
RESTORING IMAGES DEGRADED BYSPATIALLY-VARIANT BLURJAMES G. NAGY� AND DIANNE P. O'LEARYyFebruary 24, 1995Abstract. Restoration of images that have been blurred by the e�ects of a Gaussian blurringfunction is an ill-posed but well-studied problem. Any blur that is spatially invariant can be ex-pressed as a convolution kernel in an integral equation. Fast and e�ective algorithms then existfor determining the original image by preconditioned iterative methods. If the blurring function isspatially variant, however, then the problem is more di�cult. In this work we develop fast algorithmsfor forming the convolution and for recovering the original image when the convolution functions arespatially variant but have a small domain of support. This assumption leads to a discrete probleminvolving a banded matrix. We devise an e�ective preconditioner and prove that the preconditionedmatrix di�ers from the identity by a matrix of small rank plus a matrix of small norm. Numericalexamples are given, related to the Hubble Space Telescope Wide-Field / Planetary Camera. Thealgorithms that we develop are applicable to other ill-posed integral equations as well.Key words. image restoration, spatially-variant point spread function, discrete ill-posed prob-lems, convolution, �rst-kind integral equations, regularization.AMS(MOS) subject classi�cations. 65F20, 65F30.1. Introduction. An ideal camera or recording device would record an imageso that the intensity of a small piece (pixel) of the recorded image was directly pro-portional to the intensity of the corresponding section of the scene being recorded.Real cameras violate this model in two ways:� The recorded intensity of a pixel is related to the intensity in a larger neigh-borhood of the corresponding section of the scene. This e�ect in visual imagesis called blurring.� The recorded intensities are contaminated by random noise.The natural mathematicalmodel of the recording operation is an integral equationof the �rst kind: Z
 k(s; t)f�(t)dt = g(s) � �(s) = g�(s):Here the spatial coordinates are s 2 R2 and t 2 R2, and 
 is a closed region containingthe domain of the image. The blurring of the unknown true image f� : R2 ! R ismodeled by convolution with the point spread function (kernel) k : R2 ! R2 plusthe addition of noise � : R2 ! R. The function g : R2 ! R is the measured image,usually known only for certain discrete values of s, while g� is the unknown exactblurred image. Since the number of measurements is �nite, the model is discretizedinto a matrix equation Kf � gwhere K 2 Rn�n. (Our algorithms also have natural extensions to overdeterminedsystems, but we prefer to keep the notation simple by assuming that K is square.)� Department of Mathematics, Southern Methodist University, Dallas, TX 75275.(nagy@cygnus.math.smu.edu). This work was sponsored by an NSF Postdoctoral Research Fel-lowship in the Mathematical Sciences.y Department of Computer Science and Institute for Advanced Computer Studies, University ofMaryland, College Park, MD 20742 (oleary@cs.umd.edu).1



We order the equations and unknowns in a natural way, with the second componentof s changing the fastest.Most often, the point spread function k is assumed to be spatially invariant:k(s; t) = k(s � t). This assumption is popular for two reasons:� The matrix K is then a block Toeplitz matrix with Toeplitz blocks, andmatrix-vector multiplication can be accomplished quite quickly by makinguse of fast Fourier transforms (cf. x3).� The point spread function is often determined by an idealized model, andspatial dependence is usually ignored. Alternatively, the point spread functioncan be determined experimentally by aiming the camera at a point source andrecording the result. Of course, this approach is prone to error because ofthe added noise and the departure of the point source from a delta function,so data from multiple trials is usually averaged to reduce noise, rather thanused to determine spatial dependence.There are situations, though, in which it is important to take account of thespatial variation of the point spread function. For example, the point spread functionfor the original Hubble Space Telescope Wide-Field / Planetary Camera had a largeamount of spatial variation because of errors in the shaping of the mirrors [1]. Asanother example, if the scene contains two objects moving with di�erent velocitiesrelative to the recording device, then the point spread function is e�ectively di�erentfor each [11].Problems like these provided motivation for our project; our goal was to developalgorithms for deblurring an image with a spatially variant point spread function withcost comparable to that for spatially invariant ones. These algorithms are e�cientimplementations of the conjugate gradient algorithm for �nding an approximate so-lution to Kf = g using the CGLS algorithm; see Bj�orck [2]. The main problem withiterative methods such as this, especially when K is poorly conditioned, is that theymay converge very slowly. Therefore, an e�ective preconditioning scheme for spatiallyvarying point spread functions is devised.Although we phrase our results in terms of deblurring, it is clear that our methodsare applicable to more general integral equations of the �rst kind with spatially variantkernel functions. They will be e�cient when the support of the function k(s; t) (foreach �xed value of s) is signi�cantly smaller than the domain of integration and whenk can be approximated well by a small number of spatially invariant kernels.In the next section we describe our mathematical model for the point spreadfunction. We discuss fast matrix-vector products in x3, and we develop e�ectivepreconditioning matrices in x4. Numerical results and �nal remarks can be found inx5 and x6.2. The Model for the Point Spread Function. We assume that we havebeen given the point spread function k(s; t) for several di�erent values s1; : : : ; sp.This corresponds to knowledge of p di�erent rows of the matrix K, or, alternatively,p di�erent point spread functions ki(t) � k(si; t), i = 1; : : : ; p. Our �rst task is tode�ne the other rows of K (or n � p other point spread functions) in a reasonableway.The easiest way to extend the data is to de�ne regions of in
uence for each ofthese measured point spread functions: we will partition our domain into p non-overlapping regions, and assume that in the ith region the point spread function isspatially invariant, so that k(s; t) = ki(t� s+ si). Thus we have constructed a kernel2



