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Rapidly increasing technological prowess has led to the development of in-

creasingly precise experiments to track biological systems at the single molecule

level. The ability to apply measured amounts of external forces in such experi-

ments, has added an extra probe to a scientist’s arsenal of tools, allowing detailed

investigations into the response of molecules that were not possible even a few years

ago. However, the emerging raw single-molecule data tends to be of limited use

in the absence of careful theories that can analyze and make sense of such data.

This thesis focuses on understanding single-molecule force spectroscopy data on two

important biological systems–cell adhesion complexes called selectins and integrins,

and nucleic-acid unwinding motors known as helicases.

Selectins and integrins are receptors expressed in blood vessels, that bind to

specific ligands on leukocytes, initiating a process of absorption of leukocytes from

the blood flow. The microscopic details of the selectin-ligand interactions that allow



this process to occur, is hotly debated and a topic of intense current research. Over

the last few years, it has been established that certain selectin-ligand lifetimes show a

surprising ‘catch-bond’ behavior, where the lifetime under force first increases before

decreasing as expected. In this thesis, we build a structural model to explain this

phenomenon and quantitatively explain a number of experimental results. Our work

suggests that a loop region on the selectin receptor domain undergoes an allosteric

conformational change, allowing the receptor to bind more tightly to the ligand.

Force enhances this allosteric conformational change, thus resulting in an initial

increase in lifetime of the complex. We provide quantitative support for this model,

and also precise predictions of the outcomes of multiple mutation experiments.

Helicases are molecular motors that hydrolyze nucleoside triphosphate (NTP)

to carry out various kinds of cellular activities related to nucleic-acid metabolism.

The particular aspect of certain helicases that we focus on in this thesis, is the

NTP driven unwinding of double strand nucleic acids. Based on whether or not the

helicase destabilizes the duplex base pairs while unwinding, helicases are classified

as ‘active’ or ‘passive’, with different physical properties associated with each type.

We develop a mathematical technique to analyze the velocities and processivities of

such helicases, and predict a surprising universal behavior of the processivity under

external forces. Our analysis suggests that partner proteins (invariably required for

efficient unwinding of nucleic acids in vivo) have coevolved with helicases to increase

the processivity, as opposed to the velocity, of all types of helicases. Finally, we

establish the unwinding mechanism of the T-7 helicase, thereby providing insight

into the unwinding mechanisms of a whole family (SF-4) of helicases.
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Chapter 1: Origin of catch-bond behavior in cell-adhesion complexes.

1.1 Introduction

1 Cells communicate with one another and with their surroundings in order

to maintain tissue architecture, allow cellular movement, transduce signals and heal

wounds [2]. Important components in many of these processes are cell adhesion

molecules—proteins on cell surfaces that recognize and bind to ligands on other

cells or the extracellular matrix [2, 3]. For example, adhesion of leukocytes to the

endothelial cells of the blood vessel is a vital step in rolling and capture of blood

cells (Fig 1.1a), ultimately leading to wound healing [4–6]. Another example of the

use of cell adhesion complexes is in virus and bacteria, which utilize these molecules

to establish initial attachments with host-cell receptors [7, 8]. Their importance is

evident from the fact that a host of diseases are caused by the malfunctioning or

faulty expression of cell adhesion complexes–for instance, the family of ‘leukocyte

adhesive deficiency’ (LAD) diseases in humans [9–11].

Since living systems comprise mainly water-based fluids, these cell-adhesion

complexes have to function in a large number of cases, under conditions of high fluid

flows and shear stresses. For instance, in organisms with well developed vasculatures,

1Most of the results in this chapter have been published in [1]
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Force

Sub-Endothelial Matrix

Endothelial Cell

P-Selectin (Receptor)

sPSGL-1 (Ligand)

Blood Flow

a. b.

Figure 1.1: Probing P-selectin and PSGL-1 interactions. (a) The cartoon shows
leukocytes in the blood flow interacting with the selectin receptor via the sPSGL-1
ligand. This interaction leads to the phenomenon of white blood cell rolling, and is
the first step of a signalling cascade that ultimately leads to leukocyte localization
at injured sites and wound healing. (b) Probing the receptor-ligand interaction at
the single molecule level using an Atomic Force Microscope (AFM).

endothelial cells that line the vascular conduits (and express adhesion molecules)

are subject to stresses on the order of 1 − 2 dyn/cm2 on the venous side, and up

to 50 dyn/cm2 on the arterial side [12]. Urine flows generate about 0.17 dyn/cm2

of shear [13], against which bacteria would have to establish contacts with the host

cell. Though these fluid flows sometimes act as an impediment to the formation

of protein complexes, in many cases the shear forces they generate are of crucial

functional importance. For instance, selectin and integrin activation leading to

enhanced ligand binding, is only possible in the presence of such shear flows [14,

15]. Biological function can also be induced by other kinds of mechanical forces,

such as those arising from the coupling of focal adhesions to the cytoskeleton [16,

17]. Under stress, molecules undergo conformational changes, triggering biophysical,

biochemical, and gene regulatory responses that have been, and still are, subjects

of intense research [12,18].
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An intuitive result of forces acting on protein assemblies is that the lifetimes

of the stressed complexes should decrease with increasing force. In fact, this is

indeed the experimental observation in a multitude of cases. This behavior, de-

scribed phenomenologically by Bell in 1978 [19], is also called “slip-bonds”. How-

ever, the response of certain complexes to mechanical force exhibits a surprisingly

counterintuitive phenomenon. Lifetimes increase over a range of low force values,

corresponding to “catch-bond” behavior [20]. At high forces, the lifetimes revert

to the conventional decreasing behavior, characteristic of slip-bonds. In retrospect,

the plausible existence of catch-bonds was already evident in early experiments by

Greig and Brooks, who discovered that agglutination of human red blood cells using

the lectin concanavalin A, increased under shear [21]. Although not interpreted in

terms of catch bonds, their data showed lower rates of unbinding with increasing

force on the complex. Given the importance of mechanotransduction in cellular ad-

hesions, a quantitative and structural understanding of this surprising phenomenon

is imperative.

Direct evidence for catch-bonds in a wide variety of cell adhesion complexes

have come from flow, Atomic Force Microscopy (AFM), Biomembrane Force Probe

(BFP) and Optical Tweezer experiments in the last decade [22–26], along with

examples from other load-bearing cellular complexes like actomyosin bonds [27] and

microtubule-kinetochore attachments [28]. The catch-bond lifetime exhibits non-

monotonic biphasic behavior—increasing up to a certain critical force and decreasing

at larger forces. The structural mechanisms leading to catch-bond behavior have

been elusive, and in this work, we focus on the selectin and integrin class of receptors,
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to develop a structural model for this surprising phenomenon. The implications

of our analysis, and the model for catch-bonds in these systems, have far reaching

consequences for understanding the activation mechanism of cell-adhesion complexes

that are crucial for vital physiological processes.

Previously, theories based on kinetic models with the assumption of a phe-

nomenological Bell-like coupling of rates to force [29–32] have been used to explain

catch-bond behavior. However, the parameters extracted from these kinetic models

cannot be easily related to microscopic physical processes in specific catch-bond sys-

tems. More importantly, such models merely rationalize the experimental data, and

do not have predictive power. The large scale of catch-bond lifetimes, ∼ 10−104 ms,

makes it impossible to directly observe unbinding in a realistic all-atom simulation,

much less the macroscopic consequences of mutations.

Here, we solve the difficulties alluded to above by creating a new theoretical

approach. By building on the insights from the structures of cell adhesion com-

plexes, we introduce a microscopic theoretical model that captures the essential

physics of the angle-dependent detachment, and its implications for catch-bond be-

havior. Taking cue from the crystal structures of selectin and integrin, we construct

a coarse-grained energy function for receptor-ligand interactions. The model yields

an analytic expression for the bond lifetime as a function of force, which gives ex-

cellent fits to a broad range of experimental data on a number of systems. The

extracted parameters have clear structural interpretations, and their values provide

predictions for energetic and structural features like strength of hydrogen bond-

ing networks at the receptor-ligand interface. Where estimates of these properties

4



can be directly obtained from crystal structures, our predictions are in remarkable

agreement. The energy scales identified through the model are specific enough to

allow predictions for structures not yet crystallized, and suggest novel mutation

experiments that would modify catch-bond behavior in quantifiable ways. For the

selectins, we predict how a specific mutation in the PSGL-1 ligand will alter its

unbinding from P-selectin under force, and provide new interpretation of data from

L-selectin mutants [31]. Interestingly, the experimental fits suggest that both P- and

L-selectin have a characteristic, ligand-independent energy scale, determined by the

chemistry of their binding interfaces. For integrins, we predict the strength of extra

interactions that should be observed in a crystal structure of the α5β1–fibronectin

complex in an open state. The generality of the theory is further established by

obtaining quantitative agreement for the catch bond behavior in actomyosin com-

plex. Our theory provides the first structural link between the catch-to-slip bond

transition in cell adhesion complexes, covering a broad range of forces and lifetimes.

1.2 Towards a structural model for selectins and integrins

Key insights can be obtained from a careful analysis of earlier experiments

that provide both biochemical and structural data for selectins [33,34] and integrins

[35,36]. The structures of a number of selectin complexes are shown in Fig. 1.2, both

with and without ligands. Fig. 1.2 a shows P-selectin in the ‘bent’ or ‘flexed’ state,

while Fig. 1.2 b shows the same receptor in the ‘extended’ state. These are the only

two states that have been crystallized to date in the selectin family of receptors. The

5



green domain in both figures is the EGF domain, while gray/beige represents the

lectin domain. The purple regions are the ligand binding domains on the receptor.

As is evident from the two figures, the angle between the EGF and lectin domains

defines whether the receptor is in the bent or extended state. In Fig. 1.2c and d,

the bent states of P and E selectin are shown, with and without a ligand. Clearly,

the structure of the bent state does not really change with or without the ligand.

Fig. 1.2 as a whole, suggests that ligands can bind the selectin receptor either in the

bent state or in the extended state.

In addition, certain mutation experiments provide crucial evidence regarding

the lifetime of the ligands in the two conformational states of the selectin receptor. In

a beautiful experiment, Phan et al [34] grew an extra carbohydrate region (glycan)

in the pivot region between the lectin and EGF domain of P-selectin. This glycan

domain acted as a wedge to pry the lectin and EGF domain apart, forcing them to

adopt only the extended conformation. The lifetime of a ligand was then measured

using this mutant, and compared to the lifetime of the wild type, which lacked the

glycan wedge. Surprisingly, the lifetime of the mutant was larger for the mutant,

indicating that the ligand bound the receptor more tightly in the extended state

compared to the bent state. This experiment also indicated that the lectin domain

can fluctuate between the extended and bent states on time scales shorter than

the ligand unbinding time, since that would explain the shorter ligand lifetime in

the wild type. To summarize the insights obtained from these earlier experiments,

the rupture rate of the ligand from the receptor depends on an angle between two

domains in the receptor molecule (Fig. 1.3). Conformations with smaller angles

6



a. b.

c. d.

Figure 1.2: P-selectin structures with and without ligands. (a) P-selectin in the
bent state (PDB ID 1G1Q). (b) P-selectin complexed with ligand in extended state
(PDB ID 1G1S). (c) Aligned P-selectin structures in the bent state, with (1G1R,
blue) and without (1G1Q, red) ligand. (d) Aligned E-selectin structures in the bent
state, with (1G1T, blue) and without (1ESL, red) ligand.
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(extended state) detach more slowly than those with large angles. In the absence of

an external force, the molecule fluctuates between conformations corresponding to

a variety of angles, including the larger angles (bent state) from which the ligand

can rapidly detach. With the application of force (as in AFM experiments), the

two domains are increasingly likely to align along the force direction, restricting the

system to small angles and longer lifetimes, until large forces again reduce the barrier

to ultimate rupture of the non-covalent hydrogen bonds. In the case of integrins,

similar arguments hold, and multiple conformations at varying angles have been

crystallized [36]. We will formulate a mathematical model based on precisely this

picture of conformational fluctuations of selection-ligand complexes.

1.3 The model

We now define our model using the structures of P-selectin, which has been

crystallized in two conformations: a “bent” [Fig. 1.3a] and “extended” state [Fig. 1.3b] [33].

The two states differ by the angle which the EGF domain (green in Figs. 1.3a

and 1.3b) assumes with respect to the lectin domain (gray/beige). Although lig-

ands can bind to lectin in both conformations, co-crystallization with the ligand (the

truncated N-terminal portion of the glycoprotein PSGL-1) was achieved only for the

extended state. In this latter case, there are two major regions of the lectin domain

(B0 and B1, colored purple in Figs. 1a - 1d) that form substantial hydrogen bond

networks with the ligand, thereby stabilizing the complex. Based on alignments of

the lectin domain in the bent and extended states [Fig. 1.4a], it is believed that

8



e.

f.b.

c.

Figure 1.3: Abstraction of the model based on structure. a. Crystal structure of P-
selectin [33] in the bent conformation (PDB: 1G1Q); b. the extended conformation
(PDB: 1G1S). The lectin (gray/beige) and EGF (green) domains are labeled, along
with two regions of the ligand binding interface (B0 and B1, purple). The ligand
(an N-terminal fragment of the glycoprotein PSGL-1) is only co-crystallized in the
extended state. c-d. Schematic conformations of our model, corresponding to panels
a and b. e-f. Plots of the potential U(r, θ) at F = 0 and F = 50pN respectively,
with k0 = 80 kBT/nm

2, k1 = 20 kBT/nm
2, r0 = 1.0nm, and b = 2 nm. The energy

U(b, θ) at the transition state is highlighted in red.
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the binding interface is remodeled in the bent conformation [33,37]. The region B1

(a loop between Asp82 and Glu88, shown in the inset of Fig. 1.4a) rotates so that

it can no longer engage the ligand. This angle-dependent rearrangement results in

weaker ligand attachment, and hence explains the shorter bond lifetimes in the bent

vs. the extended conformation.

Our minimal model, which captures the structure based angle-dependent dis-

sociation, describes the ligand-receptor interaction through an effective spring with

bond vector r ≡ (r, θ, φ) between a pivot point within the receptor and a point in

the ligand [Fig. 1.3c-d]. The pivot point is fixed at the origin, and the ligand is

under an external force F along the z-axis. The energy associated with the spring

is given by the potential,

U(r, θ) =
1

2
(k0 + k1(1 + cos θ)) (r − r0)2 − Fr cos θ, (1.1)

with k0, k1 > 0. The first term is an elastic energy, where r0 is the natural length of

the bond magnitude r, and k0 + k1(1 + cos θ) ≡ k(θ) is an angle-dependent spring

constant. The second term is the contribution due to the mechanical force F . The

bond ruptures if r ≥ b, where b ≡ r0 + d and d is the transition state distance. We

assume that the time evolution of the vector r follows a Fokker-Planck equation,

describing diffusion on the potential surface U(r, θ) with a diffusion constant D. We

define the lifetime of the bond τ(F ) at a given force F as the mean first passage time

from rmin(F ), the position of the minimum in U , to any r with r = b. Implicit in this

diffusive picture is the assumption that the angle θ can change continuously. This is

a reasonable approximation even if the receptor-ligand complex fluctuates between

10



Figure 1.4: Receptor–ligand hydrogen bond networks in P-selectin and α5β1 integrin.
a. The crystal structures from Fig. 1.3a,b superimposed with aligned lectin domains.
The inset shows the remodeling of the B1 region of the ligand-binding interface (the
Asp82–Glu88 loop). In the extended state (beige) this loop forms a network of
hydrogen bonds (dashed lines) with the ligand (to be compared with E1 of our
model). In the bent state (gray) the loop rotates sufficiently far that it is unlikely
to participate in binding [33, 37]. b. Hydrogen bond network between ligand RGD
and α5β1 integrin in the closed headpiece conformation (PDB: 3VI4). The integrin
domains are colored as follows: β-propeller and βA in green (cartoon and line
representation), thigh in cyan, hybrid in pink and PSI in brown. The ligand is
colored magenta (stick or line) and the MIDAS magnesium ion is red (sphere). This
network should be compared to E0, predicted from our model.
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several discrete angular states [36], assuming the energy barriers between the states

are such that the interconversion between states happens on much faster timescales

than τ(F ). The presence of the barriers would in this case be incorporated through

a renormalization of the effective diffusion constant D [38].

