compression, which is a local
effect. The effects of bending moment, shear stress, etc. in a gear tooth are not considered. In
what follows, the approach proposed by Nakada and Utagawa (1956) will be used with some
modifications.

A gear tooth is modeled as a very short cantilever beam with the consideration of some other
effects. The cantilever beam consists of two parts: the part inside the base circle is modeled as a
rectangular beam and the part outside the base circle is modeled as a trapezoidal beam, as shown in
Figure 3. In addition to the deflection contributed by bending moment and shear stress, foundation
deflection and Hertzian contact also contribute to the total deflection. That is the overall deflection
is expressed as

b =0p+ 6+ 8+ 0y (13)

S

Addendum

Tooth
Profile

Dedendum
Circle

Figure 3: Gear tooth deflection model.

Nakada and Utagawa only considered the bending caused by the tensile force, F, cos ¢. In the

improved model, bending caused by the compressive force, F, sin ¢, will be also included. Also



the Hertzian deflection derived by Yang and Sun will be included. The various components of

deflection for gear j are given as follows (Nakada and Utagawa, 1956; Yang and Sun, 1985):

12F, cos $*hy; 6F, cos ¢*(w; — hy)*
Obpj (% + hi /3 — hehyy) + 7
i Eft?;j b i Eﬂij
ity Wizhgy oy Wizhe g (14)
W — h[,j W;— hbj W;— hbj
3F, cos ¢psin g _hpi(hy —2h;)(w; — hej)
Somj = , At I 0 (- hy)* 15
bnj Efflz,j Wj—hbj ( j bj ] ( )
1.2F, cos ¢* w; — hyi
§; = _.._é;c;[.;(’_[h,,, + (= by In 22— (16)
b ALl
24F, cos ¢*h?,
§p = 1T 9 17
’ rEff, oo
4F,(1-1v?)
by = ———— 18
hj 7TEf ( )

where w; denotes the height of the triangle shown in Figure 3, and

_ hajtbj - hbjtaj

Vi (19)
Ipj — Ly
Theretore the mesh stiffness constant of a tooth on gear j can be denoted as
F,
ki=—" (20)
&

3.1 Stiffness Constant of a Meshing Gear Pair

Most gear pairs have double-tooth contact, which has an influence on the mesh stiffness function.
Hence, some definitions for double-tooth contact will be made. Let AB be the line of action for
gears 1 and 2 as shown in Figure 4. Also let line AB be tangent to the base circle of gear I at A
and that of gear 2 at B and let / be equal to the length of AB. There are four zones along the line
of action AB due to the change of the number of pairs of teeth in contact. As shown in Figure 4,
point C is the intersection of the addendum circle of gear 2 with line AB, point P is the pitch point,
point D is the intersection of the addendum circle of gear 1 with line AB, E and F are two points
on AB such that DE=CF=p,. Sections EP and PF are the single-tooth contact zones and sections

CE and FD are the multi-tooth contact zones. The geometric relation between these four zones are
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o, ;\eﬁiz

Multi-tooth contact
region(CE, FD)

—— Single-tooth contact
region(EP, PF)

Figure 4: Two-tooth contact
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given by

AB = I=(rp +rp)tand
AC = 1-\[iy-13,

AD = \J15 - 13

AE = AD-p,

AF = AC+p,

When two gears are meshing, the two meshing teeth act like two springs in series. When there
are two teeth pairs in contact, they act like two springs in parallel. Therefore, the stiffness constant
during each mesh cycle can be written as

kyikay ky2kaz

ki +kay o ki +ka

K= 21)
ki1kz

ki + ko

, provided z falls in the double — tooth contact zone

provided z fulls in the single — tooth contuact zone

In what follows, the geometric relations among the parameters used in Equations (14) through

(20) will be derived. From the gear tooth definitions, we have

/1],j = Ty — Ty (22)

huj = Taj— Ty (23)

However, if the radius of dedendum circle is greater than that of the base circle, then hy; and hy;

will be computed as follows:

hy = 0 (24)

hej = Tqi—1y (25)

From the property of involute gear, as shown in Figure 5, tooth thickness at a general location
can be written as (Steeds, 1948)

= I[il + 2(invé, — inviy)) (26)

where 1, = (rp)/(c0s ¢), 1 = (17,)/(c0s ¢,,,) is the radius at meshing point M, inv is the involute
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Figure S: Tooth Thickness.

function such that inv ¢ = tan ¢ — ¢. Therelore the tooth thickness at base circle of gear j, 1, 1s
given by
i
Inj = l'/»jl,f"j +2(tan ¢ - ¢)] (27)

