

ABSTRACT

Title of Document: AUTOMATIC CRITICAL SECTION

DISCOVERY USING MEMORY USAGE
PATTERNS.

 Lisa Marie Stechschulte, M.S., 2012

Directed By: Professor Donald Yeung

Department of Electrical and Computer
Engineering

Parallel programming introduces new types of bugs that are notoriously

difficult to find. As a result researchers have put a significant amount of effort into

creating tools and techniques to discover parallel bugs. One of these bugs is the

violation of the assumption of atomicity— the assumption that a region of code,

called a critical section, executes without interruption from an outside operation.

In this thesis, we introduce a new heuristic to infer critical sections using the

temporal and spatial locality of critical sections and provide empirical results showing

that the heuristic can infer critical sections in shared memory programs. Real critical

sections in benchmark programs are completely covered by inferred critical sections

up to 75% to 80% of the time. A programmer can use the reported critical sections to

inform his addition of locks into the program.

AUTOMATIC CRITICAL SECTION DISCOVERY USING MEMORY USAGE
PATTERNS

By

Lisa Marie Stechschulte

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Master or Science

2012

Advisory Committee:
Professor Donald Yeung, Chair
Professor Rajeev Barua
Professor Steve Tretter

© Copyright by
Lisa Marie Stechschulte

2012

 ii

Acknowledgements

To Dr. Yeung, thank you for your creative ideas, challenging questions, and patient

teaching. I learned something new from you in every discussion. Thank you.

To my committee, thank you for your flexibility and willingness to help me.

To my colleagues, thank you for supporting me through this writing process and

covering for me while I was away working on my graduate studies.

To Adam, thank you for the support, encouragement, love, and home-cooked meals.

I could not have done this without you… and I owe you dinner.

I dedicate my thesis to my parents. You have always believed in me and told me I

could do anything I set my mind to do. Thank you.

 iii

Table of Contents

Acknowledgements... ii	

Table of Contents... iii	

List of Tables ... iv	

List of Figures ... v	

Chapter 1: Introduction... 1	

Parallel Computing Background... 2	

Processing Element Organization... 2	

Memory Organization... 3	

POSIX Threads – The Parallel Implementation Studied 5	

Common Parallel Programming Bugs .. 7	

Deadlock ... 8	

Data Race.. 9	

Atomicity Violation .. 10	

Order Violation ... 11	

Motivation and Goals.. 12	

Contributions .. 13	

Chapter 2: Related Work .. 15	

Transactional Memory.. 15	

Atomicity Violation Detection and Prevention .. 19	

Chapter 3: Inferring Critical Sections ... 26	

Inferring Objects ... 27	

Inferring Critical Sections... 30	

Chapter 4: Results ... 34	

Benchmarks .. 34	

How suitable is the tool for these benchmarks? ... 36	

Measuring Success.. 41	

Real Critical Section Coverage... 43	

Inferred Critical Section Accuracy ... 50	

Overall Performance ... 54	

Examples... 62	

Example: Covered Real Critical Section with Excess .. 62	

Example: Uncovered Real Critical Section Covered with Island Method 65	

Example: Real Critical Section in a Loop .. 67	

Chapter 5: Discussion .. 70	

Improving the Results ... 70	

Potential Uses ... 71	

Chapter 6: Future Work ... 73	

Analyzing New Benchmarks .. 73	

Improving Object and Critical Section Inference ... 74	

Creating a Completely Automated Tool ... 74	

Appendices.. 76	

Glossary .. 78	

Bibliography ... 80	

 iv

List of Tables

Table 1: Number of dynamic real critical sections that only referenced non-heap

memory by code region. ... 37	

Table 2: Tested threshold values for all three thresholds. .. 43	

Table 3: Number of static and dynamic real critical sections and inferred critical

sections for shared objects created under island and original methods by
benchmark. Boxes with two entries show the minimum and maximum number
of critical sections. .. 51	

Table 4: Lengths of dynamic executions of the critical section from mdmain.c lines
114 to 166 compared with the length of the inferred critical sections that fully
cover each dynamic execution. ... 64	

 v

List of Figures

Figure 1: Atomicity bug example. .. 10	

Figure 2: Example memory accesses and the object created after the reference at time

12. Here the time threshold is 4 and the address distance threshold is 8 bytes. 27	

Figure 3: Example memory accesses and modifying the object after time 17. Here the

time threshold is 4 and the address distance threshold is 8 bytes. 28	

Figure 4: Example memory accesses and merging after time 12 when both addresses

are in objects. Here the time threshold is 4 and the address distance threshold is 8
bytes. ... 29	

Figure 5: Merging active critical sections from when related objects are merged.
Here the object creation time threshold is 4 and the distance threshold is 8 bytes.
The critical section non-object accesses threshold is 50..................................... 32	

Figure 6: Percentage of real critical sections that reference only heap memory, only
non-heap memory, some of both, and no tracked memory references. 37	

Figure 7: Static critical section coverage for Ocean Contiguous using Islands.......... 46	

Figure 8: Static critical section coverage for Ocean Contiguous................................ 46	

Figure 9: Static critical section coverage for FMM using Islands. 46	

Figure 10: Static critical section coverage for FMM.. 46	

Figure 11: Static critical section coverage for Barnes using Islands. 46	

Figure 12: Static real critical section coverage for Barnes. .. 46	

Figure 13: Static critical section coverage Ocean Non-contiguous. 47	

Figure 14: Static critical section coverage Ocean Non-contiguous using Islands. 47	

Figure 15: Static critical section coverage for Water-nSquared using Islands. 47	

Figure 16: Static critical section coverage for Water-nSquared. 47	

Figure 17: Static critical section coverage for Water-Spatial using Islands. 47	

Figure 18: Static critical section coverage for Water-Spatial. 47	

Figure 19: Dynamic critical section coverage for Ocean Contiguous using Islands. . 48	

Figure 20: Dynamic critical section coverage for Ocean Contiguous. 48	

Figure 21: Dynamic critical section coverage for FMM using Islands. 48	

Figure 22: Dynamic critical section coverage for FMM. ... 48	

Figure 23: Dynamic critical section coverage for Barnes using Islands..................... 48	

Figure 24: Dynamic critical section coverage for Barnes... 48	

Figure 25: Dynamic critical section coverage for Water-nSquared using Islands...... 49	

Figure 26: Dynamic critical section coverage for Water-nSquared............................ 49	

Figure 27: Dynamic critical section coverage for Water Spatial using Islands.......... 49	

Figure 28: Dynamic critical section coverage for Water Spatial. 49	

Figure 29: Dynamic critical section coverage for Ocean Non-contiguous using

Islands. .. 49	

Figure 30: Dynamic critical section coverage for Ocean Non-contiguous................. 49	

Figure 31: Static inferred critical section accuracy for FMM using Islands. 56	

Figure 32: Static inferred critical section accuracy for FMM. 56	

Figure 33: Static inferred critical section accuracy for Ocean Contiguous using

Islands. .. 56	

Figure 34: Static inferred critical section accuracy for Ocean Contiguous. 56	

 vi

Figure 35: Static inferred critical section accuracy for Barnes using Islands............. 56	

Figure 36: Static inferred critical section accuracy for Barnes................................... 56	

Figure 37: Static inferred critical section accuracy for Water-nSquared using Islands.

.. 57	

Figure 38: Static inferred critical section accuracy for Water-nSquared.................... 57	

Figure 39: Static inferred critical section accuracy for Water Spatial using Islands. . 57	

Figure 40: Static inferred critical section accuracy for Water Spatial. 57	

Figure 41: Static inferred critical section accuracy for Ocean Non-contiguous using

Islands. .. 57	

Figure 42: Static inferred critical section accuracy for Ocean Non-contiguous......... 57	

Figure 43: Dynamic inferred critical section accuracy for Ocean Contiguous using

Islands. .. 58	

Figure 44: Dynamic inferred critical section accuracy for Ocean Contiguous........... 58	

Figure 45: Dynamic inferred critical section accuracy for FMM using Islands. 58	

Figure 46: Dynamic inferred critical section accuracy for FMM............................... 58	

Figure 47: Dynamic inferred critical section accuracy for Barnes using Islands. 58	

Figure 48: Dynamic inferred critical section accuracy for Barnes. 58	

Figure 49: Dynamic inferred critical section accuracy for Water-nSquared using

Islands. .. 59	

Figure 50: Dynamic inferred critical section accuracy for Water-nSquared. 59	

Figure 51: Dynamic inferred critical section accuracy for Water Spatial using Islands.

.. 59	

Figure 52: Dynamic inferred critical section accuracy for Water Spatial. 59	

Figure 53: Dynamic inferred critical section accuracy for Ocean Non-contiguous

using Islands. .. 59	

Figure 54: Dynamic inferred critical section accuracy for Ocean Non-contiguous. .. 59	

Figure 55: Inferred critical sections' instructions by real overlap for Ocean

Contiguous. ... 60	

Figure 56: Inferred critical sections' instructions by real overlap for Ocean

Contiguous using Islands. ... 60	

Figure 57: Inferred critical sections' instructions by real overlap for FMM using

Islands. .. 60	

Figure 58: Inferred critical sections' instructions by real overlap for FMM............... 60	

Figure 59: Inferred critical sections' instructions by real overlap for Barnes. 60	

Figure 60: Inferred critical sections' instructions by real overlap for Barnes using

Islands. .. 60	

Figure 61: Inferred critical sections' instructions by real overlap for Water-nSquared

using Islands. .. 61	

Figure 62: Inferred critical sections' instructions by real overlap for Water-nSquared.

.. 61	

Figure 63: Inferred critical sections' instructions by real overlap for Water Spatial

using Islands. .. 61	

Figure 64: Inferred critical sections' instructions by real overlap for Water Spatial. . 61	

Figure 65: Inferred critical sections' instructions by real overlap for Ocean Non-

contiguous using Islands. .. 61	

 vii

Figure 66: Inferred critical sections' instructions by real overlap for Ocean Non-
contiguous. .. 61	

 viii

List of Code Segments

Code Segment 1: Water-Spatial mdmain.c printing critical section. 38	

Code Segment 2: FMM CreateParticleList malloc critical section. 39	

Code Segment 3: FMM InsertBoxInGrid critical section... 40	

Code Segment 4: Assembly code for FMM InsertBoxInGrid critical section. 40	

Code Segment 5: Critical section in mdmain.c lines 114 to 166, which is the result of

expanding a BARRIER macro in mdmain.C line 47.. 63	

Code Segment 6: Structure start: the object that associated with the inferred critical

sections that fully cover the real critical section in mdmain.c lines 114 to 166. 64	

Code Segment 7: Real critical section in lines 160 to 162 of interf.c (corresponding to

lines 145-147 of interf.C).. 65	

Code Segment 8: Real critical section in kineti.c lines 47 to 60 (kineti.C lines 32 to

45). .. 67	

 1

Chapter 1: Introduction

 To provide high performance, applications running on our home computers,

web servers, data centers, and scientific computing clusters have embraced techniques

to run many tasks at once. This move from serial to parallel processing allows a

scientific application to run a complex computation faster, a web server to serve many

clients at once, and our home computers to seamlessly offer high performance to

multiple services at the same time.

However, writing an application that runs in parallel is difficult and prone to

error. Programmers are trained to think of their code as running sequentially—one

instruction follows the next and nothing is executed between them—but in a parallel

program, two or more sections of the code that run simultaneously could interfere

with each other. When that happens, a program could crash, hang eternally, or

produce an incorrect answer.

Parallel programming bugs are notoriously difficult to find. It is not

uncommon for a bug to manifest itself only with particular inputs and a specific

interleaving of the simultaneously running sections of code. Researchers have put a

significant amount of effort into creating tools and techniques to discover bugs in

static and dynamic code and building systems that attempt to mask the effects of

parallel bugs.

In this thesis, we present evidence for a new way to discover a type of parallel

programming bug called an atomicity violation, which occurs when a programmer

expects that a region of code will be executed without interference from other

 2

simultaneously executing code regions—that is it must execute atomically. A region

of code that must execute atomically is called an atomic section or critical section.

Existing research uses two primary methods to find atomicity violations. In one

method, tools determine if code regions executing in parallel could be executed in

some serial order and get the same result—in other words, determining if a parallel

execution is serializable. If a parallel execution cannot be serialized, the tools assert

that an atomicity violation may have occurred. The other method heuristically

assumes that critical sections have temporal locality and that atomically executing

large groups of consecutive memory accesses can prevent atomicity violations.

Our heuristic is quite different. We intuit that programmers want accesses to

related variables to execute atomically. Thus, our tool forms objects composed of

related variables and builds critical sections to protect accesses to these objects. In

this study, we explain how we form objects and their related critical sections.

Parallel Computing Background

 To begin, we define parallel computing as performing two or more

computations simultaneously. Each computation is performed by a processing

element—a generic term to describe any unit that can perform a computation.