We show in Fig. 1.3e a representative zero-force potential energy surface U(r, θ),

with the energy at rupture U(b, θ), highlighted in red. The form of k(θ) makes it

energetically favorable for bond rupture at θ = π (the bent state), with a cost

E0 = k0d
2/2 to dislodge the ligand to the failure point. In the opposite limit of

θ = 0 (the extended state), energy for rupture is highest, with a cost E0 + E1,

where E1 = k1d
2. The values of E0 and E1 correspond to the stabilization energies

associated with the ligand in the two allosteric (bent and extended) states. How-

ever, as F is increased, the bond aligns along z, and the minimum in U(r, θ) shifts

toward θ = 0 [Fig. 1.3f], biasing the system toward the extended state. Thus, we

expect the lifetime τ(F ) to initially increase with F and eventually decrease at forces

sufficiently large to reduce the rupture barrier.

Though the schematic diagram of the model in Fig. 1.3c-d draws the vector r

between a pivot at the EGF-lectin interface to the tip of the ligand, one should note

that the actual ligand-lectin complex does not behave like a perfectly rigid object

rotating about a hinge, nor does it cover the entire angular range between θ = 0 and

π. Since proteins are deformable, the pivot location and the length r0 will depend on

the compliance of the specific domains involved in reorientation. Hence, we expect

r0 to be of the order of, or less than the size of the localized domains that rotate

to become restructured under force. It therefore follows that the structures of the
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complex in different allosteric states provide valuable insights into their response to

force. The length scale d reflects the brittleness of the bonding interactions [39], with

larger d indicating a malleable bond interface which can be deformed over longer

distances before the complex falls apart. The two energy scales E0 and E1 also have

physical interpretations, with E0 being roughly the total strength of noncovalent

interactions between the region B0 and the ligand, whereas E1 is the additional

contribution from the region B1 in the extended conformation.

1.4 Solution of model

The dynamics of our model can be described by the probability density Ψ(r, t)

to find the system with bond vector r = (r, θ, φ) at time t. This probability evolves

according to the Fokker-Planck equation in spherical coordinates,

∂Ψ

∂t
=

D

r2

∂

∂r

r2e−βU
∂
(
eβUΨ

)
∂r

+
D

r2 sin θ

∂

∂θ

sin θe−βU
∂
(
eβUΨ

)
∂θ


+

D

r2sin2θ

∂

∂φ

e−βU ∂
(
eβUΨ

)
∂φ

 , (1.2)

with β = 1/kBT . Eq. 1.2 describes diffusion on the energy surface U(r, θ),

U(r, θ) =
1

2
(k0 + k1(1 + cos θ)) (r − r0)2 − Fr cos θ, (1.3)

with diffusion constant D. We define the marginal probability P (r, θ, t) by mul-

tiplying Ψ with the spherical Jacobian and integrating over the azimuthal angle

φ,

P (r, θ, t) ≡ r2 sin θ
∫ 2π

0
dφΨ(r, t). (1.4)
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Since U is independent of φ, carrying out the operation in Eq. 1.4 and using Eq. 1.2

leads to a two-dimensional Fokker-Planck equation for P (r, θ, t),

∂P

∂t
= D

∂

∂r

e−βV ∂
(
eβV P

)
∂r

+
D

r2

∂

∂θ

e−βV ∂
(
eβV P

)
∂θ

 , (1.5)

in terms of a modified potential

V (r, θ) = U(r, θ)− kBT log(r2 sin θ). (1.6)

For a given force F , we are interested in the mean first passage time (MFPT)

τ0(r, θ, F ) from a point (r, θ) with r < b to any point (b, θ′) at the boundary defining

bond rupture. The MFPT satisfies the following equation [40], derived from the

backward Fokker-Planck equation,

D
∂

∂r

[
e−βV

∂τ0

∂r

]
+
D

r2

∂

∂θ

[
e−βV

∂τ0

∂θ

]
= −e−βV , (1.7)

with boundary condition τ0(b, θ′, F ) = 0 for all θ′. Since the two-dimensional first-

passage problem in Eq. 1.7 cannot be solved analytically, we will approximately map

it to a one-dimensional problem. Integrating Eq. 1.7 over θ leads to

D
∂

∂r

∫ π

0
dθ e−βV (r,θ) ∂

∂r
τ0(r, θ, F ) = −

∫ π

0
dθ e−βV (r,θ). (1.8)

The second term in Eq. 1.7 vanishes under the integration because exp(−βV (r, θ))→

0 in the limits θ → 0+ and θ → π−, as can be seen from Eq. 3.7.

In order to evaluate the integral on the left hand side of Eq. 1.8 we make

a saddle-point approximation, replacing ∂τ0(r, θ, F )/∂r with, ∂τ0(r, θm(r), F )/∂r,

where θm(r) is the location of the minimum of V (r, θ) at a fixed radius r. For our

potential, a single such minimum exists for any given r, making θm(r) a well-defined
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function. The result is an approximate one-dimensional MFPT equation,

D
∂

∂r

[
e−βṼ (r) ∂

∂r
τ̃0(r, F )

]
= −e−βṼ (r), (1.9)

where τ̃0(r, F ) ≡ τ0(r, θm(r), F ) and the effective one-dimensional potential Ṽ (r) is

given by

Ṽ (r) ≡ − 1

β
log

∫ π

0
dθ e−βV (r,θ) = − 1

β
log

r2e−β(Fr+ 1
2
k0(r−r0)2)

(
e2β(Fr− 1

2
k1(r−r0)2) − 1

)
β(Fr − 1

2
k1(r − r0)2)

 .
(1.10)

With the boundary condition τ̃0(b, F ) = 0, Eq. 3.10 can be solved for τ̃0(r, F ),

τ̃0(r, F ) =
1

D

∫ b

r
dr′ eβṼ (r′)

∫ r′

0
dr′′e−βṼ (r′′). (1.11)

The function Ṽ (r′) increases monotonically with r′ at large r′. Hence the integral

over r′ in Eq. 1.11 gets its dominant contribution from r′ near the upper limit b,

due to the presence of the exp(βṼ (r′)) term. To simplify the integral, we will make

two approximations: (i) Expand Ṽ (r′) ≈ Ṽ (b) + Ṽ ′(b)(r′ − b). (ii) Assume b� rm,

where rm is the location of the minimum in Ṽ (r), so that the upper limit in the

inner integral over r′′ can be replaced by ∞. If the initial position r is close to

the potential minimum at rm, so that b � r, the integrals in Eq. 1.11 can be then

approximately carried out to yield

τ̃0(r, F ) ≈ eβṼ (b)

βDṼ ′(b)

∫ ∞
0

dr′′ e−βṼ (r′′) =
[
DP̃ ′(b)

]−1
, (1.12)

where

P̃ (r) ≡ Z̃−1e−βṼ (r), Z̃ ≡
∫ ∞

0
dr′ e−βṼ (r′). (1.13)

Since under this approximation τ̃0(r, F ) is independent of the starting point r, we
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will drop the r dependence, and simplify the notation by defining the approximate

bond lifetime τ(F ) ≡ τ̃0(r, F ).

To obtain an analytical expression for τ(F ), we need to evaluate the integral

for Z̃ in Eq. 1.13 for P̃ (r). Since this cannot be done exactly, we will approximate

Z̃ as a Gaussian integral by expanding Ṽ (r) around r = rm to second order, leading

to

Z̃ ≈
(
βṼ ′′(rm)

2π

)−1

e−βṼ (rm). (1.14)

To find closed-form expressions for rm and Ṽ ′′(rm), we note that the location of the

minimum of Ṽ (r) and the curvature at the minimum approximately coincide with

those of the simpler potential Ṽs(r),

Ṽs(r) =
1

2
(k0 + 2k1) (r − r0)2 − Fr − 2kbT log r, (1.15)

which comes from substituting cos(θ) → 1 in V (r, θ) in the integral defining Ṽ (r)

[Eq. 3.11]. Fig. 1.5 illustrates Ṽ (r) versus Ṽs(r) at two different F .

Obtaining the location and curvature of the minimum using the simple poten-

tial Ṽs(r) is justified because of the following observations: The exact location of the

minimum rm, is always very close to r0. At zero external force or forces very close to

zero, V (r, θ) is approximately the same as the simpler potential obtained by setting

cos(θ) → 1 in V (r, θ), in regions r ∼ r0. Hence, Ṽ (r) and Ṽs(r) will be similar

around r = r0. At larger forces, V (r, θ) and its simpler version are approximately

the same only around r ∼ r0 and θ ∼ 0. However, since V (r, θ) is minimized around

θ ∼ 0 in regions around r0, the dominant contribution to the integral in Eq. 3.11 for

r values around r0 comes from θ ∼ 0. Hence once again the simpler form of V (r, θ)
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Figure 1.5: Comparison of the potentials Ṽ (r) and Ṽs(r) at two different forces. The
energy scales are aligned such that the minima of both potentials occur at 0 kBT .
The parameters are: k0 = 147.2 kBT/nm

2, k1 = 15.6 kBT/nm
2, r0 = 3.0 nm.

can be used leading to similar Ṽ (r) and Ṽs(r) around r = r0. The potential Ṽs(r)

reaches its minimum at

rms = 4
[
−β(F + (k0 + 2k1)r0) +

√
8β(k0 + 2k1) + β2(F + (k0 + 2k1)r0)2

]−1

,

(1.16)

where the curvature is given by

Ṽ ′′s (rms) = k0 + 2k1 +
2

βr2
ms

. (1.17)

The complete approximation for Z̃ involves substituting Eqs. 1.16 and 1.17 for rm

and Ṽ ′′(rm) in Eq. 1.14,

Z̃ ≈
(
βṼ ′′s (rms)

2π

)−1

e−βṼ (rms). (1.18)

Plugging the definition of Ṽ (r) from Eq. 3.11 and Z̃ from Eq. 1.18 into Eq. 1.13

for P̃ (r), we can now analytically approximate τ(F ) = [DP̃ ′(b)]−1. The resulting

expression simplifies for large k0, corresponding to large energy barriers for bond
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rupture, yielding the final form for the bond lifetime:

τ(F ) ≈
√
π r0(E1 − 2F (d+ r0))eβ(E0+dF )(e2βFr0 − 1)

4D(βE0)3/2F (1 + r0/d)2 (1− eβ(2F (d+r0)−E1))
, (1.19)

where E0 = k0d
2/2 and E1 = k1d

2.

1.5 Brownian Dynamics Simulations

To check the accuracy of the theoretical prediction for the lifetime τ(F ) in

Eq. 1.19, we performed overdamped Brownian dynamics simulations [41] for a

test particle of radius r0 diffusing in the potential U given in Eq. 1.3 using D =

kBT/(6πηr0), where η = 0.89 mPa·s is the viscosity of water at T = 298 K. We chose

the time step for numerical integration to be about 2× 10−6r2
0/D. The trajectories

were started with the bead at rmin, the minimum of the potential U , and stopped

when the bead reached the rupture boundary at r = b for the first time. Statis-

tics were obtained from ≈ 150 − 300 trajectories, depending on the value of force,

and error bars on the simulated data were estimated by the jackknife method [42].

Fig. 1.6 shows a comparison of the numerical results to the analytical formula of

Eq. 1.19 for parameters corresponding to the rigor actomyosin experimental system

(main text Table I). The excellent agreement validates the approximations used to

derive Eq. 1.19.

Mean bond lifetime: As derived above (Eq. 1.19), by assuming τ(F ) is

much longer than the local equilibration time around rmin(F ), the lifetime of the

complex is approximately given by,

τ(F ) ≈
√
π r0(E1 − 2F (d+ r0))eβ(E0+dF )(e2βFr0 − 1)

4D(βE0)3/2F (1 + r0/d)2 (1− eβ(2F (d+r0)−E1))
, (1.20)
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Figure 1.6: Comparing the theoretical bond lifetime with simulations. Approximate
theoretical bond lifetime τ(F ) (Eq. 1.19, solid curve) versus the numerical results of
Brownian dynamics simulation (circles), for parameters: E0 = 18.4 kBT , E1 = 3.9
kBT , d = 0.5 nm, r0 = 2.2 nm.
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where β = 1/kBT , kB is the Boltzmann constant, and T is the temperature. The

central result of this work in Eq. 1.20 provides an analytic expression for the mean

first passage time in terms of the microscopic energy and length scales covering

both the catch and slip-bond regimes. To set a reasonable scale for D, we make

it equal to the diffusivity of a sphere of radius r0, D = kBT/6πηr0, where η is the

viscosity of water. (A prefactor in D due to molecular shape can be absorbed as a

small logarithmic correction to the energy scale E0.) With this assumption, Eq. 1.20

becomes an equation with four parameters: E0, E1, d and r0. We validated the ap-

proximation underlying Eq. 1.20 by comparison to Brownian dynamics simulations

of diffusion on U (details given earlier), which showed excellent agreement with our

analytical theory (see Fig. 1.6).

For βFd� 1, τ(F ) decays exponentially in a manner similar to the standard

Bell model for systems exhibiting slip-bonds, τ(F ) ∼ exp(−βdF ). The decay rate is

controlled by the transition state distance d. The characteristic catch-bond behavior

occurs at smaller F , where we see a biphasic τ(F ) peaked at F = Fp,

Fp ≈
AE1

2(r0 + d)
, (1.21)

with a prefactor A ∼ O(1). The ratio of the peak height τ(Fp) to the lifetime τ(0)

at zero force, which is a measure of the strength of the catch-bond, scales like

τ(Fp)

τ(0)
≈ 4A′(d+ r0)

r0E2
1

sinh
(
E1

2

)
sinh

(
r0E1

2(d+ r0)

)
, (1.22)

with a prefactor A′ ∼ O(1). From Eqs. 1.21 and 1.22 we see that E1 → 0 leads

to Fp → 0 and τ(Fp)/τ(0) → 1. In this limit, the model predicts only slip-bond

behavior, where the lifetime decreases monotonically with force. Thus, our model
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interpolates between catch-bond and slip-bond regimes by varying the energy scale

E1.

1.6 Results and Analysis

We first establish the efficacy of the theory by analyzing experimental data for

τ(F ) for a variety of complexes. The fits in Fig. 1.8 (selectins) and Fig. 1.9 (non-

selectin complexes) show excellent agreement between the analytical theory and

measurements, which is remarkable since our microscopic model uses only a small

number of fitting parameters to fit nine complexes with vastly differing architectures.

These experiments involve applying force to molecular complexes either through

AFM or optical traps, with the force initially ramped from zero to a given value F .

Bonds that survive the ramp are then held at constant F until rupture. If the initial

ramp is sufficiently slow such that the system always remains quasi-adiabatically in

equilibrium at the instantaneous applied force [43], the subsequent duration of the

bond while at constant F , averaged over many trials, provides an accurate estimate

of τ(F ). (Extremely high ramp speeds may lead to non-equilibrium artifacts [44].)

In order to establish that our theory is general, we analyzed experimental

results from both selectin systems (P-selectin [23], L-selectin [31]), and others (fi-

bronectin disassociating from a truncated construct of α5β1 integrin [24] and myosin

unbinding from actin [27]). Details of the maximum-likelihood procedure for obtain-

ing the best-fit parameter values (Table I) are given in Appendix A. All the systems

in Figs. 1.8 and 1.9 exhibit catch bonds at low forces except in Fig. 1.8b, which for
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comparison shows P-selectin forming a slip-bond (E1 = 0) with the antibody G1.

Selectin family : Fig. 1.8a includes data for P-selectin with two different forms

of PSGL-1 ligand: sPSGL-1, which is a monomer interacting with single lectin

domains, and PSGL-1, which is a dimer (see Fig 1.7) capable of simultaneously

forming two bonds with two neighboring lectin domains [23]. (All other selectin

complexes, including L-selectin / PSGL-1 [31] in Fig. 1.8c-d, involve only monomeric

interactions.)

We fit both curves in Fig. 1.8a with the same set of parameters, using τ(F )

from Eq. 1.20 for the monomeric case, and in the dimer case τdim(F ) ≡ τ(F/2) +

τ(F/2)[1 + krτ(F/2)]/2 ( [45], see Appendix B for details of the derivation). When

the dimer is intact, each bond feels a force F/2. When one of the bonds break, the

intact bond still feels a force approximately equal to F/2, due to the large stiffness

and roughly constant displacement of the AFM cantilever [46]. In the latter case,

the broken bond can reform with some rate kr, which adds one fitting parameter.

τdim(F ) is a model that accounts for all these possibilities. The resulting fits in

Fig. 1.8a show that a total of five parameters (kr ≈ 1.1 ± 0.3 s−1, the rest listed

in Table I) can simultaneously capture the general lifetime behaviors of both data

sets.

Physical meaning of the parameters: A sine qua non of a valid theory of any

phenomenon is that the extracted parameters must have sound physical meaning.

