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The focus of this dissertation is a new method for solving unconstrained min-
imization problems—~homotopy optimization using perturbations and ensembles
(HOPE). HOPE is a homotopy optimization method that finds a sequence of
minimizers of a homotopy function that maps a template function to the target
function, the function from our minimization problem. To increase the likelihood
of finding a global minimizer, points in the sequence are perturbed and used as
starting points to find other minimizers. Points in the resulting ensemble of min-
imizers are used as starting points to find minimizers of the homotopy function
as it deforms the template function into the target function.

We show that certain choices of the parameters used in HOPE lead to in-

stances of existing methods: probability-one homotopy methods, stochastic search



methods, and simulated annealing. We use these relations and further analysis
to demonstrate the convergence properties of HOPE.

The development of HOPE was motivated by the protein folding problem, the
problem of predicting the structure of a protein as it exists in nature, given its
amino acid sequence. However, we demonstrate that HOPE is also successful as
a general purpose minimization method for nonconvex functions.

Numerical experiments performed to test HOPE include solving several stan-
dard test problems and the protein folding problem using two different protein
models. In the first model, proteins are modeled as chains of charged particles
in two dimensions. The second is a backbone protein model, where the parti-
cles represent amino acids, each corresponding to a hydrophobic, hydrophilic, or
neutral residue. In most of these experiments, standard homotopy functions are
used in HOPE. Additionally, several new homotopy functions are introduced for
solving the protein folding problems to demonstrate how HOPE can be used to
exploit the properties or structure of particular problems.

Results of experiments demonstrate that HOPE outperforms several methods
often used for solving unconstrained minimization problems—a quasi-Newton
method with BFGS Hessian update, a globally convergent variant of Newton’s

method, and ensemble-based simulated annealing.
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Chapter 1

Introduction

The focus of this dissertation is a new method for solving unconstrained min-
imization problems—homotopy optimization using perturbations and ensembles
(HOPE). The development of HOPE was motivated by the protein folding prob-
lem, the problem of predicting the structure of a protein as it exists in nature,
given its amino acid sequence. However, we demonstrate that HOPE is also
successful as a general purpose minimization method for nonconvex functions.

HOPE is a homotopy optimization method that finds a sequence of minimizers
of a homotopy function mapping a template function to the target function, the
original function being minimized. To increase the likelihood of finding a global
minimizer, points in the sequence are perturbed and used as starting points to
find other minimizers. Points in the resulting ensemble of minimizers are used
as starting points to find minimizers of the homotopy function as it deforms the
template function into the target function.

Results of experiments demonstrate that HOPE outperforms several methods
often used for solving unconstrained minimization problems—a quasi-Newton
method with BFGS Hessian update, a globally convergent variant of Newton’s

method, and ensemble-based simulated annealing. These experiments include



solving several standard test problems and the protein folding problem using
different protein models.

The dissertation is divided into two parts. The first focuses on HOPE’s math-
ematical and algorithmic details and its relation to other optimization methods
(Chapters 2-4). The second focuses on the application of HOPE to the protein
folding problem (Chapters 5-7).

Existing methods for unconstrained minimization are presented in Chapter 2,
where the relationship of HOPE to these other methods is discussed. In the
beginning of Chapter 3, the general framework of homotopy methods—the class
of methods to which HOPE belongs—is presented. The remainder of the chapter
includes a description of the HOPE algorithm and analysis of its convergence
properties for problems in one dimension. Results of HOPE applied to several
standard test problems are presented in Chapter 4. These results suggest that
HOPE can be used for solving general unconstrained minimization problems.

Chapter 5 provides an introduction to the protein folding problem and in-
cludes a discussion of existing numerical methods for solving the problem. A
general discussion of the application of HOPE to the protein folding problem can
be found at the end of Chapter 5. Results of HOPE applied to the protein folding
problem for different protein models are discussed in Chapters 6 and 7.

The results of the experiments presented throughout this dissertation demon-
strate that HOPE is effective in solving difficult unconstrained minimization prob-
lems. In some experiments, no knowledge of the structure of the problems was
assumed (Chapter 4), whereas in other experiments a thorough understanding
of the structure and properties of the problem was incorporated into the mini-

mization procedure via the homotopy function (Chapter 7). In both situations,



HOPE was more successful at finding global minimizers that the standard meth-
ods tested.

In Chapter 8 we present conclusions and directions for future work.



Chapter 2

Methods for Unconstrained Minimization

We are interested in solving the unconstrained minimization problem, stated as

Given f:R" - R,

find z* € R” such that f(z") = min f(z) . (2.1)

S

If such a point exists, we call it a global minimizer and f(x*) the global mini-
mum of f on R"”. To simplify the discussion, we assume that at least one global
minimizer exists for all functions considered in this work. Note that the global
minimum is unique, but global minimizers are not necessarily unique. For ex-
ample, the function f(z) = cos(z) has the unique global minimum of —1 but an
infinite number of minimizers at the points x = (2k + 1), where k € Z.

We confine our discussion in this work to minimization problems, since “there
is no fundamental difference between minimization and maximization problems”
[80]. The reason for this is that

max flz) =— ;2]11@1 —f(z). (22)

Thus, the ideas and methods in this work associated with minimization, min-

imizers and minima apply as well to maximization, maximizers, and maxima,



or more generally to optimization, optimizers, and optima. We also note that
unconstrained optimization is sometimes referred to as global optimization.

In some applications, it may be of interest to find a local minimizer of f, a
point 2 such that f(x) < f(x) for all x in a neighborhood of 7. We reiterate
that the goal in this work is to find global minimizers, but note that methods
for accurately finding local minimizers are often incorporated into methods for

finding global minimizers. As Schoen writes in [99],

Virtually all methods for global optimization consist of two phases:
a global phase, aimed at thorough exploration of the feasible region
or subsets of the feasible region where it is known the global opti-
mum will be found, and a local phase aimed at locally improving
the approximation to some local optima. Often these two phases are
blended into the same algorithm, which automatically switches be-

tween exploration and refinement.

In this dissertation we present a new minimization method, a numerical pro-
cedure designed to solve the minimization problem in (2.1). We say that a mini-

mization method solves the problem if it generates a point, 2!, such that

[f(@h) = fl@)| < e. (2.3)

for some user-defined criterion, € > 0, where x* is a solution to (2.1). Similarly,
we say that a minimization method finds a local minimizer of f if it generates a

point, x', such that

(=) = flah) <e. (2.4)

where 21 is a local minimizer of f.



In this chapter, we describe several existing methods for solving unconstrained
minimization problems. The goal in presenting these methods here is not to
present an exhaustive review. Rather we present several methods that are often
used in practice and those that are related to or are of theoretical use in discussing
and analyzing HOPE.

There are several ways to classify optimization methods; Torn and Zilinskas
present a review in [112] of several classifications found in the literature through
1989 and Pintér presents in [91] a more modern classification, reflecting the addi-
tions of methods developed after that date. Although these classifications may be
useful for understanding the broad range of methods available for solving global
optimization problems, we will take a slightly different approach to classification,
dividing the methods into two general classes: local and global methods.

Local optimization methods, or local methods for optimization, are those meth-
ods whose goal is to find a local minimizer of the function f. In contrast, the
goal of global optimization methods is to find a global minimizer (or the global
minimum) of f. We note that local methods are sometimes called global methods
in the optimization literature, but this is in the sense of global convergence [27, p.
5]; “globally convergent methods” are methods that are guaranteed to converge

to a local minimizer from almost every starting point.

2.1 Local Methods

One important difference between local and global optimization methods is that
it is possible to verify that a point is a local minimizer of a smooth function

whereas more information is required to verify that a point is a global minimizer.



Theorem 1 Let f : R* — R be twice continuously differentiable and x' be a

local minimizer of f. Then

(i) Vf(z") =0, and (2.5)

(i3)  V2f(z') is positive semidefinite . (2.6)

For a proof of Theorem 1, see [27, p. 82]. The condition in (2.5) is referred to
as the first order necessary condition for a local minimizer and the condition in
(2.6) is referred to as the second order necessary condition for a local minimizer.
Note that the condition V f(2T) = 0 holds for all stationary points (minimizers,
maximizers and saddle points), so it alone cannot be used to verify that a point

is a local minimizer.
Theorem 2 Let f: R" — R be twice continuously differentiable. If

Vi) =0 and V2f(z') is positive definite (2.7)
then z' is a local minimizer.

For a proof of Theorem 2, see [80, p. 298]. The condition in (2.7) is referred
to as the second order sufficient condition for a local minimizer.

We now present three local optimization methods: Newton’s method, quasi-
Newton methods, and the method of steepest descent. The first two are general
methods that form the basis of many methods used in practice today, and the
third method is of theoretical use but rarely used in practice due to its poor
convergence rate.

These methods are iterative methods that generate a sequence of points start-

ing at (© = 20 € R”, a point provided as input to the method. The remaining



points in the sequence are generated using the following iterative scheme:
2D = () 4 ®)k) (2.8)

where z(®) is the current iterate, ) € R is the step length and p*) € R” is the
search direction during the k" iteration of the method. The three methods differ

in how o® and p® are determined.

Newton’s Method. In Newton’s method, a®¥) = 1 and p® is determined by

solving the Newton equations,
V2 f(®)p = =V f"), (2.9)

for p. If V2f(2®) is nonsingular, then the solution is unique.
Newton’s method is typically derived by approximating the equation V f(z) =

0 using the first two terms of the Taylor series of V f about the point z(*,
V@™ +p) ~ VE®) + V2 f(@W)p. (2.10)
Since we want V f(x*) 4 p) = 0, we find p by solving
Vi) =~ V™) + V2™ )p=0. (2.11)

Another interpretation of Newton’s method, and one that highlights the re-
lationship between the three local methods presented here, is that p®) is chosen

as the minimizer of the quadratic function,

QWMMZﬂﬂ%+VﬂﬁW%+%fVW@®M, (2.12)

and thus solves the Newton equations. This follows from Theorem 1, since a local

minimizer of (Q,..; satisfies

VQnewt(p) = V(™) + V2f(z®)p =0 (2.13)



Note that Q. corresponds to the first three terms of the Taylor series expansion
of f around the point z*) and can be thought of as a quadratic model approximat-
ing f at the point 2®). If V2 f(x*)) is not positive definite, choosing p*) as the so-
lution of the Newton equations may not lead to a descent direction. In such cases,
a diagonal matrix D is often added to V2f(z*)) so that (V2f(z®) + D) is posi-
tive definitive, and then p® is found by solving (V2f(z™) + D) p = =V f(z™).
Choices for D are discussed in [44].

The main drawback of Newton’s method is that in general it is only locally
convergent, i.e., the method is not guaranteed to converge to a solution from all
starting points. However, additional conditions can be placed on search directions

and step lengths that lead to globally convergent variants of Newton’s method.

Step Length Restrictions. Some globally convergent methods use searches
along p®) to determine suitable step lengths. These line searches often assume

that p®) satisfies the following conditions:

Decent direction:  Vf(z®)Tp® <0, (2.14)
: Vf(x®)Tp
Sufficient descent: — — >e>0, (2.15)
IV f (@@ - ||p il
Gradient related: — ||p™®|| > ¢||Vf (™), ¢ > 0. (2.16)

The step length is then determined such that one of the following conditions hold:
Armijo-Goldstein:  f(z® +a®p®)) < f(2®)) + pua®V f(xENTp*) | (2.17)
Wolfe: |V f(a® +a®p")Tp®| < p|V f(z®)TpW] - (2.18)

where 0 < p < 1 and 0 < v < 1. Backtracking is an example of a line search that

starts at o®) = 1 (the full Newton step length) and if necessary, decreases a*)



slowly until one of the the step length conditions above is satisfied. Candidate
values of a®) might be generated, for example, by fitting a cubic polynomial to
f(z® + ap®). Details of the derivation of the conditions above and other line
searches can be found in [64].

The result of satisfying these conditions on the search directions and step
lengths at every iteration is that for any convergent subsequence of the iterates

produced, we have
Jlim [V /(@) =0 (2.19)

for problems where f has a bounded level set and V f is Lipshitz continuous [80].

Another approach for guaranteeing convergence uses trust region methods for
determining the search directions and step lengths [107]. In such methods, p® is
determined by minimizing Q,e¢ subject to the constraint ||p|| < Ag, where Ay
is the radius of the region around z*) where we “trust” that Qnew: (p) sufficiently
approximates f(z®) + p). Often, updates of Ay to A4, depend on the ratio of
actual decrease (in f) to predicted decrease (in @Qpewt). This ratio reflects how
well the quadratic model can predict function decreases within the trust region.
If the ratio is large, A, is typically increased by a constant factor up to some
maximum value. If the ratio is small, though, A, is decreased; otherwise, it
remains unchanged in the next iteration.

For problems where f has a bounded level set and f, Vf and V2f are all
continuous, the use of a trust region method also guarantees that |V f(z®)|| — 0

as k — oo [80].

Steepest Descent Method. In the steepest descent method, V2f(x®) is

approximated using the n x n identity matrix, I,,, in defining the quadratic model.
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Thus, p® is chosen to minimize

Quilp) = 1@ + V1) p+ Sp L. (220)

Note that this means that p®) satisfies VQ.q(p®)) = 0 and that
p®) = V(W) . (2.21)

Thus, we take a step in the direction of steepest descent. The step length, a®,
is usually determined using a line search.

The infinitely small step steepest descent method (i.e., where a® is an in-
finitely small positive number) is often used to define basins of attraction of local

minimizers [112].

Definition 1 (Basin of attraction of a local minimizer [112]) The basin
of attraction of x', a local minimizer of f, is denoted by R and is the largest set
of points such that the infinitely small step steepest descent method started at any

point x € RY will converge to x.

Basins of attraction, useful in characterizing behavior of optimization algo-

rithms around local minimizers, will be used in analyzing the convergence prop-

erties of HOPE in Chapter 3.

Quasi-Newton Methods. A quasi-Newton method can be viewed as Newton’s
method where V2 f(x*)) is approximated by a positive definite matrix, By, in the

definition of the quadratic model. Thus, p®* is chosen to minimize

1
Qun(p) = (™) + VI @O)p+ Sp"Bep . (2.22)
Note that this means that p® satisfies VQ,,(p*)) = 0 and thus is a solution to

Bip™ = —V f(z®) . (2.23)
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Different procedures for determining B, lead to different quasi-Newton meth-

ods. Typically, By = I, and By, is defined using an update formula given by
Byi1 =By + Uy, (2.24)

where U}, is an update, or correction, term.
The BFGS update formula, for example, attributed to Broyden [17], Fletcher

[38], Goldfarb [45], and Shanno [103], is given by

(Bgsi)(Bgsi)T n YkYi

Biy1 = By, +
+ S%Bksk y,{sk

(2.25)

where s, = 2D — 28 and y, = Vf(2*+D) — V f(z®).
If By is positive definite, then Byy is positive definite when yl's; > 0 [80].

*) to determine a

This condition is typically enforced using a line search along p
value of a'® such that the condition holds.
Note that the steepest descent method can be viewed as a quasi-Newton

method with B, = I,,.

Homotopy Optimization Methods. Another class of local methods, homo-
topy methods (also referred to as continuation, deformation, or embedding meth-
ods), have been effectively used for solving systems of nonlinear equations [5] and
nonlinear optimization problems [117, 119]. These methods are characterized
by the use of a homotopy—a continuous transformation from one function to
another—to solve such problems. Homotopy methods are often used when 1)
existing methods only converge from starting points that are close to a solution;
or 2) the function being minimized is very complicated. Typically, a homotopy
function maps a less complicated, well-understood, or trivial function to the more

complicated function of interest. The goal is to choose a homotopy containing a
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path from a solution to the easier problem to that of the more difficult problem
and then to trace this path numerically.
We define homotopy optimization methods as homotopy methods designed to

solve optimization problems. These methods are discussed in detail in Chapter 3.

2.2 Global Methods

In this section we present several global methods directly related to HOPE; in-
terested readers are directed to Neumaier’s survey [84] and web site [82] for an
introduction to global optimization and to several texts [56, 112] and volumes of
papers [31, 41, 55, 77, 86] for more details of specific methods.

As was mentioned in the previous section, there are no general sufficient op-
timality conditions for global minimizers. Conditions have been presented for
some classes of global optimization problems [52, 53|, but these conditions rely
on the structure of the problem (e.g., convexity) to guarantee that a point is a

global minimizer.

Stochastic Search Methods. These methods are based on a random search of
the function domain and are typically applied to problems on a bounded domain.
In this class of methods, the random search ranges from independent sampling
from the entire function domain to stochastic perturbations of current iterates.
Methods employing the latter most resemble HOPE.

Pure random search (PRS) [16] is the simplest variant of this class of methods.
It generates a sequence of points sampled from a distribution on the domain until
a point, x, is found with an acceptably low function value, i.e., f(x) < y for some

y € R. The expected number of points to sample before this is satisfied is an
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exponential function of the dimension of the problem [124]; thus, methods based
on PRS are not often used in practice. However, PRS does provide a benchmark
for other methods in this class.

Pure adaptive search (PAS) [88, 127] is similar to PRS, although the assump-
tion is made that the next point is always sampled from a region that contains
points with strictly lower function values. Under mild assumptions on the opti-
mization problem being solved, the complexity of PAS in terms of iteration count
is linear in the dimension of the problem [127]. Different choices of point genera-
tion methods and the regions to be explored in subsequent steps lead to different
practical methods.

Often used in implementations of PRS and PAS methods, the Hit-and-Run
(HR) algorithm [13, 106] is a method of generating a sequence of points by taking
steps of random lengths in random directions starting from current iterates. The
Improving Hit-and-Run (IHR) algorithm [128], for example, is an implementation
of PAS that uses HR for generating points. The iterates in IHR are chosen as

follows

(k) (k) (k) i (k) (k) (k) (k)
%)+« if f(z\® + « < f(x
L) _ p f( p) < f(2®) (2.26)

) otherwise

where a®) is a random step length and p*) is a random direction. Thus, IHR
uses stochastic perturbations of the current iterate to find the next iterate. HR is

also used in some of the numerical experiments of HOPE presented in Chapter 4.

Simulated Annealing. Simulated annealing (SA) methods are based on the
analogy defined in [66] between simulating the annealing process of a collection

of atoms [75] and solving combinatorial optimization problems.
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In each iteration of SA methods 1) a candidate point is generated, 2) the point
is tested based on an acceptance criterion dependent on a nonnegative parameter
T (representing temperature in the annealing process), and 3) the parameter T
is updated according to a cooling schedule.

The procedure for generating candidate points is called the move class. Many
move classes involve randomly changing one or more of the variables of the current
iterate, and the amount of change is often a function of T'. For example, Hide-
and-Seek (HAS) is an SA method that uses HR with step lengths proportional to
T for its move class. The move classes of basin hopping [116] and fast annealing
[59] are examples of other types of methods for generating candidates. In basin
hopping, candidates are local minimizers near the current iterate, and in fast
annealing, candidates are generated by moving the current iterate in a random
direction with a step length chosen from a Cauchy distribution. An important
feature common to both these move classes is the ability to generate candidate
points far from the current iterate, even when T is close to zero. For some
problems, this feature helps the SA method avoid getting trapped in regions of
attraction of local minimizers [116].

The most often used criterion for accepting a move to a candidate point is
the Metropolis criterion [75]. Using this acceptance criterion, the next iterate is

chosen with probability

Pr(z,z.) = ! it f(ze) < fl) (2.27)

f@) = f(ze) .
e T otherwise .

where x is the current iterate and x. is the candidate point. The benefit of
using this acceptance probability is that for constant 1" the iterates converge to a

Boltzmann distribution. Thus, the sampling of candidates points is biased toward
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global minimizers, and as T" — 0, the distribution concentrates more around
the global minimizers. Other acceptance probabilities that have the Boltzmann
distribution as their stationary distributions for fixed 7" are used in some SA
methods, e.g. fast annealing [94].

The cooling schedule of an SA method is the procedure for determining the
sequence of temperatures to be used. An exponential cooling schedule is often
used in practice; implementation is straightforward and theoretical convergence
properties of SA methods employing such a schedule are well documented [114].

In this schedule, the temperature during the k** iteration is given by
T® = 70" (2.28)

where TV is the initial temperature and a € (0,1) (with typical values close to
1). Other commonly used schedules include adaptive cooling and nonmonotonic
cooling [94]. Adaptive cooling schedules incorporate system information (e.g.,
amount of decrease in function value between successive iterates) into the choice
of T™®. In nonmonotonic cooling, values of T™®) are generated and accepted in a
process similar to candidate point generation and acceptance; thus, the sequence
of temperatures is not guaranteed to be decreasing as k increases.

SA methods converge to a global minimizer with probability one (i.e., almost
surely) [74, 114]. However, convergence results found in the literature often as-
sume extremely slow cooling schedules or place requirements on the move class
that are prohibitive for practical implementation. Nevertheless, SA methods have
proven successful in solving a wide range of large-scale optimization problems in
circuit design, combinatorics, data analysis, imaging, neural networks, biology,

physics, geophysics, finance, and military applications [59].
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Evolutionary Algorithms. A class of global methods with which simulated
annealing is sometimes associated is called evolutionary algorithms (EA). This
class also includes genetic algorithms, genetic programming, evolutionary pro-
gramming, and evolutionary strategies [9]. These methods start with an ensem-
ble, or population, of points and use mutation and selection procedures to move
closer to a global minimizer. In SA methods, the mutation procedure is the move
class and the selection procedure is the Metropolis criterion. The main difference
between EA and SA is that EA are applied to ensembles of points.

