
 

ABSTRACT 

 

Title of Dissertation:  HOUSEHOLD ENERGY USE, INDOOR AIR 
POLLUTION, AND HEALTH IMPACTS IN INIDA: A 
WELFARE ANALYSIS  

 
    Yabei Zhang, Doctor of Philosophy, 2009 
 
Dissertation directed by:  Professor Richard Just 
    Department of Agricultural and Resource Economics 
 

This dissertation develops a unified analytical framework to understand the 

relationships among household energy use, indoor air pollution (IAP), and health impacts 

and enables policy-makers to analyze welfare effects of various interventions.  

This unified analytical framework includes four interlinked modules. Module 1 

studies the determinants of IAP and constructs an IAP index to predict typical IAP 

exposure. Module 2 analyzes the impacts of IAP exposure on health, including both self-

reported respiratory symptoms and physician-measured spirometry indicators. Module 3 

uses a novel approach to model household behavior regarding energy technology choices 

based on utility maximizing behavior. Households are assumed to choose a cooking 

energy technology based on its attributes: cooking cost, convenience, and cleanliness. 

Household valuation of these attributes depends on household characteristics. Then based 

on the household utility function estimated from Module 3, Module 4 evaluates welfare 

change from various policy interventions.   

Empirical estimation relies primarily on two surveys recently conducted in India: 

a social science and environmental health survey entitled Health, Environment, and 

Economic Development and a multi-topic national representative sample survey called 



 

the India Human Development Survey. The two surveys were fielded between late 2004 

and early 2005 and contain uniquely rich information on household energy use, indoor air 

pollution levels, and health indicators. 

This dissertation provides quantitative evidence that IAP has significant health 

impacts comparable to smoking. Based on analysis of IAP impacts on spirometry 

indicators, the evidence suggests that IAP has major impacts on restrictive lung disease 

rather than obstructive lung disease. These results explain why certain diseases are more 

highly associated with IAP exposure. Considering that traditional biomass will likely 

continue to be the most popular cooking fuel in rural areas of India in the near future, and 

that households can achieve considerable welfare gains from improvement in stoves and 

kitchen ventilation, the analysis suggests that the Indian government should consider 

reviving the improved stove program with a new advanced stove strategy coupled with 

conducting advocacy campaigns on how to improve kitchen ventilation. The analysis 

suggests small overall welfare effects of the pending phasing out of LPG subsidies.  
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Chapter 1. Introduction 

Burning biomass in traditional stoves emits smoke containing large quantities of 

particulate matter and gaseous pollutants, with serious health consequences for the 

exposed population. Global estimates show that about 2.5 million deaths each year result 

from indoor exposure to particulate matter in rural and urban areas in developing 

countries, representing 4-5% of the 50-60 million global deaths that occur annually 

(Bruce, et al., 2002). The situation is particularly bad in India. The World Health 

Organization estimates that exposure to indoor air pollution (IAP) causes about 500,000 

premature deaths and 500 million incidences of illness among women and children in 

India each year. This amounts to 30 percent of the global disease burden from this risk 

factor in the developing world and makes IAP one of the top preventable health risks in 

India (Energy Sector Management Assistant Program, 2002). 

Switching to clean fuel has been identified as the most effective way of reducing 

IAP. However, the progress of adopting modern energy in rural India has been slow. 

Household use of traditional biomass fuels including firewood, wood chips, crop residue, 

and dung cakes are still widespread in rural India. The recent national representative 

survey, the India Human Development Survey (IHDS) 2004-2005, shows that 90% of 

rural households and 40% of urban households still rely on biomass as their primary 

cooking fuel. Half of rural households still use very inefficient cooking fuels such as 

dung cake and crop residue. The improved chulha (stove) has been considered to be an 

effective alternative to reduce IAP. However, only 5% of Indian people are using the 

improved chulha as their primary stove.  
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Research Questions  

Why do people use household energy technologies that can make them sick or 

even cause death? My dissertation uses recent household survey data from India to 

explore this puzzle through quantifying the relationships among household energy use, 

indoor air pollution, and health impacts. Based on these relationships, my dissertation 

will develop a model of household behavior to evaluate welfare changes from a variety of 

policy interventions such as promoting improved stoves, improving kitchen ventilation, 

and phasing out LPG subsidies. More specifically, I answer the following questions.  

1. Which factors determine IAP concentrations and what are their relative 

contributions? These factors include energy technology (the stove-fuel 

combination), housing characteristics, and cooking practice. 

2. What is the quantitative relationship between exposure to IAP and the incidence 

of disease? 

3. What factors affect households’ decisions on the energy technology choice? What 

policy interventions might be implemented to influence the choices? 

4. How can the welfare effects from various interventions be measured? What are 

the welfare effects of alternative interventions? 

Problem Motivation 

IAP has gained attention mainly due to its health impacts, including respiratory 

diseases in particular. Respiratory diseases have consistently been among the most 

prevalent diseases of developing countries (WHO, 2002). However, no reference to the 

role of air pollution in the incidence of diseases was made in the medical community 

until early in the 20th century (Ezzati and Kammen, 2002, and Smith, et al. 2000). Air 
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pollution was first considered as a major cause for respiratory diseases after some 

dramatic episodes of outdoor air pollution. For example, the Big Smoke during the 5-8 

December, 1952, in London, which was due mainly to smoke from coal burning 

household stoves, killed about 4,000 people during the first three weeks of December—

most of whom were very young or elderly, or had pre-existing respiratory problems 

(MOH, 1954). Another 8,000 died in the weeks and months that followed (Pearce, 1992). 

As shown in Figure 1-1, deaths per day closely followed smoke concentrations, which 

imply a direct linkage between the two.  

More detailed research on exposure to indoor smoke and its impact on respiratory 

diseases in developing countries began in the 1960s and 1970s in India, Nigeria, and 

Papua New Guinea (Ezzati and Kammen, 2002). Due to an increasing number of research 

projects since the 1980s, the issues of household energy use, health impacts of IAP, and 

related policy interventions have recently appeared on the agenda of research and policy 

communities.  

IAP related research falls into three categories: emissions and exposure 

assessment, health impact assessment, and intervention strategies or programs. In 

addition, there are several review articles that summarize current knowledge and 

recommend research directions, including Smith et al (2000), Ezzati and Kammen (2002), 

Zhang and Smith (2007), and Duflo et al (2008).  

A. Emissions and Exposure Assessment 

For emissions and exposure assessment, research has focused on finding temporal 

and spatial characteristics of emissions and individual exposure patterns. Personal or area 

monitors to record particulate matter (PM) or carbon monoxide (CO) concentrations are 
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Figure  1-1. London Smog Disaster of 1952 

 

Source: http://www.portfolio.mvm.ed.ac.uk/studentwebs/session4/27/greatsmog52.htm 
 

often used in these studies. The research finds that emissions from biomass stoves vary 

greatly over short time intervals and these fluctuations relate to combustion 

characteristics (such as energy density, combustion temperature, and air flow) and 

cooking behavior. For example, the emission peaks occur when fuel is added or removed, 

the stove is lit, the cooking pot is placed on or removed from the fire, or food is stirred. In 

addition, pollution concentrations are found to exhibit a pronounced spatial gradient 

rather than instantaneous mixing (Ezzati and Kammen, 2002). For example, Saksena et al 

(1992) reported total suspended particulate (TSP) concentrations of 20 milligrams per 

cubic meter (mg/m3) or more near the cooking location in India, and Ezzati and Kammen 

(2001) recorded peak PM concentrations greater than 50 mg/m3 in the immediate vicinity 
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of the cooking fire in Kenya. Much lower PM concentrations were reported in the rest of 

the kitchen and other rooms in the household. 

The complexity of emission characteristics further complicates the assessment of 

individual exposure patterns. The complete time-activity budgets of individuals are also 

important determinants of exposure. In order to reduce cost and simplify evaluation of 

health impacts or intervention programs, a widely-adopted set of indicators for exposure 

to indoor smoke are yet to be developed from research on emissions and exposure 

assessment.  

B. Health Impact Assessment 

For health impact assessment, there have been a growing number of research 

studies showing a strong correlation between IAP and negative health outcomes. A 

number of studies have found associations between IAP and acute lower respiratory 

infections (ALRI) (Smith et al, 2000, Ezzati and Kammen, 2001a, 2001b, Dherani et al, 

2008), chronic obstructive pulmonary diseases (Bruce et al, 2000, WHO, 2002), and lung 

cancer (Mumford, 1987, Smith, 1993). In addition, there is emerging evidence that IAP 

increases the risk of other child and adult health problems, including low birth-weight, 

perinatal mortality, asthma, middle ear infection, tuberculosis, nasopharyngeal cancer, 

cataracts, blindness, and cardiovascular disease (WHO 2002). More recently, Zhang and 

Smith (2007) undertook a detailed meta-analysis of 200 publications regarding IAP in 

China and showed that most of the studies find a strong correlation between IAP and 

observed health effects including respiratory illness, lung cancer, chronic obstructive 

pulmonary disease, weakening of the immune system, and reduction in lung function.  
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However, due to the cost of measurement, most studies use indirect measures of 

exposure as proxies. For example, Smith et al (2000) reviewed thirteen recently published 

studies (summarized in Table 1-1) that quantitatively address the relationship between 

exposure to household biomass smoke and ALRI in young children in developing 

countries. All studies used indirect measures of exposure, such as fuel type, housing 

characteristics, or aggregate measures of time spent near fires. Many of these studies use 

the case-control approach by dividing the study group into those who are affected by 

disease and those who are not at one point in time. For example, households using an 

open wood fire are compared to those who cook with cleaner fuels such as kerosene or 

LPG. However, as discussed above, indirect exposure proxies mask the complexities of 

exposure to indoor smoke and may result in biased estimates. Furthermore, such studies 

are not able to quantify the relationships between exposure level and risk, providing little 

information for estimating the potential health gains that might result from reducing 

exposure by different amounts. 

In addition to using indirect exposure proxies, many studies fail to deal 

adequately with confounding issues (Bruce et al, 2000). Households who have taken 

measures to improve their indoor air quality may do so following improvements in their 

socioeconomic characteristics (e.g. income, education, nutrition and medical care), which 

strongly influence many health outcomes (Bruce et al, 1998). Thus, inadequate control 

for these confounding factors is likely to result in an overestimate of the health impacts of 

IAP. More recent studies have given more attention to confounding issues. For example, 

some have adjusted for factors such as socioeconomic status, parental education,  
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Table 1-1. Studies that Quantify Biomass Fuel Use and ALRI in Children under 5 in Developing Countries 
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 Source: Smith et al (2000) 
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breastfeeding, nutritional status, environmental tobacco smoke, crowding, and vaccination status. 

However, the adequacy of control of and/or adjustment for confounding factors has varied 

considerably (Dherani et al, 2008). 

To avoid selection bias and confounding effects, experimental studies that allow 

randomization of the study group, especially randomized intervention studies, have been 

proposed. Randomized Exposure Study of Pollution Indoors and Respiratory Effects in 

Guatemala started in October 2002 was the first randomized controlled trial ever performed on 

health effects from solid fuel use (Diaz et al, 2007). Its goal was to assess the effect of improved 

stoves on exposure and health outcomes in a rural population reliant on wood fuel. The study 

randomly selected women who either had a child less than four months old or were pregnant at 

the time the study began. Each household was followed until the infants reached 18 months of 

age. Health assessments were conducted every six months covering respiratory symptoms, eye 

irritation, headaches, and backaches. The study confirmed that use of the improved stove 

significantly reduces exposure to IAP and found that women in the treatment group had 

reductions of sore eyes, headaches, and sore throats compared to the control group. Children in 

the treatment group experienced reductions in crying and sore eyes (Diaz et al, 2007). 

However, the design of randomized treatments is not immune to problems. First, whether 

households respond to incentives to use an improved stove and how they use it may be a function 

of unobserved factors, which may result in biased estimates. Second, the field experiment 

approach cannot readily address the issue of chronic risk because chronic risk is dependent on 

accumulated exposure. Long observation periods are required to show effects of any intervention 

on chronic risk. Further, those accustomed to long term exposure may be more reluctant to adopt 

alternatives. Third, experimental studies are highly dependent on individual behavior and do not 
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capture the complex determinants and patterns of exposure. So the findings are hard to apply to 

large-scale intervention efforts (Ezzati and Kammen, 2002). 

C. Intervention Strategies 

For intervention strategies or programs, most current research has focused on improved 

stoves and fuels, which provide more affordable options than a complete shift to nonsolid fuels. 

A number of studies examine whether improved stoves reduce IAP.  For example, McCracken 

and Smith (1998), Albalak et al (2001), Ezzati and Kammen (2002b), and Diaz et al (2007) have 

all found that various types of improved cooking stoves have resulted in reductions of toxic 

pollutants. However, even though improved cooking stoves reduce IAP, the effects could be 

mitigated by behavioral responses. For example, if there is less smoke near the stove, individuals 

may choose to spend more time around the stove than they previously did. Thus, there is still 

little understanding of the impact of stoves on health and whether or not promoting improved 

stoves is a cost-effective strategy.   

A few studies, such as Heltberg, R. (2004, 2005), Ouedraogo (2005), and Jack (2006) 

have examined factors determining household fuel choices. Heltberg found that in addition to 

income, factors such as opportunity costs of time used to collect firewood, education level, and 

access to electricity also play an essential role. However, there is little systematic evidence 

indicating which factors determine household behavior with respect to fuel use and motivate 

households to switch cooking technologies. In addition, the benefits of adopting modern cooking 

technologies that can reduce IAP exposure have not been quantified and no welfare analysis has 

been done to evaluate and compare welfare changes from different policy interventions. Finally, 

long-term performance of improved stoves or modern fuel promotion programs has not been 
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monitored, and wider environmental and socio-economic implications are not well understood 

(Ezzati & Kammen, 2002). 

Aside from a recent PhD dissertation by Darby Jack (2006), no study has explicitly 

determined why people use household energy technologies that can make them sick or even 

cause death. In his dissertation, using a panel household survey dataset from Peru, Jack explored 

three issues related to this puzzle: (1) factors affecting household fuel choices, (2) evidence of 

social learning in fuel choice patterns, and (3) health impacts of indoor air pollution. Although he 

provides additional insights on household behavior regarding energy use, such as a social 

learning effect, his study suffers data limitations similar to many other studies. To assess the 

health impacts of IAP, Jack used fuel choice to proxy for exposure to IAP due to unavailability 

of direct IAP concentrations. As discussed earlier, use of this proxy masks the complexities of 

exposure to indoor smoke and may result in biased estimates. In addition, the health outcomes 

used in his study were self-reported. Thus, there may be systematic errors in the health variables 

depending on whether people perceive themselves as ill. This is likely to vary systematically 

according to education, access to information, occupation, and other factors.  

Methodology Overview 

To study the research questions raised in this chapter, I develop an analytical framework 

that can be illustrated as in Figure 1-2. The framework can be divided into four modules 

corresponding to the four sets of questions.  

Module 1 studies the determinants of IAP. Controlling for household characteristics, the 

factors considered include energy technology choices, housing characteristics, and cooking 

practices. This is done using IAP concentrations that are monitored over a 24-hour period. I 
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compare how these factors determine different measures (such as mean and 95th percentile) of 

the IAP concentrations. 

Figure  1-2. Analytical Framework 

 
 

Module 2 analyzes the health impact from exposure to IAP, which is determined by IAP 

concentrations and individual exposure indicators. This is done controlling for household and 

individual characteristics. For exposure assessment, instead of using stoves and fuels as exposure 

proxies, I use IAP concentrations in the kitchen and individual’s typical kitchen presence as an 

indicator to examine exposure to IAP. For health outcomes, in addition to using self-reported 

respiratory symptoms, I also use objectively measured lung capacity to avoid possible self-

reporting bias. Furthermore, I use household fixed effects and instrumental variables to cope 

with confounding problems. 

Module 3 represents household behavior with respect to energy technology choices 

through utility maximization. In this component of the model, household utility is determined by 

a composite commodity and energy technology choices conditional on household characteristics. 

Household 
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I assume households make energy technology choices based on technology attributes such as 

cost, cleanliness, and convenience. How households value these attributes varies with households 

characteristics.  

Module 4 evaluates welfare effects of different policy interventions based on the 

estimated household utility function from Module 3. The policy scenarios focus on interventions 

that can change energy technology attributes, such as replacing traditional stoves with improved 

stoves, improving kitchen ventilation, and phasing out LPG subsidies.  

Main Contribution 

Despite the importance of health risks caused by IAP and increased interest among 

research and policy communities, because of limited data and problem complexity, no study has 

been able to develop a coherent framework that can link household behavior with actual IAP 

level and the health impact sufficient to conduct welfare analysis. The main contribution of this 

dissertation is a unified framework to link the relationships among household energy use, IAP 

level, and health consequences and to quantify the welfare changes from alternative policy 

interventions. 

With the tight government budgetary constraints that usually exist, it is important to 

prioritize public sector investments on the basis of expected benefits. The framework developed 

here is able to quantify the welfare changes from alternative policy interventions. For example, if 

a program aims to promote improved stoves, this framework can estimate how much households 

will value an improved stove and whether a subsidy on the stove is necessary. The results can 

reveal how much they are willing to pay for it if they are convinced of the improved features. 

The model can also evaluate how much households can benefit from improved kitchen 

ventilation. As switching to clean fuels is the most effective way to reduce indoor air pollution, 
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the model can examine the factors that determine households’ fuel switching and whether 

subsidizing an LPG stove can make a difference. Since LPG price is currently highly subsidized 

and the Indian government is considering phasing out the subsidies, the model can evaluate the 

impact of this policy on household energy technology choices and estimate welfare change from 

phasing out LPG subsidies.  

Dissertation Structure 

The remainder of this dissertation is organized as follows. Chapter 2 discusses the 

sources of data used in this dissertation and their structure. Chapter 3 describes the methodology 

and results for Module 1 and identifies the determinants of IAP. Controlling for household 

characteristics, the factors considered include energy technology choices, housing characteristics, 

and cooking practices. Multiple-stove use and quantities of fuel use are modeled to capture 

detailed energy technology choice patterns. Chapter 4 presents the methodology and results for 

Module 2 to evaluate the health impacts from exposure to IAP. Chapter 5 presents the 

methodology and results of Module 3, examining household behavior with respect to energy 

technology choices through utility maximization. Using the estimates from Modules 1 and 2, 

Module 3 is able to estimate household utility functions and examine the factors that can affect 

household energy technology choices. Chapter 6 presents welfare analysis of policy simulations 

based on the model estimated in Chapter 5 and discusses policy implications. Chapter 7 presents 

conclusions of the analysis. 
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Chapter 2. Data Overview 

Data Sources 

This dissertation relies primarily on two surveys recently conducted in India: a multi-

topic representative sample survey called the India Human Development Survey 2005 (IHDS) 

and a social science and environmental health survey entitled Health, Environment, and 

Economic Development (HEED). The IHDS was conducted jointly by the University of 

Maryland and the National Council of Applied Economic Research (NCAER), New Delhi, and 

funded by the National Institutes of Health. It is a nationally representative, multiple topic survey 

of 41,554 households in 1503 villages and 971 urban neighborhoods across India. Two one-hour 

interviews in each household covered health, education, employment, economic status, marriage, 

fertility, gender relations, and social capital. In addition to the household-level survey, IHDS 

includes a village survey that compiles information on the village economic and social 

infrastructure and the labor market.  

The HEED survey was an extension of the IHDS survey. It was jointly organized by 

researchers at the University of Maryland, the NCAER, the University of California (UC), 

Berkeley, the World Bank, the Energy Research Institute (TERI), and Sri Ramachandra Medical 

College (SRMC). It involves 622 households with about 3000 individuals in four states: 

Uttarakhand1

                                                 
1 At the time of the survey, the state used the interim name, Uttaranchal, whereas in January 2007 the state name 
was officially changed to Uttarakhand. 

 (UA), West Bengal (WB), Madhya Pradesh (MP), and Tamil Nadu (TN). The 

study locations are shown in Figure  2-1. The 622 households are a sub-sample of the IHDS 

organized by the University of Maryland and the NCAER. In addition to the standard IHDS 

survey questionnaires, a fuel and cooking supplemental questionnaire designed by researchers 

from the World Bank, the University of Maryland, and the NCAER was added to this sub- 
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Figure  2-1. HEED Study Locations 

       

sample to get more detailed information on households cooking fuel usage. The 24-hour IAP 

monitoring data, the IAP post-monitoring data, and health information including self-reported 

symptoms and doctor-measured lung function data were jointly collected by TERI and SRMC. 

TERI was responsible for data collection in Uttarakhand, West Bengal, and Madhya Pradesh. 

SRMC was responsible for data collection in Tamil Nadu. UC Berkeley developed the IAP 

Tamil Nadu 

Madhya 
Pradesh West Bengal 

Uttarakhand 
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monitoring protocols, held on-site IAP monitoring training, and processed the 24-hour IAP 

monitoring data. 

Both the IHDS and HEED surveys were fielded between late 2004 and early 2005. 

Together, the two surveys provide uniquely rich information on household energy use, the 

household environment, health, and development in India.  

Data Structure 

The HEED survey includes 622 households from four geographically and culturally 

diverse states in India. Within each state, two districts were randomly selected. Within each 

district, three villages (two rural, one urban) were randomly selected. Each village includes up to 

several hundred households. To select the study households, the field team first conducted a 

rapid assessment of all households in the village. The team members went to each household and 

asked several questions such as primary fuel type and kitchen type. After the completion of the 

rapid assessment, a stratified random sample of 25 households based on fuel and kitchen type 

was drawn (Naumoff, 2007). Approximately 150 households were sampled per state.   

The HEED data includes several parts. The part administrated through the NCAER 

includes multiple topics. The data that are directly related to this study record household energy 

characteristics, cooking practices, ventilation conditions, housing characteristics, health, 

consumption, education, and other household socioeconomic indicators. The health questions 

include short-term mortality and major morbidity. The ones related to respiratory symptoms 

include coughing and shortness of breath. In addition, the NCAER questionnaire includes health 

belief questions such as “Is smoke from a wood/dung burning traditional stove good for health, 

harmful for health or do you think it doesn’t really matter.” 
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TERI and SRMC collected 24-hour IAP monitoring data, post-monitoring data, and 

health data. IAP monitoring data includes 24-hour measurements2

After the IAP monitoring data was collected, a post-monitoring questionnaire was used to 

survey each household to assess household energy characteristics such as fuel type, kitchen type, 

stove type, and cooking time during the monitoring period. The questionnaire was designed 

collaboratively by the TERI, SRMC, and UC Berkeley research teams. Many questions are 

compatible with the NCAER’s fuel and cooking supplemental questionnaire. However, one 

important distinction is that the post-monitoring questions were asked for the situation for the 24-

hour monitoring period while the NCAER’s fuel and cooking supplemental questions were asked 

for the typical situation in the past year or past month.  

 of concentrations of fine 

particles less than 2.5 microns (μm), denoted as PM 2.5, and CO concentrations in all study 

households. PM 2.5 was measured using the UCB Particle Monitor, which was placed in the 

kitchen area according to the following standard protocol: (1) approximately 100 cm from the 

edge of the combustion zone, (2) at a height of 145 cm above the floor, (3) at least 150 cm away 

(horizontally) from doors and windows, where possible (Naumoff, 2007).   

The health questionnaire was designed to assess each participant’s respiratory symptoms, 

including coughing, shortness of breath, phlegm, and wheeze. For the questionnaire design, 

TERI and SRMC took two different approaches. The questionnaire administered by TERI in 

Madhya Pradesh, Uttarakhand, and West Bengal were based on the British Medical Research 

Council Questionnaire. The questionnaire administered by SRMC in Tamil Nadu was designed 

to mimic a physical examination (Naumoff, 2007). In addition to respiratory symptoms, the 

questionnaire includes assessment of allergies, back pain, and burns and scalds. In Chapter 4, 

                                                 
2 The actual measurements ranged from 22 to 26 hours. 
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which focuses on the analysis of health impacts of indoor air pollution, I test whether the data 

from the two questionnaires is compatible. 

At the same time the health questionnaire was administered, lung function measurements 

were recorded for each participant older than 15 years. The measurements included forced vital 

capacity (FVC), forced expiratory volume in 1 second (FEV1), and the ratio between the two 

(FEV1/FVC). Spirometry was conducted in a standing position and all spirometry measurements 

were recorded in adherence to the joint American Thoracic Society (ATS) and European 

Respiratory Society guidelines (Naumoff, 2007, Miller, Hankinson et al, 2005). The analysis 

uses the best of three readings. Height was also measured by the survey team according to 

standard protocol. 

The HEED data structure can be illustrated as in Figure  2-2.  

Overview of Household Energy Use in India 

Traditional biomass fuels are still commonly used for cooking and heating in India. Table 

2-1 shows primary stove use and energy use in India by urban and rural households using both 

IHDS and HEED data. Since IHDS is a national representative sample, I refer to IHDS data for 

the following discussion. As Table 2-1 shows, 27% of Indian households use clean stoves such 

as LPG, kerosene, and electric stoves as their primary stoves, while 90% of rural households and 

40% of urban households still rely on biomass as their primary cooking fuel.  

To mitigate the negative effects of traditional biomass stoves, the National Program for 

Improved Chulhas (NPIC) was initiated in 1983 to promote installation of improved stoves that 

improve fuel efficiency and reduce IAP generated by burning traditional fuels. However, many 

of the intended benefits of the program were not realized due to poor maintenance, stove  
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Figure  2-2. HEED Data Structure 

 

modifications by users, and deterioration of the stoves themselves. The low cost and sometimes 

poor designs and materials used for the program resulted in stoves lying broken and unused. As a 

result, the Government decided to terminate this national stove program in 2002, and 

decentralize the full implementation authority and funding support to the state level. 

Unfortunately, the consequence of this handover has not been positive. Some states continued in 

a fragmented manner and others closed down the program completely (Barnes et al, 

forthcoming). As the IHDS data shows, improved stoves are used by only 5% of rural 

households and 6% of urban households currently.  
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The IHDS reports energy use not only for cooking, but also for lighting, heating, and 

other purposes. In fact, electricity use is the primary energy source for lighting while very few 

households use electricity for cooking in India. When electricity is not available, kerosene is 

most commonly used for lighting. Thus, electricity and kerosene have relatively high market 

penetration rates compared to other fuels. As a major clean cooking fuel, LPG use is quite 

limited, especially in rural areas. Only 22% of rural households use LPG compared to 71% of 

urban households. However, only 5% of households used LPG 10 years ago. Thus, penetration of 

LPG has increased remarkably, especially in urban areas.  

Households in India often use multiple types of cooking fuels and cooking stoves, and the 

pattern tends to vary with the socio-economic profile of households. As shown in Table 2-2, 38% 

of rural households use both traditional biomass and clean cooking fuels (mainly kerosene and 

LGP) while only 6% of rural households have switched completely to clean cooking fuels. In 

contrast, 65% of urban households use only clean cooking fuels while 24% of urban households 

also use traditional biomass in addition to clean fuels. As expected, the wealthier households are 

more likely to switch to clean cooking fuels because cooking fuels are more expensive.  

