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Due to their outstanding properties carbon nanotubes have attracted considerable re-

search effort during the last decade. While they serve as an example of a 1-dimensional

electron system allowing one to study fundamental quantum effects nanotubes—especially

semiconducting nanotubes—are an interesting candidate for next-generation transistor

application with the potential to replace silicon-based devices.

I have fabricated nanotubes using chemical vapor deposition techniques with various

catalysts and gas mixtures. The nanotubes produced with these techniques vary in length

from 100 nm to several hundreds of micrometers. While data taken on shorter metallic

and semiconducting devices show Coulomb blockade effects, the main part of this work is

concerned with measurements that shed light on the intrinsic properties of semiconducting

nanotubes.

On devices with lengths of more than 300 µm I have carried out measurements of the

intrinsic hole mobility as well as the device-specific field-effect mobility. The mobility



measured on these nanotube devices at room temperature exceeds that of any semicon-

ductor known previously.

Another important consideration in nanotube transistor applications are hysteresis ef-

fects. I present measurements on the time scales involved in some of these hysteresis

effects and a possible application of the hysteresis for memory devices.
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Chapter 1

Introduction

Carbon and its compounds have long been known to have an immense variety of uses and

applications. As oil, natural gas or coal, carbon is used to deliver most of the energy used

today. Materials made of carbon compounds have been used in cutting edge technology

in all ages. For example the compound known as “wood” is stable enough to be formed

into the image of a large horse facilitating one of the most important military victories

known [1]. The same compound also allowed the construction of such things as ships,

which were indispensable for the first Europeans to travel to America, ultimately resulting

in the constitution of the USA, which is written on yet another carbon compound called

“paper”.

Compared to the number of uses for carbon compounds the number of applications

for elemental carbon have been limited, possibly due to the fact that for most of the time

there were only two known forms of elemental carbon, i. e. diamond and graphite.

Recently, however, more forms of elemental carbon have been discovered. Despite

early (1970) theoretical predictions (for references and more details see [2]), which sug-
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gested icosahedral clusters of 60 C-atoms to be chemically stable, these clusters known

as fullerenes or Buckminsterfullerenes were not found experimentally before 1985 [3]. In

1991 another form of elemental carbon was discovered by S. Iijima [4] (for more details

see chapter 2): Carbon Nanotubes. Carbon nanotubes can be metallic and semiconducting

making them an interesting and promising material for many future applications including

applications as transistors.

While metallic nanotubes can be incorporated in devices like single electron transis-

tors and quantum dots showing quantum behavior at low temperatures and single electron

effects even at room temperatures [5], semiconducting nanotubes can be used as field-

effect transistors potentially replacing silicon-based devices in future computers.

This work focuses on various aspects of nanotubes in transistor applications. Single

electron transistors are being investigated as a background for the experiments on na-

notube field-effect transistors and to obtain better knowledge of the methods of device

fabrication that are used. The experiments on semiconducting nanotube devices aim to

gain a better understanding of the fundamental properties of conduction in semiconduct-

ing nanotubes. Experiments on devices made from “ultralong” (> 300 µm) nanotubes

are presented. The main result of these experiments is that charge carriers in nanotubes

(holes) have an intrinsic mobility at room temperature that is higher than in any other

semiconductor and show remarkably long mean free paths of several micrometers. An-

other aspect of the behavior of nanotube transistors is the presence of hysteresis. Some

investigations of temperature dependence and long term behavior of this hysteresis are be-

ing presented together with a possible application of the hysteresis in memory elements.
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Chapter 2

Nanotube Basics

2.1 Historical Overview

Already before 1980 there were some experimental observations of thin carbon fibers or

tubes produced by decomposing hydrocarbons in the presence of some form of catalyst

[6, 7, 8]. The discovery of fullerenes in 1985 by Kroto et al. [3] increased the general in-

terest in structures consisting of elemental carbon starting a significant amount of research

activity. A good overview of the research on fullerenes can be found in [2].

However, research on carbon nanotubes (CNTs)1 did not seriously begin until multi-

walled carbon nanotubes (MWNT), initially dubbed “helical microtubules of graphitic

carbon” [4], were discovered by S. Iijima while researching methods of producing fullerenes.

Using transmission electron microscopy (TEM) he discovered unusual fibers in the soot

produced by an arc discharge between carbon electrodes, and identified them as seamless,

concentrically nested, tubular sheets of graphite. Theoretical predictions about structure

1A list of abbreviations used throughout the text can be found in appendix A on page 96.
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and electronic properties of CNTs followed quickly [9, 10, 11, 12]. Soon methods were

developed to produce single-walled carbon nanotubes (SWNT), i. e. nanotubes that con-

sist of only a single sheet of graphite, by Iijima [13] and Bethune [14]. The production

of SWNT in large quantities by laser ablation [15] finally spurred intense research on this

material, revealing outstanding electrical, thermal and mechanical properties.

2.2 Nanotube Properties

This work deals mainly with various aspects of the electronic properties of carbon nano-

tubes. Accordingly their remarkable properties in other areas will not be treated in any

detail. However, for completeness some of them shall at least be mentioned here.

Young’s modulus for graphite is strongly anisotropic due to its layered structure con-

sisting of stacked sheets of single atomic thickness (“graphene” sheets) that are loosely

bound to each other. While the out-of-plane value, i. e. the value perpendicular to the

sheets (∼ 1 GPa [16]) is low compared to many other materials, the structure of a na-

notube (see section 2.2.1) allows for a value over 1000 times higher because its prop-

erties are derived from the much higher in-plane modulus of graphite. Using different

techniques Treacy et al. [17] and Wong et al. [18] have found Young’s modulus in na-

notubes to be 1.8 TPa and 1.2 TPa, respectively. Later measurements by various groups

(for an overview of the mechanical properties of CNTs see for example [16]) essentially

found values within the limits given by the measurements mentioned. Although measure-

ments of the tensile strength of CNTs report less consistent results between 10 and 60 GPa

[19, 20, 21] it is clear that nanotubes are remarkably strong, in fact so strong that the idea
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Figure 2.1: Hexagonal lattice of a graphene sheet: The dashed arrows indicate the direc-

tions of a common choice of basis vectorsa1 anda2 to define chiral (or rollup) vectors

in a carbon nanotube. The solid arrow shows the chiral vectorc = 5a1 +5a2 for a (5,5)-

armchair tube.

of using nanotube-based cables for an elevator into space [22] is being dreamed about.

2.2.1 Structure

To understand the atomic structure of a carbon nanotube it is best to start by looking at

so-called graphene, which is nothing but a single sheet of graphite. The carbon atoms

in graphene are sp2-hybridized and arranged in a hexagonal lattice. Figure 2.1 shows an

example of such a lattice. To form a carbon nanotube such a graphene sheet is rolled

up into a seamless tube as verified by high-resolution transmission electron microscopy

(TEM) and scanning tunneling microscopy (STM) [23]. To characterize the way in which

the tube is rolled up one uses the chiral (or rollup) vectorc, which points around the

circumference of a nanotube describing what unit cell of the graphene lattice is mapped
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Figure 2.2: Examples of different types of nanotubes: (a) Metallic (n,n)-nanotube (see

also section 2.2.2). The configuration of bonds along the chiral vector (emphasized in

black) resembles an armchair. (b) Semiconducting (n,0)-nanotube. Here the bonds are in

a zigzag configuration along the chiral vector.

onto itself by rolling up the sheet. Using the basis vectorsa1 and a2 as illustrated in

figure 2.1 the chiral vector is given byc= na1+ma2, usually written simply as (n,m). The

choice ofn andm determines the properties of a nanotube. The so-called chirality of a

nanotube is measured by its chiral angleθ , which is the angle betweena1 andc. Figure 2.2

shows two examples for carbon nanotubes: Figure 2.2(a) shows a so-called “armchair”

tube that has a chiral angle ofθ = 30° and indices (n,n). The nanotube in figure 2.2(b)

is a “zigzag” tube with indices (n,0) and a chiral angle ofθ = 0° [11]. Although there is

no evidence that common methods of nanotube synthesis (see section 2.3) produce these

special types of nanotubes more frequently than so-called chiral nanotubes, which have
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arbitrary indicesn andm, these two special configurations have attracted more research

attention than others due to their higher degree of symmetry, which allows for easier

theoretical treatment.

The diameterd of a nanotube is given by the length ofc divided byπ [11]:

d =
|c|
π

=

√
(na1 +na2)2

π
=
√

3a
√

n2 +nm+m2

π
, (2.1)

wherea is the length of the carbon-carbon bond (1.42 Å).

2.2.2 Electronic Properties

The next important question is how a nanotube’s chirality influences its the electronic

properties. As an introduction we first look at the band structure of graphene. The first

tight-binding calculations including only theπ- andπ∗-orbitals of graphene were pre-

sented by P. R. Wallace as early as 1947 [24]. They serve well as a simplified model

to understand the basic features of the transformation from graphene to a carbon nano-

tube. Figure 2.3(a) shows a simplified model of the graphene bands near the Fermi level

(marked by the plane defined by the hexagon). In this low energy region the valence as

well as the conduction band can be approximated by cones whose slopes are given by

the Fermi velocityvF = 8.1×10−5 m/s [25] and whose apices meet at the K-point of the

graphene Brillouin zone. This picture ignores the trigonal warping of the graphite lattice

[26, 27], as well as the behavior at higher energies.

When rolling the graphene into a nanotube an additional quantization is imposed on

the electron wave functions:kc ·c = 2π i. Herekc is the circumferential component of the

electron wave vector,c is the magnitude ofc andi is an integer. This additional condition

8



Figure 2.3: Schematic view of the band structures of (a) graphene, (b) a metallic car-

bon nanotube and (c) a semiconducting carbon nanotube. The black hexagons represent

the plane of the Fermi level in 2D momentum space. Near the Fermi level the conduc-

tion band (grey) and valence band (yellow) in graphene are cone shaped with the cones’

apices meeting at the Fermi-energy. When rolling up the graphene into a CNT another

quantization condition is imposed onto this band structure, essentially cutting slices out

of the band structure. If these slices pass through the apices of the cones—blue slices in

(b)—the CNT is metallic; otherwise—red slices in (c)—the CNT is semiconducting.
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Figure 2.4: Nanotube and structure: The subbands shown as black straight lines are

present in a metallic nanotube while the bands drawn as grey dashed lines are present in

a semiconducting nanotube of the same diameter. The bands have been calculated using

the hyperbolic approximation presented in formula 2.2.

effectively cuts slices out of the cone shaped band structure. Depending on the chirality

of the particular nanotube these slices can either pass through the cones’ apices to form

the linear bands of a metallic nanotube or miss the apices and form hyperbolic bands and

a band gap. It can be shown [11, 10] that nanotubes are metallic, if the indicesn andm

fulfill the relationshipn−m= 3i wherei is a whole number. The shape of the bands as a

function of the wave numberk can then be calculated using

E (∆) =±

√(
h̄vFk

2

)2

+(ν∆)2. (2.2)

In this equationE is measured relative toEF , the Fermi energy. The semiconducting band

gapEg is given by 2∆, while vF is the Fermi velocity. The integerν = 0,1,2, . . . counts

the subbands. The result of this calculation is sketched in figure 2.4. The first bands

present in a metallic tube are the bands withν = 0,3, whereas the lowest energy bands in

10
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Figure 2.5: Examples for the behavior of carbon nanotube devices at room tempera-

ture. A constant bias voltage is applied across the device. The source-drain currentI is

shown as a function of applied gate voltageVg. A schematic of these devices is shown

in figure 3.1. (a) Metallic nanotube device: Ideally the current should not show anyVg-

dependence. However, a small variation is quite typical. (b) Semiconducting nanotube

device: The current turns off completely asVg goes from negative to positive. This p-

channel behavior, which is typical for as-prepared nanotube devices, is probably caused

by doping through atmospheric oxygen. (See also figure 3.1 in section 3.1.)

a semiconducting tube haveν = 1,2 [10].

Within this picture to first order [28] the size of the bandgap is inversely proportional

to the nanotube diameterEg = 2∆ ≈ 0.7/d, whereEg is in electron-Volts if the diameter

d is given in Ångström. Taking into account the curvature of the graphene when rolled

into a nanotube one also gets a contribution to the band gap that is proportional tod−2.