The connection between EA and HOPE is the use of ensembles of points that
are mutated (i.e., perturbed) and the use of a selection procedure for, among

other purposes, controlling the amount of computation performed.

Smoothing Methods. Smoothing methods are typically used for finding global
minimizers of continuously differentiable functions. In general, these methods
start by finding a global minimizer of a less complicated approximation of the
original function—Iless complicated in the sense of fewer local minimizers, larger
basins of attraction of minimizers, etc. The approximation function is then de-
formed into the original function in a series of steps, where a minimizer of the
deformed function at one step is found starting from the minimizer found at the
previous step. The goal is to choose an approximation function that is easy to
minimize yet captures the global, or macroscopic, features that most influence
the location of the global minimizer of the original function.

Many smoothing methods for global optimization were originally developed
for minimizing potential energy functions associated with atomic clusters or small
molecules [98]. However, recent work shows that such methods can be extended

to solve more general optimization problems [3, 4].
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Homotopy Optimization Methods. Global homotopy optimization meth-
ods have been developed that find all local minimizers (or stationary points) of a
function [29, 111]. However, due to the amount of computation required in these
methods, they are typically only applicable to problems with a small number of
local minimizers.

Homotopy optimization methods are often referred to as smoothing methods
as many of the deformation functions used in smoothing methods are homotopies.
The main difference between these two methods—one that is not readily found
in the literature—is that a homotopy function does not necessarily begin from
a less complicated approximation of the original function. In general, homotopy
functions, or homotopies, are continuous functions mapping a template function
to a target function, the original function to be minimized; and no assumption
is made about the template approximating the target. We make this distinction
because HOPE uses homotopies between template and target functions that are
both very complicated in some of the experiments presented in Chapters 4 and
7. Note, though, that the use of such homotopies should be used only when a
minimizer of the template function is known or trivial to compute. Otherwise

too much work may be required just to start the method.
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Chapter 3

HOPE

In this chapter, we introduce HOPE, a new homotopy method for solving uncon-
strained minimization problems. We start the discussion of HOPE with a review
of homotopy methods for solving systems of equations. We then discuss homotopy
methods for solving unconstrained optimization problems. The HOPE algorithm
is then presented, followed by an analysis of its performance using several special
cases.

Unless otherwise noted, all functions presented in this chapter are assumed to
be sufficiently smooth. Specifically, we assume that the first and second deriva-
tives of scalar functions and the first derivatives of vector functions exist and are

continuous.

3.1 Homotopy Methods for Solving Nonlinear
Equations

We briefly present here the framework of homotopy methods for solving systems
of nonlinear equations. Interested readers should consult [5] for more details on

the background, analysis, and implementation of such methods.
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Consider the following problem:

Find z € R", such that F'(z) = 0. (3.1)

where F' : R® — R”. A solution to this problem is assumed to exist and is

denoted by z*. In general, more than one solution may exist and F'! may be a

very complicated function.

The general framework of a homotopy method for finding a solution of (3.1)

can be described as follows:

(1)

Define a function, F° : R® — R", where a solution, denoted by z°, to the
problem
F(x) =0

exists and is either known or easy to compute.

Define a continuous homotopy function, h : R**1 — R" a function of the

original variables, x € R", plus a homotopy parameter, A € R, such that

Fz), ifA=0 and
hz,\) = (3.2)
Fl(z), ifAx=1.

It follows from the definitions of 2° and ! that
h(z°,0) = F°(2°) =0 and
h(z*,1) = F'(z*) = 0.
Examples of homotopy functions typically used in practice are the following:
Convex : h(z,\) = (1= X\)F%xz) + AF'(z)
Fixed point : h(z,\) = F'(z) — (1 — A\)F'*(a)
where a € R" is fixed, but arbitrary. Note that the fixed point homotopy

can also be viewed as a convex homotopy with FO(x) = F'(z) — F'(a).
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(iii) Attempt to trace an equilibrium curve u(7) = u(z(7), \(7)) € h~(0) from
the starting point u(0) = (z°,0) to the point (z*, 1). In other words, starting
at u(0), attempt to follow u(7) such that h(u(r)) = 0, as 7 varies until
A(T) = 1. In general, there is no restriction on how 7 is allowed to vary;
however, this may not be practical and some restrictions may be needed to
guarantee convergence of the method in a reasonable amount of time. The
choice of 7 = A is convenient, but different parameterizations may be more

suitable depending on the homotopy function used.

In summary, homotopy methods for solving (3.1) require definitions of the
functions F°(z) and h(z,\), determination of the point z°, and a method for
numerically tracing the curve w(7). Publicly available implementations of ho-
motopy methods for solving (3.1) include LOCA [95], HOMPACK [118, 120],
AUTO [32, 33, 34], and CONTENT/MATCONT [28, 68]. These implementa-
tions include several standard curve tracing algorithms and homotopy functions.

A continuation method is an instance of a homotopy method in which the
parameter of the equilibrium curve (7) increases monotonically as the equilibrium
curve is traced. An example of a continuation method (CONT), adapted from
5], is presented in Figure 3.1. CONT attempts to trace an equilibrium curve of h,
parameterized using 7 = A, from (z°, 0) to (2!, 1), where z! is an approximation of
r*. CONT generates a sequence of points, (x®), \®)) satisfying h(z®, \#)) = 0.
In practice only an estimate of a point on the equilibrium curve is found, i.e.,
|R(z® A®)|| < € for some acceptable tolerance ¢ > 0, and this is typically
accomplished using an iterative method starting at the point (z*=1 \(#)),

The goal in using CONT is to choose A\ to be small enough to guarantee

the convergence of an iterative process solving h(z,A) = 0 in Step 5 but large
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1. Input: z(® = 2° where F(2°) = 0; m > 1
Initialize: A = 0; AN =1/m
fork=1,....m
A& = \E=1) AN
solve h(z, \®)) = 0, starting with z(*~1 obtaining x*)

end

NS s e

Output: z! = z(™

Figure 3.1: CONT Algorithm.

enough to converge to (x!,1) in a reasonable amount of time (and using a rea-
sonable amount of computation). The use of a fixed value for A\ in CONT is for
illustrative purposes only and A\ is often determined adaptively in continuation
methods used in practice.

One potential drawback in using CONT is that the equilibrium curve being
traced may contain turning points with respect to A, points where the curve is not
defined locally for A + A\ for any positive AX. Since )\ increases monotonically,
the path cannot be traced past the turning point when A is used as the parameter
of the equilibrium curve, and CONT may fail to converge to a solution. A re-
parameterization of the equilibrium curve by its arc length is often used in practice

to avoid this problem with turning points [5].
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3.2 Homotopy Optimization Methods

We now describe homotopy methods for solving unconstrained optimization prob-
lems. We also discuss the connection of these methods to the homotopy methods
presented in the previous section.

Given a function, f' : R® — R, we are interested in solving the following
unconstrained minimization problem:

min f1(a). (3.3)

We assume that a solution to this problem exists and denote it x*. In general,
more than one solution may exist and f! can be a very complicated function.
By defining a homotopy function between another function, F° : R* — R,
and Vf!, we could consider solving this problem using the homotopy methods
discussed in the previous section. By doing so, we would find a point, x*!, such
that Vf1(z!) = 0. However, z!' is not guaranteed to be a local minimizer of f?,
since Vf1(z') = 0 when ! is a local maximizer or saddle point as well. In order

is a local minimizer of f!, the Hessian matrix, VZf1(z!),

to guarantee that z
must be positive definite. Depending on the choice of the homotopy function
and the method used for solving the system of equations, though, the solution
produced by these homotopy methods may not satisfy this condition. However,
this approach has proven successful for convex functions [119].

In this thesis, we take a slightly different approach in developing a homotopy

optimization method, where the general framework is as follows:

(i) Define a function, f° : R"™ — R, for which a local minimizer, denoted by

20, exists and is either known or trivial to compute.
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(ii) Define a continuous homotopy function, i : R — R, a function of the

original variables, z € R", plus a homotopy parameter, A € R, such that

fox), ifA=0 and
hiz, ) = (3.4)
fiz), iEA=1.

0

Since 20 is a minimizer of f° and z* is a minimizer of f!, it follows that

V. h(2°,0) = VfO(2") =0 and

V.h(z*,1) =V i (x*) =0,

where V,h(z, \) denotes the partial derivatives of h(z, ) with respect to

x.

(iii) Starting at (z°,0), generate a sequence of points, {(x(k), /\(k))};nzo, where
each 7 is a local minimizer of h(x, A\*)) with respect to =, and A¥) € [0, 1]

with A© =0 and \(™ = 1.

Each point in the sequence produced in step (iii) is a local minimizer of
h. Specifically, the last point in the sequence, (z',1) = (2™, A(™) is a local
minimizer of h(z,1). Since h(xz!,1) = f(z'), then z! is a local minimizer of f!.
Steps (i) and (ii) are analogous to the first two steps in the framework for
homotopy methods for solving systems of equations. The difference is in step (iii)
of the two frameworks, where the tracing of an equilibrium curve is replaced by
the generation of a sequence of minimizers of h with respect to x. The connection
between the two frameworks is that all of the points generated in step (iii) above
are on some equilibrium curve of V h, since they are all minimizers of h.

An example of such a homotopy optimization method (HOM) is presented in

Figure 3.2. HOM produces a sequence of points starting at (2°,0) and ending at
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1. TInput: (9 = 20, a local minimizer of f%; m > 1
Initialize: A =0; AN =1/m
fork=1,...,m
AF) = \E=1) 1 AN
minimize h(z, \®)) starting with 2*=Y obtaining 2*)

end

NS ™ e

Output: z' = z(™

Figure 3.2: HOM Algorithm.

(x',1), where 2! is an approximation of z*. Note that HOM is almost identical to
CONT, with the only difference between the two algorithms being Step 5, where
the iterative solution of a system of equations—which is V h(x,\) = 0 for the
minimization problem—is replaced by a minimization of h. Furthermore, HOM
and CONT may produce the same points for some problems. The difference is
that HOM is allowed to jump from one equilibrium curve to another in subsequent
steps in A\. For example, in problems where the equilibrium curves contain turning
points, HOM will jump to another equilibrium curve past that turning point (if
such a curve exists).

In the end, though, HOM is only guaranteed to find a local minimizer of f!.
Local minimizers may be of interest for some problems or in some application
areas; however, we are interested in finding the global minimizer of f!, a solution

of the problem in (3.3).
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3.3 HOPE Algorithm

HOPE is an extension of HOM that increases the likelihood of finding the global
minimizer of f'. Whereas HOM generates a sequence of points converging to a
single local minimizer of f!, HOPE generates a sequence of ensembles of points
where each ensemble member is a local minimizer of the homotopy function. This
sequence converges to an ensemble of local minimizers of the homotopy function
at A = 1.

In Step 5 of the HOM algorithm, the next local minimizer in the sequence, z*),
is found using a local minimization method starting at the previous point in the

(k=1) " In the HOPE algorithm, the next ensemble of local minimizers

sequence, x
is found using local minimization starting at the points in the previous ensemble
in the sequence along with one or more perturbed versions of each of those points.
A perturbed version of x is denoted by &(z), where £ : R" — R is a function
that stochastically perturbs one or more of the variables in x. In the end, HOPE
produces an ensemble of local minimizers of f!, from which we choose the one
with the lowest function value as the best approximation to the true solution.

Due to the exponential growth in the number of points produced at each of
the main iterations in HOPE, constraints on computational resources may require
limiting the size of the ensemble, thus limiting the number of paths of local mini-
mizers to be followed in the next and subsequent steps in the algorithm. Pruning
duplicate points from ensembles may also help in efficiently using computational
resources.

Before presenting the details of the HOPE algorithm, we first introduce the

following notation. Values input to or initialized in HOPE are indexed using 0.

We note that the size of the ensemble may be different at the start and end of an
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iteration. Let ¢*~1) be the number of points in the ensemble at the beginning of
iteration k, with ¢® = 1 (i.e., a single starting point is used). The j* point in
the ensemble at the start of iteration & is denoted by xg-k_l). We use a secondary

index to keep track of perturbed versions of points in the ensemble. Thus, at the

(k1)

k)
’ j

o is the point found by minimization starting at =

end of iteration k, :L‘§ , and

xgkz) is the point found by minimization starting at the i*" perturbed version of

(k=1)
H

The HOPE algorithm is presented in Figure 3.3, where the overall structure
of HOM and CONT is retained. The differences between HOPE and the previous
two algorithms occur in Step 5—14, where the step of minimizing (HOM) or solving
a system of equations (CONT) is replaced by the local minimization of ensemble
points and their perturbed versions and the determination of the ensemble to be
used in the next iteration. In terms of computational costs, HOPE requires more
work than HOM at each of the m main iterations, making several calls to a local
minimization method and choosing which of the local minimizers to retain for
use in the next iteration.

HOPE requires two more input values than HOM: ¢,,,4., the maximum number
of points in an ensemble, and ¢, the number of perturbed versions of each point
in the ensemble to generate. With no limit on the size of the ensemble and no
pruning of duplicate points, the number of points in the ensemble at the end of
iteration k is (¢+1)*. With such ensemble size constraints, this number of points
becomes min{c* 1 (¢ 4 1), ez }. And with pruning for uniqueness, there may
be even fewer points in the ensemble.

In Steps 13-14 of HOPE, the ensemble of local minimizers to be used in the

next iteration is determined. If the number of distinct local minimizers found at
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10.
11.
12.
15.

14.

15.
16.

Input: :1;50) = 29, a local minimizer of f°; m > 1; ¢jpae > 1; ¢ >0

Initialize: A = 0; AN = 1/m; ¢© =1
fork=1,...,m
AR = \=1) 1 AN

for j=1,...,c% b

minimize h(z, \®)), starting at xg-k_l), obtaining :vgkg
if c>0
for:=1,...,¢
minimize h(z, \¥)), starting at §(m§-k_1)),
obtaining xgkz)
end
end
end
c® = min{c®* V(¢ + 1), ¢raz }
x&k), . ,a:fjf,% = the c¢*) “best” (unique) local minimizers
among xg?,j =1,..., ¥V i=0,...,¢
end

Output: z! = the point with lowest function value

among :cg-k),j =1 ctm

g e ey

Figure 3.3: HOPE Algorithm.

the current iteration is less than the maximum ensemble size, then all are used in

the next iteration; otherwise we must choose the “best” subset. What constitutes
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the best subset may differ with the specific problem or application area to which
HOPE is applied and may depend on the iteration number (k), the values of the
algorithm parameters (m, ¢4z, and ¢), or the choice of local minimization rou-
tine (along with its parameterization). An obvious measure of what constitutes
the best conformations—the one used in the numerical experiments presented in
Chapters 4 and 7—is homotopy function value: conformations with the lowest
function values are considered the best. However, there may be other suitable
(or perhaps even better) measures depending on the choices for f° and h; for
example, when the minimizers of f° and f! are related geometrically or where
the homotopy function has been designed to deform f° into f! in a particular
manner.

Note that different parameter choices for m and ¢ reduce HOPE to HOM and
to the local minimization method used. Table 3.1 shows the choices for these
parameters that lead to the various instances of HOPE. We thus view HOPE as
a method that extends a local method for solving global optimization problems.
Results of numerical experiments suggesting that such an extension increase the
likelihood of finding the global minimizer of f! are presented in Chapter 4. First,
though, we gain some insight into the behavior of HOPE through analysis of

some special cases.

3.4 Algorithm Analysis

We begin the analysis by showing that with proper choices for the homotopy
function, perturbation function, and algorithm parameters, HOPE is equivalent
to other methods for which convergence results exist. We then demonstrate the

performance of HOPE for a special case, and then generalize the results.
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Method m

o

Local Method 1 0

HOM > 1 0

HOPE >1]>1

Table 3.1: Parameter choices for m and ¢ reducing HOPE to a local minimization
method and the HOM algorithm.

3.4.1 Asymptotic Analysis

In this section we present several theoretical results regarding the performance
of HOM and HOPE. Most of these results are derived by showing that under
certain conditions HOM and HOPE are equivalent to other methods for solving
optimization methods. Convergence results for the equivalent methods, then,

hold for HOM and HOPE under those conditions.

HOM using Probability-One Homotopy Functions. The first result in-
volves HOM applied to a convex function and follows from the analysis of prob-
ability one homotopy methods [117]. In that work, for a convex target function,
f':R® — R and f' € C3, it was shown that an equilibrium curve of V,h = 0,

with
B, A) = (1— )\)%(x — (@ — 2 + A () (3.5)

exists, contains both 2° and x*, has finite length, and contains only minimizers of
h for almost every point 2°. A consequence of this is that a local minimizer of h
exists at all A € [0,1]. Since f! is convex, it has a single unique global minimizer
(following from the second-order optimality sufficient conditions). Thus, HOM

applied to solving this problem using a globally convergent local minimization
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method (e.g., Newton’s method with a trust region) will produce a sequence of
minimizers of h, converging to (z*,1) starting from almost any point z°. Note
that these results hold for any m > 1.

This result states that for well-behaving homotopy maps mapping a convex
quadratic function to a general convex function f*, HOM converges to the global

minimizer of f! with probability one.

HOPE as a Stochastic Search Method. We next turn to HOPE and show
that under mild assumptions, HOPE is an Improving Hit-and-Run (IHR) method
(Section 2.2) when using the Hit-and-Run algorithm to generate perturbed ver-
sions of ensemble points. The benefit of this analysis is that we can show that
for fixed m and ¢4, HOPE will converge to a global minimizer of f!. IHR
converges with probability one as the number of points generated by HR goes to
oo; moreover, for one class of functions (Lipshitz, elliptical), the number of points
required to guarantee convergence is linear in the dimension of the problem [128].

We now present the assumptions on HOPE required for HOPE to be an IHR
method. First, the perturbation function used in HOPE must be HR, as in THR.
Second, to match THR exactly, the number of iterations of the local minimization
method used in HOPE must be set to 0. (We note that since the distribution of
points generated by HR is independent of the the distribution of local minimizers
found in HOPE, this assumption could be dropped, but we include it to match
HOPE to THR exactly.) Lastly, we assume that ¢, = 1, m = 1 and that
homotopy function value is used as the measure to constitute the best ensemble
points in HOPE.

Under these conditions, HOPE is an IHR method. Thus, following the analysis

of THR in [128], we conclude that HOPE converges with probability one as ¢ — oo.
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This result is clearly independent of ¢,,4,; only one point needs to be saved in the
ensemble at a time, since there is no limit on the number of perturbed versions
that can be generated. Furthermore, for m > 1, we need only consider the
behavior of HOPE in the last step in A\. At the end of step m — 1, we have an
ensemble containing ¢~ points. If we take any one of these points to be z°, we
can apply the previous argument and thus, for m > 1, the results hold as well.
We conclude this analysis by noting that using similar assumptions, HOPE
can be shown to be a Pure Random Search (PRS) method as well. The conver-
gence of HOPE under those conditions can be shown, but the complexity results of
PRS show that the number of points required for this convergence is exponential
in the dimension of the problem. However, these results verify that convergence

can be guaranteed for HOPE using perturbation functions other than HR.

HOPE as a Simulated Annealing Method. We next discuss the conditions
for which HOPE is a simulated annealing (SA) method. Theoretical convergence
proofs exist for many variants of SA methods, and results of numerical experi-
ments show that simulated annealing is an effective method for solving problems
for which several standard minimization methods fail [74].

Recall that in an SA method, a move class, acceptance criteria, and cooling
schedule must be defined. The convergence of SA methods make assumptions
on the behavior and properties of these components, and we will need to make
equivalent assumptions about the corresponding components in HOPE.

It is possible to combine all three components into the generation of perturbed

32



versions of ensemble points by defining the perturbation function as

dx  with probability Pp(x,dx)
Eron(a) = (3.6)

x  with probability 1 — Pp\ (=, dx)

where dz is a point sampled from a distribution in which every point in the domain
has a positive probability of being sampled; Pr is the Metropolis acceptance
criterion often used in SA methods; and 7'(A) is a continuous function of A defining
the temperature such that 7(0) = 7° and T(1) = 0, e.g., T(\) = T°(1 — \).

The main difference between HOPE and SA methods is the function being
minimized. Moreover, in SA methods, the acceptance criteria depend on the tem-
perature and the values of the function at the current iterate and the candidate
point generated using the move class. If we use the identity homotopy function,
h(z,\) = f'(z), in HOPE then the function being minimized as each step in A
is f!, as in SA methods.

Combining the perturbation function, {r(\), with the identity homotopy func-
tion, HOPE becomes an SA method. Thus, convergence results that apply to SA
methods can be applied to HOPE as well. In [26] it was shown that by placing
an upper bound on the rate of temperature decrease and allowing generation of
points in the entire domain (or feasible region), an SA method converges to a
global minimizer almost surely as k& — oo. Here k is the number of iterations

(steps in T") taken.

Analysis of the Parameter m. We conclude this section with an analysis of
the behavior of HOPE as a function of m. Specifically, we show that when f! is
well-behaved, then HOPE converges, and we can provide a bound on the number

of steps in A required before HOPE converges with some given probability. We
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begin the discussion with a review of the Implicit Function Theorem, which we

will use in the analysis.

Theorem 3 (Implicit Function Theorem (IFT)[129]) Leth : R"" — R be
twice continuously differentiable, (&, \) € V,h=1(0), and V2h(z, ):) be invertible.
Then in a neighborhood of (z, 5\) all points (x, \) that satisfy V h(x,\) =0 are

on a single continuously differentiable path through (&, 5\)

Next we extend the definition of a basin of attraction (Definition 1) to homo-

topy functions.

