
Abstract

Title of dissertation
Statistical/Geometric Techniques for Object

Representation and Recognition

Soma Biswas, Doctor of Philosophy, 2009

Directed by Professor Rama Chellappa

Department of Electrical and Computer Engineering

Object modeling and recognition are key areas of research in computer vision

and graphics with wide range of applications. Though research in these areas

is not new, traditionally most of it has focused on analyzing problems under

controlled environments. The challenges posed by real life applications demand

for more general and robust solutions. The wide variety of objects with large

intra-class variability makes the task very challenging. The difficulty in modeling

and matching objects also vary depending on the input modality. In addition, the

easy availability of sensors and storage have resulted in tremendous increase in

the amount of data that needs to be processed which requires efficient algorithms

suitable for large-size databases. In this dissertation, we address some of the

challenges involved in modeling and matching of objects in realistic scenarios.

Object matching in images require accounting for large variability in the ap-

pearance due to changes in illumination and view point. Any real world object is

characterized by its underlying shape and albedo, which unlike the image inten-

sity are insensitive to changes in illumination conditions. We propose a stochastic

filtering framework for estimating object albedo from a single intensity image by

formulating the albedo estimation as an image estimation problem. We also show

how this albedo estimate can be used for illumination insensitive object matching

and for more accurate shape recovery from a single image using standard shape

from shading formulation. We start with the simpler problem where the pose of



the object is known and only the illumination varies. We then extend the pro-

posed approach to handle unknown pose in addition to illumination variations.

We also use the estimated albedo maps for another important application, which

is recognizing faces across age progression.

Many approaches which address the problem of modeling and recognizing ob-

jects from images assume that the underlying objects are of diffused texture. But

most real world objects exhibit a combination of diffused and specular properties.

We propose an approach for separating the diffused and specular reflectance from

a given color image so that the algorithms proposed for objects of diffused texture

become applicable to a much wider range of real world objects.

Representing and matching the 2D and 3D geometry of objects is also an

integral part of object matching with applications in gesture recognition, activ-

ity classification, trademark and logo recognition, etc. The challenge in matching

2D/3D shapes lies in accounting for the different rigid and non-rigid deformations,

large intra-class variability, noise and outliers. In addition, since shapes are usu-

ally represented as a collection of landmark points, the shape matching algorithm

also has to deal with the challenges of missing or unknown correspondence across

these data points. We propose an efficient shape indexing approach where the

different feature vectors representing the shape are mapped to a hash table. For

a query shape, we show how the similar shapes in the database can be efficiently

retrieved without the need for establishing correspondence making the algorithm

extremely fast and scalable. We also propose an approach for matching and reg-

istration of 3D point cloud data across unknown or missing correspondence using

an implicit surface representation. Finally, we discuss possible future directions

of this research.
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Chapter 1

Introduction

Object modeling and recognition are key areas of research in computer vision

and graphics with wide range of applications in many different fields (Figure 1.1).

Automatic matching of different biometrics like face, iris, fingerprints is an integral

part of security and surveillance for automatic border control, airport security, etc.

Object matching is also useful for consumer applications like shopping using visual

search engines which allows users to use input pictures to search, retrieve and

compare all similar products. In the medical field, matching of different medical

shapes is useful for research, diagnosis and treatment by analysis of similar cases

present in the database.

Figure 1.1: A few applications of object modeling and recognition. (a) SmartGate

installation at Sydney International Airport for automatic border control which uses

automatic face recognition; (b) Shopping by visual search by like.com; (c) SPIRS-IRMA

system from NIH for retrieving similar medical images for diagnosis and treatment.

Though research in these areas is not new, traditionally most of it has focused

on analyzing problems under controlled environments. The challenges posed by

the real life applications demand for more general and robust solutions. The wide

variety of objects with large intra-class variability makes the task very challenging.
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Chapter 1. Introduction

The difficulty in modeling and matching objects also varies depending on the input

modality. In addition, the easy availability of sensors and storage have resulted

in tremendous increase in the amount of data that needs to be processed which

requires efficient algorithms suitable for large-size databases. In this dissertation,

we address some of the challenges involved in modeling and matching of objects

in realistic scenarios.