de�ned by k(s; t) � �1(s) k1(t� s + s1) + � � �+ �p(s) kp(t� s+ sp);where �j(s) is the indicator function for the jth region, 1 if s is in the region and 0otherwise.In matrix terms, a spatially invariant point spread function on a two dimensionaldomain corresponds to a block Toeplitz matrix with Toeplitz blocks [9]. Our parti-tioning of the image leads to a matrix K de�ned byK � D1K1 + � � �+DpKp;(2.1)where Di is a diagonal matrix whose jth diagonal element is 1 if the jth point is inregion i, and 0 otherwise.This set of de�nitions leads to a discontinuous kernel function k. This is easilyremedied, however: rather than approximating k by a piecewise constant function, wecan choose weights �i(s) to achieve higher-order interpolation between the measuredkernel functions. For example, we can evaluate k(s; t) by performing piecewise linearinterpolation among the functions k1(t); : : : ; kp(t) using a triangulation of 2-spacewith nodes s1; : : : ; sp. This corresponds to a choice of nonnegative diagonal matricesDi so that D1 + � � �+Dp = I. Higher order interpolation could also be used.It is clear that matrix-vector products involving these matrices K can be accom-plished in about p times the amount of time required for multiplication by a spatiallyinvariant point spread matrix. In the next section we will see that we can do muchbetter than this if the support of each kernel function is reasonably small, resultingin small bandwidth in the Toeplitz blocks.3. Fast Matrix-Vector Products. In this section we present a scheme fore�ciently forming matrix-vector multiplies with K. Algorithms for multiplicationby KT are similar. Since notation for two-dimensional image domains can be a bitcumbersome, we begin by establishing the basic ideas for one-dimensional problems,and then extend these to two-dimensions. Note that the matrix-vector product DiKizamounts to needing only a portion of the vector Kiz. Thus, the following discussionfocuses on portions (blocks of contiguous rows) of Toeplitz matrices and shows howto exploit this structure for fast matrix-vector multiplications.3.1. Matrix-vector multiplication involving banded Toeplitz matrices.Fast matrix vector multiplicationwith Toeplitz matrices is accomplished by exploitingthe relationship between Toeplitz and circulant matrices. A �̂� �̂ circulant matrix Cis a Toeplitz matrix whose rows and columns are periodic. That is, each row (column)of C is a circular shift of its previous row (column). It is well known (cf. Davis [6])that the eigenvectors of a circulant matrix are the Fourier vectors, and the eigenvaluescan be computed by Fourier transform of the �rst column of the matrix. Thus, FFTscan be used to compute matrix-vector products of the form z = Cr in O(�̂ log �̂)operations, using only linear storage. Speci�cally, if c is the �rst column of C, then zcan be computed as z = ifft(fft(c) � fft(r));where � is used to denote component-wise multiplication and fft(�) and ifft(�) areused to denote, respectively, forward and inverse fast Fourier transforms. Optimale�ciency of FFTs is attained when �̂ is a power of 2.3