Definition 2 (Basin of attraction of a local minimizer of a homotopy

function) The basin of attraction of x¥, a local minimizer of h(x, \) with respect
to x, is denoted by RT (\) and is the largest set of points such that the infinitely
small step steepest descent method started at any point x € RY (N\) will converge

to xt.

The basin of attraction of the global minimizer of h(z,1) = f(z) will be
denoted by R*(\). The final definition we need is that of isolated stationary

points.

Definition 3 (Isolated stationary point of a homotopy function) A sta-
tionary point of h(x, ) with respect to x, denoted by x*, is an isolated stationary

point if there is a neighborhood of x° containing no other stationary points.

Next we make some assumptions about the functions that we will be dealing
with. All functions are assumed to be defined on a bounded, compact domain

X C R
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(A1) f%=), f1(z) € C*(X,R). That is, these functions have continuous first and

second derivatives.
(A2) h(z,\) € C*(X x [0,1],R).
(A3) The global minimizer of f! is unique and is isolated.
(A4) &x generates points uniformly on X',

We will now define a region in X x [0, 1] that will play a key role in prov-
ing convergence of HOPE. It follows from (A2)-(A3) and Theorem 3 that in
some neighborhood of (z*,1), there exists a unique equilibrium curve that passes
through (z*,1) and contains only minimizers of h. Furthermore, since the global
minimizer of f! is unique, then there is some value, \,, such that for all A € [\, 1],
the basin R* around the equilibrium curve contains the global minimizers of h
and V (R* (\)) > 0, where V (-) denotes volume measures with respect to X'

In Figure 3.4, we show an example homotopy function in one dimension where
X = [x;,z,). The solid curves are equilibrium curves of V h and the dashed
curves are the boundaries of the basins of attraction of the minimizers of h. The
shaded region represents R*, the basin of attraction of the global minimizers of
h for all A € [\, 1], and the solid curve in that region is the curve of global
minimizers.

We now focus on the behavior of HOPE for A € [\, 1]. First we denote

Vi= min V(R"*(}\)) (3.7)

A <A<T

as the minimum volume of the basin of attraction of the global minimizer. Using
the perturbation function, £y, which samples uniformly from X, the probability

that a point will be sampled from R* (\) is the ratio of its volume to the volume
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Figure 3.4: Depiction of the point A, for a homotopy function in one dimension.
The solid lines represent the equilibrium curves of local minimizers of h and the
dashed lines represent the boundaries of the basins of attraction associated with
those curves. The shaded region is R* containing the global minimizers of h for

A€ A1

of X. Thus, we have
Pr[&x(xz) € R*(\) when A\ € [\, 1]] > V,/V(X). (3.8)

If we let ¢ = 1 and ¢;q, = 1, we can compute a lower bound on the probability
that HOPE converges as a function of the number of steps taken in A when
A > A.. The probability that a single perturbed version is not in R* (\) can be

bounded above:

Pr[&x(x) is outside R* (\) when A € [A,,1]] <1 - V,/V(X). (3.9)

Since only one perturbed version is generated at each step, we also have

All x(x) generated in k iterations of HOPE

_ k
are outside R* (A\) when A € [\, 1] < (I =Vi/V(X))" (3.10)

Thus, the probability that at least one perturbed version is in the basin of at-

traction of the global minimizer when £ iterations of HOPE are performed for
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A € [\, 1] is bounded below as follows:
Pr{3¢x(z) e R*(N)] > 1— (1 -V, V(&))" . (3.11)

It is clear, then, that HOPE will converge in the limit as & — oo. Moreover,
by deriving this bound, we have an upper bound on the amount of computation
required for HOPE to converge. The ability to derive such a bound for some prob-
lems may prove necessary, especially in the situation where computing resources

are limited.
The following theorem refines this bound. In this theorem, we use the con-

vention [[;_ ar =1if n <m.

Theorem 4 Consider the HOPE algorithm applied to a minimization problem
where the functions f°, f', and h satisfy (A1)-(A3). Assume that a function
satisfying (A4), Ex, is used to generate perturbed versions of ensemble points and
that ¢ = 1, ¢pae = 1, and m are the parameters used in HOPE. Let k be the

smallest integer so that

(1) X®) >\, and

(2) (z®,AP) e R* (AW) = (aFFD AFD) e R* (AFD) for X € (A, 1].
Then either

(i) 2=V ¢ R* ()\(k)) and HOPE converges to the global minimizer of f*, or

(1) the probability that HOPE converges to the global minimizer of f'(z), i.e.,
the probability that at least one point generated in HOPE for \ € [\, 1] is

mn R*, is given by

i{vflu_vs)} , (3.12)
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with
(3.13)

Proof. (i) Assume z*~) € R* (A\*)). Then by (2) above, all subsequent iterates
are in R*. Thus, HOPE converges to the global minimizer of f*.
(i7) Assume z*71) ¢ R* (A¥)). Now the probability that a perturbed version

of =1 is in R* ()\(k)) is given by
Pr[éx(z ) e R*(AW) ] = — 22 =V (3.14)

Thus, 1 — V} is the probability that x(z71) ¢ R* (A®).
At step r in A, k < r < m, the probability that £x(z"V) € R* (A)) and

none of the perturbed versions in steps k,...,r — 1 are in R* is given by

V0w (315)

Since these events are disjoint, we can sum these probabilities over the r =
k,...,m steps in A to get the probability that at least one of the perturbed
versions is in R*:

m r—1

Z{wHu—v;)} , (3.16)

r=k s=k

which is the result in (3.12). O
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3.4.2 Analysis of N-Modal Sine Functions

In this section we analyze the behavior of HOPE on a special class of functions.
These functions were designed specifically to highlight some of the properties of
HOPE.
Consider the following N-modal sine functions
fP(z) = —sin(x) + sin(Nz) (3.17)
fH(z) = sin(x) + sin(Nx) (3.18)
and the convex homotopy function
B, N) = (1= N f@) + Af(x) (3.19)

where fO f! : R — R and h : R x [0,1] — R. Note that the N-modal sine
functions are 27m-periodic; thus we confine our analysis to x € [0,27]. We also
limit our analysis to the case when N is even to further simplify the discussion.
(For odd N, the only difference is the presence of two global minimizers in each
period compared with just one for even N.) Figure 3.5 shows a plot of f? and f!
with V = 10.

The objective is to analyze the performance of HOPE used to minimize f!.

The N-modal sine functions have the following characteristics:

1. There are N local minimizers in one period.

2. A stationary point of h is either a maximizer or minimizer. There are no

saddle points.
3. All stationary points of h are isolated.

4. Since V), = N cos(Nz) + (2A — 1) cos(x), the equilibrium curves of V,h are

linear in A.
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Figure 3.5: N-modal sine functions (N = 10) for x € [0, 27].

5. The basins of attraction of all local minimizers are approximately the same

width, 27 /N, and are the open sets of points between local maximizers.

6. The distance between the unique global minimizers of f° and f! for even

N is exactly m, or half the period.

Figure 3.6 presents the equilibrium curves of VA for N = 10 with (a) showing
all curves and (b) showing only the curves of local minimizers. Note that the
equilibrium curves are not constant with respect to x, although they appear to
be constant in the figure. However, as N increases, the slope of these curves
becomes negligible (Az/AX — 0 as N — o0). We will model the behavior of
HOPE applied to this problem assuming the curves are constant.

We now analyze the behavior of HOPE in finding the global minimizer of f!,
starting at one of the local minimizers of f°. We assume that the infinitely small
step steepest descent method is used for local minimization of h. Furthermore,

we let ¢ = 1, ¢pae = 2™, and assume no pruning of duplicate points. Thus,
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Figure 3.6: Equilibrium curves of VA for the N-modal sine functions (N = 10).

each point in the ensemble will be perturbed once and no ensemble points will
be discarded.

HOPE is initialized with an ensemble consisting of a single point. Let S®) be
the set of points to be used as starting points for local minimization of h during

the k' iteration of HOPE. Then,

k) _ (k) (k)
0= ot (k—1) oS (k—1)
k—1 2k—1
_ (k=1) }2 U { (k=1) }
{et) el

where Sz(j‘) are the path following starting points and S are the random walk
starting points.

Since the curves of local minimizers of h are nearly constant with respect
to A for large N, we can assume that the points in Sg}) remain on the same
equilibrium curve throughout all of the iterations; they do not jump from one
curve to another.

The points in S%) are allowed to move from one basin of attraction to another
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depending on the probability distribution function of the perturbation used. The
name “random walk” reflects the analogy between them and particles in a random
walk [93].

The perturbations used in the analysis are as follows:
En(z) =2+ oz, (3.20)

where dx is a random variable chosen from a uniform distribution on the interval
[—37/N,3n/N]. The local minimizers of h are at the centers of the basins of
attraction and the width of each basin is approximately 27/N. Therefore, a
perturbed version of a local minimizer is equally likely to be a point in the same
or an adjacent basin of attraction of that minimizer.

Recall that there are N curves of local minimizers of h for A € [0,1] and
x € [0,27]. Thus, there are N basins of attraction as well. Since the local
minimizers are isolated, we can view the basins of attraction as states in a Markov
chain, where S; is the state that corresponds to the basin of attraction of the j
local minimizer of h with respect to x. The states are assumed to be ordered such
that Sy corresponds to the basin of attraction of z*, the global minimizer of f*.
We let S; be the state of 2°, the local minimizer of f° used as the starting point
in HOPE. Due to the periodicity of h, we simplify the discussion of movement
from S; to Sy and vice versa by denoting Sy = Sy.

Thus, we analyze HOPE as a one-type discrete-time branching random walk
(BRW) over N states [10, 51, 93]. At the k" time step, the parents are the points
in E*~1) and the offspring are the minimizers found using the perturbed versions
of those parents as starting points. Since the infinitely small step steepest descent
method is used for local minimization, offspring are either in the same state as

their parents or in one of the two adjacent states of their parents. Note that this
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BRW differs from the classical Galton-Watson process in that the parents never
die off (since we have assumed ¢4, = 2™).

The goal is to determine the minimum number of steps to be taken in A such
that an offspring will be in Sy given that 2° € S;. This would mean that a point
would be in the basin of attraction of the global minimizer of f!, R* ()).

Let W, denote the number of ensemble points in S; at time k (i.e. A = k/m).

Thus, our task is to determine k,,, the smallest value of k£ such that

1 ifj=i

W,o= and (3.21)
0 ifj+#i

E[Wy, | >1 (3.22)

where E [y] is the expected value of y. To compute k,,, we first note that
1 . )
E[Wyper] =B [ W] + 3B [ Wi+ Wi + Wy ] (3.23)

where W7, W7, and W}, are the number of offspring of the parents in S; that
are in states S;_1, S;, and S;;1 at time k. Once an offspring enters Sy, HOPE is
guaranteed to obtain the global minimizer. The term E [WNV,J corresponds to
the points in Sg}), and the other terms to those in SQZJ), respectively. Using this
relation, we derive the following set of difference equations for determining the

expected number of points in S; at time k + 1 in the BRW:

tbve  + Ebie A+ gbay,  ifj=1
bj,k—I-I - %bjfl’k + %bj,k —+ %b]qu’k , lfj = 2, C ,N —1 (324>
sbvoie + 2bvg + ghik s if j =N

where b;, = 27" E [Wj,k ]. Thus, we choose as ky, the smallest k such that

byi = el (2P) ey > 1 (3.25)
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where

4 1 1
1 4 1
[ (3.26)
_6 . . . .
1 4 1
1 1 4

and e; € R™ is a vector of zeros with a 1 in the j” position. Note that e;
represents the starting probability vector for the ensemble of random walkers,
since we have assumed that z° € S;. Thus, the term e} (2P)k ey represents the
expected number of points in the basin of attraction of the global minimizer of
f1 after k iterations of HOPE started at the local minimizer in S;.

We note that the matrix P is a circulant matrix; thus we can derive a formula
for e (2P)" e. We start our discussion of this alternate formulation by present-
ing some properties associated with circulant matrices [25]. The eigenvalues v,

of an N x N circulant matrix

Co cit ... CN-—1
. CN—-1 Cop ... CN—2
C = circ(cg, 1, ... eN—1) = (3.27)
C1 Cy ... Co
are given by
N-1
i2mml/N
U =Y _ eIV (3.28)
1=0

and its eigenvectors v,, are the columns of the N x N discrete Fourier transform
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(DFT) matrix

1 1 1 1
1 w w? w1
1
O (3.29)
1 WwN-1 L2(v—1) W N-D(V-1)
with w = e?™/N_ Thus, the eigenvalue decomposition for a circulant matrix is
given by
C = FyUFy . (3.30)
with
Yo
(0
b= " . (3.31)
YN-1

Now we have

el (ZP)k en = 2kaN
N-1
= 2" Z wllcF(7+1),iFN7(l+1)
1=0
ok N-1

= 7 2 uh () ey
=0

2k N-1

_ Z Q)le:ei%r(i—N)l/N )
N
=0

“Worst-case” performance of HOPE applied to this problem can be estimated

by substituting i = N/2 in the expression for Pi’fN. This corresponds to starting
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HOPE from the global minimizer of f° since the global minimizers of f° and f!
are a distance of m away from each other. This also corresponds to starting in
the state furthest from Sy. Doing so, we get

ok N=1

QkP]I\cf/zN _“ wlkez'ZTr(N/Z—N)l/N
1=0

— @) % (1) (2 + cos(2mj/N))* .

Thus, we have derived a simple expression for the expected number of ensem-
ble points in Sy after k iterations of HOPE started at a point in Sy/s:
" 2\ 1 =
exs 0P e =2 Pliay = (5] S0 0 eosani/ M)
Even for very large N, then, we can easily compute an expected number of
iterations that HOPE would need to converge to the global optimizer of this
N-modal sine function. We will see next that simulations of HOPE match this

predicted behavior quite well.

Simulating HOPE. To conclude our analysis of HOPE applied to the N-
modal sine functions, we present the results of simulations of HOPE solving these
problems. We compare the number of steps taken in the simulation of HOPE to
the predicted number of steps required. In the simulations of HOPE, we keep
track of the number of particles in the N different states (basins of attraction)
during time (iteration) & and do not actually run the HOPE algorithm to solve

the problem. In this way, we can work with much larger ensembles efficiently.
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We performed two sets of simulations of HOPE for N = 5,6,...,30. In the
first set of simulations, we start in state i = N/2. As mentioned above, this
corresponds to simulating the worst-case performance of HOPE. In the second
set of simulations, we start in state i = N/4. This state is at a distance from Sy
equal to the average distance to S; from all other states. Thus, we attempted to
simulate the worst case and average case behaviors of HOPE.

For each IV, 1000 simulations were run starting at both i = N/2 and i = N/4.
Figure 3.7 presents the results of the simulations. The lines labelled “k,,(i =
N/2)" and “k,,(i = N/4)” contain the predicted values of k,, for i = N/2 and
i = N/4, respectively. The line labelled “Sim(max)” is the maximum number
of steps taken in the simulation before at least one point was in Sy, and the
line labelled “Sim(mean)” is the corresponding average number of steps taken.
We conclude that the simulations follow closely the behavior predicted by the
analysis, off roughly by a constant factor.

To conclude this section, we note that the predicted and simulated behaviors
of HOPE presented above match well. For the N-modal sine function, we were
able to compute estimates for the number of steps that need to be taken before
an ensemble point was in the basin of attraction of the global minimizer. We will
see in the next section that in general more assumptions about general homotopy

functions may lead to comparable analysis.

3.4.3 Analysis of Problems in One Dimension

We now extend the analysis of HOPE to more general f°, f!, and h with z € R
and A € [0, 1]. We also allow more general perturbation functions to be used. We

begin the discussion by assuming the following properties hold for the homotopy
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Figure 3.7: Expected number of steps in A before HOPE generates a point in the
basin of attraction of the global minimizer of f!.

function, h(x, \):

(B1) h is periodic for fixed A in z with period z, — z;.
(B2) All stationary points of h are isolated.

(B3) V2h(z, ) is invertible for all (z,\) € R x [0, 1].

It follows from (B2) and (B3) that there is a constant number of local mini-
mizers, of h for A € [0,1]. Let n be the number of local minimizers of h.

Figure 3.8 shows the plot of the equilibrium curves of VA for an example ho-
motopy function satisfying (B1)—(B3). The solid curves contain local minimizers
of h, and the dashed lines represent the boundaries of the basins of attraction of

each of the local minimizer curves, as defined in Definition 2.
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Figure 3.8: Equilibrium curves of V,h and the basins of attraction of a periodic
homotopy function h (with period x, —x;) whose stationary points with respect to
x are isolated. The solid lines represent the equilibrium curves of local minimizers
of h and the dashed lines represent the boundaries of the basins of attraction
associated with those curves.

Since there are n curves of local minimizers of h for A € [0, 1], there are n
distinct basins of attraction for A € [0, 1]. Moreover, since the local minimizers
are assumed to be isolated, |R§ (A) | >0for A€ 0,1], j =1,...,n, where R; (\)
is the basin of attraction of the j** local minimizer, z!.

We again view the basins of attraction as states in a Markov chain, where S;
is the state that corresponds to the basin of attraction of the j™* local minimizer
of h. The states are assumed to be ordered such that S,, corresponds to the basin
of attraction of z*, the global minimizer of f!. Figure 3.9 shows the enumeration
of the states of the homotopy function from Figure 3.8.

We make the same assumptions about the parameterization of HOPE as were
made in the previous section. The difference in the more general analysis is that
the parent points in the BRW, i.e., the points in Sg}), are not guaranteed to
remain in the same state for all values of AX. However, for sufficiently large

values of m we can assume that this is the case. See [5] for a detailed treatment
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Figure 3.9: The states of the Markov chain associated with the basins of attraction
of a periodic homotopy function h (with period x, — x;) whose stationary points
with respect to x are isolated. States ¢ and n correspond to the basins of attraction
of local minimizers h containing the points z° and x'x, respectively.

of the requirements on the step size in \ that will guarantee that such a condition
is satisfied. Let M}, be the smallest value of m for which this condition is satisfied
for a homotopy function, h, satisfying (B1)—(B2).

The analysis of the points in S™ follows closely the one presented in the
previous section. The difference is that a generic homotopy function is now used,
which leads to a dependency on A of the probabilities of transition from one state
(basin of attraction) to another. For A € [0, 1], we denote P(\) as the dynamic
transition matrix of the BRW over the n states, Si,...,S5,. The entries of this

matrix are determined as follows:
P j(A) =Pr[&\(x) € S5 a € 8] (3.32)

In the previous section, the number of points in Sy after k steps was deter-
mined by looking at an entry in the £ power of the matrix P. However, in that
analysis, the transition matrix was constant for all A € [0, 1]. To determine the

number of steps to take in \, we can replace the powers of P with the product
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of P()) for all values of A used in HOPE. Thus, assuming that all points in Sg;)
remain in the same state in the next iteration of HOPE, the goal is to determine

the smallest m such that

el <2m ﬁ P(AQ) en = el (2’”P(>\1)P()\2) . P()\m))eN >1,  (3.33)

where A\, = k/m. This can be computed for each instance of h. However, because
of the dynamic nature of P(\) no general formula for computing such an m exists.
The sets of matrices {P()\)},—, will in general be different for different values of
m. Nevertheless, simulations similar to those for the N-modal sine functions in
the previous section can be performed for each instance of h to be used in HOPE
in order to compute a value for m. Note that the factor of 2 comes from ¢ =1,
since at each iteration in HOPE, there are (¢ 4 1) times as many points in the
ensemble as there were in the previous iteration. Thus, the factor of 2 in (3.33)
should be replaced by (¢ + 1) when ¢ # 1.

We note that the value of m chosen to satisfy (3.33) must be greater than
M, or there will be no guarantee that the points in Sz()’j‘) will behave according
to this analysis above. However, as we show in the next chapter, in practice
HOPE converges for relatively small values of m compared to those predicted
by the analysis presented here. Therefore, we recommend such analysis only for
determining loose upper bounds for m.

In this section, we have presented several frameworks for which HOPE can be
analyzed. For this analysis to be useful for specific problems, information about
the properties of the homotopy function must either be assumed or verified. We
turn to numerical experiments involving HOM and HOPE in the next chapter.
We will see that the performance of HOPE far exceeds that predicted by the

analysis from this chapter.
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Chapter 4

Numerical Experiments: Unconstrained Minimization

We apply HOPE and HOM to several standard test problems found in the uncon-
strained optimization literature. The purpose of these experiments is to highlight
some of the advantages of using HOPE and HOM over local methods, and to show
that HOPE is an effective method for solving general unconstrained minimization
problems.

The discussion begins with information about the the methods being tested.
Details of the functions that will be minimized will then be presented. Descrip-

tions of the experiments and a discussion of the results are then presented.

4.1 Numerical Methods

Local minimization in HOPE and HOM was performed by a quasi-Newton method
that uses a cubic line search and the BFGS update formula, which we de-
note QNewton-BFGS. In Matlab, QNewton-BFGS is implemented in the routine
fminusub and is accessed from the unconstrained minimization driver, fminunc.
Note that QNewton-BFGS requires only first derivative information.

Experiments using QNewton-BFGS by itself will be performed to provide a

benchmark to which we will compare the results using HOPE and HOM. Thus, we

52



describe here the differences in the use of QNewton-BFGS on its own and in HOPE
and HOM. QNewton-BFGS terminates when the change in function values between
iterates drops below TolFun, the maximum change in any of the variables in x
between iterates drops below TolX, the number of iterates reaches MaxIter, or
the number of function evaluations reaches MaxFunEval. The default values used
in the experiments in this chapter are TolFun = 1075 TolX = 10!, MaxIter =
400, and MaxFunEval = 800. When QNewton-BFGS is used for minimization in
HOPE and HOM, these defaults are used, with the exception of MaxIter. Since
HOM makes m calls and HOPE makes at most m X ¢4, calls to QNewton-BFGS
in each run of an experiment, MaxIter will be significantly lower than the default
value shown above.

