RESTORING IMAGES DEGRADED BY
SPATIALLY-VARIANT BLUR

JAMES G. NAGY* AND DIANNE P. O’LEARY!

February 24, 1995

Abstract. Restoration of images that have been blurred by the effects of a Gaussian blurring
function is an ill-posed but well-studied problem. Any blur that is spatially invariant can be ex-
pressed as a convolution kernel in an integral equation. Fast and effective algorithms then exist
for determining the original image by preconditioned iterative methods. If the blurring function is
spatially variant, however, then the problem is more difficult. In this work we develop fast algorithms
for forming the convolution and for recovering the original image when the convolution functions are
spatially variant but have a small domain of support. This assumption leads to a discrete problem
involving a banded matrix. We devise an effective preconditioner and prove that the preconditioned
matrix differs from the identity by a matrix of small rank plus a matrix of small norm. Numerical
examples are given, related to the Hubble Space Telescope Wide-Field / Planetary Camera. The
algorithms that we develop are applicable to other ill-posed integral equations as well.

Key words. image restoration, spatially-variant point spread function, discrete ill-posed prob-
lems, convolution, first-kind integral equations, regularization.

AMS(MOS) subject classifications. 65F20, 65F30.

1. Introduction. An ideal camera or recording device would record an image
so that the intensity of a small piece (pixel) of the recorded image was directly pro-
portional to the intensity of the corresponding section of the scene being recorded.
Real cameras violate this model in two ways:

e The recorded intensity of a pixel is related to the intensity in a larger neigh-
borhood of the corresponding section of the scene. This effect in visual images
is called blurring.

e The recorded intensities are contaminated by random noise.

The natural mathematical model of the recording operation is an integral equation

of the first kind:
[K05 0t = 966) =) = 57 ()

Here the spatial coordinates are s € R? and t € R?, and Q2 is a closed region containing
the domain of the image. The blurring of the unknown true image f* : R? — R is
modeled by convolution with the point spread function (kernel) k : R?* — R? plus
the addition of noise : R? — R. The function g : R? — R is the measured image,
usually known only for certain discrete values of s, while ¢* is the unknown exact
blurred image. Since the number of measurements is finite, the model is discretized
into a matrix equation

Kfm g

where K € R™" ™. (Our algorithms also have natural extensions to overdetermined
systems, but we prefer to keep the notation simple by assuming that K is square.)

* Department of Mathematics, Southern Methodist University, Dallas, TX 75275.
(nagy@cygnus.math.smu.edu). This work was sponsored by an NSF Postdoctoral Research Fel-
lowship in the Mathematical Sciences.

t Department of Computer Science and Institute for Advanced Computer Studies, University of
Maryland, College Park, MD 20742 (oleary@cs.umd.edu).

1

We order the equations and unknowns in a natural way, with the second component
of s changing the fastest.

Most often, the point spread function k is assumed to be spatially invariant
k(s,t) = k(s —t). This assumption is popular for two reasons:

e The matrix K 1s then a block Toeplitz matrix with Toeplitz blocks, and
matrix-vector multiplication can be accomplished quite quickly by making
use of fast Fourier transforms (cf. §3).

e The point spread function i1s often determined by an idealized model, and
spatial dependence is usually ignored. Alternatively, the point spread function
can be determined experimentally by aiming the camera at a point source and
recording the result. Of course, this approach is prone to error because of
the added noise and the departure of the point source from a delta function,
so data from multiple trials is usually averaged to reduce noise, rather than
used to determine spatial dependence.

There are situations, though, in which 1t is important to take account of the
spatial variation of the point spread function. For example, the point spread function
for the original Hubble Space Telescope Wide-Field / Planetary Camera had a large
amount of spatial variation because of errors in the shaping of the mirrors [1]. As
another example, if the scene contains two objects moving with different velocities
relative to the recording device, then the point spread function is effectively different
for each [11].

Problems like these provided motivation for our project; our goal was to develop
algorithms for deblurring an image with a spatially variant point spread function with
cost comparable to that for spatially invariant ones. These algorithms are efficient
implementations of the conjugate gradient algorithm for finding an approximate so-
lution to Kt = g using the CGLS algorithm; see Bjorck [2]. The main problem with
iterative methods such as this, especially when K is poorly conditioned, is that they
may converge very slowly. Therefore, an effective preconditioning scheme for spatially
varying point spread functions is devised.