Because HEED has more detailed information including not only fuel characteristics and 

household characteristics but also indoor air pollution and health information, I use HEED as the 

basic data set for the following modules. Although HEED is not a nationally representative 

sample, Table 2-1 and Table 2-2 show that the energy use patterns in HEED are generally 

comparable to IHDS. Thus, the results drawn from the HEED data appear to have wide 

applications in India.   
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Table 2-1. Types of Energy Use by Urban and Rural Households in IHDS and HEED  

Household Choice  IHDS HEED  
Total Rural Urban Total Rural Urban 

Sample size (Number of HH) 40731 64% 36% 622 66% 34% 
Primary Stove       

Open fire 23% 28% 13% 20% 23% 15% 
Traditional stove 45% 57% 21% 50% 56% 37% 
Improved stove 5% 5% 6% 1% 2% 0% 
Gas/kerosene/electricity 27% 10% 60% 29% 19% 48% 

Energy Use       
Firewood 71% 91% 36% 80% 88% 64% 
Wood chips N/A N/A N/A 18% 20% 14% 
Crop Residue 14% 20% 2% 17% 23% 7% 
Dung Cakes 37% 50% 13% 43% 49% 31% 
Charcoal 

5% 3% 7% 
1% 1% 2% 

Coal 8% 6% 14% 
Kerosene 76% 87% 54% 78% 81% 73% 
LPG 40% 22% 71% 35% 32% 41% 
Electricity 78% 69% 95% 78% 75% 84% 

Source: IHDS survey and HEED survey 

 
Table 2-2. Types of Cooking Fuel Use by Indian Households 

Household 
Characteristics 

IHDS HEED 

Clean Only Biomass & 
Clean 

Biomass 
Only Clean Only Biomass & 

Clean 
Biomass 

Only 
By Urban and Rural             

Rural 6% 38% 55% 9% 32% 60% 
Urban 65% 24% 11% 42% 29% 29% 

By Asset Quintile       
1st  2% 29% 70% 5% 12% 83% 
2nd 6% 34% 61% 14% 26% 60% 
3rd  15% 40% 45% 15% 34% 52% 
4th  36% 41% 23% 26% 40% 34% 
5th  64% 30% 6% 45% 42% 12% 

Source: IHDS survey and HEED survey 

Conclusions 

 In summary, this dissertation relies primarily on two recent surveys in India—IHDS and 

HEED. The IHDS is national representative survey covering multiple topics whereas the HEED 

survey samples four states and focuses on health and fuel use. Together, the two surveys provide 

uniquely rich information that allows exploration of the issues raised in Chapter 1. Because 
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HEED has more detailed information including not only fuel characteristics and household 

characteristics but also indoor air pollution and health information, HEED is used as the basic 

data set for the following modules. Since the HEED sample is a sub-sample of IHDS, the IHDS 

is used whenever necessary to complement the HEED data. As the energy use patterns in HEED 

are generally comparable to IHDS, the results drawn from the HEED data can have wide 

applications in India.   
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Chapter 3. Determinants of Indoor Air Pollution 

Introduction 

Although there are hundreds of chemicals in biomass smoke including well-known 

health-damaging pollutants such as carbon monoxide, hydrocarbons, and nitrogen oxides, fine 

particles less than 10 microns (μm) (PM 10) and especially less than 2.5 μm (PM 2.5) in diameter 

are considered the most harmful to health because they are small enough to be inhaled and 

transported deep into the lungs (Kleeman, 1999 and WHO, 2002). For biomass smoke, the modal 

size of particles is between 0.2 and 0.4 μm, and 80% to 95% of particles are smaller than 2.5 μm 

(Hueglin et al. 1997). In this study, the concentration of PM 2.5 in mg/m3 is used as the indicator 

of indoor air pollution. Although there is no safe level of particulate air pollution, the lower the 

better. For comparison, the US national ambient air quality standard for the annual mean of PM 

2.5 concentration is 0.015 mg/m3 (EPA, 2006). In the HEED sample, a concentration of 0.35 

mg/m3 or greater is very common. Table 3-1 shows the basic statistics of PM 2.5 concentrations 

at the mean, median, and the 95th percentile in kitchens and living areas based on a 24-hour 

continuous monitoring period, respectively. The average PM 2.5 concentrations in all these 

measures have been far beyond the US national ambient air quality standard. In particular, some 

of the 95th percentile PM 2.5 concentrations in kitchens are extremely high.  

To investigate the determinants of IAP exposure, I use regression analysis to explore the 

relationships between the PM 2.5 concentrations in kitchens and a set of variables that describe 

the household energy technology, cooking practices, and housing characteristics in addition to 

control variables for temperature, humidity, and state of residence. Identifying the role of 

household energy technology is my primary interest and can be viewed as a combination of 

cooking fuel and stove type. In terms of types of cooking fuels, firewood, crop residues, and 
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dung cake are commonly used forms of traditional biomass, whereas kerosene and LPG are 

commonly used clean fuels. In addition, about 30 households report the use of coal in West 

Bengal and Madhya Pradesh. Five households report the use of charcoal and a couple of 

households also report the use of biogas. Basic statistics for the explanatory variables used in this 

chapter are also provided in Table 3-1.  

In terms of types of cooking stoves, the following types of stoves have been reported: 

open fire (e.g., three stone stoves), traditional stoves, improved stoves (those that burn traditional 

fuels but are more efficient and cleaner than traditional stoves), and clean stoves (those that burn 

clean fuels such as kerosene, LPG, or biogas). About 50% of Indian households use only one 

cooking stove and the other half use one primary stove and one secondary stove. Very few 

households (0.65% in the HEED sample) use more than two cooking stoves.  

Due to the complication of multiple types of cooking fuel and cooking stoves and their 

interactions, there are a number of ways to model household energy technology. Considering the 

sample size limitation, I characterize the choice in two ways: first, by the choice of stove type 

and, second, by the fuel type choice.  

Energy Technology Choices 

Because an open fire can be treated as a simplified traditional stove, cooking stoves can 

be categorized into three types: (1) traditional, (2) improved, and (3) clean. Both traditional 

stoves and improved stoves use traditional biomass such as firewood, crop residues, and dung 

cakes. Occasionally (5% in the HEED sample), charcoal and coal are used. Although charcoal 

and coal are generally cleaner than traditional biomass, they are grouped with the traditional 

biomass and classified as dirty fuel in this model because they are much dirtier than clean fuels.  
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Table 3-1. Basic Statistics of PM 2.5 Concentrations (mg/m3) and Explanatory Variables 

Variable Mean Standard 
Deviation Minimum Maximum 

PM 2.5 Concentrations     

Mean PM 2.5 in Kitchens 0.78 2.06 0.02 27.58 

Mean PM 2.5 in Living Areas 0.25 0.66 0.00 10.10 

Median PM 2.5 in Kitchens 0.33 1.73 0.00 27.05 

Median PM 2.5 in Living Areas 0.13 0.56 0.00 9.42 

95th Percentile PM 2.5 in Kitchens 2.50 4.69 0.01 56.57 

95th Percentile PM 2.5 in Living Areas 0.75 1.80 0.00 17.18 

Stove Type     

One Traditional Stove  0.26 0.44 0 1 

One Improved Stove 0.01 0.08 0 1 

One Clean Stove 0.20 0.40 0 1 

Primary Stove is Traditional;  Secondary 
Stove is Clean 0.14 0.35 0 1 

Primary Stove is Improved; Secondary 
Stove is Traditional 0.00 0.04 0 1 

Primary Stove is Improved; Secondary 
Stove is Clean 0.01 0.08 0 1 

Primary Stove is Clean; Secondary Stove is 
Traditional 0.08 0.26 0 1 

Both Primary and Secondary Stoves are 
Clean 0.04 0.20 0 1 

Both Primary and Secondary Stoves are 
Traditional 0.26 0.44 0 1 

Fuel Type     

Firewood 0.61 0.49 0 1 

Crop Residue 0.09 0.28 0 1 

Dung Cake 0.22 0.42 0 1 

Charcoal 0.01 0.08 0 1 

Coal 0.05 0.22 0 1 

Kerosene 0.15 0.36 0 1 

LPG 0.29 0.45 0 1 
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Fuel Quantity in Mega Joules (MJs)     

Firewood 70.52 88.68 0 460.75 

Crop Residue 4.57 18.88 0 136.52 

Dung Cake 8.82 21.99 0 133.11 

Charcoal 0.32 4.23 0 71.67 

Coal 2.46 14.75 0 225.26 

Kerosene 1.27 3.83 0 28.44 

LPG 0.95 3.43 0 23.12 

Wall Materials     

Mud Wall 0.31 0.46 0 1 

Non Mud Wall 0.69 0.46 0 1 

Ventilation Condition     

Good 0.30 0.46 0 1 

Moderate 0.42 0.49 0 1 

Poor 0.28 0.45 0 1 

Kitchen Location     

Separate Inside 0.25 0.43 0 1 

External; Outside Door 0.12 0.32 0 1 

External; Inside & Outside Door 0.19 0.39 0 1 

Outdoor 0.12 0.32 0 1 

Detached Enclosed 0.13 0.34 0 1 

Living Room 0.19 0.39 0 1 

Cooking Time 4.03 2.17 0 12 

Household Size 5.09 2.13 1 15 

Median Temperature (◦C) 20.65 4.57 9.43 30.49 

Median Humidity (%) 63.91 10.31 31.00 87.50 

State of Residence     

West Bengal  0.28 0.45 0 1 

Madhya Pradesh 0.26 0.44 0 1 

Tamil Nadu 0.19 0.40 0 1 

Uttarakhand 0.26 0.44 0 1 
Source: The HEED Survey. 
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The difference between traditional stoves and improved stoves is that improved stoves 

are generally more energy efficient and less polluting (especially the ones with a chimney) than 

traditional stoves. Clean stoves include LPG stoves, kerosene stoves, and biogas stoves (less than 

2% in the HEED sample). Consequently, LPG, kerosene, and biogas are classified as clean fuels 

in this model. Thus, the stove-fuel combination is relatively simple: traditional stoves and 

improved stoves use dirty fuel and clean stoves use clean fuel. 

Because very few household use more than two stoves, I only study those households 

who use no more than two cooking stoves. Furthermore, no households use improved stoves as 

the secondary cooking stove in the HEED sample. Therefore, the energy technology choice can 

be depicted as a nesting structure as shown in Figure  3-1. One choice is the number of stoves (1 

or 2) and another choice is the type of stove (traditional, improved, or clean). Thus, there are a 

total of nine alternative choices. 

Figure  3-1. Energy Technology Choices Related to Stove Type 

 

Estimated Effects of the Energy Technology Choice on IAP 

Regression results with the natural log of PM 2.5 concentrations in the kitchen as the 

dependent variables are presented in Table 3-2. Only 2% of observations have a mean PM 2.5 

greater than 5 mg/m3, as shown in Figure 3-2. Since these extreme values are rare and are likely  

Energy Technology Choices 

One Stove Two Stoves (Primary Stove +Secondary Stove) 

Traditional    Improved Clean Traditional Traditional  Improved Clean    Improved Clean 

Traditional Traditional Traditional Clean Clean Clean (#2) (#3) 

(#4) (#5) (#6) (#7) (#8) (#9) 

(#1) 
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Table 3-2. Regression Results Explaining PM 2.5 Concentrations in Kitchens by Stove 
Typea 

Regression 
Variable 

Natural Log of Mean PM 
2.5 Concentration 

Natural Log of 95th 
Percentile PM 2.5 

Concentration 
 (1) (2) (3) (4) 
Stove Type     

One Traditional Stove  -0.236+ -0.227 -0.129 -0.12 
 [1.68] [1.64] [0.72] [0.68] 
One Improved Stove -1.104+ -0.755 -1.398+ -1.028 
 [1.86] [1.28] [1.85] [1.36] 
One Clean Stove -1.423** -1.230** -1.811** -1.583** 
 [9.11] [7.57] [9.09] [7.64] 

Primary Stove is Traditional;  Secondary 
Stove is Clean -0.349* -0.25 -0.504* -0.388+ 
 [2.13] [1.53] [2.41] [1.86] 
Primary Stove is Improved; Secondary 
Stove is Traditional -0.856 -0.862 0.137 0.222 
 [0.85] [0.87] [0.11] [0.18] 
Primary Stove is Improved; Secondary 
Stove is Clean -0.642 -0.394 -0.578 -0.302 
 [1.09] [0.67] [0.77] [0.40] 
Primary Stove is Clean; Secondary Stove is 
Traditional  -1.126** -0.958** -1.305** -1.106** 
 [5.63] [4.76] [5.12] [4.30] 
Both Primary and Secondary Stoves are 
Clean -1.380** -1.303** -1.805** -1.706** 

 [5.45] [5.14] [5.59] [5.28] 
Wall Materials     

Mud Wall 0.088 0.084 0.106 0.098 
 [0.77] [0.73] [0.72] [0.67] 
Ventilation Condition      

Good Ventilation -0.395** -0.512** -0.595** -0.699** 
 [3.22] [3.77] [3.80] [4.03] 
Moderate Ventilation -0.172 -0.164 -0.366* -0.333* 

 [1.51] [1.42] [2.52] [2.26] 
Kitchen Location      

Separate Inside  -0.382*  -0.456* 
  [2.58]  [2.42] 
External; Outside Door  -0.15  -0.185 
  [0.84]  [0.81] 
External; Inside & Outside Door  -0.074  -0.287 
  [0.43]  [1.32] 
Outdoor  0.427*  0.475+ 
  [2.20]  [1.91] 
Detached Enclosed  -0.027  -0.133 
  [0.15]  [0.58] 

Cooking Time 0.056* 0.061* 0.076* 0.084** 
 [2.20] [2.41] [2.35] [2.63] 
Household Size 0.044+ 0.049* 0.070* 0.075* 
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 [1.88] [2.11] [2.36] [2.54] 
Median Temperature 0.022 0.026 0.012 0.014 
 [1.33] [1.56] [0.56] [0.66] 
Median Humidity -0.001 -0.006 -0.002 -0.008 
 [0.20] [1.01] [0.24] [1.10] 
State of Residence     

West Bengal  -0.181 -0.394* -0.225 -0.450* 
 [1.11] [2.29] [1.08] [2.04] 
Madhya Pradesh  -0.337 -0.430+ -0.500+ -0.477 
 [1.63] [1.88] [1.90] [1.63] 
Tamil Nadu -0.991** -1.130** -1.321** -1.441** 

 [3.89] [4.34] [4.07] [4.34] 
Constant -1.105* -0.783 0.273 0.743 
 [2.16] [1.49] [0.42] [1.10] 
Observations 504 504 504 504 
R2 statistic 0.374 0.397 0.405 0.425 
a The absolute values of t statistics are indicated in brackets. Significance is indicated by ‘+’ at the 10% level; ‘*’ 
at the 5% level; and ‘**’ at the 1% level. 

 
Figure  3-2. Distribution of Mean PM 2.5 Concentrations in Kitchens 
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the result of measurement errors or certain unobservable conditions, I exclude them from the 

regressions. Columns (1) and (2) use the log of mean PM 2.5 concentrations as the dependent 
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variable and Columns (3) and (4) use the log of the 95th percentile PM 2.5 concentration as the 

dependent variable.  

Because kitchen locations correlate with energy technology and ventilation conditions, 

for example, clean stoves are usually used indoors and outdoor kitchens usually have better 

ventilation conditions, it becomes difficult to disentangle the effects of kitchen location from the 

effects of energy technology and ventilation conditions. To have a better idea of the effects of 

kitchen location, Columns (1) and (3) report the regression results without these variables and 

Columns (2) and (4) report the results including kitchen location variables. By including kitchen 

location variables, the effects of energy technologies are generally reduced and good ventilation 

becomes more important. Since kitchen location variables are jointly significant with an F test 

statistic of F (4, 480) = 4.37 corresponding to a p-value of 0.0018, Columns (2) and (4) are 

preferred regressions.  

The effects of having two traditional stoves, a non-mud wall (e.g., thatch, wood, stone, or 

brick), poor ventilation, a kitchen in the living room, and residence in Uttarakhand are included 

in the constant term.  

To verify that concentration effects are the same for rural and urban households, a Chow 

test is conducted using the specification of Column (2). The Chow test which allows all  

coefficients to differ between the two sets of households has an F-statistic F(23, 485) = 1.325 

with a corresponding p-value of 0.145, so I cannot reject the hypothesis that the coefficients are 

the same for rural and urban households. In addition, Tamil Nadu appears to have significantly 

lower IAP concentrations compared to other states. The fact that the ventilation data were 

collected by a different survey team in Tamil Nadu than other states raises concerns of survey 

bias that might interact with the estimation of other coefficient. The presence of bias associated 
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with a survey team effect in Tamil Nadu compared to other states is investigated with a Chow 

test. The test of common coefficients among all states, aside from a state shift effect, compared 

to different coefficients for Tamil Nadu generated an F-statistic of F(23, 458) = 1.145 with a 

corresponding p-value of 0.287. Thus, the hypothesis that concentration effects for Tamil Nadu 

are the same as for the other three states aside from a shift term cannot be rejected. 

Because the dependent variables in the Table 3-2 regressions are in log form, the raw 

parameter estimates do not provide direct evidence of the magnitude and percentage effects of 

the various explanatory variables. For this purpose, Table 3-3 converts the estimated equations 

into estimates of the magnitude and percentage change in IAP caused by each of the individual 

explanatory variables. Because the variables have interactive effects, this is done for each 

explanatory variable holding all other right hand side variables at their overall sample averages.  

The results show that having a clean stove as the primary stove significantly reduces PM 

2.5 concentrations in kitchens. If an average household switches from using traditional stoves for 

both the primary stove and secondary stove to only using one clean stove, the PM 2.5 mean 

concentration is reduced by 0.543 mg/m3 or 71% and the PM 2.5 95th percentile concentrations is 

reduced by 2.234 mg/m3 or 79%. Having a clean stove as the secondary stove, while using a 

traditional stove or improved stove as the primary stove, also shows improvement of PM 2.5 

concentrations. However, this estimate is not statistically significant. This implies that partial 

fuel switching with regard to the secondary stove may not have significant impacts on household 

IAP levels. These results imply that if households use clean fuels only for making tea, but still 

use traditional biomass for cooking, then the household IAP level does not change much. 

Having an improved stove is also estimated to cause substantial reductions in PM 2.5 

concentrations. If an average household with both primary and secondary traditional stoves  



 33 

Table 3-3. Change in PM 2.5 Concentrations Associated with Energy Technology Choicea 

Variable 
PM 2.5 Mean Concentrations 

PM 2.5 95th Percentile 
Concentrations 

Absolute Change 
(mg/m3) 

Percentage 
Change  

Absolute change 
(mg/m3) 

Percentage 
Change  

Stove Type      
One Traditional Stove -0.156 -20% -0.318 -11% 
One Improved Stove -0.406 -53% -1.806 -64% 
One Clean Stove -0.543 -71% -2.234 -79% 
Primary Stove is Traditional; 
Secondary Stove is Clean -0.170 -22% -0.904 -32% 
Primary Stove is Improved; 
Secondary Stove is Traditional -0.443 -58% 0.699 25% 
Primary Stove is Improved; 
Secondary Stove is Clean -0.250 -33% -0.733 -26% 
Primary Stove is Clean; 
Secondary Stove is Traditional -0.473 -62% -1.881 -67% 
Both Primary and Secondary 
Stoves are Clean -0.559 -73% -2.301 -82% 

Wall materials     
Mud wall 0.044 9% 0.201 10% 

Ventilation condition     
Good ventilation -0.298 -40% -1.578 -50% 
Moderate ventilation -0.112 -15% -0.888 -28% 

Kitchen location      
Separate Inside -0.171 -32% -0.743 -37% 
External, Outside Door -0.075 -14% -0.342 -17% 
External, Inside & Outside Door -0.038 -7% -0.506 -25% 
Outdoor 0.287 53% 1.233 61% 
Detached Enclosed -0.007 -1% -0.253 -12% 

Cooking time 0.017 6% 0.181 9% 
Household Size 0.013 5% 0.161 8% 
Median Temperature 0.007 3% 0.029 1% 
Median Humidity -0.002 -1% -0.016 -1% 
State of Residence     

West Bengal  -0.216 -33% -1.048 -36% 
Madhya Pradesh  -0.232 -35% -1.097 -38% 
Tamil Nadu -0.449 -68% -2.207 -76% 

a Changes compare the effects of the two alternative states of the subject variable holding all other variables at 
their average levels across all households in the sample.   

 
switches the primary stove to an improved stove, the PM 2.5 mean concentration is estimated to 

decline by 0.443 mg/m3 or 58%. However, this result is not statistically significant. This may be 

due to the small sample size of households with improved stoves (only nine households or 1.5% 

of households in the sample use improved stoves and two of them had missing data).  
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In addition, ventilation conditions play a significant role. This variable represents one of 

three categories (good, moderate, and poor) as rated by observers. Using subjectively rated 

ventilation variables may introduce bias because systematic error may be introduced in the rating 

depending on how observers define good, moderate, and poor ventilation. Although more 

objective measurements (e.g., number of windows/vents/doors, whether windows/doors are open 

during cooking, whether there are open eves between the walls and roof) are available, including 

these variables increases the number of regressors, reduces the clarity of parameter estimators, 

and complicates interpretation. To test whether the joint use of these additional variables is 

merited, an F test is used. The associated F-statistic is F (5, 476) = 1.09 corresponding to a p-

value of 0.63, which reveals that these variables are not jointly statistically significant.3

In terms of wall materials, a study in Bangladesh (Dasgupta, et al, 2004a) finds that, in 

most areas, the soil has low sand content and mud walls and floors are frequently re-coated with 

fresh mud to prevent cracking. This creates an effective seal that permits almost no ventilation in 

comparison with other building materials. If cooking is done inside the house, the sealing effect 

 

Alternatively, an F test for removing the subjectively rated ventilation conditions from the 

regression given that the objective measurements are included generates an F-statistic of 

F(2,476) = 4.93 corresponding to a p-value of 0.008, which reveals that the rated ventilation-

condition variables are statistically significant and removing them would significantly reduce the 

model’s goodness of fit. Therefore, I used the rated ventilation condition as the ventilation 

indicator. As Table 3-3 shows, if an average household can improve the ventilation condition 

from poor to good, the PM 2.5 mean concentration is reduced by 0.298 mg/m3 or 40%.  

                                                 
3 Added variables included five dummies: whether there is a window in kitchen, whether the window is open during 
cooking, whether there is a door in the kitchen, whether the door is open during cooking, and whether there is an 
open eve between the walls and roof. 
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of mud walls increases the PM 2.5 concentrations. The regression results have the expected sign, 

but the coefficients are not statistically significant nor are magnitudes large.  

Kitchen location also plays a significant role. Having a separate kitchen inside the house 

significantly reduces IAP concentrations while having an outdoor kitchen significantly increases 

IAP concentrations compared to cases where the kitchen is in the living area. This may seem 

counter-intuitive for outdoor kitchens because they have better ventilation. Since the outdoor 

kitchen is correlated with both stove type (clean stoves are almost never used outdoors) and 

ventilation conditions, and the regression controls for both effects, this result may be explained 

by the use of dirtier traditional fuels such as crop residue in outdoor kitchens.    

The results show that longer cooking times and a greater number of people also increase 

PM 2.5 concentrations. These results are as expected because more people require more fuel use 

to cook more food, and increased cooking time means longer combustion time. An additional 

hour of cooking time and one more person in the household have a similar effect on PM 2.5 

mean concentrations. Both increase the PM 2.5 mean concentrations by 5-6%. In addition, 

although neither median temperature nor median humidity have a significant impact on IAP 

concentrations, they are jointly statistically significant, which suggests the need to control for 

these two factors. 

Since the post-monitoring questionnaire also includes fuel quantity information for both 

primary and secondary stoves, I attempted to include such information in the regressions in 

Table 3-2, but did not get sensible results (and are thus not reported). The survey team measured 

the amount of fuel use in terms of kilograms (kg) of weight or milliliters (ml) of volume (for 

kerosene) for both primary and secondary stoves during the 24-hour monitoring period. The 

survey team asked the household member, preferably the person who had cooked during the 
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monitoring period, to approximate the amount of fuel used during the period. Then it was 

measured by a weighing balance carried by the team. For kerosene, the team calculated the 

amount of liters left in the kerosene can. For LPG, the team calculated the monthly weight 

change of the cylinder divided by the number of days per month. The poor results for regressions 

including fuel quantity are likely explained by the short intervals of fuel use, the wide variation 

of measurement methods, and the fact that more than half of the observations had missing values 

in the fuel quantity data.  

Estimated Effects of Fuel Type on IAP 

One problem with focusing on stove types alone is that the polluting difference between 

dirty fuel types and clean fuel types is ignored. For example, crop residues generally emit more 

smoke than firewood during combustion and LPG is considered cleaner than kerosene. To 

examine how types of cooking fuel affect IAP levels, the type of fuel is used to model energy 

technology in this section. Because multiple types of cooking fuels are commonly used together, 

the type of fuel used is not exclusive.  

In addition, because NCAER data includes the amount of fuel used by fuel type over the 

last month, I am able to use this information to complement the missing fuel quantities in the 

post-monitoring data. Therefore, the sample size is large enough to estimate the effect of the 

amount of fuel used on IAP levels. Thus, the general model specification includes both a shift 

term if a particular fuel was part of the mix of fuels used, and continuous terms representing the 

amount of each fuel used. 

Regression results with the natural log of PM 2.5 concentrations in kitchens at the mean 

and 95th percentile as dependent variables are presented in Table 3-4. Again, outliers with a mean 

PM 2.5 greater than 5 mg/m3 are excluded for reasons given above. Again, a Chow test for  
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Table 3-4. Regression Results Explaining PM 2.5 Concentrations in Kitchens by Fuel Typea 

Regression 
Variable 

Natural Log of Mean of 
PM 2.5 Concentration 

Natural Log of 95th Percentile 
of PM 2.5 Concentration 

 (1) (2) (3) (4) (5) (6) 
Fuel Type        

Firewood 0.720** 0.770** 0.640** 0.942** 1.018** 0.828** 
 [4.60] [4.87] [5.09] [4.70] [5.01] [5.15] 

Crop Residue 0.910* 0.951* 0.924** 1.136* 1.179* 1.052** 
 [2.48] [2.57] [4.33] [2.41] [2.48] [3.85] 
Dung Cake 0.046 -0.042 0.273* -0.027 -0.147 0.287 
 [0.21] [0.18] [1.99] [0.10] [0.50] [1.63] 
Charcoal 2.058  2.511** -0.698  2.702** 
 [0.78]  [4.25] [0.21]  [3.58] 
Coal 0.627  0.691** 0.756  0.791** 
 [1.48]  [2.92] [1.40]  [2.61] 
Kerosene -0.074 -0.025 0.068 -0.18 -0.152 -0.012 
 [0.34] [0.11] [0.45] [0.63] [0.52] [0.06] 
LPG -0.381* -0.355* -0.243+ -0.638** -0.610** -0.428** 

 [2.55] [2.33] [1.91] [3.33] [3.12] [2.62] 
Mega Joules by Fuel Type       

Firewood 0.0002 0.0004  0.0002 0.0004  
 [0.24] [0.41]  [0.20] [0.38]  

Crop Residue 0.003 0.003  0.001 0.001  
 [0.60] [0.66]  [0.13] [0.18]  
Dung Cake 0.004 0.006  0.007 0.008+  
 [1.20] [1.53]  [1.37] [1.74]  
Charcoal 0.011   0.059   
 [0.27]   [1.06]   
Coal 0.0001   0.003   
 [0.02]   [0.39]   
Kerosene 0.021 0.021  0.025 0.027  
 [1.09] [1.10]  [1.00] [1.07]  
LPG 0.027+ 0.027+  0.046* 0.046*  

 [1.83] [1.82]  [2.44] [2.48]  
Wall Materials       

Mud Wall 0.129 0.089 0.12 0.191 0.131 0.153 
 [1.01] [0.68] [1.02] [1.16] [0.77] [1.02] 
Ventilation Condition       

Good -0.531** -0.521** -0.498** -0.749** -0.722** -0.715** 
 [3.65] [3.53] [3.62] [4.02] [3.81] [4.06] 
Moderate  -0.239+ -0.217+ -0.217+ -0.425** -0.414* -0.396** 

 [1.92] [1.71] [1.85] [2.67] [2.54] [2.65] 
Kitchen Location        

Separate Inside  -0.380* -0.365* -0.373* -0.420* -0.424* -0.439* 
 [2.45] [2.30] [2.49] [2.11] [2.08] [2.30] 

External: Outside Door -0.038 -0.034 -0.091 -0.02 -0.036 -0.08 
 [0.20] [0.18] [0.51] [0.08] [0.15] [0.35] 
External; Inside & Outside 
Door -0.049 0.073 -0.06 -0.17 -0.091 -0.227 
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 [0.27] [0.38] [0.35] [0.72] [0.37] [1.03] 
Outdoor  0.471* 0.510* 0.518** 0.580* 0.591* 0.639* 

 [2.33] [2.49] [2.67] [2.24] [2.25] [2.57] 
Detached Enclosed  -0.047 -0.007 0.044 -0.126 -0.091 -0.006 

 [0.24] [0.03] [0.24] [0.51] [0.36] [0.02] 
Cooking Time 0.047 0.045 0.067** 0.068+ 0.061 0.091** 
 [1.60] [1.51] [2.62] [1.79] [1.59] [2.77] 
Household Size 0.058* 0.053* 0.067** 0.081* 0.077* 0.094** 
 [2.27] [2.07] [2.85] [2.49] [2.33] [3.13] 
Median Temperature 0.033+ 0.03 0.030+ 0.022 0.019 0.018 
 [1.78] [1.59] [1.74] [0.91] [0.79] [0.83] 
Median Humidity -0.007 -0.006 -0.006 -0.008 -0.008 -0.009 
 [1.09] [0.97] [1.07] [1.09] [0.98] [1.22] 
State of Residence      

West Bengal  -0.422* -0.390* -0.448** -0.531* -0.493* -0.549* 
 [2.29] [2.07] [2.61] [2.25] [2.04] [2.50] 
Madhya Pradesh  -0.618* -0.640* -0.571* -0.728* -0.710* -0.647* 
 [2.32] [2.37] [2.36] [2.13] [2.05] [2.10] 
Tamil Nadu -1.236** -1.204** -1.225** -1.549** -1.511** -1.549** 

 [4.38] [4.18] [4.72] [4.28] [4.08] [4.67] 
Constant -1.865** -1.926** -1.898** -0.551 -0.613 -0.511 
 [3.15] [3.16] [3.43] [0.73] [0.78] [0.72] 
Observations 451 431 502 451 431 502 
R2 statistic 0.405 0.400 0.389 0.431 0.430 0.414 
a The absolute values of t-statistics are indicated in brackets. Significance is indicated by ‘+’ at the 10% level; ‘*’ 
at the 5% level; and ‘**’ at the 1% level. 