Two types of perturbations were used in the experiments testing HOPE. The
first, denoted by &, uses the Hit-and-Run algorithm (Section 2.2) with a uniform
distribution of perturbation lengths between 0 and a fixed maximum perturbation
length piq.. The other, denoted by &, is a variant of Hit-and-Run where the
maximum perturbation length is a percentage of the ||x||2, where x is the point
being perturbed. The percentage is fixed throughout each run of an experiment
and is denoted by praz-

All of the experiments were run under Linux on a 2.5 GHz Intel Pentium 4
processor using Matlab 6.5 and the Optimization Toolbox 2.2 from Mathworks,

Inc.

4.2 Test Problems

The problems used in testing HOPE and HOM include the N-modal sine func-

tions designed for the analysis of HOPE, several examples from a set of test
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problems often used in testing new minimization methods, and a problem that
was designed to pose difficulties for global optimization methods that rely heavily
on local methods.

All functions that are minimized in the experiments are denoted by f!(x) to
emphasize their role as target functions in HOPE and HOM. Each function is
given a label to distinguish it from the others, and all discussions will refer to

functions and associated experiments by these labels.

4.2.1 N-Modal Sine Function (Nmod)

The N-modal sine function introduced in (3.18) will be used in the experiments

presented in this chapter:
fH(x) = sin(x) + sin(Nz) ,

where f!: R — R and N € Z. The label for this function is Nmod.

4.2.2 Moré, Garbow, and Hillstrom Test Functions

The problems in this section are a subset of the test functions in [78]. Using the
starting points reported in that paper, QNewton-BFGS converged to the correct
solution for all but 5 of the 35 test problems. Those 5 problems are presented
below and were used in testing HOPE and HOM.

All of the functions in this set are the sums of squares of m functions of n
variables:

fla)y =) lg()]* . (4.1)

=1
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The dimensions of the problems in terms of m and n and a description of the
functions g; are given in the following sections. The starting points and global
minimizers as reported in [78] are also presented for each problem.

The label for each problem is shown in the title of each problem section. A

source reference for each problem is also provided.

Freudenstein and Roth Function (Freu) [43]

We spend some time discussing the background of this function, as it was designed
to test a homotopy method called “Parameter-Perturbation Procedure” [43]. This
procedure is a homotopy method for finding the roots of a system of equations by
deforming the parameters of a derived set of equations. However, the authors did
not refer to their procedure as a homotopy method and did not provide details of
how to deform the parameters systematically. It is interesting to note that in the
original description of the Parameter-Perturbation Procedure the parameters of
the problem (polynomial coefficients) were deformed at different rates. We follow
this same idea in the homotopy functions used for solving the protein structure
prediction problems in Chapters 6-7.
Size of problem: n =2, m = 2.

Functions used in f*(z):

g1(z) = =13+ 21 + ((5 — 29)12 — 2)2° , and

Go(x) = =29 + 21 + (1 + 22) 39 — 14)27

Starting point: xo = (0.5, —2)T.

Global minimum: f(z*) =0 at z* = (5,4)T.

95



Jennrich and Sampson Function (Jenn) [61]
Size of problem: n =2, m = 10.
Functions used in f'(z):
gi(z) = 24+ 20 — (e 4 €'2) |

Starting point: xo = (0.3,0.4)T.

Global minimum: f(z*) ~ 124.3622 at x* ~ (0.2578,0.2578)7.

Meyer Function (Mey) [76]
Size of problem: n =3, m = 16.
Functions used in f'(x):

r2

gi(w) = el T5) g

Function parameters: t; = 45 + 5i and

1 Yi i Yi
1 34780 9 8261
2 28610 10 7030
3 23650 11 6005
4 19630 12 5147
5 16370 13 4427
6 13720 14 3820
7 11540 15 3307
8 9744 16 2872

Starting point: xo = (0.02,4000,250)7.
Global minimum: f1(z*) ~ 87.9459 at x* ~ (0.0056,6181.3464, 345.2236)7 .
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Biggs EXP6 Function (Be6) [12]

Size of problem: n =6,m = 13.
Functions used in f'(z):

gi(z) = 236717 — w4 4 3l — ;.

Function parameters: t; = 0.14, y; = e~ — 5e 1% 4 3e=4,
Starting point: zo = (1,2,1,1,1,1)T.

Global minimum: f'(x*) =0 at 2* = (1,10,1,5,4,3).

Trigonometric Function (Trig) [108]

Size of problem: n = 10,m = 10.

Functions used in f'(x):
gi(z) =n— Zcos z;+i(l —cosz;) —sinz; .
j=1

Starting point: xo=1/n*(1,1,1,1,1,1,1,1,1,1)T.
Global minimum: f'(z*) = 0 at «* ~ (0.0430,0.0440,0.0451, 0.0463, 0.0477,
0.0494, 0.0512,0.1952, 0.1650, O.OGOI)T.

4.2.3 Pintér Test Function (Pint) [91]

In [91], Pintér advocates using “randomized test functions that will have a ran-
domly selected unique global solution” in testing global optimization methods.
He argues that this reduces the ability to tune a method’s performance to the
test problems. We follow this advice and test HOPE and HOM on the functions

described by him in that work. The general form of the test problem is

f(z)=s Z (z; — ) + mzm ay, sin®[f. P(z — 2%)] , (4.2)
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where z* is the unique global solution, s > 0 is a scaling factor, a > 0 are
amplitude scaling factors, fi are (integer) frequency multipliers, and Py(-) are
polynomial noise terms that vanish at the zero vector. Note that this defines a
class of functions where each instance is specified by the choice of z*. Thus, we
can create a set of random test functions by randomly choosing the elements of
x*. The label for these functions is Pint.

Values of the parameters and the functions in f(z) used in the experiments
are defined in Table 4.1. Note that the elements of the global solutions, z; (i =
1,...,n), for each problem instance were chosen from a uniform distribution on

[—5,5].

Parameter | Value

S 0.025n
Kmazx 2
ag 1
Tr 1

Pi(x — x*) Z(mZ —a)+ Yy (2 —2))?

1=1 1=

n

Py(x — z¥) Z(ml—xf)

=1

Table 4.1: Parameters and functions used to define the Pint functions.

As an illustration of these functions, two functions in one dimension are pre-
sented in Figure 4.1 with unique global minimizers at (a) z* = —0.1 and (b)
x* = 3.25. Also, surface and contour plots of a function in two dimension with
" = [-4.42,-1.47]T are shown in Figures 4.2 and 4.3. The functions have

the property that the region of attraction of the global minimizer is relatively
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large compared to the basins of other local minimizers. Also, far from the global
minimizers, high frequency oscillation terms create local minimizers with deep
narrow basins of attraction. Minimization methods that rely on local methods
for searching for a global minimizer will likely converge to a local minimizer un-
less the method starts at a good approximation of the solution. Thus, this class
of functions will be used to demonstrate the value of using HOPE and HOM over

a local method.

4 w 4

% 0 5 % 0 5
X X
(a) (b)
Figure 4.1: Plots of Pint functions in one dimension with (a) * = —0.1 and (b)
r* = 3.25.
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Figure 4.3: Contours of a Pint function z* = [—4.42, —1.47]7.
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4.3 Results

4.3.1 N-Modal Sine Function

Several experiments were performed on the Nmod functions using two different
homotopy functions. The purpose of the experiments was to illustrate the influ-
ence of the homotopy function on the performance of HOPE and HOM. The two

homotopies used have the same general (convex homotopy) form:
h(z,A) = (1= X)f(z) + Af'(z) (4.3)

but differ in the function f° used. One homotopy function uses the N-modal sine

function introduced in (3.17):
f(z) = —sin(x) + sin(Nx) .
The other homotopy function uses the quadratic function

() = (e — ) (1.4

where f%: R — R. Note that the quadratic f° differs from f° in (3.17) in two
important ways: it is not periodic and it is strictly convex.

Figure 4.4 shows plots of the two f° functions and f! with N = 10. Fig-
ure 4.5 shows the equilibrium curves of V,h (on the left) and the curves of local
minimizers of V,h (on the right) for the different homotopy functions used in
the experiments. Recall that the curves of local minimizers are a subset of the
equilibrium curves.

Two features of the quadratic f° make it useful for testing HOPE: the func-

tion is strictly convex and thus has a unique global minimizer, and determining
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(a) fO(x) = —sin(x) + sin(Nx)

Figure 4.4: Plots of f° and f! for the convex homotopies used in the N-modal
sine function experiments.

the global minimizer and derivatives of the function does not require any com-
putation. Specifically, * = 7 and Vf%(z) =z — 7.

The experiments consisted of 1000 runs of HOPE using the following param-
eters: ¢ =1, Cpae = 8, and m = kN/5,k = 1,...,5. QNewton-BFGS was used for
performing local minimization in HOPE and MaxIter = 10 for all values of m.

Figure 4.6 shows plots of the percentage of successful runs versus m, the
number of steps in A\, for N = 10, 20, 30, 40, 50, 60. The solid and dashed lines
in the figure are the results using the N-modal sine and quadratic f° functions,
respectively. For smaller values of N, there is little difference in the performance
of HOPE using the different homotopies. As N increases, there is a definite
advantage in using the quadratic over the N-modal sine function for f°.

These results suggest that the choice of homotopy affects the performance of
HOPE. In these experiments, the homotopy that led to better performance was
the one with the quadratic f°, which has little connection to the f! in terms
of location and number of local minimizers. For some problems, though, such a

generic homotopy may not always perform best. The goal, therefore, is to balance
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(a) h(x,0) = —sin(x) + sin(Nz)

on —— on —
< -
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(b) h(z,0) = 3(z — )

Figure 4.5: Equilibrium curves VA for the different homotopy functions used in
the N-modal sine function experiments. All equilibrium curves are shown on the
left, and only the curves of minimizers are shown on the right.

the amount of effort required in creating a customized homotopy function with

the increase in performance gained in using such a homotopy in HOPE.
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Figure 4.6: Results of 1000 runs of HOPE applied to the N-modal sine function
f! using convex homotopies with f°(z) = —sin(z) + sin(Nz) (solid lines) and

f2(z) = 3(z — m)? (dashed lines).
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4.3.2 Moré, Garbow, and Hillstrom Test Functions

In this section, we present the results of experiments using HOPE, HOM, and
QNewton-BFGS to minimize the Freu, Jenn, Mey, Be6, and Trig functions. The
results of the first set of experiments shows that HOPE outperforms both HOM
and QNewton-BFGS. In the second set of experiments, HOPE is used to minimize
the Freu function using combinations of different parameters. The results of
these experiments illustrate the interplay between the parameters used in HOPE
and their effect on performance.

The homotopy function used in HOPE and HOM was
h(z,A) = (1= X)f(z) + Af'(z) (4.5)

where the target function, f!, is the function being minimized, and the template

function is
fo(a) = 50 = a0 ( — 2% (1.6

This homotopy function is often associated with probability-one homotopy meth-
ods used to solve optimization problems [117, 119]. It is a generic homotopy,
however, and does not take advantage of any structure inherent in the target

functions, since 2° is chosen arbitrarily.

Experiment 1. Table 4.2 presents the results of minimizing these functions
using HOPE, HOM, and QNewton-BFGS. The default parameters were used for
QNewton-BFGS when run on its own. In HOPE and HOM, QNewton-BFGS was
used for local minimization with MaxIter = 20. The first two columns show
the function name and value of the global minimum, f!(z*). The third column

shows the function value at the point z! output by QNewton-BFGS; recall that
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for these problems QNewton-BFGS was not able to find a global minimizer. The
points produced by QNewton-BFGS for Be6 and Trig have function values close
to the global minimum. However, these are documented local minima [67].

For the experiments using HOM to minimize these functions, values of m =
1,...,100 were used. The goal in using a range of values of m was to demonstrate
the increase in success of using HOM over QNewton-BFGS and the extent that more
steps in A\ affects this increase. However, the results of these experiments show
only marginal improvement. Moreover, the small increase in performance came
at a disproportionately large cost in computation. Columns 4 and 5 in the table
show the lowest function value attained for one of the minimizers generated using
HOM and the value of m at which that value was attained (with “—" signifying
that no improvement was made in using HOM over QNewton-BFGS for any value
of m=1,...,100).

HOM correctly predicted only one global minimizer (Jenn) and only one other
local minimizer (Mey) with a significantly lower function value than the one found
using QNewton-BFGS. In the latter case, the improvement was dramatic, as mea-

sured by relative function value error:

|1 (=h) = ()]
[fr )l

For the Mey function, HOM produced a local minimizer many orders of magnitude

relerrp = (4.7)

better in relative function error than the one generated using QNewton-BFGS
(relerrp ~ 6.62x 107" for HOM versus relerrp ~ 5.73 x 107 for QNewton-BFGS).
However, this improvement came at the cost of m = 81 steps in the homotopy
parameter and a correspondingly large number of function evaluations: a total of
7675 function evaluations for HOM versus 45 for QNewton-BFGS (almost 171 times

as many). In general, such an increase in the number of function evaluations may
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(QNewton-BFGS HOM HOPE
f1(x*) f1(x!) f1(x!) m f1(x!) m
Freu 0 48.98 48.98 | — 019
Jenn 124.36 2020 124.36 | 2 124.36 | 2
Mey 87.95 5.0 x10® 146.18 | 81 87.95 | 3T
Be6 0 5.7 x107° 5.7 x107° | — 107141
Trig 0] 28x107%| 28x107°| 1074 | 5

tFor 1 < m < 10, there was only a single successful run, and it was when m = 3.

Table 4.2: Results of QNewton-BFGS HOM, and HOPE applied to Moré test
functions. The lowest function values found and the fewest number of steps in A
(HOM and HOPE) to find the corresponding minimizer are presented.

not produce as significant an improvement.

The results of experiments using HOPE to minimize these functions are pre-
sented in the remaining columns of the table. In the experiments using HOPE,
¢ = 1 and ¢ = 2™, and perturbed versions were generated using &, with
Pmaz = 1073 (i.e., very local perturbations). The column labelled f!(x') shows
the lowest function value attained in the experiments using HOPE, where 10 runs
were performed for each of the values m = 1,...,10. Since no points were dis-
carded from the ensembles in HOPE, the runs at m = 10 require a considerable
amount of computation compared to those for HOM and QNewton-BFGS. The
last column shows the lowest value of m (1 < m < 10) for which all 10 runs
were successful (i.e., 100% success rate). The best results were for Be6 and Jenn,
where only 1 and 2 steps, respectively, were required. Compared to the results for
these problems where one fewer step in A\ was taken, the increases in success rates

were dramatic (0% at m = 0 for Be6 and 30% at m = 1 for Jenn). This suggests
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that for these problems the perturbations were most responsible for the success
of HOPE. For Trig and Freu, more steps in A (m =5 and m = 9, respectively)
were required before achieving a perfect set of runs. Furthermore, the increases
in success rates were more gradual for these two problems (80% successes for
Trig at m = 4 and for Freuat m = 8), suggesting that the performance of HOPE
depends on more than perturbations alone. However, it is unclear from these few
examples which parameter, if any, plays the most important role in determining
the success of HOPE.

For Mey, HOPE was not able to predict the global minimizer for all 10 runs
for any value m < 10. The only successful result is shown in the table, where
the global minimizer was found in 1 of the 10 runs for m = 3 steps in A. For
Mey, there are several orders of magnitude difference in 7 and 3, the first two
elements of the global minimizer (see the problem description in Section 4.2.2).
The amount of perturbation (ppe. = 10_3) used in these experiments was not
enough to lead HOPE to success for m < 10. In followup experiments using
larger perturbations (pm.: = 100), though, HOPE was successful in finding the
global minimizer of Mey in 100% of the runs for each m =1,...,10.

We conclude that for these problems HOPE outperformed QNewton-BFGS and
HOM in terms of successfully finding the global minimizer of a function. More-
over, the results suggest that a small amount of perturbation can dramatically
increase the performance of HOPE over HOM. In the next experiment, however,
we see that when we limit the ensemble size, a larger amount of perturbation

may be required to produce comparable results.

Experiment 2. In the second set of experiments we applied HOPE to the

Freu problem using various amounts of perturbation, maximum ensemble sizes,
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and numbers of steps in A to illustrate the impact of the algorithm parameters
on performance. We chose to focus on the Freu function because there is a
relatively high function barrier between the global minimizer and the standard
starting point that is used. Moreover, there is a local minimizer on the same
side of the barrier as the standard starting point, and this is the point to which
most local methods (and many global methods) converge. Thus, the goal of this
experiment is to demonstrate the effects of parameter choices in HOPE on solving
problems where the path to the solution is uphill and very steep.

QNewton-BFGS was used for local minimization with MaxIter = 60. Perturbed
versions of ensemble members were generated using &, and ¢ = 1 in these exper-
iments. A total of 100 runs were performed for each combination of the following
parameter values: puae = 1,2,4,8; Cae = 2,4,8,16; and m = 1,2,4,8.

Table 4.3 presents the results of these experiments. The first two columns
show the amount of perturbation and the maximum ensemble size. The next
four columns show the number of runs where HOPE correctly predicted the global
minimizer for m = 1, 2,4, 8, respectively. The last four columns show the ratio
of successful runs to total number of calls to QNewton-BFGS over the 100 runs for
m = 1,2,4, 8, respectively.

The general trend of these results show that as the amount of perturbation
and the amount of computational effort increases (as controlled by ¢4, and m)
the chances of correctly predicting the global minimizer increases as well. How-
ever, the amount of perturbation appears to be the most important parameter
affecting the success of HOPE. This was expected for the Freu problem since
there is a relatively high barrier between the standard starting point and the

global minimizer that prevents many methods from converging to the correct so-
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successes successes/min
when m = when m =

1 2 7 1 1 3 ]0.0233 0.0014 0.0008 0.0012

4 5 0 1 3 |0.0167 0 0.0006 0.0009

8 6 1 4 8 |0.0200 0.0014 0.0013 0.0013

6 |8 0 5 8 |0.0267 0 0.0016 0.0010

2 2 12 13 24 36 | 0.0400 0.0186 0.0185 0.0144

4 7 19 32 41 |0.0233 0.0271 0.0178 0.0111

8 9 24 54 65 |0.0300 0.0343 0.0174 0.0105

16 | 4 23 56 72 |0.0133 0.0329 0.0181 0.0083

4 2 9 27 48 60 | 0.0300 0.0386 0.0343 0.0222

4 5 27 52 74 |0.0167 0.0386 0.0289 0.0185

8 725 75 95 |0.0233 0.0357 0.0242 0.0151

16 | 8 21 77 98 |0.0267 0.0300 0.0248 0.0107

8 2 122 48 73 95 |0.0733 0.0686 0.0521 0.0328

4 15 49 79 98 | 0.0500 0.0700 0.0416 0.0228

8 20 54 94 100 | 0.0667 0.0771 0.0303 0.0159

16 |17 59 95 100 | 0.0567 0.0843 0.0306 0.0106

Table 4.3: Results of HOPE applied to Freu for different amounts of perturbation,
maximum ensemble sizes and steps in \.

lution. Many methods converge to a local minimizer located on the same side

of the barrier as the starting point (as was the case for QNewton-BFGS and for

HOM in the experiments above). Increasing the amount of perturbation may not
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always be the most effective use of resources. In cases where f° and f! are closely
related (e.g., in terms of location of their global minimizers), less perturbation
may lead to better results, with larger perturbations unnecessarily searching the
domain in unpromising areas.

The ratios of success to effort (last four columns) show that effective use of
computational resources may prove challenging when using HOPE. For example,
for ppee: = 8 and m = 8, the number of successful runs was 95,98, 100, 100
for ¢ = 2,4,8,16, respectively, suggesting that larger ensemble sizes lead
to more successful runs. An important question then is whether this increase
in success justifies the corresponding increase in the amount of computational
effort. In this case, there is a downward trend in the corresponding ratios:
0.0328,0.0228,0.0159, 0.0106. For pya; = 8 and ¢yae = 16, the number of suc-
cessful runs was 17,59, 95,100 for m = 1, 2,4, 8, respectively. The corresponding
ratios are 0.0567,0.0843,0.0306,0.0106, suggesting another downward trend for
values of m > 1. In general, it is unclear whether larger ensembles with fewer ho-
motopy steps or smaller ensembles with more homotopy steps will lead to better
results.

Another presentation of the results for p,,., = 8 is given in Figure 4.7, where
the number of successful predictions of the global minimizer is plotted against the
average number of calls to QNewton-BFGS, the average total number of iterations
of QNewton-BFGS for all steps in A, and the average number of function evaluations
for each run. The four points for the different number of steps in A correspond
to the results for ¢4, = 1,2,4,8. Again, the general trend is that HOPE is more
successful when more steps in A are taken. Also, as the maximum ensemble size

increases more computation was performed and this led to slightly better results.
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However, the increase in the amount of computation did not lead to significant
increases in the number of successful predictions. This suggests that the number

of steps in A may impact performance of HOPE more than ensemble size.
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Figure 4.7: Results of HOPE applied to Freu for p,,., = 8. The four markers for
each value of m correspond to the four values of ¢,,.. = 2,4, 8, 16.