In order to provide a structural interpretation of the extracted parameters for the

selectin systems, it is instructive to compare the resulting energy and length scales

to what we know about selectin bonds independent of the model. From the crystal
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Force

Force

Figure 1.7: Kinetic scheme for unbinding of PSGL-1 from Pselectin. PSGL-1 is
a dimer that can form bonds with two lectins (red circles) simultaneously. Hence
there are two pathways for bond breaking, where either one of the bonds breaks
first followed by the other. When the total force is F and the dimer is intact, each
bond feels a force F/2. When one bond breaks, the remaining bond still feels a force
approximately F/2 because of the nature of the experimental setup. The rebinding
of bond can happen with rate kr. When both bonds are ruptured, the experiment
is over and hence no reattachment is allowed.
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Asn 138
LSel

Tyr 37

Tyr 37

Gly 138

LSelN138G

Figure 1.8: Experimental best-fit results for bond lifetime τ(F ) versus force F for
selectins. The top and bottom rows correspond to the receptors P-selectin (Psel)
and L-selectin (Lsel) respectively. The ligands are indicated above the figures. The
symbols are experimental results and the lines are analytical curves from Eq. 1.20,
with parameters given in Table I. The sources for the data are: a-b) [23]; c-d)
[31]. For panels a-b, the symbol shapes denote three alternate ways of estimating
experimental τ(F ). Squares: average of the lifetimes; triangles: standard deviation
of the lifetimes; circles: -1/slope in the logarithmic plot of the number of events with
lifetime t or more versus t. Up to sampling errors, these estimates are equivalent
for systems with exponentially distributed bond lifetimes.
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Table 1.1: Best-fit parameter values of the catch-bond model for the various exper-

imental complexes shown in Figs. 1.8-1.9. Parentheses denote uncertainties in the

least significant digit.

Complex E1 E0 d r0

[kBT ] [kBT ] [nm] [nm]

Psel / (s)PSGL-1 9.3(2) 17.2(3) 0.56(2) 2.0(1)

Psel / G1 0 26.73(4) 0.51(3) 2.0 1

Lsel / PSGL-1 10.2(7) 20.3(6) 0.14(4) 0.38(7)

LselN138G / PSGL-1 8.7(6) 21.8(5) 0.14(4) 0.38(7)

Lsel / 6− sulfo− sLex 8.7(7) 22.7(4) 0.17(4) 0.23(5)

LselN138G / 6− sulfo− sLex 7.0(7) 24.3(3) 0.17(4) 0.23(5)

integrin / fibronectin 12(1) 23(1) 0.7(1) 0.5(2)

actin / myosin (ADP) 4.1(3) 18.2(5) 0.47(4) 2.6(5)

actin / myosin (rigor) 3.9(4) 18.4(8) 0.50(5) 2.2(7)

structure of the P-selectin / PSGL-1 complex in Fig. 1.3b, we estimated that the re-

gions B0 and B1 involve, respectively, 14 and 6 ligand-lectin hydrogen bonds (the B1

bonds are shown in Fig. 1.4a). We used the software PyMol [47] to count hydrogen

bonds, with a distance cutoff of 0.35 nm for the heavy atoms. The corresponding

energy scales from Table I are E0 = 17 kBT and E1 = 9 kBT , which gives an en-

thalpy of ≈ 1.2− 1.5 kBT per hydrogen bond. This range is consistent with earlier

estimates of the strength of hydrogen bonds in proteins [48]. The distance from

the EGF domain–lectin interface to the lectin–ligand interface is ≈ 3 nm. Since
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the crystal structures suggest that restructuring of hydrogen bonds in this region

leads to catch bond behavior, r0 should be ≈ 3 nm or less. The fitted values of

r0 ≈ 0.2− 2.0 nm for L- and P-selectin, lie well within this estimate. The transition

distances d vary between ≈ 0.1−0.6 nm, which is the range typical for proteins [49].

Given the realistic values for all the fitted parameters, our theoretical model is an

accurate coarse-grained description of selectin-type systems.

The sum E0 +E1 is essentially constant for a given selectin receptor, indepen-

dent of the ligand: E0 + E1 ≈ 27 kBT for P-selectin and ≈ 31 kBT for L-selectin.

This suggests that the maximum number of possible interactions is fixed by the in-

teractions associated with the receptor interface. For each ligand there is a different

partitioning of these interactions among those that contribute to E0 and E1. The

values of E0 and E1 can be estimated from the structures alone using E0 ≈ nbεhb

and E0 + E1 ≈ neεhb where nb, ne are the number of hydrogen bonds in the bent

and extended states respectively and εhb is the strength of a hydrogen bond. For

the catch-bond complexes, E1 ≈ 7− 10 kBT , or roughly 5-8 noncovalent bonds. For

P-selectin and G1 [Fig. 1.8b], all interactions contribute to E0, and we get slip-bond

behavior instead; G1 is a blocking monoclonal antibody for P-selectin. In this case

the binding is so strong, involving all possible interactions at the interface, that

there is no room for additional stabilization under alignment (E1 = 0). The finding

that the ligands achieve nearly the same value of E0 +E1 means that in the aligned

state each of the considered ligands is capable of maximally exploiting the binding

partners among the receptor residues. Our model predicts that if the ligand were

made defective, by truncating or mutating some portion of the ligand binding sites
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so that their interactions with the receptor were eliminated, the sum E0 +E1 should

decrease. We will return to this case below in discussing a mutant of the ligand

PSGL-1.

Integrin: In the case of the integrin-fibronectin complex, we took as an ex-

ample AFM data for a truncated integrin (only the headpiece of α5β1) binding

to fibronectin FNIII7−10 (fibronectin fragment comprising the 7-10th type III re-

peats) [24]. There is ample evidence for an angle-dependent detachment of ligand

in the integrin headpiece [35], where the β-hybrid domain swings out from the α

subunit via multiple intermediate states [36]. Our model is well suited to describe

these structural changes, and the quality of fit to experimental data [Fig. 1.9a]

shows that the physics governing the effect of force on selectin complexes also holds

for the complex involving integrin. We can compare some of the fitted parameters

with a recently obtained crystal structure of the α5β1 headpiece complexed with fi-

bronectin (only the RGD peptide portion of fibronectin is resolved in the structure,

Fig. 1.4b) [50].

Since the structure shows the integrin headpiece in a closed (large angle) con-

formation, we can directly compare the number of hydrogen bonds with the param-

eter E0. As shown in Fig. 1.4b, there are nine hydrogen bonds formed between the

headpiece domain and the RGD peptide. In addition, the acidic residue Asp forms

a salt-bridge with the ligand residue Arg. Beyond the interactions that can be as-

certained from the crystal structure, it is also known that additional “synergy” sites

in the ligand, not visible in the structure, play a role in binding. From the measured

decrease in binding affinity of fibronectin fragments lacking the synergy sites, their
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contribution to the binding energy can be estimated to be ∼ 2− 4 kBT [50]. Com-

bining this with the hydrogen bonds and salt bridges seen in the structure (using

our earlier range of 1.2 − 1.5 kBT per hydrogen bond, and 4 − 8 kBT for the salt

bridge [51]) we get an estimated total of E0 = (17 − 26) kBT . Our fitted result

E0 = 23 kBT from the model falls in this range, and is therefore consistent with the

structural analysis. The fitted value of r0 is also reasonable, given that the longest

axis of the hybrid domain is ∼ 4 nm. The parameter d is again well within the range

of transition state distances expected in proteins. Our model predicts that E1 = 12

kBT , the extra interaction strength that would be gained in an open conformation of

the α5β1–fibronectin complex. This prediction can be tested once crystal structures

of the open conformation become available.

Actomyosin: Finally, in the case of actomyosin catch bonds [Fig. 1.9b], no

crystal structures exist for the complex and an angle-dependent lifetime has not

been established. However, we can use our theory to propose the origins of catch

bond behavior in these complexes based on experimental data. There is strong

evidence that the upper 50K and lower 50K domains surrounding the major cleft

in the motor head behave like pincers—binding to actin tightly in the ADP and

rigor states, thereby forming a tight complex [52]. Once ATP binds, the pincers

move apart (the upper 50K domain breaks contact with actin) by an allosteric

mechanism [53], thus allowing the motor head to unbind from actin faster. While

in the ADP/rigor state, if an external force is applied through the lever arms of

myosin, local rearrangements and rotations would cause the N terminal domain

and the two 50K domains to align with the direction of force. Along with these
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Figure 1.9: Experimental best-fit results for bond lifetime τ(F ) for non-selectin
complexes. The receptor ligand systems are indicated on top of the figures. Sources
of the data are a. [24] and b. [27].

local reorientations, the force would also stretch the domains, causing narrowing of

the major cleft, and facilitating increased interactions of both 50K domains with

actin. This mechanism would lead to catch bond behavior, in a manner similar

to the FimH-mannose adhesions in E. Coli [54]. Our fitted value of r0 shows that

the alignments occur over a length-scale ∼ 2.4 nm, which agrees well with single

molecule results showing that the cross-bridge compliance resides only locally in the

actin-motor domain of the actomyosin complex [55].

Predictions for mutations in selectin complexes: Since the energy scales

in our model correspond to the strengths of noncovalent bonding networks, we can

use our theory to predict and explain the impact of mutations on the bond lifetime,

thus providing a framework for engineering catch bonds with specific properties. We

will consider two examples, one a modification of the ligand, the other of the receptor

in selectin systems. A recent study [56] considered a PSGL-1 mutant where Tys51,

a sulfated tyrosine that makes one hydrogen bond with Arg85 in the B1 region
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of P-selectin [Fig. 1.4], is replaced by phenylalanine (Phe), which cannot form the

hydrogen bond. Kinetic assays showed that the mutant has a weaker binding affinity

to P-selectin, but a zero force off-rate that remains virtually unchanged from the

wild-type. The lifetime under force has not yet been measured, but our model

predicts that removing one hydrogen bond from B1 should decrease E1 by ≈ 1.3

kBT . Using the reduced value for E1 with all other parameters the same as in the

wild-type (first row of Table I), we predict that the τ(F ) curve (dashed red line

labeled Y51F in Fig. 1.8a), should be dramatically different from the wild-type.

Relative to the wild-type, the peak is decreased by a factor of 3.4, and shifted

slightly (from 24 to 21 pN). Since effects of a mutation in E1 are most relevant to

alignment under force, the low force behavior is relatively unperturbed, similar to

the kinetic assay results: τ(F ) of the mutant for F < 2 pN differs less than 20%

from the wild-type.

The second example, where experimental τ(F ) data is available, involves two

receptor mutations performed on L-selectin [31]. The authors compared the τ(F )

behavior of wild-type L-selectin to a mutant where Asn138 was changed to Gly. The

mutation effectively breaks a hydrogen bond in the hinge region, between Tyr37

and Asn138. Two different ligands (PSGL-1 and 6-sulfo-sLex) both showed the

same trends: the peak in the τ(F ) curve for the mutant was shifted up and toward

smaller forces, relative to the wild-type [Fig. 1.8c-d]. To determine the minimal

perturbation in the parameters that would produce this shift, we simultaneously

fit the wild-type and mutant data sets for each ligand, allowing only a subset of

parameters to change for the mutant. The most likely subset, determined using the
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Akaike information criterion (see Appendix A for details), involved only changes in

the energy scales E0 and E1. The fit results are shown in Table I. Both ligands

show a similar pattern: E1 decreased by ≈ 1.5 − 1.7 kBT in the mutant, while E0

increased by ≈ 1.5− 1.6 kBT . The magnitudes of the energy changes suggest that

the enthalpy loss due to a single hydrogen bond contributing to E1 in the wild-type

is compensated by an increase in E0. The mutation gives added flexibility to the

lectin domain, allowing it to bind the ligand more effectively in both the bent and

extended conformations. Thus, a contact between the ligand and receptor in B1

[Fig. 1.3] that forms only at small angles in the wild-type, is present at all angles in

the mutant.
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Chapter 2: Universal response of helicase processivity to external

force

2.1 Introduction

Helicases are nucleic-acid dependent enzymes that hydrolyze nucleoside triphos-

phate (NTP) molecules (usually adenosine triphosphate ATP) and play an impor-

tant role in almost every aspect of RNA and DNA metabolism [57–61]. Any cel-

lular process that involves nucleic acids, usually requires helicases in some form:

chromosomal and plasmid replication, transcription, translation, RNA processing,

and DNA recombination and repair, to cite a few examples [59–61]. The essential

chemical reaction is generally hydrolysis of the NTP, coupled to the separation of

a nucleic-acid duplex. In this reaction, the helicase drives an unwinding fork to

propagate along the double-strand nucleic acid starting from an initiation site. The

“processive, zipper-like” double-strand (d.s) unwinding activity of helicases was first

demonstrated by Abdel-Monem et al in 1976 [62].

Helicases usually walk directionally on single strand nucleic acids, the 3’ and 5’

ends of the single strand providing a structural bias that the enzyme utilizes [63,64].

Based on this directionality, helicases can be classified as 3’–5’ or 5’–3’ motors.
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However, the antiparallel phosphodiester backbones of double-strand nucleic acids

give the duplex an intrinsic symmetry (ignoring the base composition). Helicases

seem to get around this problem by tracking along one of the two strands, and

coupling the single strand motion to unwinding the duplex. Evidently, the way the

helicase loads onto the substrate becomes a critical determinant of the direction it

eventually moves on the duplex.

An interesting modularity becomes evident in the structure-function relation-

ship of helicases, when they are classified on the basis of primary structure [65–67].

Helicases can be classified into five superfamilies, each with its own set of conserved

motifs. For instance, the largest of these superfamilies (SF1 and SF2) have eleven

conserved motifs–I, Ia, II, III, IV, Iva, V, VI, TxGx, Q and TRG. The first helicase

to be crystallized, PcrA from Bacillus stearothermophilus, belongs to SF1 and shows

some remarkable features [68]. Two of the four domains of this helicase are strik-

ingly similar in structure to the recombination strand exchange enzyme RecA, from

E. coli [69]. Furthermore, a majority of the conserved SF1 sequences (seven out of

the eleven mentioned before) were found within these two RecA–like domains. With

the crystallization of many more helicases, it became evident that similar to PcrA,

many of the conserved sequences of other superfamily helicases also formed RecA-

like folds, and furthermore, were very similar across superfamilies. These ‘core’

domains have been shown to be involved in the binding and hydrolysis of NTP and

are equivalent to the Walker A and B domains of many generic ATPases [67]. The

conservation of these core motor domains is an indication of a modular structure of

helicases – the enzyme core confers the ability to hydrolyze NTP and translocate on
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nucleic acids, while the extra, structurally diverse domains determine the specificity

of the functioning of a particular helicase. Evidence for this kind of division of labor

has been obtained from both biochemical and structural studies. For example, in a

crystal structure of PcrA bound to duplex DNA [70], it was found that the extra

domains significantly distort and presumably aid in the unwinding of the duplex

DNA.

Analysing and classifying primary structures and general folding motifs clearly

suggest an evolved modularity in helicases, but does not provide much detail about

actual unwinding mechanisms. The lack of crystal structures of duplex DNA or RNA

in complex with helicases, makes it even more difficult to precisely extricate the

molecular details of the unwinding mechanism of different helicases. In an attempt

to address this question, a very generic description for the unwinding mechanism

was proposed by Lohman et al [57, 58]. A helicase that actively participates in the

unwinding process by using some of the energy of ATP hydrolysis to destabilize the

single strand (ss)–double strand (ds) nucleic acid junction, was called an ‘active’

helicase. On the other hand, a helicase that utilizes the thermal fraying of the d.s

and opportunistically steps ahead when the site ahead is open, was termed a ‘passive’

helicase. Over the years a lot of effort has gone into classifying various helicases into

these two categories, as this general description gives an idea of the mechanism used

by a particular helicase to unwind nucleic acids [67,70–79]. Earlier works used bulk

kinetic assays or analysis of crystal structures to address this question [70, 72, 73],

while the more recent works have primarily resorted to single-molecule experiments

coupled with mathematical models in order to establish the mode of unwinding of
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various helicases [75–78].

The unwinding mechanism (active or passive) can directly affect the velocity

and run length (processivity) of helicases. Therefore, in order to obtain a general

understanding of the way helicases function, it is important to identify different heli-

cases as active or passive. In this chapter and the next, we explore the consequences

of helicases being active or passive, and develop a method to accurately establish

whether a particular helicase is active or not. In this chapter, we explore a model

of helicases numerically, and show the consequence of the degree of activeness on

unwinding velocity and processivity. In the next chapter, we utilize approximate

analytic solutions to a more general model of helicases, to devise a simple method

of accurately predicting the nature of helicase unwinding from single-molecule data.