This effect also causes a small band gap of around 0.05 eV [10, 28] or less in “metallic”

nanotubes with indices other than (n,n), i. e. in “metallic” nanotubes that are not armchair

tubes.

It took researchers several years for nanotube fabrication methods (see section 2.3 on

page 14) to be able to supply carbon nanotubes in sufficient quantity and quality, which
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was necessary to obtain experimental verification for these early predictions about the

nanotubes’ electronic structure.

In 1997 the first groups reported successful fabrication of devices from single carbon

nanotubes or bundles of few nanotubes [29, 30]. Both groups report transport measure-

ments on devices that are metallic at room temperature, i. e. their I-V curves are Ohmic,

and their resistance does not depend on an applied gate voltage. At low temperatures they

exhibit Coulomb blockade behavior (for more details see section 5 on page 57) acting as

single-electron transistors (SETs). Devices that incorporated semiconducting nanotubes

followed shortly after [31]. Such a device behaves in a way similar to a traditional field-

effect transistor (FET); its resistance can be switched by several orders of magnitude [32]

depending on the applied gate voltageVg.

Figure 2.5 shows examples of the behavior of nanotube devices. The tube in fig-

ure 2.5(a) shows metallic behavior. While applying a bias (or source-drain) voltageVsd of

10 mV the current through the device is about 400 nA roughly independent of applied gate

voltageVg. Figure 2.5(b) shows an example for a semiconducting nanotube device often

called tubeFET. For the sameVsd a stronglyVg-dependent current can be seen. Device

resistances of 25 kΩ for the tube and 200 kΩ for the semiconducting device are typical

for devices with good contacts.

Transport measurements on nanotube devices can verify the existence of metallic and

semiconducting CNTs, give information about low energy excitations in a device [30, 29],

and even show the existence of the small bandgap in non-armchair metallic nanotubes

[33]. They cannot, however, show the details of the band structure. To investigate the de-

12



tails of the band structure and verify the theoretical predictions made in [10, 9, 11] there

are two types of commonly used measurement techniques. The first technique is called

scanning tunneling spectroscopy (STS) and uses a scanning tunneling microscope (STM)

to locally probe the density of states (DOS). According to Saito et al. [12] the DOS con-

tains 1/
√

E singularities, so-called van-Hove singularities at the onset of new subbands.

The positions and spacing of these singularities are correlated with the chirality of a na-

notube. Using STS Odom et al. and Wildöer et al. [34, 35] have verified these predictions.

Their experiments even allowed for identification of the chirality of individual nanotubes

by using the real-space information gained from STM combined with the band structure

information from STS-measurements. Unfortunately this type of STM-measurements re-

quire the nanotubes to be on a conducting substrate, e. g. gold. Since nanotube devices

have to be on an insulating substrate it is impossible to use use these techniques to iden-

tify nanotubes that are parts of devices (unless someone clever finds a method to do it

anyway).

The second group of experiments suitable for giving detailed insight into the nanotube

band structure is based on optical techniques. Because Raman scattering from nanotubes

is enhanced if the system is excited by photons in resonance with a transition between van

Hove singularities, it is possible to use Raman spectroscopy to investigate the nanotube

electronic structure as well as their phonon spectrum [36, 37]. Recent progress has al-

lowed Raman spectroscopy investigations on individual nanotubes [38]; combined knowl-

edge of the electron and phonon spectra allow unique determination of the indices (n,m)

of individual nanotubes. Transitions between van Hove singularities are also observed in

13



the excitation and emission spectra in fluorescence experiments on semiconducting na-

notubes in solution. Recently Bachilo et. al. [39] have been able to map the position of

absorption and emission peaks in fluorescence spectroscopy onto particular chiralities of

semiconducting nanotubes. Raman spectroscopy and fluorescence spectroscopy together

have since been performed on single nanotubes to verify the (n,m) assignments [40].

2.3 Fabrication of Carbon Nanotubes

There are two fundamentally different types of methods of growing carbon nanotubes for

device fabrication. The first class of methods tends to produce large amounts (of course

the term “large” is relative; here it refers to gram-amounts at best) of nanotubes usually

as nanotube-containing soot (see section 2.3.1), from which the nanotubes are deposited

onto substrates for device fabrication after being purified. The second class of methods

synthesizes the nanotubes directly on some substrate by first depositing some kind of

catalyst and then exposing it to carbon-containing feedstock gas (see section 2.3.2).

2.3.1 Bulk Methods

Arc-Discharge Evaporation

Arc-discharge evaporation was the first technique used to produce carbon nanotubes [4].

It was derived from similar techniques used for the production of fullerenes [41]. In this

method the carbon nanotubes are grown by a d. c. arc-discharge between two carbon

electrodes in a vessel filled with an inert gas (e. g. argon at 100 torr [4]). This technique
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was also used as the first method to produce single-walled carbon nanotubes (SWNT)

[14, 13] using electrodes that contained Fe, Ni or Co catalyst and Ar or He as the inert

gas in the reactor. Unfortunately the nanotube yield of such an arc-discharge tends to be

fairly low so that arc-discharge evaporation is no longer used for nanotube production.

Laser Ablation

Laser ablation was the first method that allowed production of large quantities of carbon

nanotubes [15]. In this method a carbon target doped with powdered Ni and Co as cata-

lyst is heated to 1000°C in vacuum and then bombarded with laser pulses. This method

results in a high yield of SWNTs with a narrow diameter distribution. With this method

of synthesis the nanotubes are usually clustered together in ropes several hundreds of

Ångström thick [42, 43] which need to be separated into single tubes and purified, if they

are supposed to be used for electronic devices. Although there are many methods for

purifying nanotubes, most prominently the method described in [44] which uses nitric

acid to cleanse the nanotube soot from catalyst impurities and amorphous carbon and ul-

trasound to separate individual nanotubes from the ropes, all these methods either fail to

completely remove impurities or leave relatively short pieces of nanotubes with relatively

high numbers of defects.

HiPCO

Recently the so-called HiPCO-process of producing nanotubes in bulk amounts has be-

come more and more popular. It has further increased the yield of nanotube production

to several grams per day. HiPCO, which was first presented by Bronikowski et al. [45],
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stands forHigh Pressure decomposition ofCO (carbon monoxide). In this method CO-

gas with a small amount of iron pentacarbonyl (Fe(CO)5) added is injected into a reactor at

high temperatures (900–1100°C) and high pressures (30–50 atm) [45, 46]. The Fe(CO)5

decomposes during the injection and forms the nanoparticles that are required to act as

catalyst, while the CO is the feedstock gas that provides the carbon for the nanotube

growth. Just like nanotubes grown by laser ablation HiPCO tubes need to be purified

before being used for device fabrication [47].

2.3.2 Chemical Vapor Deposition

Catalysts

To grow carbon nanotubes using any form of chemical vapor deposition technique (CVD)

the first step is to prepare the catalyst. For the growth of nanotubes — especially for

SWNTs — it is essential to obtain catalyst particles that have diameters in the nanometer

range. The earliest published method of achieving such nanoparticles [48] used a rather

complicated and time consuming process of impregnating Al2O3 particles with an metal-

organic compound using a methanol solution, baking the catalyst, grinding it and finally

passing it through a sieve. The metals used were Mo, Ni and Co with a mixture of Ni

and Co producing the highest nanotube yield. This kind of catalyst is called “supported

catalyst” [49]. Presumably the Al2O3 acts as a support for the transition metal catalyst

ensuring it to have the right particle size or more generally the large surface curvature

necessary for nanotube growth.

Improved methods of catalyst preparation as well as experiments with different metal-
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organic compounds of Fe, Ni, Co and Mo and various combinations of them together with

different support materials (Al2O3 and SiO2) have been presented in [50, 51, 52]. A sig-

nificant improvement was the ability to control the location of catalyst particles on the

substrate surface [53]: By using electron-beam lithography techniques2 Kong et al. were

able to create well-defined patterns of catalyst particles on their substrates, essentially

controlling the locations in which nanotubes would grow. Another improvement was a

simplified technique of catalyst preparation [54]. In this method substrates are dipped into

a solution of Fe(NO3)3 (ferric nitrate) in 2-propanol followed by a dip into hexanes caus-

ing the Fe(NO3)3 to precipitate out of of solution forming nanoclusters on the substrate

surface. An advantage of this method is its speed and ease of use. Its main disadvantage

is bad control over the size of iron-nanoclusters formed and subsequently the diameter of

nanotubes grown. One successful attempt of controlling the size distribution is the use of

monodispersed metal-cluster containing organic molecules as demonstrated in [55].

Nanotube Growth

After depositing the catalyst the next step is the actual nanotube growth. The simplest

and most common method is to place the samples inside a tube furnace as shown in

figure 2.6. An oven like this has been used in most publications investigating CVD-

grown CNTs. During the growth process the samples are usually heated to the growth

temperature (600°C–1200°C) with some inert gas flowing through the oven, in some cases

2Covering the substrate with e-beam resist (PMMA), writing patterns into the resist with an SEM,

developing the resist, depositing the catalyst onto the substrate and removing the remaining PMMA together

with the undesired catalyst. For details see also section 4.2
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Figure 2.6: Schematic setup of a tube furnace as used for nanotube growth. The carbon

containing feedstock gas flows through a quartz tube that is enclosed by the furnace. The

samples are placed inside a quartz boat in the center of the quartz tube.

with added H2 to reduce the catalyst [54]. After reaching the growth temperature the gas

flow is switched to the actual feedstock gas sometimes together with the inert gas. Initially

CO was used as the feedstock gas [48]. Later different gases were used, too: CH4 [50, 54],

CH4 mixed with C2H4 producing exceptionally long tubes [56], pure C2H4 [57] or even

C2H2 [58]. For successful nanotube growth it is generally true that the lower the feedstock

gas’ carbon content and the more thermically stable it is the higher the growth temperature

and the feedstock gas’ partial pressure needs to be. A more detailed overview of various

growth methods can be found in [49].
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Chapter 3

Nanotube Devices

3.1 Methods for Device Fabrication

Although there are many different types of nanotube-based nanodevices notably mechan-

ical devices (for a review of nanotube-based mechanical devices see e. g. [59]) and field-

emission devices (see e. g. [60]) this work will focus on nanotube transistors and derived

devices. The archetypical nanotube transistor is shown in figure 3.1: The nanotube is

contacted by a source and a drain contact while the gate electrode—electrically insulated

from the tube—can be used to manipulate the nanotube’s electronic structure. Depending

on the particular method of nanotube fabrication (see section 2.3) there are different ways

in which a nanotube transistor can be structured. However, most publications on nanotube

transistors report the use of a degenerately doped Si-substrate with a comparatively thick

(100 nm–500 nm) thermally grown oxide layer (see e. g. [30, 32, 61, 62, 63, 64, 65, 66]).

This kind of substrate is readily available and can be used with bulk-produced nanotubes

as well as nanotubes grown directly on the substrate by CVD-methods. If doped highly,
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Nanotube

Gate

Source                                    Drain

Figure 3.1: Schematic of a nanotube transistor. The nanotube acts as a channel between

source and drain contacts. The gate is used to control the resistance of the channel. By

applying a voltage to the gate it is possible to control the resistance of the device.

the Si-substrate stays conductive even at low temperatures making it usable as a so-called

back-gate with the SiO2 as a stable, if low-κ, gate-dielectric.

Bulk-produced nanotubes (laser-ablation or HiPCO)—after being purified—are usu-

ally deposited onto samples by suspending them in an organic solvent (chloroform, di-

chloroethane,. . . ) and then spin-coating the substrate with the nanotubes to create an even

distribution of nanotubes over the substrate surface. This method allows manufacturing

two different configurations for the source and drain contacts. By creating the contacts

before depositing the nanotubes (e. g. [31]) one can achieve so-called bulk-contacted na-

notubes, whereas depositing the contacts onto the nanotubes creates end-contacted nano-

tubes (e. g. [67]). In this context “end-contacted” refers to the fact that depositing contact

material on top of the nanotube normally destroys the nanotube electronic structure un-

derneath the contacts. It only remains unchanged between the contacts with its ends at the

contacts. This configuration usually guarantees a lower contact resistance than achievable

in bulk-contacted devices. Furthermore the device characteristics of both types of devices

20



are slightly different in the low-temperature regime (see e. g. [68]).