4.3.3 Pintér Test Function

In these experiments, we focused on the the interplay between the number of
steps taken in A and the dimension of the function being minimized. We applied

HOPE to Pint functions of dimension n = 1,...,10. The Pint function and
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corresponding homotopy function for n = 10 is defined using

o = (—3.0173, —4.4483, 4.6930, —4.7538, 1.5104,

—3.9100, —4.3961, —1.4326, —0.3789, 1.4885)T (4.8)
and

2% = ( 1.4127, 4.3035,—4.1816,—0.8379, 3.5322,

3.1757, 29291, 0.1542, 3.2336, 3.0290)7 . (4.9)

These values were samples from a uniform distribution on [—5,5]. The problems
with n < 10 are defined using the first n elements of each of z* and z° above.

For each value of n, QNewton-BFGS was run using default parameters and
starting from 30,000 random points. The elements of each of these starting
points were chosen from a uniform distribution on [—5,5]. HOPE was run 10
times using QNewton-BFGS for local minimization with MaxIter = 10; the HOPE
parameters used were ¢ = 1, Cper = 8, and m = 1,2,4,8. Perturbed versions
of ensemble points in HOPE were generated using &, with a maximum of 10%
perturbation (Pye. = 0.10).

Table 4.4 presents the results of these experiments. Column 1 shows the
dimension of the problem and column 2 shows percentage of the runs where
QNewton-BFGS successfully predicted the global minimizer. QNewton-BFGS was
most successful for the problem with n = 1, but its performance seems to depend
on more than just the dimension of the problem. As n increases the performance
of QNewton-BFGS is fairly constant for these problems. The last four columns of
the table show the percentage of the 10 runs where HOPE successfully predicted

the global minimizer for m = 1,2,4,8, respectively. For all n, the success of
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HOPE increased monotonically with m, and for all n > 1 all of the runs predicted

the global minimizer when m = 8.

HOPE
QNewton-BFGS | success (%), when m =

n | success (%) 1 2 4 8
1 29 0 0 10 50
2 9 0 10 40 100
3 9 0 30 100 100

10 30 20 60 100
5 12 0 20 100 100
6 12 20 40 100 100
7 11 20 20 100 100
8 12 0 50 70 100
9 9 10 10 100 100
10 8 0 20 100 100

Table 4.4: Results of QNewton-BFGS and HOPE applied to Pint problems of
dimensions n = 1,...,10 using &, for perturbations with py,q, = 0.10.

These results further illustrate the use of HOPE in extending local mini-
mization methods for use in finding global minimizers. Surprisingly, the most
difficult problem for HOPE was the one with n = 1, the same problem for which
QNewton-BFGS had most success. This is an indication that perturbation alone
may lead to a degradation of performance of a local method extended using
HOPE. However, with more steps in the homotopy, and thus a more gradual

deformation of f° into f!, HOPE eventually outperforms the local method: for
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n = 1 and m = &, the success rate of HOPE is 50% compared to 29% for
QNewton-BFGS.

In another set of experiments, QNewton-BFGS, HOM, and HOPE were used
to solve the Pint function with n = 100 defined in [91]. For these methods, 100
runs were performed starting at random points (chosen as for QNewton-BFGS in
the experiments above). QNewton-BFGS and HOPE used the same parameters as
above, except for ¢4 = 4. HOM was run using the same parameters as HOPE.

Table 4.5 presents the results of these experiments. The columns of the table
show the method used, number of steps in A (m), percentage of successful runs,
average number of function evaluations per run (N ), ratio of successes to aver-
age number of function evaluations, and average function value of the predicted
points (f1(z1)), respectively. The results present further evidence that HOPE
outperforms HOM and that HOM outperforms QNewton-BFGS. Furthermore, the
ratio of successes to average number of function evaluations allows for compari-
son of the three methods. When this ratio is approximately 0.6, HOPE is about
twice as effective as the other methods (HOPE has 44 successes when the ratio
is 0.62, HOM has 22 when the ratio is 0.60, and QNewton-BFGS has 20 when the
ratio is 0.57). Results when the ratios are around 0.36 and 0.15 for HOPE and
HOM illustrate similar increases—when the ratio is 0.36, HOPE has 70 successes
to HOM’s 43 (approximately 1.63 times more); and when the ratios are around

0.15, HOPE has 94 successes to HOM’s 36 (approximately 2.61 times more).

4.4 Summary

In this chapter, we have demonstrated that HOPE and HOM are more effec-

tive than a quasi-Newton method in solving general unconstrained minimization
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Success Success
Method m| (%) N¢ | per N¢ | fi(x?)
QNewton-BFGS | 0 20 35 D7 1.431
HOM 1 22 37 .60 1.028
2 30 64 AT 1.021
4 43 119 .36 0.283
8 36 227 .16 0.221
HOPE 1 44 71 .62 0.436
2 70 196 .36 0.085
4 94 695 14 0.012
8 98 1739 .06 10-H

Table 4.5: Results of QNewton-BFGS, HOM, and HOPE applied to the Pint
function with n = 100.

problems. Results of several experiments suggest that as more steps in A are
taken and larger perturbations are used, the performance of HOPE improves. By
taking more steps in A, the template function is deformed more gradually into the
target function. Such gradual change may be necessary for some problems where
the template and target functions behave very differently. The use of perturba-
tions allows searching of the function domain in areas that may not be reachable
by following curves of minimizers of the homotopy function. We suspect that
larger perturbations will be more useful when little is known about the relation-
ship between the template and target functions and a generic homotopy function
is used.

In the next few chapters we will see that time and effort spent in design-
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ing homotopy functions that can take advantage of the problem structure and
relationships between the template and target function leads to significant per-
formance increases. In these upcoming chapters, HOPE is applied to the protein

folding problem, a problem with a great deal of structure.
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Chapter 5

Protein Structure Prediction

A central challenge in biochemistry today is the development of reliable, efficient
computational methods for solving the protein folding problem, the problem of
predicting the tertiary structure (three-dimensional conformation) of a protein
in its native state given its primary structure (amino acid sequence). Several
surveys and collections are available that contain information about the history
of the protein folding problem and methods that have been developed for solving
this problem [35, 40, 42, 83, 87]. Readers interested in the energetic interactions

involved in the folding of a protein should consult [22, 101].

5.1 Background

Milestones in experimental research in protein structure include the sequencing
of insulin [96, 97|, determination of the structure of myoglobin via X-ray crystal-
lography [65], and determination that the native conformation of ribonuclease,
i.e. the shape in which it performs its function properly, is the one in which the

Gibbs free energy ! is lowest [8]. The results of these experiments led researchers

!The Gibbs free energy of a system is the maximum amount of work it can do at a constant

temperature in a constant volume.
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to embark on using computation and simulation to predict the native conforma-
tion of a protein from its amino acid sequence. After four decades of such work
by biologists, chemists, mathematicians, statisticians, and computer scientists,
the goal of those first computations—to solve the protein folding problem—still
eludes researchers, despite the prominence and importance of the problem in the
field of computational biology.

Computational methods for solving the protein folding problem fall into three

categories:

e Molecular dynamics (MD) simulations concentrate on the force balance of
the atoms within a protein and the resulting (Langevin) dynamics, which
are approximated by a stochastic differential equation [50]. The main draw-
back of using MD for protein structure prediction is that the time steps re-
quired for accurate simulations are many orders of magnitude smaller than

the time scale on which a protein folds into its native conformation.

e Bioinformatics algorithms use experimental structure data to predict con-
formations for which no experimental results exist. Comparative modeling
methods (e.g., threading, homology modeling) [37] have been the most suc-
cessful and widely implemented of the bioinformatics approaches for protein
structure prediction to date. These methods determine the most prob-
able native (found in nature) conformation by statistically matching the
sequence of a protein to that of one or more template proteins—proteins

whose native conformations have been determined experimentally.

e Fnergy minimization methods are global optimization methods designed

to predict the native conformation of a protein by minimizing an energy
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function associated with that protein.

We concentrate in this thesis on energy minimization. In this chapter we
consider the energy models and the minimization methods that have been applied

to them.

5.2 Protein Structure

Proteins, or peptides, are molecules consisting of amino acids (aa) bonded to-
gether. Amino acids are organic compounds consisting of carbon (C), nitrogen
(N), oxygen (O), hydrogen (H), and sulphur (S) atoms. Figure 5.1 depicts the
topology of a single amino acid, where lines denote chemical bonds between atoms
(two lines denote a double bond) and the symbol R denotes the residue, or side
chain, of the amino acid. To distinguish the two carbon atoms, the one to which
the residue is bonded is given the subscript . The dashed lines in the figure show
a bond to another amino acid (or H at the N-terminus or OH at the C-terminus).
There are 20 amino acids and they differ in the type and number (1 — 18) of
atoms that comprise the residue. Smaller proteins are sometimes referred to as
oligopeptides (< 10 aa) or polypeptides (~ 10 — 100 aa).

The backbone of an amino acid refers to the linear sequence of bonded atoms
N-C,—C, and the backbone of a protein refers to the full sequence of its amino
acid backbones. Bond lengths are the distances between two bonded atoms and
bond angles are the angles between three consecutive, bonded atoms. A dihedral
angle is one defined for chains of four consecutive bonded atoms and is the angle
between the vector normal to the plane of the first three atoms and the vector

normal to the plane of the last three atoms.
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Figure 5.1: The topology of an amino acid in a protein.

Protein structure is classified into one of four categories: primary, secondary,
tertiary, and quaternary structure. The primary structure of a protein is its
amino acid sequence. Secondary structures are distinctive substructures found in
native conformations. Two of the most common secondary structures are the a-
helix, where the backbone is wrapped into a coil-like structure, and the 3-sheet,
where several portions of the backbone are aligned parallel (or antiparallel) to
one another in a single plane. Repeated patterns of secondary structures that
appear in many proteins are often referred to as motifs. Tertiary structure is the
conformation of the atoms of a protein in three dimensions. Finally, quaternary
structure refers to the association of two or more polypeptide chains into a struc-
ture stabilized mainly by noncovalent interactions (hydrogen bonding, van der
Waals interactions, etc.).

The Protein Data Bank (PDB)? [11] is a database of experimentally deter-
mined native conformations of proteins (and nucleic acids). As of June 2005, the

PDB contained more than 31,000 structures (~28,000 proteins).

Zhttp://www.pdb.org

81



5.3 Protein Models

According to Anfinsen’s thermodynamic hypothesis [7], the native conformation
of a protein is the one for which its Gibbs free energy is at a minimum. Al-
though the Gibbs free energy of a protein in a particular conformation may be
computed using quantum mechanical calculations, the computational demands
for such calculations are too great for existing resources.

Several empirical potential energy functions, or force fields, have been devel-
oped for approximating the Gibbs free energy of a protein [92]. These force fields
are typically parameterized using experimentally obtained data to approximate
the Gibbs free energy or only compute the enthalpy, or internal energy, of the
protein, neglecting any entropic contributions. Despite the imperfect approxima-
tions, many researchers agree that these models can be used to gain insight and
understanding into the native states and folding dynamics of proteins.

A typical empirical potential energy function is a sum of five terms:
E(X) - Ebl + Eba + Edih + Evdw + Eel (51)

where the terms are specified in Table 5.1. The variables X € R®" are the
Cartesian coordinates of the protein’s n atoms, r are bond lengths, 6 are bond
angles, ¢ are dihedral angles, r;; are distances between nonbonded atoms ¢ and
J, and g¢;,q; are (partial) charges on atoms i and j. The dielectric constant of
the medium in which the analysis takes place is denoted by e. The remaining
parameters are chosen to fit experimentally determined native conformations of
several small peptides or other organic compounds and vary depending on the
atoms involved in each interaction. The numbers k,, ky, and k,4 are force con-

stants; 7 is the average bond length; 6 is the average bond angle; and a;; and b;;
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Term  Interaction Type Standard Form

K,
Ey bond length Z 5(7“ )
bonds
E bond angle Z @(Q —0)?
ba 5
angles
Egn  dihedral angle Z kne [1 + cos(no)]
dihedrals
Eya van der Waals Z i _ bﬂ
vdw ) T12 736'
i, v g
: q:q;
E, lectrostat 2idg
! electrostatic ;{ew}

Table 5.1: Standard terms found in empirical potential energy functions associ-
ated with protein models.

determine the distance between two atoms at which the van der Waals potential
is at a minimum and the value of that minimum energy. In some force fields
all terms modeling interactions between atoms that are not bonded (Fy,quw, Eer)
are combined into a single expression and called the nonbonded potential. Non-
bonded potentials typically include sums of pairwise interactions taken over pairs
of atoms separated by at least 2, 3, or 4 bonds; the choice for this number varies
in existing force fields and is still a subject of debate. Other terms appearing in
force fields include hydrogen bonding and solvation interaction terms, but there is
little agreement among researchers as to the most suitable formulations of these
potentials. Commonly used force fields include AMBER [21], CHARMM [15],
ECEPP/3 [81], GROMOS [113], OPLS [62], and MM3 [6].

Protein structure prediction by energy minimization typically makes use of
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one of these force fields or a simplified version of one of them. The force fields
above are referred to as all-atom force fields, models capable of and parameterized
for calculating the energy of a protein using all of its constituent atoms.

Residue-level models simplify energy calculations by including only backbone
atoms and a single particle modeling the collective properties of the atoms in
each residue. The UNRES model is an example of a residue-level model in which
the C, atoms and united residues are included in the energy calculations [72].

Backbone models include only the atoms that make up the backbone of the
protein. To simplify calculations, the potential energy in some backbone models
is a function of the angles defining the geometry of the backbone. Such a model is
used in the experiments presented in Chapter 6. Another example of a backbone
model is presented in Chapter 7, where only the C, atoms are included and the
properties of an entire amino acid residue are modelled in the parameterization
of its corresponding C,. The term chain is often used to refer to an instance of
a protein derived using a backbone model.

The use of simplified models reduces the complexity of the interactions and
hence reduces the amount of computation involved in energy calculations. Soft-
ware tools for reconstructing all-atom structures from backbone structures (e.g.,
PHOENIX? [73], BB* [2], and MaxSprout® [54]) are often employed when sim-
plified models are used for structure prediction.

Other simplified models developed for protein analysis via energy minimiza-

tion include lattice models [30], statistical potentials [79, 105], and pairwise inter-

3http://cbsu.tc.cornell.edu/software/protarch/index.htm
‘http://mccammon.ucsd.edu/~adcock/bb.html

Shttp://www.ebi.ac.uk/maxsprout/
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action models [87]. Energy calculations in lattice models are extremely efficient
as the positions of atoms included in the models are restricted to points on a finite
lattice in three dimensions. The drawback of lattice models is their inability to
model or predict secondary structures (especially helices) accurately. Statistical
potentials, sometimes called knowledge-based potentials or scoring functions, are
derived using experimentally determined native structures of proteins (typically
from the PDB). These potentials are based on the correlation of the observed
frequency of a structural feature with its associated free energy. Thus, these po-
tentials have a global minimum corresponding to the most frequently observed
native conformations (or collections of substructures found most often in native
conformations). Pairwise interaction models are often used in testing compu-
tational methods for solving the protein folding problem. One commonly used
instance is the Lennard-Jones 6-12 potential, which consists solely of the van der
Waals term, E,q,, with a;; = 2 and b;; = 1.

The potential energy functions used for protein analysis typically have a large
number of local minima, many of which are close in function value to the global
minimum. Moreover, it is estimated that the number of local minima increases
exponentially with the number of atoms in a protein [71, 123]. Results show that
minimizing an energy function of the form in (5.1) is NP-hard [85], prompting the
authors of those results to suggest that “function-minimization algorithms can
be efficient for protein structure prediction only if they exploit protein-specific

properties.”
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5.4 Existing Methods for Energy Minimization

Over the past four decades, many approaches have been developed for determin-
ing the native conformation of a protein via minimization of a potential energy
function. We list some of the more effective methods in this section. However,
few of these methods make use of protein-specific properties, and none has been
designed to take advantage of structural similarities of sequence-related pairs of
proteins.

Several variants of the local and global optimization methods presented in
Chapter 2 have shown promise for accurately predicting native conformations
for small proteins (~ 50-200 aa). Local methods include the truncated Newton
method [126] and a hybrid limited memory BFGS quasi-Newton/Hessian-free
Newton method [24]. Global methods include stochastic search methods [23],
simulated annealing [63, 104, 122, 123], evolutionary algorithms [14, 70, 69], and
smoothing methods [48, 49, 71, 90, 98, 110, 125]. Other methods outside of these
general method classes include convex global underestimation [89], derivative-
free pattern search [36, 46], stochastic tunneling [100, 121], branch-and-bound
[39, Chapters 15-16], and packet annealing [102].

5.5 HOPE

We now present the use of HOPE for minimizing potential energy function associ-
ated with protein models. The homotopy functions used in HOPE are denoted by
H(X,\) and map the potential energy functions of a template protein, E°(X), to
that of target protein, E'(X). The native conformation of the template protein

is assumed to be known and is used as the starting conformation in HOPE.
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The goal in using HOPE for protein structure prediction is to take advantage
of the protein-specific properties of the energy function used and any relationship
between the native conformations of the template and target proteins. Moreover,
we would like to determine to what extent the amino acid sequences of the two
proteins must match in order to produce accurate structural predictions using
HOPE.

HOPE is similar to comparative modeling methods in that it uses the prop-
erties of a template protein to help predict the native conformation of a target
protein. In contrast, HOPE in the current implementation uses a single tem-
plate protein, whereas many comparative modeling methods use pieces of one
or more template proteins to help predict the native conformation of a target
protein. HOPE is also related to smoothing methods for energy minimization.
However, in such methods the deformation starts with a smooth approximation
of the template’s potential energy function and the output is often only a single
local minimizer of the target energy function. Finally, HOPE can be viewed as a
simulated annealing method on an evolving energy landscape defined by the ho-
motopy function, using a constant temperature (7' = 0) in its annealing schedule
and a move class that includes only local minimizers as candidate conformations.

Homotopy methods have been used previously for exploring potential energy
surfaces and computing stationary points of energy functions [1] and for com-
puting optimal configurations of atomic and molecular clusters [20, 58]. In both
instances standard homotopy functions (convex, fixed point, etc.) were employed,
and such functions do not exploit the protein-specific features of potential energy
functions—e.g., electrostatic interactions between charged particles and torsional

energy dependent on properties of the particles defining each dihedral angle in
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a polypeptide chain. Moreover, the homotopy functions used were smoothing
functions for the potentials of a single cluster of atoms. In contrast, we use a ho-
motopy function that deforms the potential energy function of a template protein
into that of a target protein. Thus, HOPE takes advantage of the sequence-based
and/or structural relationships between proteins in predicting the native confor-
mation of the target protein.

In the next two chapters, we demonstrate the use of HOPE in solving the pro-
tein folding problem. Two different protein models are introduced and HOPE is
applied to minimizing the potential energy functions associated with the models.
Several different homotopy functions and perturbations are used to demonstrate

the flexibility of HOPE in taking advantage of model-specific properties.
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Chapter 6

Numerical Experiments: Chains of Charged Particles

In this chapter, we present the results of HOPE and HOM applied to a problem
involving chains of charged particles. These results demonstrate that HOPE is
more successful than HOM at predicting native conformations using this model.
Also, these two methods were more successful than a standard quasi-Newton
method at minimizing the potential energy of the model, with HOPE showing
significantly superior performance and HOM only marginally better performance.

In this model, two types of amino acids are allowed, and each amino acid is
represented by its C, atom. Thus, a polypeptide chain is modeled as a chain
of particles in two-dimensional space, where each particle corresponds to a C,
atom and contains a charge of +1, depending on which type of residue it models.
The value of models using a limited set of amino acids and restricted to two-
dimensional space is discussed in [109] and the use of such simple models in

testing a new method for solving the protein folding problem is presented in [90)].

6.1 The Potential Energy Function

Let X € R?" denote the Cartesian coordinates of a chain of n particles in two

dimensions, with X}, € R? containing the coordinates of the k" particle. We also
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use the notation X to denote the k™™ particle in the chain. Figure 6.1 shows
the geometry of the chain of charged particles. Four particles, X;, ..., X;.3, are
depicted as nodes in the figure, with lines between nodes representing the bonds

between particles.

Xirs @----

Figure 6.1: Geometry of the chain of charged particles.

The distance between particles X; and X is denoted by r;; = || X; — Xj||2,
with bond lengths fixed at a distance 7. The angle ; € [0, 27), formed between
particles X;, X;i1, and X, o, is the bond angle. To remove the rotational and
translation freedom from each conformation, we fix the centers of the first two
particles in the chain at the points (7,0) and (0,0). The coordinates of the

particles in the remainder of the chain are computed as

cos(O_o) —sin(b_2)
X=X 1+ (Xk_z — Xk—l) (61)
sin(fy_2)  cos(fx_2)

where X} is taken to be a column-vector. Thus, the n — 2 bond angles fully
determine a conformation.

The potential energy function, £ : R*2 — R, is given by:

E(0) = Eyo(0) + En(0) (6.2)
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where F,4, and E,; are the van der Waals and electrostatic potentials, respec-

tively. The van der Waals potential is a sum of pairwise interaction terms as in

Boaw(0) = ni zn: e ((%)m —2 (%)6) (6.3)

i=1 j=i+3

Table 5.1:

where ¢ and o determine the minimum energy value and the distance at which
that minimum occurs for pairwise particle interactions. Figure 6.2(a) shows a
plot of the pairwise interactions in E,q, of particles X; and X; as a function of
the distance between them. The values of ¢ = 0.4 and o = 3.6 are used.