 

whether the Tamil Nadu data follow the same model as other states is not rejected at standard 

significance levels with an F statistic of F(23,456) = 1.030, which has a p-value of 0.425. The 

effects of non-mud wall construction, poor ventilation, a kitchen in the living room, and 

residence in Uttarakhand are included in the constant term. Columns (1), (2), (4) and (5) include 

both fuel type and amount of fuel measured in mega joules (MJ) by fuel type. 

Columns (2) and (5) exclude households that use charcoal or coal. Charcoal and coal 

have very high coefficients although they are not statistically significant. These results are 

somewhat surprising because charcoal and coal are usually believed to be cleaner than traditional 

biomass. Both the surprising signs and significance of these fuels may be due to the small 

number of households using these two types of fuel and/or any special circumstances associated 

with these households that are not controlled in the data. For example, if households using coal 
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are closer to a coal mine, outdoor air pollution may be high, which also affects IAP levels. 

Columns (2) and (5) exclude households that use charcoal or coal in order to exclude this 

potential bias. The coefficients for other variables change only slightly. 

Coefficients for the amount of fuel used by fuel type in Columns (1), (2), (4), and (5) are 

all positive as expected. Surprisingly, however, the coefficients for the amount of fuel 

consumption have little significance whereas many of the coefficients on shift terms are highly 

significant. Using an F test with an F-statistic of F (7, 421) = 0.88 corresponding to a p-value of 

0.5194 reveals that the category of variables representing maga joules used by fuel type is not 

jointly statistically significant. This result is counterintuitive for a fuel use model where each 

incremental use of a particular fuel adds to IAP from a starting point where no use of a fuel 

causes no IAP. 

One interpretation may be that the most polluting part of cooking is starting the fire. Once 

the fire is started, the amount of fuel used has relatively small effects on IAP levels. This seems 

particularly true for traditional biomass fuels where the estimated coefficients for the amount of 

biomass fuel used are much smaller than the ones for clean fuels. The implication of the results is 

that the mix of fuel types in use represents primarily the energy technology choice and that the 

amounts of fuels used are determined consequentially.  

Columns (3) and (6) thus reduce the model to the essential implications of the fuel mix as 

a representation of the technology choice and appear to be the preferred specifications. These 

results should be interpreted with caution. Even though the estimated equation suggests that an 

initial minute addition of a particular fuel type to the fuel mix has a discrete effect on IAP, the set 

of active fuel type indicators are more properly interpreted as defining the cooking technology.  
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Estimates in columns (3) and (6) of Table 3-4 imply that including firewood or crop 

residue in the fuel mix has a significant positive effect on the PM 2.5 concentrations. In 

particular, crop residue has a higher coefficient than firewood, which suggests that crop residue 

is more polluting than firewood. Including LPG in the fuel mix causes a statistically significant 

reduction of PM 2.5 concentrations. Although kerosene also has a negative impact, it is not 

statistically significant. 

Similar to the structure in Table 3-3, using the estimates in Columns (3) and (5) in Table 

3-4, Table 3-5 shows how each explanatory variable affects PM 2.5 concentrations for an 

average household holding all other variables at their overall sample average. If an average 

household adds firewood to the fuel mix, the PM 2.5 mean concentrations increase by 0.355 

mg/m3 or 90%. If an average household adds crop residue to the fuel mix, the increase of PM 2.5 

mean concentrations will be even higher, 152% of the original level. By adding LPG to the fuel 

mix, an average household can reduce the PM 2.5 mean concentrations by 0.137 mg/m3 or 22%.  

Other variables such as ventilation condition, kitchen location, cooking time, and number 

of people in the household continue to have significant estimated impacts on IAP levels. Their 

magnitudes are only slightly different than in the results in Table 3-3.  

Predicting Typical Household IAP Exposure Levels  

The post-monitoring data measures household energy use during the 24-hour IAP 

monitoring period, while the NCAER data measures household energy use during the year. Thus, 

by smoothing the random day-to-day variations, the NCAER data should reflect household 

energy use characteristics better than the post-monitoring data. Since the two data sets share 

most variables that measure household energy use characteristics, the IAP regression results 
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from the post-monitoring data can be used to predict typical household IAP exposure levels 

using the NCAER data.  

Table 3-5. Change in PM 2.5 Concentrations Associated with Fuel Typea 

Variable 

PM 2.5 Mean Concentrations PM 2.5 95th Percentile 
Concentrations 

Absolute 
Change 
(mg/m3) 

Percentage 
Change 

Absolute change 
(mg/m3) 

Percentage 
Change 

Fuel Type      
Firewood 0.355 90% 1.832 129% 
Crop Residue 0.806 152% 3.754 186% 
Dung Cake 0.151 31% 0.595 33% 
Charcoal 6.038 1132% 28.310 1391% 
Coal 0.540 100% 2.492 121% 
Kerosene 0.040 7% -0.026 -1% 
LPG -0.137 -22% -0.851 -35% 

Wall materials     
Mud Wall 0.065 13% 0.323 17% 

Ventilation Condition      
Good Ventilation -0.291 -39% -1.602 -51% 
Moderate Ventilation -0.145 -20% -1.026 -33% 

Kitchen Location      
Separate Inside -0.169 -31% -0.727 -36% 
External, Outside Door -0.047 -9% -0.157 -8% 
External; Inside & Outside Door -0.032 -6% -0.416 -20% 
Outdoor 0.369 68% 1.831 89% 
Detached Enclosed 0.024 4% -0.012 -1% 

Cooking time 0.038 7% 0.197 10% 
Household Size 0.038 7% 0.204 10% 
Median temperature 0.017 3% 0.038 2% 
Median humidity -0.003 -1% -0.019 -1% 
State of Residence     

West Bengal  -0.182 -36% -0.748 -42% 
Madhya Pradesh  -0.219 -44% -0.843 -48% 
Tamil Nadu -0.355 -71% -1.394 -79% 

a The raw magnitude and percentage change in IAP between the dichotomous states of each explanatory variable 
is evaluated holding all other variables at their overall sample average..   

 

 The IAP regressions in Table 3-2 and Table 3-4 give two ways to model household 

energy technology. An F test with an F test statistic of F (1, 478) = 1.2999 corresponding to a p-

value of 0.75 does not imply a statistically significant difference between the two models. I use 

the regression results that focus on stove type to predict typical household IAP exposure levels 
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for the following reasons: (1) stove choices are usually more stable than fuel choices because a 

stove is a capital cost while fuel is a variable cost; (2) stove choices capture the different IAP 

impacts of using primary and secondary stoves; (3) the regressions focusing on fuel types show 

that dirty fuels have relatively similar IAP impacts and clean fuels have relatively similar IAP 

impacts, implying that the difference between dirty fuels and clean fuels is largely captured by 

stove choices; and (4) the model focusing on stove types has a slightly higher R2 statistic than the 

model focusing on fuel types. 

 Table 3-6 shows the comparison of stove types between the post-monitoring data and the 

NCAER data. Pearson's chi-square test with 2χ (72) = 277.2125 corresponding to a p-value less 

than 0.001 rejects the hypothesis that the two data sets are independent. Cramer's φ′  statistic is 

0.411 and the correlation of the two data sets is 0.417.  

Table 3-6. Comparison of Stove Types in Post-Monitoring Data and NCAER Data  
Stove 

Types in 
Post-

Monitoring 
Data 

Stove Types in NCAER data 

Dirty 
Only 

Improved 
Only 

Clean 
Only 

Dirty 
Dirty 

Improved 
Dirty 

Clean 
Dirty 

Dirty 
Clean 

Improved 
Clean 

Clean 
Clean Total 

Dirty Only 116 1 1 22 2 5 28 0 6 181 

Improved 
Only 0 1 0 1 0 1 1 0 0 4 

Clean Only 4 0 55 1 0 34 5 0 15 114 

Dirty Dirty 99 0 1 17 0 0 31 1 0 149 

Improved 
Dirty 1 0 0 0 0 1 0 1 0 3 

Clean 
Dirty 0 0 2 0 0 25 14 0 5 46 

Dirty 
Clean 11 0 1 2 0 5 60 3 0 82 

Improved 
Clean 0 0 0 0 0 1 2 0 0 3 

Clean 
Clean 1 0 6 0 0 1 4 0 10 22 

Total 232 2 66 43 2 73 145 5 36 604 
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 The prediction equation for the PM 2.5 mean in the NCAER data using the regression 

results in Table 3-2, Column (2), is 

ˆlnY X β=  

2ˆln /2eYY e σ+=  

where Y  is the predicted mean of PM 2.5 concentration in the NCAER data, X represents the 

vector of independent variable values from the NCAER data, β̂  is a vector of the corresponding 

estimated coefficients shown in Column (2) of Table 3-2, and 2ˆeσ  is the variance of residuals 

from the regression.  

The predicted PM 2.5 mean values in the NCAER data and how they compare with the 

measured PM 2.5 mean values are illustrated in Table 3-7, Figure 3-3, and Figure 3-4. The 

correlation between the predicted and measured PM 2.5 mean values is 0.47, which is 

considerably higher than the R2 statistics in Table 3-2. The major difference between the 

maximum values is due to the fact that households reported as using only one dirty stove and an 

external kitchen with outside door in the post-monitoring data were reported as using a dirty 

primary stove, clean secondary stove, and detached enclosed kitchen in the NCAER data (see 

Table 3-6). Comparison of the natural log of predicted and measured PM 2.5 means in Figure 3-4 

is better than the comparison without natural logs in Figure 3-3. This occurs because the 

dependent variable I use in the IAP regression is in the natural log form and the natural log form 

has a better goodness of fit. The comparison in Figure 3-4 also shows that the predicted PM 2.5 

means tend to be slightly lower than the measured PM 2.5 means as the slope is less than 1. This 

implies that the predicted values in general are lower than the measured values. An explanation 

of this result is that more households reported using only one clean stove in the post monitoring 

data than in the NCAER data.    



 44 

Table 3-7. Comparison of Summary Statistics of Predicted and Measured PM 2.5 Means 

Variable (mg/m3) Observations Mean Standard 
Deviation Minimum Maximum 

Predicted PM 2.5 Mean 515 0.5384 0.3591 0.0579 2.6688 

Measured PM 2.5 Mean 515 0.5511 0.7138 0.0165 3.8353 

Natural Log of Predicted 
PM 2.5 Mean 515 -1.2938 0.6964 -3.3032 0.5278 

Natural Log of Measured 
PM 2.5 Mean 515 -1.3155 1.2383 -4.1017 1.3442 

 
Figure  3-3. Comparison of Predicted and Measured PM 2.5 Means 
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Similarly, the coefficients in Table 3-2, Column (4), can be used to predict PM 2.5 95th 

percentile values in the NCAER data. The comparisons of predicted and measured PM 2.5 95th 

percentile values are presented in Table 3-8, Figure 3-5, and Figure  3-6. Similar patterns emerge 

as discussed for PM 2.5 means. The correlation between the predicted and measured PM 2.5 95th 

percentile values is 0.47, which is somewhat higher than the R2 statistics in Table 3-2. 
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Figure  3-4. Comparison of Predicted and Measured Logs of PM 2.5 Means 

-5

-4

-3

-2

-1

0

1

2

-5 -4 -3 -2 -1 0 1 2

Measured Natural Log of PM 2.5 Mean in Post-Monitoring 
Data

Pr
ed

ic
te

d 
Na

tu
ra

l L
og

 o
f P

M
 2

.5
 M

ea
n 

in
 N

CA
ER

 
Da

ta

 
 

Although direct IAP monitoring can be expected to yield the most accurate IAP levels for 

a short period such as 24 hours, it may not yield the best representation of typical IAP levels that 

households face over longer periods due to day-to-day variations. The HEED survey includes 

two data sets that have similar variables but one data set reflects 24-hour monitoring of cooking 

practices and the other measures year-long cooking practices. Thus, the latter data set provides 

the opportunity to predict typical household IAP levels by smoothing random day-to-day 

variations. Comparing the reported stove types in the two sets, I find that although they have a 

significant positive correlation of 0.41, they differ for a number of households. For example, 34 

households reported the use of a clean stove during the monitoring period, but reported use of 

both a clean stove and a traditional stove during the year. Thus, assuming the NCAER data 

reflects household energy use characteristics better than the post-monitoring data, the predicted 
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household IAP exposure levels using the NCAER data represents more typical IAPs levels to 

which households are exposed.  

Table 3-8. Comparison of Summary Statistics of Predicted and Measured PM 2.5 95th 
Percentile Values 

Variable (mg/m3) Observations Mean Standard 
Deviation Minimum Maximum 

Predicted PM 2.5 95th 
Percentile  515 2.3372 2.1748 0.0898 15.0567 

Measured PM 2.5 95th 
Percentile 515 2.0780 3.1186 0.0148 21.0882 

Natural Log of 
Predicted PM 2.5 95th 
Percentile 

515 -0.2922 0.9525 -3.1498 1.9720 

Natural Log of 
Measured PM 2.5 95th 
Percentile 

515 -0.3313 1.6151 -4.2129 3.0487 

 
 

Figure  3-5. Comparison of Predicted and Measured PM 2.5 95th Percentile Values 
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Figure  3-6. Comparison of Predicted and Measured Logs of PM 2.5 95th Percentile Values 
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Conclusions 

In this chapter, I have analyzed the determinants of IAP and household energy 

technology choices. Two ways were used to model household energy technology: one focusing 

on stove types and the other focusing on fuel types. Estimation with one approach or the other 

rather than in a model with joint effects is dictated by the availability of data in the post-

monitoring and NCAER surveys. I find no statistically significant differences between the two 

approaches in terms of the data fitting. However, focusing on stove types gives several 

advantages over focusing on fuel types. For example, stove choices are usually more stable than 

fuel choices and thus subject to less noise. Using OLS regression analysis, I reach the following 

important findings. 

• Having a clean stove as the primary stove significantly reduces PM 2.5 concentrations in 

kitchens. If an average household switches from using both a primary traditional stove 



 48 

and a secondary traditional stove to using only one clean stove, the PM 2.5 mean 

concentration will be reduced by 71%. 

• Having a clean stove as the secondary stove is not statistically significant in reducing PM 

2.5 concentrations. 

• Having an improved stove that burns traditional fuel can potentially reduce PM 2.5 

concentrations considerably as well. However, due to the small number of households 

using an improved stove, statistical significance for this effect could not be found. 

• Ventilation conditions play a significant role. If an average household can improve the 

ventilation condition from poor to good, the PM 2.5 mean concentrations are reduced by 

40%. 

• Kitchen location, cooking time, and number of people also play important roles. 

• Amount of fuel use does not have significance in determining PM 2.5 concentrations 

when fuel types and other factors are controlled, probably because starting the fire is the 

most polluting part of the cooking process. 

Finally, results from the IAP regressions can be used to construct an IAP index. This IAP 

index can then be used to predict typical household IAP exposure levels in the HEED data. I use 

the predicted typical household IAP exposure levels to analyze health impacts from IAP in the 

next chapter. 
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Chapter 4. Health Impacts from Exposure to Indoor Air Pollution 

Introduction 

Indoor air pollution from traditional biomass fuel use in household stoves is a risk factor 

for several important diseases. Five of the air pollution related diseases – ischaemic heart disease, 

acute lower respiratory infections (ALRI), chronic obstructive pulmonary disease, tuberculosis, 

and cancers of the respiratory tract – are among the ten leading causes of death globally (Murray 

and Lopez 1997). In addition to contributing to respiratory diseases, exposure to cooking smoke 

seems to cause or exacerbate eye problems such as cataracts (WHO, 2002), harm newborns 

(Barnes et al, 1994), and reduce birth weight (Boy et al, 2002). Table 4-1 summarizes the status 

of evidence on the health effects of IAP. Several studies that quantitatively assess the 

relationship between exposure to household biomass smoke and ALRI in young children in 

developing countries have reported wide-ranging odds ratios ranging from 2 to 10 (Smith, et al, 

2000). However, as discussed in Chapter 1, these findings are only suggestive because of the 

problem of limited data and failure to control for many other risk factors. More recently, Dherani 

et al (2008) conducted a meta-analysis of pneumonia risk from IAP in children aged under five 

years. Out of 5,317 reviewed studies, 24 were selected for the meta-analysis. Despite 

heterogeneity and evidence of publication bias, Dherani et al (2008) were able to provide 

sufficient consistency to conclude that risk of pneumonia in young children is increased by 

exposure to unprocessed solid fuels by a factor of 1.8. However, as few studies directly measure 

IAP, this meta-analysis was not able to further examine how IAP intensity affects health. In this 

chapter, I use the predicted typical household IAP exposure levels from Chapter 3 to analyze 

how IAP affects health. 
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Table 4-1. Summary of the Status of Evidence on the Health Effects of IAP 

Health Outcome Nature and Extent of Evidence 
ALRI (children under 5)a 10-20+ studies from developing countries; fairly consistent 

results across studies, but confounding is not dealt with in 
many studies; supported by studies of ambient air pollution 
and environmental tobacco smoke (ETS) and to some extent 
by animal studies.  

COPD (adults)b 
Lung cancer 

Cancer of nasopharynx and larynx 2-3 studies from developing countries; consistent results 
across studies; supported by evidence from smoking and 
animal studies. 

Cataracts 
Tuberculosis 
Low birth weight 2-3 studies from developing countries; supported by evidence 

from ambient air pollution and ETS. Perinatal mortality 
Acute otitis media No studies from developing counties, but an association may 

be expected from studies of ambient air pollution and studies 
of wood smoke in developed countries. 

Cardiovascular disease 

Asthma Several studies from developing countries, but results are 
inconsistent; some support from studies of ambient air 
pollution, but results are also inconsistent. 

a ALRI refers to acute lower respiratory infections. 
b COPD refers to chronic obstructive pulmonary disease. 
Source: Schirnding et al (2000), WHO (2002), Desai et al (2004). 
 

The Estimated Model  

The health outcome in the HEED survey data includes objective measurement of lung 

function reported by doctors in the survey team as well as self-reported respiratory symptoms, 

diagnosed diseases, and measured weight and height. Common logic suggests that higher IAP 

exposure would have higher incidence of disease. The two are indeed positively correlated. 

However, this positive correlation does not prove the causal relationship that higher IAP 

exposure causes higher incidence of disease. Because poor households usually cannot afford 

clean cooking fuels, they are more likely to be exposed to high IAP. But the poor are also more 

likely to have poor health for other reasons such as poor nutrition and poor medical care. To 

quantify precisely the relationship between exposure to IAP and incidence of disease, I extend 

typical models by using both IV estimation techniques and household-level fixed effects 

proposed by Pitt, et al (2006).  
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In Pitt et al’s paper on how cooking time affects respiratory illness symptoms among 

adults, one concern is that cooking time may be correlated with unmeasured household and 

individual-specific health variables. To eliminate household unobservables, a household fixed-

effects procedure was used. To deal with the problems of possible endogeneity of cooking time 

and the measurement error issue that cooking time varies from day-to-day, an instrumental 

variables procedure was implemented. A similar approach is adopted here as follows.  

The basic estimation equation can be written as 

0 1
k k

ij ij j A ij S j j ijh T P A Sβ β β β µ ε= + + + + +  

where ijh  is the health outcome (e.g., measured lung capacity or the incidence of respiratory 

symptoms) for individual i in household j; k
ijT  is a dummy variable that indicates whether 

individual i is typically in the kitchen when there is a stove or fire burning; k
jP  is the PM 2.5 

concentration in the kitchen during cooking time; ijA  is a set of individual-specific attributes, 

such as age, gender, and education; jS  is a vector of household-level characteristics, such as 

income; ,,, 10 Aβββ and Sβ  are corresponding coefficients to be estimated; and the error includes 

a household-level component jµ  as well as an idiosyncratic error term ijε .   

To eliminate household unobservables, a household fixed-effects procedure is used 

whereby 

(4-1) 1
j j k k j j

ij ij j A ij ijh T P Aβ β ε∆ = ∆ + ∆ + ∆ , 

where j∆ is the within-household difference operator. 

Estimates of 1β  will not be consistent if the presence of a person around the stove during 

cooking time is related to his/her health endowments, i.e., 0)( ≠ij
k

ijTE ε . For example, some may 
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associate an efficiency gain with assigning less healthy women to the cooking task who are 

unable to perform other tasks. If so, the estimate of 1β  will be biased upward. If perceptions are 

that illness can be easily spread though food preparation so that more healthy women are 

assigned to the cooking task, then the estimate of 1β  will be biased downward. 

To deal with the problem of endogeneity of the presence in the kitchen during cooking 

time, similar to the approach by Pitt, et al (2006), I use the person’s relationship to the head of 

household as an instrument for k
ijT . In India, household hierarchy still plays an important role in 

determining women’s tasks. A daughter-in-law or the wife of the head is more likely to work in 

the kitchen. In addition, having a sister, a sister-in-law, or a mother-in-law may also influence a 

person’s time spent in the kitchen. Thus, I use a set of dummy variables as well as their 

interactions that capture the household hierarchy as instruments to identify the effect of IAP 

exposure during cooking on health. These instruments affect k
ijT , but do not affect individual 

health. Because I use a household fixed effect, the estimation is valid if the instrument is 

correlated with the household-level health unobservables.   

Incidence of Respiratory Symptoms as the Health Outcome 

I use self-reported respiratory symptoms and doctor-measured lung capacity as health 

outcomes in the empirical analyses of this chapter. I first report the analyses for respiratory 

symptoms. 

A. Overview of the Data 

 All three survey teams asked about respiratory symptoms (e.g., coughing, wheezing, and 

phlegming) in their health questions. However, the exact questions and who answered the 

questions was somewhat different. In NCAER’s survey, which covered all four states, an adult 

woman in each household was asked to answer the questions about the health of each family 
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member over the last month, including very young children. The question about respiratory 

symptoms was “Did <NAME> have a cough the last month?” The Energy Research Institute 

(TERI), which surveyed Uttarakhand, West Bengal, and Madhya Pradesh, and Sri 

Ramachandran Medical College (SRMC), which surveyed Tamil Nadu, asked each individual 

more than 12 years old to answer questions and their questions were also different. TERI’s 

question was “Do you frequently get a cough?” SRMC’s question was “Have you had cough in 

the past?”  

 In terms of wheezing, TERI’s question was “Do you ever get wheezing or whistling sound 

in your breathing?” and SRMC’s question was “Do you suffer from wheezing?” In terms of 

phlegming, TERI’s question was “Do you frequently bring up phlegm/sputum from your chest?” 

and SRMC’s question was to choose “Sputum quantity: scanty or copious.” In addition, both 

TERI and SRMC asked follow-up questions on coughing, wheezing, and phlegming. However, 

they were too difficult to combine into a unified response. I used TERI’s and SRMC’s data as the 

primary source of incidence of respiratory symptoms and used NCAER’s data on coughing for 

those who are younger than 12 years old. Symptoms in the TERI and SRMC data are self-

reported while in the NCAER data they are reported by one interviewee (usually the children’s 

mother) for each household.   

 The reconciled data on incidence of respiratory symptoms is presented by state in Table 4-

2 and by age group and gender in Figure 4-1. The figures and patterns are generally comparable 

with the incidence of respiratory symptoms reported in developing countries. For example, Pitt et 

al (2006) used the 2000-2003 Nutrition Survey of Bangladesh and reported that over 37% of 

boys and 32% of girls younger than five exhibited some respiratory symptoms. In addition, 5.4% 
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of all adults aged 16 and over and 22.1% of children of ages 2-9 reported respiratory symptoms 

in their sample. Table 4-3 provides summary statistics of variables used in this section.  

Table 4-2. Incidence of Respiratory Symptoms by State of Residence     

Symptom Uttarakhand West Bengal Madhya 
Pradesh Tamil Nadu Total 

At Least One Symptom 18% 18% 27% 16% 21% 
Coughing 15% 15% 26% 14% 18% 
Wheezing 6% 6% 7% 8% 6% 
Phlegming 5% 7% 6% 4% 6% 
Number of Individuals 687 583 648 619 2537 

 
Figure  4-1. Incidences of Respiratory Symptoms for Males and Female by Age Group 
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B. Estimates of the Effects of Typical Kitchen Presence 

Typical kitchen presence is an indicator of whether the individual has high exposure to 

IAP. Since the health questionnaire for Tamil Nadu was surveyed by a different team than 

surveyed the other three states, I first determine whether the data for the four states are 

compatible. This is done by estimating a linear probability model separately for Tamil Nadu  
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Table 4-3. Summary Statistics of Variables 

Variable Mean Standard. 
Deviation 

Minimum Maximum 

Respiratory Symptoms (dummy) 0.192 0.394 0 1 

Typical Kitchen Presence (dummy) 0.264 0.441 0 1 

PM 2.5 Mean (mg/m3) 0.570 0.398 0.058 2.669 

PM 2.5 95th Percentile (mg/m3) 2.529 2.423 0.090 15.057 

Education (years) 4.861 4.562 0 15 

Female (dummy) 0.479 0.500 0 1 

Wife of Household Head (dummy) 0.174 0.379 0 1 

Daughter-in-Law of Head (dummy) 0.038 0.191 0 1 

Total Household Expenditure  
(100,000 rupees per year) 0.644 0.687 0 7.303 

Smoking (dummy) 0.057 0.231 0 1 

Age Categories     

Ages 0 to 5 0.134 0.341 0 1 

Ages 6 to15 0.207 0.405 0 1 

Ages 16 to 20 0.098 0.298 0 1 

Ages 21 to 30 0.210 0.407 0 1 

Ages 31 to 40 0.148 0.355 0 1 

Ages 41 to 50 0.095 0.293 0 1 

Ages 51 to 60 0.056 0.229 0 1 

Ages 61and greater 0.052 0.222 0 1 

State of Residence     

Uttarakhand 0.279 0.448 0 1 

West Bengal 0.273 0.445 0 1 

Madhya Pradesh  0.238 0.426 0 1 

Tamil Nadu 0.210 0.408 0 1 

Number of Individuals 2333 

Number of Households  522 
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from the other three states. A Chow test of whether all states follow the same model aside from 

state dummies yields an F statistic of F(13,2498) = 1.273 corresponding to a p-value of 0.224, 

which cannot reject the hypothesis that the models are the same. Thus, I regard the data for all 

four states as compatible.  

In addition, as symptoms for individuals older than 12 years old are self-reported and for 

individuals younger than 12 years old are non-self reported, there may be a systematic difference 

in reported results because individuals probably recall their own health better than others. Thus, 

another Chow test is employed to see whether the non-self reporting group is different than the 

self-reporting group. The Chow test that test for common coefficients versus different 

coefficients of all variables between the two groups yields an F statistic of F(16,2492) = 1.425 

corresponding to a p-value of 0.1203, which cannot reject the hypothesis at common significance 

levels that the self-reporting and non-self reporting groups can be treated the same.  Thus, I 

regard the data for the two groups as compatible. 