Although we phrase our results in terms of deblurring, it is clear that our methods
are applicable to more general integral equations of the first kind with spatially variant
kernel functions. They will be efficient when the support of the function k(s,?) (for
each fixed value of s) is significantly smaller than the domain of integration and when
k can be approximated well by a small number of spatially invariant kernels.

In the next section we describe our mathematical model for the point spread
function. We discuss fast matrix-vector products in §3, and we develop effective
preconditioning matrices in §4. Numerical results and final remarks can be found in

85 and §6.

2. The Model for the Point Spread Function. We assume that we have
been given the point spread function k(s,t) for several different values si,...;s,.
This corresponds to knowledge of p different rows of the matrix K, or, alternatively,
p different point spread functions k;(t) = k(s;,t), ¢ = 1,...,p. Our first task is to
define the other rows of K (or n — p other point spread functions) in a reasonable
way.

The easiest way to extend the data is to define regions of influence for each of
these measured point spread functions: we will partition our domain into p non-
overlapping regions, and assume that in the ith region the point spread function is
spatially invariant, so that k(s,t) = k;(t — s+ s;). Thus we have constructed a kernel

defined by
k(s,t) =61(s)ki(t —s+s1)+ -+ 8p(s) kp(t — s+ sp),

where 6;(s) is the indicator function for the jth region, 1 if s is in the region and 0
otherwise.

In matrix terms, a spatially invariant point spread function on a two dimensional
domain corresponds to a block Toeplitz matrix with Toeplitz blocks [9]. Our parti-
tioning of the image leads to a matrix K defined by

(2.1) K=D\Ki+-+D,K,,

where 1); is a diagonal matrix whose jth diagonal element is 1 if the jth point is in
region ¢, and 0 otherwise.

This set of definitions leads to a discontinuous kernel function k. This is easily
remedied, however: rather than approximating k by a piecewise constant function, we
can choose weights é;(s) to achieve higher-order interpolation between the measured
kernel functions. For example, we can evaluate k(s,?) by performing piecewise linear
interpolation among the functions k1(t),..., kp(¢) using a triangulation of 2-space
with nodes sq,...,s,. This corresponds to a choice of nonnegative diagonal matrices
D; so that Dy +---4+ D, = I. Higher order interpolation could also be used.

It is clear that matrix-vector products involving these matrices K can be accom-
plished in about p times the amount of time required for multiplication by a spatially
invariant point spread matrix. In the next section we will see that we can do much
better than this if the support of each kernel function is reasonably small, resulting
in small bandwidth in the Toeplitz blocks.

3. Fast Matrix-Vector Products. In this section we present a scheme for
efficiently forming matrix-vector multiplies with K. Algorithms for multiplication
by KT are similar. Since notation for two-dimensional image domains can be a bit
cumbersome, we begin by establishing the basic ideas for one-dimensional problems,
and then extend these to two-dimensions. Note that the matrix-vector product D; K;z
amounts to needing only a portion of the vector K;z. Thus, the following discussion
focuses on portions (blocks of contiguous rows) of Toeplitz matrices and shows how
to exploit this structure for fast matrix-vector multiplications.

3.1. Matrix-vector multiplication involving banded Toeplitz matrices.
Fast matrix vector multiplication with Toeplitz matrices is accomplished by exploiting
the relationship between Toeplitz and circulant matrices. A p x p circulant matrix C'
is a Toeplitz matrix whose rows and columns are periodic. That is, each row (column)
of C' is a circular shift of its previous row (column). Tt is well known (cf. Davis [6])
that the eigenvectors of a circulant matrix are the Fourier vectors, and the eigenvalues
can be computed by Fourier transform of the first column of the matrix. Thus, FFTs
can be used to compute matrix-vector products of the form z = Cr in O(plogp)
operations, using only linear storage. Specifically, if ¢ is the first column of (', then z
can be computed as

7 = ifft(££t(c) o ££1(r)),

where o is used to denote component-wise multiplication and £f£t(-) and ifft(.) are
used to denote, respectively, forward and inverse fast Fourier transforms. Optimal
efficiency of FFTs is attained when p is a power of 2.