Since gold, the most commonly used contact material, melts at temperatures below

those needed for nanotube-CVD, it is impossible to grow nanotubes on top of gold con-

tacts. Therefore by far the most common method of contacting CVD-grown nanotubes

is to deposit contacts onto the tubes (see e. g. [69, 70, 71]). Often the contacts are an-

nealed to lower contact resistance [72]. Only few researchers have presented experiments

in which the contacts were prepared before nanotube growth as in [73]. While such an

approach is desirable for integration of nanotubes into electronics the devices produced

with these methods often have undesirable characteristics (small on-off ratio, high contact

resistance) [74].

Several studies have tried to optimize the material used for the contacts. From the

choices of material made in the earliest publications (Cr/Au [30] or Pt [29]) only the

Cr/Au-contacts have been used widely. In this type of contacts the chromium layer is a

thin (∼ 1–3 nm) adhesion layer that facilitates adhesion of the gold to SiO2. It has been

found that̆aan adhesion layer of Ti [75], especially when annealed, allows deposition of

smooth films of many metals onto carbon nanotubes because Ti forms titanium carbide

at the interface with the nanotube. For this reason Ti/Au-contacts are another frequently

used combination of contact materials. Many publications investigating Schottky barriers

between a nanotube and its contacts (e. g. [71, 76]) have employed this kind of contact.

Pd is another material investigated in [75] that wets nanotubes well. It has been used in

a recent publication [65] to produce NT-FETs with Ohmic contacts, i. e. contacts without

Schottky barriers.
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Figure 3.2: Schematic of a nanotube transistor with back- and top-gate.

The use of the “built-in” back-gate is convenient since it does not require additional

fabrication steps. Its disadvantages are the fact that it is impossible to address devices

on the same sample individually and the comparatively low dielectric constant of the gate

dielectric SiO2 (κ ≈ 4) which limits the achievable gate capacitance and thus the transistor

performance.

To address devices individually it is necessary to create separate gate electrodes for

individual devices. One approach followed by Bachtold et al. [77] is to deposit nanotubes

on top of Al-wires that are capped with thin Al2O3, which act as local back-gates. A

different approach is to deposit top-gates onto nanotube devices. This approach was first

used by Wind et al. [78] using the decomposition of SiH4 and O2 to form SiO2 on top

of nanotube devices. Generally, one of the problems in fabricating top gates is to find

processes that do not destroy the nanotube. Figure 3.2 shows a schematic view of a

nanotube transistor with top and back gate. The issue of increasing the gate capacitance

has already been intensively studied for traditional Metal Oxide Semiconductor FETs

(MOSFETs). One common approach is to use a material with a high dielectric constantκ
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as the gate dielectric. Javey et al. [79] successfully fabricated top-gates out of zirconium

oxide. Another material used was HfO2 [71, 80]. The material with the highestκ used

for nanotube transistors is strontium titanate (SrTiO3: κ ∼ 175); Kim et al. [81] have

successfully used CVD to grow nanotubes directly on SrTiO3-capped Si-substrates.

3.2 Low Temperature Physics: Single Electron Transis-

tors

Unlike most of the physics investigated in this work single-electron transistors (SETs)

are inherently based on phenomena occurring at low temperatures. (Researchers have

managed to extend the working range of nanotube SETs up to room temperature [5, 82],

but for argument’s sake let’s consider room temperature as an “extended low temperature”

for SETs, while for FETs it is, well, room temperature.) To give a qualitative, and within

limits, also quantitative description of SETs within the scope of this work it is sufficient to

use a description within the framework of the so-called orthodox SET-theory as outlined

in [83] following [84]. As illustrated by figure 3.3 an SET in its simplest form is a small

conducting dot, usually called “island”, that is connected to source and drain contacts

through tunnel junctions with high but finite resistances. The total capacitanceCΣ of

the island is given by the sum of its capacitances to the source contactCs, the drainCd

and the gateCg: CΣ = Cs+Cd +Cg. A single chargee that tunnels onto the island has

to overcome the charging energyEC = e2/2CΣ. If the temperatureT of the system is

low enough, i. e.kBT � EC, tunneling onto or off the island is energetically forbidden
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Figure 3.3: Schematic of an SET. The island is coupled to the source and drain contacts

through tunnel junctions, which are characterized by the capacitancesCs, Cd and the

tunnel resistancesRs, Rd between the island and the contacts. The capacitance between

the gate and the island isCg.

because of the charging energy, unless the energy can be supplied by an applied bias

voltage|Vsd|> e/2CΣ. This suppression of tunneling is called Coulomb blockade.

Besides the requirement on the temperature, there is a second requirement on the

resistances of the tunnel junctions for Coulomb blockade to be clearly observable in a

physical system. The lifetime of a charge on the island must be long enough. We can

estimate the lifetime∆t by using the RC-time calculated fromCΣ andR, the lower of the

resistances to source and drain,Rs andRd: ∆t = RCΣ. To measure an energy difference

of ∆E = EC according Heisenberg’s uncertainty relation the lifetime must fulfill∆E∆t =

e2/2CΣ ·2RCΣ > h. Thus, we get two conditions to be able to observe Coulomb blockade:

EC � kBT

R >
h
e2 = 25.8 kΩ (3.1)
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Figure 3.4: Coulomb Oscillations in a nanotube-SET measured at a temperature of

470 mK. The image shows the device conductance as it changes withVsd andVg. Darker

tones indicate lower conductance. (The detailed conductance scale is shown with fig-

ure 5.5.)
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Figure 3.5: Energy of an SET as a function of the gate chargeQ0 on the island for various

actual numbersN of electrons. IfQ0 reaches half integer values the energy for adjacentN

is equal allowing electrons to tunnel on or off the island. The SET becomes conducting.

If these conditions are met an SET shows variations in conductanceGsd = Isd/Vsd that

are periodic inVg and a so-called Coulomb gap, i. e. a region inVsd where the device

conductance is zero. An example for this behavior is shown in figure 3.4.

To further understand this effect we take a look at the Coulomb energyU of the island.

It is given by

U(N) =
1
2
Cs(ϕ(N)−Vsd)2 +

1
2
Cdϕ

2(N)+
1
2
Cg(ϕ(N)−Vsd)2, (3.2)

whereϕ = (CsVsd+CgVg−Ne)/CΣ is the island’s electrostatic potential andN the number

of electrons on the island. For clarity we can separate theN-dependent from theV-

dependent part of the Coulomb energy:

U =
1

2CΣ

[
Cg

(
Cs(Vg−Vsd)

2 +CdV2
g

)
+CsCdV2

sd

]
+

N2e2

2CΣ
(3.3)

Now consider the limitVsd = 0. When an electron tunnels onto the island the work done

26



by the voltage source supplyingVg is given by

W = NeVg
Cg

CΣ
. (3.4)

After subtracting this fromU we obtain

E =
1

2CΣ

[
Cg(Cs+Cd)V2

g −2NeCgVg +(Ne)2] =
1

2CΣ
(CgVg−Ne)2 +const. (3.5)

The energy as a function of the number of charges on the islandN for a givenVg becomes

minimal forN =CgVg/e. The valueQ0 =CgVg is often called “gate charge”. SinceN must

be an integer it will take on the integer value closest toQ0/e. ForQ0/e= i +1/2, where

i is an integer, the energy for two adjacent numbers of electrons is equal. At such a gate

voltage electrons can freely tunnel on and off the island making the transistor conducting.

Ideally this is repeated for all half integer values ofQ0/e. This periodicity inVg of points

at which the SET becomes conductive allowsCg to be read directly from a plot like the

one shown in figure 3.4. The maximumVsd at which Coulomb blockade occurs allows

one to determineCΣ of the island:

EC = e|Vsd,max| ⇒CΣ =
e

2|Vsd,max|
(3.6)

Starting with this classical approach it is relatively simple to obtain a complete descrip-

tion of simple SET-systems with metallic islands with constant (as a function of applied

voltages) capacitances and resistances [85] without any quantum effects.

A quantitative description of such quantum effects is far beyond this work. However,

a short introduction into the concepts behind them is useful for a qualitative understand-

ing of some of the results presented later on. Figure 3.6 shows a quantum mechanical
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Figure 3.6: Quantum mechanical description of an SET: (a) The states in the metallic

source and drain contacts are filled up to the Fermi energy. For the island the energy

levels for(N−1), N, (N+1) and(N+2) electrons are shown. An appliedVg shifts these

levels relative to the contacts. In this situation none of the states is within the energy

interval given byVsd making it impossible for electrons to tunnel onto or off the island.

The device does not conduct. (b) By applying a suitableVg a state on the island is pushed

between the Fermi levels of source and drain allowing tunneling. The SET conducts.

description of the same SET-behavior presented above. In this picture there is only one

state for each numberN of electrons on the SET (or quantum dot). The dot conducts

when by applying a gate voltage such a state is lined up with the Fermi levels in the con-

tacts. Figure 3.7 refines this picture by including excited states associated with each of

the ground states. In addition to transitions through the ground states transitions through

these excited states are possible,too. To be able to observe a transition including two

states separated by an energy difference of∆E the conditions set in equation 3.1 naturally

must be met. In addition the following must hold:

∆E > kBT

hΓ � kBT. (3.7)

HereΓ = 1/t is the broadening of the state due to its lifetimet. For further and more
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Figure 3.7: States in a quantum dot. This picture now includes various excited states

(thin lines) associated with each of theN, (N + 1),. . . -electron states shown already in

figure 3.6. (a) Coulomb blockade: Neither theN-electron nor the(N+1)-electron ground

state is line up with the Fermi levels of the contacts. (b) The quantum dot conducts; an

inelastic transition is shown as an example.

detailed descriptions of these quantum mechanical effects see [86].

3.3 Room Temperature Devices: Field-Effect Transistors

Field-effect transistors (FETs) have the same basic structure as the one indicated in fig-

ure 3.1. In conventional FETs the channel is not a nanotube, but a region of the substrate

that can be turned conductive through field doping by a voltage applied to the gate. (For

a review of traditional FET-devices see e. g. [87, 88, 89, 90].) Applications of FETs in-

clude amplifiers and logical elements in digital electronics. Switching speed and size of

FETs are closely related to the achievable gate capacitance. It is expected that in the near

future silicon-based devices will no longer be able to fulfill technological requirements.

Carbon-nanotube FETs in which the channel is a semiconducting nanotube are promising

candidates for replacing Si-based FETs.
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3.3.1 Intrinsic Conductance of Nanotubes

The behavior of carbon nanotube FETs is determined by two intrinsic factors. The first is

the conductance and electronic structure of the nanotube itself. The second factor is the

behavior of the contact between the nanotube and the metallic source and drain electrodes.

The latter will be treated in section 3.3.2.

The simplest model for describing transport properties of a material is the Drude

model [91]. In its framework the conductivityσ is given byσ = j/E = ne2τ/m, where

j is the current density,E the electric field along the material,n the carrier density in the

material andτ the momentum scattering rate. The massmof the carriers is their effective

mass. For a 1D conductor like a carbon nanotube these formulae translate toσ = G ·L

with G being the device conductance andL the device length. The carrier density can

be calculated from the number of carriersν and the device lengthn = ν/L. The quan-

tity µ = eτ/m= σ/(ne) is called mobility and is one of the most important parameters

measuring how well a material conducts (for details see section 6.1 on page 68).

As derived in [92] the intrinsic conductance of a ballistic 1D conductor is the quan-

tum of conductanceG0 = e2/h = 38.7 µS for each mode of conductance. An SWNT

has two bands and two spins per band. Therefore the maximum conductance of a single

SWNT is Gmax = 4G0 = 155 µS which is equivalent to a resistance of 6.45 kΩ. For a

real ballistic conductor the conductance is given byG = (Gmax
−1 + Gwire

−1)−1, where

Gwire = GmaxT/(1−T) andT is the transmission probability of the conductor [92]. The

transmission probability can be lowered by scattering in the conductor itself (see sec-

tion 6.1) and by contact resistances. The length of a conductor after whichT drops to one
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half resultingGmax= Gwire is called the mean free pathl . Using this definition we can use

the conductance of a nanotube—provided we can distinguish it from contact effects—to

calculate the mean free path:

l = L
Gwire

Gmax
= L

Gwire

155 µS
(3.8)

Theoretical predictions forl in metallic nanotubes [93] (10 µm) are in good agreement

with measurements by Kong et al. [94] measuringl = 5 µm. Because of high contact resis-

tances there are few reliable measurements ofl for semiconducting nanotubes. However,

publications presenting results on semiconducting nanotubes with low contact resistances

[72, 65] find mean free paths of at least several hundred nm in agreement with electrostatic

force microscopy (EFM) studies [62].

