
ABSTRACT

Title of Thesis: OPTIMIZATION OF PERMUTATION KEY
FOR π-ROTATION LDPC CODES

Nasim Vakili Pourtaklo, Master of Science, 2006

Dissertation directed by: Associate Professor Steven Tretter
Department of Electrical and Computer Engineering

The original low-density parity-check (LDPC) codes were developed by Robert

Gallager in early 1960 and are based on a random parity-check matrix construction.

In the mid 1990’s it was discovered that LDPC codes could be modified slightly

to provide the more powerful error correction. These newer LDPC codes, based

on an irregular column weight in the underlying check matrix, were still defined

with random construction techniques. The π-rotation LDPC codes discovered by

Echard are a family of LDPC codes completely defined by a small set of integers

and have several symmetrical features that are exploited to build efficient encoding

and decoding designs. The π-rotation codes can be extended to include irregular

matrix patterns to obtain the highest performance. In this dissertation we develop a

heuristic algorithm to find the best parity-check matrix for π-rotation LDPC codes.

OPTIMIZATION OF PERMUTATION KEY

FOR π-ROTATION LDPC CODE

by

NASIM VAKILI POURTAKLO

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2005

Advisory Commmittee:

Associate Professor Steven Tretter/Advisor
Assistant Professor Adrian Papamarcou
Assistant Professor Nuno Martins

c© Copyright by

Nasim Vakili Pourtaklo

2006

ACKNOWLEDGMENTS

I would like to express my most sincere appreciation to my advisior, Dr. Steven

Tretter. For this research, he not only helped me to shape the whole research but

also shared a lot of his findings with me. He has always been a great support for

me during the harsh times that I had. I feel very fortunate to have had him as my

advisor.

I would like to thank my committee member Dr. Adrian Papamarcou and Dr.

Nuno Martins. I benefited a lot from courses that I took with Dr. Papamarcou and

he is one of the best teachers I have ever had.

I feel lucky to come to the University of Maryland. A lot of friends and

classmates made my life unforgettable and fruitful.

Finally, I want to thank my brothers, Ramin, Amin and Armin; and my parents

who always put my interests ahead of theirs; my husband, Behnam, whose love has

been unwavering and who has always been the biggest support for me. I love and

thank you all!

ii

TABLE OF CONTENTS

List of Figures iv

1 Introduction 1
1.1 Coding for Digital Transmission . 1
1.2 History of Error Correcting Codes . 3
1.3 Outline of Dissertation . 4

2 Error Correcting Codes 6
2.1 Generator and Parity Check Matrix 6

2.1.1 Converting H Matrix to G . 7
2.1.2 Minimum Distance for Linear Codes 8

2.2 Low Density Parity Check Codes . 8
2.2.1 Decoding LDPC codes . 9
2.2.2 Numerical Example of Message Passing Decoder 17

3 Construction of Low Density Parity Check Codes 23
3.1 Composite Parity Check Matrix . 23
3.2 The Hd Sub-Matrix . 25

3.2.1 Method of Constructing π-Rotation Matrix 26
3.2.2 The π-Rotation Vector . 26

3.3 Finding a Good Permutation . 28
3.3.1 Counting The Short Loops . 28

4 A Heuristic Method to Find The Best Permutation Vector 34
4.1 Performance of Different Permutation Vectors 34
4.2 Searching for a Good Permutation Vector 37

4.2.1 The Modified Procedure . 40
4.3 Simulation Results . 43

5 Conclusions 50

Bibliography 52

iii

LIST OF FIGURES

1.1 Block diagram of communication system. 2

2.1 Graph for an LDPC decoder . 12

2.2 Message-passing from bit node to check node, and vice versa 13

2.3 Iterating probabilities in the LDPC decoding algorithm (start at the
upper left matrix and proceed counter-clockwise 19

3.1 The circuit to produce parity bits from projected vector. 25

3.2 The upper figure shows the four π-rotation matrices and the lower
figure shows the arrangement of four π-rotation permutation matrices
to create the Hd matrix for a rate 1

2
code. 27

3.3 The basic configuration of Hd matrix. 29

3.4 There are ten quads which cover all possible short loops within the
Hd matrix. 29

3.5 The quads that are invariant through rotation. The number of inde-
pendent quads is reduced to four . 30

3.6 The algebraic relation which is developed to find a short loop in the
A-B-C-B quad. 32

4.1 The BER for different permutation vectors of size 3 and 4. 36

4.2 This graph shows the transformation between two permutation vec-
tors. Each node present one permutation vector and each edge con-
nects two nodes which are neighbors. Thus, each node has degree of
6. (To avoid complexity, all edges are not shown.) 39

4.3 The flow chart of proposed heuristic 41

4.4 Schematic for changing states during procedure, The upper states
have higher BER. (a) Changing states without any restriction (b)
changing states restricted to threshold δ 42

4.5 The BER of permutation vector of size 5 at each iteration. 44

iv

4.6 The permutation vectors of size 5 at each state (a) without δ, (b)
with δ = 0.0001, and (c) δ = 0.0002. 46

4.7 The BER for permutation vector of size 50 at each iteration for three
different cases. 47

4.8 The BER of permutation vector of size 100 at each iteration for three
different cases. 47

4.9 The BER of permutation vector of size 200 at each iteration for three
different cases. 48

v

Chapter 1

Introduction

1.1 Coding for Digital Transmission

The need for efficient and reliable digital data communication systems has

been rising rapidly in recent years. This need has been brought on for a variety

of reasons, among them are the increase in automatic data processing equipment

and the increased need for long range communication. Communication systems rely

on data transmission through channels that link the data source and the data re-

ceiver. Examples of channels include the wireless link between mobile radio systems,

satellite communication channels, and cable and fiber networks.

Error correcting coding is a key component for efficient and reliable commu-

nication. Coding for error correction is the process by which errors introduced

during information transmission are corrected by employing prearranged symbol

constructions. The symbol construction enables the receiver to correctly interpret

the intended transmission from the corrupted version.

In 1948, Claude Shannon [11] introduced the fundamental theorems on com-

munication systems. In order to understand the meaning of this theorem consider

Figure 1.1. The source produces binary digits, at some fixed rate R. The encoder is a

device that performs data processing, modulation, and anything else that might be

necessary to prepare the data for transmission over the channel. We shall assume

1

Figure 1.1: Block diagram of communication system.

that encoder separates the source sequence into blocks of ν bits and operates on

only one block at a time. The encoder output is then transmitted over the channel

and changed by some sort of random disturbance or noise. The decoder processes

the channel output and produces a delayed replica of the source bits. The coding

theorem states that for a large variety of channel models, encoders and decoders

exist such that the probability of the decoder reproducing a source bit in error Pe

is bounded by

e−ν[EL(Rt)+O(ν)] ≤ Pe ≤ e−νE(Rt) (1.1)

The functions E(Rt) and EL(Rt) depend upon the channel but not upon ν; they

are positive when Rt = 0, and decrease with Rt until they become 0 at some rate

Ct known as the channel capacity [12]. The exact nature of these functions and

the particular class of channels for which this theorem has been proven need not

concern us here. The important result is that the coding constraint length ν is

a fundamental parameter of a communication system. If a channel is to be used

efficiently, that is with Rt close to Ct then ν must be made correspondingly large to

2

achieve a satisfactory error probability.