3

If T'is a p x p Toeplitz matrix (with p < p), then products of the form z = Tr can
also be computed in O(p log p) operations using FFTs by embedding T into a circulant
matrix of larger dimension. Since our focus is on banded matrices, we illustrate this
by considering the p x p banded Toeplitz matrix

tg - tg - t_g

g t_p ;

i ts T s dg]

where 3 1s the bandwidth of 7" and p = p+23. Then T can be embedded into a p x p
circulant matrix

ts N
tsg -ty - t_g
(3.2) C:[T]E . o
W "
to
| tp_y - e tp ts

The vector z = T'r can be computed by forming the circulant matrix-vector product

[;]:cr.

Since FFTs are most efficient if the dimensions of the vectors are a power of 2, it is
common to embed 7" in an m x m circulant matrix, where m 1s the smallest power of
2 of magnitude at least p. To form z in this case, we need to pad r with zeros:

[]=eli]

We now turn to the 2-D problem. Suppose K is a p x p banded block Toeplitz
matrix with p x p banded Toeplitz blocks:

r Ty - T Ty e Tog 7
Ty Ts_s
(3.3)K = Ty T g '
Ti_p T_g
i Ty - Ty Ty - T |

with each Toeplitz block Tl(l) having the same form as (3.1).

Matrix-vector multiplications involving a block Toeplitz matrix with Toeplitz
blocks, such as K, can be done efficiently using 2-D FFTs by a straightforward gener-
alization of the 1-D case. That is, K is embedded into a p x p block circulant matrix,
C, with p x p circulant blocks. If r is a vector of length 2, then z = Kr can be
computed by using 2-D FFTs to form Cr and stripping off the appropriate pieces.
Once again, if p is not a power of 2, we can embed K into an m x m block circulant
matrix with m x m circulant blocks; m > p.

3.2. Matrix-vector multiplication involving Toeplitz-related sums. Now
we return to our problem of forming matrix-vector products involving the point spread
function

K=DiKi+- - -+D,K,,
where each K; is a banded block Toeplitz matrix.

3.2.1. Piecewise-constant convolution functions. We first consider the piece-
wise constant case: the jth element of the diagonal matrix D; is 1 if the jth point is
in region ¢ and zero otherwise, and Y D; = I,.

To form matrix-vector products z = Kr, one could use the techniques described
above to form z; = K;r, and obtain z as z = Y _ D;z,. However, a substantial amount
of work can be saved by taking better advantage of our partitioning of the image
domain €. Suppose, for illustration, that we have partitioned our image domain into
p = 9 rectangular pieces:

1 2 3
4 5 6
7 8 9

Fiac. 3.1. Ezample of itmage domain partitioning.

Then the product DsKsr, for example, depends on the values of r in region 5, as
well as on values in other regions within a width 3 of the borders of region 5. This
domain of dependence is indicated by the dotted borders. Further, if we reorder the
elements of r so that those within the dotted borders are grouped together and ordered
row-by-row (or, alternatively, column-by-column) then the matrix formed from the
nonzero columns of the matrix Dy K5 has exactly the form of the matrix K in (3.3).

Thus, the matrix-vector product can be formed by applying the K algorithm over
each of the regions (using zero-padding along the exterior borders), and concatenating
the resulting vectors.

There are several advantages to this approach:

5

e Storage: To perform matrix-vector multiplies using FFTs, we need to store
the eigenvalues of the extended block circulant matrices corresponding to
each region. This can be done in p x p dimensional arrays. If the bandwidth
B < p/2, which is often the case in image restoration, then p < 2p. Thus,
an upper bound on storage requirements is p arrays of size 2p X 2p, which is
equivalent to one array of size 2n x 2n. To illustrate the savings here, note
that K is an n? x n? matrix. Our storage requirement for a spatially variant
kernel (bandwidth satisfying 8 < p/2) is no more than that needed for a
spatially invariant one!

e Work: The cost in forming a matrix-vector multiplication for a general spa-

tially invariant kernel (using FFTs) is O(n?logn). In the scheme presented
in this section for spatially varying kernels, we need to form p p?-dimensional
spatially invariant products. Thus the total cost is O(pp* log p).
If we consider a fixed continuous kernel discretized with different values of
n, then the bandwidth 7 of the matrix grows linearly with n, so p = p+ 24
also grows linearly and, since pp? = n?, we must have that pp? is bounded
by some constant times n? so the complexity as n — oo is O(n?logn), the
same order as that of a spatially invariant kernel.