In a number of recent single molecule experiments, a variety of interesting

force-dependent responses have been observed in helicases. Dessinges et al. [80], who

used Magnetic Tweezers (MT) to follow the unwinding of double stranded DNA by

the UvrD helicase, showed that the unwinding velocity depends only weakly over a

broad range (3-35 pN) of applied forces on the ds termini of the DNA. In contrast,

the unwinding processivity was much larger (265 bp) in their experiment compared

to previous results (45 bp) from zero-force bulk assays [81], suggesting that force

enhances the processivity . In sharp contrast, Johnson et al. [78] discovered using

Laser Optical Tweezer (LOT) experiments, that both the unwinding velocity and

processivity of T7 helicase are highly tension dependent. Indeed, the unwinding

rate increased by an order of magnitude when the tensile force applied to destabilize

the ss-dsDNA junction was increased from 5 to 11 pN. Finally, Lionnet et al. [77]
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examined the unwinding kinetics of the gp41 helicase. Like the T7 helicase, the

unwinding velocity depends strongly on the value of the tension destabilizing the ss-

dsDNA junction. From these experiments, we surmise that while different helicases

exhibit very different unwinding velocity responses to force, the processivities always

increase appreciably with force.

Some aspects of the varied responses in helicase velocities have been qualita-

tively justified in a previous work [82], based upon a theoretical model of helicases

originally proposed by Betterton and Jülicher [83–85], which has been generalized

and applied to a number of motors [86]. The model quantifies the crucial ideas of

“active” and “passive” unwinding by a helicase – a classification that has been used

to understand helicase mechanisms for a number of years [58, 71, 75, 77–79, 87–89].

A passive helicase utilizes the thermal breathing of the single strand-double strand

junction of a nucleic acid, to opportunistically step in front. Since the double strand

closes on itself on average, the helicase frequently faces a barrier and hence moves

ahead relatively slowly (as compared to its unimpeded single strand velocity). An

active helicase on the other hand, utilizes energy from ATP hydrolysis to destabilize

the downstream double-strand base pair, thus increasing the unwinding velocity.

The increase in unwinding velocity depends on the extent of the destabilization of

the ds junction due to interaction with the helicase. This suggests that the helicase

can be active to various degrees. An “optimally active” helicase (details later in

the text) would unwind at a maximum velocity that is close to or equals the single

strand velocity VSS [84]. For helicases with negligible back stepping rates, it was

argued in [82] that when a helicase is passive, an external force can assist in the

36



opening of the double-strand junction, thus increasing the velocity of the helicase.

On the other hand, since an optimally active helicase already unwinds at close to

the maximum possible velocity, an external force provides little or no additional

assistance in increasing the velocity. These physically motivated arguments suggest

that the velocity of a passive helicase should increase appreciably with force while

the velocity of an optimally active helicase will be similar to the ss translocation

value.

Manosas et al [82] did not investigate the processivities of helicases and hence

their work provided only an incomplete understanding of the nature of helicase

motion. By generalizing the Betterton and Jülicher (BJ) model [83–85] to include

force dependence for both velocities and processivities, we show that even though

the velocity can vary with external force in a variety of ways depending on how

active the helicase is, the unwinding processivity always increases significantly with

force. This is a remarkable result, as it predicts a universal behavior — unlike the

velocity, the processivity will increase rapidly with external force for all helicases. In

addition, our work highlights another surprising result – the more active a helicase is

(the stronger its interaction with the single strand-double strand junction), the less

processive is its motion. Finally, the sequence dependent behavior of the unwinding

velocity and processivity show complex behavior depending on the percentage of

GC content. We predict that details of the energy landscape of base pair opening,

GC content, and the extent to which the helicase is active determine the unwinding

velocity and processivity. All our results have been numerically obtained for the case

where the back-stepping rates are small compared to the forward rates, a situation
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that is realized in a number of helicases [82].

2.2 Theory for Load dependent Velocity and processivity of active

and passive helicases

As illustrated schematically in Fig. 2.1, in the BJ model the nucleic acid (NA)

is represented by a one-dimensional lattice with n denoting the lattice position of the

helicase, while m specifies the position of the ss-ds junction. We extended the BJ

model by applying a constant tension (F ) to complementary termini of the NA, in

order to investigate the dependence of velocity and processivity on load. In accord

with the single molecule optical tweezer experiments [78, 90], tension is applied in

a manner that increases the opening rate of the junction and decreases the closing

rate while maintaining detailed balance.

If the helicase and ss-ds junction are in proximity, there is an effective in-

teraction. The passive unwinding mechanism is realized by a hard-wall coupling

potential:

U(j) = ∞ (j ≤ 0)

= 0 (j > 0) , (2.1)

where j ≡ m−n (Fig. 2.1). Similarly, we represent an active unwinding mechanism

by a coupling potential consisting of both a step-function and a hard-wall:

U(j) = ∞ (j ≤ −1)

= U0 (−1 < j ≤ 0)
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Figure 2.1: A schematic illustration of the extension of the Betterton and Jülicher
model for helicases. The position of the helicase (black circle) on an underlying 1D
lattice representing the nucleic acid substrate is denoted by the variable n, while the
variable m refers to the location of the ss-dsNA junction. At infinite separation
between the helicase and ss-ds NA junction, n→ n+ 1 transitions occur at rate k+,
while n → n − 1 transitions occur at rate k−. Similarly, m → m + 1 transitions
occur at rate α, and m → m − 1 transitions occur at rate β. The tension F is
applied to the ends of the nucleic acid.
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= 0 (j > 0) , (2.2)

where the energy U0 is in units of kBT .

Velocity of a helicase. The mean velocity (V ) of the helicase/junction complex

is proportional to a sum over all j of a product of the probability of being at

separation j and the net rate at which the centroid coordinate (l = m+n, Fig. 2.1)

increases:

V =
1

2

∑
j

(
k+
j + αj − k−j − βj

)
Pj, (2.3)

where αj is the rate constant associated with junction opening when the helicase

and junction are at separation j. Similarly, βj, k
+
j , and k−j , are the j-dependent rate

constants associated with junction closing, helicase forward stepping, and helicase

backward stepping respectively.

Since experiments are performed at constant temperature and F , opening and

closing of the ss-ds junction can only be attributed to thermal fluctuations or the

applied tension. Thus, the ratio of the rate at which the junction opens (αj−1) to

that at which it closes (βj) satisfies:

αj−1

βj
=

α

β
e[U(j−1)−U(j)]e∆GF

α

β
= e−∆G, (2.4)

where α (β) is the j → ∞ junction opening (closing) rate, ∆G is the stability of

the junction base pair in the absence of either force or helicase, U(j) is the value of

the coupling potential when the helicase and junction are at separation j, and ∆GF

is the destabilization in the free energy of the basepair at the junction, caused by

the applied force F . For simplicity, we choose ∆GF = F∆x (see further discussions
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below), where ∆x is roughly twice the length of s.s DNA separating two bases.

When ATP hydrolysis is tightly coupled to helicase transitions, the hopping rates

approximately satisfy a relation akin to detailed balance [83]:

k+
j

k−j−1

≈ k+

k−
e−[U(j−1)−U(j)], (2.5)

where k+ = lim
j→∞

k+
j and k− = lim

j→∞
k−j−1. Note that when the helicase traverses

on a single strand, there is no single strand–double strand junction confronting

the helicase, and hence the hopping rates that describe its motion are k+ and

k−. Thus, the single strand velocity is VSS = k+ − k−. Finally, individual rates

are affected by the coupling potential and the applied tension as follows: k+
j =

k+e−f [U(j−1)−U(j)], k−j−1 = k−e−(f−1)[U(j−1)−U(j)], βj = βe−f [U(j−1)−U(j)+F∆x], and

αj−1 = αe−(f−1)[U(j−1)−U(j)+F∆x], where f (0 < f < 1) is the location (in units

of lattice spacing) of the transition state separating the closed and open states.

Note that the applied tension F , affects only the nucleic acid breathing rates (αj−1

and βj), but not the hopping rates.

The rates of a passive helicase are independent of j for j > 1, and at j = 1 we

have k+
1 = β1 = 0. The force-velocity relation for a ‘hard-wall’ helicase, calculated

using Eq. 2.3, is:

VHW =
α′k+ − β′k−

β′ + k+
, (2.6)

where VHW ≡ VHW(F, f), α′ ≡ αe−(f−1)F∆x and β′ ≡ βe−fF∆x. For convenience,

while referring to VHW in the rest of the text, we explicitly show the functional

dependence of only the parameter pertinent to the particular discussion. Note that

for F = 0, Eq. (2.6) coincides with Eq. (22) in reference [84]. By making the ap-
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proximation k− ≈ 0, we obtain VHW ≈ α′

β′

(
k+

1+k+/β′

)
and VHW(F )

VHW(F=0)
≈ α′/α

β′/β

(
1+k+/β
1+k+/β′

)
.

Finally, making the approximation β′ � k+, we conclude that:

VHW(F )

VHW(F = 0)
≈ eF∆x. (2.7)

(The approximation β′ � k+ is typically valid because β ' 105-108s−1, while k+ '

1-103s−1). A passive helicase must wait for the junction to open to step forward and

prevent the newly separated base pair from reannealing. From Eq. 2.7 it follows that

the application of force exponentially increases the probability that the junction is

open relative to the probability that it is closed, resulting in an exponential increase

in the unwinding velocity relative to the F = 0 value.

For a single step active helicase (modeled with Eq. 2.2) the rates are indepen-

dent of j for all j > 1. A striaghtforward calculation of Eq. 2.3 leads to

V1

VHW

≈ c′ + (1− c′) e−fU0

c′ + (1− c′) e−U0
, (2.8)

where V1 ≡ V1(F, f, U0), c′ = (αe−(f−1)F∆x+k−)/(k+ +βe−fF∆x) and the subscripts

1 and HW denote the step (active) and hard-wall (passive) coupling potentials. As

with VHW, while referring to V1 in the rest of the text, we show only the functional

dependence of the parameters pertinent to the particular discussion. Finally, using

the results of Eqs. 2.7 and 2.8 we find: V1(F )
V1(F=0)

=
(
c′+(1−c′)e−fU0

c′+(1−c′)e−U0

)
eF∆x( c+(1−c)e−U0

c+(1−c)e−fU0
),

where c = c′(F = 0) = (α + k−)/(k+ + β).

Helicase processivity. The processivity of a helicase has been defined in var-

ious ways [85]: (1) the mean attachment time of the helicase 〈τ〉, (2) the average

number of base pairs unwound in a single binding event 〈δm〉 (in other words, the

average number of base pairs by which the junction moves ahead before the helicase
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detaches), and (3) the average number of base pairs translocated before the helicase

detaches 〈δn〉; 〈δm〉 and 〈δn〉 (termed unwinding and translocation processivities

respectively) in principle could be very different. For instance, if the helicase binds

very far from the junction (j0 � 1), the double strand will close rapidly before the

helicase can translocate by a significant amount, thus making the unwinding pro-

cessivity (〈δm〉) negative. However, if the helicase binds very close to the junction

(j0 ∼ 1), 〈δm〉 and 〈δn〉 are almost identical [85]. The double strand would always

have a larger closing rate as compared to the opening rate, thus making the strands

close on average. This would hold even in the presence of external forces, as long as

they are less than the force needed to unzip the double strand. In such physically

relevant situations, after a very brief transition period the helicase is likely to be

very close to the junction, and hence the relevant initial condition can always be

taken as j0 = 1. In the single molecule experiments measuring unwinding velocity

and processivity, typically a DNA hairpin serves as a model double strand. The

upstream single strand overhangs allow the helicase to load [75,77,82,90]. At forces

less than the critical force required to unzip the hairpin in the absence of a helicase,

the arrival of a helicase at the junction and subsequent unwinding causes the end-

to-end distance to increase. As a result, the presence of the helicase on the hairpin

can only be discerned by observing the sudden change in the end-to-end distance,

which happens when j0 ∼ 1. Therefore we work with the initial condition j0 = 1,

and hence the unwinding processivity 〈δm〉 and translocation processivity 〈δn〉 are

almost identical.

To model a helicase with finite processivity, we incorporate an unbinding rate
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γj that depends implicitly on the separation j through the relation γj = γeU(j) [85].

We assume that U(j)→ 0 as j →∞. Since the velocity of unwinding is unaffected

by introduction of the unbinding rate γj, the analytical results derived above for

the unwinding velocity hold even for finitely processive helicases. For the physically

relevant initial condition j0 ∼ 1 (explained above), the velocity of active unwinding

is given by:

V1 ≈ 〈δm〉/〈τ〉 ≈ 〈δn〉/〈τ〉. (2.9)

For the initial condition j0 ∼ 1, the two expressions for unwinding velocity given by

Eq. 2.8 and Eq. 3.8 are equivalent. Betterton and Jülicher [85] derived the following

expressions for the three measures of processivity:

〈τ〉 =
∑
j

Rj

〈δm〉 =
〈δl〉+ 〈δj〉

2

〈δn〉 =
〈δl〉 − 〈δj〉

2
(2.10)

where the parameters {Rj} are obtained by solving the following infinite set of

second order recurrent relations:

−δjj0 = −
(
k+
j + k−j + αj + βj + γj

)
Rj +

(
αj−1 + k−j−1

)
Rj−1 +

(
βj+1 + k+

j+1

)
Rj+1,

(2.11)

j0 is the value of j at time t = 0, δjj0 is the Kronecker delta, 〈δj〉 =
∑
j(j− j0)γjRj,

and 〈δl〉 is given by the expression: 〈δl〉 = b
(
1 + a− y− − a−b

y+

)−1 [ y−
(1−y−)2

− y+
(1−y+)2

]
,

where y± are the roots of the equation y2 − (1 + a)y + (a − b) = 0, a = (1 + p)/q,

b = 1/q and p =
∑
j(αj + k+

j )Rj, q =
∑
j(βj + k−j )Rj. BJ derived Eq. 2.11 by
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taking the Laplace Transform of the time evolution equation of P (j, l, t), the joint

probability density of finding the helicase-junction system in state (j, l) at time t.

P (j, l, t) obeys a Master equation accounting for the movement of the helicase in

the forward and backward direction as well as detachment from the NA.

When the helicase is passive, U(j) = 0 for j > 0 (Eq. 2.1) and hence the

dissociation rate γj = γ for all j. As a result, the mean attachment time for a

passive helicase 〈τ〉HW is given by

〈τ〉HW =
1

γ
, (2.12)

for all values of the external force F .

2.3 Results

In order to determine the velocity and processivity, we solve the sparse linear

system given by Eq. 2.11 for {Rj}. We use a grid of size M = 10, 000 in j to solve

Eq. 2.11. A larger grid size than that used by BJ (M = 100 was used in Ref. [85] ) is

necessitated by the external tension applied to the NA substrate. From a numerical

standpoint, as F∆x/kBT increases, {Rj} converges to zero increasingly slowly, thus

requiring more and more terms to guarantee the convergence of the sums used to

calculate 〈τ〉, 〈δj〉, and 〈δl〉. For F∆x/kBT > 1.95, a grid of size M = 106 in

j proves to be insufficient to solve Eq. (2.11). It is not possible to explore forces

greater than 1.95 kBT/∆x because such large forces result in the melting of the

duplex. This is because our choice of α = 105s−1 and β = 7× 105s−1 correspond to

∆G = 1.95kBT . At these forces, 〈δm〉 is very large and 〈δn〉 ≈ 〈τ〉(k+−k−). These
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results are confirmed in Fig. 2.2, which shows (in addition to the numerical results)

simulation results at these larger forces (see below for additional information).

Unwinding velocity : To understand how the unwinding velocity depends on

the model parameters, we plot the F -dependent unwinding velocity V1(F,U0) for

several values of U0 (Fig. 2.2) as well as a plot of V1(F,U0)/V1(F = 0, U0) as a

function of F and U0 (Fig. 2.3). These figures reveal several interesting features.

(1) Fig. 2.2 shows that for a small value of f = 0.01 � 1 (f is the transition

state location along the reaction coordinate separating the closed and open states

of a base pair), if the helicase is passive (U0 = 0) or weakly active (U0 < ∆G),

the unwinding velocity is highly sensitive to the external force. As U0 increases,

making the helicase increasingly more active, the unwinding velocity is less sensitive

to increase in force. This is also clear from Fig. 2.3a where for a range of f and U0

(U0 > 5kBT ), force hardly affects the unwinding velocity. In the parameter range

f << 1 and U0/kBT >> 1, the helicase is “optimally active”. (2) The parameters

used in Fig. 2.2 correspond to a single-strand translocation velocity VSS=0.99 bp/s.