Processing Element Organization

In his 1972 paper “Some Computer Organizations and their Effectiveness,”

Flynn classifies processing element organizations into four categories by how many

instruction and data streams are used simultaneously by all processing elements. The

simplest organization is Single Instruction-Single Data (SISD)—this is a sequential

 3

computer in which a processing element executes a single instruction a single data

element at a time. When multiple processing elements execute the same instruction at

the same time but operate on different data, they are using the Single Instruction-

Multiple Data (SIMD) organization. A vector or array processor, where multiple

processing units share a program counter but operate on independent data, is an

example of SIMD organization. It is important to note that SIMD enforces

processing elements to operate instructions in lockstep. The third organization,

Multiple Instruction-Single Data (MISD), is not used frequently. In this organization,

each processing element executes a different instruction on the same data. In the final

organization, Multiple Instruction-Multiple Data (MIMD), each processing element

executes a different set of instructions on a different set of data [9].

In later years, specific MIMD organizations were defined to include the Single

Program-Multiple Data (SPMD) organization. In this organization, processing

elements execute the same program, but do not operate in lockstep like the SIMD

processing elements (each processing element has its own program counter). Data is

divided among the programs [5].

Memory Organization

In any Multiple Data organization, data can be distributed or shared among

processing elements.

In the shared memory model, multiple processing elements have access to the

same memory and can access the memory of every other processing element [6].

This is especially useful for communication among processing elements. In

hardware, shared memory can be accomplished by having multiple processors on a

 4

single chip each with its own cache; all caches are then linked to a shared main

memory. Cache coherence protocols keep each cache up to date with main memory

and with the caches of the other processors as necessary. In software, the shared-

memory model can be implemented using a multi-threading library like the pthreads

library, for example. The library offers functions for the program to create a thread—

a stream of instructions that can run independently of the main process but is also still

sub-process of the main process. It also offers functions to synchronize the execution

of the threads and provide threads with exclusive access to regions of memory

through structures called locks.

In the distributed memory model, individual processing elements access only

their own data and do not have access to the data of other processing elements.

Processing elements can be sure that if they perform an operation on data, the data is

current and has not been modified by any other processor. Communication between

processing elements can be complicated in this model because it must take place in a

separate network outside of memory. One communication solution is to use a

message passing library like the Message Passing Interface (MPI) for communication

between processing elements. To use MPI, the programmer writes a single program

that runs on every machine in a cluster or every processing core of a single machine.

MPI offers functions to send and receive messages and a barrier function, which stops

processing on a core until a certain condition—for example, all cores have reported

their results—is met. The programmer synchronizes the cores and communicates

between them by using these send, receive, and barrier functions. All communication

 5

between cores in the message passing model is explicit, so the data on which one core

is operating cannot be modified unexpectedly by another core [7].

POSIX Threads – The Parallel Implementation Studied

 For this study, we analyzed programs that used the POSIX Threads, or

pthreads, C library to implement programs running the shared memory SPMD model.

As the library’s name indicates, threads are the fundamental tools used in this library

to parallelize code. A thread is an independent stream of instructions that exists

within a process. The thread uses some basic resources of its parent process, but the

resources it uses are basic enough that the operating system can scheduled it

independent of the parent process. While all threads have access to the program’s

global data, each thread maintains its own stack, registers (including an instruction

pointer), and private data [18].

 The pthreads library offers the function pthread_create for the main process

or threads inside the main process to create new threads. When a thread is created, it

is given a function to execute. This organization follows the SPMD model since

every thread’s code is part of a single program, but threads can execute different parts

of the program simultaneously.

A thread can be terminated by the main process, another thread, or itself. The

thread terminates itself when it returns normally from the function it was given at

creation or when it calls the function pthread_exit. A thread can call pthread_cancel

to terminated another thread. If the whole process is terminated or if main returns, all

threads are terminated [18]. When a thread is terminated, its stack and private data

are discarded.

 6

Since all threads can read and modify the process’s global data, the

programmer must enforce that these accesses are appropriately synchronized. As an

example, say a process has two threads that have finished their computations storing

the results in local_result and now must add their result to the global variable total.

Thread 1 finishes, reads total, locally performs the addition local_total = local_result

+ total, then stores local_total into total. Thread 2 will do the same tasks. If Thread

2 finishes just slightly after Thread 1 so that Thread 2 reads total after Thread 1 read

total but before Thread 1 updated total, then the final result will not be total plus both

variables local_result, but instead, will be total plus the local_result that updates total

last. Access to total needs to be protected so that this cannot happen. This region of

code is called a critical section, because it accesses a shared resource (total) and

must execute atomically. Atomic execution means that all computations occur

together without other threads interrupting. As Netzer and Miller put it, “Atomic

execution means that the final state of variables read and written in the section

depends only upon their initial state at the start of the section and upon the operations

performed by the code (and not operations performed by another process)” [21].

The pthreads library provides the data structures and functions to synchronize

access to global data and resources. The structure is called a mutex, which stands for

“mutual exclusion.” When a region of code must have mutually exclusive access to

data or a resource, the programmer can guarantee this by insisting that before

executing that region, the thread must lock the mutex using the function

pthread_mutex_lock. Only one thread can hold a lock on a mutex at once. When

mutually exclusive access to the data or resource is no longer needed, the mutex is

 7

unlocked using pthread_mutex_unlock. It is then available for other threads to lock

and access memory regions exclusively [18].

Threads can synchronize with each other using pthreads library’s barrier

function and condition variables and functions. The barrier function forces each

thread to stop executing until all threads reach the barrier. A condition variable

works with a mutex to signal events to other threads. As an example, Thread 1

recalculates a value result every time the global variable total is updated while other

threads can update total. Thread 1 could continuously poll total waiting for a change

and recalculating result when it notices total has changed; or when other threads

update total from within a critical section (while a mutex is locked), they could notify

Thread 1 via the condition variable that total has changed, awakening Thread 1 and

causing Thread 1 to start its computation. The condition functions that we find in our

analysis include pthread_cond_wait, which blocks a thread and releases the mutex

until the condition variable changes, and pthread_cond_broadcast, which broadcasts

a signal to all threads that the condition variable has changed [18].

Common Parallel Programming Bugs

While performing multiple computations at once provides performance gains,

it also introduces a new set of potential programming bugs. In the paper “Learning

from Mistakes – A Comprehensive Study on Real World Concurrency Bug

Characteristics,” the authors noted four types of bugs found in concurrent (i.e.,

parallel) programs [15]. Each of these bugs is discussed separately below.

The authors studied 105 randomly selected concurrency bug reports from the

open-source software applications MySQL, Apache, Mozilla, and Open Office.

 8

MySQL (a database application) and Apache (a web server) are both server

applications; Mozilla (a web browser) and Open Office (a suite of word processing,

spreadsheet, and other office applications) are both client applications. They

examined everything included in the bug reports (source code, patches, programmer

comments) to determine the type of bug and how it was fixed. From this, they

developed an understanding of what types of bugs exist in the real world, under what

conditions they appear, and how they are fixed [15].

Deadlock

 Deadlock occurs when two or more processing elements cannot proceed

because they are waiting on each other to release access to a resource [15]. For

example, Thread 1 must lock mutex A and then mutex B; meanwhile, Thread 2 locks

mutex B and then mutex A. If simultaneously Thread 1 locks mutex A and Thread 2

locks mutex B, then neither will be able to proceed with their next lock and they will

wait indefinitely.

 It might seem that deadlock cannot occur when a program has only one

gatekeeper guarding exclusive access to resources; however, in the “Learning from

Mistakes” study, the authors found that 22% of deadlock bugs occurred because one

thread tried to acquire a resource that it already had. They also found that 97% of the

deadlock bugs were the result of “two threads circularly waiting for at most two

resources” [15]. Despite the fact that increasing the number of exclusively accessed

resources provides more opportunity for deadlock, very few of the deadlock bugs

involved more than two resources.

 9

Data Race

 A data race occurs when two or more processing elements access a shared

variable without synchronizing [15]. The example that begins on page 5 where two

threads add their results to a global variable total is an example of a data race. Here,

the two threads race to update total, with the thread that updates total last overwriting

the update made to total by the thread that updated total first.

 Data races are not always errors. Sometimes programmers use data races as

an efficient method of raising a flag to all processing elements that a condition has

been met. For example, multiple processing elements are tasked with answering the

question, “Is x in my data set? If so, where is x?” All processing elements share a

global variable found, which is initially set to zero. Each processing elements checks

found to see if it is non-zero indicating x has been found. If so, the processing

element quits. If not, the processing element continues looking. If a processing

element finds x, it updates found to the location of x without locking found. Because

processing elements do not lock found, it is possible that two processing elements

could simultaneously race to overwrite found with different locations; however, both

locations are valid locations of x, so either location correctly answers the problem.

 Because data races are not always bugs, the authors of “Learning from

Mistakes” did not include them in the bug patterns they studied. Still many

researchers have studied the area of data race detection and prevention, and we will

discuss some of these studies in Chapter 2. It is important to note that a data-race free

program may have other concurrency bugs.

 10

Atomicity Violation

 As explained in the section above on POSIX Threads, atomic execution means

that only the initial state of variables and data on a processing element and the

instructions that processing element executes affect the final state of the variables and

data [21]. The region of code that should execute atomically is called a critical

section. If another processing element influences the final state of a critical section,

then an atomicity violation has occurred. This occurs because the programmer

incorrectly assumes that a section of code will execute atomically and does not

protect the region from outside access.

 As an example, consider a program in which the operations of Figure 1 on the

global variable pointer occur on two different threads without any protection from

outside accesses. In the code for Thread 1, the programmer incorrectly assumes that

checking that pointer is initialized and dereferencing pointer will occur atomically.

Instead, Thread 2 interferes with these two operations and resets pointer to NULL

causing Thread 1 to crash when it tries to dereference pointer. The programmer

could have fixed this bug by surrounding each block of code—each critical section—

with a lock and unlock to a common mutex.

 In the “Learning from Mistakes” study, 51 out of 74 non-deadlock

concurrency bugs studied (nearly 69%) were atomicity violations [15].

Figure 1: Atomicity bug example.

Thread 2

 pointer = NULL;

Thread 1

if (pointer != NULL)

 *pointer = 7;

 11

Order Violation

 The authors of “Learning from Mistakes” found that order violations

constituted 32% of the non-deadlock concurrency bugs examined. Unlike the three

bug types discussed already, very little research has been done on detecting order

violations [15].

 An order violation occurs when the programmer assumes an order between

blocks of code in different threads but does not enforce this order between the threads

[15]. For example, the first thread initializes a variable and the second thread uses the

variable. If the programmer does not force the initialization to occur before the

second thread starts to use the variable, then an order violation occurs. In a server

application where the main thread creates a new thread to handle each new client

connection, this type of order violation could occur if the programmer starts the new

thread before initializing a structure containing the client’s data.

 A variety of fixes are available for this order violation. The programmer

could insert a barrier function at the beginning of the second thread and after the

initialization in the first thread; this requires that the second thread wait for the first to

finish before continuing. The programmer could initialize the variable prior to

creating the second thread, so that the second thread can proceed immediately once it

is created. The second thread could poll the variable to see if it has been initialized

and proceed as soon as the variable is initialized.

Note that only one of these solutions, the barrier solution, uses any sort of

synchronization function. One finding of the “Learning from Mistakes” study was

that 73% of non-deadlock concurrency bugs (of all types, not just order violations)

 12

were fixed without using locks [15]. While locks can fix this type of bug, they also

can hurt performance making other fixes more efficient.

Motivation and Goals

 The “Learning from Mistakes” study showed that 69% of non-

deadlock concurrency bugs examined were atomicity violations. Given that atomicity

violations are so common, our goal was to determine if the memory access pattern of

a dynamically executing program could suggest related variables that must be

accessed atomically and where the critical sections for accessing these related

variables were in the program’s static code. If in fact the memory access pattern

correctly discovered critical sections, this information could be used to build a tool

that suggested potential critical sections to the programmer or a tool that

automatically locked down critical sections. By automatically adding locks to critical

sections, we could address the 27% of non-deadlock concurrency bugs in the

“Learning from Mistakes” study that were fixed by adding or changing locks [15].

Of all non-deadlock concurrency bugs (atomicity violations, order violations,

and other bugs) examined in the “Learning from Mistakes” study, 34% of them

involved accesses to multiple (often related) variables (the remaining 66% involved

only one variable); however, few concurrency bug detection tools look for bugs

caused by accessing multiple variables [15]. Rather than using program variables to

find the shared resources of critical sections, we aimed to address the multiple-

variable nature of concurrency bugs by analyzing shared resources at the level of the

memory layout. We formed objects, contiguous blocks of memory, by merging

nearby memory addresses that are accessed close together in time; consequently, if

 13

access to multiple variables causes a concurrency bug and these variables are

accessed nearby in space and time, they will form an object and can be detected as

needing protection in a critical section.

Contributions

 Tools that detect and avoid atomicity violations are an important part of

atomicity research. While all the tools address the problem slightly differently, they

also use similar techniques. In Chapter 2: Related Work, we discuss several of these

tools: AVIO [16], MUVI [14], Atom-Aid [17], and AtomTracker [20].

 The major contribution of this study is the addition of a novel heuristic for

determining critical sections. The heuristic is based on the idea that programmers

assume that accesses to related variables happen atomically. We develop a method

using the temporal and spatial locality of memory accesses to group related variables

into memory objects and from those objects produce a set of static code critical

sections inferred during a single run of a program.