If T is a �� �̂ Toeplitz matrix (with � � �̂), then products of the form z = Tr canalso be computed in O(�̂ log �̂) operations using FFTs by embedding T into a circulantmatrix of larger dimension. Since our focus is on banded matrices, we illustrate thisby considering the � � �̂ banded Toeplitz matrixT = 266666664 t� � � � t0 � � � t��. . . ... . . . . . .t� . . . t��. . . . . . ... . . .t� � � � t0 � � � t�� 377777775 ;(3.1)where � is the bandwidth of T and �̂ = �+2�. Then T can be embedded into a �̂� �̂circulant matrixC = � TW � � 26666666666666664 t� � � � t0 � � � t��. . . . . . . . .. . . . . . . . .t� � � � t0 � � � t��t�� . . . . . . ...... . . . . . . t0... . . . . . . . . . ...t��1 � � � � � � t�� t�
37777777777777775 :(3.2)The vector z = Tr can be computed by forming the circulant matrix-vector product� zw � = Cr:Since FFTs are most e�cient if the dimensions of the vectors are a power of 2, it iscommon to embed T in an m�m circulant matrix, where m is the smallest power of2 of magnitude at least �̂. To form z in this case, we need to pad r with zeros:� zw � = C � r0 � :We now turn to the 2-D problem. Suppose K̂ is a � � �̂ banded block Toeplitzmatrix with �� �̂ banded Toeplitz blocks:K̂ = 266666666666664 T� � � � T1 T0 � � � T��. . . ... ... . . . . . .T� T��1 . . . . . .T� . . . T��. . . . . . T1�� T��. . . ... ... . . .T� � � � T0 T�1 � � � T�� 377777777777775 ;(3.3) 4



with each Toeplitz block T (i)l having the same form as (3.1).Matrix-vector multiplications involving a block Toeplitz matrix with Toeplitzblocks, such as K̂, can be done e�ciently using 2-D FFTs by a straightforward gener-alization of the 1-D case. That is, K̂ is embedded into a �̂� �̂ block circulant matrix,C, with �̂ � �̂ circulant blocks. If r is a vector of length �̂2, then z = K̂r can becomputed by using 2-D FFTs to form Cr̂ and stripping o� the appropriate pieces.Once again, if �̂ is not a power of 2, we can embed K̂ into an m �m block circulantmatrix with m�m circulant blocks, m > �̂.3.2. Matrix-vector multiplication involving Toeplitz-related sums. Nowwe return to our problem of formingmatrix-vector products involving the point spreadfunction K = D1K1 + � � �+DpKp;where each Ki is a banded block Toeplitz matrix.3.2.1. Piecewise-constant convolution functions. We�rst consider the piece-wise constant case: the jth element of the diagonal matrix Di is 1 if the jth point isin region i and zero otherwise, and PDi = In.To form matrix-vector products z = Kr, one could use the techniques describedabove to form zi = Kir, and obtain z as z =PDizi. However, a substantial amountof work can be saved by taking better advantage of our partitioning of the imagedomain 
. Suppose, for illustration, that we have partitioned our image domain intop = 9 rectangular pieces: 1 2 34 5 67 8 9Fig. 3.1. Example of image domain partitioning.Then the product D5K5r, for example, depends on the values of r in region 5, aswell as on values in other regions within a width � of the borders of region 5. Thisdomain of dependence is indicated by the dotted borders. Further, if we reorder theelements of r so that those within the dotted borders are grouped together and orderedrow-by-row (or, alternatively, column-by-column) then the matrix formed from thenonzero columns of the matrix D5K5 has exactly the form of the matrix K̂ in (3.3).Thus, the matrix-vector product can be formed by applying the K̂ algorithm overeach of the regions (using zero-padding along the exterior borders), and concatenatingthe resulting vectors.There are several advantages to this approach:5