In the optimally active regime, the unwinding velocity is close to VSS for a large range

of forces. This observation along with point (1) qualitatively describe the velocity

behavior of a number of helicases [82]. For example, UvrD is optimally active while

T7 is passive or at best, only weakly active. (3) When U0 = 0, the results revert to

those expected for a hard wall coupling potential. Thus, as illustrated in Fig. 2.3, the

effect of tensile force at U0 = 0 is simply to increase the mean velocity exponentially

relative to the zero force value (Eq. 2.7). (4) BJ showed that the mean velocity of an

active helicase is a non-monotonic function of U0 with a maximum corresponding
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Figure 2.2: Unwinding velocity V1(F,U0) as a function of the tension (F∆x/kBT ),
for various coupling potentials U0/kBT = 0 (red circles), 1 (orange squares), 2
(yellow diamonds), 3 (green downward triangles), 4 (green upward triangles), 5
(cyan rectangles). The solid black lines are numerical results obtained using Eq. 3.8
and Eq. 2.11. Each symbol represents the average of 1000 independent Kinetic
Monte Carlo simulations. For forces exceeding F∆x/kBT = 1.9, the duplex melts
and it is no longer possible to numerically solve the system given by Eq. 2.11,
but the robustness of our simulation algorithm allows us to explore this regime
and to confirm that the duplex has melted. The parameters used were f = 0.01,
α = 105s−1, β = 7× 105s−1, k+ = 1bp/s, k− = 0.01bp/s, and γ = 0.01s−1.

to a value of the coupling potential that significantly increases the opening rate

(and decreases the closing rate) of the ss-dsNA junction while not greatly inhibiting

forward progress of the enzyme [84] . As illustrated in Fig. 2.3, this maximum also

corresponds to the value of the coupling potential for which the velocity is least

affected when the load on the enzyme is relieved.

Processivity and lifetimes. For finitely processive helicases, the primary results
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Figure 2.3: Plots of the force-velocity relation of an active helicase (relative to its
zero-force value) as a function of the coupling potential step-size (U0/kBT ) and
applied tension (F∆x/kBT ). The response of helicase velocity to applied tension
depends strongly on the parameter f which embodies the location of the barrier
associated with NA breathing and helicase hopping. Finally, the coupling potential
Umax

0 which maximizes the unwinding velocity of an active helicase tends to promote
the formation of a lip on the surfaces above which the external tension has negligible
effect on the velocity. The parameter used was c = c′(F = 0) = 1/7. An expression
for c′(F ) is given below Eq. 2.8.
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of numerically solving Eq. 2.11 are plotted in Figs. 2.4, 2.5, 2.6 and 2.7, illustrating

several points worthy of note:

1. The variations in the average lifetime of the helicase 〈τ〉 (normalized by the

lifetime of the passive helicase) with F , f and U0 (Eq. 2.10) are displayed in

Fig. 2.4. Evidently, a passive helicase (U0 = 0) has the largest lifetime. As

U0 increases, lifetimes monotonically decrease at any given force value. This

is not surprising since the lifetime is controlled by the detachment rate γj,

which increases exponentially with increase in U0. As F increases, the opening

rate of the double strand becomes larger, thus increasing the probability of

the helicase to find an open adjacent base whenever it steps ahead. This

results in fewer occasions where the helicase has to pay the extra U0 energy

to plough ahead, resulting in larger lifetimes. At forces close to the double-

strand rupture force, the helicase always finds a clear path ahead and hence

rarely interacts with the junction, making the lifetime increasingly approach

the passive helicase lifetime. Finally, Fig. 2.4 also demonstrates that the mean

attachment time of the helicase relative to that of a passive helicase depends

on both U0 and F , but is insensitive to the parameter f .

2. Fig. 2.5 shows the mean unwinding processivity of an active helicase relative

to a passive helicase. Since the translocation processivity is very similar, we

do not show a separate figure and all results discussed for 〈δm〉, also hold for

〈δn〉. It is evident from the figure that similar to the lifetime (Fig. 2.4), the

unwinding processivity is also maximum for a passive helicase, and monotoni-
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cally decreases as the helicase becomes more active. This interesting result can

be physically understood as follows: 〈δm〉 depends on the unwinding velocity

and mean lifetime as 〈δm〉 = V1(F,U0) 〈τ〉. At a given force, as U0 increases,

V1(F,U0) initially increases (see Fig. 2.3, Fig. 2.7a,b) but 〈τ〉 decreases (see

Fig. 2.4, Fig. 2.7e,f). The rate at which these two quantities increase/decrease

determines the trend for 〈δm〉. Our results show that the rate of decrease of 〈τ〉

is faster than the rate at which V1(F,U0) increases. This can be most clearly

seen in Fig. 2.7 (b and f) where the velocity and mean processivities have been

plotted as functions of U0 respectively for f = 0.25. 〈τ〉 decreases faster than

V1(F,U0) increases, and hence the overall result is that 〈δm〉 decreases as a

function of U0 regardless of the GC content. (Fig. 2.7d).

3. The unwinding processivity depends strongly on the parameter f . For f =

0.01 and F = 0, 〈δm〉/〈δm〉HW > 0.8 even when the coupling potential U0 =

20kBT (pink dot-dashed line in Fig. 2.5). For f = 0.05 and F = 0, the

coupling potential U0 must exceed 5kBT for 〈δm〉/〈δm〉HW to decrease to less

than 0.8 (red dotted curve in Fig. 2.5). Thus, the effects of the barriers to

translocation and NA breathing on 〈δm〉 are the principal determinants of the

‘velocity’ of a processive helicase (see also sequence effects below).

4. The equation 〈δm〉 = V1(F,U0) 〈τ〉 gives key insights into the force dependence

of processivity. As was discussed above, for a passive helicase with U0 = 0,

the velocity VHW increases rapidly as the force increases (Fig. 2.2). However,

the lifetime of a passive helicase 〈τ〉HW does not change and is constant at
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〈τ〉HW = 1/γ (Eq. 2.12). This immediately means that 〈δm〉 will increase

rapidly with increase in force (solid black lines in Fig. 2.6). In the other

extreme limit of an optimally active helicase (U0/kBT � 1 and f � 1),

our discussions above show that V1 will not significantly change with force

(Fig. 2.2). However, unlike the passive situation, 〈τ〉 increases rapidly with

force (Fig. 2.4). This result follows again from the discussion in the previous

points—as a helicase becomes more active, the increased interaction with the

junction reduces its lifetime. An external force reduces the probability of

this interaction which in turn results in an increase in 〈τ〉, the lifetime of the

helicase. As a result, 〈δm〉 will increase rapidly as the external force increases

(Fig. 2.6a). For intermediate values of U0 and higher values of f , the increase

in 〈δm〉 with force is a result of contributions from both the velocity as well as

the lifetime. Thus, the phenomenon of rapid increase in unwinding processivity

as F increases, arises due to very different reasons, depending on how active

the helicase is. These arguments lead to the surprising prediction that no

matter how active (or passive) the helicase is, the processivity is sensitive to

external force. Our prediction, which we believe is universal for unwinding

helicases, is borne out in the few experiments that have analyzed the variation

of unwinding processivity over a range of forces [78, 90]. This behavior is to

be contrasted with the dependence of unwinding velocity on F , which varies

significantly when the helicase is passive, but less so for active helicases.

Sequence effects. The quantitative insights obtained for helicase velocity (Fig.
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Figure 2.4: Ratio of the mean attachment time of an active to a passive helicase
〈τ〉/〈τ〉HW as a function of the applied tension F∆x/kBT , for U0/kBT = 1 (black
solid line), 2 (orange dashed line), 3 (green short and long dashed line), 4 (blue short
dashed line), 5 (red dotted line). 〈τ〉/〈τ〉HW increases with tension (F∆x/kBT ) and
decreases with increasing step height (U0/kBT ). Interestingly, the mean attachment
time is unaffected by the parameter f (all plots can be superimposed). Parameters
used to solve Eq. 2.11 were α = 105s−1, β = 7×105s−1, k+ = 1bp/s, k− = 0.01bp/s,
γ = 0.01s−1, j0 = 1, and M = 104.
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Figure 2.5: Mean unwinding processivity of an active helicase (relative to that of a
passive helicase) as a function of the applied tension, for U0/kBT =1, 2, 3, 4, 5, 10,
15, and 20. For all values of U0, the processivity always increases with increasing
tension destabilizing the ss-dsNA junction and decreases with increasing step height.
Unlike the mean attachment time (Fig. 2.4), the unwinding processivity is highly
sensitive to the kinetic parameter f , further confirming that the processivity is likely
to exert a strong influence over the kinetics of unwinding. Parameters used to solve
Eq. 2.11 were α = 105s−1, β = 7×105s−1, k+ = 1bp/s, k− = 0.01bp/s, γ = 0.01s−1,
j0 = 1, and M = 104.
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Figure 2.6: Plots of the mean unwinding processivity of a helicase as a function
of the applied tension, for U0/kBT =0 (passive),1, 2, 3, 4, 5, 10, 15, and 20. The
processivity always increases with increasing tension destabilizing the ss-dsNA junc-
tion and decreases with increasing step height. We used the same parameters as in
Fig. 2.5.

54



2.2) and processivity (Fig. 2.6) as a function of force prompted us to use a similar

model to explore the effects of NA sequence. Helicase unwinding and translocation

can be modeled as a discrete-state continuous-time stochastic process. The process

is a nonhomogeneous poisson process with time dependent intensity λ(j(t)) [40].

The time dependence of the intensity is implicit in j, since all rates depend on

j. Instead of adopting Eq. 2.11 to include sequence effects, we used the Kinetic

Monte Carlo (KMC) method [91] to simulate the model. We chose KMC in this

case because grid sizes larger than M = 104 would be needed to solve Eq. 2.11,

which contributes to numerical stability problems. The transitions in the KMC

are stochastically implemented, and a given trajectory is generated till the helicase

disassociates.

From detailed balance it follows that α
β

= e−∆G, where ∆G ≈ 2 is the sequence

averaged free-energy per base pair in the absence of the helicase. To incorporate

sequence effects we let ∆G = g(δm), where δm ≡ m−m0, m0 is the initial position

of the ss-dsNA junction on the lattice and the sequence-dependent function g is

constructed from the nearest-neighbor parameters provided in Table 3 of SantaLu-

cia et al. [92]. For example, if the junction is a GC base pair and the downstream

pair is AT we assign ∆G(δm) = 1.46 kcal/mol ≈ 2.43kBT . Follwong BJ [85], we

assume β to be constant and then assign α = βe−∆G. As the sequence composi-

tion is varied, the average free energy per base pair ranges from ∆G = 1.7 when

the GC content is 0% to ∆G = 2.95 if the GC content is 100%. We investigated

the NA sequences organized in a block copolymer fashion. For example, the in-

finitely repeating unit of the sequence used to investigate 40% GC content was
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5′ G G G G A A A A A A 3′

3′ C C C C T T T T T T 5′
. We investigated sequences with frac-

tional GC content varying from 0 to 1 in increments of 0.1. All simulations were

performed with initial separation j0 = 1 and with the junction located at the first

GC pair of the repeating unit of the sequence.

The mean attachment time is calculated as: 〈τ〉 ≡ 1/N
N∑
i=1

τi, where N is the

number of simulations (N = 1000 for every data point we collected), and τi is the

attachment time in simulation i. The mean translocation processivity is calculated

using 〈δn〉 ≡ 1/N
N∑
i=1

(
nfi − n0

i

)
, where n0

i is the initial position of the helicase is

simulation i and nfi is its final position. Finally, the mean unwinding processivity

is calculated as 〈δm〉 ≡ 1/N
N∑
i=1

(
mf
i −m0

i

)
, where m0

i is the initial position of the

ss-dsNA junction and mf
i is its final position.

The results of our simulations investigating sequence dependence are provided

in Fig. 2.7, and we note the following points of interest: (1) Not surprisingly, pro-

cessivity (both 〈δm〉 and 〈τ〉) and V1 = 〈δm〉/〈τ〉 decrease as the fraction of GC

content is increased. (2) The decrease in attachment time with increasing U0 is

similar at both f = 0.01 and f = 0.25. The behavior of 〈δm〉 with increasing

U0 at f = 0.25, however, differs substantially from its behavior at f = 0.01. At

f = 0.01 〈δm〉 is essentially constant with respect to U0. This leads to an eventual

saturation of 〈δm〉/〈τ〉 at large U0. At f = 0.25, on the other hand, sequence effects

are more pronounced. For example, 〈δm〉 decreases substantially with U0 when the

%GC = 0 (Fig. 2.7, black solid line), but negligibly when %GC = 1 (Fig. 2.7, grey

dashed line). This behavior leads to a pronounced peak in V1 when %GC = 0, but
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a very small peak when the fractional GC content is 1. Indeed, at %GC = 100, we

see that 〈δm〉 can actually become negative leading to a negative V1 for helicases

with too strong a coupling.

2.4 Discussion

Effect of s.s DNA elasticity: To simplify our analysis, we used the Bell model

∆GF = F∆x, for the effect of force on the destabilization of the junction base-pair.

It might be more accurate to use ∆GF = 2L
l
log

(
1
Fl
sinh(Fl)

)
[77,93], derived from

the freely-jointed-chain model of single strand DNA elasticity. As shown in Fig. 2.8,

e∆GF for both the models are similar, and hence using the simpler Bell model will

not make any qualitative difference in our results.

Effect of back-stepping rate: We analyzed the model for the case where the

back-stepping rate of the helicase k− is much smaller than the forward stepping rate

k+, in the absence of the double-strand junction. Most molecular motors fall in this

regime, where k+ � k−. For example, the ratio k+/k− was measured to be about

221 in kinesin [94] and is expected to be large for helicases as well [82]. As long as

this holds, all the results obtained in this work will remain valid.

Mechanism for increase in processivity with force is different for passive and

active helicases: From the recent single-molecule experiments on three helicases

[78, 80, 90], we have surmised that the dependence of unwinding processivity on F

may be universal (Fig. 2.9). Irrespective of whether the unwinding velocity increases

rapidly with force or not, the processivity seems to be always highly sensitive to the
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Figure 2.7: The dependence of 〈τ〉, 〈δm〉, and 〈δm〉/〈τ〉 on the step-height (U0/kBT )
for varying amounts of GC content for the sequence given in the text. Simulations
were performed at U0/kBT = 0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. Each data point
corresponds to 1000 independent Kinetic Monte Carlo simulations. All quantities
decrease with increasing %GC. Interestingly, the mean attachment time 〈τ〉 is again
very insensitive to f . 〈δm〉 is, however, very sensitive to f , leading to disparate
behaviors for δm〉/〈τ〉. When f = 0.25, 〈δm〉/〈τ〉 shows a very distinct maximum
when %GC=0.0 but a very weak maximum when %GC=1.0. When f = 0.01,
〈δm〉/〈τ〉 shows saturating behavior with increasing U0. Thus sequence can play
a crucial role in determining the kinetics of unwinding. Parameters used in the
simulations were α = 105s−1, β = 7 × 105s−1, k+ = 1bp/s, k− = 0.01bp/s, γ =
0.01s−1, j0 = 1. Also, we ensured that the ss-ds junction was initially at the first
GC pair of a block (see text for details) in all simulations.
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Figure 2.8: Dependence of e∆GF on F for two models: ∆GF = F∆x (blue curve),

∆GF = 2L
l
log

(
1
Fl
sinh(Fl)

)
(red curve). The parameters ∆x = 0.594 nm, L = 0.6

nm/nucleotide and l = 1.3 nm were chosen such that for both models, the critical
force (force at which ∆G = ∆GF ) is 13.5 pN, a typical value for DNA hairpins. To
be consistent with the rest of our analysis, ∆G was chosen to be 1.95 kBT .
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Figure 2.9: Experimental data suggesting a universal behavior of the unwinding
processivity as a function of force. Velocity (blue) and processivity (red) data on
(a) the T7 helicase [78] and (b) the NS3 helicase [90]. The data seems to suggest
that the unwinding velocity of helicases can be both strongly or weakly dependent
on external force while the processivity is always sensitive to force.

external force. In this work, we have provided a theoretical explanation of this

behavior. Based on the theory, we predict that the sensitivity of processivity to

force should indeed be a universal feature of all helicases, active or passive. Our

argument hinges on the observation that the processivity of a helicase is very well

approximated by the product of two quantities, the unwinding velocity and the

attachment time of the helicase: 〈δm〉 ≈ V1 〈τ〉. The origin of the universal increase

of 〈δm〉 with F is dramatically different for passive and active helicases. We have

shown that when the helicase is passive, V1 increases rapidly with force while 〈τ〉

stays constant, independent of the force. In contrast, when the helicase is optimally

active, V1 hardly changes as a function of force while 〈τ〉 increases rapidly as the

force is ramped up. Thus, in both these extreme situations of helicase activity, the

processivity 〈δm〉 shows significant variation as a function of force. This leads to

the prediction that irrespective of the nature of interaction of the helicase with the

ds junction, the processivity should always increase as the force is increased.
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Our demonstration that helicase processivity always increases with F regard-

less of the underlying architecture of the enzyme, is likely to be relevant in vivo

as well. Von Hippel and Delagoutte [95] have noted that helicases function most

efficiently only when the macro-molecular machinery with which it interacts in the

cellular milieu, is present. This observation is supported by single molecule ex-

periments that show the physiological replication rate of bacteriophage T4 helicase

(gp41) is similar to the maximum unwinding rate at high F in the absence of the

replisome [77] . It is likely that the macro-molecular machinery helps by stabilizing

the single strands that result from helicase unwinding action [95], thereby mimick-

ing the effect of external forces applied in in vitro experiments. These observations

suggest that helicases may have co-evolved with their associated macro-molecular

machinery, in a manner that increases the processivity rather than the unwinding

velocity.
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Chapter 3: Active or passive? Determining the unwinding mecha-

nism of helicases

3.1 Introduction

The basic framework to quantitatively judge whether a helicase is active or

not, was originally proposed in a series of seminal papers by Betterton and Jülicher

[83–85]. Using their model (and variants thereof), force or sequence dependence of

the unwinding velocity was fit to experimental data to determine the nature of T7,

T4 and NS3 helicases [75–78]. However, it was recently pointed out by Manosas et al

[82] that the multiparameter fit of the Betterton and Jülicher model to velocity data

is non robust, with multiple parameter sets fitting the data equally well. In fact, the

different best-fit parameter sets suggest completely different unwinding mechanisms,

and fail to provide any conclusive results for the fitting parameters. This is especially

problematic when parameters like the step size and the back-stepping rate have

not been characterized experimentally for the particular helicase, and need to be

estimated from fits of the theory to data. As a consequence, the literature on

helicases is rife with contradictory claims about the nature of a particular helicase.