3.3.2 The Nanotube-Metal Contact

For metallic nanotubes near-perfect transmission has been demonstrated in 2001 [95].

Until recently the lowest resistance measured in semiconducting nanotube devices was

about 100 kΩ with 1 MΩ being more typical. This seemed to suggest the presence of

some kind of intrinsic barrier either in the nanotube itself [96] or at the contacts.

Several experiments suggested these barriers to be Schottky barriers. Scanned-gate

microscopy (SGM) images of semiconducting nanotubes contacted with Cr/Au-contacts

[97]1 found that semiconducting nanotubes in FET-geometries react more strongly to a

local gate near the contacts than in the middle of the device. Theoretical simulations of

1In SGM a voltage is applied to an atomic force microscopy (AFM) tip allowing the tip to act as a local

gate. The image then contains of the device response to this local gate.
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the behavior of a Schottky barrier transistor [98, 99] agreed very well with experimen-

tal results on Cr/Au-contacted nanotubes on local Al/Al2O3-gates [77]. Experiments on

Ti/Au-contacted nanotubes [100] supported the idea of barriers at the contacts. Gather-

ing all this information Heinze et al. [76] presented a theory of the behavior of Schottky

barrier NT-FETs which was corroborated by experiments on Ti/Au-contacted nanotubes

presented by Appenzeller et al. [71]. An important property of a Schottky barrier transis-

tor is the temperature dependence of the so-called subthreshold swingS, which is defined

as the inverse logarithmic slope of theG(Vg)-curve: S= (dlogG/dVg)−1 [mV/decade]

[87]. In a conventional MOSFETS is proportional to the temperatureS≈ 2.3kBT/e. In a

Schottky barrier FETSshould be T-independent possibly with a minor correction due to

thermally assisted tunneling [101]. Indeed, this is what was found in [71].

Although the Schottky barrier model seemed conclusive, the question remained whether

these Schottky barriers were intrinsic to nanotubes or caused by the choice of contact ma-

terials and treatment. Both materials Cr and Ti have work functions lower than CNTs

(4.5 eV [31]). In principle the work function difference between the contacts and the

nanotube should determine the characteristics of the contacts [98] since in 1D systems

dipoles at the NT/contact interface cannot be screened completely [102]. Therefore a

contact material with a high work function (e. g. Au, Pd, Pt) should allow for Ohmic con-

tacts. However, Au and Pt both do not wet nanotubes such that devices with these types

of contacts usually show large contact resistances. Few exceptions to this behavior have

been found: Yaish et al. [103] (pure gold contacts) and Dürkop et al. [66]—although the

contacts used a Cr-adhesion layer the material contacting the tubes was probably gold (see

32



chapter 6)—observed Ohmic contacts in nanotube FETs. On the other hand Pd has been

known to wet nanotubes [75] and its work function (5.1 eV) is greater than 4.5eV+Eg/2.

Javey et al. have managed to reliably fabricate NT-FETs with Ohmic contacts and high

device conductances (up to 0.5Gmax). The quality of Pd contacts is also confirmed by

low temperature measurements that do not show the signature of Coulomb blockade (sec-

tion 3.2), but Fabry-Perot interference as previously reported for metallic nanotube de-

vices with high device conductance [95]. Further experiments [65] show that exposure

to H2, which is known to lower the work function of Pd [104], change the behavior of

Pd-contacted NT-FETs in a way expected for the creation of a Schottky barrier.
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Chapter 4

Experimental Techniques

4.1 Nanotube Growth

The carbon nanotubes for all the samples investigated in this work have been produced

using CVD-techniques derived from the general methods mentioned in section 2.3.2. The

furnace used is a Lindberg/Blue HTF55122A tube furnace with a 1” quartz glass tube.

The maximum temperature for this furnace is 1200°C. It is controlled by an Omega

CN4431 PID-temperature controller. Separate flow meters allow to control the flow of

up to four different gases through the oven individually [105]. The substrate used for all

samples is highly doped Si capped with 500 nm of thermally grown SiO2. The doping

level of the substrate is sufficient for the substrates to stay conducting even at tempera-

tures below 300 mK.
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Figure 4.1: Placement of the samples and the alumina “doughnut” during nanotube

growth.

4.1.1 The “Doughnut” method

The initial method used for nanotube growth used ferric nitrate (Fe(NO3)3) [54] as cat-

alyst on the samples and an additional mixture of Fe(NO3)3 and MoO2(acac)2 [53] (for

simplicity we dubbed this mixture “Dai-catalyst” after Hongjie Dai, whose research group

conducted a lot of the pioneering work on CVD-grown carbon nanotubes) dripped onto a

doughnut-shaped piece of porous alumina. Figure 4.1 shows the placement of the “dough-

nut” and the sample relative to each other in the furnace. The two catalyst solutions are

prepared in the following way:

Fe(NO3)3:

Mix anhydrous Fe(NO3)3 and 2-propanol at a concentration of 150 µg/ml and

stir for at least 1 h.

Dai-catalyst:

Mix the following ingredients:

1. Fe(NO3)3: 21.6 mg
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2. Al2O3 (Degussa, average particle size 14 nm): 14.6 mg

3. MoO2(acac)2: 4.8 mg

4. Methanol: 15 ml

and stir for approximately 24 h.

After preparing the catalyst solutions the actual nanotube growth follows this procedure:

• Dice samples to approximately 1 cm × 0.5 cm.

• Blow off dust from dicing.

• Dip samples into Fe(NO3)3-solution for 5–10 seconds.

• Dip samples into hexane for 5–10 seconds.

• Blow off hexane.

• Place samples and alumina “doughnut” on quartz boat.

• Drip onedrop of Dai-catalyst onto “doughnut”.

• Place boat in furnace such that the “doughnut” is upstream of the samples.

• Flush air out of furnace1 by flowing argon for 20 min, flow rate: 729 sccm2.

• Heat furnace to 900°C while flowing H2 at 531 sccm and Ar at 583.

1It is equally important to flush air out of the lines carrying flammable gases before starting to heat the

furnace although not mentioned in this or the recipes in the following sections.

2The unit “sccm” is cm3/min at atmospheric pressure. For details see [106].
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• Soak at 900°C for 3 min with unchanged flow rates.

• Flow CH4 at 900°C with flow rate 2920 sccm for 6 min.

• Flow CH4 at 900°C with flow rate 1042 sccm for 20 min.

• Flow Ar with 729 sccm; turn off heat.

• Go to lunch while furnace cools down (optional).

The results of this growth procedure are not very uniform: The nanotubes produced vary

in diameter from below 1 nm to 20 nm, although the majority of tubes has a diameter of

below 3 nm. In addition the density of nanotubes on the chip seems to depend sensitively

to the amount of Dai-catalyst in the “doughnut” and the horizontal distance between the

sample and the “doughnut” during growth. However, unlike the method described in

section 4.1.4 the “doughnut” method mostly produces high-quality nanotubes with well-

defined electronic properties.

Figure 4.2 shows an SEM-image (for a detailed analysis of the contrast mechanism

of imaging nanotubes with an SEM see [107]) of nanotubes grown with the “doughnut”

method. While the nanotube density on this particular sample is too high for device fab-

rication the image shows some features typical for the “doughnut” method. Comparison

with the scale bar included in the image shows that the nanotube length is between a few

µm and several ten µm. Many nanotubes show a hook-shaped bend at one end.
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Figure 4.2: Scanning electron microscope (SEM) image of nanotubes grown with the

“doughnut” method. On this particular sample the nanotube density is too high for device

fabrication. The square and rectangular shaped objects are part of the alignment mark

pattern explained in section 4.2.
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4.1.2 Patterned Catalyst

This method of nanotube growth closely follows the method outlined by Kong et al. [53].

It uses the Dai-catalyst described in section 4.1.1 deposited directly onto the sample in

patterns defined by electron-beam lithography.

The fabrication of patterned catalyst islands on the sample is carried out using the

following procedure:

• Spin PMMA onto clean sample for 45 s at 6000 rpm.

• Bake sample for 5 min at 150°C.

• Carry out e-beam lithography.

• Develop samples in MIBK/IPA (1:3) solution for 70 s.

• Drip onedrop of Dai-catalyst (see section 4.1.1) onto sample.

• Allow sample to dry in air (∼ 3 min).

• Bake sample on hotplate for 5 min at 160°C.

• Immerse the sample in dichloroethane (DCE) for 45 min to lift off unwanted cata-

lyst.

• While still immersed in DCE sonicate sample for 1 s.

• Rinse sample in Acetone, Methanol, IPA and blow dry sample.

• Place sample in quartz boat in furnace.

39



• Flow Ar for 20 min at 729 sccm.

• Heat furnace to 900°C while flowing Ar at 729 sccm.

• Wait 3 min at 900°C with unchanged flow.

• Flow CH4 at 1900 sccm and H2 at 480 sccm for 11 min.

• Flow Ar at 729 sccm during cooldown.

After experiments with several different designs for catalyst patterns [108] we found

that catalyst islands with a size of 2 µm × 2 µm produce on average one nanotube under

the above growth conditions. A suitable design for catalyst patterns consist of many of

these 2 µm × 2 µm islands with a spacing of 20–30 µm between them. Although the main

purpose of this growth method is to speed up device production and make it suitable for

mass production of nanotube devices we found that in the framework of the production

techniques we used, i. e. devices produced individually using e-beam lithography, this

method of nanotube growth does not simplify device fabrication. The accuracy of posi-

tioning of the nanotubes as they grow from the catalysts island is not sufficient to skip

the very time consuming step of locating individual nanotubes. Furthermore the SEM-

contrast between catalyst islands and the surrounding substrate is too small to use them

for alignment in subsequent processing steps requiring the fabrication of additional align-

ment marks after completing the nanotube growth (see also section 4.2). However, the

ability to produce a predetermined density of nanotubes is a clear advantage this method

has over the “doughnut” method.

An example for nanotubes grown using this method is given in figure 4.3. The image
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Figure 4.3: Scanning electron microscope (SEM) image of nanotubes grown from pat-

terned catalyst islands. The island size is 2 µm × 2 µm and the spacing between islands is

30 µm.
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shows several catalyst islands most of which have produced at least one nanotube. Some

of these nanotubes are up to 30 µm long and straight making them ideal for the fabrication

of NT-FETs with channel length greater the mean-free path (see section 3.3.1).

4.1.3 Ultralong Nanotubes

The aim of this method of nanotube growth is to produce nanotubes with lengths over

100 µm in order to fabricate devices that allow to distinguish between contact effects and

intrinsic nanotube properties. The catalyst used for the growth is the ferric nitrate catalyst

used for the “doughnut” method while the gas mixture during growth is adapted from

[56]. The recipe for the nanotube growth is as follows:

• Mix Fe(NO3)3-catalyst solution (see section 4.1.1) with a concentration of 30 µg/ml.

• Dip samples into Fe(NO3)3-solution for 5–10 seconds.

• Dip samples into hexane for 5–10 seconds.

• Blow off hexane.

• Place sample in quartz boat in furnace.

• Purge quartz tube by flowing Ar for 20 min at 729 sccm.

• Heat furnace to 900°C with unchanged Ar-flow.

• Soak at 900°C (Ar: 729 sccm).

• Grow tubes at 900°C for 15 min with the following flow rates:
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Figure 4.4: Scanning electron microscope (SEM) image of nanotubes grown with

theH2/CH4/C2H4 gas mixture. One long nanotube is shown in front of a background

of short tubes.

H2: 500 sccm.

CH4: 1200 sccm.

C2H4: 26 sccm.

• Cool down while flowing Ar at 729 sccm.