1.1 Object matching in images

Object matching in images require accounting for large variability in the appear-

ance due to changes in illumination and view point. Figure 1.2 shows how dras-

tically the facial appearance changes due to changes in light source direction and

head pose or camera location. The sources of appearance variation also depends

on the specific application. For example, for the application of face recognition,

the appearance of the face also changes due to different expressions, aging, facial

makeup, etc.

Figure 1.2: Illustration showing changes in facial appearance due to variations in illu-

mination conditions and view-point.

Any real world object is characterized by its underlying shape and albedo.

These are the intrinsic characteristics of the object and unlike the image intensity,

they are insensitive to changes in illumination conditions and view-point. The

first part of the dissertation deals with robustly recovering the albedo and the

shape of an object from a single input image. We propose a stochastic filtering

framework for estimating object albedo from an intensity image by formulating the

albedo estimation as an image estimation problem. We also show how this albedo
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1.1 Object matching in images

estimate can be used for illumination insensitive object matching and for more

accurate shape recovery from a single image using standard shape from shading

(SFS) formulation. We start with the simpler case where the pose of the object is

known and only the illumination varies. We then extend the proposed approach to

handle unknown pose in addition to illumination variations. We also show how the

albedo estimate can be used for applications other than matching across different

illuminations. Specifically we show its usefulness for the problem of matching face

images across different ages, which has very important applications like finding of

missing persons, automatic renewal of passport, visa, etc.

Lambertian reflectance for the imaged scenes/objects has been commonly as-

sumed in a variety of computer vision algorithms, such as shape reconstruction,

image matching, motion detection, as well as photometric and multi-view stereo.

However, most real world surfaces exhibit a combination of diffuse and specu-

lar components making this assumption very restrictive in practice (Figure 1.3).

Automatic separation of these components would enable these algorithms to be

readily applied to a much wider class of non-Lambertian objects.

Figure 1.3: Illustration showing the importance of accounting for specularity for object

matching.

The second part of the dissertation addresses the problem of specularity re-

moval of complex textured surfaces from a single color image. First, we propose a

Hough transform-based approach for automatic estimation of source color from a

single color image. We further analyze the errors in source color estimation to per-

form robust separation of the diffused and specular reflection components. Both

algorithms are completely automatic and do not need explicit color segmentation
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Chapter 1. Introduction

or color boundary detection as required by many existing methods.

1.2 Object matching from shapes

Representing and matching the 2D or 3D geometry of objects is also an integral

part of object matching. Character recognition, trademark logo retrieval, activity

recognition, object recognition and human pose estimation are a few of the chal-

lenging applications that can benefit from accurate and efficient shape matching

techniques (Figure 1.4).

Figure 1.4: A few applications that can benefit from robust and efficient shape matching.

(a) Matching and retrieval of shapes, like digit recognition, trademark retrieval, leaf

recognition; (b) Activity Classification; (c) Gesture recognition; (d) Pose estimation.

Different applications require different representations and hence different match-

ing algorithms to handle large variations in shapes. The challenge in matching

2D/3D shapes lies in accounting for the different rigid and non-rigid deformations

along with large intra-class variability in addition to noise and outliers. Also

since shapes are usually represented as a collection of landmark points, the shape

matching algorithm also has to deal with the challenges of missing or unknown

correspondence across these data points. In addition, with the recent advance-

ment in technology and the availability of different kinds of sensors, the amount
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of data to be handled has increased tremendously over the last few decades. So

even though research in the area of shape matching has matured, the challenges

involved in achieving high performance in terms of both accuracy and computa-

tional complexity continues to interest researchers.

The third part of the dissertation deals with efficient representation and match-

ing of 2D and 3D shapes. First, we propose an efficient shape indexing approach

where the different feature vectors representing the shape are mapped to a hash

table. For a query shape, we show how the similar shapes in the database can

be retrieved efficiently without the the need for correspondence establishment

making the algorithm extremely fast and scalable. We also propose an approach

for matching and registration of 3D point cloud data across unknown or missing

correspondence using an implicit surface representation.