For instance, steady-state and pre steady-state kinetic assays [96] as well as studies
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of crystal structures [72] determined the NS3 helicase to be passive, while a single

molecule experiment coupled with a mathematical analysis suggested that NS3 is

active [75]. Similarly, the T7 helicase was deemed an active helicase in two previous

works [76, 78], while simple physical arguments (see below) suggested that T7 is

passive.

To avoid the problem of non-robust fitting, Manosas et al [82] suggested a

physically motivated method of classifying the activity of a helicase – by looking

at the ratio of unwinding velocity (at zero external force) to the s.s translocation

velocity. As the helicase becomes optimally active, the unwinding velocity at zero

force approaches the ss translocation velocity [84], and the ratio comes close to 1. A

passive helicase on the other hand unwinds at much slower velocities in the absence

of force, compared to s.s translocation, and hence the ratio is much smaller than 1.

By inspecting results from various helicase datasets, the authors proposed a cutoff

of 0.25 for the ratio–helicases like T7 and T4 with a value less than 0.25 are passive

while the rest, like RecQ are active. This measure was recently used to classify the

Dda helicase as almost perfectly active [89].

Although this is a simple and physically appealing way of characterizing he-

licases, it is quantitatively not very informative and one would ideally want robust

parameter estimates of quantities like the interaction energy, step size, back-stepping

rate and the interaction range of the helicase with the double-strand. Besides the

need for quantitative details, under certain conditions this definition could lead to

potentially misleading results – for instance when the back-stepping rate (k) is ap-

preciable. As shown in Fig 3.1 (red curve), when k is 30s−1, the helicase expends

63



Figure 3.1: Possible problem with definition of active/passive proposed by Manosas
et al [82]: The curves are plots of Eq. 3.8. The blue curve has parameters u =
1.8, k = 0, g = 0.01, s = 1, r = 4. The red curve has parameters u = 1.8, k = 30, g =
0.01, s = 1, r = 4. The maximum s.s velocity for both is 300 bp/s and ∆G = 2.25.
Though both parameter sets clearly represent highly active helicases, the ratio of
s.s velocity to velocity of unwinding at zero force is less than 0.25 for the red curve,
simply because of a large k. However, according to the definition proposed in [82],
the red curve should represent a passive helicase.
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energy in destabilizing the double strand (the interaction potential u = 1.8kBT while

the average ∆G of the base pairs is 2.25kBT ), yet its zero force unwinding velocity

is well below one-fourth of the s.s translocation velocity (300 bp/s). This problem

seems to be exemplified in a real example by the NS3 HCV helicase–a member of the

superfamily-2 helicases which in general seem to exhibit distinct backsteps [79, 90].

NS3 is estimated to have a zero-force unwinding velocity of about 16.5 bp/s [97]

and a s.s translocation velocity of at least 80 bp/s [98]. The definition of Manosas

et al will classify the NS3 as a passive helicase, when in fact experiments show that

NS3 senses base-pairs ahead of the junction, suggesting that it actively destabilizes

the s.s-d.s junction [75]. More careful analysis needs to be done on the NS3 how-

ever, since there is an added complication of NS3 protecting the d.s junction from

external force [61].

In this chapter, we provide a possible resolution to this quandary of non-

robust fitting. By providing simple analytic solutions for both the velocity as well

as run-length of a helicase which unwinds a d.s nucleic acid, we show that when

both these quantities are analyzed simultaneously, the best-fit parameter space gets

limited. This allows for precise extraction of parameters like step size, back-stepping

rate, interaction potential and interaction range. We use this simple scheme on

single molecule data from the T7 helicase [78], to show that it works remarkably

well. Finally, we show that predictions about bulk experiments made from the

extracted parameters, agree reasonably well with earlier kinetic assays on T7. Our

work highlights the fact that quantitative measures of the active/passive nature

of a helicase need to be obtained by analyzing at least two independent data-sets
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simultaneously: in this case, velocity and run-length as functions of force.

3.2 The Model

Our model is shown in Fig 3.2. It is a generalisation of the Betteron and

Jülicher model [83, 85] that accounts for the finite processivity of the helicase, a

general step-size and a general interaction range with the double strand. In ear-

lier work, similar models accounting for a non-zero step-size and interaction range

have been used to study the velocity of unwinding, in numerical simulations [78,82].

We provide simple analytic expressions for both the velocity and run-length (in-

terchangeably called processivity) in this work. Fig 3.2a shows the helicase (red

filled circles) as it translocates on s.s nucleic acid (depicted as a bold black line).

The position of the helicase on the nucleic acid track is denoted by n. The helicase

can exhibit pure diffusion, and hence can step to the right or left with equal rate

k+ = k− = k. When the NTP hydrolyses, the helicase moves forward at a rate h

where h > k. Hence the net forward rate is h + k+ while the backward rate is k−.

If the mechanical step size of the helicase is s, then every time it steps forward or

backward, it does so by s nucleotides. Hence, the s.s velocity Vs.s is given simply

by Vs.s = s h. The helicase can also unbind from the nucleic acid track with a

dissociation rate γ.

Fig 3.2b represents the s.s-d.s junction at position m. The base pair at the

junction can break open at a rate α (increasing m to m+ 1) while a new base pair

can form (decreasing m to m− 1) at rate β such that α/β = exp(−∆G), where ∆G
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Figure 3.2: Model of nucleic acid unwinding by a helicase. (a) Single-strand stepping
kinetics of the helicase. (b) Double-strand thermal ‘breathing’. (c) Modification of
stepping kinetics of the helicase and breathing rates of the double strand. (d) The
interaction potential that causes the modification of rates in (c).
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Figure 3.3: Different scenarios for the interaction potential between the helicase and
double-strand. (a) Crystal structure of T7 helicase (pdb code 1E0J) and cartoon
of d.s DNA. The helicase encircles one ring and excludes the other, suggesting that
the interaction with the junction must happen from a distance, presumably due to
electrostatic forces. (b) Crystal structure of the PcrA helicase bound to d.s DNA
(pdb code 3PJR), showing the overlap of the helicase domains with bases beyond the
junction. Below both the figures are shown the corresponding interaction potentials
U(j). Note that both the potentials shown will result in identical expressions for
the unwinding velocity and run-length.

is the stability of the particular d.s base pair. Note that all energies in this chapter

are written in units of kBT . Fig 3.2c shows how the rates change when the helicase

and the junction approach each other. Modification of the original rates happen due

to an interaction potential U(j), a particular example of which is shown in Fig 3.2d.

As the helicase and junction come closer, they start interacting and as a result, the

helicase has to do extra work of amount U0 per base pair to step ahead. This energy

is provided from the hydrolysis of ATP. We follow the description proposed in [84]

and define j to be the difference between position of junction and position of helicase

(j ≡ m− n). The rates get modified depending on j, and this will be indicated by

68



the value of j as a subscript – for example, h−2 will denote the modified forward

stepping rate when j = −2 (Fig 3.2c). The motivation for allowing negative values

of j and hence a potential as shown in Fig 3.2c, comes from helicases like PcrA

and NS3 (see Fig 3.3b). These helicases seem to physically sense base pairs of the

double strand ahead of the junction [70, 75], possibly distorting and destabilizing a

number of bases beyond the junction. Therefore, for a general scenario, we let the

helicase interact with the d.s over a range r of base pairs, after which a hard wall

exists at j = −r. For ring helicases like T7, which encircle one strand of the DNA

and excludes the other [99, 100], destabilization would not happen by overlapping

with bases downstream of the junction (see Fig 3.3a), but could happen because of

electrostatic interactions [101]. For such helicases, j would always be positive with

a hard wall at j = 0. Note that the exact position of the potential does not matter:

a shifted potential with the first step at j = 4 and hard wall at j = 0 (Fig 3.3a)

would give identical results for the velocity and processivity as the potential shown

in Fig 3.3b. Hence this model for the interaction range of the helicase is very general.

The potential is chosen to have a constant step height U0 and is defined as follows:

U(j) = ∞ j ≤ −r

= (1− j)U0 − r < j ≤ 0

= 0 j > 0 (3.1)

The nucleic acid breathing rates get modified because of this interaction as follows:

αj = α e−(f−1)(U(j)−U(j+1))

βj+1 = β e−f(U(j)−U(j+1))
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αj
βj+1

= e−(∆G−U0) (3.2)

for all values of j. f is a number between 0 and 1 representing the fractional position

of the free energy barrier between base-pair open and base-pair closed states, from

the open state. Nucleic acid opening takes the system from sate j to state j + 1

while closing takes the system from j + 1 to j and hence the exponents in Eq. 3.2

involve the term U(j)−U(j+1). The rates of the helicase also get modified because

of the interaction and change in the following way:

k+
j = k e−f(U(j−s)−U(j)) j > s− r

hj = he−f(U(j−s)−U(j)) j > s− r

k−j−s = k e−(f−1)(U(j−s)−U(j)) j > s− r (3.3)

With a step size s, the helicase cannot move to the right if j ≤ s − r and hence

k+
j = hj = 0 for all j ≤ s − r. Eq. 3.3 shows that as long as the helicase and the

s.s-d.s junction are separated by a distance j > s, the forward rates are independent

of U0: k+
j = k and hj = h. For the backward rate, as long as j > 0, k−j = k. Notice

that the exponents in Eq. 3.3 contain the term U(j − s) − U(j) since the helicase

jumps s nucleotides every time it steps forward or backward.

To model the effect of a constant external force F applied directly to the d.s

junction as in single molecule experiments, the d.s opening and closing rates change

from αj, βj to αFj , βFj such that:

αFj
βFj+1

=
αj
βj+1

e∆GF

= e−(∆G−U0−∆GF )
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≡ b eU0 (3.4)

where we have introduced the definition b ≡ e−(∆G−∆GF ), and ∆GF is the destabi-

lizing free energy of the base pair at the junction, due to the constant external force

F . Assuming a Freely-Jointed-Chain model for the single strand DNA segments,

the expression for ∆GF is given by [93]:

∆GF = 2
L

l
log

(
1

Fl
sinh(Fl)

)
(3.5)

L is the contour length per base and l is the Kuhn length. Eq. 3.4 assumes that all

of the external force F is transmitted through the single strands and destabilizes

the base pair at the junction. For ring-shaped helicases like T7 which encircle one

strand while excluding the other [99, 100], this model is a very good description.

However, this may not be an accurate description of other helicases like the NS3,

where the domains surround both the strands of the nucleic acid, and the junction

may be protected to some extent from external forces [61]. For such helicases, more

careful analysis is needed, and is left for future work.

With the model thus defined, we need to solve for the velocity and the proces-

sivity of the helicase while it unwinds the d.s nucleic acid. The velocity is defined as

the average number of bases per unit time that the helicase moves to the right, in

a binding event. For the processivity, multiple definitions have been proposed [85].

The mean binding time 〈τ〉, the translocation processivity 〈δn〉 which gives the

average distance moved by the helicase in a binding event, and the unwinding pro-

cessivity 〈δm〉 which gives the distance moved by the s.s-d.s junction during a single

binding event of the helicase–are all measures of helicase processivity. As shown
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numerically in [85], the latter two definitions of processivity are almost identical

when the helicase attaches close to the s.s-d.s junction. Since this is the physically

relevant situation as we argued in the previous chapter, we will henceforth refer to

〈δm〉 interchangeably as the run-length or processivity.

3.3 Unwinding velocity and run-lenth: solution of the model

To solve for the velocity and run-length of a finitely processive helicase, we

will first use the result that α and β are very large [102–104]–larger by orders of

magnitude compared to any rate describing the kinetics of the helicase. This means

that before the helicase can take a single step (backward, forward or detach), the

s.s-d.s junction would have opened and closed multiple times. As a result, the

probability Pj of observing the helicase and junction at a separation j would have

reached a steady state distribution, long before the helicase makes a move. Since

there is a hard wall at j = −r, there is no probability current between j and j+1 in

this steady state, for any value of j. This, along with the normalization condition

∑
j Pj = 1, allows us to solve for Pj:

Pj = 0 j ≤ −r

= br+j−1 e(r+j−1)U0 P(−r+1) − r < j ≤ 1

= br+j−1 er U0 P(−r+1) j > 1

where P(−r+1) =
1

b1+rerU0

1−b +
(beU0)

1+r
−1

beU0−1

(3.6)

where b as defined before, is given by α
β
e∆GF . The two-body problem of the helicase

and junction can now be recast in terms of a one-body problem with only a helicase,
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moving with renormalized rates that we denote with a tilde (k̃+, k̃−, h̃ and γ̃). k̃+ is

given by k̃+ =
∑
j k

+
j Pj and similar expressions describe all the other renormalized

rates. Performing the sums, the final expressions for these rates become:

k̃+

k+
=

br+serU0

1−b +
e−fsU0(y1+r−ys)

y−1
+ bre(r−fs)U0 (zs−z)

z−1

b1+rerU0

1−b + y1+r−1
y−1

h̃

h
=

br+serU0

1−b +
e−fsU0(y1+r−ys)

y−1
+ bre(r−fs)U0 (zs−z)

z−1

b1+rerU0

1−b + y1+r−1
y−1

k̃−

k−
=

brerU0

1−b +
e(1−f)sU0(y1+r−s−1)

y−1
+

e(1−f)(s−1)U0y1+r−s(zs−1−1)
z−1

b1+rerU0

1−b + y1+r−1
y−1

γ̃

γ
=

erU0(y − 1)

b (1 + brerU0(y − 1)− (b− 1)eU0yr)− 1
(3.7)

where y ≡ beU0 and z ≡ befU0 . Notice that although k+ = k− = k, the helicase–

junction interaction causes the renormalized rates to become different, hence k̃+ 6=

k̃−. The velocity of unwinding is easy to compute now–it is given by:

vunw = s (h̃+ k̃+ − k̃−) (3.8)

For s = 1 and r = 1, vunw reduces to the following expression:

v1,1
unw =

e−(g−1)U0

(
1 + b

(
egU0 − 1

))
(b(h+ k)− k)

1 + b (eU0 − 1)
(3.9)

The original expression for one-step active unwinding derived by Betterton and

Jülicher (Eq.(27) in [84]) reduces to our expression in Eq. 3.9, when all the rates

associated with the helicase are neglected compared to α and β in Betterton and

Jülicher’s equation.

The mean attachment time of the helicase 〈τ〉 is given by the inverse of the

renormalized detachment rate:

〈τ〉 =
1

γ̃
(3.10)
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The processivity 〈δm〉, is given by 〈δm〉 = vunw〈τ〉. Using Eq. 3.8 and Eq. 3.10, we

get:

〈δm〉 =
s (h̃+ k̃+ − k̃−)

γ̃
(3.11)

For s = 1 and r = 1, 〈δm〉 reduces to the following expression:

〈δm〉1,1 =
e−gU0

(
1 + b

(
egU0 − 1

))
(b(h+ k)− k)

γ
(3.12)

Eq. 3.8, Eq. 3.10 and Eq. 3.11 along with Eq. 3.7 are the important results of this

chapter. Note that by defining k− ≡ k and k+ ≡ k + h in Eq. 3.9 and Eq. 3.12, we

obtain the same simple model as was used in the previous chapter.