 This study gives empirical results showing that the novel heuristic can infer

objects and critical sections in shared memory programs. A comparison with the real

critical sections in analyzed programs shows real critical sections are covered by

inferred critical sections up to 75% to 80% of the time. A programmer can use the

reported critical sections to inform his addition of locks, or a new tool could be

developed to automatically insert locks into the program for future runs.

Critical sections in this tool are inferred on the fly eliminating the need to

collect massive memory traces required by AVIO and AtomTracker.

 14

Programmers do not need to annotate code in any way in order for the tool to

discover critical sections. In fact, the tool can run on a program that has no

synchronization or locking implemented. Additionally, the code never needs to run

correctly for the tool to infer critical sections. This is a prerequisite for AVIO and

AtomTracker.

Like MUVI, our tool can detect critical sections that arise from using multiple

variables. AVIO and Atom-Aid cannot do this.

The tool is implemented as a C++ Pintool (see Chapter 3: Inferring Critical

Sections). This allows it to run on any program using X86 assembly language.

Otherwise, the underlying hardware is irrelevant to the tool, unlike Atom-Aid, which

must be run on top of an implicit atomicity system.

Perhaps the most important difference between this tool and AVIO, MUVI,

Atom-Aid, and AtomTracker is that the only inter-processor information that our tool

must know is whether a memory object is shared, in other words whether it is

accessed by more than one processor. All the other tools require significant

information about memory access interleavings. As a result, our tool can operate

without significant inter-process communication.

 15

Chapter 2: Related Work

 In this chapter, we review the current state of atomicity research. We begin

by discussing transactional memory, an increasingly popular way of implementing

critical sections without locks. Transactional memory grew out of the concept of

database transactions and is used in parallel processing to avoid atomicity violations;

we discuss several transactional memory studies below. Then we cover a series of

studies that aim to automatically detect and correct atomicity violations.

Transactional Memory

 In the section POSIX Threads – The Parallel Implementation Studied, we

introduced a lock-based system for implementing parallelism. However, another

important shared-memory model for parallelism uses the concept of a transaction,

which was developed in the study of databases. A transaction is a group of operations

that optimistically execute atomically, meaning that the transaction will execute but

before modifying the state of the shared memory or database will check to ensure that

its own atomicity has not been violated by other transactions. If its atomicity has

been violated, it aborts; otherwise, it commits its changes making them visible to the

whole system [12]. In databases, the state of the system is allowed to be inconsistent

while a transaction is executing, but must return to a consistent state once the

transaction completes [8].

An example of a transaction is transferring money between bank accounts;

here the constraint for the consistent state is that the amount of money stays constant.

During the transaction, one bank account will be debited before the other is credited

 16

violating the constraint that the amount of money in the system is constant; however,

at the end of the transaction, both bank accounts have been modified and the total

amount of money is unchanged [8].

 Transactions also must be serializable, meaning that even though transactions

execute simultaneously, one can always get the same result by executing the

transactions serially in some order—transaction operations cannot interleave [12]. As

Eswaran et al. note, the serializability property is different from determinism—a set

of transactions can be serialized without producing the same state in every execution

of those transactions. In their paper “The Notions of Consistency and Predicate

Locks in a Database System,” they provide an excellent example of serializable

transactions: consider an airplane reservation system where a transaction is assigning

a seat for a reservation; the seats may be assigned differently depending on the

serializable order of the transactions, but a consistent seating assignment will always

be produced (no seat will be assigned more than once) [8].

 In their 1993 paper “Transactional Memory: Architectural Support for Lock-

Free Data Structures,” Herlihy and Moss building on the database concept of

transactions present the concept of transactional memory. Transactional memory

relies on the concept of lock-free shared data structures, a data structure that does not

require operations on it to be mutually exclusive. A lock-free data structure allows

other processors to operate on it even if the first processor to operate on it gets

interrupted during operation; in lock-based systems, this first processor would

continue to hold the lock on the structure while it handles the interruption preventing

all other processors from operating on it—this is called convoying [12]. In addition to

 17

preventing convoying, transactional memory has two other major advantages over

lock-based models: transactional memory avoids the problem of priority inversion

where a lower-priority process holds a lock needed by a higher-priority process

preventing the higher-priority process from progressing. And, transactional memory

cannot deadlock (see Deadlock above).

 While others built software implementations of lock-free shared data

structures, Herlihy and Moss created a new multiprocessor architecture to handle

lock-free data structures. They added operations to the cache-coherence protocols to

accommodate a set of new memory instructions that allow the programmer to specify

that reads and writes to memory are included in a transaction and a set of instructions

to change the transaction’s state. The hardware to support transactions required two

caches—a regular cache to handle non-transactional operations and a transactional

cache to handle transactional operations. The transactional cache did not propagate

writes to main memory unless a transaction successfully committed [12].

 Herlihy and Moss compared their architecture with two software and two

hardware methods for atomically updating memory. The two software methods and

one hardware method were lock-based. The other hardware method used the

LOAD_LINKED/STORE_COND operations from the MIPS II architecture, in which

the LOAD_LINKED operation makes a local copy of a shared variable and only

stores it back using STORE_COND if the shared variable has not changed since it

was first read; essentially, this is a transaction with a single variable. The

transactional memory architecture outperformed all four competitors.

 18

 In Herlihy and Moss’s transactional memory architecture, the programmer is

responsible for annotating transactions at the level of individual loads and stores. In

the 2004 paper “Transactional Memory Coherence and Consistency,” Hammond et al.

eliminate the need for the programmer to annotate individual loads and stores by

insisting that “transactions are always the basic unit of parallel work, communication,

memory coherence, and memory reference consistency” allowing the programmer to

insert only transaction boundaries [10]. They call their shared-memory model

Transactional Memory Coherence and Consistency (TCC) and developed a

hardware-based TCC that requires a central authority to regulate commits for the

whole system and relies on broadcast communication of transaction commit packets.

Like Herlihy and Moss’s transactional memory hardware, TCC requires changes to

the caches and cache coherence protocol to maintain transactions.

Programming for the TCC model requires first dividing the code into

transactions, carefully ensuring not to break up critical sections. The hardware

ensures that transactions are executed atomically, so the programmer does not need to

worry about transaction independence. Optionally, the programmer may specify the

order in which transactions should execute by giving transactions phase numbers. All

transactions with the same phase number will be permitted to execute simultaneously,

but TCC will not progress to the next largest phase number until all transactions at the

current phase have committed.

In performance tests, TCC performed well, but required a high broadcast

bandwidth for broadcasting commit packets. Because broadcast is central to TCC,

TCC has limited scalability.

 19

Atomicity Violation Detection and Prevention

 Transactional memory systems like lock-based systems are subject to

atomicity violations. In the transactional memory systems described above, the

programmer is responsible for correctly annotating transactions so that no critical

section is split between two transactions. Likewise, in systems that use POSIX

Threads, avoiding atomicity violations relies on the programmer’s ability to recognize

and protect critical sections. The following set of papers address detecting and

preventing atomicity violations and identifying critical sections for the programmer.

 Up until Lu et al.’s 2006 paper on “AVIO: Detecting Atomicity Violations via

Access Interleaving Invariants,” most concurrency bug detection research had

focused on data race detection. As Lu et al. note, transactional memory models are

not immune to atomicity violations, and the growing research in that field made

addressing atomicity violations even more pertinent. Two years later their evaluation

of the importance of detecting atomicity violations was reinforced by the “Learning

from Mistakes” paper (which shared two co-authors with the AVIO paper) that

showed atomicity violations constituted 67% of all examined non-deadlock

concurrency bugs [15].

 AVIO makes three contributions to atomicity violation detections. First, it

uses “Access Interleaving (AI) Invariant based detection.” Access Interleaving

Invariant holds for an instruction if during all correct runs, there is no unserializable

access between this instruction and the previous instruction that accessed the same

shared variable. In a large number of correct runs, many possible correct

interleavings will appear; if the Access Interleaving Invariant holds across all correct

 20

runs, then AVIO concludes that the programmer assumed these accesses would be

atomic [16].

 The authors’ second contribution was building and analyzing both software

and hardware versions of AVIO. They built the hardware version by extending the

cache coherence protocol with the intention of using it to detecting atomicity

violation during “production runs.” The software version, which had more overhead

than the hardware version, was intended for use as a debugging tool allowing a

programmer to find a bug that has already occurred [16].

 The final contribution was testing AVIO on six real atomicity violation bugs

from server applications. They found that AVIO could detect a wider variety of bugs

than previously tools. It did not report benign data races (see the section Data Race

for a discussion of benign data races). It found only 3-5 static false positives

compared with 80 or more false positives from other tools. It did not require the

programmer use a specific parallel programming model or to annotate the program in

any way. It did not require a large body of training data. The overhead created by

AVIO for both the hardware version and the software version was smaller than that

for other concurrency bug detection tools [16].

 While AVIO only detects Access Interleaving Invariants for single variable

accesses, MUVI suggests improvements on AVIO that would discover multi-variable

accesses atomicity violations. MUVI uses static program analysis and data-mining

techniques to determine correlated variables within large programs. In MUVI,

correlated variables must be accessed with a common lock to avoid data races.

Detecting atomicity violations is much harder. With the set of correlated variables

 21

provided by MUVI, AVIO can check the Access Interleaving Invariant between

correlated variables. Checking for serializability is much more complicated with two

or more variables and the authors of “MUVI: Automatically Inferring Multi-Variable

Access Correlations and Detecting Related Semantic and Concurrency Bugs“ do not

provide detail [14].

 In 2008, Lucia et al. presented the first paper on surviving atomicity

violations: “Atom-Aid: Detecting and Surviving Atomicity Violations.” Their paper

begins with analyzing implicit atomicity systems—those in which the processors form

arbitrary chunks of dynamic instructions and execute them atomically. This means

that individual memory instructions within a chunk are never interleaved individually

with instructions on other processors; instead, chunks are interleaved. Because chunks

are updated atomically, an individual processor can reorder the instructions inside a

chunk without influencing other processors. Examples of implicit atomicity systems

include [2], [25], and [26]. Lucia et al. studied the effect of changing the chunk size

on hiding atomicity violations. They found that while a larger the chunk size does

correspond with a higher probability of hiding atomicity violations, the relationship is

nearly logarithmic—while large probability gains are reported from increasing the

size of chunks from 0 to 2000 instructions for atomicity violations with fewer than

750 instructions, larger chunks barely improve the probability of hiding the violation

[17].

The authors sought to improve these probabilities by creating “smart” chunks

rather than arbitrary chunks. Atom-Aid, which can be implemented in any implicit

atomicity system, was the result. On the fly, Atom-Aid creates smart chunks by

 22

finding potential atomicity violations and inserting chunk boundaries at the beginning

of the potential violations. It detects atomicity violations by looking for two accesses

to the same variable a within a chunk on one thread with a recent access to a in a

different thread from a committing chunk. If these accesses may be unserializable,

then Atom-Aid watches for a, and when it appears again, Atom-Aid may insert a

chunk boundary before the access to a. We use “may insert a chunk boundary”

instead of “will insert a chunk boundary” because if Atom-Aid always broke a chunk

at an instance a, it could actually expose the atomicity violation. Instead, Atom-Aid

insists that a chunk will be broken at most once and the new chunk will be the default

chunk size, and that if a new address is added to Atom-Aid’s watch set, that it cannot

break the current chunk, only later chunks [17].

Note that Atom-Aid requires knowledge of not only the current memory

accesses from the local chunk, but also the memory accesses from the previous local

chunk and the memory accesses from chunks committing elsewhere in the system.

By bounding the stored memory accesses by chunks, Atom-Aid is able to reduce the

amount of data it must manage and analyze. The cost of the boundary is that Atom-

Aid cannot detect atomicity violations that are larger than two chunks; on the other

hand, no implicit atomicity system can hide an atomicity violation that is larger than a

single chunk [17].

Additionally, Atom-Aid is capable of starting a new chunk only after it has

identified a variable as part of a potentially unserializable group of accesses [17].

This means that the first potentially unserializable group of accesses could form an

atomicity violation that Atom-Aid cannot hide.

 23

In testing, Atom-Aid performed well, hiding almost 100% of the atomicity

violations in bug kernels and MySQL, Apache, and XMMS applications. However,

for some applications, Atom-Aid created too many unnecessary chunks; for four of

the nine bug kernels, the between 46% and 79% of the smart chunks created did not

hide atomicity violations [17].

While Atom-Aid and AVIO sought to find and prevent atomicity violations,

AtomTracker was built to discover generic atomic regions within programs without

requiring any programmer annotation and then detect atomicity violations of these

atomic regions. AtomTracker is split into two programs: AtomTracker-I that infers

atomic regions and AtomTracker-D that tests for atomicity violations using these

regions.

AtomTracker-I takes correct dynamic memory traces of a program and

processes them one thread at a time greedily joining together consecutive memory

accesses to form atomic regions. At the end, it outputs the entry and exit points of all

atomic regions [20].

The algorithm works on a single thread at a time, looping through all threads

for a single trace file first before proceeding to the next trace file. For Thread 1,

AtomTracker-I begins by trying to merge the first two instructions into a single

atomic region. For example, the first two accesses on Thread 1 are I0, which reads x,

and I1, which writes y. If there are no conflicting accesses on any of the other

threads, then I0 and I1 are merged into an atomic region. If J0 from Thread 2 writes x

and happens between I0 and I1, then I0 and I1 can be merged only if I1 is brought up to

I0 and both happen before J0; I0 cannot happen after J0 or else I0 would not read the

 24

correct value of x. If instead J0 from Thread 2 reads y, then I0 can happen after J0, but

I1 cannot happen before J0 or else J0 would read the wrong value of y. AtomTracker-I

must perform this check of merging I0 and I1 into the same atomic region on every

thread in the trace. Then it proceeds with the remaining instructions in Thread 1 [20].