The standard approach to creating an LDPC code is by randomly generating

a very large matrix. While it is well known that for large size the random method

will produce very good performance, a method to create the matrix through a more

deterministic approach will provide many benefits. A deterministic approach will

enable designers to simplify the generation and storing of LDPC codes and allow a

less complex description to define the code. The benefit of reduced complexity is the

ability to incorporate these high performance code structures into practical products.

This will enable their use in systems with smaller amounts of memory, less circuit

complexity and more flexibility for dynamic reconfiguration of code structure[3].

1.2 History of Error Correcting Codes

After the discovery by Shannon, research in error correction encoding/decoding

systems led to the discovery of iterated decoding algorithms. Elias used an iterative

approach to decode product codes[6]. Gallager, a student of Elias, introduced Low

Density Parity Check codes based on a parity check matrix with a low density of 1′s

and used an iterative method for decoding. In addition, Gallager showed that the

LDPC code construction creates a code with minimum distance to length ratio that

approaches a nonzero constant with increasing length[8]. In 1967, Viterbi invented

convolutional codes. Forney presented concatenated encoders and a method to de-

code them to reduce the susceptibility of convolutional codes to burst errors[14]. In

the early 1990, Berrou and Glavieux discovered turbo-codes[1]. The turbo-coding

3

system used both the early iterative techniques and concatenated convolutional

coding ideas. This was the first practical system that would approach the limiting

capacity and was presented by Berrou, Glavieux and Thitimajshima[2]. These new

codes retain the original random features in the encoding process but incorporate an

iterative decoder in place of an exponential search. MacKay and Neal[9] discovered

that turbo-codes can be represented as a type of LDPC code. The top performing

codes today are LDPC codes based on a random construction with certain con-

straints to produce irregular column weight in the parity check matrix.

A deterministic construction to create irregular parity check codes was intro-

duced by Echard[4]. The encoder can create codes of various lengths and rates

allowing the system to adapt dynamically to changing conditions in the communi-

cation channel and message content. The memory requirement of the encoder is

dramatically reduced as the entire code is defined with a handful of integers. These

codes are called π-rotation LDPC codes.

The π-rotation code is defined around a single permutation matrix. By rotat-

ing and repeating the permutation pattern, a larger matrix pattern that becomes

a portion of the parity check matrix is formed. The remaining part of the parity

check matrix is a dual diagonal matrix.

1.3 Outline of Dissertation

In Chapter 2, we will explain the the basics of error correcting codes. The

Gallager Low Density Parity Check codes (LDPC) which are based on random

4

parity check matrices will be explained. These codes are called uniform LDPC

codes because there are a fixed number of ones per row and column in the parity

check matrix. We will go over message passing decoding or iterative decoding in

detail and explain the girth of the matrix and problems which it causes for the

decoding procedure.

In Chapter 3, a deterministic method for constructing a non-uniform parity

check matrix which was introduced by Echard is explained. The complexity of the

code and required memory storage are reduced dramatically. A method to find

matrix girth of four is introduced.

To find a permutation matrix or permutation vector with better performance,

a heuristic method which is based on search among different key vectors is explained.

In this method, all of the permutation vectors or the whole search domain can not

be scanned, but a local maximum performance can be obtained.

In the final chapter we will conclude our work and suggest future work.

5

Chapter 2

Error Correcting Codes

When we transmiting the information bits, over a noisy channel, we will ob-

serve a corrupted signal at the receiver. The probability of error can be reduced

either by increasing the signal power or using coding techniques.

Coding for error control is perhaps described as a mapping between a set of

messages created by information source to a set of representations that will replace

those messages. The representations are transmitted instead of original message to

get lower probability of error. To compare the performance of coding system we

will always measure signal as energy expanded per bit of information retrieved and

balance this against the noise power present in one hertz of bandwidth. Eb/N0 will

represent the signal to noise ratio.

In this chapter, we explain the basic background required to understand, de-

sign, encode and decode of LDPC codes based on the random construction technique

which was invented by Gallager in the early 1960’s[8].

2.1 Generator and Parity Check Matrix

The information bits to be encoded are described by a vector of binary dig-

its called the information vector. The encoded message is also a vector of binary

digits and has a longer length than the information vector and is called a code-

6

word. The matrix G, called the generator matrix, maps the information vector

u=[u1, u2, ..., uk]
′

to codeword v=[v1, v2, ..., vn]
′

. The set of codewords is called the

code and represents all possible information vectors. There are 2k codeword vectors.

The rate of code is defined as the ratio k/n. The code, C, is defined as the set of

all codeword vectors, v, such that 0=Hv where H is a n× (n− k) full rank matrix,

called the parity check matrix. The rows of H represent a series of check relations

that must be satisfied in order for v to be a valid code word. For example, let

v=[v1, v2, v3, v4, v5, v6]
′

and

H =





















1 0 0 1 0 1

0 1 0 1 1 0

0 0 1 0 1 1





















(2.1)

The parity check relations require that v1 + v4 + v6 = 0, v2 + v4 + v5 = 0 and

v3 + v5 + v6 = 0. Since H is full rank the size of the code is 23 = 8.

2.1.1 Converting H Matrix to G

To create LDPC codes from the H matrix, we must first obtain the generator

matrix, G. The code words can be generated by v
′

= u
′

G . The following procedure

explain this conversion:

• Step 1 Use Guassian elimination to obtain the identity matrix in the left side

of H matrix :

H→ [I|P]

the binary matrix P has dimension (n− k)× k

7

• Step 2 The relation between G and P is

G = [P
′|I]

where P
′

is the transpose of P.

2.1.2 Minimum Distance for Linear Codes

The distance between two codewords x and y, d(x,y), is defined as the number

of places in which x and y are different. The weight of vector x, w(x), is the number

of non-zero components of x. Therefore we can say, the distance between two binary

vector is the weight of binary sum of two vectors.

d(x,y) = w(x + y) =
∑n

i=1(xi

⊕

yi)

The minimum distance for linear code C is the minimum weight of all code words

excluding codeword zero[13].