The electrostatic potential, as in Table 5.1, is given by:

n—2 n

Ea(0) = Z Z 445 (6.4)

7"‘. .
i=1 j=i+2 Y

where ¢, denotes the charge on particle X. Figure 6.2(b) shows a plot of the
pairwise interaction in E,; between particles X; and X; as a function of the
distance between them. The dashed curve is the interaction energy between
particles with charges of opposite sign (i.e., ¢;¢; = —1), and the solid curve is the

energy between particles having charges of the same sign (i.e., ¢;q; = 1).

6.2 The Homotopy Function

We now define the homotopy between the potential energy functions of the tem-
plate chain, E°(f), and the target chain, E'(f). We assume that the template
and target chains contain the same number of particles. The homotopy is de-
signed to deform the charges of the template chain (¢°) into those of the target
chain (¢'). The energy terms in F,4, depend on the position of particles and
thus their contribution in the homotopy function is independent of the homotopy

parameter.
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Figure 6.2: Plots of (a) van der Waals (¢ = 0.4 and o = 3.6) and (b) electrostatic
potentials terms.

The homotopy function is given as:

H(0,\) = Ei: ji: gi&%}¥£39-+-fzdw(0) (6.5)
i=1 j=i+2 *J

where gx()\) is a continuous function mapping ¢y to ¢; such that
¢(0) = ¢y, and (6.6)
a(1) = q . (6.7)

The functions gx(\) depend on 7, the number of corresponding particles in

the template and target chains that do not match in sign. These functions are

defined as
1 e 0 1
4, if ¢, = ¢, and
ak(A) = (6.8)
piNar + (1 —p;(N)ap,  if g #ap
where
(2 +Z2) if A <0.5 and
pi(N) = (6.9)

G+n@4»A_%+:a if A>0.5,
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for  =2,...,n when n > 1 and
p1(A) =X (6.10)

when 72 = 1. Figure 6.3 shows the plots of p(\) and the corresponding ¢(\) where
the charges of n = 8 corresponding particles in the template and target chains do
not match. The functions p;(A) all change at different rates, which means that
qx(A\) = 0 for at most one value of k for any particular value of A (as can be seen
in Figure 6.3(b)). We found that allowing several charges to pass through 0 at

the same point led to poor performance of HOPE and HOM.

1 " " " " 1
0.8
0.5¢
0.6
% =< OF === mm e e e SNANNC AN/ = mmmmm e m e =]
o
0.4r
-0.5
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0 0.2 0.4 A 0.6 0.8 1 0 0.2 0.4 A 0.6 0.8 1

Figure 6.3: Examples of (a) p(A) and (b) corresponding ¢(A) when 7 = 8 particles
differ in charge in the template and target chains.

6.3 Results

We performed three sets of experiments using this model. In the first set, we
performed an exhaustive search for the native conformations of small chains
(n =4,5,6). The results of these experiments included the creation of a database
of native structures that can be used in testing minimization methods. In the

second set of experiments, HOPE, HOM and QNewton-BFGS were used to predict
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the native structures in that database. Therefore, in these experiments, exact
solutions were available and the efficacy of the methods could be measured ac-
curately. In the third set of experiments, HOPE, HOM, and QNewton-BFGS were
applied to problems involving larger chains (n = 20). For these experiments,

native conformations were not available.

6.3.1 Computations using an Exhaustive Search

In this section we present the results of performing an exhaustive search to find the
native conformations of small chains (n = 4,5,6). The search was implemented in
C (using the GNU C compiler, gcc v3.2.2) and performed in Linux on a 2.2 GHz
Pentium IV processor with 512 Mb of RAM. Our conclusion is that using this
hardware, an exhaustive search is too computationally expensive for chains with
n > 7 particles. However, for chains of size n = 4,5,6 we were able to produce
a database of native conformations that can be used to test other minimization
methods applied to this problem.

For each n, there are 2" distinct chains of charged particles. For example, for

n = 4, the possible chains (denoted here by the charges on the particles) are
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+1,+1,+1,+1 -1,-1,-1,-1

—1,+1,+1,+1 +1,-1,-1,-1
+1,-1,+1,+1 -1,+1,-1,-1
~1,-1,+1,+1 +1,+1,-1,-1
+1,+1,-1,+1 -1,-1,+1,-1
~1,+1,-1,+1 +1,-1,+1,-1
+1,-1,-1,+1 -1,+1,+1,-1
-1,-1,-1,+1 +1,+1,+1,-1

However, due to symmetry, we need only consider the chains where the last
charge is positive, i.e. ¢, = +1. This reduces the number of unique chains to
2n—1

We searched for the lowest energy conformation using a grid on [0, 27) with
1° (= 0.017453 radians) increments, so that there were 360 possible angles for
each 0, (k = 1,...,n —2). Using this grid, 360”2 potential energy function
evaluations must be performed for each chain to determine which conformation
has the lowest energy. We can reduce this number by a factor of 2 by restricting
the first angle to #; € [0, 7]. Table 6.1 presents an estimate of Ny, the number of

function evaluations required for all 2”71 chains, for several values of n.

n 4 5 6 7 8 9 10’

logyo(Ng) | 541 [ 8.27 | 11.13 | 13.99 | 16.84 | 19.70 | 22.56

Table 6.1: Function evaluations required for the exhaustive search of native con-
formations of chains of charged particles.

Since each function evaluation consists of translating bond angles into particle

coordinates, computing distances between all pairs of non-bonded particles, and

95



computing and summing energies due to pairwise interactions, the number of
floating point operations quickly becomes too great for available computational
resources.

In order to reduce the amount of computation, we did not perform function
evaluations for a conformation for which the distance between any pair of non-
bonded particles in the chain was less than or equal to the bond lengths (which
is fixed at 7 for all bonded particles in the chain). We need only the first &£ angles
to compute the pairwise distances between particles Xy, X, ..., X0, If two of
these particles are too close together when we increment angle 65, we need not
perform the search for any values of the angles 0y1,0x1o, ..., 0,2 for this value
of 0. This leads to a further reduction in computation by 1) not computing the
coordinates of and distance between particles later in a chain when two particles
earlier in the chain are too close, and 2) not performing a function evaluation of
those conformations.

After reducing the computation involved in the exhaustive search using these
measures, the computing required for finding native conformations was still too
great for chains with n > 6 particles. A search for the lowest energy conformation
of all the chains of n = 4,5,6 particles was performed. Also, a partial search
was conducted for n = 7,8 particles for estimating the time needed to carry
out the full search for chains of these sizes. The partial search consisted of
fixing the first angle and performing an exhaustive search of the lowest energy
conformation using the remaining n — 3 angles. Since there are many infeasible
conformations due to the minimum distance requirements described above, the
number of different values possible for the first angle is 103 (out of 180). The

wall-clock times for searching for the lowest energy conformations are presented

96



in Table 6.2. The estimated times for n = 7,8 are computed by multiplying the

time required for the fixed first angle search by 103.

n 4 5 6 7 8

Time | < .1 seconds | 17 seconds | 2 hours | > 37 days* | > 1.75 years*

*estimated

Table 6.2: Amount of wall clock time required to perform the exhaustive search
of native conformations of chains of charged particles.

We conclude that the amount of time required in performing an exhaustive
search to determine the lowest energy conformation of a chain of charged particles
is too great to be of practical use. Presented in Appendix A are the lowest energy
conformations for chains of size n = 4, 5,6, and we can see that there is not much

variation in the conformations for chains with different sets of charges.

6.3.2 Computations using HOPE/HOM on Small Chains

In this section, we present the results of HOPE, HOM, and QNewton-BFGS used for
predicting the native conformations of chains containing n = 4, 5, 6 particles. The
lowest energy conformations found by the exhaustive search method described in
the previous section were taken to be the native conformations. The results show
that all three methods are able to predict the native conformations effectively
and efficiently for all but a few template-target pairs.

In this set of experiments, each conformation was used as a template (starting
point) to predict the native conformations of the remaining targets. QNewton-BFGS
was applied to the problems using its default parameters. In HOM and HOPE

m = 4 steps in \ were taken and MaxIter = 20 iterations of QNewton-BFGS were
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allowed for each local minimization performed. Finally, the remaining parame-
ters in HOPE were set to ¢ = 1 and ¢,,,,, = 4. Perturbations used in HOPE were
performed using &,; (Section 4.1) with maximum perturbations of 0.1-]|6%]| (i.e.
10% of the the 2-norm of the the angles defining the native conformation of the
template).

Table 6.3 presents the results of these experiments. The first two columns
show the sizes of the chains and the corresponding number of pairs of templates
and targets (= n? — n) comprising the experiments. The remaining columns
show the percentage of experiments where QNewton-BFGS, HOM, and HOPE
successfully predicted the native conformations, where a success is measured using
relerrp as in (4.7). Specifically, a successful prediction is one satisfying

|E1(6Y) — EN(6")]
|E4(67)]

<107%, (6.11)

where ' is a conformation predicted using one of the three methods and 6* is
the corresponding native conformation. We used QNewton-BFGS to minimize the
energy of each chain, starting from the native conformations produced by the
exhaustive search. We found that the difference in energies between the native
conformations and those found using QNewton-BFGS, as measured using (6.11)
was always below 1073, Thus, we used this number in the success measure.

We see that all three methods successfully predicted most native confor-
mations, with HOPE and HOM predicting all of the native conformations for
n = 4,6. This was to be expected, since many of the native conformations of
these small chains are very similar (see Appendix A).

We next focused on a single template-target pair for which all three methods
were unsuccessful. For this pair the native conformation is very similar to a

conformation of the target chain corresponding to a local minimizer of F.
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QNewton-BFGS HOM HOPE

n | Pairs | Success (%) | Success (%) | Success (%)

4 o6 93 100 100
5| 240 97 97 97
6| 992 99 100 100

Table 6.3: Comparison of prediction results for QNewton-BFGS, HOM, and HOPE
for small chains (n = 4,5,6).

The template and target chains are

q0 = {+1a_17+1a_17+1} (612)

={-1,—-1,41,+1,+1} (6.13)

where ¢° and ¢* are the charges on the particles in the template and target chains,
respectively. Figure 6.4 shows the native conformations for (a) the template chain
and (b) the target chain. In these figures, each particle in the chain is depicted
using a circle with radius 0.8 that is centered at the particle’s coordinates. Blue
circles (with a “4” at their centers) and red circles (with no symbols at their
centers) correspond to particles with charges of +1 and —1, respectively. All
bond lengths are fixed at ¥ = 1.5; thus the overlap of circles highlights the
particles that are bonded.

The conformation predicted by all three methods is shown in Figure 6.5.
This conformation is almost identical to the native conformation of the template,
which is used as the starting conformation in the minimization methods.

We ran experiments with HOPE and HOM on this template-target pair using
different parameter choices in the methods. The goals in performing these exper-

iments were to determine if the homotopy optimization methods could solve this
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Figure 6.4: Native conformations of the (a) template chain, ¢°, and (b) target
chain, ¢* used in the extended experiments involving small chains.

Figure 6.5: Conformation predicted by QNewton-BFGS, HOM, and HOPE for the
target chain ¢*.

problem and to identify which parameters influence the success if possible.
HOM was run using this template-target pair with m = 2,4, 8, 10, 20, 30 steps
in A\. Unfortunately, HOM was not able to find the native conformation in any
of those runs.
HOPE was run using this template-target pair with ¢ = 1 and all combinations
of m = 2,4, 8 steps in A and maximum perturbations of 25%, 50%, 75%, and 100%

of ||6°||2. For each combination of parameters, 100 runs of HOPE were performed.
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Table 6.4 presents the number of runs for each parameter combination where
HOPE successfully predicted the native conformation of the target chain. The
general trend in these results is that more perturbation and more steps in A leads
to better performance of HOPE. As with results on the standard test problems

in Chapter 4, though, it is not clear which parameters influence HOPE the most.

Maximum Perturbation
m 25% 50% 75% 100%
2 6 24 37 36
4 28 74 78 85
8 39 82 83 87

Table 6.4: Successful predictions of the native conformation of the template chain
(out of 100) using HOPE with several combinations of algorithm parameters.

In this section, we presented results of two experiments using HOPE, HOM,
and QNewton-BFGS to predict the native conformations of small chains. The
results of the first experiments showed that all three methods were very successful.
One of the problems which all three methods failed to solve in the first set of
experiments was used to further test of HOPE. The results of those experiments
show that the use of perturbation and the number of steps taken in A led to
increases in the number of successful predictions of the native conformations

using HOPE. In the next section, we see that HOPE outperforms HOM and

QNewton-BFGS on larger chains as well.
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6.3.3 Computations using HOPE/HOM on Larger Chains

In the third set of experiments, we applied HOPE, HOM, and QNewton-BFGS to
chains of n = 20 particles. These experiments differ from the previous experi-
ments in that the native conformations of the template and target chains were not
known. Therefore, we were not able to verify whether these methods are capa-
ble of predicting the native structure, and conformations used as starting points
corresponded to local minimizers of E° rather than global minimizers. Neverthe-
less, the experiments show that HOPE outperforms HOM and QNewton-BFGS by
predicting lower energy conformations for most template-target pairs; in a small
number of experiments HOM and QNewton-BFGS predict the same conformation
as HOPE.

The parameters used in the three methods were the same as in the previous
experiments, except m = 8 steps were taken in A in HOM and HOPE and the
maximum amount of perturbation allowed in HOPE was 20% of ||6°]|o. A total of
10 template chains was used in the experiments, where the sequence of charges for
each chain was chosen randomly. For each of these template chains, target chains
were generated by changing n = 2,...,20 charges. The positions in which the
changes in the charges took place were chosen randomly for each value of n. In
the experiments, only one run of HOPE was performed for each template-target
pair.

The results of the experiments demonstrate that HOPE clearly outperforms
both HOM and QNewton-BFGS in predicting the lowest energy conformations
of the three methods. In all of the experiments, HOPE predicted the lowest
energy conformation of any of the three methods, with HOM and QNewton-BFGS

producing the same conformation in several of the experiments.
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The results for one of the template chains is presented in Table 6.5. We present
these results as they are an example where HOM and QNewton-BFGS performed
the best, producing the same conformations as HOPE for 4 target chains. The
first column shows the number of charges that are different in the template and
target chains. The next three columns show the energies of the conformations
generated by QNewton-BFGS, HOM and HOPE, respectively.

The remaining columns in the table show how much more computation is in-
volved for HOM over QNewton-BFGS and HOPE over QNewton-BFGS, respectively,
where the ratios of the number of function evaluations for the methods are given.
Here, NJ?", N J’}"m, and N}“’p “ are the numbers of function evaluations performed
in QNewton-BFGS, HOM, and HOPE, respectively. On average, HOM required
about 14.5 times as many function evaluations as QNewton-BFGS, and for HOPE
about 49.6 times as many were required. Although there is more work performed
by HOPE, we see that it consistently outperforms the other two methods.

Not only does HOPE produce lower energy conformations than the other two
methods, it produces ensembles of minimizers. Often more than one conformation
in the ensembles generated by HOPE had lower energy than the minimizers
produced by HOM and QNewton-BFGS. The average number of unique ensemble
conformations produced by HOPE that had lower energy than the corresponding
conformations generated by HOM and QNewton-BFGS was 4.74 out of total of
8 ensemble members. (Recall from Section 3.3 that the final ensembles contain
(¢ + 1) X Cpae conformations.)

Figure 6.6 presents the conformations of the template used as the starting
point and two examples of the conformations predicted by HOPE, HOM, and

QNewton-BFGS (7 = 4,19) in the same experiments. We see that there is little
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difference between the template and the conformations predicted by HOM and
QNewton-BFGS. For HOPE, the differences between the template conformation
and the predicted conformations were minor in some experiments (7 = 4) and in
others very dramatic (7 = 19).

In this chapter, we presented the results of experiments on chains of charged
particles. This experiments were our first using HOM and HOPE for protein
structure prediction. As with the results on the standard test problems presented
in Chapter 4, HOPE outperformed HOM and QNewton-BFGS. We will see in the
next chapter that when applied to a more realistic protein model, HOPE is again

successful at predicting low energy conformations.
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QNewton-BFGS HOM HOPE
i E(0Y) E(6") E(0Y) | Npom/Ng™ | NjoPe/Ng”
2 —18.596 —18.596 —20.291% 18.4 61.1
3 —19.683 —19.683 —21.685¢ 17.0 59.0
4 —19.389 —19.389 —21.154% 17.9 61.1
5 —19.4297 —19.269 —19.748% 5.8 16.5
6 —17.204 —17.204 —18.788% 7.4 24.9
7 —20.825 —20.825 —20.825 18.9 73.6
8 —18.317 —18.317 —19.870¢ 10.3 37.3
9 —17.780 —17.780 —17.780 7.1 23.4
10| —19.377 —19.377 —19.377 11.8 40.1
11| —21.293 —21.293 —23.578% 18.0 60.1
12 —12.363 —12.363 —13.844% 8.6 35.0
13| —17.933 —17.933 —17.933 6.5 22.2
14| —18.393 —18.393 —20.589% 11.4 44.1
15 —14.990 —15.0177 —18.238% 18.7 65.0
16 | —18.746 —18.746 —20.090¢ 18.4 58.5
17| —17.608 —17.608 —18.475¢ 18.4 54.0
18| —18.850 —18.850 —19.191* 19.5 67.7
19| —17.848 —17.848 —20.271% 19.6 72.0
20| —17.037 —17.037 —19.220¢ 21.5 66.8

t Lowest energy conformation between QNewton-BFGS and HOM.
tLowest energy conformation among all methods.

Table 6.5: Results of predictions using QNewton-BFGS, HOM, and HOPE on a
chain containing n = 20 particles, where N{", N ;“’m, and N}wp “ are the numbers of
function evaluations performed in QNewton-BFGS, HOM, and HOPE;, respectively.
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HOM and QNewton-BFGS (7 = 19)

Figure 6.6: The template and predicted conformations of chains with n = 20
particles using HOPE, HOM, and QNewton-BFGS.
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Chapter 7

Numerical Experiments: A Backbone Model of Proteins

In this chapter we present the results of numerical experiments using HOPE to
predict the native conformations of proteins. Simulated annealing, parameterized
to use more than twice the amount of computational resources to solve the same
problem, was unsuccessful. We also show that HOM is more successful at pre-
dicting the native conformations than a globally convergent variant of Newton’s
method.

We use the previously introduced coarse-grained protein model of Veitshans,
Klimov and Thirumalai [115] to test the efficacy of HOPE. In the coarse-grained
protein model each amino acid is represented by its C,, atom. Thus, a polypeptide
chain is modeled as a chain of particles, where each particle corresponds to an C,,
atom and models one of three types of residues in terms of affinity for neighboring
molecules: hydrophobic, hydrophilic, or neutral. The features of proteins that are
most responsible for structural stability are included in the model-—hydrophobic
forces, van der Waals interactions, and torsional strain—and both bond lengths
and bond angles are allowed to be variable. The diversity of hydrophobic species
in real proteins is modeled in the interactions between the particles corresponding

to hydrophobic residues.
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7.1 The Potential Energy Function

Let X € R3" denote the Cartesian coordinates of a chain of n particles in three
dimensions, with X} € R? containing the coordinates of the k'* particle in the
chain. We also use the notation Xj to denote the k** particle. The geometry
of a chain is presented in Figure 7.1. Four particles, X, ..., X, 3, are depicted
as nodes in the figure, with lines between nodes representing the bonds between
particles. These bonds do not model true chemical bonds in the protein; rather
they reflect the rigid distances between consecutive C, atoms observed in native

conformations of proteins (~ 3.8A).

Xig ===

Figure 7.1: Geometry of the model protein.

The distance between particles X; and X is denoted by r;; = || X; — Xil|2;
thus, 7,41 is the bond length between consecutive particles X; and X, ;. The
angle 6; € [0, 7], formed between the three consecutive particles, X;, X;1, and
X2 is the bond angle. The angle ¢; € [—m, x|, formed between the vectors
normal to the plane defined by particles X;, X;.1, and X, 5 and that defined by
particles X1, X;10, and X3 is the dihedral angle. The choice of sign for the
dihedral angles conforms to the rules set forth in [60].

Each particle is assigned a particle type, p, depending on the type of residue
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to which it corresponds: hydrophobic (B), hydrophilic (L), or neutral (N). For
example, if particle X represents a hydrophobic residue then p, = B.

The total potential energy of a chain of particles, F : R3 — R, is given by:
E<X) - Ebl(X)+Eba(X) +Edzh(X) +En0n(X) (71)

where Ey, Fye, Egin and E,,, correspond to the bond length, bond angle, dihe-
dral angle, and nonbonded potentials, respectively. The bond length and bond

angle potentials, which depend only on the coordinates of the particles, are as in

Table 5.1:
n—I1 k
Ebl(X) = Er (Tz +1 77)2 (7 2)
=1
n—2 k’ B
Ew(X) =35 (6:~0)° (7.3)
=1

with k,, 7, kg, and 6 given.
The dihedral angle potential, which does depend on the properties of particles

in a particular chain, is as in Table 5.1 using n = 1, 3:

n—3

Egin(X) = [ks(1 + cos ¢;) + ks (1 + cos 3¢;)] (7.4)

i=1
where k4 and ks, take on one of two values depending on P;, the number of
neutral (N) particles in the subchain forming the dihedral angle ¢;. Specifically,

the values of these parameters are given by

P ke | kse

<2 |12¢, | 1.2¢y
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where ¢y, is the average strength of hydrophobic interactions. Figure 7.2(a) shows
a plot of the two curves for the possible sets of parameters as a function of the
dihedral angle, ¢. Note that there is a significant difference between the energy
barriers of the two curves. Conformations of subchains with two or more neutral
particles are more flexible (due to the lower energy barriers in the dashed curve
of Figure 7.2(a)) than those of subchains with fewer than two neutral particles

(with large energy barriers at ¢ = 0 and ¢ ~ 42 in the solid curve).