Once AtomTracker-I has finished processing a single trace file, it then checks

the atomic regions it created against the next trace file. If any are inconsistent, they

will be split into smaller atomic regions. Once all trace files are processed,

AtomTracker-I reports the resulting atomic regions [20].

Muzahid et al. note that atomic regions rarely cross loop iteration boundaries

unless the full loop is included in the atomic region. Therefore, AtomTracker–I

discovers loop boundaries and looks for conflicting accesses within the loop

boundaries. If there are none, then it treats the entire loop as a unit incorporating

either the whole loop or none of it into atomic regions. If there are conflicts within

the loop boundaries, then AtomTracker-I ensures that if a loop iteration is included in

any atomic region that the atomic region ends at the boundary of a loop iteration [20].

Finally, AtomTracker-I adds the atomic region boundaries it found to the

static code of the program. Muzahid et al. point out that this can be particularly

difficult when traces follow different control paths, so they supplement the exit points

with their corresponding entry points to ensure that the correct exit is followed during

a dynamic run using AtomTracker-D [20].

In addition to the inference tool, AtomTracker-D detects atomicity violations

on the fly by running the program code modified by AtomTracker-I to contain the

atomic regions. The tool works by determining if two concurrently running atomic

 25

regions can be serialized. If they cannot be serialized, then the program notes an

atomicity violation [20].

Muzahid et al. implemented AtomTracker by building a C++ Pin tool (see

Chapter 3: Inferring Critical Sections) and compared its performance with AVIO

[16], MUVI [14], and PSet. The authors do not compare the atomic regions found by

AtomTracker-I and the true atomic regions of a correct program; instead, they only

report the atomicity violations discovered and the number of false positive atomicity

violations discovered. AtomTracker successfully found eight atomicity violation bugs

in the MySQL, Apache, and Mozilla, whereas AVIO found three, MUVI found four,

and PSet found 2. The false positive rate ranged from 1.6 from the software

implementation to 16.4 for a hardware implementation of AtomTracker-D.

 26

Chapter 3: Inferring Critical Sections

Determining memory objects that must be protected and code regions of a

parallel benchmark program that should be treated as critical sections required the

ability to dynamically analyze the benchmark’s memory usage. While several tools

can analyze a program’s memory usage, we choose to use Pin because it provides an

extensive API to dynamically instrument parallel Linux or Windows executables

running on IA-32, IA-64, or Intel® 64 [22].

Instrumentation programs used with Pin, called Pintools, define insertion

points and the actions that should be performed at those insertion points. Pin

provides the API to insert instrumentation at different levels of a program including

images, routines, basic blocks, and instructions. Actions at insertion points can

include modifying the program’s behavior by inserting C or C++ code or analysis that

does not modify the program’s behavior, such as saving every address accessed in

memory for a memory trace.

For this study, we created a C++ Pintool that captured all non-stack and non-

instruction memory operations (both reads and writes) to determine simultaneously if

the address should be part of an object and, if it was part of an object, if the address

should be included in a critical section. The benchmarks we analyzed used the

pthread libraries for locking, so the Pintool also captured the pthread_mutex_lock and

pthread_mutex_unlock functions to define the boundaries of the benchmark’s real

critical sections. The tool also discarded memory instructions that occurred during a

call to pthread_mutex_lock to prevent analysis on locking-specific code; we wanted

the tool to do the same for pthread_mutex_unlock, however, Pin could not identify

 27

the end of this function, so it was not possible to discard accurately all memory

instructions that occurred during this call1. Once the program finished running, the

Pintool computed statistics on how well the inferred critical sections covered the real

critical sections and how many instructions were locked unnecessarily.

Inferring Objects

 Every critical section has two components: a memory object and a region of

code; the region of code must access the object atomically. Therefore, the Pintool

must determine where the objects are before it can find any critical sections.

 We define an object as a contiguous region of memory. If within a threshold

amount of time (time threshold) a single thread of the benchmark accesses two

memory addresses that fall within a threshold number of bytes (address distance

threshold), the Pintool groups the two addresses into the same object. For example,

consider the following memory accesses with a time threshold of 4 and an address

distance threshold of 8 bytes:

Time Address Size
10 0x80abcde0 2
11 0xc0000000 8
12 0x80abcde4 8
13 0x80abcdf0 8
14 0x44444444 4
15 0x88888888 4
16 0xc0000f00 16
17 0x80abcde8 8
Figure 2: Example memory accesses and the object created after the reference at time 12. Here
the time threshold is 4 and the address distance threshold is 8 bytes.

1 Pin instruments calls to return to find the end of functions and does not guarantee
success. Several other pthread functions are called by the benchmarks. These were
not discarded in the Pintool’s analysis.

Object 1:
 Start 0x80abcde0
 End 0x80abcdec

 28

Addresses 0x80abcde0 and 0x80abcde4 will be merged together since their time

distance is 2 and their byte distance is 4. This will create a new object, Object 1, that

starts at 0x80abcde0 and ends at 0x80abcdec (note that the end address is an

exclusive upper bound on the object). Address 0x80abcdf0 will not be merged into

this object since the byte distance to 0x80abcde0 is 16 and the byte distance to

0x80abcde4 is 12; note that this is still true after the Object 1 is created.

The number of bytes accessed with an address is not considered in

determining the distance between two addresses. In our example, address 0x80abcde4

with size 8 accessed at time 12 and address 0x80abcdf0 with size 8 accessed at time

13 will not be merged into an object even though the distance between the last byte

accessed at time 12 (0x80abcdeb) and the first byte accessed at time 13 (0x80abcdf0)

is only 5 bytes.

Once an object is formed, if an address inside of the object is accessed with a

size that extends beyond the end of the object, the object’s size will be increased to

include all the bytes referenced by this access. Continuing our example from Figure

2, in Figure 3 we see the access at time 17 to address 0x80abcde8 is inside Object 1.

The size of Object 1 will be increased so the new end address is 0x80abcdf0.

Time Address Size
10 0x80abcde0 2
11 0xc0000000 8
12 0x80abcde4 8
13 0x80abcdf0 8
14 0x44444444 4
15 0x88888888 4
16 0xc0000f00 16
17 0x80abcde8 8
Figure 3: Example memory accesses and modifying the object after time 17. Here the time
threshold is 4 and the address distance threshold is 8 bytes.

Object 1:
 Start 0x80abcde0
 End 0x80abcdec

Object 1:
 Start 0x80abcde0
 End 0x80abcdf0

 29

As we saw above when two addresses without objects are merged, they form a

new object, and when one address that is in an object is merged with another that is

not, the object containing the first address subsumes the second. If two addresses are

already in separate objects are merged, their corresponding objects are also merged.

For example, if the address accessed at time 10 was part of an object that started at

0x80abcdd0 and ended at 0x80abcde2 and the address accessed at time 12 was part of

an object that started at 0x80abcde4 and ended at 0x80abce00, then the result of

merging the addresses at time 10 and time 12 would be a single object that starts at

0x80abcdd0 and ends at 0x80abce00.

Time Address Size
10 0x80abcde0 2
11 0xc0000000 8
12 0x80abcde4 8
13 0x80abcdf0 8
14 0x44444444 4
15 0x88888888 4
16 0xc0000f00 16
17 0x80abcde8 8
Figure 4: Example memory accesses and merging after time 12 when both addresses are in
objects. Here the time threshold is 4 and the address distance threshold is 8 bytes.

 Note that in this method of determining objects, a single address with no

nearby accesses in space or time will never become an object. This “island” address

may still need to be locked. Therefore, we developed a second method for creating

objects termed the island method. In the island method, the first time a region of

memory is accessed it becomes its own object; the starting address is the accessed

address and the size of the object is the referenced size. After that, the merging

process from the original method takes place.

Object 1:
 Start 0x80abcdd0
 End 0x80abcde2
2

Object 1:
 Start 0x80abcdd0
 End 0x80abce00

Object 2:
 Start 0x80abcde4
 End 0x80abce00
2

 30

 Merging addresses into objects happens independently for each thread of the

benchmark; however, once an object is created, it is maintained in a globally

accessible bank of objects. This allows us to log whether an object is exclusive to the

thread that created it or shared among multiple threads. An object that is never shared

does not need to be locked.

 Merging objects and maintaining the global bank is computationally intensive.

As a result, we limited the memory operations used to create objects to those that

accessed heap memory. Heap memory was determined by instrumenting all calls to

malloc to capture the start address and the size of the allocated block. As discussed in

Chapter 4: Results, nearly all of the benchmarks’ real critical sections access heap

memory, so narrowing the addresses we consider should not drastically impact our

results.

Inferring Critical Sections

 At the same time the Pintool builds objects from the benchmark’s memory

accesses, it also infers critical sections. Although the Pintool only uses heap memory

addresses to build objects, it examines all non-stack and non-instruction memory

accesses while building critical sections. Critical sections are built by each thread

independently and maintained independently until the benchmark finishes running.

A critical section should begin when a thread first accesses an object and end

when it last accesses that object before going on to do other tasks. Detecting the

beginning of an inferred critical section is easy for the Pintool; if it accesses an object

for which it is not currently creating a critical section, then that access begins a new

inferred critical section for the object.

 31

Detecting the end of a critical section is much harder. How does the Pintool

know that a particular access to an object is the last to that object?2 It cannot know;

however, if it waits long enough and has seen no other accesses, it can guess that the

critical section should have ended at the last reference. This is our strategy. The

Pintool has a threshold for the number of memory accesses since it last saw the object

accessed (non-object accesses threshold), and as soon as that many accesses have

passed, it decides the critical section must have ended. The end of the critical section

is the last reference to the object.

Inferred critical sections have two states in the Pintool. They are either active

or finalized. An active critical section is one for which the Pintool has found a start,

but has not yet found the end. Once the end is determined, the critical section is

finalized.

A single thread can have multiple critical sections active simultaneously. This

would not cause any confusion if the objects were statically determined prior to

inferring critical sections, but objects can change while critical sections are active. If

two objects are merged together while the Pintool has active critical sections for both

of them, the two critical sections are merged also: the critical section that started first

gets assigned to the new object; the critical section that started last is discarded. As

an example, consider the sequence of memory references below. Two objects, Object

1 that encompasses the access at time 10 and Object 2 that encompasses the accesses

at time 7 and time 12, have already been created:

2 This question is similar to the concept of last-touch prediction for caches, and our
solution is an algorithm similar to the Least-Recently Used algorithm for cache
eviction.

 32

Time Address Size
7 0x80abcef0 4
8 0xc0000f00 16
9 0xc0000000 8
10 0x80abcde0 2
11 0xc0000000 8
12 0x80abcde4 8
13 0x80abcdf0 8
14 0x44444444 4
15 0x88888888 4
16 0xc0000f00 16
17 0x80abcde8 8
Figure 5: Merging active critical sections from when related objects are merged. Here the object
creation time threshold is 4 and the distance threshold is 8 bytes. The critical section non-object
accesses threshold is 50.

Object 1 and Object 2 are merged together into Object 1. Since both have active

critical sections, the two critical sections are also merged and assigned to Object 1;

Critical Section 2 is then discarded. Due to the complexity of bookkeeping, finalized

critical sections are not modified even if their corresponding objects get merged with

new addresses or other objects.

Multiple threads can create critical sections for the same object at the same

time. We allow this to ensure that the Pintool would catch all critical sections if a

program had atomicity bugs.

When a thread finishes, the Pintool displays all critical sections that the thread

found dynamically and whether the object for which the critical section was created

was shared or exclusive to that thread. If the thread repeated execution of a particular

region of code where it found a critical section once, it is possible that it found the

critical section multiple times, and that critical section will get reported multiple

Object	
 Start	
 End	

1	
 0x80abcdd0	
 0x80abcde2	

2	
 0x80abcde4	
 0x80abce00	

Merged object is Object 1.

Merge critical section 1 and
critical section 2 into
critical section 1.
Critical section 1 gets
assigned Object 1.

Object 2:
Merge with Object 1

Object 1:
Start critical section 2

Existing Objects:

Object 2:
Start critical section 1

 33

times. Once all threads are finished, a complete list of critical sections found

dynamically in all threads is created.

From this list, the Pintool weeds out critical sections that were found multiple

times to determine the static critical sections. Static critical sections are the set of

critical sections with unique start and end instruction pairs. If any dynamic instance

of a critical section was built from a shared object, the static critical section is

considered to reference shared objects also even if some dynamic instances of the

critical section were referencing objects accessed exclusively by a single thread.

 34

Chapter 4: Results

 While the method of inferring objects and critical sections may seem simple,

applying it to real programs can lead to complex results. In this chapter, we discuss

the benchmarks we tested, how we evaluated the tool’s performance, the overall

results for real critical section coverage and inferred critical section accuracy, and

finally some specific examples of real critical sections that the tool did or did not find.