Table 4-4 provides estimates of the effects of typical kitchen presence on the incidence of 

respiratory symptoms. The effects of age 61 or greater and residence in Tamil Nadu are 

represented in the constant term of this and subsequent regressions. Columns (1), (2), and (3) 

present estimates using a logit model, random-effects model, and fixed-effects model, 

respectively. Columns (4)-(7) present estimates considering the endogeneity of typical kitchen 

presence by using fixed-effects with instrumental variables (FE-IV) where instruments are 

derived by alternative methods. Instruments are derived by a linear probability model (LPM) in 

Column (4), by using a linear probability model with fixed effects (LPM-FE) in Column (5), by a 

logit model in Column (6), and by a logit model with fixed effects (Logit-FE) in Column (7). 

The estimation of instruments for typical kitchen presence is presented in Table 4-5, where ages  
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Table 4-4. The Effects of Typical Kitchen Presence on the Incidence of Respiratory 
Symptomsa 

 (1) (2) (3) (4) (5) (6) (7) (8) 
Estimator 

 
Estimation of 
Instruments 

Logit 
 
 
 

RE 
 
 
 

FE 
 
 
 

FE-IV 
 
 

LPM 

FE-IV 
 

LPM-
FE 

FE-IV 
 
 

Logit 

FE-IV 
 

Logit-
FE 

Logit- 
FE-IV 

 
Logit-FE 

Typical Kitchen 
Presence 0.579** 0.086** 0.098** 0.143* 0.135* 0.142* 0.086* 0.697* 
 [4.19] [4.13] [4.23] [2.15] [2.09] [2.16] [2.01] [2.57] 
Education -0.047** -0.007** -0.007** -0.006+ -0.007* -0.006+ -0.007* -0.054* 
 [3.22] [3.10] [2.73] [1.85] [2.17] [1.86] [2.20] [2.55] 
Female 0.065 -0.001 -0.012 -0.028 -0.027 -0.028 -0.006 -0.012 
 [0.53] [0.04] [0.64] [0.86] [0.84] [0.86] [0.22] [0.07] 
Household 
Expenditures 0.022 0.011       
 [0.25] [0.60]       
Smoking 1.519** 0.262** 0.251** 0.257** 0.257** 0.258** 0.256** 1.522** 
 [7.71] [7.81] [6.74] [5.48] [5.47] [5.48] [5.47] [5.77] 
Age Categories         

Ages 0 to 5 0.469* 0.090* 0.078+ 0.069 0.068 0.069 0.084 0.409 
 [1.96] [2.27] [1.76] [1.24] [1.23] [1.25] [1.52] [1.25] 
Ages 6 to 15 -0.480* -0.084* -0.097* -0.102+ -0.103+ -0.102+ -0.099+ -0.807* 
 [1.98] [2.24] [2.32] [1.95] [1.96] [1.94] [1.90] [2.47] 
Ages 16 to 20 -1.095** -0.134** -0.151** -0.166** -0.163** -0.165** -0.146* -1.506** 
 [3.36] [3.12] [3.13] [2.67] [2.64] [2.66] [2.42] [3.45] 
Ages 21 to 30 -0.610* -0.102** -0.123** -0.138* -0.133* -0.137* -0.124* -1.008** 
 [2.46] [2.64] [2.79] [2.36] [2.31] [2.36] [2.20] [2.86] 
Ages 31 to 40 -0.484+ -0.075+ -0.083+ -0.096+ -0.094 -0.096+ -0.082 -0.620+ 
 [1.94] [1.92] [1.89] [1.66] [1.63] [1.66] [1.47] [1.77] 
Ages 41 to 50 -0.031 -0.013 -0.035 -0.044 -0.047 -0.044 -0.032 -0.38 
 [0.12] [0.31] [0.76] [0.74] [0.78] [0.74] [0.55] [1.07] 
Ages 51 to 60 0.164 0.002 -0.046 -0.048 -0.053 -0.048 -0.04 -0.409 

 [0.58] [0.03] [0.92] [0.76] [0.84] [0.75] [0.64] [1.14] 
State of Residence        

Uttarakhand -0.304* -0.052+       
 [2.05] [1.76]       
West Bengal -0.704** -0.105**       
 [4.32] [3.50]       
Madhya 
Pradesh  0.106 0.017       

 [0.75] [0.58]       
Constant -0.998** 0.290** 0.275** 0.271** 0.276** 0.271** 0.280**  
 [4.06] [6.97] [7.07] [5.57] [5.68] [5.57] [5.75]  
Observations 2524 2524 2532 2532 2532 2532 2532 1440 
Households  592 597 597 597 597 597 304 
R2 statistic     0.087 0.082 0.082 0.082 0.081   
a The absolute values of t statistics are indicated in brackets. Significance is indicated by ‘+’ at the 10% level; ‘*’ at the 5% 
level; and ‘**’ at the 1% level. Variances of two stage estimators use the corrected mean squared error. Abbreviations are 
defined as follows: RE means random effects, FE means fixed effects, and LPM means linear probability model. 

 



 58 

Table 4-5. First-Stage Estimates: The Determinants of Typical Kitchen Presencea 

Regression Variable (1) (2) (3) (4) 
LPM LPM-FE Logit Logit FE 

Education (years) -0.006** -0.0003 -0.049** -0.004 
 [3.28] [0.13] [3.50] [0.16] 
Female (dummy) 0.162** 0.171** 1.094** 1.632** 
 [9.76] [10.04] [9.34] [9.31] 
Wife (dummy) 0.560** 0.568** 2.644** 3.260** 
 [22.07] [22.25] [14.70] [11.51] 
Daughter-in-Law (dummy)  0.669** 0.770** 3.007** 4.093** 
 [6.14] [7.00] [4.43] [3.88] 
Wife x Number of Daughters-in-Law -0.250** -0.248** -1.278** -1.525** 
 [6.84] [6.80] [5.40] [4.44] 
Daughter-in-Law x Number of Daughters-
in-Law -0.136* -0.127* -0.607+ -0.596 
 [2.32] [2.13] [1.79] [1.26] 
Wife x Daughter-in-Law  -0.056 -0.146+ -0.271 -1.013 
 [0.71] [1.84] [0.54] [1.21] 
Age Categories     

Ages 0 to 5 0.122** 0.132** 0.833** 0.856* 
 [3.44] [3.55] [3.12] [2.30] 
Ages 6 to 15 0.011 0.015 0.133 -0.131 
 [0.33] [0.44] [0.50] [0.36] 
Ages 16 to 20 0.150** 0.142** 1.118** 1.133** 
 [3.98] [3.51] [3.89] [2.86] 
Ages 21 to 30 0.069+ 0.046 0.539+ 0.262 
 [1.93] [1.17] [1.90] [0.65] 
Ages 31 to 40 0.082* 0.077* 0.639* 0.466 
 [2.27] [2.01] [2.24] [1.19] 
Ages 41 to 50 0.066+ 0.095* 0.491+ 0.431 
 [1.73] [2.37] [1.67] [1.05] 
Ages 51 to 60 0.066 0.111** 0.489 0.824+ 

 [1.58] [2.59] [1.55] [1.94] 
Constant 0.075* 0.04 -2.393**  
 [2.38] [1.21] [9.47]  
Observations 3105 3097 3105 2735 
Households  618  530 
R2 statistic 0.348 0.443     
a The absolute values of t statistics are indicated in brackets. Significance is indicated by ‘+’ at the 10% level; ‘*’ 
at the 5% level; and ‘**’ at the 1% level. 

 

61 and over are represented in the constant term.  Column (8) presents estimates using a logit 

model with fixed effects and instrumental variables (Logit-FE-IV) where the instrumental 

variables are also based on a logit model with fixed effects. Note that in all models except the 
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logit models, the estimated coefficients of indicator variables (all variables other than household 

expenditures and education) can be interpreted as estimated probability effects. 

In terms of model specifications, logit and probit models are generally preferred to the 

linear probability model (LPM) when the dependent variable in a regression model is a dummy 

variable because the latter is usually less efficient and predicted probabilities from the LPM can 

lie outside the 0-1 interval (Caudill, 1988, Donald and Rearden, 1990).  However, with the Logit 

FE model, as shown in Table 4-4, households without variation in the incidence of respiratory 

symptoms are automatically dropped, which reduces the sample size by almost half and 

significantly limits the estimation precision. Because I am also interested in estimating the effect 

on these households and the linear models such as the RE and FE models based on LPM 

instrumentation produce estimates within the unit interval, I regard them as preferred. For the 

same reasons, the LPM-FE model is also preferred in the first stage specifications shown in 

Table 4-5. Therefore, the estimates in Column (5) of Table 4-4 are the preferred estimates in this 

analysis. Thus, I focus further discussion on these estimates. 

 As shown in Table 4-5, the instruments are dummy variables indicating whether the 

individual is a wife of the head or a daughter-in-law, the interaction of wife and daughter-in-law 

with the number of daughters-in-law, and the interaction of daughter-in-law with the presence of 

any wife of the head of the household. This set of hierarchical identifying variables follows the 

instruments used by Pitt et al (2006) to explain cooking time. The set of instrumental variables 

are jointly significant in column (2) of Table 4-5 with an F-statistic of F(5,2465) = 108.82 

corresponding to a p-value less than 0.0001. In addition, a score test for overidentifying 

restrictions is conducted to verify the validity of the instruments. The score test has a chi-squared 
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statistic of 2χ (4) =  4.4746 corresponding to a p-value of 0.3456, which means the hypothesis 

that the instruments are valid cannot be rejected.  

The sign patterns of a person’s position in the household hierarchy in column (2) of Table 

4-5 generally conform to those indicated in the anthropological literature: being a wife or a 

daughter-in-law increases the chances of cooking; an increased number of daughters-in-law in a 

household decreases the wife’s chances of cooking as does the presence of a daughter-in-law; 

and the presence of a wife in the household decreases the daughter-in-law’s chance of cooking. 

The sign patterns of the age categories are also within expectations. Compared to the reference 

age category of 61 or more years of age, all other age categories have positive signs. Three age 

categories have particularly high coefficients: ages 16 to 20, which are more likely to represent 

daughter-in-laws; ages 0 to 5, which are likely to represent children with their mothers when 

their mothers are cooking; and ages 51 to 60 which are more likely to represent wives. 

Turning to the second-stage estimates in Table 4-4, in addition to typical kitchen presence, 

other independent variables include education, gender, household annual expenditure, whether 

the individual smokes, age categories, and dummy variables for state of residence. Typical 

kitchen presence has positive and statistically significant effects on the incidence of respiratory 

symptoms in all model specifications although the magnitude varies. Smoking also has positive 

and statistically significant effects with magnitudes much larger than for typical kitchen presence, 

which is consistent with medical evidence.  

Education has negative and statistically significant effects across all specifications, which 

is also expected. The effects of being a female and household expenditure are not statistically 

different from zero. In terms of age categories, compared to those who are 61 or older, 

individuals with an age from 6 to 30 have a lower chance of respiratory symptoms and the effect 
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is statistically significant across specifications.  The reason I use categorical age variables is 

because, as shown in Figure 4-1, the relationship between age and the incidence of respiratory 

symptoms is neither linear nor quadratic. Use of age classifications appears to capture age effects 

better than a simple function of age because the same factors do not affect each age group. For 

example, children ages 0 to 5 are those who are usually close to their mothers for care whereas 

children ages 6 to 15 are those who likely to go to school regularly.   

 The preferred specification in Column (5) of Table 4-4 shows that typical kitchen 

presence increases the probability of reporting a respiratory symptom by 13.5 percentage points, 

which is about one half of the effect of being a smoker. The estimated effect of typical kitchen 

presence in Column (5) correcting for endogeneity is higher than the one in Column (3), 

suggesting that women with better respiratory health are sorted into cooking responsibilities.  In 

addition, one more year of schooling reduces the probability of reporting a respiratory system by 

0.7 percentage points. Being in an age category of 16- 20 or 21-30 can reduce the probability of 

reporting a respiratory system by 16.3 percentage points and 13.3 percentage points, respectively. 

All these effects are statistically significant at either the 5% or 1% level.  

C. Estimates of the Effects of Kitchen IAP Levels and Typical Kitchen Presence  

One advantage of the analysis in this dissertation is that the effect of pollution intensity 

on the incidence of respiratory symptoms can be assessed using the measured IAP levels in the 

kitchen. I use the estimates from Chapter 3 of the typical IAP levels in the kitchen for this 

analysis. Both the PM 2.5 mean and PM 2.5 95th percentile are used to represent pollution 

intensities.  

Table 4-6 provides estimates of the effects of typical kitchen presence and kitchen IAP 

levels measured by the PM 2.5 mean on the incidence of respiratory symptoms. As discussed 
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above, linear models such as the RE and FE models based on LPM instrumentation are preferred 

to the logit model in this analysis. Thus, Table 4-6 does not report the results using the logit 

model but rather reports only the results using the RE, FE, and FE-IV models (where instruments 

are derived by the LPM-FE).  

For each model, I use two types of specifications. One includes typical kitchen presence, 

the PM 2.5 mean in the kitchen, and an interaction term of the two separate variables and the 

other only includes the interaction term. Because typical kitchen presence and the interaction 

term of typical kitchen presence with the PM 2.5 mean are highly correlated (correlation 0.81), 

the magnitudes and significance levels of the interaction term decrease substantially when 

including both terms in the regression. For specifications (1), (3), and (5), testing the joint 

significance of typical kitchen presence and the interaction term, typical kitchen presence has a 

statistically significant positive effect across all models. The PM 2.5 mean in the kitchen, 

however, is not statistically significant for model FE-IV (Column (5)). This is within expectation. 

If a person is not typically in the kitchen, then he/she is not affected by IAP levels in kitchen. 

Because I am interested in the aggregated health effect of IAP exposure, i.e., the pollution 

intensity effect to those people who are exposed to IAP, Column (6) in Table 4-6, which includes 

only the interaction term, is the preferred model.  It shows that every 1 mg/m3 increase in the PM 

2.5 mean in the kitchen is associated with an 11.9 percentage point increase in the probability of 

reporting a respiratory symptom for those who are typically in the kitchen. This effect is 

statistically significant at the 10% level with a p-value of 0.0540.  
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Table 4-6. The Effects of Kitchen IAP Levels (PM 2.5 Mean) and Typical Kitchen Presence 
on the Incidence of Respiratory Symptomsa 

Regression Variable (1) (2) (3) (4) (5) (6) 
RE FE FE-IV 

Typical Kitchen Presence 
(TKP) 0.012  0.034  0.109+  
 [0.35]  [0.94]  [1.71]  
PM 2.5 Mean 0.002  0.146  0.476  
 [0.07]  [0.01]  [0.02]  
TKP x PM 2.5 Mean 0.143** 0.156** 0.118* 0.155** 0.051 0.119+ 
 [2.94] [4.99] [2.29] [4.53] [0.69] [1.93] 
Education (years) -0.007** -0.007** -0.008** -0.008** -0.009** -0.009** 
 [3.06] [3.11] [3.05] [3.09] [3.11] [3.32] 
Female (dummy) -0.003 -0.001 -0.012 -0.006 -0.029 -0.001 
 [0.16] [0.05] [0.63] [0.35] [1.07] [0.05] 
HH Expenditures 0.007 0.007     
 [0.40] [0.38]     
Smoking (dummy) 0.276** 0.276** 0.275** 0.274** 0.282** 0.274** 
 [7.81] [7.81] [6.98] [6.95] [7.06] [6.90] 
Age Categories       

Ages 0 to 5 0.085* 0.086* 0.074 0.075+ 0.061 0.068 
 [2.11] [2.12] [1.64] [1.66] [1.34] [1.50] 
Ages 6 to 15 -0.081* -0.082* -0.091* -0.092* -0.098* -0.098* 
 [2.13] [2.14] [2.13] [2.15] [2.30] [2.29] 
Ages 16 to 20 -0.114** -0.114** -0.126* -0.123* -0.139** -0.123* 
 [2.61] [2.61] [2.56] [2.52] [2.74] [2.46] 
Ages 21 to 30 -0.092* -0.091* -0.105* -0.101* -0.115* -0.093* 
 [2.31] [2.29] [2.33] [2.26] [2.42] [2.03] 
Ages 31 to 40 -0.065 -0.064 -0.066 -0.063 -0.075 -0.053 
 [1.61] [1.59] [1.47] [1.40] [1.58] [1.16] 
Ages 41 to 50 0.011 0.012 -0.018 -0.013 -0.031 -0.01 
 [0.26] [0.29] [0.37] [0.29] [0.63] [0.20] 
Ages 51 to 60 0.026 0.027 -0.021 -0.019 -0.023 -0.009 

 [0.56] [0.57] [0.41] [0.38] [0.45] [0.18] 
State of Residence       

Uttarakhand -0.056+ -0.055+ -0.056+    
 [1.69] [1.85] [1.69]    
West Bengal -0.084** -0.083** -0.084**    
 [2.68] [2.74] [2.68]    
Madhya Pradesh  0.03 0.03 0.03    

 [0.97] [1.02] [0.97]    
Constant 0.263** 0.264** 0.171 0.254** -0.015 0.254** 
 [5.92] [6.17] [0.01] [6.41] [0.00] [6.39] 
Observations 2333 2333 2333 2333 2333 2333 
Households 522 522 522 522 522 522 
R2 statistic       0.092 0.085 0.084 
a The absolute values of t statistics are indicated in brackets. Significance is indicated by ‘+’ at the 10% level; ‘*’ 
at the 5% level; and ‘**’ at the 1% level. 
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To test whether IAP concentrations have different effects by age categories, the 

regression in Column (6) of Table 4-6 was expanded by adding interaction terms of the PM 2.5 

mean with each age category dummy. The F-test for the joint exclusion of these interaction terms 

yields an F-statistic of F (6, 1793) = 0.25 with a corresponding p-value of 0.9593. Thus, adding 

the interaction terms adds virtually no explanation and the absence of age-specific effects of IAP 

cannot be rejected. 

The estimates in Table 4-6 assume that the exposure-response relation is linear. However, 

this may not be a valid assumption. For example, Ezzati and Kammen (2001a) found that acute 

respiratory infections (ARI) and acute lower respiratory infections (ALRL) are increasing 

concave functions of average daily exposure to PM 10 pollution, with the rate of increase 

declining for exposures above 1-2 mg/m3. To test linearity, I present further results in Table 4-7 

where exposure is represented by exposure categories similar to Ezzati and Kammen (2001): (1) 

0-0.2 mg/m3 with a mean of 0.147 mg/m3, (2) 0.2-0.5 mg/m3 with a mean of 0.337 mg/m3, (3) 

0.5-1 mg/m3 with a mean of 0.711 mg/m3, (4) 1-2 mg/m3 with a mean of 1.284 mg/m3, and (5) 

more than 2 mg/m3 with a mean of 2.312 mg/m3.  

The five exposure categories in Table 4-7 are jointly statistically significant at the 10% 

level with an F–statistic of F(4,1920) = 1.99 and a corresponding p-value of 0.0768 for the  

preferred model in Column (3). The exposure-response relationship associated with the mean 

values in the five exposure categories is illustrated in Figure  4-2. The results are not consistent 

with a concave relationship, but closer to a linear relationship when the exposure level is greater 

than 0.2 mg/m3. As the exposure category for greater than 2 mg/m3 has a very high coefficient 

for the incidence of respiratory symptoms, the results support the suggestion by Bruce et al (1998) 

that public-health programs directed at adverse impacts of IAP in developing countries should  
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Table 4-7. The Effects of Exposure Categories in the Kitchen on the Incidence of 
Respiratory Symptomsa 

Regression Variable 
(1) (2) (3) Mean for 

(3) RE FE FE-IV 
TKP x PM 2.5 Mean <0.2 mg/m3 0.102* 0.123* 0.178* 4.51% 
 [2.37] [2.53] [2.33]  
TKP x PM 2.5 Mean 0.2-0.5 mg/m3 0.005 0.035 0.085 9.52% 
 [0.18] [1.00] [1.37]  
TKP x PM 2.5 Mean 0.5-1 mg/m3 0.103** 0.120** 0.140* 11.05% 
 [3.53] [3.63] [2.28]  
TKP x PM 2.5 Mean 1-2 mg/m3 0.230** 0.244** 0.202+ 2.27% 
 [3.41] [3.24] [1.77]  
TKP x PM 2.5 Mean >2 mg/m3 0.341+ 0.359+ 0.363 0.31% 
 [1.80] [1.78] [1.34]  
Education (years) -0.007** -0.007** -0.007** 4.94 
 [2.94] [2.69] [2.72]  
Female (dummy) 0.006 -0.011 -0.024 48.1% 
 [0.33] [0.59] [0.97]  
HH Expenditures 0.01    
 [0.55]    
Smoking (dummy) 0.258** 0.245** 0.250** 6.20% 
 [7.72] [6.63] [6.68]  
Age Categories    

Ages 0 to 5 0.093* 0.081+ 0.068 13.19% 
 [2.34] [1.83] [1.53]  
Ages 6 to 15 -0.085* -0.094* -0.104* 20.10% 
 [2.26] [2.25] [2.46]  
Ages 16 to 20 -0.131** -0.147** -0.162** 9.68% 
 [3.05] [3.04] [3.27]  
Ages 21 to 30 -0.098* -0.118** -0.128** 21.37% 
 [2.54] [2.70] [2.79]  
Ages 31 to 40 -0.079* -0.087* -0.094* 15.44% 
 [2.01] [1.99] [2.04]  
Ages 41 to 50 -0.012 -0.034 -0.046 9.52% 
 [0.30] [0.74] [0.95]  
Ages 51 to 60 -0.006 -0.052 -0.053 5.49% 

 [0.13] [1.03] [1.05]  
State of Residence     

Uttarakhand -0.057+    
 [1.94]    
West Bengal -0.109**    
 [3.59]    
Madhya Pradesh  0.015    
 [0.52]    

Constant 0.294** 0.276** 0.278**  
 [7.08] [7.09] [7.11]  
Observations 2524 2532 2532  
Households 592 597 597  
R2 statistic   0.092 0.083   
a The absolute values of t statistics are indicated in brackets. Significance is indicated by ‘+’ at the 10% level; ‘*’ 
at the 5% level; and ‘**’ at the 1% level. 
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concentrate on reducing average exposure to levels below 2 mg/m3. However, the results here 

also suggest that further significant gains would be forthcoming from reducing exposure levels 

below 1 mg/m3. 

Figure  4-2. Percentage Increase in Incidence of Respiratory Symptoms by Exposure 
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Parallel to Table 4-6, Table 4-8 presents the results using the PM 2.5 95th percentile as 

the IAP concentration indicator. The preferred specification in Column (6) shows that a 1 mg/m3  

increase in the PM 2.5 95th percentile in the kitchen is associated with a 0.02 percentage point 

increase in the probability of reporting a respiratory symptom for those who are typically in the 

kitchen. This effect is statistically significant at the 5% level with a p-value of 0.040. This effect 

is only 1/5 of the effect when using the PM 2.5 mean as the indicator. Since the PM 2.5 95th 

percentile represents a short-period of high pollution intensity while the PM 2.5 mean represents 

the 24-hour average pollution intensity, this result suggests that the daily average pollution 

intensity has more impact on respiratory health. 
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Table 4-8. The Effects of Kitchen IAP Levels (PM 2.5 95th Percentile) and Typical Kitchen 
Presence on the Incidence of Respiratory Symptomsa 

Regression Variable (1) (2) (3) (4) (5) (6) 
RE FE FE-IV 

Typical Kitchen Presence (TKP) 0.033  0.049  0.090**  
 [1.18]  [1.59]  [3.69]  
PM 2.5 95th Percentile (PM 
95th) 0.003  0.029  -0.002  
 [0.56]  [0.01]  [0.00]  
TKP x PM 95th  0.024** 0.030** 0.021* 0.029** 0.015 0.023* 
 [3.00] [5.04] [2.47] [4.44] [1.31] [2.05] 
Education (years) -0.007** -0.007** -0.008** -0.009** -0.008** -0.009** 
 [2.95] [3.09] [3.04] [3.14] [3.00] [3.35] 
Female (dummy) -0.002 0.005 -0.012 0 -0.024 0.003 
 [0.13] [0.29] [0.61] [0.01] [1.12] [0.16] 
HH Expenditures 0.008 0.007     
 [0.46] [0.39]     
Smoking (dummy) 0.275** 0.274** 0.274** 0.271** 0.278** 0.272** 
 [7.78] [7.75] [6.96] [6.89] [7.03] [6.87] 
Age Categories     

Ages 0 to 5 0.085* 0.086* 0.075+ 0.076+ [1.53] 0.07 
 [2.10] [2.13] [1.66] [1.69] -0.092* [1.54] 
Ages 6 to 15 -0.081* -0.083* -0.091* -0.092* [2.15] -0.097* 
 [2.13] [2.17] [2.13] [2.17] -0.133** [2.28] 
Ages 16 to 20 -0.115** -0.113* -0.126* -0.120* [2.68] -0.120* 
 [2.63] [2.57] [2.56] [2.46] -0.111* [2.42] 
Ages 21 to 30 -0.093* -0.088* -0.104* -0.096* [2.44] -0.089* 
 [2.34] [2.22] [2.32] [2.14] -0.071 [1.97] 
Ages 31 to 40 -0.064 -0.059 -0.065 -0.057 [1.56] -0.049 
 [1.59] [1.48] [1.44] [1.27] -0.025 [1.08] 
Ages 41 to 50 0.012 0.017 -0.016 -0.008 [0.53] -0.006 
 [0.28] [0.39] [0.35] [0.17] -0.023 [0.12] 
Ages 51 to 60 0.024 0.027 -0.021 -0.017 [0.44] -0.007 

 [0.52] [0.58] [0.42] [0.33]  [0.13] 
State of Residence      

Uttarakhand -0.065+ -0.057+     
 [1.95] [1.92]     
West Bengal -0.089** -0.080**     
 [2.83] [2.68]     
Madhya Pradesh  0.029 0.033     

 [0.95] [1.11]     
Constant 0.259** 0.262** 0.179 0.252** 0.258 0.253** 
 [5.97] [6.14] [0.01] [6.38] [0.02] [6.36] 
Observations 2333 2333 2333 2333 2333 2333 
Households 522 522 522 522 522 522 
R2 statistic     0.093 0.092 0.091 0.084 
a The absolute values of t statistics are indicated in brackets. Significance is indicated by ‘+’ at the 10% level; ‘*’ 
at the 5% level; and ‘**’ at the 1% level. 
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Spirometry Indicators as the Health Outcome 

 Although self-reported symptoms are common in the survey data, an important limitation 

of using these responses is vulnerability to systematic errors in the health variables depending on 

whether people perceive themselves as ill. These perceptions are likely to vary systematically 

according to education, access to information, occupation, how the question is phrased, how the 

interviewers asked the question, and other factors. The following analysis using doctor-measured 

spriometry indicators as the health outcome is considered in the remainder of this chapter as a 

way of avoiding this problem. 

Lung function is directly related to respiratory health. Respiratory diseases can be 

classified as either obstructive (i.e., conditions that impede the rate of flow into and out of the 

lungs such as asthma) or restrictive (i.e., conditions that cause a reduction in the functional 

volume of the lungs such as pulmonary fibrosis) (Martin, 1984 and OAMIG, 2008). Spirometry 

is the most basic and frequently performed test of lung function. Spirometry is used to measure 

the rate of airflow during maximal expiratory effort after maximal inhalation. Several 

measurements are typically used in spriometry as illustrated in Figure 4-3 (Babaie, 1998): 

• FVC (Forced Vital Capacity) — This is the total volume of air expired after a full 

inhalation. Patients with obstructive lung disease usually have a normal or only slightly 

decreased vital capacity. Patients with restrictive lung disease have a decreased vital 

capacity. 

• FEV1 (Forced Expiratory Volume in 1 Second) — This is the volume of air expired in 

the first second during maximal expiratory effort. This measure is reduced in both 

obstructive and restrictive lung disease. It is reduced by obstructive lung disease 
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because of increased airway resistance. It is reduced in restrictive lung disease because 

of the low vital capacity. 

• FEV1/FVC — This is the percentage of the vital capacity which is expired in the first 

second of maximal expiration. In healthy patients, the FEV1/FVC is usually around 

70%. In patients with obstructive lung disease FEV1/FVC decreases and can be as low 

as 20-30% in severe obstructive airway disease. Restrictive disorders have a near 

normal FEV1/FVC.  