A sample processed in this way typically exhibits an electrically not continuous cover-

age of nanotubes of lengths below 10 µm with a density of 30 tubes per 100 µm × 100 µm

area. In addition there are about 5–10 tubes of lengths above 100 µm per mm2. These

long nanotubes are usually aligned in the direction of the gas flow during growth, an

effect which has also been described in [109].
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4.1.4 Thin Nanotubes

The technique of nanotube fabrication described below could not be used to provide na-

notubes for device fabrication. Transistors fabricated from nanotubes that were produced

with this method always showed electric properties that could not be interpreted with the

models presented in section 3.

We found that the nanotubes produced using the “doughnut” method or the method

for ultralong tubes would often have diameters above 2 nm. Nanotubeswith diameters

above 1.5 nm can already be double- or multi-walled and our aim was to find a technique

that reliably produces nanotubes with diameters too small for MWNTs. This technique is

derived from the recipe for ultralong tubes, but leaves out C2H4 during growth and uses a

slightly different method for catalyst preparation.

The detailed recipe is as follows:

• Mix Fe(NO3)3 and 2-propanol to get a concentration of 10 µg/ml.

• Stir solution for 2 h.

• Sonicate solution for 10 min.

• Dip clean samples into catalyst solution for 10 s.

• Dip samples into hexane for 10 s.

• Dry samples by blowing with N2-gas.

• Place samples in boat in furnace.

• Purge furnace with Ar for 20 min, flow 729 sccm.
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• Heat furnace to 900°C while flowing Ar at 729 sccm and H2 at 963 sccm.

• Soak 10 min at 900°C with unchanged gas flow.

• Grow nanotubes at 900°C flowing 963 sccm of H2 and 3135 sccm of CH4.

• Cool down flowing Ar at 729 sccm.

A catalyst concentration of 10 µg/ml produces a density of nanotubes that would be suit-

able for device fabrication. A higher concentration of 50 µg/ml results in the nanotube

density shown in figure 4.5. In comparison with nanotubes grown with the techniques

described in the previous sections (see especially figures 4.2 and 4.3) this growth method

produces nanotubes that appear “wiggly”. This suggests that the tubes are less stiff than

tubes grown with different techniques, i. e. their diameter is smaller. Measurements using

AFM indeed confirm that the overwhelming majority of nanotubes grown with this tech-

nique have diameters of below 1 nm. Unfortunately—as demonstrated in figure 4.6—the

electronic properties of this kind of tube are hard to understand. The tubes neither behave

in a way expected for semiconducting tubes nor for metallic tubes nor, as can be seen

for some thicker nanotubes, as if they consisted of a semiconducting tube and a metallic

tube in parallel. Their behavior somewhat resembles that of small-bandgap semiconduct-

ing nanotubes (“metallic” tubes that are not armchair tubes) under applied strain [110].

While it is conceivable that a very thin nanotube grown directly on a substrate might ex-

perience strain due to interaction with the surface, it is not clear why none of the devices

would exhibit clear metallic or semiconducting behavior. For this reason we abandoned

this method of nanotube fabrication in favor of the techniques described in the previous
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Figure 4.5: Scanning electron microscope (SEM) image of nanotubes grown with a cata-

lyst concentration of 50 µg/ml using the mixture for thin nanotubes. The size of the image

is approximately 120 µm × 120 µm. It could not be recorded exactly due to a malfunction

of the microscope.
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Figure 4.6: Conductance as a function of applied gate voltage for a typical device fabri-

cated from a nanotube fabricated with the technique for thin tubes measured with a bias

voltage ofVsd = 10 mV. Clearly the device does not turn off for any gate voltage as ex-

pected from a semiconducting nanotube. Unlike for metallic nanotubes, however, the

conductance modulates strongly withVg.
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sections.

4.2 Device Fabrication

The first step in manufacturing nanotube devices is to find the location of individual na-

notubes in a reproducible manner. The procedure described here is derived from tech-

niques first used by Bockrath et al. [30] to fabricate nanotube devices. The first step is to

lithographically define alignment marks. Nanotubes can then be located relative to these

marks. To fabricate these marks the samples are first coated with electron-beam resist

following this recipe or slight variations thereof:

• Spin on MMA (Methyl Methacrylate) at 4000 rpm for 45 s.

• Bake sample on hotplate at 150°C for 10 min.

• Spin on PMMA at 6000 rpm for 45 s.

• Bake sample on hotplate at 150°C for 10 min.

The next step is to write the actual pattern. For this we initially used a JEOL 5400 SEM

and later a Philips XL 30 SEM both equipped with an NPGS e-beam writing system by

J. C. Nabity. An example for such an alignment mark pattern is given in figure 4.7. This

pattern was originally designed by T. Brintlinger and is optimized for nanotubes with

lengths below 10 µm. After writing several of these pattern onto a sample the sample is

developed in solution of MIBK in IPA (1:3) for 70 s to dissolve the areas of resist that had

been exposed to the e-beam, thus creating a positive mask.
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Figure 4.7: Alignment mark pattern. The total size of the pattern shown is 90 µm × 90 µm.

The group of three large rectangles makes the whole pattern easier to find in subsequent

processing steps, the groups of two squares in each of the corners of the pattern allow

to align later lithography steps to the pattern with submicron accuracy and the small

(1 µm × 1 µm) squares allow the e-beam to steady itself before writing the small sym-

bols that mark locations throughout the pattern. These small squares are only necessary

for the JEOL 5400 SEM, which is not equipped with the beam blanker needed to turn on

or off the e-beam quickly.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.8: Electron beam lithography: (a) Clean sample. (b) Sample with e-beam resist

PMMA (dark grey) and copolymer MMA (light grey). (c) Sample after e-beam writing.

(d) Developing the sample removes exposed resist. (e) After metal deposition. (f) After

liftoff: metal is left only where the resist was exposed.
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After this step metal is deposited onto the samples, first a thin (2.5 nm) adhesion layer

of Cr followed by 17.5 nm of Au. The remaining resist is dissolved by immersing the

sample into acetone for at least 30 min (liftoff). Spraying the sample with more acetone

and then rinsing it with methanol and IPA, and drying it with N2-gas removes the remain-

ing gold except for the portions in the alignment marks. For this procedure to function

the first layer of resist (MMA) is vital. It partially dissolves during developing of the

sample leaving an undercut around the marks written by e-beam. This undercut prevents

the formation of a continuous metal layer during Au-deposition, which otherwise would

cause the excess metal to stick to the sample after liftoff. This whole process is illustrated

in figure 4.8.

After thus creating the alignment mark pattern as metal islands on the sample it is

possible to find positions of nanotubes relative to these alignment marks. We have used

two different techniques for this purpose. The first technique uses an AFM. Its advantage

is that it immediately provides information about the diameter of a nanotube allowing to

be selective about the nanotubes being contacted. Furthermore AFM can be used on con-

ducting and nonconducting surfaces. Figure 4.9 shows a nanotube and some alignment

mark.

The disadvantages of this technique for finding nanotubes is its sensitivity to surface

roughness. Already the alignment marks, especially if their height is increased due to

bad liftoff, make it necessary to perform several image processing steps on the AFM

image before it is possible to see nanotubes. Another disadvantage is the time required

for taking AFM images. For example a 20 µm × 20 µm image takes 15 min, searching a
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Figure 4.9: AFM-image of a nanotube next to an alignment mark. The white arrow points

towards the end of the nanotube. Clearly the comparatively big height of the alignment

mark affects the visibility of the surrounding area.

complete pattern like in figure 4.7 can take up to a whole day. Using a field-emission SEM

(FESEM) at a low acceleration voltage of 1 kV allows to observe nanotubes due to their

difference in conductivity relative to the underlying SiO2 [107]. With this technique it is

possible to search one alignment mark pattern within less than one hour. A disadvantages

of this technique is that it is impossible to get direct informations about the diameter of

nanotubes since the contrast mechanism that makes nanotubes visible at the same time

makes them appear some 100 nm thick. Furthermore, the electron beam of any SEM

deposits amorphous carbon on the surface it is scanning. Although in an FESEM the

electron source is in ultra-high vacuum, which somewhat lessens the problem, it is still

inadvisable to have the beam scan over small areas repeatedly.

After determining the locations of the nanotubes the next step is to manufacture con-

tacts to individual tubes. The technique used here is the same e-beam lithography tech-
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Figure 4.10: Contact design for nanotube devices. The left side shows the large pads used

for contacting the sample from the outside, each of which is roughly 150 µm × 150 µm in

size and the connection to the center area. These bonding pads and the connecting lines

are written with the SEM set to a magnification of 100×. The right side shows a magnified

view of the center area around the alignment mark pattern showing the actual connections

to the nanotubes. For this part of the contacts a magnification of 1000× is used during

writing.
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Figure 4.11: DC-measurement of the electronic properties of a nanotube. Typical values

for the resistances areR1 = 100 kΩ, R2 = 1 kΩ andRg = 1 MΩ makingR1 andR2 work

as a 100:1 voltage divider, whileRg serves to protect the nanotube device from spikes in

Vg.

nique used for creating the alignment mark patterns. Figure 4.10 shows an example of

a contact design. The metal used for the fabrication of the contacts is 100–150 nm thick

gold on an adhesion layer of 2.5 nm of Cr. Examples for such a devices can be seen on

page 58 in figure 5.1.

4.3 Electrical Measurements

With the nanotube devices fabricated in the way described above we performed several

types of electrical measurements. The simplest form employs a DC measurement scheme

as shown in figure 4.11. WhileR1 andR2 form a voltage divider to divide the up to 10 V

from the DAC-board,Rg is supposed to protect the devices from spikes inVg or in case of
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Figure 4.12: AC-measurement of the electronic properties of a nanotube. In contrast

to the DC-measurement the reference output of a lock-in amplifier is added to the bias

voltage through a 1 MΩ resistorRL at frequencies between 200 Hz and 2 kHz.

a breakdown of the gate oxide. The quantity that is measured is the current through the

deviceIsd. With a typical device resistance between several 10 kΩ to several 10 MΩ and

a bias voltageVsd of usually between 10 mV and 500 mV typicallyIsd is in the nA-range

requiring the use of a current-preamplifier.

A slightly modified technique uses a lock-in amplifier to measure the differential con-

ductanceG∗sd = dIsd/dVsd. This measurement scheme (see figure 4.12) produces data

with significantly less noise than DC-measurements making it especially suitable to see

transitions between different quantum states [86], which require a much better signal-

to-noise ratio than measurements of the Coulomb-blockade (section 3.2) or the FET-

characteristics (sections 3.3 and chapter 6). However, the AC-technique cannot be used

for measurements of FET-characteristics like the mobility (section 6.1) as the calculation
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of the mobility requires knowledge of the actual device current rather than the differential

conductance. The only FET-parameter that can be measured by such an AC-technique

is the transconductanceg = dIsd/dVg [81]. For this type of measurement the reference

voltage of the lock-in amplifier is added toVg, however.
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Chapter 5

Single Electron Transistors: Low Temperature

Measurements

5.1 Results

5.1.1 Metallic Nanotubes

Measurements on the SET-behavior of metallic carbon nanotubes are not the main focus

of this work. However, as they are an important part of testing procedures for device fab-

rication and allow to measure various nanotube device characteristics that are not easily

accessible in semiconducting devices some of the results will be included here.

Of all the devices which exhibited unambiguously metallic behavior, I have performed

extensive low temperature measurements on two. The first (sample 58, device EF) is a

3.5 µm long nanotube with a diameter of 3.3 nm. An AFM image of this device is shown

in figure 5.1(a). The second device (device FG) is shown in figure 5.1(b). Its length is

only 440 nm, and the tube diameter is 2.6 nm.

57



Figure 5.1: AFM micrographs of nanotube SETs. The contacts were fabricated with

the technique described in section 4.2 on page 48 using a Cr adhesion layer and Au;

the nanotubes themselves were grown with the “doughnut” method (section 4.1.1). (a)

Tube EF. The distance between the contacts along the nanotube is 3.5 µm. (b) Tube FG.

The device length is 440 nm.