� Storage: To perform matrix-vector multiplies using FFTs, we need to storethe eigenvalues of the extended block circulant matrices corresponding toeach region. This can be done in �̂� �̂ dimensional arrays. If the bandwidth� � �=2, which is often the case in image restoration, then �̂ � 2�. Thus,an upper bound on storage requirements is p arrays of size 2� � 2�, which isequivalent to one array of size 2n � 2n. To illustrate the savings here, notethat K is an n2 � n2 matrix. Our storage requirement for a spatially variantkernel (bandwidth satisfying � � �=2) is no more than that needed for aspatially invariant one!� Work: The cost in forming a matrix-vector multiplication for a general spa-tially invariant kernel (using FFTs) is O(n2 logn). In the scheme presentedin this section for spatially varying kernels, we need to form p �̂2-dimensionalspatially invariant products. Thus the total cost is O(p�̂2 log �̂).If we consider a �xed continuous kernel discretized with di�erent values ofn, then the bandwidth � of the matrix grows linearly with n, so �̂ = � + 2�also grows linearly and, since p�2 = n2, we must have that p�̂2 is boundedby some constant times n2, so the complexity as n ! 1 is O(n2 logn), thesame order as that of a spatially invariant kernel.� Parallelism: This algorithm has inherent parallelism that is worth applyingeven to the more simple case of spatially invariant kernels. In this case,the region can be partitioned into congruent pieces and all of the matricesKi are equal. The matrix-vector multiplies for each piece can be performedindependently, once information about the overlap regions is exchanged. Thenumber of pieces is limited by the need to keep � < �=2, but each piece canbe spread over multiple processors.3.2.2. Linear interpolation. Suppose the convolution kernel is approximatedby a piecewise linear function (rather than a piecewise constant one). Suppose, forillustration, that we have measured the convolution function at 9 points, the verticesof the triangles in Figure 3.2.
�����������������������������

��1 2 3 45 6 7 8Fig. 3.2. Example of linearly interpolated regionsThen the convolution at the jth point is determined as a weighted average of atmost three spatially invariant convolutions, those corresponding to the three verticesof the triangle containing point j, or those corresponding to the two endpoints of its6



line segment if point j happens to fall on a boundary.To form matrix-vector products z = Kr, we partition our domain into overlap-ping subdomains de�ning the regions of in
uence of each of the spatially invariantconvolutions. The measured convolution function corresponding to the center point inthe �gure, for example, must be applied over regions 2, 3, 4, 5, 6, and 7. Matrix-vectormultiplication is then performed as in x3.1: each region of in
uence is embedded intoa rectangle. (For e�ciency, it might be better to partition the region of in
uence andembed into multiple rectangles.) Weighted sums of the resulting point values thengive the desired matrix-vector products.4. Preconditioning. In general, an e�ective preconditioning scheme for a con-jugate gradient iteration is one in which the preconditioner matrix C is a good ap-proximation to the matrix K; that is, the singular values of KC�1 are clusteredaround one. For ill-posed problems, however, the preconditioner matrix is likely to beseverely ill-conditioned, and early iterations will be highly contaminated with noise.To avoid this, we take the approach suggested by Hanke, Nagy, and Plemmons [8].Speci�cally, the aim is to construct a matrix C that clusters the large singular values(i.e., approximates K on the signal subspace), while leaving the small singular values(noise subspace) unchanged. As is shown in [8], this can be done if a spectral decom-position of C is available. This is the case for matrices that are block circulant withcirculant blocks. To simplify notation in this section, we assume the matrices Ki aren � n block Toeplitz matrices with n � n Toeplitz blocks. The notation bttb(n) isused to represent such matrices. Similarly, bccb(n) will be used to denote matricesthat are n� n block circulant with n� n circulant blocks.4.1. Preconditioningpiecewise-constant convolution functions. There areseveral possible schemes for approximatinga bttb(n) matrixwith one that is bccb(n);see, for example, the recent survey paper by Chan and Ng [4]. In our work, we con-sider the one proposed by Chan and Olkin [5], which is simply the best Frobeniusnorm approximation over all bccb(n) matrices. This is the approach used in [8] forspatially invariant point spread functions, and we discuss next the necessary modi-�cations to make it applicable to the spatially varying kernels we are considering inthis paper.Several options exist for approximatingK. For example, if we have a parametricmodel that relates Ki, for each value of n, to a block Toeplitz matrix with Toeplitzblocks, then this can be used to construct C.Although this situation may occur in some applications, it may be di�cult toobtain the necessary parametric model. Another approach is to form a weightedaverage of the Ki, from which C can be constructed. The weights could be determinedby the size of the image pieces in
uenced by Ki, or by weighting \important" regionsof the image more heavily.A third approach is to construct bccb(n) approximations of K restricted to eachregion. That is, suppose each region is �� �, and de�ne~K = D1K1D1 +D2K2D2 + � � �+DpKpDp:(4.1)If the equations and unknowns are appropriately ordered, ~K has the form~K = 26664 ~K1 0 � � � 00 ~K2 � � � 0... ... . . . ...0 0 � � � ~Kp 37775 ;7