— kkg =128, 8 — B=1
--- k =07k, =0.2¢, - B=o
At [ P M \n = B=-1
6r 1
al \
c
LIJ .
2r E
20
A
N
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pr o(rach 0 5 1 12 14 16 18 2

(a)

Figure 7.2: Plots of (a) dihedral and (b) nonbonded potential energy terms.

The nonbonded potential also depends on the types of particles in the chain,

and is a form of the Lennard-Jones 6-12 potential (similar to F,q, in Table 5.1):

n—-3 n _ N\ 12 —\ 6
r T
Enon(X) =) D %j{ocz-j (7-) ~ P (7..) }
i=1 j=i+3 Y Y

The parameters used in each pairwise interaction of particles ¢ and j are

(7.5)

Di bj ij | Bij | Vi
L,B 1 | =1\ 4ep
N/LNB| 1 | 0 | 4er
B 1 1 | 4vey,
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where €, = gsh, and v is a dimensionless parameter assumed to have a Gaussian
distribution with a mean value of 1 and a standard deviation of ¢. The diversity
in the hydrophobic residues is controlled by o, with o = 0 leading to no diversity
(i.e., all hydrophobic residues are identical). We assume that interactions between
hydrophobic residues are attractive; thus, only positive values of v are used.
(More details for the choice of v are given in [115].) Specific values of o for the
chains used in computations are presented in Section 7.4. Figure 7.2(b) shows a
plot of the three curves for the possible sets of parameters as a function of r, the
distance between a given pair of particles. Note that the plot of the curve for
B = —1 shows only the average interaction between the pair of particles (i.e., it

is the curve for v = 1).

7.2 The Homotopy Function

We now define the homotopy between the potential energy functions of the tem-
plate chain, E°(X), and the target chain, E'(X). This homotopy is designed
to reduce high energy barriers that are due to the dihedral potential and allow
for conformational changes to be driven solely by nonbonded interaction at some
points during the deformation of E? into E'. The reduction of energy barriers is
necessary in situations where a dihedral angle in the native conformation of the
template is of opposite sign to the corresponding angle in the native conformation
of the template. Once nonbonded interaction becomes the most influential factor
driving conformational changes, larger changes are allowed. This is necessary if
the native conformations of the template and target proteins differ in structure
by a significant amount.

First, the dihedral potentials are partitioned into two terms containing low
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frequency (cos ¢;) and high frequency (cos3¢;) terms:

Egin(X) = Egin1 (X) + Egina(X) (7.6)
with

n—3

Egin = Z ks(1+ cos¢;) , and (7.7)
i=1
n—3

Edih2 = Z k’3¢(1 -+ cos 3¢z) . (78)
i=1

Using these two dihedral terms, we define the homotopy function as

H(X,\) = Eg(X) + By, (X)
+ (1= p1(N) Egip (X) + pa(N) Egyp (X)
+(1 - pQ()‘))EgihQ(X) + p5()‘)Eéih2(X)

+ (]‘ - p3()‘))E20n(X) + pﬁ()‘)E'rlwn(X) (79)

where p;(A\), i = 1,...,6, are continuous weighting functions dependent on the
homotopy parameter, A. In order to satisfy the conditions that H(X,0) = E°(X)

and H(X,1) = E'(X), these functions must satisfy the following:

0, ifA=0
pi(N) = Li=1,...,6. (7.10)
1, ifa=1

The convex homotopy, defined using p;(A) = A, did not yield good results but
was used as a starting point for developing a more useful homotopy. Specifically,
we performed computations with HOM to identify modifications to the convex
homotopy that increased the success rate of predicting the correct conformations

for the target chains.

112



Figure 7.3 shows plots of the weighting functions, p;(\), used in the com-
putations. A convex homotopy deforms E° = into E} = in the first half of the
homotopy (A € [0.0.5]) so that in the second half of the homotopy (A € [0.5,1]),
E} . is the only nonbonded potential contribution in H. The template dihedral
terms (EY,, and EY,,) are driven to zero during the first quarter of the homo-
topy, and the target dihedral terms are not included until the second half of the
homotopy. Thus, during the second quarter of the homotopy (A € [0.25,0.5])
there are no dihedral angle potential contributions in H. This allows the non-
bonded interactions to determine all conformational stability. We found this
necessary for overcoming the large energy barriers in the dihedral potentials for
template-target pairs whose lowest energy conformations contain dihedral angles
of opposite sign corresponding to the same subchain. In other words, if a dihe-
dral angle differs in sign in the lowest energy conformations for the template and
target chains, there exists a large energy barrier (see Figure 7.2(a)) between the
two conformations. The homotopy function, H, has been designed to allow for
the required conformational changes for such cases.

In the second half of the homotopy, contributions from E},, and E},, are
introduced into H, but at different rates. We do this because for subchains con-
taining at most one neutral particle, Fy) has two local minima with high energy
values; we would like to avoid such minima. Figure 7.4 shows the contributions of
E}, and EL,, to H for several values of A. At A = 0.5, the potential is zero. As A
is increased from 0.5 to 0.75 the contribution of the low frequency dihedral terms
is increased to 2 x E}., . This helps bias towards conformations with ¢ = =+,

avoiding the local minima of EL,. As A increases to 1 the high frequency terms

are gradually included, leading to the true dihedral potential for the target chain.
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Figure 7.3: Plots of the weighting functions used in the homotopy function,
H(X,\), for (a) template and (b) target terms.
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Figure 7.4: Plots of the dihedral potential for subchains with fewer than two
neutral particles for several values of A in the second half of the homotopy.
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7.3 Perturbations

In this section, we describe perturbations based on bond length, bond angle, and
individual particle adjustments that have shown promise in our computations.
Recall that during an iteration of HOPE, each conformation carried over from
the previous iteration is perturbed to produce one or more new conformations.
We have attempted to create perturbations that are related to the properties
of the particles in the proteins. Specifically, we concentrate on perturbing the

particles whose types in the template (p°) and target (p') do not match.

7.3.1 Bond Length Perturbations

We first present a perturbation method based on adjustments in bond lengths. In
this method, we start at one end of the chain and visit each particle, perturbing
the bond length between particles Xy and Xy if p)., # p;.,. The perturbed

bond length between particles X and X1 becomes
Thit1 = Tk kt+1 + Op (7.11)

where ¢, is taken from a uniform distribution on the interval [—a,., a,]. The choice
of values for a, is discussed in Section 7.4 in the context of specific computations.

Once particle X, has been perturbed, the particles in the remainder of the
chain, X o,...,X,, are then shifted by ¢, in the same direction of change as
Xjy1. Figure 7.5(a) depicts a perturbation of particle X for 6, > 0, where
particles Xyi1, Xgyo,..., X, are shifted to Xk+1, X;HQ, . ,Xn. If another bond
length is perturbed later in the chain, say between particles X; and X ; for
some k < j < n —1, then X]‘+1 is perturbed (instead of the original X;;) and

A

Xjto, .- . X,, are shifted (instead of the original X o,...,X,).
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Figure 7.5(b) depicts a perturbation of particle X for 6, > 0, where the
remainder of the chain is not shifted (i.e., particles Xyo, ..., X, remain in place).
Results of computations using bond length perturbations where the remainder
of the chain was shifted were significantly better than for those using this type
of perturbation, however. Therefore, we will present results only for the bond

length perturbations with shifts.

Xi Xi1 X Xp  Xir1 Xy
___Q ——p
\ 1

\ R i

Xk+2 /b Xk+2 Xk—|—2

/
/

(a) (b)
Figure 7.5: Perturbations based on bond length adjustments. In (a) X}, and

the remainder of the particles in the chain are shifted and in (b) only Xy is
shifted.

7.3.2 Bond Angle Perturbations

In this section, we present a perturbation methods based on adjustments in bond
angles. For these perturbations, we once again start at one end of the chain, but
visit each angle, perturbing 0y, if p)_, # pj 4 or P, # pi.o. Recall that 6y is
the bond angle between particles X, X1, and Xy, 2. The new bond angle is

given by
O = 0, + 0 . (7.12)

where 0y is taken from a uniform distribution on the interval [—ag, ag].
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The coordinates of particle Xy o can be adjusted to satisfy (7.12). As in the
bond length perturbations, the particles in the remainder of the chain, particles
Xgis, ..., X,, are rotated as well. Specifically, when 6, is perturbed, particles
Xgio2,...,X, are rotated by &y around the normal at the point Xp.; to the
plane defined by particles Xy, Xyi1, and Xjyo. Figure 7.6(a) depicts such a
perturbation of 6 for 9y > 0, with the coordinates of particles Xy o,..., X,
rotated to Xk+2, ..., Xn. If another angle is perturbed later in the chain, say
angle 0; for some k < j < n — 2, then particles Xj+2, ..., X, are rotated (instead

of the original X, o,...,X,).

X Xin

Xit2 \/O K2

Figure 7.6: Perturbations based on bond angle adjustments. In (a), the particles
in the remainder of the chain are shifted when the bond angle centered at particle
Xj41 is adjusted, and in (b) only particle X4 is shifted to produce an adjustment
in the bond angle.

Figure 7.6(b) depicts a perturbation of 6y in which only the position of particle
X1 is changed. By shifting particle X, along a ray that passes through X
and bisects the angle 6, in the plane defined by particles X, Xxi1, and X0,
the bond angle can be adjusted to satisfy (7.12). Such a perturbation does not
affect the positions of any other particles. As was the case for the bond length

perturbations, rotating particles in the remainder of the chains produced better
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results than this perturbation, so we will present results only for bond angle

perturbations with shifts.

7.3.3 Individual Particle Perturbations

The final perturbation method we present here is based on adjustments of indi-
vidual particles. Similar to the bond length perturbations, we start at one end
of the chain and visit each particle, perturbing the coordinates of particle X} if

p} # p. The coordinates of particle X in the perturbed version are given by
Xy = Xi + 0x (7.13)

where 0y € R and each element is taken from a uniform distribution on the
interval [—a;p, @ip).

This perturbation of particle X}, alters the bond lengths r;_1 5 and 74441 as
well as the angle 6,_;. This type of perturbation may more realistically reflect
the dynamics of individual atoms in protein, although we only perturb particles
whose type differs in the template and target chains.

A possible alternative to perturbing individual particles in this way is to per-
turb an individual particle as well as those particles sharing a bond with it. The
particles sharing a bond could be moved in the same direction as the perturbed
particle but to a lesser extent. This could be carried on to subsequent particles
to which those particles are bonded, damping the amount of position change for
particles further away in the chain. In this way, the perturbations would more
closely reflect the dynamics of chemically bonded atoms. However, further devel-
opment and testing of this type of perturbation is needed to investigate the effect
of using perturbations in HOPE that are more closely linked to the dynamics of

real macromolecules.

118



7.4 Results

We present the results of two sets of computations to show the effectiveness
of both HOM and HOPE in predicting the lowest energy conformations of the
model proteins. These results highlight the usefulness of using the homotopy
methods presented in this paper compared with some standard methods used to
solve unconstrained minimization problems. Furthermore, the results show that
the use of perturbations in HOPE helps increase the probability of predicting a
correct target conformation over HOM.

The computations were performed using Matlab® under Linux on a 2.5 GHz
Intel Pentium 4 processor. The potential energy function in (7.1) and the ho-
motopy function in (7.9) were implemented in C so that the first and second
derivatives could be produced using the automatic differentiation tool ADOL-C
v1.8 [47]. The energy functions and their derivatives were accessed in Matlab
via the MEX interface. The parameters used for the potential energy function
(7.1) are given in Table 7.1. Note that distances have been scaled so that 7 = 1
(instead of 3.8 to reflect true distances between Ca atoms). All force constants
thus are scaled to reflect this choice for the unit distance.

We used the 9 chains described in the experiments of [115] for our test data.
The lowest energy conformations of these chains were determined by a process
combining slow cooling and simulated annealing. The sequences of the chains are
shown in Table 7.2, along with the standard deviations, o, of the hydrophobic
diversity parameter, v, and energy values of the lowest energy conformations.
Recall that higher values of o lead to greater diversity in the possible interactions

between hydrophobic particles. Even though the sequences for chains F', G, and

6Matlab 6.5 and the Optimization Toolbox 2.2 from Mathworks, Inc.
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Parameter | Description Value
k, Bond length force constant 100
T Average bond length 1
kg Bond angle force constant 20/(rad)?
0 Average bond angle 1.8326 rad (105°)
€n Average strength of 1
hydrophobic interactions
€L Strength of L-L/L-B interactions 2/3

Table 7.1: Potential energy function parameters used in computations.

H are identical in terms of residues, the chains are in fact different due to the

diversity in the hydrophobic-hydrophobic interactions. (Note the differences in

the energies of the lowest energy conformations.) All of the chains contain n = 22

particles.

In order to remove the rotational and translational freedom from each con-

formation, we use a restricted set of 3n — 6 variables so that

0O 0 O

0 0 Z9

0 wy3 =23

X = Ty Ys z4
Tn Yn Zn

(7.14)

where 2y, v3, 3 > 0 and the k" row of X contains the Cartesian coordinates of

particle X;. Note that all chains of particles can be rotated and translated to this

coordinate system. Furthermore, the implementations of the local minimization

methods tested require variables to be either scalar or vector variables, so the
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Label Sequence o | Minimum Energy
A BBBBBBBBBNNNLBLBLBLBLB | 0.00 -10.6509
B BBBBBBBBNLNLNBLBBBLBLB | 0.00 -10.9834
C BBBBBBBBNLNNLBLBBBLBLB | 0.30 -14.0423
D BBBBBBBBBNNLNBLBLBLBLB | 0.17 -11.8696
E LBBBBBBBNBNLNBLBLBBBLB | 0.10 -11.2465
F LBBBBBBBBBNLNLNBLBBBLB | 0.30 -15.7288
G LBBBBBBBBBNLNLNBLBBBLB | 0.30 -16.2159
H LBBBBBBBBBNLNLNBLBBBLB | 0.30 -16.3866
1 LBNBBBLBBBNNBBLBLBBBLB | 0.30 -11.8513

Table 7.2: Sequences and energy values of lowest energy conformations of chains
used in computations: B, hydrophobic; L, hydrophilic; and N, neutral.

n x 3 matrix X above was stored in a vector of size 3n — 6, with the elements

ordered as

(’227 Y3, 23, X4, Y4, 245 - - -y Tn, Yn, Zn) .

Each chain was used as a template protein (starting conformation) to predict
the lowest energy conformation of the remaining 8 target proteins, yielding a
total of 72 experiments. However, the lowest energy conformations match in
structure for each of the following 5 template-target pairs: A-D, B-C, F-G, F'—
H, and G—H. Thus, there are a total of 62 experiments where the lowest energy
conformation of the template chain differs from that of the target chain. Since
all of the algorithms tested in our experiments were able to correctly predict the
native conformations for the target chains for the 10 matching template-target

pairs, we present the results for the remaining 62 experiments to highlight the
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differences between the various methods.

Success of the methods was measured for each predicted conformation, X1,
against the lowest energy conformation, X*, using two metrics—the structural
overlap function from [115] and root mean-squared distance. The structural over-
lap function is the percentage of inter-particle distances between nonbonded par-
ticles that differ in X! and X* by more than 20% of the average bond length, 7.

It is computed as

9 n—-3 n ) .
i=1 j=i

where O(-) is the Heavyside function and r' and r* are distances between particles
in X! and X*, respectively. Note that x(X') € [0,1], with x(X!) = 0 meaning
that X1 is structurally equivalent to X*.

The root mean-squared distance is a standard metric in the protein structure
prediction literature for measuring the structural similarity between two protein

conformations. It is computed as

1 n
RMSD(X') = min [ > OlIXE - x| (7.16)
=1

where S(X1) is a rotation and translation of X'. Thus, RMSD(X"') measures
the distance between corresponding particles in the predicted and lowest energy
conformations when they are optimally superimposed. For exact conformational
matches, RMSD(X') = 0, and the value increases as the two conformations

differ more in structure.

7.4.1 Computations using HOM

In the first set of experiments we compared HOM (Section 3.2), a variant of

Newton’s method that uses a trust region to guarantee convergence (Newton-TR)
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[18, 19], and QNewton-BFGS(Section 4.1). In Matlab, the latter two methods are
implemented in sfminbx and fminusub, respectively, and are called from the
unconstrained minimization driver, fminunc. Although the only differences in
performance between Newton-TR and QNewton-BFGS were in the amount of work
performed by each method to predict a target conformation, the results of both
methods are presented for completeness. Within HOM, Newton-TR was used to
find local minimizers of H (Figure 3.2, Step 5).

For each computation using HOM, we set the number of steps in A to be
m = 10, making AX = 0.1. The minimization routine was stopped when either
the change in function value between iterates dropped below 107°, the max-
imum change in any of the variables in X between successive iterates dropped
below 107'2, or the number of iterates reached the maximum number of iterations
allowed (1000 for Newton-TR and QNewton-BFGS and 60 for each minimization
performed in HOM).

Table 7.3 shows the results of the 62 experiments for the different methods.
The first column lists the method. The second column shows the number of
computations in which y(X') = 0 i.e., the method predicted the correct confor-
mation. HOM has a success rate of 24% (column 3), almost four times better
than Newton-TR and QNewton-BFGS. Columns 4 and 5 present the average struc-
tural overlap, ¥, and root mean-squared distance, RMSD, respectively, of the
62 computations. These results show that HOM predicts better structures than
Newton-TR and QNewton-BFGS on average, even when an exact match of the low-
est energy conformation was not predicted. The main drawback for HOM, at least
with respect to Newton-TR, is that it is more computationally expensive. The

last three columns in the table show ¢, the average clock time used in seconds;
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Success
Method x=0|Rate (%) | ¥ |RMSD | t| N;j| Ng
HOM 15 24 036 | 0.38 |10 | 152 | 4809
Newton-TR 4 6 0.45 0.55 1] 20| 523
QNewton-BFGS 4 6 045 | 055 |13 ] 362 —

Table 7.3: Comparison of prediction results using HOM, Newton-TR, and
(Newton-BFGS.

Nf, the average number of function evaluations; and Ncg, the average num-
ber of conjugate gradient iterations per computation. Note that QNewton-BFGS
does not use the conjugate gradient method in determining search directions.
Clearly, Newton-TR performs the least amount of work in all three of these mea-
sures, with HOM falling in between Newton-TR and QNewton-BFGS. KEach run
of QNewton-BFGS first computes an approximation of the inverse of the Hessian
of the potential energy function using finite differences of gradients, and thus
is more expensive than the other methods. Even though HOM requires more
work than Newton-TR, the trade-off in success rate shows the benefit of using a

homotopy method over one of the more common minimization algorithms.

7.4.2 Computations using HOPE

In the second set of computations we compared HOPE and ensemble-based, basin-
hopping simulated annealing (Basin-SA)—a combination of the methods of [116]
and [94]. Basin-SA was implemented using SA Tools v1.03 [94].

In Basin-SA the move class, the set of possible conformations produced by

perturbing a given conformation, consists solely of local minimizers of E'(X).
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Specifically, candidate conformations are found using Newton-TR started at a
perturbed version of each conformation in the ensemble. This allowed us to use
the same perturbations specified in Section 7.3 and used in HOPE.

We chose to allow both methods to compute an equivalent number of local
minimizers in the course of each computation. Specifically, we tested HOPE
using m = 10 steps in A and maximum ensemble sizes of ¢,,., = 2,4,8, and 16.
Also, we set ¢ = 1, allowing only one perturbed version to be generated for each
ensemble conformation. This yielded upper limits of 20, 40,80, and 160 local
minimizers to be computed for the values of ¢,,,., respectively. Recall that there
may be fewer local minimizers computed than this upper limit, as only unique
conformations are carried from one iteration of HOPE to the next. Newton-TR as
parameterized in the previous section was used for local minimization in HOPE.

In Basin-SA, we used ensembles of size ¢, at each of m = 10 steps of a
constant speed annealing schedule” [57], starting at T = 10°. Therefore, the
number of calls to Newton-TR in Basin-SA matched the corresponding upper
limit of those allowed in HOPE. The main difference between the methods is the
function being minimized—the homotopy function in HOPE and the potential
energy function of the target chain in Basin-SA.

Computations were performed for both methods using the perturbations in
Section 7.3, with maximum amounts of perturbation a, = 1, ag = 40°, and
a;, = 1. It is typical in simulated annealing methods that the perturbations
allowed in the move class be functions of the temperature, 7', defined by the

annealing schedule. Thus, we designed a function for the maximum perturbation

"The berkeley schedule in SA Tools implements this schedule (all default values were used).
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satisfying

i pnae(T) = 0, (7.17)
Tlim Pmaz(T) = {ar, ag,a;p} . (7.18)

The following function was used in the Basin-SA computations:
1
Pmaz = @€ T

where v € (0,1) and o = a,,ag or a;,, depending on the perturbation method

used. Note that this function passes through the point (T, p) when

1
T T T (e
The point (T, ) = (1,0.9) is used in Basin-SA so that the amount of maximum
perturbation allowed in Basin-SA is equivalent to that allowed in HOPE (either
ar, ag, or a;,) for almost all values of T" except those very close to zero.

Table 7.4 shows the results of the 62 experiments for HOPE and Basin-SA
using the bond length perturbations with shifts and individual particle pertur-
bations. Results for the two methods using bond angle perturbations were very
similar to those using the bond length perturbations. Thus, results for those
experiments are not presented here, so as to highlight the differences between the
other types of perturbations.