Measured at room temperature using the DC-technique described in section 4.3 (fig-

ures 5.2 and 5.3), both devices show ohmic IV-curves, i. e. the device currentIsd is pro-

portional to the applied bias voltageVsd. The resistance of device EF as calculated from

the data shown in figure 5.2(a) measured at a gate voltage ofVg = 0 is 88 kΩ. Device FG

has a resistance of 22 kΩ, which is only about 3.5 times the fundamental lower limit of

6.45 kΩ (see section 3.3.1). This device resistance is close to the best values reported for

metallic nanotube devices (8 kΩ, [95]). Both devices conduct over the hole gate voltage

range of−10 to +10 V, but show a small deviation from ideal metallic behavior. This

slight dependence of the device currentIsd on the applied gate voltageVg can be found

in many metallic nanotube devices and may be caused by a small band gap opened up by

distortion of a nanotube’s lattice through interactions with the substrate.
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Figure 5.2: Room temperatureIsd-Vsd-curves atVg = 0 for the two metallic nanotube

devices investigated here.
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Figure 5.3: Isd-Vg-curves for the devices EF and FG measured at room temperature with

a bias voltage ofVsd = 10 mV.

59



To determine the device parameters, which can be derived from the Coulomb-blockade

behavior of the devices we performed transport experiments at low temperatures. For this

purpose the sample was permanently mounted on a suitable sample holder, while elec-

trical connections were made using wire bonds. The measurements were carried out in

a commercial 3He-cryostat (Desert Cryogenics 3HeIC) with a base temperature of be-

low 300 mK. Figure 5.4 shows the result of one of these measurements. The differential

conductanceG∗ is plotted as a function ofVg. For this measurement the AC-technique

(see section 4.3) was used. From the distance inVg of the conductance peaks (22 peaks

per 0.1 V) we get a gate capacitance ofCg = e· 220 V−1 = 35 aF. Figure 5.5 shows a

similar measurement on the same device, but here both the gate voltage and the bias volt-

age are being varied. Since most of the “Coulomb diamonds” [86] do not have sharply

defined boundaries I used a graphical technique as illustrated by the colored lines to

extract the charging energy from the plot. The distance inVsd of the two red lines is

2|Vsd,max| = 1.8 mV, which translates into a charging energy of 0.9 meV. As shown in

section 3.2 this is equivalent to a total device capacitance ofCΣ = 90 aF.

A similar analysis of data measured for device FG was not possible, because this

device shows a more complicated behavior than device EF. Only a rough estimate of

the gate capacitance was possible yieldingCg = 4.8 aF. Figure 5.6 shows a plot of the

differential conductanceG∗ as a function ofVsd andVg. Compared to the simple Coulomb

diamonds seen for device EF (figure 5.5) it shows a whole range of additional features

marked in the image in different colored ellipses. Black ellipse: Telegraph type switching

event [111]; this feature is caused by charge traps or mobile charges near the device that
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Figure 5.4: Coulomb oscillations of device EF measured at 470 mK forVsd = 0. The

plot shows the differential conductanceG∗ as a function of the applied gate voltageVg

measured using the AC-technique described in section 4.3.
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Figure 5.5: Differential conductance as a function of bothVsd andVg of device EF mea-

sured at 470 mK. The colcored lines indicate how the charging energyEC was extracted

from this plot.
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can switch between two (or more) different states essentially simulating sudden jumps in

Vg. Green circle: transitions involving excited states; the energy difference∆E between

the involved states is larger than the thermal energy making it possible to distinguish

the states. Blue circles: a system of two (or more) coupled quantum dots in series [86]

exhibits regions of negative differential resistance (compare with color scale). Yellow

ellipses: unidentified features inside the Coulomb gap. These features might be related

to some kind of resonant tunneling although they do not show the typical characteristics

of a Kondo resonance [112], which is a sharp zero bias conductance peak in every other

Coulomb diamond.

5.1.2 Semiconducting Nanotubes

While semiconducting nanotubes produced by laser-ablation (see section 2.3.1) often ex-

hibit a gap in the conductance as a function ofVsd, interpreted as due to a series of large

tunnel barriers approximately 100 nm apart [96] we were able to observe Coulomb block-

ade in our CVD-grown semiconducting nanotube devices. In this case the FET-behavior

(see figure 2.5(b)) of the semiconducting nanotube is superimposed on the Coulomb os-

cillations. An example of this behavior is given in figure 5.7 (see also [70]). The small

amplitude of the oscillations can be attributed to the length of the device resulting in a

charging energy not much bigger than the thermal energy.
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Figure 5.7: AFM micrograph of a 20 µm long semiconducting nanotube (device BF,

sample 58 with a diameterd = 2.2 nm) and Coulomb oscillations measured on this device

at a temperature of 470 mK using the AC-technique described in section 4.3. The DC-

component ofVsd was set to zero in this measurement.
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5.2 Conclusions

From the capacitances measured for the two devices we get the following picture. The

total capacitance of device EF is 90 aF, while the gate capacitance is 35 aF leaving a

combined capacitance of 55 aF for both contacts. Since the Coulomb diamonds shown

in figure 5.5 are fairly symmetric it is fair to assume that both the source and the drain

contact have a capacitance of 25–30 aF and assume that to be the typical capacitance for

a Cr/Au-nanotube contact. With this the ratio betweenCg andCΣ is about 1:3, in other

words the source and drain contacts significantly shield the nanotube from the influence

of the gate, which is an important factor in the design of nanotube-FETs.

Since the correction to the gate capacitance due to the different tube diameters is only

logarithmic [79] comparison between the two devices (EF: 35 aF, 3.5 µm; FG: 4.8 aF,

440 nm) is allowed and yields a capacitance per length of about 10 aF/µm. Possibly due

to the shielding effect from source and drain, this is smaller than values obtained from

electrostatic simulations (19 aF/µm, see section 6.2) and the analytical expression [79]

which neglects the fact that the SiO2 dielectric is only between the nanotube and the gate

but not above the tube yielding a value of about 40 aF/µm for the 500 nm thick SiO2 used

on our samples.

The appearance of Coulomb blockade in a semiconducting nanotube gives us an inter-

esting insight into the properties of semiconducting nanotubes. Using the same method

as for the metallic nanotube devices we can calculate the gate capacitance to be about

90 aF. Using a capacitance per length of 10 aF/µm since it was determined from devices

on the same sample under the same experimental conditions used also for this measure-
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ment we find 90 aF to correspond to a nanotube length of about 9 µm, which is about half

of the actual device length. This suggests that the Coulomb blockade is not governed by

the device length but the localization length [92], which is twice the mean free path for

the charge carriers. Thus, in this nanotube the mean free pathl is about 4.5 µm. If we

add the capacitance of the contacts (55 aF) toCg as determined from the periodicity of

the Coulomb oscillations in order to estimate the charging energy we getEC ≈ 500 µeV,

i. e. in this device a possible Peierls gap opening up around the Fermi energy would have

to be smaller thanEG = 500 µeV. Therefore, a Peierls transition, which takes place at

TC ≈ 0.28EG/kB, is suppressed above at least 100 mK, much lower than the temperature

predicted for a (5,5)-nanotube (9 K [113] or 15 K [114]).
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Chapter 6

Field-Effect Transistors

6.1 Mobility

Field-effect transistors are extremely important for electronics applications in general and

digital electronics in particular. One of the factors determining their high-frequency per-

formance is the carrier mobility in the FET channel. A high mobility also results in

reduced resistive losses inside the transistor lowering its power consumption.

6.1.1 Fundamentals

Due to the debate about the Schottky barrier at nanotube-metal contacts the amount of

research done on mobility in nanotubes has been limited. Since mobility and especially

its temperature dependence can give information about the type of scattering processes

taking place in a material knowledge about mobility and its dependence on e. g. temper-

ature is important in understanding the physics of a material. Furthermore, mobility is

an important factor in determining the frequency response and the switching speed of a
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transistor. For most semiconductor materials the simple picture given in section 3.3.1 is

not sufficient, because current is not only carried by electrons but also by holes. For such

a case we have to amend the relation for the conductivityσ given by the Drude model to

obtain

σ = ne·µe+ pe·µh. (6.1)

Heren is the number density of electrons andp the number density of holes. Accordingly,

µe is the electron mobility andµh the hole mobility. Generally the two are not equal. The

carrier densitiesn and p depend on the levels of chemical doping as well as field dop-

ing. It is often possible in an FET geometry to reach a level of field doping sufficient to

ignore one type of carrier completely. In addition the shift of band edges caused by the

field doping also creates large barriers for the minority carriers. As-fabricated nanotubes

usually show p-type conductance and require either large positive gate voltages or addi-

tional fabrication steps (potassium doping or annealing in H2) to switch to n-type behavior

[67, 115, 100, 79]. The different methods for determining the mobility presented in the

following sections all rely on the dominance of just one type of charge carriers. Since we

used as-grown nanotubes for our devices all mobilities presented here are hole-mobilities.

McEuen et al. [96] have made arguments that interband backscattering, which is for-

bidden in metallic nanotubes, limits the conductivity at low doping levels i. e. at low

applied gate voltages, while at higher levels of field doping the conductivity should ap-

proach values for metallic tubes. Based on this assumption we can make an attempt at

obtaining a rough estimate for the mobility in a semiconducting CNT.

Assuming that applying aVg that pushes the Fermi levelEF to the beginning of the
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second subband at 2∆ (see also figure 2.4 on page 10 and section 2.2.2) is sufficient to

make a semiconducting tube achieve a conductivity similar to a metallic tube we can use

the Fermi velocity of metallic nanotubes (vF = 8.1×105 m/s [25]) to estimate the mobil-

ity of a semiconducting tube in the following way:

First we need to calculate the charge densityn in the tube from the Fermi velocity. Fol-

lowing the derivation in 3D (see e. g. [116]) we get for a 1D systemn = kF/π. With two

spins and two equivalent bands this becomes

n = 4
kF

π
(6.2)

for an SWNT, wherekF is the magnitude of the Fermi wave vector. Using equation 2.2

with E = EF = 2∆ andk = kF and we can write for the first subband

2∆ =

√(
h̄kFvF

2

)2

+∆2. (6.3)

With equation 6.2 this yields

n =
8
√

3∆
hvF

. (6.4)

Now we use the expression from [28] that relates∆ to the diameterd of the nanotube

Eg = 2∆ = 0.7/d [eV/nm] obtainingn ·d = 2.9. Using the arguments from section 3.3.1

especially equation 3.8 relating lengthL and conductanceG of a 1D conductor to the

mean free pathl and the fundamental conductance limitGmax we get for the mobility

µ =
σ

ne
=

GL
ne

=
Gmaxl

ne
. (6.5)

Using the mean free path of metallic nanotubesl ≈ 3 µm [25] we can now estimate the

mobility to be µ = 10,000–50,000 cm2/Vs for the commonly observed tube diameters
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between 1 and 5 nm. These numbers, while high compared to most semiconductors, are

in the same range as the mobilities within the sheets measured in graphite, which are

15,000 cm2/Vs for holes and 20,000 cm2/Vs for electrons [2].

A more thorough approach to calculating mobility in semiconducting nanotubes has

been used by Pennington and Goldsman [117]. They have employed a semiclassical

model to investigate electron-phonon coupling in semiconducting nanotubes. From this

model, which ignores impurity scattering, they derive the electron drift velocityvd for

various diameters of zigzag nanotubes, which then allows one to calculate the mobility

as the ratio betweenvd and the electric fieldE applied along the nanotube. For a (59,0)-

nanotube they obtain a maximal mobility of 120,000 cm2/Vs. The second result of their

model is the fact thatvd decreases in the case of high applied fields. This is in good agree-

ment with experimental results for metallic nanotubes by Yao et al. [118] who explain the

effect with the emission of zone boundary phonons if the kinetic energy of the electrons

is sufficient, thus, limiting the mean free path at high fields.

Another result of their study was a strong dependence of mobility on the nanotube

diameter. They found the timeτ between scattering events to be roughly proportional

to the tube diameter:τ ∝ d. Since the electron effective mass at the band bottom is

inversely proportional to the diameterm∗ ∝ d−1 the mobility calculated from this model

depends ond like µ = eτ/m∗ ∝ d2. Although this relationship is likely to fail for largerd

where∆ becomes too small this model suggests that larger diameter tubes should exhibit

higher mobilities making them more desirable for electronics applications then thinner

nanotubes. In this respect our simple model agrees with Pennington and Goldsman’s
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model.