Figure  4-3. Spirometry: The Volume-Time Curve 
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Source: Babaie (1998). 
 

As indications of respiratory health, spriometry measurements are also related to a 

person’s gender, age, height, and ethic group. Males have higher lung capacity than females. 

Children’s lung capacity increases as they grow, but after age 20 lung capacity usually decreases 

(Berne and Levy, 1998). Lung capacity is generally larger for taller people. Genetics also plays a 

role. For example, Tibetan people, who live high on the mountains, have larger lung capacities. 

A. Overview of the Data 

 As part of the HEED survey, a spirometry test was performed in the field with a portable 

spirometer on three to seven individuals per household with ages of 15 years and older. 

Spriometric measurements included FVC, FEV1, and the ratio between the two, FEV1/FVC. All 

Liters of expiration Time (in seconds) 
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spirometry measurements were recorded in adherence with the joint American Thoracic Society 

(ATS) and European Respiratory Society guidelines (Naymoff, 2007). This analysis uses the best 

of the three readings. Height was also measured by the field team according to standard protocol 

when spirometry was performed. Table 4-9 provides summary statistics of key variables used in 

this section. For comparison, normal adult lung capacity is 3 to 5 liters (Berne and Levy, 1998). 

The study from Udwadia et al (1987) analyzing lung function of 760 non-smoking healthy Indian 

subjects from 15 to 65 years of age found that their spirometric values (FVC, FEV1) were lower 

than those reported from the West. In their study, the mean FVC for males and females is 3.5 

liters and 2.48 liters, respectively. In the HEED data, the mean FVC is slightly lower than the 

mean value in Udwadia et al (1987), with a value of 3.2 liters for males and 2.36 liters for 

females.    

Table 4-9. Summary Statistics of Spirometry Variables 

Variable Mean Standard 
Deviation Minimum Maximum 

FEV1 (liters) 2.315 0.673 0.530 4.380 
FVC (liters) 2.750 0.752 0.880 5.550 
FEV1/FVC 0.841 0.089 0.288 1.000 
Education (years) 5.838 4.737 0 15 
Female (dummy) 0.536 0.499 0 1 
Smoking (dummy) 0.140 0.348 0 1 
Age (years) 37.063 13.231 15 80 
Height (cm) 156.652 8.953 130 182 
Number of individuals 776 

 

B. Estimates of the Effects of Kitchen IAP Levels and Typical Kitchen Presence  

 To measure the respiratory health outcome, I use the three indicators available in the data: 

FEV1, FVC, and FEV1/FVC. I first detail the estimation results for FEV1 and then present and 

compare the estimates for the other two. 
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 Table 4-10 provides estimates of the effects of the PM 2.5 mean in the kitchen and typical 

kitchen presence on FEV1. In addition to the IAP exposure variable(s), the control variables 

include education, gender, household expenditures, whether the person smokes, age, height, and 

state of residence dummies. I use a quadratic form for age because lung capacity usually 

decreases after age 20 (Berne and Levy, 1998) and a quadratic form appears to have a better 

goodness of fit (e.g. higher R2 statistic) than using age categories.4

 As shown in Table 4-10, female gender has a statistically significant negative effect and 

height has a statistically significant positive effect on FEV1 across all specifications as expected. 

With OLS (Columns (1) and (2)) and RE (Columns (3) and (4)) estimation, residence in 

Uttarakhand has a statistically significant positive effect on FEV1 compared to the reference 

state, Tamil Nadu. This fits expectations because Uttarakhand is in northern India at a higher 

altitude than Tamil Nadu. 

 Different approaches to 

estimation, including OLS, RE, FE, and FE-IV, are used. The first stage for the FE-IV model is 

the same as in Table 4-5. As the effects of height and age on lung function may be different for 

females than for males (Udwadia, et al, 1987), a Chow test is conducted to evaluate whether 

males and females have different coefficients for each factor. The Chow test yields an F-statistic 

of F (6,323) = 1.48 with a corresponding p-value of 0.1842. Thus, the hypothesis of common 

effects of these variables on males and females cannot be rejected. 

 With FE (Columns (5) and (6)) and FE-IV (Columns (7) and (8)) estimation, the 

interaction term between typical kitchen presence and the PM 2.5 mean becomes statistically 

significant, showing a negative effect on FEV1. Education is statistically insignificant, which 

seems reasonable. With FE-IV estimation, smoking has a statistically significant negative effect  

                                                 
4 For example, for the specification of Column (5) in Table 4-10, the R2 statistic shows slight improvement from 
0.661 to 0.663 when using a quadratic form of the age variable instead of using age categories. 
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Table 4-10. The Effects of Kitchen IAP Levels Measured as PM 2.5 Mean and Typical 
Kitchen Presence on FEV1a 

Regression 
Variable 

(1) (2) (3) (4) (5) (6) (7) (8) 
OLS RE FE FE-IV 

Typical 
Kitchen 
Presence 
(TKP) 0.036  0.046  0.063  -0.04  
 [0.62]  [0.82]  [0.74]  [0.65]  
TKP x PM 2.5 
Mean  -0.077 -0.048 -0.098 -0.06 -0.221* -0.164* -0.273* -0.284* 
 [1.10] [0.92] [1.39] [1.13] [1.98] [2.05] [1.99] [2.08] 
Education 
(years) 0.008* 0.009* 0.007+ 0.008+ 0.002 0.002 0.001 0.001 
 [2.09] [2.20] [1.72] [1.84] [0.22] [0.21] [0.13] [0.17] 
Female 
(dummy) -0.337** -0.323** -0.321** -0.302** -0.239** -0.218** -0.170* -0.193** 
 [6.38] [6.78] [6.17] [6.46] [3.36] [3.35] [2.16] [2.74] 
HH 
Expenditures -0.043 -0.045 -0.042 -0.044     
 [1.11] [1.16] [0.99] [1.03]     
Smoking 
(dummy) -0.068 -0.067 -0.073 -0.073 -0.116 -0.118 -0.126+ -0.123+ 
 [1.30] [1.29] [1.43] [1.42] [1.61] [1.63] [1.73] [1.70] 
Age (years) -0.015* -0.015* -0.014* -0.014* -0.004 -0.003 -0.001 -0.002 
 [2.39] [2.34] [2.29] [2.21] [0.44] [0.36] [0.12] [0.21] 
Age Squared -0.0001 -0.0001 -0.0001 -0.0001 -0.0002* -0.0002* -0.0002* -0.0002* 
 [0.86] [0.93] [1.07] [1.17] [2.23] [2.31] [2.52] [2.46] 
Height 0.033** 0.033** 0.035** 0.035** 0.042** 0.042** 0.042** 0.042** 
 [13.79] [13.79] [14.51] [14.50] [12.23] [12.22] [12.17] [12.18] 
State of Residence        

Uttarakhand 0.179** 0.177** 0.171** 0.169**     
 [3.55] [3.53] [3.11] [3.08]     
West Bengal 0.037 0.04 0.036 0.039     
 [0.75] [0.81] [0.67] [0.74]     
Madhya 
Pradesh  -0.057 -0.056 -0.056 -0.056     

 [1.25] [1.25] [1.13] [1.12]     
Constant -2.085** -2.091** -2.359** -2.365** -3.608** -3.610** -3.596** -3.583** 
 [5.06] [5.07] [5.75] [5.77] [6.18] [6.18] [6.16] [6.14] 
Observations 776 776 776 776 776 776 776 776 
R2 statistic 0.578 0.578   0.664 0.663 0.664 0.664 
Households   440 440 440 440 440 440 
a The absolute values of t statistics are indicated in brackets. Significance is indicated by ‘+’ at the 10% level; ‘*’ at the 5% 
level; and ‘**’ at the 1% level. 
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on FEV1 at the 10% level, which is consistent with the medical evidence that smoking is the 

most common cause of chronic obstructive pulmonary disease (COPD) and the medical fact that 

FEV1 is reduced by obstructive lung disease (Lapperre, et al, 2007). 

Typical kitchen presence and the interaction term of typical kitchen presence with the PM 

2.5 mean in the kitchen is jointly significant at the 10% level in Column (7) with an F-statistic of 

F(2, 328) = 2.37 and a corresponding p-value of 0.0946. For the same reasons discussed earlier, 

Column (8) is the preferred specification. It shows that a 1 mg/m3 increase in the PM 2.5 mean 

can reduce the FEV1 of a person who is typically in the kitchen by 0.284 liter. This effect is 

statistically significant at 5% level with a p-value of 0.038 and more than double the effect of 

smoking.  

For comparison, Table 4-11 presents the FE-IV estimates for all spriometry measures: 

FEV1, FVC, and FEV1/FVC. The PM 2.5 mean and 95th percentile that represent different 

pollution intensities are used separately for each model. Columns (2), (4), (6), (8), (10), and (12) 

are preferred specifications because they give the direct effects of IAP exposure intensity on 

health. The interaction term between typical kitchen presence and the PM 2.5 mean has a 

statistically significant negative effect on both FEV1 (at the 5% level with a p-value of 0.038) 

and FVC (at the 10% level with a p-value of 0.084) and their magnitudes are similar. The 

interaction term between typical kitchen presence and the PM 2.5 95th percentile has a 

statistically significant negative effect on FEV1 at the 10% level with a p-value of 0.087. This 

term also has a negative effect on FVC, but it is not statistically significant. 

Again, the magnitude of the coefficients using the PM 2.5 95th percentile are much 

smaller than the ones using the PM 2.5 mean, generally around 13-14% of the latter. Again, this 

shows that the daily average pollution intensity has a greater impact on respiratory health than 
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Table 4-11. FE-IV Estimates: The Effects of IAP Exposure on the Spirometry Measuresa 

Regression 
Variable 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
FEV1 FVC FEV1/FVC 

TKP -0.04  -0.046  -0.08  -0.086  0.014  0.014  
 [0.65]  [0.75]  [1.23]  [1.32]  [1.34]  [1.31]  
TKP x PM 
2.5 mean  -0.273* -0.284*   -0.233 -0.254+   -0.027 -0.024   
 [1.99] [2.08]   [1.57] [1.73]   [1.16] [1.01]   
TKP x PM 
2.5 95th 
Percentile   -0.038 -0.039+   -0.03 -0.033   -0.005 -0.004 
   [1.65] [1.72]   [1.22] [1.33]   [1.23] [1.13] 
Education 
(years) 0.001 0.001 0.001 0.002 0.0003 0.001 0.001 0.001 0.0001 -0.00002 0.0001 -0.00002 
 [0.13] [0.17] [0.17] [0.21] [0.04] [0.11] [0.08] [0.15] [0.06] [0.02] [0.05] [0.02] 
Female 
(dummy) -0.170* -0.193** -0.195* -0.223** -0.240** -0.286** -0.264** -0.317** 0.003 0.011 0.002 0.01 
 [2.16] [2.74] [2.59] [3.39] [2.84] [3.78] [3.26] [4.47] [0.23] [0.92] [0.13] [0.88] 
Smoking 
(dummy) -0.126+ -0.123+ -0.117 -0.114 -0.099 -0.094 -0.091 -0.085 -0.016 -0.017 -0.016 -0.017 
 [1.73] [1.70] [1.61] [1.57] [1.27] [1.20] [1.17] [1.09] [1.31] [1.39] [1.25] [1.34] 
Age (years) -0.001 -0.002 -0.003 -0.004 0.009 0.008 0.008 0.006 -0.002 -0.002 -0.002 -0.002 
 [0.12] [0.21] [0.31] [0.42] [1.01] [0.85] [0.86] [0.68] [1.48] [1.31] [1.57] [1.39] 

Age Squared -0.0002* -0.0002* -0.0002* -0.0002* -0.0003** -0.0003** -0.0003** -0.0003** -0.00001 -0.00001 -0.00001 -0.00001 
 [2.52] [2.46] [2.35] [2.26] [3.00] [2.86] [2.86] [2.70] [0.68] [0.86] [0.61] [0.81] 
Height (cm) 0.042** 0.042** 0.042** 0.042** 0.051** 0.051** 0.051** 0.051** -0.001 -0.001 -0.001 -0.001 
 [12.17] [12.18] [12.15] [12.15] [13.77] [13.74] [13.74] [13.71] [1.26] [1.24] [1.25] [1.24] 
Constant -3.596** -3.583** -3.583** -3.567** -4.785** -4.758** -4.773** -4.743** 1.054** 1.049** 1.055** 1.050** 
 [6.16] [6.14] [6.12] [6.10] [7.62] [7.58] [7.60] [7.54] [10.56] [10.51] [10.58] [10.52] 
Observations 776 776 776 776 776 776 776 776 776 776 776 776 
Households 440 440 440 440 440 440 440 440 440 440 440 440 
R2 statistic 0.664 0.664 0.663 0.662 0.705 0.704 0.704 0.703 0.291 0.287 0.291 0.288 
a The absolute values of t statistics are indicated in brackets. Significance is indicated by ‘+’ at the 10% level; ‘*’ at the 5% level; and ‘**’ at the 1% level. 
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short-period high pollution intensity. Surprisingly, smoking does not have a significant impact on 

FVC. Since patients with obstructive lung disease usually have a normal or only slightly 

decreased FVC and patients with restrictive lung disease usually have a highly decreased FVC, 

this result suggests that smoking has more impacts on obstructive lung disease than on restrictive 

lung disease. 

Columns (9)-(12) of Table 4-11 show that IAP exposure indicators do not have any 

statistically significant impacts on FEV1/FVC. Because restrictive lung disease causes decreases 

in both FVC and FEV1, the FEV1/FVC ratio can remain near normal (Babaie, 1998). The results 

in Table 4-11 thus imply that the major IAP effect is on restrictive lung disease. The main 

symptoms are shortness of breath and cough. Notable restrictive lung diseases include fibrosis, 

sarcoidosis, pleural effusion, hypersensitivity pneumonitis, asbestosis,  pleurisy, lung cancer, 

infant respiratory distress syndrome (IRDS), acute respiratory distress syndrome (ARDS), and 

neurologic diseases affecting the ability of the body to alter respiration rate (including spinal 

cord injury), and mechanical diseases affecting pulmonary musculature (including myasthenia 

gravis, and severe acute respiratory syndrome) (OAMIG, 2008). The results here thus provide an 

explanation of why the literature includes more evidence of IAP impacts on certain respiratory 

diseases such as ALRI for children but less or inconsistent evidence of IAP impacts on other 

respiratory diseases such as asthma (a typical obstructive lung disease). 

 Furthermore, as shown in Table 4-11, the goodness of fit for regressions on FEV1 and 

FVC is very high, with R2 statistics ranging from 0.66 to 0.71. Comparing to the R2 statistics 

around 0.09 for regressions of the incidence of respiratory symptoms, this result shows that 

spirometry measurement is much more accurate in characterizing the effects of IAP while self-

reported symptoms include much more noise in measurement.   
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Conclusions 

In this chapter, I have analyzed and quantified the health impacts from IAP exposure. 

Both subjective self-reported respiratory symptoms and objective doctor-measured spirometric 

indicators (FEV1, FVC, and FEV1/FVC) are used to measure the health impacts. Similar to Pitt, 

et al (2006), I use household fixed-effects to eliminate household unobservables and use 

instruments related to a person’s position in the household hierarchy to control for endogeneity 

of typical kitchen presence. The analysis shows the following important findings. 

Typical kitchen presence causes a 13.5 percentage point increase in the probability of 

reporting a respiratory symptom. Comparing the results using the FE model and the FE-IV 

estimation approaches suggests that women with better respiratory health are sorted into cooking.   

In terms of the effect of pollution intensity, an increase of 1 mg/m3 in the PM 2.5 mean in 

the kitchen is associated with an 11.9 percentage point increase in the probability of reporting a 

respiratory symptom for those who are typically in the kitchen. An increase of 1 mg/m3 in the 

PM 2.5 95th percentile in the kitchen is associated with a 2.3 percentage point increase in the 

probability of reporting a respiratory symptom for those who are typically in the kitchen, which 

is only 1/5 of the effect using the PM 2.5 mean as the indicator. The comparison of these two 

results implies that average exposure rather than maximum instantaneous exposure offers a better 

explanation of the health effects. 

An increase of 1 mg/m3 in the PM 2.5 mean can reduce FEV1 of a person who is 

typically in the kitchen by 0.284 liters and reduce FVC by 0.254 liters. This effect is more than 

double of the effect of smoking and underscores the importance of considering the health 

impacts of IAP.  
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The effects of using the PM 2.5 95th percentile as the IAP intensity indicator on FEV1 

and FVC are much smaller than when using the PM 2.5 mean, amounting to only 13-14% of the 

latter. This pattern is similar to the case where respiratory symptoms are used as the measure of 

health effects. Since the PM 2.5 95th percentile represents a short-period of high pollution 

intensity while the PM 2.5 mean represents the 24-hour average pollution intensity, this result 

also implies that daily average pollution intensity better explains the impact on respiratory health. 

The IAP exposure indicators do not show any statistically significant impacts on 

FEV1/FVC. Because restrictive lung disease decreases both FVC and FEV1, with near normal 

FEV1/FVC, these results imply that IAP has major impacts on restrictive lung disease rather than 

obstructive lung disease. 

Finally, the R2 statistics for regressions on spirometric indicators are much higher than the 

ones on the respiratory symptoms. This result shows that spirometry measurement is much more 

accurate in characterizing the effects of IAP. In contrast, self-reported symptoms are apparently 

much more susceptible to noise in measurement, which explains why studies in developing 

countries have reported wide-ranging odds ratios (Smith, et al, 2000).   
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Chapter 5. Household Behavior with Respect to Energy Technology Choices 

Introduction 

Why do people use household energy technologies that can make them sick or even 

cause death? What are the factors that affect household preferences for cooking energy 

technologies? In this chapter, I use the results from previous chapters to examine these 

questions.  

I apply a discrete choice model to estimate household behavior with respect to energy 

technology choices. I assume that each energy technology choice has certain attributes. How 

households value these attributes depends on their own characteristics. I assume a household 

selects an energy technology choice that maximizes its utility. The aim of the estimation is to 

quantify the factors that affect households’ energy technology choices and to provide the basis 

for further welfare estimation of alternative policy interventions. 

Energy Technology Choices 

Energy technology choices focus on stove types. However, the choice options 

considered in this chapter are slightly different than the ones in Chapter 3. Because very few 

households use improved stoves, and costs of improved stoves vary significantly among 

households and are not available in the survey, I do not consider this stove option in the 

estimation.5

Figure  5-1

 In addition, although both LPG and kerosene stoves are clean stoves, they have 

quite different fixed and operating costs, so I treat them as separate energy technology choices. 

Thus, I reclassify the energy technology choices as shown in  with nine final choices. 

 

 

                                                 
5 Many households did not pay market prices for improved stoves because improved stoves were highly subsidized 
in India and subsidy levels varied significantly. The role of improved stoves is discussed further in Chapter 6. 
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Figure  5-1. Energy Technology Choices 

 
Attributes of Energy Technology Choices  

Households choose a cooking energy technology to fulfill their cooking needs. While all 

types of cooking energy technologies have cooking functions, they differ by attributes such as 

cost, convenience, and cleanliness. For example, LPG stoves are more expensive but more 

convenient and cleaner than traditional stoves. These attributes can be considered as technical 

coefficients that do not vary with households but only by energy technology choice. However, 

attributes in this form cannot be observed directly. For example, the observed cooking time, and 

IAP levels are determined by a combination of energy technology attributes and household 

characteristics for each chosen alternative. In order to estimate technical coefficients that are 

independent of household attributes, OLS regression analysis is used when it is possible to 

estimate these attributes as a function of both the energy technology choice and household 

characteristics. This enables separating out the effects of household characteristics for each 

energy technology choice. The statistical analysis in this chapter focuses on the role of three 

attributes in the energy technology choice: convenience, cleanliness, and cooking cost. Detailed 

estimation procedures are described as follows. 

A. Convenience 

Energy Technology Choices 

One Stove Two Stoves (Primary Stove + Secondary 
 

Traditional    Kerosene LPG Traditional Kerosene Traditional Traditional   LPG LPG 

Kerosene Traditional LPG Kerosene Traditional Traditional (#2) (#3) 

(#4) (#5) (#6) (#7) (#8) (#9) 

(#1) 
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I use cooking time to measure stove convenience. I use OLS regression to separate the 

effects of household characteristics from energy technology choices. In addition to state 

dummies, I consider household size as the main household characteristic affecting cooking time 

and assume that it affects cooking time with a quadratic relationship. Household size is 

expected to have a positive effect on cooking time, but the marginal effect is expected to 

decrease as household size increases due to economies of scale. The OLS regression results are 

shown in Table 5-1.   

Table 5-1. Cooking Time Determination by Stove Type 

Regression Variable Coefficient Standard 
Error t-statistic p-value 

Energy Technology     
1—One Traditional Stove 0.856 0.257 3.330 0.001 
2—One Kerosene Stove 0.272 0.346 0.780 0.433 
3—One LPG Stove -0.179 0.305 -0.590 0.557 
4—Both Primary and Secondary 

Stoves are Traditional 0.453 0.307 1.480 0.140 
5—Primary Stove is Traditional;  

Secondary Stove is Kerosene 0.451 0.285 1.580 0.114 
6—Primary Stove is Traditional;  

Secondary Stove is LPG 0.875 0.283 3.100 0.002 
7—Primary Stove is Kerosene; 

Secondary Stove is Traditional 0.079 0.357 0.220 0.825 
8—Primary Stove is LPG; Secondary 

Stove is Traditional -0.039 0.296 -0.130 0.894 
Household Size 0.456 0.086 5.320 0.000 
Household Size Squared -0.025 0.006 -3.920 0.000 
State of Residence    

Uttarakhand 2.350 0.151 15.580 0.000 
West Bengal  1.496 0.149 10.060 0.000 
Madhya Pradesh  0.561 0.147 3.800 0.000 

Constant 0.261 0.362 0.720 0.471 
Observations 561    
R2 statistic 0.478    

 
 

All signs of coefficients are within expectations except for stove choice 8. Compared to 

the reference stove type 9, stove type 8 would normally be expected to have longer cooking 

time. However, the estimated coefficient is small and not statistically significant. 
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The average cooking time of the reference stove type is 2.64 hours. Adding the energy 

technology coefficients from Table 5-1, the estimated cooking times of various stove types are 

presented in Table 5-2. These numbers are generally consistent with the survey data reported by 

the Energy Sector Management Assistant Program (2004) where, on average, women spent 2.8 

hours on cooking (including fuel collection) when using LPG stoves, 3.2 hours when using 

kerosene stoves, and 3.5 hours when using traditional stoves.  

Table 5-2. Convenience (Cooking Time) by Energy Technology 

Choice Energy Technology Cooking Time (Hours) 
1 One Traditional Stove 3.49 
2 One Kerosene Stove 2.91 
3 One LPG Stove 2.46 
4 Both Primary and Secondary Stoves are Traditional 3.09 
5 Primary Stove is Traditional;  Secondary Stove is Kerosene 3.09 
6 Primary Stove is Traditional;  Secondary Stove is LPG 3.51 
7 Primary Stove is Kerosene; Secondary Stove is Traditional 2.72 
8 Primary Stove is LPG; Secondary Stove is Traditional 2.60 
9 Primary Stove is LPG; Secondary Stove is Kerosene 2.64 

Source: Cooking time is estimated by adding the coefficient for each energy technology choice in Table 5.1 to the 
average cooking time of the reference stove type. 
 

B. Cleanliness  

I use IAP mean concentrations in the kitchen to measure stove cleanliness. Again, I use 

OLS regression to separate the effects of household characteristics from energy technology 

choices. The Chapter 3 OLS regression of IAP determinants included household characteristics 

and stove types although the stove types were defined slightly different than the current 

categorization. The estimated coefficients were then used to predict typical IAP exposures in 

households. Here I repeat the procedure using the natural log of the predicted IAP mean 

concentrations in the kitchen as the dependent variable but with the stove classification 

illustrated in Figure  5-1 and household characteristics defined in Chapter 3. 
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The results are shown in Table 5-3. As expected, the coefficients are highly significant 

and the R2 statistic is greater than 0.995. Since the dependent variable is in the natural log form 

of IAP mean concentrations, the estimated IAP concentrations of stove type i (i = 1, 2, …,8) 

can be calculated as 9YeYi
β= , where Y9= 0.19 mg/m3 where the average IAP mean 

concentration of the reference stove type (choice 9) and β  are the corresponding coefficients in 

Table 5-3.  The resulting calculations are presented in Table  5-4. As expected, using only clean 

stoves (LPG or kerosene or both) yields the lowest IAP concentrations. Also, LPG and kerosene 

stoves do not differ significantly in terms of pollution. By switching from using one traditional 

stove to an LPG stove or a kerosene stove, an average household can reduce IAP mean 

concentrations by more than 60%, or 0.35 mg/m3.  

C. Cooking Cost  

Cooking cost includes two types of cost: stove cost and fuel cost. Stove cost can be 

considered as a fixed capital cost and fuel cost can be considered as operating cost. The 

monthly cooking cost is the sum of amortized monthly stove cost and monthly fuel cost. The 

model I introduce below assumes initially that households do not have credit constraints 

restricting upfront fixed costs of acquiring new cooking technology. However, this assumption 

may not hold in some areas in India where households do not use clean stoves because the 

upfront stove cost is high relative to income, and loans are not available for consumer goods. In 

areas where credit constraints are a major barrier, the upfront stove cost may have a relatively 

higher effect compared to the monthly fuel cost due to the shadow value of credit. In such cases, 

policies such as promoting microfinance can help households adopt cleaner energy technologies. 

I show in the Appendix to this chapter that this shadow value of credit can be accommodated in 

the model.  
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Table 5-3. Determination of Predicted Kitchen IAP Mean Concentrations by Stove Type 

Regression Variable Coefficient Standard 
Error t-statistics p-value 

Energy Technology     
1—One Traditional Stove 1.071 0.001 1294.270 0.000 
2—One Kerosene Stove 0.069 0.001 66.800 0.000 
3—One LPG Stove 0.068 0.001 73.900 0.000 
4—Both Primary and Secondary Stoves are 

Traditional 1.299 0.001 1339.300 0.000 
5—Primary Stove is Traditional;  Secondary 

Stove is Kerosene 1.049 0.001 1167.450 0.000 
6—Primary Stove is Traditional;  Secondary 

Stove is LPG 1.049 0.001 1201.860 0.000 
7—Primary Stove is Kerosene; Secondary Stove 

is Traditional 0.341 0.001 305.880 0.000 
8—Primary Stove is LPG; Secondary Stove is 

Traditional 0.339 0.001 370.780 0.000 
Wall materials     

Mud wall 0.084 0.000 224.030 0.000 
Ventilation condition (reference= poor 
ventilation     

Good ventilation -0.513 0.000 -1244.550 0.000 
Moderate ventilation -0.164 0.000 -445.410 0.000 

Kitchen location (reference= kitchen in living 
area)     

Separate kitchen inside house -0.383 0.001 -753.010 0.000 
External kitchen with outside door -0.150 0.001 -271.410 0.000 

External kitchen with inside and outside door -0.074 0.001 -137.260 0.000 
Outdoor kitchen 0.427 0.001 803.650 0.000 
Detached enclosed kitchen -0.027 0.001 -43.750 0.000 

Cooking time 0.061 0.000 490.880 0.000 
Household Size 0.049 0.000 654.960 0.000 
Median temperature 0.026 0.000 481.930 0.000 
Median humidity -0.006 0.000 -317.420 0.000 
State of Residence     

West Bengal  -0.395 0.001 -727.300 0.000 
Madhya Pradesh  -0.430 0.001 -596.130 0.000 
Tamil Nadu -1.129 0.001 -1255.760 0.000 

Constant -2.080 0.002 -1107.100 0.000 
Observations 494    
R2 statistic >0.995    
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Table 5-4. Cleanliness (IAP Mean Concentrations) by Energy Technology  

Choice Energy Technology IAP Mean 
Concentrations (mg/m3) 

1 One Traditional Stove 0.56 
2 One Kerosene Stove 0.21 
3 One LPG Stove 0.21 
4 Both Primary and Secondary Stoves are Traditional 0.70 
5 Primary Stove is Traditional;  Secondary Stove is Kerosene 0.55 
6 Primary Stove is Traditional;  Secondary Stove is LPG 0.55 
7 Primary Stove is Kerosene; Secondary Stove is Traditional 0.27 
8 Primary Stove is LPG; Secondary Stove is Traditional 0.27 
9 Primary Stove is LPG; Secondary Stove is Kerosene 0.19 

Source: Calculated as Yi = eβY9 where Y9 = 0.19 mg/m3, the average IAP mean concentration of the reference stove 
type (choice 9) and β is the corresponding coefficient in Table 5.3. 