Results for the computations using bond length perturbations appear in the
top half of the table and those for the individual particle perturbations appear in
the bottom half of the table. Due to the use of the stochastic perturbations, each

experiment was performed 10 times, and the results presented are the averages

over these 10 runs.
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Computations using Bond Length Perturbations

Success
Method Crmaz | X = Rate (%) | X | RMSD t Ny N,
HOPE 2 33.4 54 0.14 0.17 35| 539 12369
4 43.1 70 0.08 0.11 65 | 992 22678
8 54.6 88 0.03 0.04 115 | 1732 39642

16 | 59.0 95 0.01 | 0.02 |200|2981 | 68381

Basin-SA | 2 13.1 21 0.27 0.36 92 753 17170
4 20.8 34 0.19 0.26 107 | 1576 35528
8 28.5 46 0.13 0.19 229 | 3174 71893

16 | 40.2 65 0.08| 0.12 |434 | 6358 | 143660

Computations using Individual Particle Perturbations

HOPE 2 18.4 30 0.32 0.34 26 391 10284
4 22.3 36 0.30 0.31 36 041 14163
8 224 36 0.29 0.30 43 629 16513
16 23.5 38 0.28 0.30 46 679 17733
Basin-SA | 2 8.9 14 0.41 0.48 27| 348 9309
4 11.8 19 0.38 0.43 o7 | 744 19843
8 13.5 22 0.35 0.38 116 | 1546 40995
16 19.3 31 0.30 0.31 236 | 3167 83724

Table 7.4: Comparison of prediction results using HOPE and Basin-SA (averaged
over 10 runs). The lines in bold highlight the best prediction results for each of
the algorithms.

Presenting the results for increasing values of c¢,,,, in Table 7.4 shows the

trends of the success of and computational effort required by each method as
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more local minimizers are generated. Note that the best results for HOPE and
Basin-SA (shown in bold) are those that use bond length perturbations and the
largest ensemble size, ¢4, = 16. Figure 7.7 shows plots of the success rates as
a function of ¢,,4,. Clearly, HOPE using bond length perturbations outperforms
all of the other methods in terms of success for each value of ¢,,,,, monotonically
increasing to an average success rate of 95% at ¢4, = 16. We can also see
that the computations using bond length perturbations perform better than the
individual particle perturbation. Note that the success rates as functions of ¢4,
for the two methods using bond length perturbations appear to be converging to a
different value than those for the methods using individual particle perturbations.
This suggests that qualitative differences in perturbation methods may lead to
quantitatively different upper bounds on success rates. Such results lead us to
believe that future work should include a more detailed analysis of the effects of
perturbations in HOPE.

Figure 7.8 plots RMSD, the average RM SD(X"'), showing that HOPE using
bond length perturbations clearly outperforms all other methods. Even though
the average success rate tops out at 95%, HOPE performs very well even in the
cases where the lowest energy conformation was not found, with RMSD = 0.02
(and ¥ = 0.01) for ¢ = 16. Note that the results for the different types of
perturbations tend to be converging to different values, as was the case for the
success rates. The success rates and these average measures of structural sim-
ilarity results are not necessarily dependent on one another (e.g., it is possible
to consistently perform extremely poorly in one experiment and produce increas-
ingly better overall success rates while RM SD remains relatively high due to that

one experiment). However the results show that these measures are correlated,
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Figure 7.7: Success rates using (a) bond length perturbations and (b) individual
particle perturbations.
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Figure 7.8: Average RMSD(X!) value per experiment using (a) bond length
perturbations and (b) individual particle perturbations.
leading us to believe that our methods are robust.

The computational effort required by the different methods is presented in
the last three columns of Table 7.4 showing that HOPE required less time and
computational effort than Basin-SA to produce better results. Furthermore, we
can see in Figures 7.9 and 7.10 that the amount of computational time follows
the same trend as the number of function evaluations, with the increase in cost

as Cpay increases being greater for Basin-SA than for HOPE. These differences
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Figure 7.9: Average wall clock time in seconds per experiment using (a) bond
length perturbations and (b) individual particle perturbations.
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Figure 7.10: Average number of function evaluations per experiment using (a)
bond length perturbations and (b) individual particle perturbations.

are most likely due to the fact that in the earliest iterations in HOPE, fewer
than ¢4, conformations are used (recall that ¢ = 1). Note that for Basin-SA
using individual particle perturbations there is not much increase in the average
amount of effort required to complete the experiments. This suggests that the
amount of perturbation used for these computations, a;, = 1, did not produce
enough change between the original conformations and their perturbed versions

to lead to unique local minimizers.
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HOPE was the only method that successfully predicted the native conforma-
tions in at least one of the 10 runs performed for all of the 62 computations.
Figure 7.11 presents the results with ¢,,,, = 16 for each of the template-target
pairs using (a) HOPE and (b) Basin-SA. The size of each circle represents the
percentage of runs where a target was successfully predicted starting at a given
template. HOPE predicted the correct target conformations in all 10 runs for
44/62 (71%) template-target pairs. Moreover, HOPE predicted the correct tar-
get conformation in 60% or more of the runs for each template-target. In contrast,
Basin-SA predicted all 10 target conformations correctly for only 14/62 (23%)
pairs. More importantly, Basin-SA was not able to correctly predict the target
conformations for 3 pairs (B-F, B-H, and F'-B) in any of the 10 runs.

HOPE was also more successful than HOM (and thus Newton-TR) in pre-
dicting native conformations. Figure 7.12 presents the results using HOM and
Newton-TR of all 72 experiments, where a circle represents a successful prediction
of a native conformation of the target starting from that of the template. Count-
ing only the template-target pairs for which HOPE predicted the correct target
conformations (44/62), HOPE was almost three times effective as HOM (15/62).
However, the most significant advantage of HOPE over HOM is HOPE'’s ability
to correctly predict the native conformations for all template-target pairs.

HOPE is computationally more demanding that HOM, but the prediction
results justify the use of HOPE for this protein model. HOPE correctly predicted
all of the native target conformation in at least 60% of the runs for each template-
target. However, this improvement required almost 20 times more computational
effort, with ratios of 200/10 seconds in computation time and 2981/152 function

evaluations required for a run of HOPE compared to HOM. The ratio of success
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Figure 7.11: Success of (a) HOPE and (b) Basin-SA using bond length pertur-
bations with ¢,,,, = 16 for each template-target pair. The size of each circle
represents the percentage of successful predictions over 10 runs.
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Figure 7.12: Success of (a) HOM and (b) Newton-TR.

of HOPE versus HOM to the amount of computation required to achieve that
success will most likely differ from problem to problem. The results here, though
demonstrate that the use of perturbations and ensembles increase the effectiveness

of these homotopy optimization methods.
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Chapter 8

Conclusions and Further Study

We have presented HOPE, a new method for solving unconstrained minimization
problems. The results of experiments on standard test problems and in solving the
protein folding problem using simplified protein models demonstrates that HOPE
is an effective method for finding global minimizers. Although this performance
comes at a greater computational cost than is typical for local methods and
for the related HOM algorithm, there are several advantages in using HOPE
over these other methods. The generation of ensembles of local minimizers of
a function, the flexibility to control the amount of computation using several
different parameters, and the ability to take advantage of structure inherent in
the minimization problem are three important benefits.

We demonstrated the flexibility of HOPE in solving several different types of
problems—ranging from simple test problems in one or two dimensions (Nmod),
to more challenging randomly generated test functions (Pint), to complicated
application-driven functions (the potential energy functions in the protein mod-
els). A wide variety of homotopy functions were used in HOPE, with some very
generic and others designed to take advantage of specific features of the problem.

The results, though, show that HOPE is effective even when very little domain-
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specific knowledge of the problem is known or incorporated in the homotopy
function.

We have shown that for simplified models of proteins HOPE is successful at
predicting native conformations. Moreover, we demonstrated that HOPE was
more successful is solving these problems than several standard minimization
methods—QNewton-BFGS, Newton-TR, and simulated annealing. We conjecture
that the success of HOPE in solving these problems is due to the combined use
of homotopy functions, perturbations, and ensembles of points. The homotopy
functions used in the experiments are capable of exploiting the possible struc-
tural similarities of sequence-related proteins, and as noted earlier, exploiting
such properties is necessary for solving the protein folding problem efficiently.
We used perturbations for the exploration of structurally similar conformations
and to avoid conformations corresponding to local minimizers of the potential
energy function. The use of ensembles of conformations allowed for parallel
searches of the conformational space, sometimes in very distant regions (in terms
of structure). We note that there is an ongoing debate in the scientific com-
munity whether native conformations of proteins correspond to minimal energy
structures or structures with relatively low energy that are kinetically the most
favorable. Using HOPE to generate ensembles of low energy candidate structures
may prove useful for investigating these claims.

Future work in developing suitable homotopies for other application areas
would be an important step in demonstrating the power of using a combination
of function/problem deformation, stochastic perturbations, and working with en-
sembles, or populations, of possible solutions. Applying HOPE in another ap-

plication area would help demonstrate its use as a general-purpose minimization
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method as well.

For most of the experiments, HOPE performed considerably more computa-
tion than other methods. In most cases, the increase in cost was matched to some
extent with an increase in performance. An important feature of HOPE is that it
is inherently parallelizable and communication between processors would only be
required in initializing the iterations for each new value of A\. Thus, another goal
would be to implement HOPE as a parallel method, with parallelization focused
on balancing the distribution of ensemble members across computational nodes.
As even small proteins have a large number of degrees of freedom, implementing
HOPE for large-scale problems would allow for work on more detailed models of
the protein folding problem.

Several of the parameters used in HOPE could be determined adaptively,
leading to more efficient use of computational resources and faster convergence
for some problems. In the experiments described in this dissertation, each step
in A was fixed at 1/m, where m was the number of steps to be taken. The
value of A\ could be determined adaptively—e.g. as a function of the number of
local minimization iterations required before convergence or based on the changes
in homotopy function values from one step to the next. This may allow for
larger (and thus fewer) steps in A with no significant decrease in the success rate.
Investigation into the use of adaptive steps in A (as described in [5]), as well as
into adaptively determining the amount of perturbation, number of perturbed
versions of ensemble members to generate, and the maximum ensemble size may
lead to more optimal implementations of HOPE.

Another consideration in using HOPE is the choice of starting points for the

local minimization method. In this work, the ensemble members carried forward
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from the previous iteration were used as starting points. However, we could
extrapolate from these starting points using derivative information to produce
starting points that may lead to fewer iterations in the local minimization [5].

There is great potential for HOPE in other areas of optimization as well.
The HOPE algorithm presented here was designed to solve unconstrained mini-
mization problems. However, by replacing the local minimization method with a
method for solving a different problem, HOPE can be extended for solving other
optimization problems. For example, the local minimization method could be re-
placed by a method for constrained minimization, leading to a variant of HOPE
for solving minimization problems that are subject to constraints.

A major challenge is developing useful homotopies for template and target
functions whose domains differ. (In all of the experiments presented in this dis-
sertation, the dimensions of the template and target function domains were the
same.) The availability of such homotopies would dramatically increase the num-
ber of problems to which HOPE could be applied. For example, there are many
families of proteins whose members have structurally similar native conforma-
tions but whose amino acid sequences differ in length. A homotopy designed
to work with template and target proteins with different numbers of constituent
atoms (or just amino acids when using a backbone model of proteins) would allow
HOPE to be applied to pairs of proteins from such families.

HOPE is a promising method for unconstrained minimization. There is much
work to be done in terms of performance analysis, optimal parameter choices, and
applicability to other application areas. However, based on our results we expect
that HOPE can be used to lend insight on minimization problems in general and

the protein folding problem in particular.
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Appendix A

Native Conformations of Chains of Charged Particles

Charges 0, 0 E(0)
+ 4+ ++ | +2.3911 +2.3736 | +0.5954
—+++ | +1.4835 +3.7176 | —0.8177
+ —++ | +2.6005 +4.7473 | —0.2500
— — 44 | +1.6755 +4.6251 | —1.5677
+ 4+ —+ | +1.5359 +3.6826 | —0.2500
— 4+ —+ | +2.3562 +2.3387 | +0.0454
+ — —4+ | +1.6930 +4.5902 | —0.9957
— — —+ | +2.5656 +4.7997 | —0.8177

Table A.1: Charges on the n = 4 chains from Table 6.3.
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Charges 01 0 03 E(0)
T+t | 22310 +2.4435 +2.2340 | +0.7412
44| 4£1.6057 +3.2987 +1.7802 | —1.1694
+ —+++ | +2.5482 +2.1118 +2.4958 | —0.5573
b4+ | 414312 1£3.8397 4+1.5533 | —2.4002
++—+4++ | +1.5184 +3.7874 +1.5184 | —0.9723
4+ | 417453 +3.2280 +1.6930 | —1.1480
b — 44 | 414661 +4.0492 +1.4312 | —2.2651
— — —++ | +1.5533 +3.8397 +1.4312 | —2.4002
+++— 4+ | +2.4958 +4+2.1118 +2.5482 | —0.5573
-4 | 415010 +3.6477 +1.6232 | —1.2737
+ — 4+ —+ | +2.2864 +2.3562 +2.2864 | —0.3813
—— 4+ —+4+ | +1.6930 +3.2289 +1.7453 | —1.1480
+4+——+ | +1.4312 +4.0492 +1.4661 | —2.2651
—+ ——+4+ | +1.6232 +3.6477 +1.5010 | —1.2737
b | 414661 4+3.9095 +1.4661 | —2.1061
— — ——+ | +1.7802 +3.2987 +1.6057 | —1.1694

Table A.2: Charges on the n = 5 chains from Table 6.3.
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Charges 0, 04 03 04 E(9)
+ 4+ ++++ | +2.3911 +2.3213 +2.3213 +2.4086 | +0.7744
—+4+4+4++ | +2.0595 +2.6005 +2.1118 +2.6005 | —1.6281
+ — 4+ +++ | +2.7227 +2.0071 +2.6005 +2.1817 | —1.0903
— —++++ | +2.4958 +2.1468 +2.4435 +2.3387 | —3.4178
+4+—+++ | +1.9199 +2.8972 +1.8850 +2.7751 | —1.3144
—+ —+4+4+ | +2.1118 +2.6354 +2.0246 +2.6529 | —2.1922
+ — — 4+ ++ | +2.2166 +2.5831 +2.0420 +2.6180 | —3.0511
— — — 4+ ++ | +2.4260 +2.2864 +2.2864 +2.4260 | —3.9775
+ 4+ +—++ | +2.7751 +1.8850 +2.8972 +1.9199 | —1.3144
— 4+ 4+ —4++ | +2.4958 +2.1468 +2.5133 +2.2340 | —2.4835
4+ —+ —++ | +2.6878 +2.0071 +2.6878 +2.0595 | —1.6246
—— 4+ —4++ | +2.3736 +2.3213 +2.3038 +2.3911 | —2.8356
+ 4+ ——++ | +2.0246 +2.7053 +2.0420 +2.6180 | —3.2272
— 4+ — — ++ | +2.4609 +2.2515 +42.3736 +2.3213 | —3.0394
+ — — — 44 | +2.1118 +2.6529 +42.0246 +2.6354 | —3.5946
— — — — 4+ | +2.3387 +2.4435 +2.1468 +2.4958 | —3.4178
++4++—+ | +2.1817 +2.6005 +2.0071 +2.7227 | —1.0903
—++ 4+ —+ | +2.0246 +2.7227 +1.9722 4+2.7227 | —2.4153
+ — 4+ —+ | +2.4435 +2.2864 +2.3038 +2.4260 | —1.7281
—— 4+ 4+ —+ | 423213 +2.3736 +2.2515 +42.4609 | —3.0394
+ 4+ — 4+ —+ | +2.0595 +2.6878 +2.0071 +2.6878 | —1.6246
—+—+—+ | +2.3911 +2.3038 +2.3213 +2.3911 | —1.4619
+ — — 4+ —+ | +2.4435 +2.2689 +2.3562 +2.3562 | —2.2621
— — — 4+ —+ | +2.6529 +2.0246 +2.6354 +2.1118 | —2.1922
+ 4+ ——+ | +2.6180 +2.0420 +2.5831 +2.2166 | —3.0511
— 44+ — —+ | +42.4086 +2.3038 +2.3038 +2.4086 | —3.2446
+ — 4+ ——+ | +2.3562 +2.3562 +2.2689 +2.4435 | —2.2621
— — 4+ — —+ | +2.2340 +2.5133 +2.1468 +2.4958 | —2.4835
+ 4+ ———+ | +2.6354 +2.0246 +2.6529 +2.1118 | —3.5946
— 4+ — — —4 | +2.7227 +1.9722 +2.7227 +2.0246 | —2.4153
+ — — — —4 | +2.3387 +2.3387 +2.3562 +2.3213 | —2.8114
————— + | +2.6005 —+2.1118 +2.6005 +2.0595 | —1.6281

Table A.3: Charges on the n = 6 chains from Table 6.3.
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Figure A.1: Native conformations
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q=[-1+1+1+1]; f=-0.81772

q=[-1-1+1+1]; f=-15677

q=[-1+1-1+1]; f=0.045356

q=[-1-1-1+1]; f=-0.81772

of chains of n = 4 particles.



q=[+1+1+1+1+1]; f=0.74123 q=[-1+1+1+1+1]; f=-1.1694

q=[+1-1+1+1+1]; f=-0.55729 q=[-1-1+1+1+1]; f=-2.4002

q=[+1+1-1+1+1]; f=-0.97232 q=[-1+1-1+1+1]; f=-1.148

q=[+1-1-1+1+1]; f=-22651 q=[-1-1-1+1+1]; f=-2.4002

Figure A.2: Native conformations of first 8 chains of n = 5 particles.
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q=[+1+1+1-1+1]; f=-0.55729 q=[-1+1+1-1+1]; f=-1.2737

q=[+1-1+1-1+1]; f=-0.38131 q=[-1-1+1-1+1]; f=-1.148

q=[+1+1-1-1+1]; f=-2.2651 q=[-1+1-1-1+1]; f=-1.2737

q=[+1-1-1-1+1]; f=-2.1061 q=[-1-1-1-1+1]; f=-1.1604

Figure A.3: Native conformations of last 8 chains of n = 5 particles.
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q=[+1+1+1+1+1+1]; f=0.7744 q=[-1+1+1+1+1+1]; f=-1.6281

q=[+1-1+1+1+1+1]; f=-1.0903

q=[+1-1-1+1+1+1]; f=-3.0511 q=[-1-1-1+1+1+1]; f=-3.9775

Figure A.4: Native conformations of first 8 chains of n = 6 particles.
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q=[+1+1+1-1+1+1]; f=-1.3144 q=[-1+1+1-1+1+1]; f=-2.4835

q=[+1-1+1-1+1+1]; f=-16246 q=[-1-1+1-1+1+1]; f=-2.8356

q=[+1+1-1-1+1+1]; f=-3.2272 q=[-1+1-1-1+1+1]; f=-3.0394

q=[+1-1-1-1+1+1]; f=-3.5946 q=[-1-1-1-1+1+1]; f=-3.4178

Figure A.5: Native conformations of next 8 chains of n = 6 particles.
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q=[+1+1+1+1-1+1]; f=-1.0903 q=[-1+1+1+1-1+1]; f=-2.4153

q=[+1-1+1+1-1+1]; f=-1.7281 q=[-1-1+1+1-1+1]; f=-3.0394

q=[+1+1-1+1-1+1]; f=-1.6246 q=[-1+1-1+1-1+1]; f=-1.4619

q=[+1-1-1+1-1+1]; f=-22621 q=[-1-1-1+1-1+1]; f=-2.1922

Figure A.6: Native conformations of next 8 chains of n = 6 particles.
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q=[+1+1+1-1-1+1]; f=-3.0511 q=[-1+1+1-1-1+1]; f=-3.2446

q=[+1-1+1-1-1+1]; f=-2.2621 q=[-1-1+1-1-1+1]; f=-2.4835

q=[+1+1-1-1-1+1]; f=-3.5946 q=[-1+1-1-1-1+1]; f=-2.4153

q=[+1-1-1-1-1+1]; f=-2.8114 q=[-1-1-1-1-1+1]; f=-1.6281

Figure A.7: Native conformations of last 8 chains of n = 6 particles.
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Appendix B

Chains used in Experiments on Larger Chain

i Charges HOPE E(¢')
Template | ——+ -+ —-++—-++—-—+—-—++—+—+
2 ——+—+—-++-—F+-——F+++—+—+ —20.291
3 —— ==+ttt -+ -+ +—F+++ —21.685
4 ———++-—F——F++ -+ -+ -+ -+ —21.154
5 -t —F++tt -t -+t —+——+++ —19.748
6 ——t -ttt -+ +———+ —18.788
7 ——tt -ttt ==t ——+ —20.825
8§ |-————= ++——++-——F+—+—-—+ —19.870
9 e e i M S e i i e i M —17.780
10 e e e i ++ - —+ —19.377
11 -ttt t+F+ -ttt -t —= —23.578
12 - +—————- e —13.844
13 +t -+t -+ttt t+++++ = —17.933
14 B i E e H i e S —20.589
15 L e i e i e s M NS —18.238
16 ++tt+t -ttt =+ —++ —20.090
17 t+—t-—F -t -+ —++—————| 18475
18 ettt === +—F+-——+++- —19.191
19 B i i i Sl e e —20.271
20 ++ -+ -+ -+ =+ -+ —19.220

Table B.1: Charges on the chains of results presented in Table 6.5. The energy

of the conformation predicted by HOPE is repeated here for reference.
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