2.2 Low Density Parity Check Codes

Low-density parity-check codes are codes specified by a parity check matrix

containing mostly 0
′

s and relatively few 1
′

s. An (n, j, k) low-density code is a code

of block length n, with a random generated parity check matrix where each column

has j 1
′

s and each row has k 1
′

s , with k and j small relative to the dimensions of

H.

8

2.2.1 Decoding LDPC codes

LDPC codes usually have long block lengths. Thus, maximum likelihood de-

coding can not be used because of the extensive computation required. Gallager in-

troduced an iterative decoding algorithm with complexity of O(n2) that can perform

close to optimum. This algorithm is equivalent to the message passing algorithm[7].

In the following section we explain the decoding procedure in detail.

An LDPC codes can be represented by a Tanner graph. The graph consists

of “bit nodes”, which are nodes that represent the bits of the codeword, and “check

nodes” that express the parity-check relationships. The parity check matrix H

provides the structure for the graph and decoding algorithm. As shown in Figure

2.1 there is an edge in the graph connecting the bit and check nodes exactly when

there is a “1” in the parity check matrix, so that an association can be made between

edge-variables and the non zero elements of the parity check matrix. The edge-

variables in the same row of the parity-check matrix H are connected to the same

check node, and so satisfy a parity-check constraint. Meanwhile, the edge-variables

in the same column of the parity check matrix H are connected to the same bit

node.

The graph completely describes all the relations of the code, and can be used

for decoding using the message-passing algorithm. Starting with the input consisting

of intrinsic 1 probabilities for the bits, the message-passing algorithm uses the parity

1 For a variable x, there are several type of probabilities that can be associate with the variable.
For the event x = ak, suppose that E is an event whose effect on variable x is under question. The
prior (or a priori probability refers to the probability P (x = ak) that the variable x takes the value
ak. In the iterative algorithms that we consider, however, the prior probability that is used for
variable x may depend on the choice of the event E, so that it is more appropriate to speak speak

9

check relationships amongst the bits to iteratively pass messages between the bit

nodes and check nodes to obtain extrinsic probabilities for the bits. The intrinsic

and extrinsic probability can then be combined to give posterior probabilities for

the codeword bits that incorporate the knowledge gained from the LDPC code[7].

Note, there can be many equivalent parity-check matrices for the same code,

and it is preferable to use a parity-check matrix with low density so as to avoid

short cycles in the graph. In particular, cycles of length 4, in which two bits are

both connected by edges to the same two checks, should especially be avoided.

For a parity-check matrix H of size M ×N , suppose that the bit nodes are Bi

for i = 1, 2, ..., N , and check nodes are Cj for j = 1, 2, ..., M . If an edge connects

between the nodes Bi and Cj , then that edge is labeled by the variable eij. These

are the internal edges of the graph for the LDPC code. In addition, there is also

of the prior probability for x with respect to E. To avoid confusion with true prior probability, we
substitute the term “intrinsic” for “prior” to describe this probability. The intrinsic probability

for x with respect to E is denoted by

P
int(x = a) = P (x = a).

On the other hand, the posterior (or a posteriori) probability is the conditional probability based
on knowledge of the event E. The posterior probability for x with respect to E is denoted

P
post(x = a) = P (x = a|E).

The intrinsic and posterior probabilities represent the probability before and after taking account
the event E. The posterior probability can be written using Bayes’ theorem as

P (x = a|E) =
1

P (E)
P (E|x = a)P (x = a).

The complementary term P (E|x = a) is proportional to the “extrinsic” probability, which is
probability that describes the new information for x that has been obtained from the event E.
The extrinsic probability for x with respect to E is defined by

P
ext(x = a) =

1
∑

a∈A P (E|x = a)
P (E|x = a).

10

an edge for each bit node Bi that is associated with the variable vi. These edges

correspond to the external edges of the graph for the LDPC code. In addition, it will

be convenient to introduce a node Ni that is connected to Bi via the edge-variable

vi. With this node Ni the intrinsic probability with respect to the LDPC decoder

can be denoted as the message µNi→Bi
(vi) = P int(vi).

The message from bit node Bi to check node Cj is given by the expressions,

µBi→Ci
(eij = 0) = cjiµNi→Bi

(vi = 0)
∏

j
′∈M(i)\j

µC
j
′→Bi

(eij = 0) (2.2)

µBi→Ci
(eij = 1) = cjiµNi→Bi

(vi = 1)
∏

j
′
∈M(i)\j

µC
j
′→Bi

(eij = 1) (2.3)

where M(i) is the set of parity checks in which bit vi is involved. This is also the

set of row locations in the i-th column of the parity check matrix that contain 1.

The set M(i)\ j means the set M(i) with the element j omitted. The normalization

constant cij is necessary to make the message into a probability.

The messages from check node Cj to bit node Bi are given by the expressions,

µCj→Bi
(x0 = 0) =

1

2





1 +
∏

i
′∈L(j)\i

(

1− 2µB
i
′→Cj

(xi
′ = 1)

)





 (2.4)

µCj→Bi
(x0 = 1) =

1

2





1−
∏

i
′∈L(j)\i

(

1− 2µB
i
′→Cj

(xi
′ = 1)

)





 (2.5)

where L(j) is the set of bit nodes connected to the j-th parity-check, or the set of

columns in the j − th row that contain a 1.

These equations describe the message passing algorithm for the low-density

parity check codes. We will use the notation used in [9]. Let

pb
i = µNi→Bi

(vi = b) (2.6)

11

Figure 2.1: Graph for an LDPC decoder

12

Figure 2.2: Message-passing from bit node to check node, and vice versa

qb
ji = µBi→Cj

(eji = b) (2.7)

rb
ji = µCj→Bi

(eji = b) (2.8)

for b = 0, 1, as shown in Figure 2.1. The the update equations for the messages

from bit node Bi to the check node Cj are

q0
ji = c

′

ji.p
0
i

∏

j
′
∈M(i)\j

r0
j′ i (2.9)

q1
ji = c

′

ji.p
1
i

∏

j
′∈M(i)\j

r1
j′ i (2.10)

The message sent from check node Cj to bit node Bi are

r0
ji =

1

2





1 +
∏

j
′∈M(i)\j

δqji





 (2.11)

r1
ji =

1

2





1−
∏

j
′∈M(i)\j

δqji





 (2.12)

where δqji = q0
ji − q1

ji = 1 − 2q1
ji. The decoding algorithm starts with the intrinsic

probabilities (Pi
0, Pi

1), and uniform distribution for rji. Then the relations (2.9)

13

and (2.10) yield the messages qji from bits to checks. The messages qji are then

used in (2.11) and (2.12) to calculate the messages rji from checks to bits.