 

I estimate the stove cost and fuel cost for each energy technology as follows. 

Stove Cost 

Since stove prices are not included in the HEED survey data, I estimate the stove cost 

based on a variety of sources. I primarily rely on stove price and lifetime information from the 

discussion forum of biomass cooking stoves hosted by the Renewable Energy Policy Project 

(2008), after cross checking the information with Venkataraman (2008), Energy Sector 

Management Assistant Program (2003 and 2004), and Thiagu and Young (1989). Although 

some variations are expected for different stove models within each type of stove, both between 

rural and urban areas, and among states, I use the following stove prices and lifetime for 

estimation: traditional stove—25 Rs with a 2-year lifetime, kerosene stove—400 Rs with a 3-

year lifetime, and LPG stove—2000 Rs with a 10-year lifetime. I use an annual discount rate of 

12% (Venkataraman, 2008) to amortize stove cost over the stove lifetime to get a constant 

amortized monthly stove cost. When two stoves are used, the fixed cost of the energy 

technology choice is the sum of the two amortized stove costs. The amortized monthly fixed 

cooking costs are summarized in Table 5-5. 
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Table 5-5. Amortized Monthly Fixed Cooking Costs by Energy Technology 

Choice Energy Technology Amortized Monthly 
Cost (Rs) 

1 One Traditional Stove 1.23 
2 One Kerosene Stove 13.88 
3 One LPG Stove 29.50 
4 Both Primary and Secondary Stoves are Traditional 2.47 
5 Primary Stove is Traditional;  Secondary Stove is Kerosene 15.11 
6 Primary Stove is Traditional;  Secondary Stove is LPG 30.73 
7 Primary Stove is Kerosene; Secondary Stove is Traditional 15.11 
8 Primary Stove is LPG; Secondary Stove is Traditional 30.73 
9 Primary Stove is LPG; Secondary Stove is Kerosene 43.38 

Source: Calculated as the amortized cost of ownership assuming a 12% discount rate where traditional, kerosene, 
and LPG stoves cost 25, 400, and 2000 Rs and have lifetimes of 2, 3, and 10 years, respectively. 
 

Fuel Cost 

I use the following steps to estimate the operating cost of each energy technology: (a) 

collect fuel price information from the survey, (b) convert the fuel price into a uniform energy 

price unit (Rs/MJ) by applying for an energy content factor, and (c) calculate the required 

monthly fuel cost of each energy technology that meets average household cooking needs.6

Most cooking fuels are available at local markets. For kerosene and LPG stoves, 

households buy kerosene and LPG from the market. For traditional stoves, the most commonly 

used cooking fuels are firewood, dung cakes, and crop residue. About a third of households buy 

traditional cooking fuels directly from the market as well. Others collect them for free. 

However, when the traditional biomass is free, considerable time and effort is required to 

collect it. The opportunity cost of this time and effort in collecting fuels is reflected by market 

fuel prices under competitive conditions. 

   

The IHDS village survey includes the market price for firewood, dung cakes, kerosene, 

and LPG. Because the IHDS village level data cannot be matched with the HEED data, I 

aggregate the fuel price data at the state level as shown in Table 5-6. As expected, prices vary 
                                                 
6 For notational purposes, “MJ” stands for “mega joule.” 
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among states. In particular, Madhya Pradesh has a relatively high kerosene price compared to 

the other three states. This may reflect a kerosene shortage experienced by Madhya Pradesh in 

2005 during which the survey was conducted.7

Table 5-6. Market Prices for Cooking Fuels  

 Nevertheless, fuel prices among the states are 

generally comparable and clean fuel prices are much higher than solid fuel prices. 

Fuel Price Unit Uttarakhand West Bengal Madhya 
Pradesh Tamil Nadu 

Firewood Rs/kg 1.81 1.25 1.35 1.96 
Dung Rs/kg 2.55 1.22 0.80 1.99 
Kerosene Rs/liter 12.44 11.00 21.42 15.76 
LPG Rs/kg 15.80 22.65 22.07 21.76 

Source: IHDS Village Survey Data 

To convert fuel prices in Table 5-6 into a uniform energy price unit, I use energy 

content factors from Habib, et al. (2004). These values are consistent with those reported by the 

International Network for Sustainable Energy (2006). The results are shown in Table 5-7. 

Because clean fuels have much higher energy content than solid fuels, the price differences 

between clean and solid fuels are not so dramatic after converting into a uniform energy price 

unit, although clean fuel prices are still 3-7 times higher than solid fuels. 

Table 5-7. Cooking Fuel Prices in MJ/kg 

Cooking Fuel Energy Content 
Factor (MJ/kg)a 

Fuel Price (Rs/MJ) 
Uttarakhand West Bengal Madhya Pradesh Tamil Nadu 

Firewood 16.2 0.11 0.08 0.08 0.12 
Dung 11.8 0.22 0.10 0.07 0.17 
Keroseneb 42.6 0.36 0.31 0.61 0.45 
LPG 45.9 0.34 0.49 0.48 0.47 

a Source: Habib, et al. (2004). 
b Kerosene has a density of 0.82 kg/liter. 

 
To estimate monthly cooking cost of each energy technology, I first estimate the unit 

fuel cost for each energy technology. For this purpose, I assume that a traditional stove uses 

                                                 
7 See, for example, the news story, “Kerosene shortage hits central India, MP sounds alarm” 
http://www.financialexpress.com/news/kerosene-shortage-hits-central-india-mp-sounds-alarm/139372/ 
accessed on March 12, 2009. 

http://www.financialexpress.com/news/kerosene-shortage-hits-central-india-mp-sounds-alarm/139372/�
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70% firewood and 30% dung based on the post monitoring data that shows an average 

household using a primary traditional stove consumes 1260 MJ of energy from firewood and 

480 MJ of energy from dung. I further assume that if both a primary and a secondary stove are 

used, the primary stove provides 80% of cooking energy and the secondary stove provides 20%. 

Applying these assumptions to Table 5-7, Table 5-8 shows unit fuel cost by energy technology. 

Finally, based on the information from Venkataraman (2008) on annual household cooking 

energy usage in India, I assume that 1570 MJ cooking energy is required for an average 

household per month. By applying this figure to Table  5-8, Table 5-9 shows monthly fuel cost 

for each energy technology. This is the estimate of monthly fuel cost for an average household 

and will vary by factors such as household size and access to clean fuel and the particular 

biomass fuel. I control for these variations in later regressions. 

The total cooking cost is then the sum of the amortized stove cost and the monthly fuel 

cost. The total cooking cost by energy technology is shown in Table  5-10.  

Table 5-8. Unit Fuel Cost (Rs/MJ) by Energy Technology 

Choice Energy Technology 
Fuel Cost (Rs/MJ) 

Uttarakhand West Bengal Madhya 
Pradesh Tamil Nadu 

1 One Traditional Stove 0.14 0.09 0.08 0.14 
2 One Kerosene Stove 0.36 0.31 0.61 0.45 
3 One LPG Stove 0.34 0.49 0.48 0.47 
4 Both Primary and Secondary 

Stoves are Traditional 
0.14 0.09 0.08 0.14 

5 Primary Stove is Traditional;  
Secondary Stove is Kerosene 

0.19 0.13 0.19 0.20 

6 Primary Stove is Traditional;  
Secondary Stove is LPG 

0.18 0.17 0.16 0.20 

7 Primary Stove is Kerosene; 
Secondary Stove is Traditional 

0.31 0.27 0.51 0.39 

8 Primary Stove is LPG; 
Secondary Stove is Traditional 

0.30 0.41 0.40 0.41 

9 Primary Stove is LPG; 
Secondary Stove is Kerosene 

0.35 0.46 0.51 0.47 

Source: Calculated from Table 5.7 assuming a traditional stove uses 70% firewood and 30% dung, and that the 
primary stove provides 80% of cooking energy and the secondary stove provides 20% when two stoves are used. 
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Table 5-9. Monthly Fuel Cost (Rs/MJ) by Energy Technology 

Choice Energy Technology 

Monthly Fuel Cost (Rs/month) 

Uttarakhand West Bengal 
Madhya 
Pradesh Tamil Nadu 

1 One Traditional Stove 224 134 124 212 
2 One Kerosene Stove 559 494 963 708 
3 One LPG Stove 540 775 755 744 
4 Both Primary and Secondary 

Stoves are Traditional 
224 134 124 212 

5 Primary Stove is Traditional;  
Secondary Stove is Kerosene 

291 206 292 311 

6 Primary Stove is Traditional;  
Secondary Stove is LPG 

287 262 250 319 

7 Primary Stove is Kerosene; 
Secondary Stove is Traditional 

492 422 795 609 

8 Primary Stove is LPG; 
Secondary Stove is Traditional 

477 647 629 638 

9 Primary Stove is LPG; 
Secondary Stove is Kerosene 

544 719 796 737 

Source: Calculated from Table 5.8 assuming an average household requires 1570 MJ cooking energy per month 
following Venkataraman (2008). 

 

Table 5-10. Total Monthly Cooking Cost (Rs/month) by Energy Technology 

Choice Energy Technology 
Monthly Cooking Cost (Rs/month) 

Uttarakhand West Bengal Madhya 
Pradesh 

Tamil 
Nadu 

1 One Traditional Stove 225 135 125 213 
2 One Kerosene Stove 573 508 977 722 
3 One LPG Stove 570 804 784 774 
4 Both Primary and Secondary Stoves 

are Traditional 
227 136 126 215 

5 Primary Stove is Traditional;  
Secondary Stove is Kerosene 

306 221 307 326 

6 Primary Stove is Traditional;  
Secondary Stove is LPG 

318 293 281 349 

7 Primary Stove is Kerosene; 
Secondary Stove is Traditional 

507 437 810 624 

8 Primary Stove is LPG; Secondary 
Stove is Traditional 

508 677 659 668 

9 Primary Stove is LPG; Secondary 
Stove is Kerosene 

587 762 840 780 

Source: Calculated from Tables 5.5 and 5.9. 

The Estimated Model  

I assume that a household has a utility function over cooking service and the numeraire, 

which represents all other goods with a unit price, and the quality attributes of the chosen 

energy technology. Household utility functions differ by household characteristics. Thus, 
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households base their technology choices on the associated quality attributes, but the value 

placed on these attributes varies with households. 

Household income plays an important role in making the stove choice because stoves 

are long-term investments. Because the income effect can be important when the fixed stove 

cost is a major household expense in selecting the energy technology choice, I forego the 

common assumption whereby income does not interact with the cost of technology in 

determining the technology choice. To represent this interaction, I assume that cooking cost 

detracts from the income available for expenditure on all other goods, and utility is concave in 

the expenditure on all other goods as approximated by a quadratic form. 

Specifically, this motivates a representation for the indirect utility function of household 

n when choosing energy technology j (j = 1,…,9) given by 

( 5-1)  njjjjnjnjnj pypyvV εγααε +⋅++⋅⋅+−+−=+= njjn zωqwβ2
21 )()(                                   

where vnj is the non-random component of utility as defined implicitly by the equation,  y is 

monthly household income, jp  is the monthly cooking cost for choice j, nw is a vector of the 

observed household characteristics that affect the households’ valuation of energy technology 

attributes, jq  is a vector of energy technology attributes for choice j, nz  represents other 

observed household characteristics, njε  is an unobserved extreme value random term with a 

zero mean, and 1α , 2α , β , jγ , and jω  are parameters to be estimated.  

  Different discrete choice models can be used to estimate the parameters depending on 

assumptions. Several possibilities based on the assumed extreme value distribution are the 

simple logit, nested logit, and mixed logit models.  

The simple logit model is the simplest and most widely used discrete choice model by 

far. This model assumes that all parameters are fixed and the error terms are distributed 
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identically and independently (iid) with type I extreme value distributions. As shown in 

McFadden (1974), under these assumptions, the probability that household n chooses stove type 

i is  

( 5-2) 
∑
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.                                                            

The advantage of using the simple logit model is that this formula is a closed form that 

is easy to estimate and interpret. However, a limitation is that it implies proportional 

substitution across alternatives, namely, independence from irrelevant alternatives (IIA). While 

the IIA property provides an accurate representation of reality in some settings, it is not 

appropriate in others. The most famous example is the red-bus-blue-bus problem. If alternatives 

can be partitioned into subsets or nests, the nested logit model and test may be more appropriate.  

  The nested logit model is often appropriate when choices are made in nests. In the case 

of energy technology choices, as shown in Figure 5.1, households may first choose how many 

stoves they would like to have and then consider what type of stoves to use. Alternatively, they 

may first choose a primary stove and then decide whether to obtain another stove. The nested 

logit model assumes all parameters are fixed, but the error terms have generalized extreme 

value (GEV) distributions. For any two alternatives that are in the same nest, the ratio of 

probabilities is independent of the existence of all other alternatives. That is, IIA must hold 

within each nest. For any two alternatives in different nests, the ratio of probabilities can 

depend on the attributes of other alternatives in the two nests. Thus, IIA does not hold in 

general for alternatives in different nests. 

If the household first chooses how many stoves to use and then which stoves to acquire, 

the probability that household n chooses energy technology j is 



 91 

( 5-3) 3,2,1,19

4

/
13

1

/

13

1

//

2

2

1

1

1

11

=









+


















= −

=

−

=

−

=

∑∑

∑
j

ee

ee
P

l

v

l

v

l

vv

nj

nlnl

nlnj

λ
λ

λ
λ

λ
λλ

                                

 9,...,4,19

4

/
13

1

/

13

1

//

2

2

1

1

2

22

=









+


















= −

=

−

=

−

=

∑∑

∑
j

ee

ee
P

l

v

l

v

l

vv

nj

nlnl

nlnj

λ
λ

λ
λ

λ
λλ

 

where 1 – 1λ is a measure of error term correlation among the first nest (among 1nε , 2nε , and 3nε ) 

and 1 – 2λ is a measure of error term correlation among the second nest (among 4nε ,…, 9nε ). If 

11 =λ  (or 12 =λ ), indicating no correlation among the unobserved components of utility for 

alternatives within the first (or second) nest, then the choice probabilities follow the simple 

logit model. 

The simple logit model and nested logit model can represent taste variation if tastes vary 

systematically with observed variables. However, if taste variation is at least partly random, 

these logit models are misspecified. As Train (2003) argued, simple logit models might be able 

to provide an adequate approximation of average tastes even when tastes are random because 

the simple logit formula seems to be fairly robust to misspecification. However, simple logit 

models may be applied in situations where they will not approximate average tastes. To 

incorporate random taste variation appropriately and fully, a mixed logit model can be useful.  

 With the mixed logit model, at least one of the parameters is assumed to be a random 

parameter and the error terms are assumed to have iid type I extreme value distributions. The 

probability that household n chooses stove type j becomes the integral of standard logit 

probabilities over a density of parameters that can be expressed as 
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where nϕ  is a vector of estimated coefficients and )( nf ϕ  is the probability density function. If 

nϕ  is a vector of fixed parameters, then the mixed logit model becomes a simple logit model. 

 The log-likelihood function is 

( 5-5) 
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The mixed logit model, unlike the simple and nested logit models, generally does not have a 

closed form solution for the integration in equation (4). Therefore, maximum simulated 

likelihood estimation is a typical method used to estimate the mixed logit model. 

Empirical Specification and Results 

 This section reports estimates using the simple, nested, and mixed logit models to 

estimate the coefficient vector nϕ . The household characteristics nz  that enter into the 

coefficients for choice specific constants include a dummy variable for living in an urban area, 

a dummy variable of owning a farm, and household size. Clean fuels are likely easier to access 

and traditional biomass fuels are likely more expensive to obtain for households in an urban 

area.  Thus, urban households are more likely to choose clean stoves such as kerosene or LPG 

stoves. Similarly, households who own a farm likely spend less effort collecting biomass fuel. 

Thus, rural households are more likely to choose traditional stoves. It is not clear how 
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household size affects household energy technology choices. As household size increases, per 

capita cooking fuel use likely decreases due to economics of scale, but overall fuel use likely 

increases, which may make switching to clean fuels harder.   

Household valuations of different stove attributes likely depend on their characteristics. 

Household income likely plays an important role in selecting stove choices because stoves are 

long-term investments. As specified in equation (5-1), cooking cost detracts from the income 

available for expenditure on all other goods (as represented by jpy − ) and utility is assumed to 

be concave in the expenditure on all other goods as approximated by a quadratic form. 

For preferences related to cooking time, the wage rate of unskilled labor by women is 

likely the major determinant. Cooking is usually done by women. In a majority of cases, the 

wage rate for unskilled labor by women likely reflects the opportunity cost of women’s time. A 

higher wage rate thus most likely causes a household to choose an energy technology that 

reduces cooking time. The wage rate data is derived from the village survey in IHDS. Again, I 

aggregate the village level wage rates to the state level as shown in Table 5-11. 

Table 5-11. Wage Rate of Unskilled Labor (Rs/Day) 

Labor Category Uttarakhand West Bengal Madhya Pradesh Tamil Nadu 
Men 78 43 49 93 
Women 56 38 45 48 
Children under 15 50 26 39 40 

Source: IHDS data. 
 

For the pollution level, understanding of the health effects of cooking smoke is key. A 

dummy variable is used to indicate the belief that cooking smoke is harmful to health. If a 

household knows that cooking smoke is harmful to health, it is likely to prefer a less polluting 

stove. The limitation associated with using this variable is that it potentially introduces 

endogeneity. For example, it could be that households who buy LPG stoves are educated by the 
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sellers about IAP when they buy the stove. If so, then awareness of IAP may be an endogenous 

indicator that explains buying LPG stoves. However, I do not expect that this is a serious 

problem because clean stove sellers generally do not go to villages to educate people and most 

people (over 90%) in the sample indicate that they are aware of IAP already. Another limitation 

of using this variable is that it is a dummy variable. Thus, it does not identify how harmful 

households believe IAP is. There can be a wide variation of how seriously households consider 

IAP’s health impact among those who believe cooking smoke is harmful. However, more 

detailed information on health beliefs is simply not available in this dataset.   

The summary statistics for the variables used in estimation are presented in Table 5-12.  

Table 5-12. Summary Statistics of Variables Explaining Cooking Technology Choice 

Variable Mean Standard 
Deviation Minimum Maximum 

Stove Attributes     
Cooking Cost (Hundred Rs/month) 4.85 2.48 1.25 9.77 
Cooking Time (Hour) 2.94 0.36 2.46 3.51 
Pollution Level (mg/m3) 0.39 0.19 0.19 0.70 

Household Characteristics     
Monthly Income (Hundred Rs) 43.75 35.57 6.22 276.03 
Unskilled Women Hourly Wage 
(Rs/hour) 5.82 6.41 4.75 7.00 
Health Belief (dummy) 0.93 0.25 0 1 
Urban (dummy) 0.33 0.47 0 1 
Own a Farm (dummy) 0.39 0.49 0 1 
Household Size 5.19 2.06 1 15 

Number of Households 499    
 

The energy technology choice model parameters are estimated in Table 5-13. Although 

estimation of various nested structures was attempted, convergence could not be achieved. 

Based on the best fit that could be achieved (a specification without interaction terms between 

household size and choice variables), the hypothesis of no nesting could not be rejected. Thus, 

only the results of using a simple logit model and a mixed logit model are presented in columns  
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Table 5-13. Stove Choice Estimation with Simple Logit and Mixed Logit Modelsa 

 (I) Simple Logit (II) Mixed Logitb 

Regression Variables Estimated 
Coefficient 

Standard 
Error 

Estimated 
Coefficient 

Standard 
Error 

Income-Cooking Cost 0.004*** 0.001 0.004*** 0.001 
Standard Deviation   0.009 0.027 
Square of (Income-Cooking Cost) -3.49E-7*** 4.8E-08 -3.5E-7*** 1E-08 
Standard Deviation   0.000 3.00E-04 
Cooking Time*Unskilled Women Wage -0.156 0.208 -0.1432 0.0154 
Standard Deviation   0.015 0.024 
IAP*Health Belief -4.455** 1.888 -4.659** 0.2164 
Standard Deviation   0.249 0.350 
Choice1 3.396* 1.906 3.354* 1.9234 
Choice2 2.507* 1.437 2.521* 1.4438 
Choice3 1.489 1.162 1.4007 1.1423 
Choice4 0.894 1.790 0.8802 1.8081 
Choice5 1.889 1.579 1.9009 1.5831 
Choice6 1.168 1.844 1.0544 1.8621 
Choice7 1.719 1.286 1.7233 1.2853 
Choice8 1.337 1.131 1.2048 1.1179 
Choice 1*Urban -2.646*** 0.864 -2.568*** 0.131 
Choice 2*Urban -1.037 1.019 -0.987 0.619 
Choice 3*Urban -1.132 0.937 -1.075 0.027 
Choice 4*Urban -2.896*** 0.950 -2.838*** 0.573 
Choice 5*Urban -1.030 0.904 -0.972 0.048 
Choice 6*Urban -2.280** 0.927 -2.561** 1.216 
Choice 7*Urban -2.592*** 0.973 -2.519*** 0.201 
Choice 8*Urban -2.059** 0.925 -1.999** 0.247 
Choice 1*Farm 1.520 1.198 1.785 0.138 
Choice 2*Farm -13.261 671.763 -4.022 0.285 
Choice 3*Farm 0.252 1.292 0.469 0.100 
Choice 4*Farm 0.921 1.249 1.201 0.058 
Choice 5*Farm 2.494** 1.223 2.693** 0.323 
Choice 6*Farm 2.890** 1.224 3.265** 0.171 
Choice 7*Farm -0.409 1.409 -0.174 0.143 
Choice 8*Farm 1.578 1.225 1.840 0.023 
Choice 1*Household Size 0.397** 0.162 0.398** 0.011 
Choice 2*Household Size -0.302 0.252 -0.338 0.029 
Choice 3*Household Size -0.006 0.169 0.002 0.024 
Choice 4*Household Size 0.618*** 0.172 0.621*** 0.023 
Choice 5*Household Size 0.206 0.172 0.207 0.005 
Choice 6*Household Size 0.470 0.165 0.466 0.001 
Choice 7*Household Size 0.090 0.208 0.058 0.086 
Choice 8*Household Size 0.158 0.166 0.171 0.032 
Observations 4491 4491 
Log Likelihood -780.416 -770.189 

a The p-values are indicated by ‘***’ for p<0.01, ‘**’ for p<0.05, and ‘*’ for p<0.10. 
b Choice 1 to Choice 8 have fixed parameters and the other variables have random parameters with a normal 
distribution. The estimated standard deviations for the interaction terms between choice alternatives and urban, 
farm, and household size variables are not shown in the Table. 
 



 96 

(I) and (II) of Table 5-13, respectively. Household fixed effects are applied to each model to 

control for household unobservables. 

Stove choice 9 (the primary stove is LPG and the secondary stove is kerosene) is the 

reference stove type. The estimated coefficients of the simple logit model in column (I) all have 

the expected signs. The estimated utility function is concave in income available for 

expenditure on other goods as expected, and the coefficients are statistically significant at the 

1% level. This means that the marginal utility of income decreases as income increases. Thus, 

households are less sensitive to cooking cost as income increases.   

For cooking time, households are more likely to choose energy technologies with 

shorter cooking time in areas with higher wage rates for unskilled women. However, this 

coefficient is not statistically significant. For the pollution level, households that know IAP is 

harmful to health are more likely to choose energy technologies with lower pollution levels, and 

this effect is statistically significant at the 5% level. In addition, the results show that 

households living in urban areas are less likely to use a traditional stove and households owning 

a farm are more likely to use a traditional stove. Larger households are more likely to use only 

traditional stoves and this effect is statistically significant. 

Column (II) in Table 5-13 is estimated using the mixed logit model assuming a normal 

distribution for the integration in equation (5-4).8

2χ

 The estimated coefficients in column (II) are 

very similar to the estimates using the simple logit model. In fact, using the likelihood ratio chi-

square test, the hypothesis that these estimates are the same as the estimates using the simple 

logit model cannot be rejected. Testing equality of column (I) to column (II) yields a  

statistic of 20.45 with 36 degrees of freedom implying a p-value of 0.9826. In fact, the 

                                                 
8 Train’s (2006) Matlab codes were adopted for nested logit and mixed logit estimation.  
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estimated standard deviations for the random variables are very small and not statistically 

significant, indicating that not much random taste variation exists in the population. Thus, the 

simple logit model works well to capture taste variations.  

Using the estimates of Column (I) in Table 5-13, I can estimate and compare how 

different factors would affect household energy technology choices. Although switching to 

clean fuels is the most effective way to reduce IAP exposures, high stove and fuel costs are 

major barriers to adoption of clean energy technologies for households, especially in rural areas. 

Therefore, I consider how LPG stove cost, fuel cost, and income level would affect household 

choices of clean energy technologies.  

First, Table 5-14 considers the case where the cost of an LPG stove declines by 50%. 

This might be accomplished by direct government subsidies or, to a lesser extent, through mass 

production and technology advancement. Results show that a dramatic reduction in the cost of 

clean stoves does little to change households’ energy technology choice. The probability that an 

average rural household would change its primary stove from a traditional stove to a clean stove 

only increases between 0.1% and 0.3%. Tamil Nadu estimates indicate the highest change of 

0.3%. 

Second, Table 5-15 considers the case where the LPG fuel price increases by 40% since 

the LPG fuel price is currently highly subsidized and the Indian government is considering 

phasing out the subsidy. In this case, the LPG price increase would only slightly increase the 

use of traditional fuels. The probability that an average rural household would change to a 

traditional primary stove from a clean primary stove is between 0.1% and 3.1%. In terms of 

state of residence, phasing out the LPG subsidy has more noticeable impacts in Madhya 

Pradesh and Tamil Nadu than in Uttarakhand and West Bengal.    
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Table 5-14. Change in Energy Technology Choice Probabilities for an Average Rural 
Household if LPG Stove Cost is Reduced by 50%. 

Choice Energy Technology Uttarakhand West Bengal 
Before After Change Before After Change 

1 One Traditional Stove 40.0% 39.8% -0.3% 48.1% 47.9% -0.2% 
2 One Kerosene Stove 0.3% 0.3% 0.0% 2.0% 2.0% 0.0% 
3 One LPG Stove 2.5% 2.6% 0.0% 4.4% 4.5% 0.0% 

4 
Both Primary and Secondary 
Stoves are Traditional 7.2% 7.2% 0.0% 9.6% 9.6% 0.0% 

5 
Primary Stove is Traditional;  
Secondary Stove is Kerosene 11.6% 11.5% -0.1% 6.9% 6.9% 0.0% 

6 
Primary Stove is Traditional;  
Secondary Stove is LPG 25.2% 25.5% 0.2% 14.2% 14.3% 0.1% 

7 
Primary Stove is Kerosene; 
Secondary Stove is Traditional 1.7% 1.7% 0.0% 5.2% 5.2% 0.0% 

8 
Primary Stove is LPG; Secondary 
Stove is Traditional 10.9% 11.0% 0.1% 8.8% 8.8% 0.0% 

9 
Primary Stove is LPG; Secondary 
Stove is Kerosene 0.4% 0.4% 0.0% 0.8% 0.8% 0.0% 

Having a clean stove as a primary stove 15.9% 16.0% 0.1% 21.3% 21.3% 0.1% 

Choice Energy Technology Madhya Pradesh Tamil Nadu 
Before After Change Before After Change 

1 One Traditional Stove 55.5% 55.0% -0.5% 51.9% 51.5% -0.4% 
2 One Kerosene Stove 0.4% 0.4% 0.0% 1.8% 1.8% 0.0% 
3 One LPG Stove 1.9% 1.9% 0.1% 4.0% 4.1% 0.1% 

4 
Both Primary and Secondary 
Stoves are Traditional 7.8% 7.7% -0.1% 9.5% 9.5% -0.1% 

5 
Primary Stove is Traditional;  
Secondary Stove is Kerosene 10.4% 10.3% -0.1% 7.9% 7.8% -0.1% 

6 
Primary Stove is Traditional;  
Secondary Stove is LPG 16.4% 16.8% 0.5% 11.4% 11.7% 0.3% 

7 
Primary Stove is Kerosene; 
Secondary Stove is Traditional 1.6% 1.6% 0.0% 5.3% 5.3% 0.0% 

8 
Primary Stove is LPG; Secondary 
Stove is Traditional 5.8% 6.0% 0.2% 7.4% 7.5% 0.2% 

9 
Primary Stove is LPG; Secondary 
Stove is Kerosene 0.3% 0.3% 0.0% 0.8% 0.8% 0.0% 

Having a clean stove as a primary stove 10.0% 10.2% 0.2% 19.3% 19.5% 0.3% 
 

Third, Table 5-16 considers the case where the 50% reduction in the cost of an LPG 

stove is accompanied by 10% increase in household income. In this case, the probability that an 

average rural household would switch to a clean primary stove is between 1.3% and 2.3%. The  
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probability of change of 2.3% is estimated for West Bengal. Comparing to the case in Table 5-

14, it seems that households’ energy technology choices are more responsive to income changes. 