12

Similarly, the tooth thickness along addendum circle of gear j, t,, 18 given by

t = Tyl + 2invg ~ invf) e

Thj
where f3; = cos™ (1 /14)-
Due to the property of involute gear tooth, the relation between the rotation angle measured
from O,A, ay;, and the operating pressure angle on gear tecth at point M, ¢,,, as shown in Figure 6,
is given by

ayj =tan @, (29)

Therefore referring to Figure 6, 7, and h; are given by

tl" ' . .
Y = e = 0.5] L + 2(inve — inve,,)] (30)
‘m Iy
T'pj COS Y
h(" = Py =ty = ——’——I‘,'+h,~
i y i cos gb,,, bj bj
COSY
e P LRSS | P (31)

cos(tan™ cyy)
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Pitch Circle
Base Circle

Dedendum Circle

Figure 6: Tooth length and angle relations.

Figure 7: Relations between angles, a1, @, ¢, and ;.
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Note‘that haj, hyj, to; and #; are constants while hg; and ¢, are function of «;;.  Since the first
contact point C is decided by the addendum circle of the mating gear, there exists an offset angle,
¢, between ;A and O;C. The offset angle for gear 1, for example, is equal to (AC)/ (1) as shown
in Figure 7. Hence the relations between the rotation angle of the first meshing gear teeth of gear
1, denoted as a;y, and of gear 2, denoted as ayy, are given by

AC

ap = Ui+ — (32)
T'p1

o = U —aurs) (33)
Ip2

where 9, is the rotation angle measured from the line O,C to O, M.
The corresponding rotation angles of the second meshing gear teeth, denoted as o, and oy,

arc

Pn

2 = qp + — (34)
Ip1
Po

(2 = Qg1 ~ — (35)
'

Equations (34) and (35) s valid only when «; is in approach section.

Substituting Equations (32)~(35) into Equation (31), h,; can be calculated at very instant of
rotation. Substituting the values of hy;, hyj, b, t4, ty, and t,, into Equations (14)—(18) and the
resulting values into Equation (20), the stiffness constant of a single tooth can be found. Substituting
the stiffness constants of all the meshing tecth into Equation (21), the overall mesh stittness constant
can be evaluated. Note that a gear pair will make a complete cycle of meshing when a pair of teeth

starts their meshing at point C and ends at point F.

3.2 Example

Two gears are chosen to illustrate the principle. The gear parameters are taken from Yang
and Sun (1985). They are listed as follows: density for steel, p=7800 kg/m’; Young’s modulus,
E, =E, =2.068¢11 N/n12; Poisson’s ratio, »; = v, = 0.3; pitch radii for gears 1 and 2, 1y = 0.02 m
and r, = 0.08 m; pressure angle, ¢ = 20 deg; number of teeth, Ny = 20 and N, = 80; face width,
f = 0.01 m; backlash, b = 0.00005 m; damping ratio, ¢ = 0.05. From the above data, the moments

of inertia of gears 1 and 2 are computed as I} = 1.9604e — 05 kg - m? and I, = 0.0050 kg - m?,



respectively. From the above data, it can be proven that the contact ratio is equal to 1.69129, i.e.,
this is a double-tooth contact pair.
First, all components of deflection produced by a unit load, 1N, at gears 1 and 2 are calculated

and plotted as functions of ¥, as shown in Figures 8 and 9, respectively. It can be seen from

0 = : = ~ : -

005 01 015 02 025 03 Obn
ﬁl(rad)

Figure 8: Deflection of gear 1 vs. 4,

—

0.05 0.1 0.15 0.2 0.25 03 Obn

ﬁl(rud)
Figurc 9: Deflection of gear 2 vs.

Figure 8 that when the contact pointis ncar the base circle, i.e., ¢y < 0.1, the Hertzian compression
and the other deflections are all very small. But when the contact point is near the addendum circle,

the deflection due to shear, 6, and the deformation of tooth foundation, é;, become the dominant
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terms, while the deflection caused by the negative bending moment, 8, is insignificant. Referring
to Figure 9, we note that the deflections due to bending moment, shear stress, and foundation
deformation are all large when ¢, < (.1, and the deflections decrease as the contact point moves
closer to the base circle. However, the deflections due to Hertzian contact and negative bending
moment are always very small. The dilference in the contribution of various components shown
in Figures 8 and 9 are caused by the difference in the tooth lengths between gears 1 and 2. The
resultant stiffness constant k for a single tooth on gears 1 and 2, and their combined stiffness are
shown in Figure 10. The combined stiffness is very close to a constant . The stiffness constant of
the example gear pair with the consideration of double-tooth contact is shown in Figure 11. As
can be seen from Figure 11, the stiflness constant decreases drastically as the mesh changes from

a two-tooth contact 1o a single-tooth contuact.