¢ Parallelism: This algorithm has inherent parallelism that is worth applying
even to the more simple case of spatially invariant kernels. In this case,
the region can be partitioned into congruent pieces and all of the matrices
K; are equal. The matrix-vector multiplies for each piece can be performed
independently, once information about the overlap regions is exchanged. The
number of pieces is limited by the need to keep 8 < p/2, but each piece can
be spread over multiple processors.

3.2.2. Linear interpolation. Suppose the convolution kernel is approximated
by a piecewise linear function (rather than a piecewise constant one). Suppose, for
illustration, that we have measured the convolution function at 9 points, the vertices
of the triangles in Figure 3.2.

Fi1Gc. 3.2. Fzample of linearly interpolated regions

Then the convolution at the jth point is determined as a weighted average of at
most three spatially invariant convolutions, those corresponding to the three vertices
of the triangle containing point j, or those corresponding to the two endpoints of its

6

line segment if point 5 happens to fall on a boundary.

To form matrix-vector products z = Kr, we partition our domain into overlap-
ping subdomains defining the regions of influence of each of the spatially invariant
convolutions. The measured convolution function corresponding to the center point in
the figure, for example, must be applied over regions 2, 3,4, 5, 6, and 7. Matrix-vector
multiplication is then performed as in §3.1: each region of influence is embedded into
a rectangle. (For efficiency, it might be better to partition the region of influence and
embed into multiple rectangles.) Weighted sums of the resulting point values then
give the desired matrix-vector products.

4. Preconditioning. In general, an effective preconditioning scheme for a con-
Jugate gradient iteration is one in which the preconditioner matrix C' is a good ap-
proximation to the matrix K; that is, the singular values of KC~' are clustered
around one. For ill-posed problems, however, the preconditioner matrix is likely to be
severely ill-conditioned, and early iterations will be highly contaminated with noise.
To avoid this, we take the approach suggested by Hanke, Nagy, and Plemmons [8].
Specifically, the aim 1s to construct a matrix C' that clusters the large singular values
(i.e., approximates K on the signal subspace), while leaving the small singular values
(noise subspace) unchanged. As is shown in [8], this can be done if a spectral decom-
position of C'is available. This is the case for matrices that are block circulant with
circulant blocks. To simplify notation in this section, we assume the matrices K; are
n x n block Toeplitz matrices with n x n Toeplitz blocks. The notation BTTB(n) is
used to represent such matrices. Similarly, BccB(n) will be used to denote matrices
that are n x n block circulant with n x n circulant blocks.

4.1. Preconditioning piecewise-constant convolution functions. There are
several possible schemes for approximating a BTTB(n) matrix with one that is BCCB(n);
see, for example, the recent survey paper by Chan and Ng [4]. In our work, we con-
sider the one proposed by Chan and Olkin [5], which is simply the best Frobenius
norm approximation over all BccB(n) matrices. This is the approach used in [8] for
spatially invariant point spread functions, and we discuss next the necessary modi-
fications to make it applicable to the spatially varying kernels we are considering in
this paper.

Several options exist for approximating K. For example, if we have a parametric
model that relates K;, for each value of n, to a block Toeplitz matrix with Toeplitz
blocks, then this can be used to construct C.

Although this situation may occur in some applications, it may be difficult to
obtain the necessary parametric model. Another approach i1s to form a weighted
average of the K;, from which C' can be constructed. The weights could be determined
by the size of the image pieces influenced by K;, or by weighting “important” regions
of the image more heavily.

A third approach is to construct BcoB(n) approximations of K restricted to each
region. That is, suppose each region is p X p, and define

(4.1) f(:D1K1D1—|—D2K2D2—|—~~~—|—DprDp.
If the equations and unknowns are appropriately ordered, K has the form
Ko 0 - 0
. 0 Ky -+ O
[{ = .)
0 0 K,

where each K; is a BTTB(p) matrix. We use this matrix to construct a preconditioner
as follows. Let C; denote the optimal BCCB(p) approximation to K;, and define C' as

c; 0 - 0

0 Cy - 0
C =

0 0 - G

Since each C; is BCOB(p), we can write C; = F"A;F, where F is the unitary 2-D
Fourier transform matrix. Hence, a spectral decomposition of C'is given by

Ay
Ay
C=(IoF) N (L ©F).