Finally, Table 5-17 considers the case where household income is doubled. These 

results show that an average rural household would have a considerably higher probability of  

Table 5-15. Change in Energy Technology Choice Probabilities for an Average Rural 
Household if LPG Fuel Price Increases by 40% 

Choice Energy Technology Uttarakhand West Bengal 
Before After Change Before After Change 

1 One Traditional Stove 40.0% 41.1% 1.0% 48.1% 49.3% 1.2% 
2 One Kerosene Stove 0.3% 0.4% 0.0% 2.0% 2.1% 0.1% 
3 One LPG Stove 2.5% 2.5% 0.0% 4.4% 4.9% 0.5% 

4 
Both Primary and Secondary 
Stoves are Traditional 7.2% 7.3% 0.1% 9.6% 9.7% 0.1% 

5 
Primary Stove is Traditional;  
Secondary Stove is Kerosene 11.6% 11.8% 0.2% 6.9% 7.0% 0.1% 

6 
Primary Stove is Traditional;  
Secondary Stove is LPG 25.2% 24.4% -0.8% 14.2% 12.9% -1.3% 

7 
Primary Stove is Kerosene; 
Secondary Stove is Traditional 1.7% 1.7% 0.0% 5.2% 5.3% 0.1% 

8 
Primary Stove is LPG; Secondary 
Stove is Traditional 10.9% 10.4% -0.5% 8.8% 8.2% -0.6% 

9 
Primary Stove is LPG; Secondary 
Stove is Kerosene 0.4% 0.4% 0.0% 0.8% 0.7% -0.1% 

Having a clean stove as a primary stove 15.9% 15.4% -0.5% 21.3% 21.2% -0.1% 

Choice Energy Technology Madhya Pradesh Tamil Nadu 
Before After Change Before After Change 

1 One Traditional Stove 55.5% 58.5% 2.9% 51.9% 54.9% 3.0% 
2 One Kerosene Stove 0.4% 0.4% 0.0% 1.8% 1.9% 0.1% 
3 One LPG Stove 1.9% 1.1% -0.8% 4.0% 2.9% -1.1% 

4 
Both Primary and Secondary 
Stoves are Traditional 7.8% 8.1% 0.4% 9.5% 10.0% 0.5% 

5 
Primary Stove is Traditional;  
Secondary Stove is Kerosene 10.4% 10.9% 0.5% 7.9% 8.3% 0.4% 

6 
Primary Stove is Traditional;  
Secondary Stove is LPG 16.4% 15.1% -1.2% 11.4% 10.6% -0.8% 

7 
Primary Stove is Kerosene; 
Secondary Stove is Traditional 1.6% 1.7% 0.1% 5.3% 5.6% 0.3% 

8 
Primary Stove is LPG; Secondary 
Stove is Traditional 5.8% 4.0% -1.8% 7.4% 5.3% -2.1% 

9 
Primary Stove is LPG; Secondary 
Stove is Kerosene 0.3% 0.2% -0.1% 0.8% 0.6% -0.2% 

Having a clean stove as a primary stove 10.0% 7.4% -2.6% 19.3% 16.2% -3.1% 
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Table 5-16. Change in Energy Technology Choice Probabilities for an Average Rural 
Household if LPG Stove Cost is Reduced by 50% and Income increases by 10%. 
 

Choice Energy Technology Uttarakhand West Bengal 
Before After Change Before After Change 

1 One Traditional Stove 40.0% 38.8% -1.3% 48.1% 46.2% -1.8% 
2 One Kerosene Stove 0.3% 0.3% 0.0% 2.0% 2.1% 0.1% 
3 One LPG Stove 2.5% 2.8% 0.3% 4.4% 5.3% 0.9% 

4 
Both Primary and Secondary 
Stoves are Traditional 7.2% 7.0% -0.2% 9.6% 9.3% -0.4% 

5 
Primary Stove is Traditional;  
Secondary Stove is Kerosene 11.6% 11.5% -0.1% 6.9% 6.7% -0.1% 

6 
Primary Stove is Traditional;  
Secondary Stove is LPG 25.2% 25.5% 0.2% 14.2% 14.1% 0.0% 

7 
Primary Stove is Kerosene; 
Secondary Stove is Traditional 1.7% 1.8% 0.1% 5.2% 5.4% 0.2% 

8 
Primary Stove is LPG; 
Secondary Stove is Traditional 10.9% 11.8% 0.9% 8.8% 9.8% 1.1% 

9 
Primary Stove is LPG; 
Secondary Stove is Kerosene 0.4% 0.5% 0.0% 0.8% 0.9% 0.1% 

Having a clean stove as a primary stove 15.9% 17.2% 1.3% 21.3% 23.6% 2.3% 

Choice Energy Technology 
Madhya Pradesh Tamil Nadu 

Before After Change Before After Change 
1 One Traditional Stove 55.5% 53.8% -1.7% 51.9% 50.1% -1.8% 
2 One Kerosene Stove 0.4% 0.4% 0.0% 1.8% 2.0% 0.1% 
3 One LPG Stove 1.9% 2.2% 0.3% 4.0% 4.5% 0.6% 

4 
Both Primary and Secondary 
Stoves are Traditional 7.8% 7.5% -0.2% 9.5% 9.2% -0.3% 

5 
Primary Stove is Traditional;  
Secondary Stove is Kerosene 10.4% 10.4% 0.0% 7.9% 7.8% -0.1% 

6 
Primary Stove is Traditional;  
Secondary Stove is LPG 16.4% 16.9% 0.5% 11.4% 11.7% 0.3% 

7 
Primary Stove is Kerosene; 
Secondary Stove is Traditional 1.6% 1.8% 0.2% 5.3% 5.7% 0.3% 

8 
Primary Stove is LPG; 
Secondary Stove is Traditional 5.8% 6.6% 0.8% 7.4% 8.1% 0.8% 

9 
Primary Stove is LPG; 
Secondary Stove is Kerosene 0.3% 0.4% 0.1% 0.8% 0.9% 0.1% 

Having a clean stove as a primary stove 10.0% 11.4% 1.4% 19.3% 21.2% 1.9% 
  
adopting a clean stove. The probability of switching to a clean stove as the primary stove 

increases between 14% and 24% for rural households with the highest likelihood of change 

occurring in West Bengal. This analysis implies that large scale switching to clean fuels in rural 

India is unlikely to occur without substantial increases in household income. This result is 
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consistent with the conclusions in Zhang et al (2007) and Zhang and Vanneman (2008) that fuel 

switching on a large scale will not occur until rural areas have seen a substantial amount of 

development. 

Table 5-17. Change in Energy Technology Choice Probabilities for an Average Rural 
Household if Income is Doubled. 

Choice Energy Technology Uttarakhand West Bengal 
Before After Change Before After Change 

1 One Traditional Stove 40.0% 29.6% -10.4% 48.1% 31.7% -16.4% 
2 One Kerosene Stove 0.3% 0.4% 0.1% 2.0% 2.7% 0.7% 
3 One LPG Stove 2.5% 5.9% 3.3% 4.4% 15.4% 11.0% 

4 
Both Primary and Secondary 
Stoves are Traditional 7.2% 5.4% -1.9% 9.6% 6.2% -3.4% 

5 
Primary Stove is Traditional;  
Secondary Stove is Kerosene 11.6% 10.5% -1.1% 6.9% 5.1% -1.7% 

6 
Primary Stove is Traditional;  
Secondary Stove is LPG 25.2% 24.7% -0.5% 14.2% 12.0% -2.2% 

7 
Primary Stove is Kerosene; 
Secondary Stove is Traditional 1.7% 2.7% 1.0% 5.2% 6.2% 1.0% 

8 
Primary Stove is LPG; Secondary 
Stove is Traditional 10.9% 19.6% 8.8% 8.8% 18.4% 9.7% 

9 
Primary Stove is LPG; Secondary 
Stove is Kerosene 0.4% 1.1% 0.7% 0.8% 2.2% 1.4% 

Having a clean stove as a primary stove 15.9% 29.8% 13.9% 21.3% 45.0% 23.7% 

Choice Energy Technology Madhya Pradesh Tamil Nadu 
Before After Change Before After Change 

1 One Traditional Stove 55.5% 42.4% -13.1% 51.9% 37.6% -14.3% 
2 One Kerosene Stove 0.4% 1.2% 0.8% 1.8% 3.6% 1.7% 
3 One LPG Stove 1.9% 5.3% 3.5% 4.0% 9.9% 6.0% 

4 
Both Primary and Secondary 
Stoves are Traditional 7.8% 6.0% -1.8% 9.5% 6.9% -2.6% 

5 
Primary Stove is Traditional;  
Secondary Stove is Kerosene 10.4% 10.5% 0.1% 7.9% 7.0% -0.9% 

6 
Primary Stove is Traditional;  
Secondary Stove is LPG 16.4% 15.9% -0.5% 11.4% 10.8% -0.6% 

7 
Primary Stove is Kerosene; 
Secondary Stove is Traditional 1.6% 4.7% 3.1% 5.3% 8.5% 3.1% 

8 
Primary Stove is LPG; Secondary 
Stove is Traditional 5.8% 12.9% 7.1% 7.4% 13.6% 6.3% 

9 
Primary Stove is LPG; Secondary 
Stove is Kerosene 0.3% 1.1% 0.8% 0.8% 2.0% 1.2% 

Having a clean stove as a primary stove 10.0% 25.3% 15.3% 19.3% 37.6% 18.3% 
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Conclusions 

In this chapter, I have applied a novel approach to model household behavior regarding 

energy technology choices. I assume that households choose a cooking energy technology 

based on its attributes: cooking cost, convenience, and cleanliness. Cooking cost includes 

amortized stove cost and fuel cost. Convenience is measured by cooking time, and cleanliness 

is measured as IAP levels. I assume these attributes do not vary among households, but that 

household valuation of these attributes depends on household characteristics. Because the 

income effect plays an important role in selecting energy technology choices, I use a form that 

models the utility of income available for expenditure on other goods, which implicitly assumes 

that cooking services are separable from all other goods in utility. 

Results show that the marginal utility of income decreases as income increases and that 

this effect carries over into the cooking technology choice. Thus, households are less sensitive 

to cooking cost as income increases. Results also show that women’s opportunity cost of time 

affects households’ valuation of the convenience of cooking energy technologies. Households 

are more likely to choose energy technologies with shorter cooking time in areas with higher 

wage rates for unskilled women, although this effect is not statistically significant. With respect 

to cleanliness, results show that households that know IAP is harmful to health are more likely 

to choose energy technologies with lower pollution levels.  

The estimated model has important implications regarding what policy measures are 

likely to cause a significant increase in use of clean cooking technology.  Results imply that 

rural households barely respond to a large 50% subsidy on LPG stoves and only slightly 

increase the use of clean stoves with a 10% increase in income in addition to a 50% subsidy of 

LPG stoves. On the other hand, rural households are not very responsive to a substantial LPG 
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price increase, such as might be the result of discontinuing LPG subsidies. The probability of 

switching from a clean primary stove to a traditional primary stove is between 0.1% and 3.1% if 

LPG price increases by 40%. Rural households appear to be more responsive to income 

changes, but a major improvement in income is required to substantially improve IAP levels. If 

income is doubled, 14%-24% of rural households would switch their primary stove from a 

traditional stove to a clean stove. This analysis confirms that fuel switching on a large scale will 

not occur in rural areas unless substantial development occurs in India’s rural economies. 

By quantifying the factors that affect households’ energy technology choices, the 

estimation results from this chapter provide the basis for economic welfare evaluation 

associated with alternative policy interventions in the next chapter. 



 104 

Appendix to Chapter 5 

How the Shadow Value of Credit Can Be Accommodated in the Model 

Equation (5-1) can be rewriten as follows by adding an inconsequential constant term: 

 njnjjjnjnjnj pypyvV εγαααε +⋅++⋅⋅+−+−+=+= nnjjn zωqwβ2
210 )()( . 

To see that this model can accommodate a shadow value of credit for poor households, 

let j j jp p s= +  where pj is as defined in equation (5-1) and sj represents an additional shadow 

value associated with a credit constraint that restricts financing of the fixed cost of technology.  

If sj is non-zero, then the first three right-hand terms of the utility specification become 
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This implies that the additional shadow value effect of a credit constraint simply adds the term 

2
2 1 22 ( )j j j js s s y pα α α− − −  to the utility specification for the logit estimation.  If a variable 

were available to measure the intensity of the credit constraint, then this variable could be used 

in place of sj to estimate the model and test for the effect of a credit constraint. 

 Alternatively, if the shadow value of a credit constraint is a linearly decreasing function 

of income where income is measured by y – pj, then 

(5-6) 0 1( ).j js c c y p= − −  

Substitution of (5-6) yields 
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This implies that the first three right-hand terms of the utility specification become 
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Thus, under the assumption of (5-6), the presence of a nontrivial credit constraint is readily 

accommodated by the utility specification used in this chapter without further modification. 

However, this specification does not allow testing for the presence of a credit constraint 

because its role is implicitly represented in the utility specification. While other arbitrary 

specifications could be used in place of (5-6), some of which could permit testing for the 

presence of an effective credit constraint, this derivation shows that such tests would not be 

inconclusive because they would be dependent on an arbitrary specification. Thus, good 

estimates of the shadow value of credit are needed for reliable estimation and testing under 

constrained credit. 
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Chapter 6. Welfare Analysis and Policy Implications 

Introduction 

With the tight budgetary constraints that usually exist in Indian households, prioritizing 

public sector investments on the basis of expected benefits is essential. The purpose of this 

chapter is to explore the magnitude of the welfare impacts of different policy intervention 

scenarios based on the model estimated in the previous chapter and to provide policy 

recommendations. I first review the strategy for measuring welfare in discrete choice models, 

and then estimate welfare effects for leading policy scenarios. I then discuss policy implications 

with a focus on practical application and potential failures of improved stove programs and 

provide conclusions.  

Measuring Welfare in Discrete Choice Models 

The welfare effect of a change in the quality characteristics of one or more alternatives 

in discrete choice models can be measured by compensating variation (CV). Depending on the 

availability of information to the agent when compensation is paid, CV can be measured as ex 

post CV or ex ante CV. In the random indirect utility model ( , , )j jV y p ε− jq  with income y where 

discrete choice j has price pj and quality characteristic vector qj, and the random term jε  

associated with choice j is known to a household at the time of compensation, ex post CV is the 

amount of money that must be taken away from the household after the change in qj to restore 

the utility level the household would have had without the change in qj. If the random term jε  

is not known to the household at the time of compensation, then ex ante CV is the appropriate 

welfare measure, which is the amount of money that must be taken away from the household 

given the change in qj to restore the expected utility level the household would have had 

without the change in qj (Just et al, 2004).  
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In the case of energy technology choices where a different random term is associated 

with each technology alternative, the random term associated with the technology used prior to 

the change may be known to the household by experience. However, the value of random terms 

associated with technology choices not previously selected may be unknown to the household. 

Furthermore, even though random terms may be known to the households, estimation of them 

by the researcher may be impossible without additional survey data that can identify them. Lack 

of information about the random term associated with either the initial or subsequent 

technology prevents calculation of ex post CV because the compensation required by each 

household depends on the household’s random term for both initial and subsequent selected 

technologies. 

Stated another way, revealed preference data permits estimation of agents’ actions and 

thus preferences in response to information available at the time of choice, but such possibilities 

do not exist in the ex post context because no choices are observed once a household has 

incurred the fixed cost of a new technology, i.e., the technology choice cannot be corrected 

costlessly once a little experience is gained with a new technology.  Hence, I regard ex post CV 

measurement as infeasible. Therefore, assuming households do not know both random terms a 

priori, I measure ex ante CV as 

( 6-1)    0 1( , ) ( , )j jv y p v y CV p− = − −0 1
j jq q  

where ( , ) [ ( , , )]j j jv y p E V y p ε− = −j jq q  and superscripts 0 and 1 denote the initial and 

subsequent situations, respectively. I allow pj to be changed to incorporate the scenarios that 

affect stove cost (e.g., a stove price subsidy) or fuel cost (which is affected by both stove 

efficiency and fuel price). 
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 For this case where disturbances are identically and independently distributed with type 

I extreme value distributions, the log sum identity implies 

∑
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where C is a constant. As explained by Bockstael and McConnell (2007), C represents Euler’s 

constant, although they make the argument that this measurement is only true up to an unknown 

constant because the absolute level of utility can never be measured.     

Assuming that the current technology is the welfare maximizing technology in the initial 

situation and by substituting the log sum identity, equation (6-1) can be written as 
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because the C’s cancel out. The CV defined by (6-2) is the ex ante compensating variation, 

which measures the amount of money taken from income that will yield the same expected 

utility of the preferred choice after the change in qj and/or pj as the expected utility of the 

preferred choice before the change. This equation does not yield an explicit solution in general, 

but can be solved numerically using estimates from Chapter 5. 

Welfare Analysis of Policy Scenarios 

Since IAP caused by burning biomass in traditional stoves is one of the top preventable 

health risks in India, the main objective of policy intervention is to mitigate the negative effects 

of traditional biomass use. A number of options are available, ranging from behavioral change 

to better kitchen ventilation and including use of more efficient stoves or the use of cleaner 
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fuels. As analyzed in Chapter 5, large scale switching to clean fuels is unlikely to occur unless 

household income is substantially increased. Thus, I focus on policy intervention designed to 

promote improved stoves and improving kitchen ventilation rather than adoption of clean stoves. 

In addition, because LPG is currently highly subsidized in India and removal of the subsidy is 

under consideration, I consider a policy scenario where the government removes the LPG 

subsidy.  

The term ‘improved stove’ is a general term that refers to a stove that has improved 

features compared to a traditional stove but still use traditional biomass. With this broad use of 

the term, improved stoves can have a wide range of performance measures and costs. The 

improved features mainly include efficiency, cleanliness, and convenience. All improved stoves 

are designed to improve fuel efficiency and some advanced improved stoves can save more 

than 50% of traditional fuel use compared to the traditional stove. If a chimney is included with 

an improved stove, IAP from traditional fuel combustion can be significantly reduced. Even if a 

chimney is not included, IAP from improved stoves can still be considerably less than from 

traditional stoves because less fuel is used. In addition, improved stoves can save cooking time 

due to improved stove efficiency.  

As discussed in Chapter 2, although India initiated the National Program for Improved 

Chulhas (NPIC) in 1983, it was terminated due to a low continuing adoption rate. Only 5% of 

households used improved stoves in the survey. Because the number of households using 

improved stoves was so small, I did not include this stove option when estimating household 

behavior with respect to energy technology choices in Chapter 5. Further, recent reviews by 

Krishna (2007) and Barnes et al (forthcoming) have found that the poor stove design, low 

quality and durability, ineffective subsidy structure, and lack of after-sale service and 
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maintenance are major contributors to the NPIC’s failure. Thus, results based on inferior 

improved stoves may have been of little value for evaluating future policy alternatives. 

Due to concerns that households would not pay higher prices for improved stoves, the 

NPIC focused on low cost improved stoves made from mud or cement with poor design and 

low quality. The cost of such an improved stove was about 180 to 200 Rupees and was 

designed to be only 20-30% more efficient than traditional stoves (Barnes et al, forthcoming). 

Many such improved stoves turned out to have low durability and were broken much earlier 

than the claimed two-year lifetime. The low durability was due to poor maintenance, stove 

modifications by users, and deterioration of the stoves themselves. This type of improved stove 

stands in sharp contrast to the improved stoves that have been promoted in Guatemala. Costs of 

these improved stoves ranged from $80-$1109

Subsidies on stove costs accounted for the largest share (50%) of government support of 

the NPIC. However, they were not effective. According to the policy of NPIC, a subsidy of up 

to one half of the stove cost was given as a direct discount to all national program beneficiaries. 

At the village level, user contributions varied widely across household categories. Households 

in backward classes received additional subsidies from some villages and paid little or nothing 

(Barnes et al, forthcoming). Table 6-1 gives an example of the cost and subsidy structure of 

improved stoves in the NPIC. Although subsidies encouraged households to purchase them, 

once the stoves were purchased, because no follow-up subsidies were offered for spare parts 

 and users of the improved stove reported a 

savings in firewood consumption of 50-67% (Energy Sector Management Assistance Program, 

2004b). These improved stoves last at least four years and some good-quality stoves at the 

higher end of the cost range can last 10 years or more. 

                                                 
9 Some stoves were reported to cost as much as $154-$167 due to transport conditions. 
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and maintenance, many households chose not to continue to use them when some parts failed to 

work properly. 

Table 6-1. Cost and Subsidy Structure of Improved Stoves in the NPIC 

 
Cost in Rs (US$) 

Fixed cement two-
pot Laxmi with 

chimney 

Fixed cement two-pot 
Parvati without 

chimney 

Two-pot mud 
stove  

with chimney 
Unit 200 (4.2) 180 (3.8) 180 (3.8) 
Central subsidy 80 (1.7) 80 (1.7) 40 (0.8) 
Labor cost covered by non-
central subsidy 30 (0.6) 30 (0.6) 30 (0.6) 

Beneficiary share 90 (1.9) 70 (1.5) 110 (2.3) 
Sources: Barnes et al (forthcoming). 

Barnes et al (forthcoming) find that households that benefited from the largest subsidies 

exhibited the poorest maintenance. Having paid nothing for an easily accessible product, these 

households did not appreciate its benefits. This shortcoming was compounded by the local 

administration’s failure to conduct awareness-raising activities on the benefits of stove 

maintenance and how to perform it. Within six months, these poorly maintained stoves fell into 

disuse. Furthermore, the high percentage of subsidies on stove costs provided by the 

government has created market distortions that make it impossible for stove manufacturing 

companies to compete freely, which further caused the program to be financially unsustainable. 

Since improved stoves can have many advantages over traditional stoves, especially on 

saving fuel and removing smoke, the policy makers in India may consider reviving the 

improved stove program. However, before redesign of the improved stove program, it is 

important to understand how much households are willing to pay for improved features 

included in improved stoves. This will help policy makers to understand whether households 

prefer high-cost, high-quality stoves or low-cost, low-quality stoves, and whether subsidies on 

stove costs are necessary for households to purchase improved stoves. 

I consider three scenarios characterized by stylized hypothetical improved stoves: 
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Scenario 1. Introduction of advanced improved stoves that can reduce fuel cost by 50%, 

reduce IAP by 50%, and reduce cooking time by 12% (about 25 minutes). These characteristics 

are comparable to the designed performance of the improved stoves seen in Guatemala. 

Scenario 2. Introduction of improved stoves that can reduce fuel cost by 25%, reduce 

IAP by 10%, and reduce cooking time by 3% (about 6 minutes). These characteristics are 

comparable to the designed performance of the improved stoves with chimneys in the NPIC. 

Scenario 3

Because improved stoves were not included as an option in the estimated model of 

energy technology choice in Chapter 5, improved characteristics are applied to traditional 

stoves directly, which is equivalent to replacing traditional stoves with improved stoves. In 

other words, inefficient traditional stoves are not regarded as an option in these three policy 

scenarios.  Therefore, welfare analysis for these three policy scenarios does not examine 

voluntary adoption of improved stoves in place of traditional stoves, but intends to evaluate 

welfare change or willingness to pay for improvement of certain attributes of traditional stoves 

as if use of improved stoves is imposed. These policy scenarios can also be considered as 

phasing out inefficient traditional stoves by imposing minimum energy efficiency requirements 

for stoves that use traditional biomass, in which case inefficient traditional stoves would no 

longer be an option. In this case, different stove attributes in the policy scenarios would 

. Introduction of efficiency-only improved stoves that can reduce fuel cost by 

25% without reducing IAP and cooking time. These characteristics are comparable to the 

designed performance of the improved stoves without chimneys in the NPIC. 
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represent the various requirements. In fact, some countries such as Brazil and Russia have 

established minimum energy efficiency requirements for cooking appliances (gas).10

The detailed changes in stove attributes associated with each scenario are shown in 

Tables 6-2, 6-3, and 6-4.  

    

Table 6-2. Changes in Stove Attributes Under Scenario 1  

Choice Energy Technology 
Monthly Cooking Cost (Rs/month) IAP Mean 

Concen-
trations 
(mg/m3) 

Cooking 
Time 

(Hours) 
Uttarakhand West 

Bengal 
Madhya 
Pradesh 

Tamil 
Nadu 

1 One Improved Stove 113 68 63 107 0.28 3.08 

4 
Both Primary and 
Secondary Stoves are 
Improved 

115 69 64 109 0.35 2.68 

5 
Primary Stove is 
Improved;  Secondary 
Stove is Kerosene 

217 168 257 242 0.28 2.67 

6 
Primary Stove is 
Improved;  Secondary 
Stove is LPG 

228 239 231 264 0.28 3.10 

7 
Primary Stove is 
Kerosene; Secondary 
Stove is Improved 

485 424 798 603 0.22 2.72 

8 
Primary Stove is LPG; 
Secondary Stove is 
Improved 

485 664 647 647 0.22 2.60 

 
Improving kitchen ventilation can also reduce indoor air pollution. This can be 

accomplished by advocating behavioral change, such as open windows during cooking or more 

dramatic measures such as changing stove location, enlarging windows, adding a vent, or 

adjusting kitchen structures. The ventilation policy scenario considered here is: 

Scenario 4

                                                 
10 See the Collaborative Labeling and Appliance Standards Program as described at 

. Adoption of a policy of advocating behavioral change to improve kitchen 

ventilation that achieves an IAP reduction of 20% for those households that have poor 

ventilation conditions. As discussed in Chapter 3 and shown in Table 3-3, compared to poor 

http://www.clasponline.org/clasp.online.worldwide.php?productinfo=52#Countries (website was accessed on July 
6, 2009). 

http://www.clasponline.org/clasp.online.worldwide.php?productinfo=52#Countries�
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ventilation, moderate ventilation can reduce IAP by 15% and good ventilation can reduce IAP 

by 40%. This policy scenario chooses a 20% target assuming that poor ventilation conditions 

can be improved to moderate ventilation conditions through relatively simple behavior change. 

Table 6-5 shows IAP levels associated with various technology choices under this scenario. 