1.3 Organization of the Thesis

The dissertation is organized as follows: Chapter 2 briefly summarizes previous

work related to this dissertation. Chapter 3 describes the proposed approach for

estimating the albedo from a single intensity input image and its applications in

illumination invariant object matching, shape recovery, relighting, etc. Chapter 4

extends the approach developed in the previous chapter for the general case of

unknown head pose. Chapter 5 provides a study of an important application,

namely face recognition across aging and shows how the estimated albedo maps

can be used to match face images across age progression. Chapter 6 describes our

approach for estimating the illumination color from a given input image and sep-

arating the diffused and specular reflection components. Chapter 7 describes our

approach for efficient representation and matching of shapes. Chapter 8 describes

the future directions of this dissertation.
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Chapter 2

Related Work

This chapter briefly reviews previous efforts related to this dissertation. The first

part of the dissertation deals with estimating the albedo and surface normals from

an image. Section 2.1 discusses the previous works on recovering the surface nor-

mals and albedo of an object from an intensity image. Related work for handling

pose and misalignment issues is discussed in Section 2.2. Since our approach uses

image estimation formulation, we also discuss related works in image estimation

literature in Section 2.3. The second part of the dissertation deals with illumi-

nation color estimation and specularity removal from an input colored image and

related work for this part is described in Section 2.4. The final part of the disser-

tation deals with efficient 2D/3D shape matching. Section 2.5 discusses related

work on efficient representation and matching of shapes.

2.1 Related Work on Recovering Albedo and Shape

Recovery of surface normals and albedo of an object has been studied in the

computer vision community for a long time. The approaches in the literature can

broadly be classified into SFS-based approaches and Model-based approaches.

2.1.1 SFS-based Approach

SFS research [48] [140] aims at recovering the 3D shape of an object from a given

image. Estimating the surface normals, albedo and illuminant direction given a

single intensity image is inherently ill-posed. In order to make the problem more

tractable, SFS approaches often make simplifying assumptions like constant or
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piecewise constant albedo and known illuminant direction for recovering the shape.

But such assumptions often limit the applicability of the approaches for real world

objects. Over the years, considerable advances have been made [143] [11] [29] [116]

for dealing with objects with varying albedo. Much of the research has been

directed towards the use of domain specific constraints to reduce the intractability

of the problem for the analysis and estimation of general albedo maps. Often the

use of such constraints bridges the gap between pure SFS approaches and the

statistical model-based approaches leaving no clear demarcation between the two

categories.

Zhao and Chellappa [143] propose an SFS approach to recover shape and

albedo for the class of bilaterally symmetric Lambertian objects with a piecewise

constant albedo field. Their approach combines the self-ratio image irradiance

equation with the standard image irradiance equation to solve for the unknown

derivatives of depth map. Atick et al. [11] reduce the SFS problem to that of para-

meter estimation in a low-dimensional space using Principal Component Analysis

(PCA) over several hundred laser-scanned 3D heads. Dovgard et al. [29] combine

the symmetric SFS formulation [143] with the statistical approach to facial shape

reconstruction [11] to recover the 3D facial shape from a single image. Smith and

Hancock [116] embed a statistical model of facial shape in an SFS formulation.

Albedo estimation follows shape estimation to account for the differences between

predicted and observed image brightness.

2.1.2 Model-Based Approach

Blanz and Vetter [20] propose a 3D morphable model based approach to recognize

faces across pose and illumination variations. They represent each face as a linear

combination of 3D basis exemplars. Recovery of shape and albedo parameters

is formulated as an optimization problem that aims to minimize the difference

between the input and the reconstructed image. Romdhani et al. [103] provide an

efficient and robust algorithm for fitting a 3D morphable model using shape and
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texture error functions. Their algorithm uses linear equations to recover the shape

and texture parameters irrespective of pose and lighting conditions of the face

image. Zhang and Samaras [139] combine spherical harmonics illumination repre-

sentation [17] [99] with 3D morphable models [20] to recover person-specific basis

images. Feature-point based shape recovery is followed by an iterative estimation

of albedo and illumination coefficients. Samaras and Metaxas [106] incorporate

non-linear holonomic constraints in a deformable model to estimate shape and

illuminant direction. Under the assumption of constant albedo, the light source

direction and shape are estimated in an iterative manner by fixing one unknown

and estimating the other until there is no more change in the illuminant estimate.