Benchmarks

 To test how well we could infer critical sections using a program’s memory

usage pattern, we ran the Pintool described above on six benchmarks from the

SPLASH-2 benchmark library: Barnes, FMM, Ocean Contiguous Partition, Ocean

Non-Contiguous Partition, Water-nSquared, and Water-Spatial. The SPLASH-2

benchmarks are all parallel applications designed for shared memory systems. The

six implementations we tested all perform scientific computations, so these results

may not transfer to non-scientific programs.

The SPLASH-2 benchmarks are written in C and use macros to define parallel

constructs (locks, unlocks, barriers, etc.). For our study, we used the file

c.m4.null.POSIX provided on the Modified SPLASH-2 Home Page to replace macros

with the original POSIX Thread standard functions [18]. LOCK macros are replaced

with a call to pthread_mutex_lock and UNLOCK macros are replaced with a call to

pthread_mutex_unlock. The original POSIX Thread standard did not implement any

barrier function, so instead barriers in c.m4.null.POSIX start with

 35

pthread_mutex_lock and check condition variables to determine if all threads have

reached the barrier; finally, they end with pthread_mutex_unlock [18].

Of the six benchmark applications, there are three categories of computation.

Barnes and FMM (Fast Multipole Method)—both categorized as N-body problems—

do similar calculations to evaluate the interaction of bodies like particles or galaxies

over time. For both, data are arranged in a tree structure, but Barnes traverses the tree

once per body, and FMM traverses the tree once per time step [24]. Ocean

Contiguous and Ocean Non-Contiguous both simulate ocean movements (eddies,

currents) by partitioning data into grids. In Ocean Contiguous the grid is represented

with three-dimensional arrays so that data are partitioned contiguously; in Ocean

Non-Contiguous the grid is represented by two-dimensional arrays, which do not

allow representing data contiguously [1]. Like Barnes and FMM, Water-nSquared

and Water-Spatial are N-body problems. They both simulate the forces on a system

of water molecules over time, but Water-Spatial uses an O(n) algorithm while Water-

nSquared uses an O(n2) algorithm [24].

The benchmarks have been thoroughly tested and in use for many years, so we

assumed that they were bug free; thus the only critical sections in the benchmarks are

those explicitly marked by pthread_mutex_lock and pthread_mutex_unlock functions.

Because of the computational complexity of the Pintool, in order to perform

the analysis we had to use the smallest possible input data size. Reducing the data

size to train an algorithm is common. The end results can still be used on a larger

data set. The Appendix contains the input data for each benchmark. One input

 36

parameter for each benchmark is the number of threads the benchmark should use;

this was set to four for all trials.

How suitable is the tool for these benchmarks?

 As mentioned in Chapter 3, the computations needed to infer objects and

critical sections were too complex to run on all memory references. Therefore, we

reduced the number of memory references used for both object and critical section

inferences by ignoring all stack-relative and IP-relative references. For the object

inference, we had to further reduce the set of memory references to only heap

references. If a program’s real critical sections do not lock heap memory accesses,

then the tool will never catch them.

To determine how suitable the benchmarks were to analysis under these

restrictions, we created a small memory profiling Pintool. It caught all calls to malloc

to determine the boundaries of heap memory. The boundaries of real critical sections

were defined by calls to pthread_mutex_lock and pthread_mutex_unlock; the tool also

logged the first and last memory accesses inside the lock to determine if the calls

locked user code or library code. Finally, the Pintool calculated the number of heap

and non-heap references in critical sections excluding IP-relative and stack-relative

references. All results were reported for dynamic critical sections.

As Figure 6 shows, at least 80% of real critical sections in all benchmarks

touch some element of heap memory. In fact, between 25% and 65% of real critical

sections reference only heap memory.

 37

Figure 6: Percentage of real critical sections that reference only heap memory, only non-heap

memory, some of both, and no tracked memory references.

Of the critical sections that do not reference any heap memory, we were able

to use the first and last memory accesses inside the lock to determine if user or library

code was being locked. Table 1 shows that every benchmark had 17 dynamic critical

sections in library code that referenced non-heap memory exclusively. For every

benchmark, 16 of these were in the ld-linux-x86-64.so.2 library’s procedure _dl_fini

and the last one was in a libc.so.6’s procedure _dl_addr. These library functions are

used to initialize and end a program or thread. For four of the six benchmarks

(Water-nSquared, Ocean Non-Contiguous, Ocean Contiguous, and Barnes), these

library critical sections were the only ones that referenced only non-heap memory.

Table 1: Number of dynamic real critical sections that only referenced non-heap memory by
code region.

 Barnes FMM
Ocean

Contiguous

Ocean
Non-

Contiguous
Water
Spatial

Water-
nSquared

Library
code 17 17 17 17 17 17
User
code 0 9 0 0 1 0

 38

Of the remaining two benchmarks, Water-Spatial had one large critical section

from user code that referenced non-heap memory exclusively. It had 2919 references

to non-heap memory and 0 to heap memory and is located in mdmain.C lines 172 to

177. When it is translated to use pthread_mutex_lock and pthread_mutex_unlock this

segment of code is as follows:

This critical section grabs the input and output lock to prevent any other thread from

printing results between its calls to fprintf and fflush. The value six is a globally

declared FILE pointer set to stdout at the beginning of the program. The remaining

variables that are printed during this critical section (TEN, POTA, POTR, POTRF,

etc.) are stack variables. Since none of the variables referenced here are dynamically

allocated, our Pintool cannot capture this critical section.

 FMM has nine dynamic user code critical sections that do not reference heap

memory; of these, there are three static critical sections. One static critical section is

in a function called LockedPrint, which behaves like the critical section in Water-

Spatial above; this function locks the input and output lock, flushes stdout, prints the

input arguments to stdout, and flushes stdout again. It does not reference heap

/* if it is time to print output as well ... */
if ((i % NPRINT) == 0 && ProcID == 0) {

{pthread_mutex_lock(&(gl->IOLock));};
fprintf(six," %5ld %14.5lf %12.5lf %12.5lf %12.5lf \n"

,i,TEN,POTA,POTR,POTRF);
fprintf(six," %16.3lf %16.5lf %16.5lf\n",XTT,AVGT,XVIR);
fflush(six);
{pthread_mutex_unlock(&(gl->IOLock));};

}

Code Segment 1: Water-Spatial mdmain.c printing critical section.

 39

memory, because the input arguments to the function are passed by value and not by

reference.

 FMM has two static critical sections—one in a function called

CreateParticleList and the other in a function called CreateBoxes—that protect a

single call to malloc. Because malloc is not a thread-safe function (functions that are

not thread-safe are not guaranteed to execute correctly if control is switched from

them while they are executing), it must be protected by a lock in order to ensure it

executes correctly. As an example, the code from CreateBoxes is below in Code

Segment 2. Although malloc is called here, the Pintool does not register a reference

to heap memory.

 Finally, FMM is the only benchmark with dynamic critical sections that do

not have any of the memory references we track. There are five dynamic instances of

this one static critical section which is found in the function InsertBoxInGrid. The

code for this critical section is below:

{pthread_mutex_lock(&(G_Memory->mal_lock));};
Local[my_id].B_Heap = (box *) malloc(num_boxes * sizeof(box));;

/*
. . .
*/

{pthread_mutex_unlock(&(G_Memory->mal_lock));};

Code Segment 2: FMM CreateParticleList malloc critical section.

 40

Grid is a global pointer initialized to NULL, b is a pointer variable passed into the

function, and success is a local variable. This critical section protects testing the

value of Grid and if it has not been set, setting Grid. It accesses only the pointers and

not the memory they reference. Therefore, no matter which path the program takes

through the if-statement the result will be the same: no heap memory is accessed. In

fact, this segment of code does not reference any memory that our tool tracks. The

assembly code corresponding to the critical section is below:

Here, Grid is referenced relative to the instruction pointer; in lines 403fbb and

404068, Grid is 2145041(%rip). In line 404068, b is referenced relative to the

stack pointer (%rbp). The register %r13b stores the variable success. Our tool

403fbb: cmpq $0x0,2145213(%rip) # 60fb80 <Grid>
403fc3: je 404065 <InsertBoxInGrid+0x1e5>
403fc9: mov 2197264(%rip),%rdi # 61c6e0 <G_Memory>
403fd0: add $0x50,%rdi
403fd4: callq 400e88 <pthread_mutex_unlock@plt>

. . .

404065: mov $0x1,%r13b
404068: mov %rbp,2145041(%rip) # 60fb80 <Grid>
40406f: jmpq 403fc9 <InsertBoxInGrid+0x149>

Code Segment 4: Assembly code for FMM InsertBoxInGrid critical section.

{pthread_mutex_lock(&(G_Memory->single_lock));};
if (Grid == NULL) {

Grid = b;
success = TRUE;

}
else

success = FALSE;
{pthread_mutex_unlock(&(G_Memory->single_lock));};

Code Segment 3: FMM InsertBoxInGrid critical section.

 41

captures none of these references, so this critical section appears to have no memory

references.

Handling stack, IP-relative, and non-heap memory accesses is important.

However, based on these results, we determined that forming objects by analyzing

only heap memory and discarding stack-relative and IP-relative references could

provide a good initial demonstration of our heuristic. Future work could address

expanding the analysis to other memory regions by increasing the efficiency of our

Pintool.

Measuring Success

 The Pintool takes several measurements to determine how well the inferred

critical sections cover the real critical sections. Coverage is evaluated at run time to

develop statistics on the dynamic coverage of real critical sections and at the end of

the run to determine the static coverage.

 The following categories of real critical sections coverage are tracked for both

dynamic and static coverage:

• Fully Covered: every instruction in the real critical sections was covered by

one or more inferred critical sections where none of the inferred critical

sections ended during the real critical section. Because no inferred critical

sections ended during the real critical section, at least one inferred critical

section covered the entire real critical section.

• Fully Covered with Overlap: real critical sections that were fully covered by

one or more inferred critical sections. Although these real critical sections are

 42

fully covered, they could be covered by overlapping inferred critical sections,

none of which completely covers the real critical section.

• Partially Covered: real critical sections that are partially covered by inferred

critical sections. If one or more instructions of the real critical section are left

uncovered, then the critical section is partially covered.

• Uncovered: real critical sections that are completely uncovered.

It is important to note that due to engineering constraints we had to calculate these

statistics using all inferred critical sections instead of only inferred critical sections

that locked shared objects. If the tool worked perfectly, all real critical sections would

be fully covered. However, if the tool created a single inferred critical section that

covered the entire program, the result would be that all real critical sections were fully

covered, but the inferred critical section would be meaningless.

To judge how well the tool has done, we also need to understand how often

inferred critical sections are created where they are not needed. The Pintool grouped

inferred critical sections into three categories both dynamically and statically:

• All Instructions Cover Real: all instructions in the inferred critical section

are also in at least one real critical section.

• Some Instructions Cover Real: some instructions in the inferred critical

section are also in at least one real critical section.

• No Instructions Cover Real: no instructions in the inferred critical section

are also in a real critical section.

Creating a critical section where one is not needed negatively impacts

performance. To measure how much performance is affected by the inferred critical

 43

sections, the Pintool determined dynamically how many instructions in inferred

critical sections are also in real critical sections and how many are not.

 We ran the island and original methods of finding inferred critical sections on

each of the benchmarks using a variety of thresholds. The results for static and

dynamic real critical section coverage are in Figure 7 through Figure 30. The results

for static and dynamic inferred critical section accuracy are in Figure 31 through

Figure 54. In each graph, the thresholds for object and critical section creation fall

along the y-axis; they are listed in the following order from left to right: time

threshold for inferring objects, address distance threshold for inferring objects, non-

object accesses threshold for inferring critical sections. Table 2 shows the tested

threshold values; all 112 combinations of the three threshold values were tested.

Table 2: Tested threshold values for all three thresholds.
Time Threshold 2 4 8 16
Address Distance Threshold 8 16 32 64
Non-object accesses threshold 25 50 100 150 200 250 300

Real Critical Section Coverage

Overall, the graphs show that in both the original and island method the tool

covered real critical sections fairly well with the tested thresholds. Around 75% to

80% of static real critical sections were fully covered, fully covered with overlap or

partially covered with the best set of thresholds for all benchmarks with the majority

being fully covered. For dynamic real critical section coverage, this number jumps to

around 90%.

Statically, the island method outperformed the original method for three

benchmarks mainly because it fully, fully with overlap, or partially covered real

 44

critical sections regions that were uncovered using the original method. This trend is

most noticeable in the figures for static critical section coverage for Barnes, Water-

Spatial, and Water-nSquared (see Figure 12, Figure 11, Figure 18, Figure 17, Figure

16, and Figure 15). Dynamically, however, the island and original methods

performed about the same. The almost unnoticeable differences in dynamic coverage

suggest that the critical sections left uncovered by the original method are not

executed much dynamically.

A prominent cyclic pattern appears in the graphs across all benchmarks in

both static and dynamic coverage for original and island methods. When the address

distance threshold is set to 8, the number of fully covered real critical sections is low

and there are many real critical sections that are fully covered with overlap. When

the address distance threshold is set to 16, 32, or 64, the number of real critical

sections that are fully covered with overlap is reduced to almost none while the

number that are fully covered increases to make up the difference.