6 L

Gear |

w
3 -
2 b
e
l -
Combined
0.05 0.1 0.15 0.2 0.25 03
Y(rad)

Figure 10: Stiffness constant vs. 1,

Since it is not feasible to keep track of the variation of the mesh stiffness constant & in a real
time control system, the mean value of k can be used for control purpose. The mean value and the
magnitudes of the first and second harmonics are shown in Table 1, where C; denotes the coefficient
of the first harmonic and C, denotes the coelficient of the second harmonic. We note that the first
harmonic and the second harmonic are one order-of-magnitude smaller than the mean value. Using
the mean value alone will introduce some error in the model. However, the actual frequency of

occurance due to the first harmonic is equal to the product of the number of teeth and the angular
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z Double-tooth Contact : Single-tooth
! :  contact :
1.2 H .
10 - E‘/—-_‘:

0.05 0.1 0.15 0.2 0.25 0.3
ﬁl(rad)

Figure 11: Stiftness constant vs. v,

Mecan C G
K | 1.3868 - 10% | 2.956 - 107 | 1.684 - 10

Table 1: Mesh stiftness (N/m)

velocity in revolution per second of the drive gear. This results in a relatively high frequency in
comparison with the bandwidth of a mechanical system and, hopefully, will have little effect on

the dynamics of a geared servomechanism.

4 Damping constant

Dubowsky and Freudenstein (1971) first created a dynamic model, known as the "Impact Pair,"
to describe the dynamics of mechanical systems with clearance. But the conventional linear law
they used tor the normal contact force formula, ¢k + kx, results in a non-zero damping force at
the time of impact and unrealistic tensile force at the time of separation due to non-zero relative
velocity. Hence Azar and Crossley (1977) proposed a nonlinear law for the normal contact force,
(dx + k)x, to avoid this problem. Based on Azar and Crossley’s approach, Yang and Sun (1985)
developed a circular model for spur gear system with backlash, They also proposed an analytic
method to estimate the damping factor of a gear tooth. The formula they used is

6(1-e) k

= Gees3 W,

(36)
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where V; is the impact velocities, and e is the coefficient of restitution which can be obtained from
e =1-0.022V7%° (37)

Hence the damping fuctor, d, used by Yang and Sun, which depends on the impact velocities, Vi,
needs to be determined at the instant of impact and is not practical for real time control system. Also,
the coefficient of restitution used for calculation of damping factor is obtained from experiment
of ball to ball impact (Goldsmith, 1960). The deflection due to bending moment, shear force, etc.
are not considered. Its validity for impact between gear teeth may be questionable. Based on
the above reasoning, the approach proposed by Dubowsky and Freudenstein (1971), known as the
"Impact Pair," is adopted. Although it may cause a little error, it is simpler and has been shown
to be more stable (Herbert and McWhannell, 1977). Hence in the improved model, the linear law
k6 + ¢b is used to calculate the contact force. Also, the damping coefficient, ¢ is assumed to be

time independent and can be determined by experiments. Its relation with the damping ratio, ¢, 1s

L2, + 112
¢ =20} /kfﬂ’iﬁi’2 (38)
241

5 Comparison with Yang and Sun’s Model

given by

In this section, the difference between Yang and Sun’s and our improved model will be discussed
and compared. Yang and Sun only considered the meshing stiffness from the Hertzian contact.
In this work, the stiffness constant & is an average value taken from the combined effects of
bending moment, shear stress, Hertzian contact, foundation inclination and the multi-tooth contact.
As a result, the value of k is several times smaller than that used in the Yang and Sun’s model.
Also, the algorithm used by Yang and Sun in deriving the damping factor are no longer valid
since the deflection contributed by Hertzian contact is insignificant in comparison with that due
to bending moment, shear foree, ete. Assuming a damping ratio of ¢ = 0.05, and using the gear
data from previous calculations, the damping coefficient for the improved model is calculated from

Equation (38) as ¢=237.6651 N - s/m.
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5.1 Simulation Results

To compare the difference in dynamic behavior between Yang and Sun’s model and the improved
model, two types of simulation were performed: {ree vibration and constant load operation. For
convenience, the stiffness and damping functions used in Yang and Sun’s model were derived from
single-tooth contact model. The stiffness function used in Yang and Sun’s model is

T Ef

k= m (39)

The damping function used in Yang and Sun’s model is as described in Equations (36) and (37).
The software used for simulation is Simulink (MathWorks, Inc., 1992) and the integration
method chosen is the Runge-Kutta 5th order method with a fourth order step-size control. This
package provides an advantage of {lexible integration step size which can reduce the computation
time required since the dynamic system under study is a discontinuous and "hard" system. The

maximum step size is le-4 sec, the minimum step size is 1e-6 sec, and tolerance is set at le-6.