These two steps comprise a single iteration of the message passing algorithm.

The extrinsic proability w.r.t the LDPC decoder P ext(vi) maybe found by computing

the outgoing message for each bit node vi,

µBi→Ni
(vi = 0) = c

′

i.
∏

j∈M(i)

r0
ji (2.13)

µBi→Ni
(vi = 1) = c

′

i.
∏

j∈M(i)

r1
ji (2.14)

where c
′

i is a normalizing constant. Finally, the posterior probabilities are

q0
i = ci.p

0
i

∏

j∈M(i)

r0
ji (2.15)

q1
i = ci.p

1
i

∏

j∈M(i)

r1
ji (2.16)

It is hoped that after a number of iterations, these estimates of the posterior prob-

abilities (q0
i , q

1
i) converge to the actual probabilities.

Decoding Algorithm for LDPC Codes Using LLRs

Since the variables are binary, these computation can also be describe in terms

of the log-likelihood ratios (LLRs). The following steps explain the procedure for

the LDPC decoder:

• Step 0, Initialize. The input to the decoding algorithm is a message vector

(p0
i , p

1
i) for each bit vi, giving the intrinsic probability with respect to the de-

coder for each bit. As a log-liklihood ratio, this intrinsic information can be

14

represented as

LLR(pi) = LLRint(vi) = log
P int(vi = 1)

P int(vi = 0)
(2.17)

In addition, the check to bit message vectors start off set to a uniform distri-

bution, so that (r0
ji, r

1
ji) = (1

2
, 1

2
), and

LLR0(rji) = log
r1
ji

r1
ji

= 0. (2.18)

The iteration number k starts at 1.

• Step 1, Bit-to-Check messages. The messages from bit nodes to check

nodes are

LLR(k)(qji) =
∑

j
′∈M(i)\j

LLR(k−1)(rj′ i) + LLR(pi). (2.19)

• Step 2. Check-to-Bit messages. The messages from check nodes to bit

nodes are

LLRk(rji) = (−1)|L(j)|







∏

i
′
∈L(j)\i

sgn
(

LLR(k)(qji
′)

)





 .Ψ







∑

i
′
∈L(j)\i

Ψ
(

|LLR(k)(qji
′)

)





 ,

(2.20)

where Ψ(x) = − log
(

tanh(x
2
)
)

• Step 3, Compute output. The output message from the decoder is the

extrinsic information,

LLRext(vi) =
∑

j
′
∈M(i)

LLR(k)(rj
′
i), (2.21)

15

and the estimate of the posterior information LLRpost(vi) is given by

LLR(k)(qi) =
∑

j
′∈M(i)

LLR(k)(rj
′
i) + LLR(pi), (2.22)

This is used to compute the bit-by-bit estimate of the codeword:

v̂i
(k) =



















1 if LLR(k)(qi) > 0

0 if LLR(k)(qi) < 0

(2.23)

• Step 4, Repeat until done. Check if the stopping condition has been

reached (e.g. a fixed number of iterations kmax has been reached, or the

decision word v̂i
(k)satisfies the parity-check matrix H). If not, then increment

k ← k + 1, and repeat step 1,2 ,and 3.

For reference the intrinsic LLRs can be found as follows for some common

channel models:

• for a binary symmetric channel with crossover probability p and received bit

yi,

LLRint(vi) =



















log 1−p

p
if yi = 1

log p

1−p
if yi = 0

(2.24)

• for a AWGN channel with noise variance σ2 and received signal yi,

LLRint(vi) =
2

σ2
yi. (2.25)

To have a better sense of iterative decoding, we provide a numerical example

in the following section [7].

16

2.2.2 Numerical Example of Message Passing Decoder

Consider the following parity check matrix (This example is from [7]):

H =





















1 1 0 1 0 0

0 1 1 0 1 0

1 0 1 0 0 1





















Suppose that the input message is u = [1 1 0]. Then taking three bits as the

systematic message bits, the corresponding encoded codeword is

v =

[

1 1 0 0 1 1

]

we use 1 and -1 volt to send bit 0 and 1 respectively so the transmitted word is then

x =

[

1 1 −1 −1 1 1

]

Suppose that due to noise on an AWGN channel, the received vector is

y =

[

−1
2

1 −1 −1 1 0

]

.

The intrinsic probability w.r.t the LDPC decoder is,

LLRint =
2

σ2
yi.

Suppose the AWGN channel is known to have a noise parameter of σ2 = 1. for this

received word y, the input to the LDPC decoder has a log-likelihood ratio of

LLR =

[

−1 2 −2 −2 2 0

]

corresponding to the probabilities

pi =

[

0.268 0.881 0.119 0.119 0.881 0.5

]

.

17

the first bit has been corrupted, and the last bit has been erased.

Using the matrix H and the intrinsic information LLR(pi), we can apply the

log-domain version of the message-passing algorithm. Since LLR0(rji) is initially set

to zero, applying (2.19) gives the bit-to-check messages LLR1(qji) as LLR(pi).

LLR(1)(qji) =





















−1 2 −2

2 −2 2

−1 −2 0





















Notice that the array for LLR(qji) is left blank when the corresponding entry

of matrix H is zero. The dependencies of the entries are shown in Figure 2.3.

The first check-to-bit message LLR1(rji) are computed using (2.20), where

each message LLR(rji) is a function of all the other messages LLR(qji
′) in the same

row. For example, the first entry in the first row is given by

LLR(r11) = (−1)2 tanh−1
(

tanh
(

1

2
.2

)

tanh
(

1

2
.− 2

))

= 2 tanh−1(0.7622) = 1.325.

Similarly, it is possible to compute the rest of the messages from checks to bits.

LLR(1)(rji) =





















−1.325 −0.735 0.735

1.325 −1.325 1.325

0 −0 −0.735





















Then summing up the columns gives the extrinsic output for the first itera-

tion of the decoder, and adding the intrinsic inputs LLR(pi) as in (2.22) gives the

posterior information as

LLR(1)(qi) =

[

0.325 2.590 −3.325 −1.265 3.325 −0.735

]

18

Figure 2.3: Iterating probabilities in the LDPC decoding algorithm (start at the
upper left matrix and proceed counter-clockwise

19

Making hard-decision based on the signs of these LLR as follows,

v̂i =



















1 if LLR(qi) > 0

0 if LLR(qi) < 0

gives an initial estimate of the transmitted codeword. After one iteration of message-

passing the result is:

v̂(1) =

[

1 1 0 0 1 0

]

Comparing with the original codeword v =

[

1 1 0 0 1 1

]

, we see that the

first bit has been corrected, but the last bit is still in error.