Zhou et al. [145] impose a rank constraint on shape and albedo for the face class

to separate the two from illumination using a factorization approach. Integrabil-

ity and face symmetry constraints are employed to fully recover the class-specific

albedos and surface normals. Lee and Moghaddam [71] propose a scheme for

albedo estimation and relighting of human faces using a generic 3D face shape.

First the average shape is used to determine the dominant light source direction

which is then used to obtain an estimate of surface albedo for Lambertian objects.

The problem of albedo estimation has also been addressed by lightness algorithms

that recover an approximation to surface reflectance in independent wavelength

channels [51].

2.2 Related Work on Handling Pose and Misalignment

One of the applications of albedo estimation across pose is object recognition

across pose variations. Since most of the research on albedo estimation has taken

place in the context of faces as objects, here we briefly describe some of the related

work on face recognition across misalignment and pose. Sinilar to the work on

3D morphable model [20], Liu and Chen [76] propose a geometric approach in

which they approximate a human head with a simpler 3D ellipsoid model and
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recognition is performed by comparing texture maps obtained by projecting the

training and test images to the surface of the ellipsoid. Yue et al. [138] extend the

spherical harmonics representation to encode pose information. Using the linear

transformations that relate the 2D harmonic basis images at different poses, they

project a non-frontal view test image onto the space of frontal view harmonic basis

images to perform recognition across pose. For face recognition across pose, local

patches are considered more robust than the whole face, and several patch-based

approaches have been proposed [55] [9] [73]. Kanade and Yamada [55] proposed

a face recognition system based on a probabilistic model of how the appearance

of local subregions of a face changes with pose. Chen et al. [9] proposed an

extension of this approach where in addition to modeling how a face patch varies

in appearance, they also model how it deforms spatially with view-point change.

Gao et al. [73] suggested measuring the similarity of patches between different

poses by correlations in a media subspace, constructed by Canonical Correlation

Analysis. Prince et al. [98] recently proposed a generative model for generating

the observation space from the identity space using an affine mapping and pose

information. Face recognition is performed with probabilistic distance modeling.

Castillo and Jacobs [25] used the cost of stereo matching for 2-D face recognition

across pose without performing 3-D reconstruction. Zhao and Gao [142] propose

a new textural Hausdorff Distance which is a compound measurement integrating

both spatial and textural features for performing pose and mis-alignment robust

face recognition. In addition to these approaches, head pose estimation by itself

is a separate research area [87].

2.3 Related Work on Image Estimation Methods

In our proposed approach, albedo estimation is formulated as an image estima-

tion problem. Image estimation being a very mature area in the field of image

processing [7], we provide pointers only to a few related papers. The standard

9



Chapter 2. Related Work

Wiener filter is known to be optimal for second order stationary processes [7]. In a

stationary model, the statistical properties of the image are globally characterized

which makes the stationary Wiener estimation algorithm blur the abrupt changes

in the input image. Several modifications to the standard stationary image model

have since been proposed. Hunt et al. [50] [129] proposed a non-stationary mean

Gaussian image model in which an image is modeled as stationary fluctuations

about a non-stationary ensemble mean. Lebedev and Mirkin [67] suggested a

composite image model that assumes that an image is composed of many differ-

ent stationary components, each having a distinct stationary correlation structure.

Anderson and Netravali [6] used a subjective error criterion based on human vi-

sual system models. The derived non-recursive filter makes a trade-off between

the loss of resolution and noise smoothing such that the same amount of sub-

jective noise is suppressed throughout the image. Abramatic and Silverman [2]

generalized this procedure and related it to the classical Wiener filter. Naderi and

Sawchuk [88] derived a non-stationary discrete Wiener filter for a signal-dependent

film-grain noise model which can adapt itself to the local signal statistics given

the conditional noise statistics. Kuan et al. [58] proposed a non-stationary mean,

non-stationary variance image model. A local linear minimum mean square error

filter for images degraded by blur and a class of signal-dependent, uncorrelated

noise is derived based on the proposed image model.