The non-object accesses threshold did not affect the performance of the tool

significantly. As the non-object accesses threshold gets larger, the number of fully

covered with overlap and the number of partially covered real critical sections are

reduced to become fully covered real critical sections. This trend is easiest to observe

when the address distance threshold is 8 since that is when the tool reports the most

fully covered with overlap and partially covered real critical sections.

The time threshold used to make objects has almost no affect on the tool’s

performance. The time threshold was only varied between 2 and 16 memory

 45

accesses, so the apparent insignificance of this parameter may be the result of an

insignificant range of time thresholds tested.

Each particular set of thresholds performed consistently across all

benchmarks. This suggests that the best performing thresholds found here could be

used across similar types of scientific applications.

All the benchmarks show a constant number of static and dynamic critical

sections across all threshold triplets except Barnes, where the number of dynamic

critical sections changes for different sets of thresholds (see Figure 23 and Figure 24).

Since the Pintool does not interfere with the execution of the benchmark, we do not

expect that the benchmark would execute differently for different thresholds. In fact,

the variation in the number of dynamic critical sections seen in Barnes is unrelated to

the thresholds. The number varies every time Barnes is run. There are two critical

sections in the function loadtree that get executed a non-deterministic number of

times in every run. This function descends the tree data structure to insert new nodes

and locks a parent node whenever a modification must be made to its children.

Because each thread is executing this process simultaneously, specific thread

interleavings can influence how often a modification to a parent node happens and

thus how often a critical section is executed.

 46

Static Real Critical Section Coverage

Figure 12: Static real critical section coverage
for Barnes.

Figure 11: Static critical section coverage for
Barnes using Islands.

Figure 10: Static critical section coverage for
FMM.

Figure 9: Static critical section coverage for
FMM using Islands.

Figure 8: Static critical section coverage for
Ocean Contiguous.

Figure 7: Static critical section coverage for
Ocean Contiguous using Islands.

 47

Figure 13: Static critical section coverage
Ocean Non-contiguous.

Figure 14: Static critical section coverage
Ocean Non-contiguous using Islands.

Figure 18: Static critical section coverage for
Water-Spatial.

Figure 17: Static critical section coverage for
Water-Spatial using Islands.

Figure 16: Static critical section coverage for
Water-nSquared.

Figure 15: Static critical section coverage for
Water-nSquared using Islands.

 48

Dynamic Real Critical Section Coverage

Figure 24: Dynamic critical section coverage
for Barnes.

Figure 23: Dynamic critical section coverage
for Barnes using Islands.

Figure 22: Dynamic critical section coverage
for FMM.

Figure 21: Dynamic critical section coverage
for FMM using Islands.

Figure 20: Dynamic critical section coverage
for Ocean Contiguous.

Figure 19: Dynamic critical section coverage
for Ocean Contiguous using Islands.

 49

Figure 30: Dynamic critical section coverage
for Ocean Non-contiguous.

Figure 29: Dynamic critical section coverage
for Ocean Non-contiguous using Islands.

Figure 28: Dynamic critical section coverage
for Water Spatial.

Figure 27: Dynamic critical section coverage
for Water Spatial using Islands.

Figure 26: Dynamic critical section coverage
for Water-nSquared.

Figure 25: Dynamic critical section coverage
for Water-nSquared using Islands.

 50

Inferred Critical Section Accuracy

 While inferred critical sections covered 75% to 80% of real critical sections,

the accuracy of these inferred critical sections must also be considered.

 As a basic starting point, we compare the number of static and dynamic real

critical sections with the range of static and dynamic inferred critical sections for

shared objects reported by the tool using the range of thresholds specified in Table 2.

Table 3 shows the total number of real critical sections statically and dynamically—

note that Barnes has a range of 166 to 175 dynamic real critical sections while all

other benchmarks have an exact number of real critical sections both statically and

dynamically. In the remaining rows, Table 3 shows the minimum and maximum

number of inferred critical sections reported when the tool ran over the 112 triplets of

thresholds.

The minimum number of inferred static critical sections for shared objects in

the original method falls around the number of real static critical sections. We expect

it to be the same for all benchmarks except FMM, which has nine static critical

sections that do not access heap memory and therefore cannot be found by the tool.

The minimum number of inferred static critical sections in the island method is much

higher—about two to four times higher than the number of real critical sections. The

island method forms more objects since every heap memory reference can become its

own object, so it also produces more inferred critical sections. The maximum number

of static inferred critical sections for the original method ranged from 5 to 22 times

larger than the total number of real static critical sections; unless these extra inferred

critical sections overlap significantly with the real critical sections, this suggests a

 51

large number of false positives. For the island method, the maximum number of

static inferred critical sections ranges from 10 to 45 times the number of real critical

sections.

Table 3: Number of static and dynamic real critical sections and inferred critical sections for
shared objects created under island and original methods by benchmark. Boxes with two entries
show the minimum and maximum number of critical sections.

 Barnes FMM Ocean
Contiguous

Ocean
Non-

Contiguous

Water
Spatial

Water-
nSquared

Real
Static 13 20 26 26 20 22

Inferred
Static

20
146

26
93

25
554

20
209

31
170

30
113

Inferred
Static
Island

58
425

36
219

115
1154

109
405

66
433

65
404

Real
Dynamic

166
175 181 293 303 94 137

Inferred
Dynamic

111
1983

118
932

237
4194

162
1781

135
1967

178
1105

Inferred
Dynamic

Island

309
10112

110
4898

240
14442

704
7922

345
9025

349
7472

 For dynamic inferred critical sections using the original method, only Water

Spatial and Water-nSquared have a minimum number of critical sections that is

greater than the number of real dynamic critical sections. Since some dynamic real

critical sections do not touch heap memory, the tool will not be able to find these

sections, so we expect the number of dynamic inferred critical sections to be smaller

than the number of dynamic real critical sections. For the island method, the number

of dynamic inferred critical sections either falls below the number of real critical

sections (FMM and Ocean Contiguous) or is two to four times larger. The maximum

number of dynamic inferred critical sections for the original method is 5 to 20 times

 52

the number of dynamic real critical sections; for the island method these numbers are

27 to 100 times the number of dynamic real critical sections.

 Figure 31 through Figure 42 show how many static critical sections for shared

objects were inferred in each benchmark and whether all, some, or none of their

instructions were contained in real critical sections. For dynamic critical sections, the

results are in Figure 43 through Figure 54.

 Like the results for real critical section coverage, a prominent cyclic pattern

appears in these graphs. The address difference threshold has the most dramatic

effect on the results. When the address difference threshold is eight, the total number

of inferred critical sections and the number that have no instructions overlapping with

a real critical section skyrocket to their maximums in the island method and plunge to

reach their minimums in the original method. The island method creates many more

objects than the original method when the address difference threshold is eight, but as

that threshold increases, island objects are merged with nearby addresses creating the

same objects that the original method creates causing the graphs to look very similar

at higher threshold values. Still, some island objects never get merged into larger

objects creating a small difference between the island and original methods at higher

threshold values. This is why for the remaining values of the address difference

threshold the results for the island and original method are about the same. In both

methods, as the address difference threshold increases from 16 to 64, the number of

inferred critical sections where all instructions cover a real critical section decreases

slightly.

 53

The non-object accesses threshold has a small effect on the inferred critical

section accuracy. In general, as it gets larger, the inferred critical sections become

less accurate. Specifically, as it gets larger, the number of inferred critical sections

where every instruction is also in a real critical section decreases, while the number of

inferred critical sections where only some instructions are also in a real critical

section increases. This is to be expected—the longer we wait to end an inferred

critical section, the more likely we will make the inferred critical section too large.

The time threshold for creating objects has almost no effect on the number of

inferred critical sections created or their accuracy. As in the statistics for real critical

section coverage, this may be the result of testing an insufficient range of threshold

values.

There are two ways to count false positives in this data. False positives could

be only the inferred critical sections where no instructions cover a real critical section,

or it could be the combination of those inferred critical sections with the inferred

critical sections where some instructions cover a real critical section. Since the

inferred critical sections where some instructions cover a real critical section hint that

a real critical section should be present around that area, for now, we will not count

them as false positives.

For the original method, the set of thresholds that produces the most inferred

critical sections in the “all instructions cover real” category with the fewest false

positives is when the address difference threshold is set to eight, the non-object

accesses threshold is low, and the time threshold is set to anything. Here, we get very

 54

few (as low as two in the static results for Barnes) inferred critical sections that do not

touch any part of a real critical section.

For the island method, although the set of thresholds that gives the largest

number of inferred critical sections where all instructions cover real critical sections

is when the address difference threshold is eight and the non-object accesses

threshold is low, this provides the worst false positive rate. The lowest false positive

rate occurs at the higher values of the address difference threshold, but as this

threshold gets higher, the number of inferred critical sections with all instructions

covering real critical sections decreases. Anywhere in this range, the false positive

rate is well over 50%.

Overall Performance

Finally, we calculated dynamically the number of instructions that were

covered by inferred critical sections grouping them by whether the instruction was

part of a real critical section or not. The number of instructions locked unnecessarily

(in an inferred critical section but not in a real critical section) is a rough measure of

how inferring critical sections influences performance. The results for each

benchmark are in Figure 55 through Figure 66 where the number of instructions is on

the x-axis and the thresholds are on the y-axis.

As expected, the graphs are very similar to the dynamic results for inferred

critical section accuracy. Both methods lock many more instructions than necessary

when the address difference threshold is equal to 16, 32 and 64, but for the island

method, this trend is even worse for an address difference threshold of 8.

 55

The non-object accesses threshold affects the number of instructions locked

more obviously than it affected any of the other results graphs. As the threshold gets

larger, there is a slight increase in the number of instructions in inferred critical

sections that are also in real critical sections, but there is a more prominent increase in

the number of instructions that are not in real critical sections.

As in all other results graphs, the time threshold has almost no effect on the

output.

 56

Static Inferred Critical Section Accuracy

!!""#$%&'()*+,%&#-,./(#0/1"###!2,3/#$%&'()*+,%&#-,./(#0/1"###!4,#$%&'()*+,%&#-,./(#0/1"#

Figure 36: Static inferred critical section
accuracy for Barnes.

Figure 35: Static inferred critical section
accuracy for Barnes using Islands.

Figure 32: Static inferred critical section
accuracy for FMM.

Figure 31: Static inferred critical section
accuracy for FMM using Islands.

Figure 34: Static inferred critical section
accuracy for Ocean Contiguous.

Figure 33: Static inferred critical section
accuracy for Ocean Contiguous using Islands.

 57

!!""#$%&'()*+,%&#-,./(#0/1"###!2,3/#$%&'()*+,%&#-,./(#0/1"###!4,#$%&'()*+,%&#-,./(#0/1"#

Figure 42: Static inferred critical section
accuracy for Ocean Non-contiguous.

Figure 41: Static inferred critical section
accuracy for Ocean Non-contiguous using
Islands.

Figure 40: Static inferred critical section
accuracy for Water Spatial.

Figure 39: Static inferred critical section
accuracy for Water Spatial using Islands.

Figure 38: Static inferred critical section
accuracy for Water-nSquared.

Figure 37: Static inferred critical section
accuracy for Water-nSquared using Islands.

 58

Dynamic Inferred Critical Section Accuracy

!!""#$%&'()*+,%&#-,./(#0/1"###!2,3/#$%&'()*+,%&#-,./(#0/1"###!4,#$%&'()*+,%&#-,./(#0/1"#

Figure 48: Dynamic inferred critical section
accuracy for Barnes.

Figure 47: Dynamic inferred critical section
accuracy for Barnes using Islands.

Figure 46: Dynamic inferred critical section
accuracy for FMM.

Figure 45: Dynamic inferred critical section
accuracy for FMM using Islands.

Figure 44: Dynamic inferred critical section
accuracy for Ocean Contiguous.

Figure 43: Dynamic inferred critical section
accuracy for Ocean Contiguous using Islands.

 59

!!""#$%&'()*+,%&#-,./(#0/1"###!2,3/#$%&'()*+,%&#-,./(#0/1"###!4,#$%&'()*+,%&#-,./(#0/1"#

Figure 54: Dynamic inferred critical section
accuracy for Ocean Non-contiguous.

Figure 53: Dynamic inferred critical section
accuracy for Ocean Non-contiguous using
Islands.

Figure 52: Dynamic inferred critical section
accuracy for Water Spatial.

Figure 51: Dynamic inferred critical section
accuracy for Water Spatial using Islands.

Figure 50: Dynamic inferred critical section
accuracy for Water-nSquared.

Figure 49: Dynamic inferred critical section
accuracy for Water-nSquared using Islands.

 60

Inferred Critical Sections Dynamic Instruction Coverage

Figure 59: Inferred critical sections'
instructions by real overlap for Barnes.

Figure 60: Inferred critical sections'
instructions by real overlap for Barnes using
Islands.

Figure 58: Inferred critical sections'
instructions by real overlap for FMM.

Figure 57: Inferred critical sections'
instructions by real overlap for FMM using
Islands.

Figure 55: Inferred critical sections'
instructions by real overlap for Ocean
Contiguous.

Figure 56: Inferred critical sections'
instructions by real overlap for Ocean
Contiguous using Islands.

 61

Figure 66: Inferred critical sections'
instructions by real overlap for Ocean Non-
contiguous.