Proceeding with another iteration of the message-passing algorithm, (2.19)

computes the message LLR(2)(qji) by summing all the messages LLR(1)(rj
′
i) in the

same column (except for the one in the j-th row) and also adding the intrinsic

information LLR(pi). As an example, the first entry LLR(2)(q11) can be found by

summing over all LLR(1)(rj
′1) in the first column, except for LLR(1)(r11) (since the

incoming intrinsic message must be excludes when computing the extrinsic message).

LLR(2)(q11) =
∑

j
′
6=1

LLR(1)(rj
′1) + LLR(p1)

= LLR(1)(r31) + LLR(p1)

= 0 + (−1) = −1

Continuing this computation, all the messages from bits to checks can be updated

as follows:

LLR(2)(qji) =





















−1 3.325 −2

1.325 −2 2

0.325 −3.325 0





















20

Note that if the posterior information LLR(1)(qi) has already been calculated, then

the bit-to-check messages can also be found as

LLR(2)(qji) = LLR(1)(qi)− LLR(1)(rji)

Next, applying (2.20) gives an updated set of check-to-bit messages:

LLR(2)(rji) =





















1.769 −0.735 0.920

1.325 −0.911 0.911

0 0 0.302





















Applying (2.22) for the second time yields

LLR(2)(qi) =

[

0.769 2.590 −2.911 −1.080 2.911 0.302

]

taking hard decisions then gives a correct estimate of the transmitted codeword,

v̂(2) =

[

1 1 0 0 1 1

]

This short parity-check code has corrected two error using two iterations of the

message-passing algorithm.

Matrix Girth

The girth of a graph is the number of edges in the shortest cycle. The message-

passing algorithm can be shown as a bipartite graph . For each 1 in the parity check

matrix , there is an edge between the associated check and variable node. We say

that a node has a cycle of four when it is included in a group of nodes that can be

connected by two vertical and horizontal paths. In this case, the message passing

21

algorithm will share the information after two iterations. Similarly, if three vertical

and three horizental paths connect a group of nodes we say that the nodes have a

six cycle or a girth of six.

In the message-passing decoding, if the messages are statistically independent

then the algorithm is known to converge to the maximum likelihood estimate of each

symbol. Since at each iteration, messages flow vertically and horizontally, the girth

of the node in the matrix determines independency. For example, if the minimum

girth of the matrix is 30 then a decoder with the maximum of 15 iterations would

pass accurate probabilities. We have to choose the check matrix pattern to avoid

the short cycles.

22

Chapter 3

Construction of Low Density Parity Check Codes

In this chapter we present the construction of LDPC codes based on the π-

rotation technique. The parity check matrix is composed of two sub-matrices. One of

the sub-matrices is the dual-diagonal matrix which makes the structure very adapt-

able to a simplified encoding scheme and contains enough symmetry to estimate the

matrix girth. The other half is a sub-matrix which can be obtained from a random

permutation of the identity matrix. In this chapter we explain how to construct a

composite parity-check matrix and a method to remove some short cycles.

3.1 Composite Parity Check Matrix

The parity check matrix is composed of two sub-matrices Hp and Hd

H = [Hp|Hd] (3.1)

The dimensions of Hp and Hd are (n − k) × (n − k) and (n − k) × k respectively.

For a codeword x, the parity check constraint requires Hx = 0. We can decompose

x into sub-vectors [xp,xd] where xp is the parity vector and xd is the information

vector. So we have:

Hpxp = Hdxd = v (3.2)

23

We call v the projection vector and Hp is a dual-diagonal matrix defined by

Hp = I + D (3.3)

where I is an identity matrix and D is obtained from the identity matrix by remov-

ing the first row and appending a bottom row of zeros. Here is an example of the

Hp matrix:

Hp =































1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1































The inverse of Hp is an upper triangular matrix, Up, and thus:

xp = Upv (3.4)

So we can simply generate codewords from information vectors using the following

two steps:

• Step 1 Compute v from xp by (3.2).

• Step 2 Using (3.2), we start from the bottom of column vector v, the bottom

bit of v is equal to the last bit of xp and we can calculate each bit of xp as

xp(n) = v(n) + xp(n− 1) (3.5)

We can easily obtain the parity vector from projection vector by passing it

through a shift register as shown in Figure 3.1.

24

Figure 3.1: The circuit to produce parity bits from projected vector.

3.2 The Hd Sub-Matrix

The basic idea for constructing the Hd matrix is to use m ×m random per-

mutation matrices. A random permutation matrix is simply the identity matrix

with randomly permuted rows. If Hd is a q × t array of random permutation ma-

trices, then we have t ones per row and q ones per column and size of H would be

qm × (t + q)m and the rate of code would be q/(q + t). For example, a code with

the following Hd matrix has rate of 2
5
. Hd has three ones per column and two ones

per row [5].

Hd =





















π1 π2

π3 π4

π5 π6





















(3.6)

25

3.2.1 Method of Constructing π-Rotation Matrix

We can start with one permutation matrix, πA, and find the other permutation

matrices by rotating πA and construct the Hd matrix as explained in Figure 3.2.

3.2.2 The π-Rotation Vector

Now, we will show how to create a Hd sub-matrix just from a single permu-

tation vector. This vector indicates the positions of the non-zero elements in each

column, counting from the bottom. For example, for the permutation vector of [1

3 2] we obtain the following four π-rotations:

πA =







0 1 0
0 0 1
1 0 0





 πD =







1 0 0
0 0 1
0 1 0







πB =







0 1 0
1 0 0
0 0 1





 πC =







0 0 1
1 0 0
0 1 0







The resulting parity check matrix is shown below:

H =



















































1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1
0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0
0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0
0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0



















































26

Figure 3.2: The upper figure shows the four π-rotation matrices and the lower
figure shows the arrangement of four π-rotation permutation matrices to create the
Hd matrix for a rate 1

2
code.

27

In general, we can create the rate 1
2

parity check matrix from any permutation

vector as follow:

H =













1 1 · · · 0 πA πB πC πD

0 1 · · · 0 πB πA πB πA

...
. . . · · · ... πC πC πA πB

0 . . . 1 1 πD πD πD πC













(3.7)

3.3 Finding a Good Permutation

In this section we study how to select a good permutation based on distance

and girth properties. Under the general conditions the search would take a great

deal of processing time. In the next sub-sections we use the symmetries of matrix

(3.7) to facilitate search techniques.

3.3.1 Counting The Short Loops

Figure 3.3 shows a simple representation of the Hd matrix. We search for

4-cycle loops. Particularly, short loops exist between quad arrangements of permu-

tations. In Figure 3.4, there are 36 quads for a 4 by 4 pattern. Consider first the

top-left and bottom-right quad. We can see they have the same permutation pattern

A-B-C-B. However, the quad represented by B-C-B-A has the same number of

short loops (cycle of length 4) as A-B-C-B.