where each ~Ki is a bttb(�) matrix. We use this matrix to construct a preconditioneras follows. Let Ci denote the optimal bccb(�) approximation to ~Ki, and de�ne C asC = 26664 C1 0 � � � 00 C2 � � � 0... ... . . . ...0 0 � � � Cp 37775 :Since each Ci is bccb(�), we can write Ci = F��iF , where F is the unitary 2-DFourier transform matrix. Hence, a spectral decomposition of C is given byC = (I 
F)� 26664 �1 �2 . . . �p 37775 (I 
F):Using this spectral decomposition, we can apply the technique suggested in [8] for sep-arating the signal and noise subspaces: a particular truncated spectral decompositionof C, which we denote as C� , is constructed and used as a preconditioner. Speci�cally,a truncation parameter � is chosen, and the eigenvalues of C with magnitude less than� are replaced by 1.In order to show that C� is a good preconditioner, we need to show that the largesingular values ofKC�1� are clustered around 1, while the small singular values remainunchanged (i.e., cluster around 0). To get to this point, we �rst need to considerthe di�erence K � ~K, which depends on the di�erences DiKi �DiKiDi. Note thatpremultiplication with Di ensures that this di�erence is zero in all rows correspondingto variables not in region i. Using (3.3), we see that in the rows corresponding toregion i, nonzeros occur only in columns corresponding to points in the neighboringregions that are coupled to the ith region. Referring to Figure 3.1, this means thatthe nonzeros for block 5, for example, occur only for those points that are outside theboundary of region 5 but inside the dotted borders. Since there are fewer than 4��̂of these points, there are at most 4��̂ nonzero columns, and we haverank(DiKi �DiKiDi) � 4��̂:Assuming that p�̂2 < 
2n2 for some constant 
, the following lemma has been estab-lished.Lemma 4.1. Let K be given as in (2.1) and ~K be de�ned by (4.1) with p�̂2 <
2n2. Then K � ~K = U;where rank(U ) � 4�
npp.We note that in most image processing applications, the extent of the point spreadfunction is small compared to the image dimensions; thus, � � n. Even if � is large,it is often the case that the point spread function is large only within a small radiusof the center point, meaning that the large nonzero elements in the matrix are few innumber. In this case, we would obtain results of the formK � ~K = U + V;8



where V has small norm, and rank(U ) = O(�̂n), with �̂ � n. In view of theseremarks, we assume, as is done in [8] for the spatially invariant case, that the entriesk(i)�;� of Ki are obtained from an in�nite sequence fk(i)�;�g satisfying1Xi=�1 1Xj=�1 jk(i)�;�j � M <1:Since the entries of ~Ki come from these same generating sequences, the followinglemma holds (cf. [3, Corollary 1]).Lemma 4.2. For all " > 0, there exists an N > 0, such that for all n > N ,~Ki � Ci = Ui + Vi;where rank(Ui) = O(�) and jjVijj < ".Using the above lemma, the following corollary is easily established.Corollary 4.3. For all " > 0, there exists an N > 0, such that for all n > N ,~K �C = U + V;where rank(U ) = O(n) and jjV jj < ".We now say how well C approximates K.Theorem 4.4. For all " > 0, there exists an N > 0, such that for all n > N ,K �C = U + V;where rank(U ) = O(n) and jjV jj < ".Proof. Let " > 0 be given. Then, from Corollary 4.3 and the remarks followingLemma 4.1, there exists an N > 0 such that for all n > N ,K �C = K � ~K + ~K �C= U1 + V1 + U2 + V2= U + V;where rank(U ) � rank(U1 + U2) = O(n)and jjV jj � jjV1 + V2jj < ": 2The above theorem implies that, asymptotically,C is a good approximation to K.To show C� is a good preconditioner, we establish the previously discussed clusteringproperty of the singular values in the following theorem.Theorem 4.5. Let a tolerance � > 0 be given, and de�ne C� as above. Thengiven " > 0, there exists an N > 0 such that for all n > N , at most O(n) singularvalues of KC�1� lie outside the interval(1� " � �; 1 + "+ � ) [ [0; "+ � ):9