Ap

Using this spectral decomposition, we can apply the technique suggested in [8] for sep-
arating the signal and noise subspaces: a particular truncated spectral decomposition
of C', which we denote as C'; | is constructed and used as a preconditioner. Specifically,
a truncation parameter 7 is chosen, and the eigenvalues of C' with magnitude less than
7 are replaced by 1.

In order to show that C'; is a good preconditioner, we need to show that the large
singular values of KC ! are clustered around 1, while the small singular values remain
unchanged (i.e., cluster around 0). To get to this point, we first need to consider
the difference K — f(, which depends on the differences D; K; — D; K;D;. Note that
premultiplication with D; ensures that this difference is zero in all rows corresponding
to variables not in region i. Using (3.3), we see that in the rows corresponding to
region ¢, nonzeros occur only in columns corresponding to points in the neighboring
regions that are coupled to the ith region. Referring to Figure 3.1, this means that
the nonzeros for block 5, for example, occur only for those points that are outside the
boundary of region 5 but inside the dotted borders. Since there are fewer than 485
of these points, there are at most 43p nonzero columns, and we have

rank(D; K; — Dy K Dy) < 483p.

Assuming that pp? < y2n? for some constant 7, the following lemma has been estab-
lished.

LEMMA 4.1. Let K be given as in (2.1) and K be defined by (4.1) with pp® <
~v?n?. Then

K-K=U,

where rank(U) < 43yn./p.

We note that in most image processing applications, the extent of the point spread
function is small compared to the image dimensions; thus, # < n. Even if 3 is large,
it 1s often the case that the point spread function is large only within a small radius
of the center point, meaning that the large nonzero elements in the matrix are few in
number. In this case, we would obtain results of the form

K—-K=U+YV,

8

where V' has small norm, and rank(U) = O(Bn), with 8 < n. In view of these
remarks, we assume, as is done in [8] for the spatially invariant case, that the entries

kgfy),, of K; are obtained from an infinite sequence {kffy),,} satisfying

i fHWM§M<m

{=—00 j=—o00

Since the entries of K; come from these same generating sequences, the following
lemma holds (cf. [3, Corollary 1]).
LEMMA 4.2. For all ¢ > 0, there exists an N > 0, such that for alln > N,

Ki = Ci = Ui + Vi,

where rank(U;) = O(p) and ||Vi|| < e.
Using the above lemma, the following corollary is easily established.
COROLLARY 4.3. For all € > 0, there exists an N > 0, such that for alln > N,

K—-C=U+YV,

where rank(U) = O(n) and ||V]| < .
We now say how well (' approximates K.
THEOREM 4.4. For all ¢ > 0, there exists an N > 0, such that for alln > N,

K—-C=U+V,

where rank(U) = O(n) and ||V]| < .
Proof. Let ¢ > 0 be given. Then, from Corollary 4.3 and the remarks following
Lemma 4.1, there exists an N > 0 such that for all n > N|

K-C = K—-K+K-C
= UL +Vi+Us+ Vs
= U4V,

where
rank(U) = rank(U; + Uz) = O(n)
and

V]| = |IVi + Va|| < e.

O
The above theorem implies that, asymptotically, C' is a good approximation to K.
To show C'; is a good preconditioner, we establish the previously discussed clustering
property of the singular values in the following theorem.
THEOREM 4.5. Let a tolerance 7 > 0 be given, and define C; as above. Then
given £ > 0, there exists an N > 0 such that for all n > N, at most O(n) singular
values of KC=1 lie outside the interval

(l—e—714e+1)U0,e+ 7).

The details of the proof follow exactly the same lines as those given in [8, Thm.
6.1], and are therefore omitted. As in [8], for moderately ill-posed problems with little
noise, we can take 7 & 0. In this case, standard convergence analysis of the conjugate
gradient algorithm implies that at most O(n) iterations are needed to compute an
accurate solution, rather than the O(n?) implied by the size of the problem. We note
that in our numerical tests (see Section 5) the preconditioned iteration converged in
far fewer iterations than predicted by this analysis.

4.1.1. Preconditioning piecewise linear convolution functions. In the case
of piecewise linear convolution, we have

(4.2) K = DyKiDy + Dy Ky Dy 4 -+ -+ Dy Ky Dy

where D; is still a segment of the identity, but the D; are general nonnegative diagonal
matrices that sum to the identity.