Figure 3.5 shows the the list of quads and where this quad and one of its

28

Figure 3.3: The basic configuration of Hd matrix.

Figure 3.4: There are ten quads which cover all possible short loops within the Hd

matrix.

29

Figure 3.5: The quads that are invariant through rotation. The number of indepen-
dent quads is reduced to four

30

invariants reside in the permutation grid. Moreover, additional invariants are ob-

served when the matrices are rotations of one another as they are in the π-rotation

matrix, for example, with rotating A-B-C-B once counterclockwise to obtain the

C-D-C-B quad which has the same number of short loops. In Figure 3.4, the four

possible quad rotation for each quad are shown [5].

There are cases where rotating the quad produces a quad from another group,

as we can see in Figure 3.5. The four base quads are chosen to be A-B-C-B, A-

C-D-B, A-B-D-C and A-C-A-C. We can count the repetition of each quad type

and find the multiplicities of 16, 8, 8, and 4 respectively. Thus the total number of

short loops is given by:

LoopCount = 16QABCB + 8QACDB + 8QABDC + 4QACAC (3.8)

where Q is the short loop count in the associated quad.

Now, we would like to express the short loop count of a quad directly from

the premutation vector πA . For this purpose define x as the m length integer

list starting from one. Three other lists, g, X and G are derived from the πA

permutation. The g list is the πA permutation mapping itself, the X list is derived

from x, where x is a vector with xi = i, by transformation X = m + 1 − x and in

a similar way, G can be obtained from g with the same transformation. Thus the

πA vector is obtained by mapping x to g, the πB vector is obtained by mapping G

to x, the πC vector is obtained from by mapping from X to G and the πD vector

is obtained from g to X. Searching for short loops in a particular quad is simply a

matter of tracking these various mappings and identifying any matches [5].

31

Figure 3.6: The algebraic relation which is developed to find a short loop in the
A-B-C-B quad.

32

Figure 3.6 explains how we find the relations for short loops in the A-B-

C-B quad. The mapping g(x) determines the nonzero locations in permutation

πA. G(g(x)) gives the horizontal location of the nonzero values in πB. Thus x

and G(g(x)) are the column locations having the same nonzero row numbers. If

matrices B and C have identical nonzero row numbers then we have a short loop.

Refering to our relationships, we find that for the B rotation the row is identified

with G−1(x) and for C, G(X−1(G(g(x)))) delivers the row number (counting from

the bottom). We note that X−1G = g to simplify the relation as follows:

x = G(G(g(g(x)))) (3.9)

To find number of short loops in the A-B-C-B quad, we have to try equation

(3.9) for each value of x, from 1 to m , and if x satisfies (3.9) we count one short

loop in A-B-C-B. The relation for each of the basis quads are as follows:

A-B-C-B . . . = G(G(g(g(x))))

A-C-D-B . . . = G(X(G−1(G−1(g(x)))))

A-B-D-C . . . = X(g−1(g−1(G(g(x)))))

A-C-A-C . . . = X−1(G(g(X(G−1(g(x))))))

We can simply search for each value of x in the above equations. The number

of solutions obtained for each quad is placed in the appropriate Q variable in (3.8)

to determine the number of short loops in the Hd sub-matrix. The problem with

this method is that it does not identify ALL possible short loops in the parity check

matrix [5].

33

Chapter 4

A Heuristic Method to Find The Best Permutation Vector

As explained in Chapter 3, there are some permutation vectors which cause

short cycles in the parity check matrix. To avoid this problem, Echard proposed a

method to find short cycles of length four. This method does not cover all possible

matrix girths of length four. Moreover, the extension of this method to find bigger

matrix girths, say six or eight, is very difficult.

Suppose the size of the Hd sub-matrix is 4m × 4m where m is the size of

permutation vector then there are m! possible permutation vectors. Finding the best

permutation vector among m! possible vectors is a NP complete problem. When m

increases, the size of search domain increases exponentially. Thus we have to use a

heuristic algorithm to find a local optimum permutation vector.

4.1 Performance of Different Permutation Vectors

In this section, the difference in performance among permutation vectors will

be discussed. We considered AWGN channel, in which additive white Guassian

noise is added to the transmitted signal. The received signal yi is given by:

yi = xi + ni (4.1)

34

which consists of the transmitted signal xi with additive noise ni chosen from a

zero-mean Gaussian distribution:

Pn(a) =
1√
2πσ

exp(− a2

2σ2
) (4.2)

where σ is the standard deviation of the noise. The transmitted signal xi is often

restricted to a discrete signaling constellation, such as pulse amplitude modulation

(PAM). The encoded bits vi ∈ (0, 1) are mapped to the constellation points xi ∈

(−1, 1) for transmission, using the mapping xi = 2vi − 1. The quality of channel is

measured in terms of the signal to noise ratio (SNR), which is defined here as

Eb

N0

=
P

2Rσ2
(4.3)

which represents the energy normalized per used bit. The power is assumed to be

P = 1, the code rate R, and the noise variance σ2. The signal to noise ratio is usually

measured in decibels (dB), so that the SNR in dB is equal to 10log10(
Eb

N0

) dB. In

the simulation program, with given SNR and R we can find σ, then we produce two

random variable for information bits and noise. The received signal will be passed

through a message passing-decoder. We run the simulation for almost 109 bits.

We start with a small codeword length, for example, for codewords of length

24 and 32 , so there are 3! = 6 and 4! = 24 different possible parity check matrices.

The performance of different permutation vectors can be seen in Figure 4.1.

The permutation vectors of [1 2 3] and [3 2 1] have higher BER compared

to the other permutation vectors. Due to symmetry, the number of short cycles in

these permutations is higher. The best performance among permutation vectors of

size four belongs to [4 2 1 3], [4 1 3 2], [3 2 4 1], [3 1 2 4],[2 4 3 1], [2 3 1 4],

35

2 2.5 3 3.5 4 4.5 5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/No

B
E

R

[1 2 3]
[1 3 2]
[2 1 3]
[2 3 1]
[3 1 2]
[3 2 1]

2 2.5 3 3.5 4 4.5 5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/No

B
E

R

[3 1 4 2]
[4 1 2 3]
[4 2 1 3]
[4 3 1 2]
[4 3 2 1]

Figure 4.1: The BER for different permutation vectors of size 3 and 4.

36

[1 4 2 3] and [1 3 4 2] (In Figure 4.1, just 5 different permutation vectors from

the 24 permutations are shown.) When the size of the matrix increases we can not

run the simulation for all different permutations, so we need another algorithm to

find the best local one.