The details of the proof follow exactly the same lines as those given in [8, Thm.6.1], and are therefore omitted. As in [8], for moderately ill-posed problems with littlenoise, we can take � � 0. In this case, standard convergence analysis of the conjugategradient algorithm implies that at most O(n) iterations are needed to compute anaccurate solution, rather than the O(n2) implied by the size of the problem. We notethat in our numerical tests (see Section 5) the preconditioned iteration converged infar fewer iterations than predicted by this analysis.4.1.1. Preconditioningpiecewise linear convolution functions. In the caseof piecewise linear convolution, we have~K = ~D1K1D1 + ~D2K2D2 + � � �+ ~DpKpDp:(4.2)where Di is still a segment of the identity, but the ~Di are general nonnegative diagonalmatrices that sum to the identity.We still get ~K = 26664 ~K1 0 � � � 00 ~K2 � � � 0... ... . . . ...0 0 � � � ~Kp 37775 ;but now each ~Ki is a weighted sum of three bttb(n) matrices.Each ~Ki needs to be approximated by a bccb(�) matrix so that the di�erencehas small rank plus small norm. This can be done if each matrix Ki di�ers from itsneighboring ones by a matrix of small rank plus a matrix of small norm. In this case,Lemma 4.2 applies. We can construct the circulant approximation on each subregionbased on one of the three vertex kernels or on an average of the three. We obtain thefollowing result.Theorem 4.6. Suppose that there exists an N > 0 such that for all n > N andfor all � > 0, for each pair of neighboring vertices i and j in the triangulation of Fig.3.2, the corresponding kernel matrices Ki and Kj satisfyDk(Ki �Kj) = Uij + Vijwhere Dk is a diagonal matrix with ones corresponding to rows in the regions contain-ing the two vertices and zeros elsewhere, and where rank(Uij) = O(�) and kVijk < �.Then we can construct a block circulant matrix C so thatK �C = U + V;where rank(U ) = O(n) and jjV jj < ".5. Numerical Results. In this section we present numerical results using con-jugate gradients (CG) and preconditioned conjugate gradients (PCG) for image de-blurring. We illustrate the e�ectiveness of using multiple point spread functions, andwe study the behavior of our preconditioning scheme.In particular, we have observed that using a preconditioner in restoring smoothimages does not reduce the number of iterations necessary to reach a given relativeerror tolerance. However, if the original image has many rough contours, then thepreconditioning can be very e�ective. These properties are illustrated in the second10



example, using a checkerboard-patterned image with varying block sizes. We begin,though, with a more realistic problem used to study the importance of accounting forspatial dependence in the reconstruction of Hubble Space Telescope data.All tests were performed on images of size 256 � 256 using Matlab on a DECAlpha 3000/600. Displays were generated using Xv. The truncation parameter � forthe preconditioner was always taken to be zero.An Astronomy Example: As mentioned in Section 1, the errors in shaping themirrors of the Wide-Field Planetary Camera for the Hubble Space Telescope (HST)resulted in image degradation with a large amount of spatial variation. Althoughrepairs to the HST have been made, the importance of restoring older images hasnot diminished. For example, images of particular regions of space taken at severaldi�erent times are used by astronomers to determine the distances and speeds ofmoving objects such as stars and galaxies.In this �rst example, we apply our scheme to data used by astronomers to test andcompare image restoration algorithms for HST images; see for example the Newsletterof the STScI's Image Restoration Project [7], and Katsaggelos, Kang and Banham[10]. This data, obtained via anonymous ftp from ftp.stsci.edu, in the directory/software/stsdas/testdata/restore/sims/star cluster, is intended to simulatea star cluster image taken by the HST before the camera was �xed. Figure 5.1 displaysthe true star cluster, and the image as would be given by the HST.1
Original image. Observed HST image.Fig. 5.1. Original and HST simulated images.The bttb(n) matrices Ki can be determined from the known properties of thecamera or, somewhat more reliably, can be constructed experimentally from astro-nomical data. Each Ki represents the e�ect of imaging a point source in the regionde�ned by Di. We approximate the point source by an isolated star in a particularregion. Figure 5.2 is a mesh plot of one of these point source images after normaliza-1 In order to avoid oversaturation in the star cluster pictures, each pixel value v was truncatedto min(max(v; 50);500). 11