2.4 Related Work on Specularity Removal

This section describes the related work on illumination color estimation and sepa-

ration of reflectance components. The dichromatic reflection model was proposed

by Shafer [111] who suggested a method for separating reflection components from

a single image by fitting a parallelogram to the pixel values in the RGB color space.

Klinker et al. [57] showed that for a uniform colored surface, the combined spectral

cluster of matte and highlight points form a skewed T-shape in the color space.
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However, the presence of noise in real images makes the extraction of T-shape

very challenging. Bajscy [12] assumed knowledge of illumination color to obtain

improved results through color space transformation. Tan et al. [124] also used

the illumination color information to reduce the problem of reflection component

separation to that of identifying diffuse maximum chromaticity. All of these meth-

ods are basically designed for uniformly colored surfaces and thus require explicit

color segmentation of the scene to deal with multi-colored surfaces.

Several methods have been proposed thereafter to deal with complex textured

surfaces without requiring explicit color segmentation. Tan and Ikeuchi [121] pro-

posed a specular-to-diffuse mechanism to iteratively reduce specularity of each

pixel by comparing intensity logarithmic differentiation of the normalized input

image to the specular-free image. Tan et al. [118] used an in-painting technique

for highlight removal from a single image with user-specified highlight regions by

minimizing an energy function. Malik et al. [78] utilized the partial separation of

the reflection components provided by the SUV color space transformation [79].

The method involves solving a partial differential equation that iteratively erodes

the specular component at each pixel. To avoid some of the limitations faced by

local interaction methods, Tan and Ikeuchi [120] proposed a global non-iterative

method by relating the specular pixels to diffuse pixels of the same color using

the coefficients of reflectance linear basis functions. In another recent approach,

Tan et al. [119] utilized additional information from outside the highlight region

to determine the diffuse surface colors within the highlight. Most reflection com-

ponent separation methods assume that the illumination source color is known a

priori or can be estimated accurately.

Illumination color estimation has been extensively studied with regard to the

problem of color constancy [14] [15] [69] [35] [36]. Here we provide pointers to

some of the methods that deal with complex textured surfaces. Tan et al. [123]

used highlight regions to estimate the illumination color by relating it to image

chromaticity in the inverse-intensity chromaticity space. The approach relies on

11



Chapter 2. Related Work

the presence of pixels with the same diffuse component for surface colors in the

image. Toro and Funt [127] assumed a known list of candidate illumination colors

and propose a multi-linear constraint to evaluate how well a candidate illumination

color accounts for the observed colors in the input image.

2.5 Related Work on Shape Matching

The problem of shape matching has been around for quite sometime, probably

due to its universality. Though significant advancements have been made, the

requirement for computational efficiency and accuracy continues to interest re-

searchers. In this section, we discuss some of the previous efforts that are related

to representation and matching of 2D and 3D shapes proposed in the dissertation.

2.5.1 Representation and Matching of shapes

Shape context [18] based matching has been the theme of several recent works [86]

[131] [125] [84] on shape matching. In the original version [18], each point is char-

acterized by the spatial distribution of the other points relative to it. Similarity

computation involves establishing correspondences using bipartite graph match-

ing and thin plate spline (TPS) based alignment. The shape context framework

has since been extended in various ways to suit different requirements of the shape

matching problem. Mori and Malik [86] proposed using statistics of the tangent

vectors along with the point counts to perform object recognition in clutter. A fig-

ural continuity constraint is incorporated in the feature correspondence estimation

to yield reliable correspondences in cluttered scenes [125]. The constraint ensures

that two points which are close on the model shape are close in the image. Tu

and Yuille [131] incorporated softassign [26] in a shape context framework [131] for

shape matching. One of its recent extensions by Ling and Jacobs [74] accounts for

movement of part structures, by replacing the Euclidean distance in the classical

version with inner distance, which is robust to articulations. In addition, the ap-
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proach involves a dynamic programming (DP) based matching algorithm which

helps it to outperform most previous methods. McNeill and Vijayakumar [82]

proposed the hierarchical Procrustes matching algorithm which generalizes the

idea of finding a point-to-point correspondence between two shapes to that of

finding a segment-to-segment correspondence. In another recent work, Felzen-

szwalb and Schwartz [34] used a new hierarchical representation called shape tree

for two-dimensional objects that captures shape information at multiple levels of

resolution. Here a curve is described using a recursive selection of midpoints and

DP is used to perform matching of two shapes.