We still get

f(l 9 e 0
. 0 Ky -+ O
K= ,
0 0 - K,

but now each K; is a weighted sum of three BTTB(n) matrices.

Each K; needs to be approximated by a BCCB(p) matrix so that the difference
has small rank plus small norm. This can be done if each matrix K; differs from its
neighboring ones by a matrix of small rank plus a matrix of small norm. In this case,
Lemma 4.2 applies. We can construct the circulant approximation on each subregion
based on one of the three vertex kernels or on an average of the three. We obtain the
following result.

THEOREM 4.6. Suppose that there exists an N > 0 such that for all n > N and
for all e > 0, for each pair of neighboring vertices ¢ and j in the triangulation of Fig.
3.2, the corresponding kernel matrices K; and K; satisfy

Dk([(i - [(]’) =U;; +V;;

where Dy is a diagonal matrix with ones corresponding to rows in the regions contain-
ing the two vertices and zeros elsewhere, and where rank(U;;) = O(p) and ||V;5]] < e.
Then we can construct a block circulant matrix C' so that

K—-C=U+V,

where rank(U) = O(n) and ||V]| < .

5. Numerical Results. In this section we present numerical results using con-
jugate gradients (CG) and preconditioned conjugate gradients (PCG) for image de-
blurring. We illustrate the effectiveness of using multiple point spread functions, and
we study the behavior of our preconditioning scheme.

In particular, we have observed that using a preconditioner in restoring smooth
images does not reduce the number of iterations necessary to reach a given relative
error tolerance. However, if the original image has many rough contours, then the
preconditioning can be very effective. These properties are illustrated in the second

10

example, using a checkerboard-patterned image with varying block sizes. We begin,
though, with a more realistic problem used to study the importance of accounting for
spatial dependence in the reconstruction of Hubble Space Telescope data.

All tests were performed on images of size 256 x 256 using Matlab on a DEC
Alpha 3000/600. Displays were generated using Xv. The truncation parameter 7 for
the preconditioner was always taken to be zero.

An Astronomy Example: As mentioned in Section 1, the errors in shaping the
mirrors of the Wide-Field Planetary Camera for the Hubble Space Telescope (HST)
resulted in image degradation with a large amount of spatial variation. Although
repairs to the HST have been made, the importance of restoring older images has
not diminished. For example, images of particular regions of space taken at several
different times are used by astronomers to determine the distances and speeds of
moving objects such as stars and galaxies.

In this first example, we apply our scheme to data used by astronomers to test and
compare image restoration algorithms for HST images; see for example the Newsletter
of the STScI’s Image Restoration Project [7], and Katsaggelos, Kang and Banham
[10]. This data, obtained via anonymous ftp from ftp.stsci.edu, in the directory
/software/stsdas/testdata/restore/sims/star cluster, is intended to simulate
a star cluster image taken by the HST before the camera was fixed. Figure 5.1 displays
the true star cluster, and the image as would be given by the HST.?

Original image. Observed HST image.

Fic. 5.1. Original and HST simulated tmages.

The BTTB(n) matrices K; can be determined from the known properties of the
camera or, somewhat more reliably, can be constructed experimentally from astro-
nomical data. Each K; represents the effect of imaging a point source in the region
defined by D;. We approximate the point source by an isolated star in a particular
region. Figure 5.2 is a mesh plot of one of these point source images after normaliza-

1 In order to avoid oversaturation in the star cluster pictures, each pixel value v was truncated
to min(max(v, 50), 500).

11

tion. If we unstack this image row-wise, we obtain the central column of the banded
BTTB(n) matrix K;. The bandwidth of K; is determined by the extent of the point
source image (the number of nonzero pixel values) and by the size of the image that
is to be restored.

0.1
0.08
0.06
0.04

0.02

F1G. 5.2. Mesh plot of the point source tmage PSF06 (normalized).