6.1.2 Intrinsic Mobility

The standard method of measuring mobility in semiconductor materials is to measure the

Hall coefficient and Hall resistance of the material and use these parameters to determine

the so called Hall-mobility [89]. This method, however, cannot be used in 1D materi-

als like SWNTs. In nanotube films [119, 120] and mats [121] it is possible to carry out

Hall effect measurements but those measurements do not allow the determination of mo-

bility within the individual tubes as they measure only the collective behavior of many

nanotubes.

In order to measure the mobilityµ intrinsic to a nanotube one must use the charac-

teristics of a nanotube FET and try to deduceµ from them. Generally, this is harder to

do and more ambiguous than the fairly direct measurements using the Hall effect. To

understand this we first revert to one of the definitions ofµ. According to this defini-

tion given within the Drude model [91]µ is the ratio between conductanceσ and charge

densityq: µ = σ/q. In a 1D system like a SWNT the charge density can be calculated

asq = cg(Vg−Vth) wherecg is the gate capacitance per length andVth is the threshold

voltage at which the FET starts to turn on. This assumption is valid only forVg > Vth,

i. e. when the device is actually turned on. Furthermore, it requires the bias voltageVsd

to be small enough for the device to be in the linear response regime. We also assume

that the gate capacitance is much smaller (Capacitances in series add inversely!) than

the quantum capacitance of the nanotube [122, 72], such that the quantum capacitance

72



may be neglected. For our devices grown on 500 nm SiO2 this is certainly the case. The

relationship ignores thermally activated carriers, which may be significant for small val-

ues ofVg−Vth and high temperatures. Most importantly, this relationship assumes that

cg andVth do not vary appreciably along the length of the channel, which requires the

length of the nanotubeL to be much greater thant, the dielectric thickness of the gate ox-

ide. Few nanotube devices studied in the literature satisfy this last criterion. For a p-type

device (like most as-fabricated nanotube transistors) this relationship reverses its sign to

q = cg(Vth−Vg). Usingσ = G·L from section 3.3.1 we get

µ =
L
cg

G
Vth−Vg

. (6.6)

Besides the above requirements regarding the validity of the simple expression used to

calculate the charge density, this relation also depends sensitively on the threshold voltage

Vth, which cannot always be determined unambiguously. FinallyG has to be the actual

nanotube conductance. Only if the device conductance is dominated by the nanotube

conductance and not the contact resistances is it meaningful to use the device conductance

asG. For a Schottky barrier transistor this formula is meaningless. If this formula is

applicable, however, it provides the value closest to the intrinsic mobility in a nanotube.

In the following we will therefore denote the mobility computed from this formula as

µ and for brevity call it intrinsic mobility. It is analogous to the so-called “effective

mobility” in conventional MOSFETs [90].

73



6.1.3 Field-Effect Mobility

In many cases it is impossible to determine the threshold voltageVth with sufficient pre-

cision. To be able to compare the performance of FETs in such cases it is common to use

a slightly different way of calculating the mobility [90]:

µFE =
L
cg

∣∣∣∣ ∂G
∂Vg

∣∣∣∣ . (6.7)

The mobility µFE obtained in this way is called field-effect mobility and is a device

specific quantity not a material specific parameter. It is useful in order to compare the

performance of different devices. In most cases theG(Vg)-curve of an FET has negative

curvature beyond the subthreshold region, such that we getµFE < µ, i. e. the field-effect

mobility underestimates the mobility.

6.1.4 Saturation Mobility

At high bias voltages the device resistance of an FET is no longer constant. Instead the

device currentIsd(Vsd) saturates at a value dependent on the applied gate voltage. This

behavior can be used as an alternate method for calculating a mobility called saturation

mobility µsat. Although not as reliable as the previously introduced techniques, the ad-

vantage of this method is that it probes different aspects of the device characteristics,

making it suitable to independently verify results obtained forµ andµFE. Adapted for

the 1D geometry of our devices the saturation mobility can be calculated as follows:

µsat =
2L
Bcg

Isd,sat

(Vg−Vth)2 . (6.8)
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Figure 6.1: I -V-curves for both ultralong nanotube devices. Clearly for all gate voltages

the curves are Ohmic (i. e. the devices have constant resistance) in this bias voltage range.

The total device resistance has increased compared to the data shown in figure 6.3 since

these curves were measured several months later. (a) Tube AD. (b) Tube BC.

In this formulaB is the so-called body factor, which accounts for the dependence ofVth on

the position along the device caused by a nonlinear variation of the charge density along

the device in the saturation regime [87, 90]. Even for conventional MOSFETsB is not

well understood, much less so for nanotube transistors. For this reason we setB= 1 in the

following. In addition any dependence ofµ on the charge density will cause a deviation

from the idealVg
2-dependence in this equation. We useµsat only as a way of verifying

data obtained from equations 6.6 and 6.7.

6.2 Results from FETs

Using the growth method for ultralong nanotubes described in section 4.1.3 we were

able to fabricate several devices with lengths of several hundred micrometers between the

contacts. Figure 6.2 shows two devices fabricated on sample UL7 (degenerately doped Si

with 500 nm thermally grown SiO2). These devices showed clear FET-behavior and were
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Figure 6.2: Devices made from ultralong nanotubes. (a) Optical microscope image of

two devices on sample UL7. There are two devices on this sample, the first between

bonding pads A and D and the second between B and C. The gold bonding pads are

approximately 150 µm × 150 µm in size. The additional gold patches in the center of the

bottom half of the images are residues from the alignment procedure marking the corners

of an alignment marker pattern like in figure 4.7. (b) Device AD imaged with a Zeiss

DSM982 field-emission SEM. The scale bar is 100 µm. (c) FESEM image of device AD.

(100 µm scale bar)
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Figure 6.3: G-Vg-curves for the ultralong nanotube devices at 100, 200 and 300 K mea-

sured with a bias voltage of 50 mV. The arrows indicate the direction, in which the current

is being swept on each branch of the hysteresis loop. (a) Tube AD. (b) Tube BC.

Figure 6.4: G2-Vg-curves for the ultralong nanotube devices at 100, 200 and 300 K. (a)

The plot for tube AD shows(G−Gmin)2 rather thanG2 as a function ofVg. Gmin is the

conductance atVg = 10 V, assumed to be the “metallic background”. (b) Tube BC.
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chosen for further analysis. Device AD has a length of 345 µm and a diameter of 5.3 nm;

device BC is 325 µm by 3.9 nm. The device length were extracted from FESEM images

(see also [107]) while the diameters were measured by AFM.

On these devices we performed electrical measurements utilizing the DC-technique

described in section 4.3 inside a commercial low temperature probe station1. Some of

these measurements are shown in figures 6.3 and 6.1. Figure 6.1 showsI -V-curves of

the devices demonstrating constant resistance, i. e. Ohmic behavior for all gate voltages

in a bias voltage range of up to 100 mV. Figure 6.3 shows the dependence of the device

conductanceG = Isd/Vsd on the gate voltagevg. The curves were measured at different

temperatures at a bias voltage ofVsd = 50 mV. The hysteretic behavior of both devices,

similar to what is described in [64], is clearly visible. Comparing the two branches of the

hysteresis loop the downward sweep is much smoother and more reproducible than the

upward sweep. This hints that the trapped charges responsible for the hysteresis are posi-

tive (holes), with only few trapped holes on the downward sweep, and many trapped holes

in irreproducible configurations on the upward sweep. We therefore use the downward

sweep inVg for further analysis.

When analyzing the device behavior we noted that the conductance of device BC fol-

lowed the empirical relationshipG ∝
√

Vth−Vg remarkably well at temperatures from

50 K up to 300 K. Figure 6.4(b) illustrates this by showing a plot ofG2 as a function of

applied gate voltage measured during the downward sweep. Since device AD does not

turn off completely we assume the nanotube in this device is a semiconducting nanotube

1Desert Cryogenics TT-probe station with a temperature range from 1.5 K to 400 K.
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with a metallic tube inside, electrically in parallel with the semiconducting tube. Subtract-

ing the conductanceGmin = G(Vg = 10V) as the metallic background (see figure 6.4(a))

this device shows the sameG1/2-behavior as device BC. ThisG1/2-behavior allows to

perform simple fits to theG-Vg-curves to determineVth and subsequently to calculate the

intrinsic mobility µ.

6.3 Conclusions

Since the behavior of device AD as well as its diameter of 5.9 nm suggest it to consist

of a multi-walled nanotube with at least one semiconducting nanotube on the outside

and one or more metallic tubes on the inside we will focus on device BC in analyzing

the device characteristics. Before starting to extract information about nanotube mobility

we need to ascertain that the methods presented in section 6.1 are in fact applicable.

Figure 6.5 shows the subthreshold behavior of device BC at various temperatures and

the subthreshold swingS for this device. As figure 6.5 demonstratesS is temperature

dependent in contradiction to the behavior expected for a Schottky barrier transistor [71].

Furthermore with about 100 mV/decade the value ofS is much lower than expected for a

Schottky barrier transistor with the same oxide thickness (1500 mV/decade [71]). Finally

the device length ofL = 325 µm is clearly larger than the dielectric thicknesst of the SiO2

gate oxide as required in section 6.1.2.

To calculate the mobility it is necessary to know the capacitanceCg between the na-

notube and the gate. Since previously accessible values for the capacitance per lengthcg

vary significantly (10 aF/µm from SET-behavior, see chapter 5 to about 40 aF/µm for a
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Figure 6.5: (a) ConductanceG as a function ofVg−Vth in the subthreshold regime for

temperatures from 50 to 300 K. For comparison a subthreshold swing of 100 mV/decade

is shown. (b) Subthreshold swingS as a function of temperature.S shows a clear tem-

perature dependence for all temperatures. The jump in temperature dependence at 300 K

coincides with a slight increase of total device resistance at 300 K. This behavior cannot

be understood in terms of the models presented here and requires further study.

nanotube completely surrounded by SiO2 [79]) we decided to calculatecg with a com-

mercial computer simulation solving Poisson’s equation [123]. This yielded a value of

19± 3 aF/µm. Using this number we could calculate the mobility for device BC. Fig-

ure 6.6(a) shows the intrinsic mobilityµ for temperatures between 50 and 300 K; fig-

ure 6.6(b) shows the field-effect mobility as calculated from the same data sets. As

expected from theG1/2-dependence of the device conductance the intrinsic mobility

shows a power law behavior itself. Remarkably, for lowVth−Vg the mobility exceeds

77,000 cm2/Vs, which is the electron-mobility in high-quality InSb at room temperature

[124]. It also exceed the highest known hole mobility, which is 4,000 cm2/Vs in PbTe

[87]. To our knowledge this makes our nanotubes the material with the highest mobility

measured at room temperature. On the other hand the field-effect mobility (figure 6.6(b))

being a device specific parameter allows direct comparison with other types of transistors.
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Figure 6.6: (a) Intrinsic mobility as a function ofVth−Vg. The horizontal line indicates

the electron-(Hall)-mobility of the InSb which to date is the highest mobility at room

temperature known for any semiconductor. (b) Field-effect mobility as a function of

Vth−Vg.

Figure 6.7: Determining the saturation mobility. (a)Isd−Vsd curves in saturation for

differentVg. The dark blue lines illustrate the graphical method used for determining the

respective saturation currentIsdsat. (b) Saturation current as a function ofVg andV2
g -fit to

calculateµsat. (Measurement courtesy of S. Getty.)
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Although not commonly used this comparison is even possible in the case of Schottky

barrier transistors, for which the calculation of the intrinsic mobility does not make sense

physically. As shown in figure 6.6(b) the field-effect mobilityµFE at room temperature

peaks at 79,000 cm2/Vs. This number compares favorably to values measured for typical

Si-devices:∼ 1,000 cm2/Vs [125] or state-of-the-art high-electron mobility transistors

(HEMTs) [126]. One problem in utilizing the high mobility in nanotubes could be the

fundamental limitation on the field-effect mobility due to finite dwell time of the carriers

in transistors with short channel length [127].

In order to verify the mobility values we also conducted measurements to determine

the saturation mobility in device BC. For much shorter nanotubes Javey et al. [65] have

used this method to determine the hole mobility in their Pd-contacted nanotubes, which

yielded a value of 4,000 cm2/Vs. The result of our measurements is shown in figure 6.7.