Figure 65: Inferred critical sections'
instructions by real overlap for Ocean Non-
contiguous using Islands.

Figure 64: Inferred critical sections'
instructions by real overlap for Water Spatial.

Figure 63: Inferred critical sections'
instructions by real overlap for Water Spatial
using Islands.

Figure 62: Inferred critical sections'
instructions by real overlap for Water-
nSquared.

Figure 61: Inferred critical sections'
instructions by real overlap for Water-
nSquared using Islands.

 62

Examples

 Now that we have seen the overall results, we investigate some specific

examples of how well the tool covered real critical sections from Water-nSquared.

We begin by comparing results from the tool using an address difference threshold of

8, time difference threshold of 8, and non-object accesses threshold of 200—which

will be noted (8, 8, 200)—with the results using the address difference of 32, time

difference of 8, and non-object accesses threshold of 200—which will be noted (8,

32, 200). As Figure 15 and Figure 16 show, the number of static real critical sections

that are completely covered for thresholds (8, 8, 200) is 4 using the original method

and 10 using the island method, while for thresholds (8, 32, 200) that number is 17

for both methods.

Example: Covered Real Critical Section with Excess

 For thresholds (8, 8, 200), the real critical section in Code Segment 5 from the

function MDMAIN in mdmain.c (line 47 of mdmani.C) is fully covered using the

regular method by inferred critical sections that do not end prior to the end of this

critical section. This critical section can be found in lines 114 to 166 of mdmain.c

and is the result of expanding a BARRIER macro on line 47 of mdmain.C. It is

dynamically executed four times: once for each thread as it reaches the barrier. As a

result, the number of memory instructions in each dynamic execution varies: one

thread executes only 19 memory instructions in this critical section while the other

three execute 63, 64, and 74 memory instructions.

 63

For each dynamic execution of this real critical section, the tool infers three

critical sections. One inferred critical section includes all of the memory instructions

in the real critical section, while two additional inferred critical sections begin after

the real critical section starts and end after the real critical section ends.

Each of the inferred critical sections that completely cover the dynamic

executions of this real critical section begins at the same memory instruction as the

real critical section, but ends after the real critical section begins. The object

associated with all of the inferred critical sections is 16 bytes long and begins at gl-

>start. In fact, gl->start points to a structure of size 16 that can be found in Code

Segment 6. Since the tool ignores all instructions within pthread_mutex_lock, the

unsigned long Error, Cycle;
long Cancel, Temp;

Error = pthread_mutex_lock(&(gl->start).mutex);
if (Error != 0) {

printf("Error while trying to get lock in barrier.\n");
exit(-1);

}

Cycle = (gl->start).cycle;
if (++(gl->start).counter != (NumProcs)) {

pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &Cancel);
while (Cycle == (gl->start).cycle) {

Error = pthread_cond_wait(&(gl->start).cv, &
 (gl->start).mutex);

if (Error != 0) {
 break;

}
}
pthread_setcancelstate(Cancel, &Temp);

} else {
(gl->start).cycle = !(gl->start).cycle;
(gl->start).counter = 0;
Error = pthread_cond_broadcast(&(gl->start).cv);

}
pthread_mutex_unlock(&(gl->start).mutex);

Code Segment 5: Critical section in mdmain.c lines 114 to 166, which is the result of expanding a
BARRIER macro in mdmain.C line 47.

 64

first reference to this object—and therefore, the start of the inferred critical sections—

is in the line Cycle = (gl->start).cycle;.

Table 4 compares the number of memory instructions in the inferred critical

sections with the number in the dynamic real critical sections. For the three shortest

real critical sections, their inferred critical sections end at the same memory

instruction 55 memory instructions after the real critical section’s end. For the

longest real critical section, the final instruction in the inferred critical section is

different and occurs 30 memory instructions after the real critical section ends. In

both situations the ending instruction is inside the next barrier (line 79 in mdmain.C

and beginning at line 219 in mdmain.c). The code for this barrier is identical to the

code in Code Segment 5. For the shortest three real critical sections, their fully

covering inferred critical sections end during the function pthread_cond_wait with a

final reference to the gl->start object. For the longest real critical section, its fully

covering inferred critical section ends during the function pthread_cond_broadcast.

Both of these functions take a pointer to the condition variable cv that is in the gl-

>start object as an argument.

Table 4: Lengths of dynamic executions of the critical section from mdmain.c lines 114 to 166
compared with the length of the inferred critical sections that fully cover each dynamic
execution.

Real Critical Section Length 19 63 64 74
Inferred Critical Section Length 74 118 119 104

struct {
pthread_mutex_t mutex;
pthread_cond_t cv;
unsigned long counter;
unsigned long cycle;

} (start);

Code Segment 6: Structure start: the object that associated with the inferred critical sections that
fully cover the real critical section in mdmain.c lines 114 to 166.

 65

 This example shows where an inferred critical section correctly points out the

object that should be protected, but incorrectly locks that object beyond the necessary

time. Depending on the way the tool is used, this inferred critical section could be

useful by pointing out an object and region that the programmer may want to lock or

it could be detrimental if it were used to automatically lock down a running program.

In the latter case, two barriers could be treated as one causing the program to attempt

to do computations on uninitialized or outdated data.

Example: Uncovered Real Critical Section Covered with Island Method

 The example in Code Segment 7 shows a real critical section from the

function INTERF in interf.c (lines 160-162 and in interf.C lines 145-147) that is left

uncovered using the original method, but is covered using the island method for the

same set of thresholds (8, 8, 200). This real critical section references a local value

LVIR and the pointer VIR, which is passed into the function as an argument. Every

time the function is called, this argument points to a global variable VIR, a double

that is dynamically allocated at the start of execution as part of Water-nSquared’s

GlobalMemory structure. There are two memory instructions captured by our tool in

this critical section: one that adds the local value LVIR and *VIR and one that stores

*VIR back to memory.

{pthread_mutex_lock(&(gl->InterfVirLock));};
*VIR = *VIR + LVIR;
{pthread_mutex_unlock(&(gl->InterfVirLock));};

Code Segment 7: Real critical section in lines 160 to 162 of interf.c (corresponding to lines 145-
147 of interf.C).

 66

 This real critical section is dynamically executed twice by each thread for a

total of eight times in our trials. It is never covered using the original method for

these thresholds because despite being dynamically allocated, VIR is not referenced

near any other memory references so it does not become part of an object. When the

address difference threshold is increased from 8 to 32, VIR becomes part of an object

with a total of 328 bytes in the original method. Obviously, this is much larger than

necessary, but once VIR is part of an object, this real critical section gets covered

exactly by an inferred critical section.

 With the same (8, 8, 200) thresholds, the island method makes VIR into its

own 8-byte object. The inferred critical section associated with VIR’s object perfectly

covers this real critical section. Since more objects are formed in the island method,

more inferred critical sections are formed also. Between one and nine inferred critical

sections fully cover the dynamic instances of this real critical section. For every

dynamic instance, at least one of the inferred critical sections is a perfect match the

dynamic real critical section; the other inferred critical sections all start before this

code region.

 While a perfectly fitting inferred critical section is the goal of this tool, in this

example, we see it comes with a trade-off: too many extra, meaningless inferred

critical sections. However, the island method, with between one and nine inferred

critical sections covering this code region, strongly suggests that this very small, two

memory instruction critical section should be covered.

 67

Example: Real Critical Section in a Loop

 The only real critical section in kineti.c is inside a for-loop. The code for this

critical section and the for-loop containing it is in Code Segment 8. Each thread

executes this critical section three times. The locked variable, SUM, is an array of

three doubles (8-byte quantities). The critical section itself has two memory

instructions that are captured by our tool.

For the original method using the thresholds (8, 8, 200), no inferred critical

sections cover the first execution in every thread, but a single inferred critical section

for each thread covers the last two dynamic executions suggesting that between the

executions of the real critical section the tool possibly learns the object to create the

critical section. Unfortunately, this is not what happens. The object associated with

this single inferred critical section is not related to the locked variable SUM; instead

the object is related to the pthreads implementation and accessed for the first and last

times inside the function __pthread_mutex_unlock_usercnt, a function called in

pthread_mutex_unlock. This indicates that the inferred critical section that covers the

/* loop over the three directions */
for (dir = XDIR; dir <= ZDIR; dir++) {

S=0.0;
/* loop over the molecules */
for (mol = StartMol[ProcID]; mol < StartMol[ProcID+1];
 mol++) {

double *tempptr = VAR[mol].F[VEL][dir];
S += (tempptr[H1] * tempptr[H1] +

tempptr[H2] * tempptr[H2]) * HMAS
+ (tempptr[O] * tempptr[O]) * OMAS;

}
{pthread_mutex_lock(&(gl->KinetiSumLock));};
SUM[dir]+=S;
{pthread_mutex_unlock(&(gl->KinetiSumLock));};

} /* for */

Code Segment 8: Real critical section in kineti.c lines 47 to 60 (kineti.C lines 32 to 45).

 68

last two dynamic executions of the critical section begins during the first call to

pthread_mutex_unlock, the call that ends the first dynamic execution of the real

critical section, and runs until after the last dynamic execution of the real critical

section.

Using the island method and the same thresholds, the tool correctly identifies

the three doubles in the SUM array as independent objects. The inferred critical

sections it creates for these objects start correctly at the first memory instruction of

the real critical section, but they end well after the real critical section ends—they are

between 40 and 124 memory instructions long instead of two instructions. When the

first index of SUM is accessed in the first dynamic instance of the real critical section,

the associated inferred critical section continues to be active through the next two

dynamic instances of the real critical section; the same thing happens after the second

index of SUM is accessed. In fact, these inferred critical sections all end at the next

reference to SUM, which occurs in mdmain.c on line 463 (mdmain.C line 118) after

the call to KINETI returns and all the threads move through a barrier. This suggests

that the non-object accesses threshold is too large, causing the tool to wait too long to

determine the end of an inferred critical section, so that it includes memory references

that are unrelated to the true real critical section. If our Pintool detected loop iteration

boundaries like AtomTracker [20], this information could be used to force the critical

section to end at the boundary even though the threshold has not been met. Future

work could include adding this feature.

Using the island method and reducing the non-object accesses threshold to 25

fixes the problem of the excessively large critical sections. When the other thresholds

 69

are held constant (8, 8, 25), the tool correctly finds this real critical section each time

it is accessed. Additionally, the number of inferred critical sections found for each

dynamic execution of this real critical section is down from 9 to 14 for the non-object

accesses threshold at 200 to between 1 and 3.

This example shows the power of the non-object accesses threshold for

getting more accurate inferred critical sections. If a program is expected to have

small real critical sections, a smaller non-object accesses threshold should be used. If

the real critical sections are larger with accesses to the locked object spread out in the

critical section, a larger non-object accesses threshold will work better.

 70

Chapter 5: Discussion

 Chapter 4: Results shows that the memory usage pattern of a program can be

used to learn about a program’s real critical sections; however, the effectiveness of

this result depends on how it is used. Would this information best be incorporated

into a tool that automatically locks down a program while it runs or a tool that advises

a programmer of potential bugs? We discuss a few potential uses below. First,

though, we look at improvements to our analysis that would provide more

informative results.

Improving the Results

 Our analysis incorrectly included instructions that were inside pthread library

functions, because Pin was unable to completely identify both the dynamic beginning

and end of all pthread library functions. For example, Pin could not find the return

statement for the pthread_mutex_unlock function, so we were unable to remove

instructions occurring inside pthread_mutex_unlock from analysis. Rather than

relying on Pin to find the ends of pthread library functions, a better system of

recognizing instructions inside libraries and ignoring them should be implemented.

Additionally, we should ensure that all pthread library functions are removed from

analysis and not just pthread_mutex_lock and pthread_mutex_unlock. The

benchmark programs also used pthread_cond_braodcast and pthread_setcancelstate,

which we should have recognized and eliminated.

 Our analysis was limited by the fact that we only had enough computing

power to analyze heap memory references for inferring objects. The Pintool

 71

computations relied on C++’s Standard Template Library Containers to organize the

large amounts of data that had to be sorted and searched. Since not all features of the

C++ containers were used, an implementation that used more efficient vectors, lists,

and maps potentially could handle including non-heap memory references in the

object inference analysis.

 Finally, the way we reported our results was an artifact of how we collected

coverage information while processing. Consequently, it is difficult to answer the

question, “How many inferred critical sections perfectly match real critical sections?”

While we have seen in the examples provided at the end of Chapter 4: Results that

several inferred critical sections do perfectly match real critical sections, at this time,

we do not have precise statistics to judge how well the tool performs in this regard.

Potential Uses

 The two most common uses for a tool like this would be to incorporate it into

an advisor program that informs the programmer of code regions that might need to

be critical sections and to incorporate the results into a second program that

automatically inserts critical sections into the code. Because a human must interact

with the results, an advisor program must have a low false positive (unnecessary

inferred critical sections) rate; on the other hand, with an automatic program false

positives can be tolerated better because they only impact performance. Inferred

critical sections that do not accurately match real critical sections can cause incorrect

behavior for an automatic program, but for the advisor program, a programmer might

be able find the correct critical section provided the incorrect critical section.