tion. If we unstack this image row-wise, we obtain the central column of the bandedbttb(n) matrix Ki. The bandwidth of Ki is determined by the extent of the pointsource image (the number of nonzero pixel values) and by the size of the image thatis to be restored.
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Fig. 5.2. Mesh plot of the point source image psf06 (normalized).The degraded image in Figure 5.1 was obtained by convolving each of the 470stars with a di�erent point spread function, and adding both readout noise (essentiallywhite Gaussian) and Poisson noise to the blurred image; see the readme �le at theabovementioned ftp site for details. Although 470 PSFs were used to generate theblurred image, only 25 are available. These PSFs are evenly distributed in the imagedomain, centered at positions (28+50�k; 28+50�l), k; l = 0; 1; 2; 3; 4. We denote themas psf00, psf01, : : :, psf24. Figure 5.3 shows the image domain and the locations ofthe PSFs.
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Fig. 5.3. Locations of the 25 PSFs in the image domain.Since we are given 25 PSFs in various regions of the image, we can use any numberof them in our tests. Here we report numerical results for the following piecewise-constant cases: 12



� One PSF: Since most restoration algorithms are based on spatially invariantPSFs, we used CG and PCG to compute restorations using only one PSF. Thebest solution we were able to obtain using a single PSF occurred with psf11,and the worst solution was computed using psf04. We emphasize that, ingeneral, a priori knowledge of which single PSF produces the best restorationwould not be known.� Four PSFs: Restorations using CG and PCG were computed using thefour PSFs psf06, psf08, psf16, and psf18. This corresponds to dividingthe domain into four 128� 128 regions, each having a single PSF. We note,though, that matrix-vector multiplications (as discussed in Section 3) can bedone on smaller sized regions. In our computations, we used 64� 64 regionsin the multiplications.� All PSFs: Finally, restorations using CG and PCG were computed using all25 PSFs. In this case the image does not divide into uniformly sized regions.For our computations, we included 52 rows in the �ve regions regions alongthe bottom edge of the image (see Figure 5.3); all others had 51. Similarly,regions along the right edge had 52 columns, and all others had 51.Because the true image is available, we are able to compute the relative errorin our results by taking the Frobenius norm of the di�erence between the true andcomputed images and dividing by the norm of the true image. Figure 5.4 plots therelative errors vs. number of iterations for CG and PCG. These plots and the resultingimages shown in Figure 5.5 illustrate that much better restorations can be obtainedby using multiple PSFs. For example, the bright star in the upper right corner ofthe image appears to be a star cluster when only one PSF is used, but is renderedmore accurately when we allow spatial variation in the PSFs. The preconditionersubstantially reduces the number of iterations needed to compute a good restoration,but as the theory predicts (see Section 4), the more bttb(n) matricesKi that compriseK, the less e�ective is the preconditioner.
13
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Fig. 5.4. Relative errors using CG and PCG.14



True image. Best single PSF solution (2 iterations).
Solution using 4 PSFs (3 iterations). Solution using 25 PSFs (39 iterations).Fig. 5.5. Comparisons of PCG computed solutions.15