The degraded image in Figure 5.1 was obtained by convolving each of the 470
stars with a different point spread function, and adding both readout noise (essentially
white Gaussian) and Poisson noise to the blurred image; see the README file at the
abovementioned ftp site for details. Although 470 PSFs were used to generate the
blurred image, only 25 are available. These PSFs are evenly distributed in the image
domain, centered at positions (284+50+k, 284-50«/), k,{ = 0,1,2,3,4. We denote them

as PSF00, PSFO1, ..., PSF24. Figure 5.3 shows the image domain and the locations of
the PSFs.
250 -]
* 04 09 14' : 19 . 24
18 23
17 . 22
- 16 . 21
‘15 20
56 160 1’:‘30 : 260 2%0

Fi1Gc. 5.3. Locations of the 25 PSFs in the tmage domain.

Since we are given 25 PSFs in various regions of the image, we can use any number
of them in our tests. Here we report numerical results for the following piecewise-
constant cases:

12

e Omne PSF: Since most restoration algorithms are based on spatially invariant
PSFs, we used CG and PCG to compute restorations using only one PSF. The
best solution we were able to obtain using a single PSF occurred with psF11,
and the worst solution was computed using PSF04. We emphasize that, in
general, a priori knowledge of which single PSF produces the best restoration
would not be known.

e Four PSFs: Restorations using CG and PCG were computed using the
four PSFs Psr06, Psr08, PsF16, and PSF18. This corresponds to dividing
the domain into four 128 x 128 regions, each having a single PSF. We note,
though, that matrix-vector multiplications (as discussed in Section 3) can be
done on smaller sized regions. In our computations, we used 64 x 64 regions
in the multiplications.

e All PSF's: Finally, restorations using CG and PCG were computed using all
25 PSFs. In this case the image does not divide into uniformly sized regions.
For our computations, we included 52 rows in the five regions regions along
the bottom edge of the image (see Figure 5.3); all others had 51. Similarly,
regions along the right edge had 52 columns, and all others had 51.

Because the true image is available, we are able to compute the relative error
in our results by taking the Frobenius norm of the difference between the true and
computed images and dividing by the norm of the true image. Figure 5.4 plots the
relative errors vs. number of iterations for CG and PCG. These plots and the resulting
images shown in Figure 5.5 illustrate that much better restorations can be obtained
by using multiple PSFs. For example, the bright star in the upper right corner of
the image appears to be a star cluster when only one PSF is used, but is rendered
more accurately when we allow spatial variation in the PSFs. The preconditioner
substantially reduces the number of iterations needed to compute a good restoration,
but as the theory predicts (see Section 4), the more BTTB(n) matrices K; that comprise
K, the less effective is the preconditioner.

13

relative errors

relative errors

10

10

10°

10

CG relative errors for star cluster restoration

T T T T
worst single psf = dash-dot line
best single psf = dashed line
4 psfs = solid line
25 psfs = dotted line

10 20 30 40 50 60
iterations
PCG relative errors for star cluster restoration
T T T T
worst single psf = dash-dot line
best single psf = dashed line
4 psfs = solid line
25 psfs = dotted line
.
10 20 30 40 50 60
iterations

Fi1Gc. 5.4. Relative errors using CG and PCG.

14

True image. Best single PSTF solution (2 iterations).

Solution using 4 PSFs (3 iterations). Solution using 25 PSFs (39 iterations).

Fic. 5.5. Comparisons of PCG computed solutions.

15

Checkerboard Example: The star cluster example shows that using several point
spread functions can considerably improve restoration. Additionally, we see that
preconditioning can have a dramatic effect on convergence rates. The star images
have a large amount of high frequency information, so the point of our experiments
with checkerboard images was to determine the effectiveness of the preconditioner on
images that are progressively smoother: a checker board image with varying block
sizes. Figure 5.6 shows the images and their blurred versions. The dimensions of
the small blocks in the images are 4 x 4 pixels, 16 x 16 and 32 x 32. The degraded
images were constructed by dividing the images into four regions of size 128 x 128,
and applying one of the point spread functions PSF06, PSF08, PSF16, and PSF18 to
each of the regions. Normally distributed random noise was added, scaled so that
the Frobenius norm of the noise was 0.001 times the Frobenius norm of the blurred
image.