5.1.1 Free Vibration

The initial velocitics of gears 1 and 2 are chosen to be §; = 50 rad/s and 0, = 0 rad/s,
respectively, and the initial positions of both gears are set at their neutral positions as defined in
section 2. The simulation results are shown in Figures 12 through 16. Figures 12 through 15 show
the angular displacements and angular velocities of both gears wherein the solid line represents
the response of Yang and Sun’s model and the dashed line is the response of our improved model.
The two gears bounce back and forth {rom [ront-side contact to rear-side contact which causes the
angular displacement to deviate from a straight line. The frequency of deviation from a straight
line is different for the two models since the stilfness constants and damping functions used in the
two models are different. But the basic trend is similar. The deviation of the angular displacement
of gear 2 from a straight linc is much smaller than that of gear I due to the larger moment of inertia
of gear 2 and the gear ratio. The average angular velocities of both gears are both positive, but
the instantaneous velocity of gear 1 sometimes becomes negative. There exists periods of constant
angular velocities for both gears 1 and 2, which correspond to the periods of separations between
the two gears. The relative displacements are shown in Figure 16. Since the damping factor used

in the Yang and Sun’s model increases as a function of time, the frequency of vibration will also
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change as a function of time as can be seen from Figure 16. Before 4 ms, the frequency of Yang
and Sun’s model is lower than, but after that it becomes higher than that of the improved model.
The successive impacts can be clearly seen from Figure 16 as s becomes greater than (.05 mm or
less than -0.05 mm. Also due to the greater stiffness constant used in the Yang and Sun’s model,
the penetration, i.e., |s|-0.05 mm obtained from the Yang and Sun’s model is also smaller than that

of the improved model.

0.07 T T T . T T T T T

e ng and Sun’s Mode
Yang and Sun’s Model

0.06F . Improved Model

0.05 -

0.04 -

0

L L

0 0.002  0.004 0.006 0.008 0.01 0012 0014 0016 0.018 0.02

t(s)

Figure 12: Angular displacement of gear 1 under free vibration

5.1.2 Constant Load Operation

‘The initial velocities of gears 1 and 2 are chosen to be 0, = 50 rad/s and 0, = O rad/s,
respectively, and the initial positions of both gears are sct at their neutral positions. A constant
torque of ;=1 Nm is applied on gear | and an equal but opposite sign load, &=1 Nm, is applied
on gear 2. The simulation results obtained from the two models are shown in Figures 17 through
21. Figures 17 through 20 show the angular displacements and angular velocities of both gears.
The relative displacements are shown in Figure 21. The angular displacements obtained trom
both models are almost identical. The angular velocities of both gears deviate from a straight line

because of the impacts between the two gears. Due to larger stiffness constant used in the Yang and
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Figurc 13: Angular displacement of gear 2 under free vibration
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Figure 14: Angular velocity of gear 1 under free vibration
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Yang and Sun’s Model
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Figure 15: Angular velocity of gear 2 under free vibration
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Figure 16: Relative displacement under free vibration
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Sun’s model, the amplitude of oscillations in angular velocity is also smaller. From Figure 21, we
observe that the successive impacts initially occurs on both sides of a gear tooth and then changes

to one side contact.
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Figure 17: Angular displacement of gear 1 under constant load
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Figure 18: Angular displacement of gear 2 under constant load
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Figure 19: Angular velocity of gear 1 under constant load

16 e e T T T T r T

e Yang and Sun’s Model
M- Improved Model

10+
0,
(rad/s)8

T

19

L 2 L

() L 1 i 1 1
0 0.002 0004 0.006 0008 0.01 0012 0.014 0016 0018 0.02

t(s)

Figure 20: Angular velocity of gear 2 under constant load
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Figure 21: Relative displacement under constant load
6 Conclusions

An improved dynamic model which considers the effects of backlash in a spur gear system for
the purpose of precision control has been proposed. Equations for evaluation of the mesh stiffness
were derived. Two simulations were performed to illustrate the etfects of backlash on the dynamics
of a typical gear pair. The firstis a [ree vibration and the second is a constant load operation. Both
the Yang and Sun’s model and the improved model were used for the simulations. It can be
concluded from the comparison study that the improved model is much simpler, it does not require
online estimation of the stiffness constant and damping coefficient, and meanwhile improves the

accuracy of the model. Hence, the improved model is more suitable for real time control.
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