Checkerboard Example: The star cluster example shows that using several pointspread functions can considerably improve restoration. Additionally, we see thatpreconditioning can have a dramatic e�ect on convergence rates. The star imageshave a large amount of high frequency information, so the point of our experimentswith checkerboard images was to determine the e�ectiveness of the preconditioner onimages that are progressively smoother: a checker board image with varying blocksizes. Figure 5.6 shows the images and their blurred versions. The dimensions ofthe small blocks in the images are 4 � 4 pixels, 16� 16 and 32 � 32. The degradedimages were constructed by dividing the images into four regions of size 128 � 128,and applying one of the point spread functions psf06, psf08, psf16, and psf18 toeach of the regions. Normally distributed random noise was added, scaled so thatthe Frobenius norm of the noise was 0:001 times the Frobenius norm of the blurredimage.We used CG and PCG, with four PSFs and the preconditioner described in Sec-tion 4, to restore each of the checkerboard images. The relative error plots are shownin Figure 5.7. We see that for smooth images (block size = 32), the preconditionerdoes not perform well. However, for rougher images (block size = 4), the precondi-tioner is very e�ective in reducing the number of iterations needed to compute a goodrestoration. Computed solutions are shown in Figure 5.8. Since the error is monoton-ically decreasing as the number of iterations increases, we chose to avoid the questionof termination criteria and simply compare solutions that resulted from approximatelyequal amounts of work: the PCG solutions at iteration 14 and the CG solutions atiteration 20. Using the error plots in Figure 5.7 as a guide, for block size = 4 weexpect the 14 iterations of PCG to provide a better restoration than 20 iterations ofCG. Although at �rst glance this does not appear to be the case, enlargements of a32� 32 central portion of the two solutions, shown in Figure 5.9, reveals that indeeda better restoration is obtained by PCG.6. Final Remarks. We have developed e�ective iterative methods for solvingconvolution problems in which the matrix has piecewise-constant or piecewise-linearspatial variance. This scheme has inherent parallelism, and in future work we willdevelop parallel algorithms based on these ideas.7. Acknowledgements. We are grateful to Douglas Currie and Bert Rust forintroducing us to astronomical image processing.REFERENCES[1] J. Biretta, WFPC and WFPCC 2 Instrumental Characteristics, in The Restoration of HSTImages and Spectra II, R. J. Hanisch and R. L. White, eds., Space Telescope ScienceInstitute, Baltimore, MD, 1994, pp. 224{235.[2] �A. Bj�orck, Least squares methods, in Handbook of Numerical Analysis, P. Ciarlet and J. Lions,eds., vol. 1, Amsterdam, 1989, Elsevier/North Holland.[3] R. H. Chan, J. G. Nagy, and R. J. Plemmons, FFT-based preconditioners for Toeplitz-blockleast squares problems, SIAM J. Numer. Anal., 30 (1993), pp. 1740{1768.[4] R. H. Chan and M. K. Ng, Conjugate gradient methods for Toeplitz systems, preprint, (1995).[5] T. F. Chan and J. A. Olkin, Preconditioners for Toeplitz-block systems, Numer. Algor., 6(1993), pp. 89{101.[6] P. J. Davis, Circulant Matrices, Wiley, New York, 1979.16



Fig. 5.6. Original and degraded checker board images.17



0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

iteration

re
la

tiv
e 

er
ro

r

Relative errors for checker board restoration; block size = 4

cg = dashed line

pcg = solid line

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

iteration

re
la

tiv
e 

er
ro

r

Relative errors for checker board restoration; block size = 16

cg = dashed line

pcg = solid line

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

cg = dashed line

pcg = solid line

iteration

re
la

tiv
e 

er
ro

r

Relative errors for checker board restoration; block size = 32

Fig. 5.7. CG and PCG relative errors for checker board images.18



Fig. 5.8. Computed solutions after 20 iterations of CG (left) and 14 iterations of PCG (right)for each checker board image. 19



Fig. 5.9. Enlargement of a 32� 32 central portion of CG (left) and PCG (right) restorationsfor block size = 4[7] R. J. Hanisch, WF/PC simulation data sets, in Newsletter of STScI's Image RestorationProject, R. J. Hanisch, ed., Summer 1993, pp. 76{77.[8] M. Hanke, J. G. Nagy, and R. J. Plemmons, Preconditioned iterative regularization, inNumerical Linear Algebra, L. Reichel, A. Ruttan, and R. S. Varga, eds., de Gruyter,Berlin, 1993, pp. 141{163.[9] A. K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, Englewood Cli�s, NJ,1989.[10] A. K. Katsaggelos, M. G. Kang, and M. R. Banham, Adaptive regularized restorationalgorithms applied to HST images, in The Restoration of HST Images and Spectra II,R. J. Hanisch and R. L. White, eds., 1994.[11] A. E. Savakis and H. J. Trussell, Blur identi�cation by residual spectral matching, IEEETrans. Image Processing 2 (1993), pp. 141{151.
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