4.2 Searching for a Good Permutation Vector

As discussed before, we can not examine the performance of each permutation

vector, because our search domain contains m! different vectors. In this section, we

explain a suboptimal algorithm in detail and give some examples to show how it

works.

Definition 1 Mapping g(i, j) on vector a = [a1, a2, . . . , an] for 0 ≤ i < j < n is :

a = [a1, . . . ,
iai+1, . . . ,

jaj+1, . . . , an] −→ a = [aj+1, . . . , an, ai+1, . . . , aj , a1, . . . , ai]

For example, if i = 3 and j = 7 mapping g(3, 7) on vector a=[1 2 3 4 5 6 7 8

9] is [8 9 4 5 6 7 1 2 3] and for i = 0 and j = 7 is [8 9 1 2 3 4 5 6 7].

Definition 2 The neighborhood of a vector a = [a1, a2, . . . , an] is the set of vectors

which can be obtained from a by repositioning the elements of a using mapping g(i, j)

for ∀ 0 ≤ i < j < n.

For example, the neighborhood of vector [1 2 3 4] is:

i = 0, j = 1 [2 3 4 1] i = 1, j = 2 [3 4 2 1]

i = 0, j = 2 [3 4 1 2] i = 1, j = 3 [4 2 3 1]

37

i = 0, j = 3 [4 1 2 3] i = 2, j = 3 [4 3 1 2]

Thus, each vector has 6 other vectors in its neighborhood. In general, a vector

of length n has Ck
n = n(n−1)

2
vectors in its neighborhood.

Proposition 1 If a is in the neighborhood of b then b is in a’s neighborhood as

well.

We can show this as a connected graph. Each node represents a permutation

vector and each edge connects two nodes that can be obtained from each other.

Figure 4.2 shows a connected graph for a permutation vector of size four. this

graph has 24 nodes and 72 edges.

Proposition 2 All permutation vectors can be obtained from each permutation with

positive probability.

We propose the following procedure to find locally the best performance among

all possible permutation vectors.

• Step 0 Generate a random permutation vector, v. Compute BERint and

choose state0 = v and state1 = v.

• Step 1 Generate random numbers 0 ≤ i < j < n and use mapping g(i, j) on

v to obtain another vector and compute BER1

• Step 2 If BER1 < BERint then

state0 = v state1 = v BERint = BER1

38

Figure 4.2: This graph shows the transformation between two permutation vectors.
Each node present one permutation vector and each edge connects two nodes which
are neighbors. Thus, each node has degree of 6. (To avoid complexity, all edges are
not shown.)

39

else

state1 = v

• Step 3 Go to step 1 until we reach the maximum number of iterations.

• Step 4 Get state0 as permutation vector.

Figure 4.3 shows the flowchart of this procedure. At the begining, we choose

one of the permutation vectors as the initial vector. Then, the next permutation

vector is obtained from the first one by mapping g(i, j) . The best permutation

vector is stored in state0, and state1 is a new permutation vector which will be

generated. Do this procedure for maximum number of iterations. A schematic of

this procedure is shown in Figure 4.4.

4.2.1 The Modified Procedure

In the original procedure we could go from one state to another by using

mapping g(i, j). We make a modification on the procedure such that in step 2, if

the difference between the lowest BER and next generated BER is greater than a

threshold, δ, then we do not move to that state and we generate another state from

the current state. In the other words, we go to the next state if its BER is within a

δ from lowest BER. Thus, the procedure becomes:

• Step 0 Generate a random permutation vector, v, compute BERint choose

state0 = v and state1 = v.

40

Figure 4.3: The flow chart of proposed heuristic

41

Figure 4.4: Schematic for changing states during procedure, The upper states have
higher BER. (a) Changing states without any restriction (b) changing states re-
stricted to threshold δ

42

• Step 1 Generate random numbers 0 ≤ i < j < n and use mapping g(i, j) on

v to obtain another vector and compute BER1

• Step 2 If BER1 < BERlow then

state0 = v state1 = v BERlow = BER1

else if BER1 − BERlow < δ

state1 = v

• Step 3 Go to step 1 until we reach the maximum number of iterations.

• Step 4 Get state0 as permutation vector.

Figure 4.4b shows the schematic for the modified heuristic. The problem is

how we to choose the threshold δ.

4.3 Simulation Results

In this section, the original procedure and modified one are simulated. At the

begining, a permutation vector of size 5 or a codeword of size 40 is used to explain

the procedures in detail. Then results of simulations for permutation vectors of size

50, 100 and 200, which correspond to codewords of size 400, 800 and 1600 are shown.

The channel is AWGN channel and signal to noise ratio is chosen 3.

For a permutation vector of length 5, there are 5! = 120 different parity

check matrices. Thus we have chosen 12 steps, one-tenth of the total number of

possibilities, to run the simulation. Figure 4.5 shows the state and BER at each

iteration.

43

0 2 4 6 8 10 12
10

−5

10
−4

10
−3

10
−2

No of Iteration

B
E

R

without restriction
delta = 0.0001
delta=0.0002

Figure 4.5: The BER of permutation vector of size 5 at each iteration.

44

Now, the role of δ in choosing the next step is investigated. If δ is too big, the

modified and original procedure will have the same result. If δ is too small, then

the algorithm may get stuck in one state neighborhood.

As we can see in Figure 4.5 when δ is chosen very small, 0.0001 , the neighbors

of one node are scanned. In general, if we stay in one node more than n(n−1)
2

times,

we can not do better than the BER of the current state. If δ > 0.01 , the movement

among states is like not having any threshold. Figure 4.6 shows the permutation

vectors exchange for each iteration. As we can see, when there is no restriction,

we can go from each state to another one using mapping g(i, j). When δ is small,

0.0001, after one move we get stuck in the state of [5 3 1 4 2]. This shows that

δ = 0.0001 is small for a vector of size 5. Increasing δ from 0.0001 to 0.0002 gives us

more flexibility to change the states. Nevertheless, in all cases [4 2 5 3 1] emerged

as the best permutation vector.

Increasing the size of the parity check matrix makes the problem more inter-

esting. For the first step, we increase the size of the permutation vector to the 50.

Figure 4.7 shows the results of the program for 50 steps and for three different

cases: without any restriction, with δ = 0.00001, and δ = 0.00005. The number

of iterations is 50 which is very small compared to our search domain which has

size of 50!. These two δ are almost reasonable, they are not so big that there is no

difference from the no restriction case and are not so small such that we stay in one

state forever.