We used CG and PCG, with four PSFs and the preconditioner described in Sec-
tion 4, to restore each of the checkerboard images. The relative error plots are shown
in Figure 5.7. We see that for smooth images (block size = 32), the preconditioner
does not perform well. However, for rougher images (block size = 4), the precondi-
tioner is very effective in reducing the number of iterations needed to compute a good
restoration. Computed solutions are shown in Figure 5.8. Since the error is monoton-
ically decreasing as the number of iterations increases, we chose to avoid the question
of termination criteria and simply compare solutions that resulted from approximately
equal amounts of work: the PCG solutions at iteration 14 and the CG solutions at
iteration 20. Using the error plots in Figure 5.7 as a guide, for block size = 4 we
expect the 14 iterations of PCG to provide a better restoration than 20 iterations of
CG. Although at first glance this does not appear to be the case, enlargements of a
32 x 32 central portion of the two solutions, shown in Figure 5.9, reveals that indeed
a better restoration is obtained by PCG.

6. Final Remarks. We have developed effective iterative methods for solving
convolution problems in which the matrix has piecewise-constant or piecewise-linear
spatial variance. This scheme has inherent parallelism, and in future work we will
develop parallel algorithms based on these ideas.

7. Acknowledgements. We are grateful to Douglas Currie and Bert Rust for
introducing us to astronomical image processing.

REFERENCES

=
o

. BIRETTA, WFPC and WFPCC 2 Instrumental Characteristics, in The Restoration of HST
Images and Spectra II, R. J. Hanisch and R. L. White, eds., Space Telescope Science
Institute, Baltimore, MD, 1994, pp. 224-235.

A. BJORCK, Least squares methods, in Handbook of Numerical Analysis, P. Ciarlet and J. Lions,
eds., vol. 1, Amsterdam, 1989, Elsevier/North Holland.

[3] R. H. CHAN, J. G. NaGgy, anD R. J. PLEMMONS, FFT-based preconditioners for Toeplitz-block
least squares problems, SIAM J. Numer. Anal., 30 (1993), pp. 1740-1768.
R. H. CHAN AND M. K. NG, Conjugate gradient methods for Toeplitz systems, preprint, (1995).
T. F. CHAN aND J. A. OLKIN, Preconditioners for Toeplitz-block systems, Numer. Algor., 6
(1993), pp. 89-101.

[6] P. J. Davis, Circulant Matrices, Wiley, New York, 1979.

16

lﬂllllﬂlln.
EEEEN
EEEEEN
EEEEEN
EEEEEEEN
AR RN R NN R RN AN N NN N R RN v

E;'.r.r.r.r.'.r,'.'.r.r.r.' "

Fi1Gc. 5.6. Original and degraded checker board images.

17

relative error

relative error

relative error

Relative errors for checker board restoration; block size = 4

cg = dashed line

pcg = solid line

T
30 40 50

60
iteration
Relative errors for checker board restoration; block size = 16
0.5 T T T T T
cg = dashed line -
pcg = solid line -
Il = Il Il
30 40 50 60
iteration
Relative errors for checker board restoration; block size = 32
0.4 T T T T T
0.35 -
0.3 cg = dashed line -
0.25 pcg = solid line -
0.2 -
0.15 -
0.1 -
0.05 -
o s s P s s
[0} 10 20 30 40 50 60

iteration

Fic. 5.7. CG and PCG relative errors for checker board images.

18

Fi1c. 5.8. Computed solutions after 20 iterations of CG (left) and 14 iterations of PCG (right)
for each checker board 1mage.

19

F1G. 5.9. Enlargement of a 32 X 32 central portion of CG (left) and PCG (right) restorations
for block size = 4

[7] R. J. HaniscH, WF/PC simulation data sets, in Newsletter of STScl’s Image Restoration
Project, R. J. Hanisch, ed., Summer 1993, pp. 76-77.

[8] M. HaNnkEg, J. G. Naagy, anD R. J. PLEMMONS, Preconditioned iterative regularization, in
Numerical Linear Algebra, L. Reichel, A. Ruttan, and R. S. Varga, eds., de Gruyter,
Berlin, 1993, pp. 141-163.

[9] A. K. JaN, Fundamentals of Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ,
1989.

[10] A. K. KaTsagGgELos, M. G. KanGg, AND M. R. BaNHAM, Adaptive regularized restoration
algorithms applied to HST wmages, in The Restoration of HST Images and Spectra 11,
R. J. Hanisch and R. L. White, eds., 1994.

[11] A. E. Savakis anD H. J. TRUSSELL, Blur identification by residual spectral matching, IEEE
Trans. Image Processing 2 (1993), pp. 141-151.

20