3.4 Universal force response of the unwinding processivity

In the previous chapter, we showed numerically that the unwinding velocity

and processivity show contrasting responses to external force. We analyzed a model

with step size of one basepair and a one-step interaction potential, to show that the

unwinding processivity increases rapidly with increase in external force, irrespective

of whether the helicase is active or passive. Here, we have derived analytic expres-

sions for the corresponding unwinding velocity and processivity, given by Eq. 3.9

and Eq. 3.12 respectively. These simple expressions allow us to obtain deeper in-

sights into the reasons for the contrasting behavior of the unwinding velocity and

processivity under force.

To investigate the effects of force on the unwinding velocity and processivity,

we choose ∆GF = F∆x. In the previous chapter, we argued that choosing this

simple form instead of the more accurate model based on a Freely Jointed Chain
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[77, 93], does not qualitatively change any of the results. We will look at the limit

k = 0, to simplify all analytic expressions. For the more general case of non-zero

k, as long as k << h, all the results will be valid. Helicases are believed to satisfy

this criterion [82], and this is supported by our fitted values (discussed below) from

data on the T-7 DNA helicase.

Setting ∆GF = F∆x, and differentiating Eq. 3.9 with respect to F , we obtain

the following expressions for a passive (U0 = 0) and optimally active (f = 0, U0 =

∆G) helicase:

dv1,1
unw

dF
= e−∆G+F∆xh∆X (passive)

=
e2∆G+F∆x h∆x

(e∆G + eF∆x (−1 + e∆G))2 (optimally active) (3.13)

Eq. 3.13 shows that for a passive helicase, the slope of the velocity-force curve will

not only always be positive, it will increase exponentially with F . On the other

hand, for an optimally active helicase, the expression for the slope has the term

eF∆x both in the numerator as well as the denominator–implying that the increase

in velocity with force will be minimal. In contrast, the force-dependent behavior

of the processivity shows a universal increase, as can be seen from the following

equation:

d〈δm〉1,1

dF
=

e−∆G+F∆x h∆x

γ
(passive)

=
e−∆G+F∆x h∆x

γ
(optimally active) (3.14)

Eq. 3.14 shows that the slopes are identical for both passive and optimally active

helicases, and increase exponentially with force.
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3.5 Robust parameter estimation for T7 helicase

3.5.0.1 Simultaneous fitting of DNA unwinding velocity and run-

length data

Since the velocity alone proves to be insufficient for good parameter estimates,

we reasoned that fitting to two observables simultaneously should significantly limit

the parameter space and allow for better extraction of the important parameters of

the system. With the velocity given in Eq. 3.8 and the processivity given in Eq. 3.11,

we can do exactly that.

To apply our fitting procedure, we first observe that the velocity as a function

of force has the following parameters: U0, k, f, s, r and h. Eq. 3.11 shows that

the processivity has one extra parameter, the dissociation rate γ. However, γ is a

quantity that is measured in bulk experiments [105,106], while the relation Vs.s = s h

allows us to use the experimentally determined value of Vs.s, to reduce another free

parameter. Hence the number of free parameters left to be estimated from fitting to

experimental data is five—U0, k, f, s and r. To test our method, we fitted velocity

and processivity data from a single molecule experiment on the T7 helicase (Fig 6b

and Fig S6 respectively, of [78]). Kim et al [105] reported γ = 0.002s−1 at 18◦C.

Since the single molecule experiment was performed at 25◦C, we used the rough

estimate that around room temperature, a number of chemical rates increase by

about a factor of 2–3 for every 10◦C increase [107], to estimate γ at 25◦C. We

therefore used γ = 0.003, 0.04 and 0.005s−1. h was taken to be 322/s (s is the
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step size) since the s.s velocity was measured to be 322 bp/s [78]. 322 bp/s seems

consistent with the bulk result of 132 bp/s at 18◦C [105]. We took ∆G = 2.25

since the DNA sequence had 48% GC content (supplementary information of [77]).

Both the bulk and single molecule experiments were performed at 2 mM dTTP

concentration.

For the force dependent destabilization of the double strand given in Eq. 3.5,

the parameters L and l need to be chosen carefully, to reproduce the critical force

Fc observed in the experiment. Fc (the force where ∆G = ∆GF ) was observed

to be around 13.6-13.7 pN for the d.s DNA sequence we have analyzed in this

work (Fig 6b of [78]). The usual values chosen for L and l are 0.56 and 1.5 nm

respectively [93]. However, Fc for this choice of parameters (and ∆G = 2.25) is

about 15 pN, so we chose L = 0.63 nm and l = 1.5 nm to reproduce the critical

force observed. To check the robustness of our results, we also tried a different

parametrization L = 0.56 and l = 1.95 nm, which results in Fc = 13.6 pN. Both

these parametrizations produce nearly identical results, hence we show results with

only the first one (Table I and II). The results of simultaneous fitting are shown in

Fig 3.4. Table I and II show the quality of fits (χ2) for a variety of parameter sets

with ‘similar’ fits. To quantitatively define ‘similarity’ of fits, we used the Akaike

Information Criterion (AICc) [108] defined as:

AICc = χ2 + 2p+
2p(p+ 1)

N − p− 1
, (3.15)

where N is the number of data points and p the number of free parameters. The

usefulness of this criterion is that the quality of two sets of fits can be quantitatively
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Figure 3.4: Simultaneous fitting of velocity and run-length data. The blue and
red circles are experimental data from [78].The blue line in (a) is Eq. 3.8 fitted to
velocity data while the red line in (b) is Eq. 3.11 fitted to processivity data. The
best fit parameters are given in Table II.

compared: if two model fits have AICc values of a1 and a2 respectively, with a1 < a2,

then model 2 has a likelihood exp((a1−a2)/2) of being the true interpretation of the

data, relative to model 1. Using this interpretation, we show in Table I and II all

fits that are at least 0.5 times as likely as the best fit among that set. Table I shows

the result of fitting to only velocity data—multiple parameter regions can fit the

velocity data with similar quality of fits. Table II shows results of our simultaneous

fitting procedure. Clearly, Table II shows that the simultaneous procedure allows

a much narrower range of parameters to produce similar fits. Also, the errors on

the parameters are small, allowing all five parameters to be extracted with great

robustness. The best fit parameters are U0 = 0.69 kBT , f = 0.19, k = 0.6 s−1, s = 2

bp and r = 5 bp.
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Table 3.1: Fitting to only velocity data. Shown are just a few fits from all those

that are similar. The definition of ‘similar’ is that the worst fit should be 0.5 times

as likely as the best fit, according to AICc (see text for details).

Step Size s (bp) Interaction Range r (bp) χ2

1 20 3.04

2 10 1.65

2 20 1.72

2 50 1.74

3 3 2.3

3 4 2.8

3.5.0.2 Comparison with experiments on T7 unwinding of DNA un-

der zero force conditions

An earlier bulk experiment [88] and a more recent FRET-based single molecule

experiment [109] on T7 DNA, were carried out under conditions of zero external

force. Using an ‘all-or-none’ assay at 18◦C, five DNA sequences (average GC content

of 37%) were unwound with T7 in [88], resulting in an average unwinding velocity

of 15 bp/s. Approximately consistent with these results, the unwinding velocity at

23◦C of T7 on a 35% GC sequence was found to be 8 bp/s [109]. Fig 3.4a shows our

model prediction for the unwinding velocity at zero force: vunw = 7.1 bp/s. Keeping

all the parameters fixed at the values shown in Table II, but reducing ∆G to 1.9 to
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Table 3.2: Fitting simultaneously to velocity and run-length data. Compared to Ta-

ble I, the parameter space with similar fits to the data has been drastically reduced.

The definition of ‘similar’ is exactly the same as that used in Table I.

Step Size s (bp) Interaction Range r (bp) χ2

2 5 4.69 1

2 6 5.23

correspond to a DNA sequence comprising roughly 37% GC basepairs, our model

predicts an unwinding velocity of 18 bp/s at zero force. Taking into account that

our analysis is based on an experiment performed at a slightly higher temperature

(25◦C) compared to either of these two zero-force experiments, our results seem to

be consistent with the two previous works.

3.5.0.3 Predictions for sequence dependence of detachment and back-

stepping rates of T7 while unwinding d.s DNA at zero-force

The sequence dependence of the detachment rate of a helicase is an aspect that

can be directly measured in experiments [75,110] and can be an indicator of whether

the helicase is active or passive. By fixing the parameters in our model to the best-fit

values of Table II, and changing only ∆G, we can predict how the detachment and

back-stepping rate of T7 will depend on the sequence composition, while unwinding

DNA. The results of this analysis is shown in Fig 3.5. As is evident, neither the

detachment rate, nor the back-stepping rate are very sensitive to ∆G, a consequence
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Figure 3.5: Predictions for sequence dependence of T7 detachment and back-
stepping rates while unwinding d.s DNA. (a) The back stepping rate while unwinding
(k
′
−) hardly changes as a function of the sequence stability, as a result of the heli-

case being only weakly active. (b) Similarly, the detachment rate while unwinding
(k
′
d) changes by only a factor of 1.5 with change in ∆G. The insets in both figures

show the hypothetical situation of a highly active T7, with U0 = 2.0 kBT . Both the
back-stepping and detachment rate show much more sensitivity to ∆G under highly
active circumstances.

of the fact that the helicase is only very weakly active. Interestingly, this is akin to

the observations made in a previous experiment on the DnaB helicase [110], where

it was shown that for sequences with 50-100% GC composition, the detachment

rate was almost constant. Since both DnaB and T7 are very similar in structure

and sequence, both belonging to the superfamily-4 group of helicases, our results

suggest that the ring helicases of the superfamily-4 group might all use a similar

weakly active mechanism for unwinding DNA.

3.6 Discussion

As can be seen from the best fit parameters in Table II, the T7 helicase seems

to be a weakly active helicase, destabilizing the d.s junction by about 0.69 kBT per

base. Our fitted result for U0 is different from the 1 − 2kBT estimate reported
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earlier in [76] or [78]. Both the works in [76, 78] analysed only velocity data—the

former looked at sequence dependence while the latter looked at force dependence

of velocity. It was originally pointed out in [82] and verified by us specifically for T7

in this work (Table I), that analyzing only velocity data using the multi parameter

Betterton and Jülicher model is not sufficient for robust parameter estimates. There

are other differences as well between our model and [76, 78]. The parameter f was

fixed to 0.05 in both those earlier studies, whereas we allow it to float, given that

f is a physical quantity which could take any value between 0 and 1. We also have

the extra parameter k, which gives the rate of pure diffusion. The presence of this

parameter allows for back-steps, which was neglected in the previous studies. It is

important to include this parameter, especially in light of recent work that directly

observed back-stepping [79,109].

The interaction range of ∼ 5 bases that we obtain from our fits, is physically

reasonable given the structure of the T7 ring helicase and its mode of binding to

double strand DNA. While the DNA strand excluded from the T7 ring is negatively

charged, the C-terminal face of T7 is also negatively charged [101]. Replacement

of the charged residues on the C-terminal by uncharged ones leads to a reduction

in efficiency of complementary strand displacement [111]. These results strongly

suggest that the moderately weak (0.69 kBT per base) interactions between the

helicase and DNA that we predict, are electrostatic in nature. Given that the

Debye-Hückel screening length is ∼ 1 nm under physiological conditions [112], the

range of electrostatic interaction of the helicase should be a few nanometers. Our

prediction of 5 bases (∼ 1.7 nm) therefore seems very reasonable. Notice that fitting
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to only velocity data would predict an interaction range greater than 20 bp, which

would be unphysically large.

Our prediction of a step-size of 2 bp (2 bases advanced for each ATP hy-

drolyzed) is in agreement with certain previous experimental results. Using a pre

steady-state analysis, it was found that one ATP molecule is consumed for every 2−3

basepairs translocated by T7 on a s.s DNA [105]. A crystal structure of the DnaB

helicase bound to s.s DNA, showed that the step-size of DnaB is 2 bp [113]. DnaB

and T7 are both members of the superfamily-4 group of helicases, with very similar

sequence and structure of the C-terminal domains [67, 114]. These results suggest

that the step size of T7 while unwinding d.s DNA may also be 2-3 bp, under the

assumption that s.s translocation and d.s unwinding occur with the same step-size.

A recent smFRET-based unwinding assay using T7 observed stochastic pauses after

every 2-3 bp of G-C rich DNA unwound [109]. However, the distribution of waiting

times of these pauses was gamma distributed instead of an exponential, thereby

suggesting the presence of hidden steps within those pauses. Though the results do

not prove a direct association of these hidden steps with ATP consumption, it would

not be surprising if the helicase has a distribution of step-sizes with shorter steps of

1 bp while unwinding G-C bases. Since our model does not distinguish between the

step size during translocation, unwinding or for different sequences, it is likely that

our result of 2 bp per ATP consumed is a reflection of the average step-size over the

entire d.s sequence of the DNA being unwound. Further experiments, specifically

crystal structures, would be able to shed more light on this interesting conundrum.

Finally, our analysis predicts the back-stepping rate (k) of T7 helicase, while
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it translocates on s.s DNA. This rate is very difficult to establish from experiments,

bulk or single-molecule, due to insufficient resolution of the methods used. The ratio

of forward to backward stepping rates is (h + k)/k, hence using k = 0.6 ± 0.4 and

h = Vs.s/s = 161, this ratio turns out to be 162–269. This result is interesting, and

suggests that T7 back-steps as frequently as some of the other processive molecular

motors like Kinesin and Myosin, which also have similar values for this ratio [94].

Our analysis highlights the need to take the back-stepping rate into account in

mathematical models for helicases—something that has been neglected in most of

the modeling literature in this field.

Our analysis conclusively shows that the T7 helicase is a weakly active helicase,

destabilizing the base pairs at the junction by only a small fraction of their original

stability. The fact that T7 interacts so weakly with the junction ahead, seems to be

a reasonable explanation for the observation that unwinding of double strands by T7

is heavily dependent on other replisomal machinery like the polymerase [115]. The

weakly active helicase probably resorts to the polymerase to achieve higher speeds

of unwinding and our analysis gives quantitative support to that idea.
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Chapter 4: Conclusion

Over the years, single molecule force spectroscopy has become an invaluable

tool to tease out molecular details of various proteins and the nature of interactions

in complexes of proteins. The application of external forces and torques function

as probes to glean information about molecules that would not be apparent from

standard bulk experiments probing ensemble averaged observables [116]. In addi-

tion to experiments, the effects of external force on biomolecules can only be fully

appreciated in the light of theoretical models, that serve to make sense of the data

arising from the experiments. This combination of careful experiments with theoret-

ical models have led to many an insight, ranging from the nature of receptor-ligand

interactions [117] to the quantification of heterogeneity in proteins [118], and an

understanding of the physical principles of motor-mechanisms [119]. In the same

vein, the work reported in this thesis has attempted to unravel molecular details

about the functioning of two types of biological systems–selectin-ligand adhesion

complexes and helicases. In both cases, careful theories have been developed to

analyze specific single-molecule experiments, allowing a host of information to be

extracted that has furthered our understanding of both systems significantly. In

fact these studies have unequivocally shown the importance of probing biological
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Figure 4.1: Summary of catch-bond mechanism in selectins. Catch bonds in se-
lectins, arise due to force induced conformational changes in the receptor domain.
At low forces, ‘bent’ conformations with fewer receptor-ligand contacts cause the lig-
and lifetime to be small. As force increases, ‘extended’ conformations are stabilized
that have more receptor-ligand contacts, hence increasing the lifetime. At much
larger forces, the contacts start to rupture, thus decreasing lifetimes once again.

systems with force–such single molecule studies coupled with careful theories have

opened up new dimensions in the study and analysis of biological systems, and will

continue to be an area of exciting research in the future.

The first study has elucidated the molecular mechanism of ‘catch-bonds’ in

the adhesion of selectins and integrins with their respective ligands. The increasing

number of systems exhibiting catch-bond behavior at low forces (for possibility of

catch behavior at intermediate forces see [120]) suggests a plausible common origin

of this unusual behavior, at least for certain families of cell-adhesion complexes.

From structure-based observations in selectin and integrin complexes, it appears

that catch-bond behavior arises because force aligns distant parts of the protein,

thus facilitating enhanced interaction with the ligands (Fig. 4.1). Our precise

analytical theory, inspired by these findings, quantitatively reproduces experimental
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data on a variety of structurally unrelated complexes with lifetimes spanning nearly

four orders of magnitude. More importantly, the key parameters of the theory are

linked to the formation (or disruption) of a network of hydrogen bonds and/or salt-

bridges. Because the strength of these interactions can be estimated, our theory

can be readily used to predict the effects of mutations, as demonstrated for the

selectin complexes. Interestingly, analysis of experimental data allowed us to predict

the strength of additional hydrogen bonds that form in the open α5β1 integrin–

fibronectin complex. The specificity of our model, with very few parameters, lays a

foundation for synthetic mechanochemistry [121]: designing and fine-tuning catch-

bond adhesion complexes with a desired set of load-bearing characteristics.