Figure 4.8 and Figure 4.9 show the BER results for codewords of length 800

and 1600. As we can see, when the size of permutation matrix is 100, if δ = 0.000005

45

Figure 4.6: The permutation vectors of size 5 at each state (a) without δ, (b) with
δ = 0.0001, and (c) δ = 0.0002.

46

0 5 10 15 20 25 30 35 40 45 50
10

−7

10
−6

10
−5

10
−4

10
−3

No of Iteration

B
E

R

without restriction
delta = 0.00001
delta=0.00005

Figure 4.7: The BER for permutation vector of size 50 at each iteration for three
different cases.

0 10 20 30 40 50 60 70 80 90 100
10

−7

10
−6

10
−5

10
−4

No of Iteration

B
E

R

without restriction
delta = 0.00001
delta=0.000005

Figure 4.8: The BER of permutation vector of size 100 at each iteration for three
different cases.

47

0 20 40 60 80 100 120 140 160 180 200
10

−8

10
−7

10
−6

10
−5

No of Iteration

B
E

R

without restriction
delta = 0.00001
delta=0.000005

Figure 4.9: The BER of permutation vector of size 200 at each iteration for three
different cases.

most of the time we stay in one state which means that this δ is small for this

permutation vector size. When we increase the length of permutation vector to 200,

it works better. In general, for each size of permutation vector choosing a good δ is

an important problem.

Another important issue is how many times we need to run the program. The

more we increase the number of iterations, the more states we scan . So, there a

trade off between running time and having better BER. We can put limits on our

performance. For example, we can run the program until we get the BER < ǫ, then

we stop.

The other method is run the program for at most n times. If an acceptable

BER is reached , we are done. Otherwise we delete all those states which have been

48

already visited and run the program one more time for the rest of states. In general,

we can not set a specific number of iterations for each permutation vector because

we are doing a random search in a graph with too many nodes.

49

Chapter 5

Conclusions

Error correcting codes introduce redundancy into a sequence of information

bits to reduce the BER and increase the reliability of telecommunications systems.

Shannon proved that to get a rate R close to the channel capacity, C, we need to

choose the block length ν sufficiently large. Many code books were introduced to

approach the Shannon limit. Gallager in his Ph.D thesis [8] introduced the Low-

Density Parity Check (LDPC) codes which perform well with large code length. His

parity check matrix has a random and sparse structure. The number of ones in each

row and column are fixed and small compared to the size of the matrix. He used an

iterative decoding method in receiver to eestimate the information bits. To have a

good decoder, the girth of the matrix must be big enough. Other researchers have

shown that if the parity check matrix in LDPC codes is chosen irregular instead

instead of regular, the performance can be better. The main disadvantages of a

random parity check matrix is that it needs a large amount of storage and circuit

implementation is complex.

A deterministic parity check matrix is another option. Echard proposed an

irregular deterministic parity check matrix which is based on a π-rotation permu-

tation matrix. This parity check matrix can perform as well as the random matrix

and its implementation and storage are easy. To find a good permutation matrix,

50

Echard suggested counting the number of cycles of length four in the sub-matrix,

which does not include all the loops with girth four.

We introduced a heuristic to search for the best permutation vector. Each per-

mutation vector is considered as a node in a graph and two nodes can be connected

together if they can be obtained from each other by using a defined mapping. Thus

we have a big graph with too many nodes where the transition probability between

each node and other nodes is p if they are connected and otherwise is zero. There-

fore we have a Markov chain, and our search is like a random walk in the chain. In

general, there is no fixed rule for this search. You can start from any state and end

up to any state in the graph. The procedure does not require the number of short

loops in the matrix to be counted, which is an exhaustive job when your codeword

length is large. Transition restrictions from one state to another can be introduced,

which avoids going to those states which have poor performance compared to the

current state.

For further research, it would be good to analyse the worst case performance

of the algorithm and somehow merge it with Echard’s counting loop procedure to

reach the local optimum sooner.

51

BIBLIOGRAPHY

[1] Berrou, C.;Glavieux, A.,“Near optimum error correcting coding and decoding:

turbo codes,”Communication, IEEE Transaction on, vol.44, no.10, pp. 1261-

1271, Oct 1996

[2] Berrou, C.;Glavieux, A.; Thitimajshima, P.,“Near shannon limit error cor-

recting coding and decoding: Turbo-codes.1,”Communication,1993.ICC 93.

Geneva. Technical Program, Conference Record, IEEE International Confer-

ence on, vol.2, pp. 1064-1070, May 1993

[3] Echard, R.; Shih-Chun Chang,“Irregular π-rotation LDPC codes,”Global

Telecommunications Conference, 2002. GLOBECOM‘02. IEEE , vol.2, pp.

1274-1278, Nov. 2002

[4] Echard, R.; Shih-Chun Chang,“The π-rotation low-density parity check

codes,”Global Telecommunications Conference, 2002. GLOBECOM‘02. IEEE,

vol.2, pp. 980-984, 2001

[5] Echard, R.,“On the Construction of Some Deterministic low-density parity

check codes”Ph.D. thesis,George Mason University, VA, 2003.

[6] Elias, P.,“Error free coding,”Information Theory, IEEE Transaction on, vol.4,

no.4, pp. 29-37, Sep 1954

[7] Fan,J.L.,“Constrained coding And Soft iterative decoding,” Information The-

ory Workshop, 2001. Proceedings. 2001 IEEE, pp. 18-20, 2001

52

[8] Gallager, R.,“Low-density parity check codes,”Information Theory, IEEE

Transaction on , vol.8, no.1, pp. 21-28, Jan 1962

[9] MacKay, D.J.C.,“Good error-correcting codes based on very sparse matri-

ces,”Information Theory. 1997. Proceedings.,1997 IEEE International Sympo-

sium on, pp. 113-, Jul 1997

[10] Sae-Young Chung; Forney, G.D, Jr.; Richardson, T.J.; Urbanke, R.,“On the

design of low-density parity-check codes within 0.0045 db of the Shannon

limit,”Communications Letters, IEEE, vol.5, no.2, pp. 58-60, Feb 2001

[11] Shannon, C.E.,“A mathematical theory of communication,” Bell System Tech-

nical Journal, vol.27, pp. 379-423, Oct 1948

[12] Shannon, C.E.,“Probability of error for optimal codes in a guassian channel,”

Bell System Technical Journal, vol.38, pp. 611-656, 1959

[13] Tretter, S.,“Error Correcting Codes,”Class Notes, University of Maryland,

http://www.enee.umd.edu/∼tretter/enee722/

[14] Viterbi, A.,“Error bounds for convolutional codes an asymptotically optimum

decoding algorithm,”Information Theory, IEEE Transaction on, vol.13, no.2,

pp. 260-269, Apr 1967

53