Figure 6.7(a) shows theIsd-Vsd-curves used to determine the saturation currentIsd,sat,

while (b) shows itsV2
g -dependence and the fit used to determine the mobility. The value

derived from thisV2
g -fit is µsat = 55,000 cm2/Vs. This confirms the results of the calcula-

tions forµ andµFE. Because of the length of this device, even a comparatively largeVsd

of 10 V results in a field of only 300 V/cm, about 10 times lower than the field at which

the mobility starts to decrease due to saturation of carrier velocity [117].

With the knowledge that the device resistance is dominated by the intrinsic nanotube

resistance we can apply equation 3.8 and obtain a fair estimate of the mean free path in our

semiconducting nanotube. A non-zero contact resistance would imply a longer mean free

path. Using the maximum conductance of 1.4 µS observed at room temperature (see fig-
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ure 6.3(b) and assuming that the nanotube is either single-walled or multi-walled with the

current carried only by the outer shell [128, 129] we get a mean free path ofl = 2.9 µm.

This is in good agreement with the mean free path (l = 4.5 µm) determined in chapter 5

for a different nanotube device using a fundamentally different method (Coulomb oscil-

lations). The validity of our calculations is further corroborated by the observation that

at around 3 µm length a nanotube in an FET no longer behaves ballistic [65]. Finally the

mean free path is very similar to values found in metallic nanotubes (see also section 3.3.1

on page 30).
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Chapter 7

Hysteretic behavior

7.1 Hysteresis in Nanotube-FETs

The high mobility of carbon nanotubes suggests high sensitivity in applications where

charge detection is required, for example in a memory cell, in which the charge on a

floating gate is detected by a transistor; or a chemical sensor, in which chemisorption

of a target species produces a charge detected by a transistor. Unfortunately the high

sensitivity also makes a nanotube device susceptible to hysteresis effects and fluctuations

caused by charges moving near the nanotube. While present in many if not all nanotube

devices these hysteresis effects have been the subject of only a few publications.

Figure 7.1 shows an example of such a hysteretic behavior. The nanotube was grown

with the “doughnut” method described in section 4.1.1 on a degenerately doped Si-substrate

with 500 nm of thermally grown SiO2. Obviously the hysteresis loop increases in size be-

tween 200 K and room temperature.

The direction in which the device goes through the hysteresis loop (see arrows in
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Figure 7.1: 4.8 µm long semiconducting nanotube with a diameter of 2.7 nm, device AB

on sample 58: AFM-micrograph of the device and hysteresis loops in theG(Vg)-curve

of the device at 200 K and 300 K. The data was measured with a bias voltage of 500 mV.

The arrows indicate the direction in whichVg was being swept on each branch of the

hysteresis. (Measurement courtesy of M. Fuhrer.)
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Figure 7.2: Hysteresis caused by charge injection. (a) Initial state:Vg = 0. (b)Vg < 0

applied: Positive charges from tube fill charge traps near surfaces. (c)Vg = 0 applied, but

some of the charges remain in the traps. The tube sees an effective positiveVg. (d)Vg > 0:

reversed situation compared to (b). Negative charges near tube at the SiO2-surface. (e)

Back toVg = 0: some of the charges remain. Now the tube sees an effective negativeVg.
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figure 7.1) allows conclusions to be drawn about the mechanism causing the hysteresis.

Mobile charges or dipoles in the oxide would result in a hysteresis opposite to what is

observed in nanotube FETs, while charge traps into which charges jump from the nano-

tube are consistent with the measured effects. These traps presumably are located in the

gate oxide or on the surface near the nanotube [64]. Figure 7.2 illustrates this idea. Most

important in this figure are parts (c) and (e). Due to the charge remaining in the charge

traps the nanotube experiences an effective gate voltage that is opposite to the previously

applied voltage. Although this primitive illustration assumes an equality between posi-

tive and negative trapped charges the results presented in chapter 6 suggest there to be a

majority of positive charges taking effect mainly on the upward sweep of the loop.

One explanation for this behavior follows from the observations published by Kim et

al. [130]. This publication investigates the hysteretic behavior of nanotube FETs and con-

cludes that the charge traps mainly consist of water adsorbed on the SiO2-surface partly

weakly adsorbed such that it can be removed by simply putting a sample into vacuum for

an extended period and partly strongly adsorbed. This strongly adsorbed water can only

be removed by heating the sample in vacuum to temperatures over 200°C, which mostly

removes the hysteresis.
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Figure 7.3: Nanotube memory at room temperature based on the hysteresis shown in

figure 7.2. By applying short gate voltage pulses of ten seconds duration (bottom graph)

the device can be put into the on-or off-state. While the applied bias voltage of 500 mV

is constant the device current is switched on and off (top graph) depending on the sign of

the preceeding pulse. (Measurement courtesy of M. Fuhrer.)

7.2 Memory Devices

7.2.1 Room-Temperature Behavior

While unwanted in most amplifier applications or in digital logic devices the hysteresis

effect can be useful in memory applications. Fuhrer et al. [64] and Radosavljević et

al. [69] give examples of for this kind of application. Figure 7.3 (see also figure 1 in

[64]) shows such a memory application. This example uses device AB on sample 58

(see section 7.1) at room temperature. While a constant bias voltage ofVsd = 500 mV is

applied across the device the gate voltage is kept at−1 V to keep the device in the center

of the hysteresis loop. By applying a 10 s gate voltage pulse of+8 V the device can be
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pushed to the upper branch of the loop (on-state), while the opposite pulse (−8 V for 10 s)

switches it to lower branch, i. e. the off-state. While an initial decay with a time constant

of several ten seconds is visible in figure 7.3 the on-and off-states remain stable for hours.

The idea of using some kind of charge trap for storage in a memory device has been used

for floating gate memory for a long time [131] with traditional FETs. The case of our

nanotube memory is particularly elegant because the memory effect is created during the

normal device fabrication.

7.2.2 Single Electron Memory

The physical concept of single-electron memory as the memory device with the smallest

possible amount of charge used has been demonstrated in several systems either with

deliberately created charge traps [132, 133, 134] or charge traps created by chance [135].

The nanotube device presented in the previous section exhibits single-electron memory

effects in a similar way. Unlike at room temperature the hysteresis loop shows discrete

and reproducible steps. Figure 7.4(a) gives an example of this behavior measured at 20 K.

While the room temperature hysteresis is caused by the reaction of the hole nanotube

to charge traps in its environment, these discrete steps are caused by the reaction of a

single defect in the nanotube to a single charge trap in its neighborhood [136]. As shown

in figure 7.4(b) this can be utilized as single-electron memory. Again a constant bias

voltage of 500 mV is applied to the device. Applying a constantVg of −2.25 V keeps the

device between two of the steps such that short pulses inVg (−1.5 or−3 V) can be used

to switch the device on either the upper or the lower branch corresponding to pushing a
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Figure 7.4: (a) Device currentIsd at Vsd = 500 mV for sample 58, device AB (see fig-

ure 7.1) measured at 20 K while sweepingVg between−1.3 V and−3 V repeatedly. (b)

Single-electron memory based on this discrete hysteresis. (Measurement courtesy of

M. Fuhrer.)
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Figure 7.5: (a) Time dependence of the hysteresis atT = 400 K starting at negativeVg.

With a bias voltage of 50 mV applied the gate voltageVg was kept at−20 V for 5 min and

then att = 0 s turned off. The curve shows the slow decay of the hysteresis following an

double-exponential decay with time constants of 500 s and 5000 s. Measurements with

Vg = −10 V andVsd = 500 mV confirm only the magnitude of these time constants. (b)

Difference between fit and data. This plot does not show a systematic deviation of the fit

from the data except for the initial minute of the data.

single charge into the charge trap or emptying it.

7.2.3 Time Dependence Measurements

In order to test the long term stability of a memory device we conducted measurements

trying to determine the decay time for the hysteresis effect. To test whether carrying out

such measurements with the available equipment was feasible we decided to investigate

the decay of the hysteresis at an elevated temperature of 400 K. The measurements were

carried out in our commercial low temperature probe station1 at a pressure of better than

10−6 torr using sample UL7, device BC (see figure 6.2(b)). During the measurement,

which used the DC-measurement scheme shown in figure 4.11, a constant bias voltage

1Desert Cryogenics TT-probe station with a temperature range from 1.5 K to 400 K.
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Figure 7.6: Time dependence of the hysteresis starting at positiveVg. This is the same

measurement as shown in figure 7.5 but beginning atVg = +20 V. For this type of exper-

iment we could not find a simple formula to describe the time dependence.

Vsd was applied across the device. A high (±10 V or±20 V) gate voltage would then

be applied for 5 min and then turned off. After turning offVg we monitored the device

current for several hours. Typical results are shown in figures 7.5 and 7.6. The decay

after switching from negativeVg reproducibly followed a double-exponential decay as

shown in figure 7.5. The time constants of this decay could not be reproduced well.

While the smaller time constant (t1 = 500 s) was not visible in all measurements the larger

constantt2 varied from 3000 s to 10,000 s. Possibly this effect critically depends on what

kind of measurements were performed with the device immediately before the long term

measurement was taken. The existence of two different time constants might be related

to the two different ways in which water molecules are bound to the surface [130]. In the

case of switching from positiveVg to Vg = 0 we were unable to find a simple formula to

describe the decay of the hysteresis in a satisfactory manner.
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Figure 7.7: Comparison of the measurements shown in figures 7.5 and 7.6. Even after

9000 s the hysteresis effect does not decay completely, even at a temperature of 400 K.

This comparison suggests a decay time for the hysteresis effect that could easily be orders

of magnitude larger than the time scale investigated here.

A comparison of both types of measurements is given in figure 7.7. It is obvious that

at 400 K, which is the highest temperature accessible in our probe station, the hysteresis

will not decay within several 10,000 s. (One day has 86,400 s!) Considering this and the

fact that there does not seem to be one simple process causing the hysteresis we did not

pursue these experiments further. However, in a system that can reach temperatures high

enough to remove water adsorbed on the surface this type of experiment might be more

promising.

Concerning the application of nanotubes as memory elements these long term ex-

periments show that even at elevated temperatures the lifetime of the content of such a

nanotube memory element would be hours if not days making them suitable as at least

semi-permanent storage devices.

93



Chapter 8

Conclusions

This work reviews the synthesis of nanotubes with lengths from a few hundred nanometer

to several hundreds of micrometers using CVD-techniques. With these nanotubes we

were able to fabricate devices. For the first time these devices allow for measuring the

carrier mobility in a nanotube on Ohmically contacted devices long enough to be clearly

in the regime of diffusive conductance.

Low temperature measurements of Coulomb blockade effects as well as room tem-

perature conductance measurements on nanotube devices longer than 300 µm agree in

showing a mean free path of several micrometers in semiconducting nanotubes.

The conductance measurements on these long devices show outstanding mobilities

that exceed those of all other semiconductors at room temperature in good agreements

with theoretical predictions. While largely independent of the temperature the mobility

shows a power law dependence on the gate voltage and hence on the carrier density in

the nanotube. These two findings call for further studies to verify them and ultimately

determine the dominant scattering mechanisms in nanotubes.
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In the last chapter I present measurements on the temperature and time dependence of

hysteresis effects in nanotube FETs. While these measurements are clearly not complete

they show an interesting picture suggesting that the hysteresis in nanotube devices is

governed by several different types of charge traps with different time constants that, even

at elevated temperatures of 400 K, reach up to hours. Just as there has been a significant

amount of research on hysteresis effects in silicon devices there will have to be more

research about these hysteresis effects in nanotubes, in order for them to be useful for

digital electronics applications.
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Appendix A

Abbreviations

AFM A tomicForceM icroscopeor AtomicForceM icroscopy

CNT CarbonNanotube

CVD ChemicalVaporDeposition

DCE Dichloroethane

DOS DensityOf States

FESEM Field-EmissionSEM

FET Field-Effect Transistor

IPA I so-Propanol or 2-Propanol

MIBK M ethyl IsoButyl Ketone

MMA M ethylMethacrylate)

MOSFET M etalOxideSemiconductorFET
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MWNT M ulti-WalledNanotube

PMMA P oly(MethylMethacrylate)

SEM ScanningElectronM icroscopy

SET SingleElectronTransistor

STM ScanningTunnelingM icroscopy

STS ScanningTunnelingSpectroscopy

SWNT Single-WalledNanotube

TEM T ransmissionElectronM icroscopy
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