Table 6-3. Changes in Stove Attributes Under Scenario 2  

Choice 
 Energy Technology 

Monthly Cooking Cost (Rs/month) IAP Mean 
Concen-
trations 
(mg/m3) 

Cooking 
Time 

(Hours) 
Uttarakhand West 

Bengal 
Madhya 
Pradesh 

Tamil 
Nadu 

1 One Improved Stove 169 102 94 160 0.50 3.39 

4 
Both Primary and 
Secondary Stoves are 
Improved 

171 103 95 162 0.63 2.99 

5 
Primary Stove is 
Improved;  Secondary 
Stove is Kerosene 

262 194 282 284 0.50 2.98 

6 
Primary Stove is 
Improved;  Secondary 
Stove is LPG 

273 266 256 307 0.50 3.41 

7 
Primary Stove is Kerosene; 
Secondary Stove is 
Improved 

496 431 804 613 0.27 2.72 

8 
Primary Stove is LPG; 
Secondary Stove is 
Improved 

497 671 653 658 0.27 2.60 

 
 

Table 6-4. Changes in Stove Attributes Under Scenario 3  

Choice Energy Technology 
Monthly Cooking Cost (Rs/month) 

Uttarakhand West Bengal Madhya 
Pradesh Tamil Nadu 

1 One Improved Stove 169 102 94 160 

4 Both Primary and Secondary 
Stoves are Improved 171 103 95 162 

5 Primary Stove is Improved;  
Secondary Stove is Kerosene 262 194 282 284 

6 Primary Stove is Improved;  
Secondary Stove is LPG 273 266 256 307 

7 Primary Stove is Kerosene; 
Secondary Stove is Improved 496 431 804 613 

8 Primary Stove is LPG; Secondary 
Stove is Improved 497 671 653 658 
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Table 6-5. Changes in Stove Attributes Under Scenario 4 

Choice Energy Technology IAP Mean Concentrations 
(mg/m3) 

1 One Traditional Stove 0.45 
2 One Kerosene Stove 0.17 
3 One LPG Stove 0.17 
4 Both Primary and Secondary Stoves are Traditional 0.56 
5 Primary Stove is Traditional;  Secondary Stove is Kerosene 0.44 
6 Primary Stove is Traditional;  Secondary Stove is LPG 0.44 
7 Primary Stove is Kerosene; Secondary Stove is Traditional 0.22 
8 Primary Stove is LPG; Secondary Stove is Traditional 0.22 
9 Primary Stove is LPG; Secondary Stove is Kerosene 0.15 

 

The Government of India has been spending billions of dollars each year subsidizing 

kerosene and LPG. For example, the government allocated an Rs 81 billion subsidy 

(approximately US$1.8 billion) for fiscal year 2003–04 (Energy Sector Management Assistant 

Program, 2003). The subsidized price in New Delhi as of February 2003 was Rs 241/cylinder 

while the unsubsidized price was Rs 469/cylinder. Due to a number of problems with the fuel 

subsidies, such as a fiscal deficit, market distortions, and supply constraints, government 

subsidies are expected to decline substantially in future years. Because this reduction has the 

potential effect of increasing IAP, I consider a final policy scenario to examine the magnitude 

of this impace. Because kerosene is also often used for lighting in rural India when electricity is 

not available or unreliable my model is able to capture the full welfare effect of eliminating the 

kerosene subsidy. Therefore, I consider: 

Scenario 5. Phase out the subsidy on LPG by increasing LPG fuel price by 40%. The 

reason I consider 40% is that the LPG price in this data set ranges from Rs 270/cylinder to Rs 

340/cylinder, suggesting that the subsidize level was not as high in many areas as in New Delhi. 

A major concern associated with phasing out the LPG subsidy is that households now using 

clean fuel may switch back to traditional fuels. However, as shown in Chapter 5, the LPG price 

increase causes the use of traditional fuels to increase only slightly. Table 6-6 shows how much 
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cooking cost changes (in the cases where cooking cost changes) with various technology 

choices under this scenario. 

Table 6-6. Changes in Stove Attributes Under Scenario 5 

Choice Energy Technology 
Monthly Cooking Cost (Rs/month) 

Uttarakhand West Bengal Madhya Pradesh Tamil 
Nadu 

3 One LPG Stove 771 1099 1072 1057 

6 Primary Stove is Traditional;  
Secondary Stove is LPG 347 340 326 394 

8 Primary Stove is LPG; Secondary 
Stove is Traditional 666 910 886 892 

9 Primary Stove is LPG; Secondary 
Stove is Kerosene 746 995 1067 1004 

 
 
Policy Implications 

Welfare effects measured as expected compensating variation as defined in equation (6-

2) are summarized in Table 6-7 by policy scenario.  

Table 6-7. Average Household Welfare Effects by Policy Scenario 

Welfare Effects 
Policy Scenarios 

Scenario 1 Scenario 2 Scenario 3 Scenario 4* Scenario 5 
ECV 471 123 31 136 -44 

Urban 348 84 23 109 -70 
Rural 532 142 35 145 -31 
Uttarakhand 514 135 37 106 -45 
West Bengal 442 111 24 169 -54 
Madhya Pradesh 439 112 24 168 -36 
Tamil Nadu 490 132 38 109 -41 

*Welfare effects are for those households who have poor ventilation conditions. 

A. An Improved Stove Program Emphasizing Advanced Improved Stoves 

Policy scenario 1 of replacing traditional stoves with the advanced improved stoves has 

the highest gains. The welfare gain for an average household to get such an improved stove is 

Rs 471 per month. Assuming that such an improved stove has a lifetime of five years and the 

annual discount rate is 12%, this means that an average household is willing to pay Rs 20,374 
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for such a stove (approximately $407), which is about four times the price of improved stoves 

seen in Guatemala. 

Policy scenarios 2 and 3 are included to demonstrate how an advanced improved stove 

program can perform relative to the previous NPIC effort. Policy scenario 2 considers replacing 

traditional stoves with intermediate improved stoves of the type distributed by the NPIC with 

chimneys. In this case, households’ willingness to pay declines sharply because stove 

performance is sharply lower. An average household is willing to pay only Rs 123 per month. 

Assuming such a stove has a lifetime of two years, this is equivalent to Rs 2495 per stove 

(approximately $50), which is more than ten times of the cost of improved stoves in the NPIC. 

Policy scenario 3 considers replacing traditional stoves with efficiency-only improved 

stoves similar to the type distributed by the NPIC without chimneys. In this case, the 

willingness to pay declines further to Rs 31 per month or about Rs 629 per stove 

(approximately $13) because households only benefit from fuel savings. This amount is also 

well above the improved stove cost of the NPIC. Comparing scenarios 2 and 3 to scenario 1, the 

results show that in addition to fuel cost savings, households put considerable values on IAP 

reduction and cooking time savings, which explains how an advanced improved stove program 

can be successful even though the NPIC improved stove program failed.  

Table  6-8 also shows that rural households benefit more from improved stoves 

compared to urban households. This is because traditional biomass is cheaper and more 

accessible in rural areas and, as a result, rural households are more likely to use traditional 

biomass. Thus, they benefit more from more efficient and cleaner stoves that still use traditional 

biomass. Among states, households in Uttarakhand and Tamil Nadu have a higher willingness 

to pay for improved stoves compared to the other two states. This is because traditional biomass 
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is more expensive in these two states, which means households benefit more from improved 

stove efficiency.          

The results from scenarios 1, 2, and 3 show that improved stoves can bring significant 

welfare improvements to households if they are designed with the attributes households value. 

However, the results of this welfare analysis must be interpreted with caution. First, this welfare 

analysis considers the hypothetical case where all traditional stoves are replaced by improved 

stoves. Voluntary adoption of improved stoves is not considered per se. Technically, the 

hypothetical case applies only if the government imposes a mandatory phase-out of inefficient 

traditional stoves. Second, the welfare analysis only considers benefits of improved stove 

efficiency, reduced indoor air pollution, and reduced cooking time from improved stoves, but 

does not consider adoption and maintenance costs of using improved stoves. Because stove 

design and materials are different than for traditional stoves, households must learn how to use 

improved stoves properly and may need to adjust their previous cooking practices. In addition, 

improved stoves must be maintained regularly to ensure their continued performance. 

Households need either to learn how to maintain the improved stoves by themselves or hire 

professionals to do it. If improved stoves are not used properly or are poorly maintained, the 

designed performance will not be achieved or the improved stoves may be broken, as happened 

with the NPIC.  

Nevertheless, the welfare analysis shows that households would have significant welfare 

gains from improved features, even at much higher stove costs, if better features were 

incorporated into improved stoves compared to those distributed by the NPIC. Thus, 

willingness to pay should not be a major problem and subsidies do not appear to be required if 
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households are ensured that the designed performance of improved stoves can be achieved, 

even for expensive advanced improved stoves.  

Experiences with improved stove programs from several other countries also show that 

ensuring performance of improved stoves is the key for success. Guatemala was among the first 

countries in Latin America and the Caribbean to focus on improved stove design in the late 

1970s (Ahmed et al, 2005). The early improved stove in Guatemala was built completely of 

mud. Although it worked well initially, its poor durability and, hence, reduced efficiency 

became evident with daily use. Eventually, it failed to significantly outperform traditional 

models. As a result, few people continued to use it. But by the mid-1990s, a more durable 

model was made available, which has a metal top for cooking, a shelf for feeding wood, space 

on top for placing cooking utensils and equipment, and a chimney for venting smoke. It remains 

popular today (Barnes et al, forthcoming).  

China’s improved stove program, like the NPIC, focused initially on rapid 

dissemination, accompanied by low-cost strategies and significant subsidies. Similar to the 

early Guatemalan experience, inexpensive construction resulted in poor performance and a low 

adoption rate. In subsequent program phases, the government played a smaller but more critical 

role. In the second phase, it reduced subsidies and pushed for commercialization of improved 

stoves. In the third phase, it shifted emphasis to extension, promotion, and increased 

standardization of the most popular models. These efforts were coordinated mainly through the 

Ministry of Agriculture’s rural energy offices, which promoted various rural energy programs. 

Today more than 200 million people in China have an improved stove (Barnes et al, 

forthcoming). 
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Based on this welfare analysis and the past experience of the NPIC and the improved 

stove programs of other countries, the Indian government might consider a new improved stove 

program strategy. First, India may consider promoting advanced improved stoves instead of 

low-cost low-quality improved stoves because (1) households put considerable values on IAP 

reduction and cooking time savings while low-cost, low-quality improved stoves offer little 

improvement in these features; (2) the previous version of improved stoves already has a bad 

reputation due to its low durability; (2) the benefits from advanced improved stoves are more 

observable, so households can be more easily convinced; and (3) from a public health 

perspective, advanced improved stoves would be more beneficial as they can reduce most 

pollutants from traditional biomass burning.  

Second, instead of subsidizing improved stove prices, government expenditures may be 

more effective if used to support the development of technical backup, impose quality control 

facilities, provide training related to stove design and maintenance and health knowledge, and 

monitor and evaluate program progress by collecting feedback from users. This would help to 

integrate the design, construction, delivery, and maintenance service as required for overall 

program success. 

Third, the government should support the process of commercialization of high-quality 

improved stoves. This can be done through the formulation of policies to provide incentives to 

private sector operators to produce, distribute, and sell improved stoves. Government assistance 

can also take the form of providing technical standards (such as setting minimum energy 

efficiency requirements), facilitating the availability of raw materials, establishing credit for 

stove makers, and offering promotional support. Providing a good investment and regulatory 

environment will also help stove producers to scale up production and lower the stove costs. 
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B. Promotion of Improved Ventilation 

Policy scenario 4 considers reducing IAP for those households with poor ventilation 

conditions through advocating behavioral change. The estimated welfare gain for the average 

household with poor ventilation is Rs 136 per month. As 75% of households with poor 

ventilation conditions are in rural area, such a policy will particularly benefit rural households. 

West Bengal and Madhya Pradesh have a relatively higher share of households with poor 

ventilations. Thus, targeting these areas will be more effective, suggesting these areas might be 

good choices for pilot projects. More particularly, provincial and local governments can 

identify areas that have a high share of households with poor ventilation and then consider 

organizing an advocacy campaign to educate households about how to improve kitchen 

ventilation through behavioral change and other relatively simple measures. Depending on the 

efficiency of such efforts, this type of policy may have the potential of producing significant 

welfare gains for targeted households at low cost. 

C. The Welfare Impact of Discontinuing the LPG Subsidy 

Policy scenario 5 considers the effect of increasing LPG fuel price by 40%, which is 

intended to reflect the magnitude of effective LPG prices to households with a discontinuation 

of the LPG subsidy. The estimated welfare loss for an average household is Rs 44 per month. 

Urban households would have a higher average welfare loss of Rs 70 per month because clean 

stoves are more prevalent among urban households. In contrast, rural households would only 

have an average welfare loss of Rs 31 per month. This is slightly less than the extra LPG fuel 

bill of Rs 43 per month the average rural household needs to pay if the LPG subsidy is lifted 

and the energy technology choice does not change. The reason the LPG price subsidy turns out 

to be largely a simple transfer to households with little welfare gain is that the impact of the 
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LPG price increase on household energy technology choice is small. Only about 0.1%-3.1% of 

rural households would switch their primary stove from a clean stove to a traditional stove as a 

result of the LPG price increase, whereas fuel use is quite inelastic once a given stove 

technology is in place. From the perspective of social welfare, if the government phases out the 

subsidy on LPG prices, the effect is negligible. This is one reason that an alternative use of 

government funds to establish infrastructure for advanced improved stoves or for advocacy 

regarding ventilation promises more significant welfare improvements. 

Conclusions 

 In this chapter, based on the household behavioral model of energy technology choice 

estimated in Chapter 5, I have examined the welfare impacts of different policy scenarios that 

might impact household IAP levels. The policy interventions focus on the policies that can 

change energy technology attributes to mitigate the negative impacts of traditional biomass 

fuels as well as the policies that phase out high clean fuel subsidies or directly encourage clean 

stoves. The results clearly show that households’ willingness to pay for improved stoves that 

can save biomass fuels, reduce IAP, and save cooking time is high and well above the price of 

advanced improved stoves that offer superior performance. Rural households have even higher 

willingness to pay for such a stove. In addition, households’ welfare gain from improvement in 

indoor air quality, such as may be possible with advocacy programs, also appears to be high. 

Phasing out subsidies on LPG fuel prices, on the other hand, causes negligible welfare loss for 

an average household because it has little impact on household energy technology choices. 

Given that traditional biomass will continue to be the most popular cooking fuel in the near 

future, the welfare analysis strongly supports the policy of promoting advanced improved 

stoves.   
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 However, to make an improved stove program successful, it has to be well designed and 

implemented. The high willingness to pay in the welfare analysis depends on convincing 

households that improved stoves will achieve the designed performance and assumes that 

adoption and maintenance costs not captured by the model will not be significant. Thus, the key 

for success appears to be ensuring the quality and durability of improved stoves to earn 

households’ trust. Although no subsidies on stoves are needed, support should be given to 

developing technical backup units, setting up improved stove standards and quality control 

facilities, and providing training regarding stove design and maintenance and health knowledge. 

The improved stove program should also support the commercialization of improved stoves 

through providing incentives to private sector operators to produce, distribute, and sell 

improved stoves.  

 Due to model limitations, I considered only policy interventions that affect energy 

technology attributes and do not quantify the welfare impacts from policy interventions that 

alter household characteristics such as household income, health knowledge, and women’s 

wage rates. However, the model implies that increased household income, improved health 

knowledge, and increased women’s opportunity cost of time (through improved wage rates) 

should increase households’ adoption of cleaner energy technologies. Therefore, the improved 

stove program combined with an indoor air pollution campaign and training for women is likely 

to bring more welfare to households.  
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Chapter 7. Conclusions 

About half of the world’s population, over 3 billion people, still rely on traditional 

biomass fuel such as wood, dung, and crop residue for domestic energy needs (Bruce, et al., 

2002). Indoor air pollution (IAP) caused by burning traditional biomass fuel has been a major 

environmental and public health hazard for these people. However, the transition to cleaner 

fuels among the poor has been slow. Further, evidence shows that reliance on biomass is 

increasing in some parts of the world (Bruce, et al., 2002).  

Why do people use household energy technologies that can make them sick or even 

cause death? This dissertation has developed a unified framework to explore this puzzle by 

quantifying the relationships among household energy use, indoor air pollution, and health 

impacts that can enable policy-makers to analyze welfare gains from different policy 

interventions. With the tight budgetary constraints that usually exist, it is important to be able to 

prioritize public sector investments on the basis of expected benefits. 

Summary of Conclusions and Contributions 

Using a uniquely rich household survey data set from India, this dissertation has 

developed a unified framework including four interlinked modules that answer the following 

research questions, respectively. 

Which factors determine IAP concentration and what are their relative contributions?  

Analysis of the first module shows that having a clean stove such as an LPG or kerosene 

stove as the primary stove significantly reduces PM 2.5 concentrations in kitchens. For example, 

if an average household switches from using both a traditional primary stove and a traditional 

secondary stove to only using one clean stove, the PM 2.5 mean concentration will decline by 

0.543 mg/m3 or 71%. Having a clean stove as the secondary stove is not statistically significant 
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in reducing PM 2.5 concentrations. This implies that partial fuel switching may not have 

significant impacts on household IAP levels. If households use clean fuels only occasionally 

(such as for making tea) and still use traditional biomass for primary cooking, the household 

IAP level does not change much. 

Having an improved stove that burns traditional fuel can potentially reduce PM 2.5 

concentrations considerably as well. But due to the small number of households using an 

improved stove, statistical significance for this effect could not be found. In addition, 

ventilation conditions play a significant role in IAP concentrations. If an average household can 

improve ventilation conditions from poor to good, the PM 2.5 mean concentration is reduced by 

40%. Ventilation conditions can relate to a number of factors such as kitchen location, housing 

structure, and cooking practice.  

Results further indicate that the amount of fuel use does not have significance in 

determining PM 2.5 concentrations when fuel types and other factors are controlled. This result 

likely occurs because starting the fire is the most polluting part of the cooking process. Since 

measuring fuel quantity is costly and time-consuming, this is an important finding that can 

contribute to future study designs.   

The analysis of the first module also demonstrates how an IAP index can be constructed 

to predict typical households IAP exposure levels. Directly measuring IAP concentrations using 

personal or area monitors can be quite costly and hard to apply to a large sample. In addition, 

IAP concentrations are typically monitored only for short time intervals, which introduces noise 

that does not represent typical IAP exposure. This dissertation demonstrates how to develop an 

IAP index that can be used to predict typical IAP exposure levels. This is an important 
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contribution to the literature that can be useful for the design of future studies by reducing cost 

and improving evaluation of health impacts and intervention programs.    

What is the quantitative relationship between exposure to IAP and the related health impacts? 

In the second module, both subjective self-reported respiratory symptoms and objective 

doctor-measured spriometric indicators are considered as health impacts of IAP. The analysis 

finds that an increase of 1 mg/m3 in the PM 2.5 mean in the kitchen is associated with an 11.9 

percentage point increase in the probability of reporting a respiratory symptom for those who 

are typically in the kitchen. This effect is about half of the effect of smoking, which underscores 

IAP as a major health concern.  

Using FEV1, FVC, and FEV1/FVC as spirometric indicators, the analysis finds that an 

increase of 1 mg/m3 in the PM 2.5 mean can reduce FEV1 of a person who is typically in the 

kitchen by 0.284 liters and reduce FVC by 0.254 liters. This effect is more than double of the 

effect of smoking. This implies that IAP is particularly harmful to spirometric function 

compared to general respiratory diseases. Nevertheless, the results do not show that the IAP 

exposure has a statistically significant impact on FEV1/FVC. Because obstructive lung disease 

decreases FEV1 and with a negligible effect on FVC, while restrictive lung disease decreases 

both FVC and FEV1 with a negligible effect on FEV1/FVC, the results imply that IAP has 

major impacts on restrictive lung disease rather than obstructive lung disease. The results thus 

provide an explanation for why the literature contains more evidence of IAP’s impact on certain 

respiratory diseases such as ALRI for children but less or inconsistent evidence of IAP’s 

impacts on other respiratory diseases such as asthma (a typical obstructive lung disease). 

In addition, the results show that the health effects of using the PM 2.5 95th percentile as 

the IAP intensity indicator are much smaller than using the PM 2.5 mean as the indicator, 
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amounting to less than 1/5 of the latter. This pattern is true for both using respiratory symptoms 

and spirometric indicators as the health outcome. Since the PM 2.5 95th percentile represents a 

short-period high pollution intensity level while the PM 2.5 mean represents the 24-hour 

average pollution intensity, this result implies that daily average pollution intensity has more 

impact on respiratory health than maximum exposure. 

By comparing the goodness of fit of regressions on spirometric indicators and on the 

respiratory symptoms, this second module shows that spirometry measurement is much more 

accurate in characterizing the effects of IAP while symptoms are more a random effect that 

causes noise in measurement.   

In summary, the analysis of the second module makes several important contributions to 

the literature. First, in terms of exposure indicators, it uses a new exposure indicator—typical 

IAP exposure predicted from a direct IAP measure—which is better than using indirect 

measures such as fuel or stove types as proxies and better than using short-interval direct 

measures that include statistical noise. Second, in terms of the health outcome, this study uses 

both subjective self-reported respiratory symptoms and objective doctor-measured spirometric 

indicators to provide a more complete and consistent story. It also demonstrates that spirometry 

measurement is much more accurate than symptoms in characterizing the effects of IAP. Third, 

in terms of findings, it not only provides additional evidence on health impacts of IAP exposure 

compared to previous literature, but also adds new findings to the literature. In particular, while 

most previous studies focus on incidence of different symptoms and diseases as health outcome, 

this study analyzes spirometric function. It thus provides fundamental evidence about how IAP 

affects health, and is able to explain why certain diseases are more associated with IAP 
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exposure. In addition, it provides quantitative results on how different IAP exposure intensity 

affects health.     

What factors affect decisions on the energy technology choice?  

The third module is a novel approach to modeling household behavior regarding the 

energy technology choice. Households are assumed to choose a cooking energy technology 

based on its attributes: cooking cost, convenience, and cleanliness. These attributes do not vary 

among households, but household valuation of these attributes depends on household 

characteristics. Results show that the marginal utility of income decreases as income increases 

and that this effect carries over into the cooking technology choice. Thus, households are less 

sensitive to cooking cost as income increases. This is an important explanation for why dirty 

technologies remain dominant among poor households. In fact, choices regarding clean 

technologies are more sensitive to income levels than to clean stove costs. Rural households 

barely change their energy technology choices if the LPG stove is reduced by 50%. But if 

income is doubled, 14%-24% of rural households switch their primary stove from a traditional 

stove to a clean stove depending on their residence. This analysis confirms that fuel switching 

on a large scale will not occur in rural areas unless rural economies become substantially more 

developed.   

Results also show that women’s opportunity cost of time affects household’s valuation 

of the convenience of cooking energy technologies. Households are more likely to choose 

energy technologies with shorter cooking time in areas with higher wage rates for unskilled 

women, although this effect is not statistically significant. With respect to cleanliness, results 

show that households that know IAP is harmful to health are more likely to choose energy 

technologies with lower pollution levels.  
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In summary, the third module presents a new modeling approach regarding how to 

model household choice of cooking energy and technology. It shows that in addition to cost 

considerations, households also value convenience and cleanliness, although how much they 

value these attributes depends on their own characteristics such as opportunity cost of time and 

health awareness. By quantifying these factors, the estimation results from the third module 

enable a welfare analysis of various policy interventions.   

What are the welfare effects of various interventions that affect the energy technology choice? 

The fourth module focuses on identifying the welfare effects of policy intervention 

based on estimation results from the third module. The policy intervention scenarios focus on 

policies that can change energy technology attributes to mitigate the negative impacts of 

traditional biomass fuels as well as the policy of phasing out high subsidies currently offered on 

LPG fuel price. The results clearly demonstrate that households’ willingness to pay for 

improved stoves that can save biomass fuels, reduce IAP, and save cooking time are high. The 

estimated welfare benefits are well above the price of improved stoves on the market given 

their claimed performance. For example, for an advanced improved stove that can reduce fuel 

cost by 50%, reduce IAP concentrations by 50%, and save cooking time by 12%, the results 

show that an average household is willing to pay Rs 471 per month, which generates a 

discounted benefit of Rs 20,374 per stove using a 12% annual discount rate and 5-year stove 

lifetime. This is about four times of the price of the advanced improved stoves that have been 

introduced in Guatemala. Rural households have even higher willingness to pay for such a 

stove.  

However, the high willingness to pay in the welfare analysis assumes that households 

are convinced that improved stoves will achieve the designed performance and that adoption 
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and maintenance costs not captured by the model will not be significant. If improved stoves are 

not used properly or poorly maintained, the designed performance will not be achieved and 

breakage can occur more quickly. In this case, based on the NPIC experience, households 

would not be interested in using an improved stove even if the stove cost is low. Thus, the key 

for success for an advanced improved stove program is to ensure the quality and durability of 

improved stoves to earn households’ trust. Instead of subsidizing stove cost, the improved stove 

program should support the infrastructure required for integration of the design, construction, 

delivery, and maintenance service to stove users by developing stove performance standards, 

setting up quality control, developing technical backup, and providing training on stove benefits, 

usage, and maintenance. To be sustainable, the improved stove program should support the 

process of commercialization of improved stoves through incentives to private sector operators 

to produce, distribute, and sell improved stoves of proper quality. 

In addition, households’ welfare gain from improvement in kitchen ventilation also 

appears to be high. If a policy can improve a household’s ventilation condition from poor to 

moderate, the average welfare gain for such a household is Rs 136 per month. Phasing out 

subsidies on LPG fuel price, on the other hand, generates a modest welfare loss for an average 

household and will have little impact on household energy technology choices. Given that 

traditional biomass will continue to be the most popular cooking fuel in the near future, the 

welfare analysis strongly supports the policy of promoting improved stoves if a new strategy is 

developed building on lessens from the past failure of the NPIC.  

In summary, this dissertation is the first comprehensive study that presents a unified 

framework linking household behavior with the actual IAP levels it generates and the 

consequent health impacts sufficiently to enable welfare analysis of alternative policies. It 
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provides quantitative evidence that IAP has significant health impacts comparable to smoking. 

Considering that traditional biomass will likely continue to be the most popular cooking fuel in 

rural areas in the near future, and that households can achieve considerable welfare gains from 

improvement in stoves and kitchen ventilation, the analysis suggests that the Indian government 

should consider reviving the improved stove program with a new advanced stove strategy and 

conducting advocacy campaigns on how to improve kitchen ventilations. The analysis suggests 

little overall welfare effects of the pending phasing out of LPG subsidies.  

Future Research 

The results of this dissertation are based on several assumptions that can be relaxed in 

future research when more information is available. First, the household behavioral model in 

the third module assumes initially that households do not have credit constraints that restrict 

upfront fixed costs of acquiring new cooking technology. However, this assumption may not 

hold in some areas in India where households do not use clean stoves because the upfront stove 

cost is high relative to income, and loans are not typically available for consumer items. In 

areas where credit constraints are a major barrier, the upfront stove cost may have a relatively 

higher effect compared to the monthly fuel cost due to the shadow value of credit. In such cases, 

policies such as promoting microfinance can help households adopt cleaner energy technologies. 

I show in the Appendix to Chapter 5 that this shadow value of credit can be accommodated in 

the model. If more information becomes available on how the shadow value of credit is 

determined, the assumption of no credit constraints can be relaxed accordingly. This will allow 

estimation and testing of how the credit constraints affect household behavior with respect to 

energy technology choices for cooking. Also, additional welfare analysis can be conducted on 

the welfare gains of promoting microfinance.   
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Second, lack of available data on voluntary choice of improved stoves constrains the 

welfare analysis on improved stoves to consider the hypothetical case that the government 

causes traditional stoves to be replaced by instituting regulations, for example, by a mandatory 

phase-out of inefficient traditional stoves. With more data in which a sufficient share of 

households use improved stoves, the estimates of the household behavior models as well as the 

welfare analysis on improved stoves can be improved. In addition, the welfare analysis does not 

consider adoption and maintenance costs of using improved stoves. The household adoption 

cost may be high if the cooking practice on the improved stoves is very different from on 

traditional stoves. Information is needed on households’ usage of improved stoves such as how 

improved stoves affect household cooking practices and how often the stove needs to be 

maintained at what cost. These should be areas of emphasis in future data gathering efforts to 

support more robust welfare analysis.   

Third, in the household behavior model, I use a form that models the utility of income 

available for expenditure on other goods, which implicitly assumes that cooking services are 

separable from all other goods in utility. However, because IAP can have a significant negative 

impact on health, cooking and related technology choices could potentially have an effect on 

health expenses. Based on the current model and the results, if information on health expense is 

available, it can be included in the model explicitly and linked to IAP exposure levels and 

health knowledge to make the framework more comprehensive. Additional welfare analysis can 

also be conducted to determine the welfare gains from improving health knowledge. Similarly, 

the opportunity cost of time can also be modeled explicitly so that welfare analysis can be 

conducted on policy intervention that increases women’s opportunity cost of time by improving 

women’s employment opportunities. Then the combined welfare gains can be measured for a 
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policy that not only promotes improved stoves, but also provides health education and job 

training for women. Such a program, if implemented well, is expected to bring significant 

welfare gains to households.    
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