 72

 Because the tool produces a total number of inferred static critical sections

that ranges from 2 to 20 times the number of static real critical sections, using the tool

as an advisor program would require careful selection of thresholds to keep the false

positives to a manageable number for the programmer. Note that the thresholds that

produce the fewest inferred static critical sections for these benchmarks (when the

address difference threshold is 8) are the same thresholds that perform the worst in

covering real critical sections. An advisor program would have to trade off

manageability for the programmer with accuracy.

 A program that automatically inserts locks into the benchmark program

would need to have the best coverage of real critical sections possible. This means

using thresholds where the address difference threshold is greater than 8. Note that

having best coverage possible does not mean that the program will function correctly.

False positives affect performance by unnecessarily locking regions that are not

critical sections. The original and island methods have about the same high false

positive rates when the address difference threshold is greater than 8. Fortunately,

increasing both the address difference threshold and the non-object access threshold

decreases the false positive rate while increasing the real critical section coverage.

Finally, the automatic tool would have to avoid creating deadlock when adding locks

to the program. This will be discussed further in the next section.

 73

Chapter 6: Future Work

 This study presents only the very first results in a promising area of atomicity

research. Here we suggest several additions to the tool and to testing that could

provide better results. Finally, we discuss the challenges of building a complete tool

to use the results of this study.

Analyzing New Benchmarks

We evaluated our tool’s performance on SPLASH-2 scientific computing

benchmarks only. The next step for this research should determine if the results hold

across other types of programs. AVIO [16], Atom-Aid [17], and AtomTracker [20]

evaluate their performance using real-world server and client applications such as

MySQL, Apache, and Mozilla, and our tool should be evaluated on these also.

Although we ignored locking functions (as much as possible) in our

benchmarks, our results were limited to matching inferred critical sections with real

critical sections in otherwise correctly functioning code. By expanding our study to

real-world applications, we can also incorporate the real-world bugs found in these

applications to determine if our tool would correctly find critical sections in incorrect

code. As the “Learning from Mistakes” study showed, adding locks is not always the

best fix for a bug, so if a bug is fixed by reordering code or changing the design of a

data structure, will our tool still detect these buggy regions as critical sections [15]?

 74

Improving Object and Critical Section Inference

 Our object and critical section inference is based solely on the memory

locality and temporal proximity of memory accesses, where locality is defined by

thresholds. Incorporating other tools into our critical section and object inference

could improve the results.

 Our tool could benefit from recognizing and modifying object and critical

section inference in loops. AtomTracker [20] works on the assumption that critical

sections either contain an entire loop or never cross loop iteration boundaries.

Incorporating this idea into our tool could provide for better object and critical section

inference. For example, our tool could rely on loop detection to identify the

individual objects within an array when a loop iterates over an array of objects rather

than relying on thresholds to identify the individual objects.

LoopProf [18] is one of several loop detection techniques that could be used

to add this feature. LoopProf was written as a Pintool, making it easy to incorporate

into our tool. In addition to providing loop boundaries, LoopProf provides other

profile information about loops including parent and child loops and the nesting depth

of a loop [18]. LoopProf could be incorporated as a preprocessing step for our tool.

Creating a Completely Automated Tool

 As addressed in the section Potential Uses above, given the large number of

unnecessary critical sections formed by our tool, a tool that automatically inserts

locks around inferred critical sections may be the best use of this tool. Our tool

already reports the object that must be locked and the critical sections for that object.

 75

The work that remains is to create a lock for each object and ensure that the program

does not deadlock.

 In “Lock Inference for Atomic Sections,” Hicks et al. [11] address adding

mutexes for objects and appropriately locking regions already known to be atomic

sections. They are able to reduce the total number of mutexes needed by determining

when two or more mutexes are always held together. They avoid deadlock by

creating a total ordering of all mutexes and only acquiring locks in order [11].

 Incorporating the work of Hicks et al. into our tool would allow us to build a

tool that automatically inserted locks into the program ensuring that the program

never deadlocked.

 Finally, to fully compare our tool with AtomTracker [20], we could run the

new lock-instrumented program counting the number of atomicity violations that

have been prevented.

 76

Appendices

Barnes Input

Nbody = 16
Seed = 123
Dtime = 0.025
Eps = 0.05
Tol = 1.0
Fcells = 2.0
Fleaves = 5.0
Tstop = 0.075
Dtout = 0.25
NPROC = 4

FMM Input

Cluster type = two cluster
Distribution type = plummer
Number of Particles = 15
Precision = 1e-2
Number of Processors = 4
Number of Time Steps = 5
Duration of Time Step = .025
Softening Parameter = 0.0

Ocean Contiguous Input

-n6 -p2 -e1e-07 -r2000000000 -t28800

Ocean Non-Contiguous Input

-n6 -p2 -e1e-07 -r2000000000 -t28800

Water-nSquared Input

TSTEP = 1.5e-15
NMOL = 8
NSTEP = 1
NORDER = 6
NSAVE = 0
NRST = 0
NPRINT = 1
NFMC = 0
Num Procs = 4

 77

CUTOFF = 6.212752

Water-Spatial Input

TSTEP = 1.5e-15
NMOL = 8
NSTEP = 1
NORDER = 6
NSAVE = 0
NRST = 0
NPRINT = 1
NFMC = 0
Num Procs = 4
CUTOFF = 0

 78

Glossary

Address difference threshold: The maximum number of bytes that can be between
two effective addresses and still merge the addresses into a single object.

Atomicity: Operations within an atomic region occur without interruption of

operations on another processing element, so to other processing elements
they appear to happen at once.

Atomicity violation: A concurrency bug in which a critical section’s final state is

influenced by another processing element. See page 10.

Critical section: A region of code that accesses a shared resource and must do so

exclusively.

Distributed-memory model: In this parallel processing model, each processing

element has exclusive access to its data and cannot access the data of other
processing elements.

Island method: Every address accessed is its own object and can be merged into

larger objects.

Lock: Operation of gaining exclusive access to data or resources by locking a mutex.

Also, a lock can be an object that can be locked or unlocked to gain mutually
exclusive access to data or resources.

MISD: Multiple Instruction-Single Data organization of processing elements in

which each processing element executes a different instruction but on the
same datum.

MIMD: Multiple Instruction-Multiple Data organization of processing elements in

which each processing element executes a different instruction on a different
set of data.

Mutex: Object that is locked and unlocked to guarantee a thread’s mutually exclusive

access to data or resources.

Non-object accesses threshold: The number of memory accesses to addresses that

are not in the current critical section’s object before determining the critical
section has ended.

Object: A contiguous region of memory built by merging together memory accesses

that are nearby in time and space.

 79

Order violation: A concurrency bug where the programmer assumes that two threads
will execute in a particular order but does not enforce this order. See page 11.

Original method: Objects are created from merging accesses. Single accesses that

have no nearby accesses (within the address difference threshold and time
threshold) do not become objects.

Parallel computing: Performing two or more computations simultaneously.

Processing element: Any unit that can perform a computation.

Shared-memory model: In this parallel processing model, all processors have access

to a shared bank of memory and the memory of every other processor.

SIMD: Single Instruction-Multiple Data organization of processing elements. All

processing elements execute the same instruction simultaneously but on
different data.

SISD: Single Instruction-Single Data organization of processing elements. This is

serial computing where a single instruction is executed on a single datum at a
time.

Serializable: Parallel events that could be executed in some serial order to get the

same final state.

SPMD: Single Program-Multiple Data organization of processing elements. Each

processing element executes the same program, but processing elements can
execute different parts of the program at a time. Each processing element
operates on different data.

Thread: Stream of instructions running inside a larger process that can be

independently scheduled by the operating system. Threads have their own
stack, registers, and private data, but have access to all global data.

Time threshold: The maximum number of memory accesses that can be between

accesses to two effective addresses and still merge the addresses into a single
object.

Transaction: A group of instructions executed optimistically atomically.

Transactions must be serializable.

Unlock: Releasing mutually exclusive access to data or resources.

 80

Bibliography

[1] C. Bienia, S. Kumar, and K. Li. PARSEC vs. SPLASH-2: A Quantitative
Comparison of Two Multithreaded Benchmark Suites on Chip-
Multiprocessors. In IEEE International Symposium on Workload
Characterization, 2008, p. 47-56, September 2008.

[2] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: Bulk Enforcement
of Sequential Conistency. In Proceedings of the 34th Annual International
Symposium on Computer Architecture, p. 278-289, 2007.

[3] S. Cherem, T. Chilimbi, S. Gulwani. Inferring Locks for Atomic Sectios. In
Proceedings of the 2008 ACM SIGPLAN Conference on Programming
Language Design and Implementation, p. 304-315, 2008.

[4] J. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan.
Efficient and Precise Datarace for Multithreaded Object-Oriented Programs.
In Proceedings of the ACM SIGPLAN 2002 Conference on Programming
language design and implementation, p. 258-269, June 2002.

[5] F. Darema. “The SPMD Model: Past, Present and Future.” In Y. Cotronis
and J. Dongarra, editors, Recent Advances in Parallel Virtual Machine and
Message Passing Interface. Springer, Berlin/Heidelberg, 2001.

[6] L. Dagum and R. Menon. OpenMP: An Industry-Standard API for
Shared-Memory Programming. In IEEE Computational Science &
Engineering, Volume 5 Issue1, p. 46-55, January 1998.

[7] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker. A message passing
standard for MPP and workstations. In Communications of the ACM,
39(7), p. 84-90, July 1996.

[8] K. Eswaran, J. Gray, R. Lorie, and I. Traiger. The Notions of
Consistency and Predicate Locks in a Database System. In
Communications of the ACM, p. 624-633, November 1976.

[9] M. Flynn. Some Computer Organizations and Their Effectiveness. In IEEE
Transactions On Computers, Vol. C-21, No. 9, p. 948-960, September 1972.

[10] L. Hammond, V. Wong, M. Chen, B. Carlstrom, J. Davis, B. Hertzberg,
M. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. In Proceedings

 81

of the 31st Annual International Symposium on Computer Architecture,
p. 102, 2004.

[11] M. Hicks, J. Foster, P. Pratikakis. Lock Inference for Atomic Sections.
In First ACM SIGPLAN Workshop on Languages, Compilers, and
Hardware Support for Transactional Computing, June 2006.

[12] M. Herlihy and J.E.B. Moss. Transactional Memory: Architectural
Support for Lock-Free Data Structures. In Proceedings of the 20th
Annual International Symposium on Computer Architecture, p. 289-300,
1993.

[13] A. Lai and B. Falsafi. Selective, Accurate, and Timely Self-Invalidation Using
Last-Touch Prediction. In Proceedings of the 27th Annual International
Symposium on Computer Architecture (ISCA), p. 139-148, June 2000.

[14] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. Popa, and Y. Zhou. MUVI:
Automatically Inferring Multi-Variable Access Correlations and Detecting
Related Semantic and Concurrency Bugs. In Proceedings of Twenty-First
ACM SIGOPS Symposium on Operating Systems Principles, p. 103-116,
2007.

[15] S. Lu, S. Park, E. Seu, and Y. Zhou. Learning from Mistakes – A
Comprehensive Study on Real World Concurrency Bug Characteristics.
In Proceedings of the 13th international conference on Architectural
support for programming languages and operating systems, p. 329-339,
2008.

[16] S. Lu, J. Tucek, F. Qin, Y. Zhou. AVIO: Detecting Atomicity
Violations via Access Interleaving Invariants. In Proceedings of the
12th International Conference on Architectural Support for
Programming Languages and Operating Systems, p. 37-48, 2006.

[17] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-Aid: Detecting and
Surviving Atomicity Violations. In Proceedings of the 35th International
Symposium on Computer Architecture, p. 277-288, June 21-25, 2008.

[18] The Modified SPLASH-2 Home Page. 2007. CAPSL. Univeristy of
Delaware. <http://www.capsl.udel.edu/splash/Download.html>

[19] T. Moseley, D. Grunwald, D. Connors, R. Ramanujam, V. Tovinkere, and R.
Peri. LoopProf: Dynamic Techniques for Loop Detection and Profiling. In
Proceedings of the 2006 Workshop on Binary Instrumentation and
Applications (WBIA), 2006.

 82

[20] A. Muzahid, N. Otsuki, and J. Torrellas. AtomTracker: A Comprehensive
Approach to Atomic Region Inference and Violation Detection. In
Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, p. 287-297, 2010.

[21] R. Netzer, B. Miller. What are Race Conditions? Some Issues and
Formalizations. In ACM Letters on Programming Languages and Systems
(LOPLAS), p. 74-88, March 1992.

[22] Pin – A Dynamic Binary Instrumentation Tool. <www.pintool.org>

[23] POSIX Threads Programming. Barney, Blaise. Lawrence Livermore
Laboratories. <https://computing.llnl.gov/tutorials/pthreads/>.

[24] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The SPLASH-2
Programs: Characterization and Methodological Considerations. In
Proceedings of the 22nd International Symposium on Computer Architecture,
p. 24–36, June 1995.

[25] E. Vallejo, M. Galluzzi, A. Cristal, F. Vallejo, R. Beivide, P. Stenstrom, J. E.
Smith, and M. Valero. Implementing Kilo-Instruction Multiprocessors. In
International Conference on Pervasive Services, p. 325-336, 2005.

[26] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Mechanisms for
Store-wait-free Multiprocessors. In International Symposium on Computer
Architecture, p. 266-277, 2007.