In the second work, we establish a mathematical framework based upon the

original work of Betterton and Jülicher, to understand the unwinding mechanisms

of helicase motors. A variety of force-dependent repsonses were observed in recent

single molecule experiments on helicases, for which a unified explanation had been

lacking. By extending the theory of Betterton and Jülicher, we have provided an

understanding for these varied observations. The velocity of unwinding depends

crucially on how active the helicase is. Optimally active helicases show little or

no change in velocity while the velocity of passive helicases is highly sensitive to

external forces that destabilize the double strand. In stark contrast, we predict that

the unwinding processivity of a helicase should always increase rapidly with force,

irrespective of how active or passive it is. The reason for this universal behavior

of the processivity however, depends on the nature of the helicase. Our prediction

is very general, and seems to be borne out in structurally diverse helicases like
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T7, UvrD and NS3. These results suggest a plausible evolutionary reason for the

presence of partner proteins of helicases, under in vivo conditions. These partner

proteins are believed to function in part by stabilizing single strands of nucleic

acid that are created as a result of helicase unwinding action, thereby mimicking

the action of external forces applied in vitro. Our result that the processivity of

helicases increase with force suggests that the role of the partner proteins in vivo is

to optimize the processivity of the helicase. Future experiments of load-dependent

processivity of helicases will be able to shed more light on our proposal. We have also

provided details of a simple scheme that would allow for extremely robust parameter

estimates of the double-strand unwinding activity of helicases. Applying our results

to the T7 helicase as a test case, we extracted all the parameters of the model with

great precision and showed that T7 is weakly active. This method should prove

important for obtaining insights into the unwinding behavior of helicases, especially

for ones which have not been characterized by high resolution data. Qualitative

descriptions of the active or passive nature of helicases may no longer be needed, if

this simple method proves as successful for other helicases as it seems to be for T7.

Hopefully, our method will prove useful in reducing the reigning confusion in the

definition of the unwinding nature of helicases.
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Chapter A: Details of fitting procedure

A.1 Fitting to experimental data on wild-type selectin

We fitted Eq. 1.19 for τ(F ) to experimental data by the standard method of

minimizing χ2 values, which is equivalent to maximizing a log-likelihood function,

with the assumption that errors in the mean lifetime data are Gaussian-distributed.

For the fits in Fig. 3c-d and Fig. 4 of the main text, the standard deviation for each

lifetime was obtained from the error bars given in the corresponding experimental

studies. However, since error bars were not provided for the lifetime data in Fig. 3a-

b, we derived error bars from the scatter in the three reported estimates for τ(F ):

average lifetimes, standard deviation of the lifetimes, and -1/slope in the logarithmic

plot of the number of events with lifetime t or greater versus t. For exponentially

distributed lifetimes (the case in all the experimental systems under consideration),

these three quantities should be equal to τ(F ) up to deviations due to sampling

errors. After fitting, the uncertainties in the parameters E0, E1, d, and r0 listed in

Table I of the main text were obtained from the diagonal elements of the best-fit

covariance matrix.
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A.2 Fitting to mutation data

For the simultaneous fitting of L-selectin mutation data [31] in Fig. 3c-d of the

main text, we used the following procedure to determine the minimal perturbation

to the parameters of the system that produces the observed shift in the τ(F ) curves.

The data alone suggests that not all the model parameters are relevant to the mu-

tation. The experimental τ(F ) curves for the wild-type (WT) and the mutant in

Fig. 3c-d show that the decay in τ(F ) at large F is similar. Since the decay is

controlled by the parameter d, we assume that the value of d for the WT and the

mutant is the same. This leaves three parameters, E0, E1, r0, that could poten-

tially be altered by the mutation, though it is possible that only a subset of these is

sufficient to explain the shift. We carried out simultaneous fitting of the model to

the WT and mutant τ(F ) curves for each ligand, under eight different hypotheses,

corresponding to different subsets of the three parameters varying under mutation.

For a given ligand, the mutant and WT share all parameters except the subset that

is allowed to vary (first column of Table A.1). Between curves for different ligands,

all parameters are distinct. The table shows the resulting χ2 statistic (the total χ2

for the data sets involving both ligands). The lowest χ2 is achieved for hypothesis

3, where all three parameters are allowed to vary. However, this could be the result

of overfitting, since hypothesis 3 also has the largest number of free parameters.

A better way to rank the hypotheses is through the corrected Akaike information
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criterion,

AICc = χ2 + 2p+
2p(p+ 1)

n− p− 1
, (A.1)

where n is the number of data points and p the number of free parameters [108].

The AICc penalizes overfitting due to an excessive number of parameters, and has a

natural probabilistic interpretation: if two model fits have AICc values of a1 and a2

respectively, with a1 < a2, then model 2 has a likelihood exp((a1 − a2)/2) of being

the true interpretation of the data, relative to model 1. From AICc values listed in

Table S1, we see that the most likely hypothesis is 1, where E0 and E1 are allowed

to vary. Hypothesis 2 (E1 and r0 varying) is a close competitor (78% as likely as

1), and the remaining ones are increasingly improbable (hypothesis 3 is only 3% as

likely as 1). As argued in the main text, hypothesis 1 also has a very reasonable

physical interpretation, with the mutation causing a single bond to switch between

the sets that contribute to E1 and E0. Hypothesis 2, which involves the mutation

decreasing E1 and increasing the lever arm distance r0, is more difficult to explain

in physical terms, but cannot be completely ruled out based on fitting alone. The

fit results for hypothesis 1 are shown in Fig. 3c-d, and the parameters are listed in

Table I in Chapter 1.
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Table A.1: Simultaneous fitting of the L-selectin mutation data [4]. The first column

lists eight hypotheses, corresponding to different subsets of parameters that are

allowed to vary between the fits to the wild-type and mutant data sets. χ2 is

a measure of goodness of fit, and AICc is the corrected Akaike criterion. The

hypotheses are ordered by increasing AICc.The lowest values of χ2 and AICc are in

bold.

Varying subset χ2 AICc

1: E0, E1 32.2 71.8

2: E1, r0 32.7 72.3

3: E0, E1, r0 27.3 78.7

4: E0, r0 50.9 90.5

5: r0 65.9 95.9

6: E0 90.8 120.8

7: E1 154.0 184.0

8: none 224.1 246.0
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Chapter B: Derivation of Mean-First-Passage-Time (MFPT) for the

selectin dimer

B.1 General derivation of MFPT for a finite, arbitrary network

Most biochemical processes occur via intermediate states, and via multiple dif-

ferent routes that differ in the connections between states. An example is the dimer

P-selectin molecule interacting with the PSGL-1 dimer, as explained in Chapter 1

of this thesis. For such systems with discrete number of (chemical) states, a very

important quantity is the distribution of waiting times to start at a particular state

and end at a different state. Once this distribution is known, moments can be calcu-

lated as well, in particular the first moment, which gives the average lifetime of the

process. We now derive simple expressions for the distribution of waiting times and

average lifetime (or the Mean First Passage Time) for a finite but arbitrary network

of states. This derivation follows the approach in [45] closely.

Let the process of interest comprise N discrete states. We define the waiting

time distribution πi(t) as the probability density of going from state i to the final

state N in time t. The transition rates (probability per unit time) between states i

and j will be defined as kij. This means that in time ∆t, the probability of making
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a transition from state i to j is given by kij∆t. In order to find an expression

for πi(t) in terms of the rates kij of the system, we need to first write down a

differential equation for πi(t). We can do this by choosing a finite time window

∆t, and observing that πi(t + ∆t) can be represented as follows: the probability

of remaining in state i during the interval [0, ∆t] times the probablity of reaching

state N from i in a further time t plus the probability of the system first making a

transition to a different state j during the time interval [0, ∆t], times the probability

that a further t amount of time is taken to reach state N from the state j:

πi(t+ ∆t) =

1−
∑
j:j 6=i

kij∆t

× πi(t) +
∑
j:j 6=i

(kij∆t× πj(t)) +O(∆t2). (B.1)

Rearranging the above equation gives the following:

πi(t+ ∆t)− πi(t)
∆t

= −

∑
j:j 6=i

kij

 πi(t) +
∑
j:j 6=i

(kij × πj(t)) +
O(∆t2)

∆t
(B.2)

In the limit ∆t→ 0, we get the required differential equation for πi(t):

dπi(t)

dt
=
∑
j:j 6=i

kij × (πj(t)− πi(t)) (B.3)

Now let us define π̃i(s) to be the Laplace transform of πi(t): π̃i(s) =
∫∞
0 πi(t)e

−stdt.

Notice that the Laplace transform is nothing but the generating function of the

distribution πi(t), and thus all the moments of the distribution can be found from

the following expression:

〈tn〉 =
(−1)ndnπ̃i(s)

dsn

∣∣∣∣
s=0

(B.4)

Using the definition of the Laplace transform, Eq. B.3 yields:

sπ̃i(s)− πi(0) =
∑
j:j 6=i

kij × (π̃j(s)− π̃i(s)) (B.5)
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Eq. B.5 allows us to solve for the set of π̃i(s) which in turn allows for calculation of

all the moments, using Eq. B.4. By definition, the probability of ending at state N

from any other state i, in zero time is zero, hence πi(t = 0) = 0. Solving Eq. B.5

for the first N − 1 generating functions, we obtain:

π̃i(s) =
∑
j:j 6=i

kijπ̃j(s)∑
m:m6=i

kim + s
(B.6)

where i = 1, 2, ..., N − 1. Since state N is the absorbing state from which no further

transitions occur, πN(t) = δ(t), with a Laplace transform π̃N(s) = 1.

B.2 MFPT for dimer P-selectin interacting with PSGL-1 dimer

Using the method described above, we can now derive an expression for the

average lifetime for the P-selectin dimer interacting with the PSGL-1 dimer. The

kinetic scheme for this process is shown in Fig 1.7 in Chapter 1 of this thesis.

There are four states, with state 1 being the intact selectin-ligand complex. State 4

corresponds to the situation where the ligand is completely detached, and hence is

the absorbing state. The intermediate states 2 and 3 correspond to situations where

one of the two selectin-ligand bonds is broken, while the other is intact. When both

bonds break, state 4 is reached irreversibly–no reattachment is allowed to occur.

This kinetic scheme is described by the follwing equations:

π̃1(s) =
k12π̃2(s)

k12 + k13 + s
+

k13π̃3(s)

k12 + k13 + s

π̃2(s) =
k21π̃1(s)

k21 + k24 + s
+

k24π̃4(s)

k21 + k24 + s

π̃3(s) =
k31π̃1(s)

k31 + k34 + s
+

k34π̃4(s)

k31 + k34 + s
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π̃4(s) = 1 (B.7)

We can solve the above set of equations for each of the four probability densities in

Laplace space. Of interest to us is π1, as its first moment gives the average time

needed for the intact P-selectin ligand complex to completely break. The solution

for π̃1(s) is given by:

π̃1(s) =
k13k34(k21 + k24 + s) + k12k24(k31 + k34 + s)

k12(k24 + s)(k31 + k34 + s) + (k21 + k24 + s)(k13(k34 + s) + s(k31 + k34 + s))

(B.8)

and the average lifetime τ(F ) ≡ 〈t〉, obtained by setting n = 1 in Eq. B.4, is given

by:

τ(F ) =
k13(k21 + k24) + (k12 + k21 + k24)(k31 + k34)

k13(k21 + k24)k34 + k12k24(k31 + k34)
(B.9)

The transition rates corresponding to Fig. 1.7 of Chapter 1 are as follows: k12 =

k13 = k24 = k34 = k(F/2), where k(F/2) is given by the lifetime expression in

Eq. 1.20 , Chapter 1, for a force F/2. k21 = k31 = kr are the rebinding rates of

the system, when either one bond breaks. Substituting these expressions into the

lifetime given by Eq. B.9, and noting that τ(F/2) = 1/k(F/2), we get the final

desired result:

τ(F ) = τ(F/2) +
τ(F/2)

2
(1 + krτ(F/2)) . (B.10)

The experimental data for dimeric P-selectin bound to dimeric PSGL-1 have been

analyzed with this equation.
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Chapter C: Derivation of exact expressions of average processivitiy

of helicases for the Betterton and Jülicher model

C.1 Derivation of 〈τ〉, 〈δn〉 and 〈δm〉

Here we outline the details of calculating the three measures of processivity –

〈τ〉, 〈δn〉 and 〈δm〉, closely following Betterton and Jülicher’s original work [85]. This

method gives exact results, but the expressions cannot be obtained as simple closed

form solutions. Our method as outlined in Chapter 3 is approximate, but provides

very simple closed form solutions that can be utilized to analyze experimental data.

The helicase and double strand junction can be described by the integers n

and m, the positions of the helicase and the junction respectively. Equivalently, the

state of the helicase-junction system can also be described by the two quantities j

and l, where j = m−n and l = m+n. The time evolution of the system can then be

described by the following Master equation for P (j, l, t), the probability distribution

of observing the system in state (j, l) at time t:

dP (j, l, t)

dt
= −

(
k+
j + k−j + αj + βj + γj

)
P (j, l, t) + αj−1P (j − 1, l − 1)

+ βj+1P (j + 1, l + 1) + k+
j+1P (j + 1, l − 1) + k−j−1P (j − 1, l + 1)(C.1)

The initial condition is given by P (j, l, t = 0) = δj,j0δl,l0 , where δ is the Kronecker
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delta. The mean attachment time 〈τ〉, translocation processivity 〈δn〉 and the un-

winding processivity 〈m〉 can be defined as:

〈τ〉 =

∞∫
0

dt t
∑
j,l

γjP (j, l, t) (C.2)

〈δn〉 =
〈δl〉 − 〈δj〉

2
(C.3)

〈δm〉 =
〈δl〉+ 〈δj〉

2
, (C.4)

where 〈δj〉 and 〈δl〉 are defined as:

〈δj〉 =

∞∫
0

dt
∑
j,l

(j − j0)γjP (j, l, t) (C.5)

〈δl〉 =

∞∫
0

dt
∑
j,l

(l − l0)γjP (j, l, t). (C.6)

Summing Eq. C.1 over j and l, we obtain:

∑
j,l

dP (j, l, t)

dt
=
∑
j,l

−γjP (j, l, t) (C.7)

This allows us to write a simplified expression for 〈τ〉 in Eq. C.2:

〈τ〉 =
∑
j,l

∞∫
0

dt P (j, l, t) (C.8)

By introducing the definition Qj,l = P̃j,l(s = 0) =
∞∫
0
dt P (j, l, t), where P̃j,l(s) is the

Laplace Transform of P (j, l, t), we can express the average lifetime as:

〈τ〉 =
∑
j,l

Qj,l (C.9)

Similar expressions hold for the j and l processivities:

〈δj〉 =
∑
j,l

(j − j0)γjQj,l (C.10)
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and

〈δl〉 =
∑
j,l

(l − l0)γjQj,l (C.11)

The coefficients Qj,l can be obtained by setting s = 0 in the Laplace Transform of

Eq. C.1:

δj,j0δl,l0 = (k+
j + k−j + αj + βj + γj)Qj,l − αj−1Qj−1,l−1

− βj+1Qj+1,l+1 − k+
j+1Qj+1,l−1 − k−j−1Qj−1,l+1. (C.12)

Using the product ansatz Qj,l = RjTl, and choosing the normalizations
∑
l Tl = 1

and
∑
j γjRj = 1, we can solve Eq. C.12. The coefficients Rj satisfy:

−δj,j0 = −(k+
j + k−j + αj + βj + γj)Rj + (αj−1 + k−j−1)Rj−1

+ (βj+1 + k+
j+1)Rj+1. (C.13)

The coefficients Tl satisfy:

δl,l0 = (p+ q + 1)Tl − pTl−1 − qTl+1, (C.14)

where p =
∑
j(αj + k+

j )Rj and q =
∑
j(βj + k−j )Rj. The three quantities 〈τ〉, 〈δj〉

and 〈δl〉 can be written in terms of Rj and Tl:

〈τ〉 =
∑
j

Rj

〈δj〉 =
∑
j

(j − j0)γjRj

〈δl〉 =
∑
j

(l − l0)Tl (C.15)

Though the solution of Eq. C.13 depends on the explicit form of the interaction

potential, Eq. C.14 can be solved independent of the potential. Choosing l0 = 0
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(translation invariance in l implies the starting value of l does not matter), the

solutions have the form Tl = yl for l 6= 0. Using this ansatz, y obeys the equation:

y2 − (1 + a)y + (a− b) = 0 (C.16)

where a = (1 + p)/q and b = 1/q. The roots of Eq. C.16 will be referred to as y+

and y− and for l > 0, Tl = A′yl− and for l < 0, Tl = Ayl+.
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