There is another body of work for capturing part structures in which shapes

are represented using shock graphs [112] [114]. The shock graph representation

of a shape is based on the singularities of curve evolution process acting on the

bounding contours. The shock graph grammar helps to reduce the shock graph

representation to a unique rooted shock tree which is then matched using a tree

matching algorithm. Sebastian et al. [109] proposed a shock graph-based method

to handle shape deformations. They find the optimal deformation path of shock

graphs that brings the two graphs (shapes) into correspondence.

2.5.2 Efficient matching and Indexing

Fast nearest neighbor searches in Euclidean space for finding closest points in

metric spaces has a rich history [28]. Due to the tremendous increase in the amount

of data that needs to be handled, indexing techniques are becoming increasingly

popular for the development of fast retrieval algorithms for documents, images,

etc. The indexing approach used in the dissertation is inspired by the work on

fingerprint indexing using minutiae triangles as features [42]. Unlike the classical

geometrical hashing technique [62], the triangle-based approach hashes a set of

points based on local invariants (depends only on three minutiae, though need

not be local spatially), which is more robust and leads to faster retrieval. For fast

matching and retrieval of images, a vocabulary tree-based representation has been
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recently proposed by Nister and Stewenius [89]. Similar to their approach, our

indexing system relies on invariant and robust shape representation, to make the

retrieval process extremely fast. In [85], Mori et al. proposed solutions to improve

the computational efficiency of shape contexts-based approaches. They show how

pruning and vector quantization techniques can be utilized to make shape context

useful for large databases.

Another approach for fast shape matching is to reduce the shape matching

problem to the comparison of probability distributions, which does not require

pose registration, feature correspondence, or model fitting. Osada et al. [93] use

shape distributions sampled from a shape function and measured global geometric

properties of an object for fast matching of 3D models. They experimented with

different shape functions like distance between two random surface points, angle

between three random points, etc. Ohbuchi et al. [91] used joint 2D histogram

of distance and orientation of pairs of points for improved performance. Hamza

and Krim [46] used geodesic shape distribution that measures the global geodesic

distance between two arbitrary points on the surface to be able to better capture

the (nonlinear) intrinsic geometric structure of the data. The idea of describing

3D models using distance between pairs of points and/or their mutual orientations

has also appeared in [53] [77].
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Chapter 3

Robust Estimation of Albedo for Illumination

Insensitive Matching and Shape Recovery

A real world object is characterized by its underlying shape and surface properties.

These characteristics define the way the object is perceived, irrespective of the

view or illumination. Unlike image intensity, these characteristics of an object

are invariant to changes in illumination conditions which makes them useful for

illumination-invariant matching of objects. Realistic image-based rendering (IBR)

is another application where accurate estimates of shape and albedo (texture) play

a very important role. Thus estimating the shape and albedo of an object from an

intensity image has been a very important area of research in computer vision and

graphics. Though research on this topic has been underway for over two decades,

the difficulty in obtaining accurate estimates and the wide range of applications

continue to interest researchers.

3.1 Introduction

Albedo is the fraction of light that a surface point reflects when it is illuminated.

It is an intrinsic property that depends on the material properties of the surface.

In existing literature, albedo estimation has often been coupled with shape esti-

mation. Given an input image, most methods follow the two-step approach of first

recovering the shape of the object and then estimating the surface albedo [139]. A

few others simultaneously estimate the shape and albedo of an object [20] [103].

There are also albedo estimation methods whose main goal is shape estimation

and albedo is finally incorporated to account for the image reconstruction errors
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using the estimated shape [116]. Thus, in most approaches, albedo recovery de-

pends on the accuracy of the estimated shape and illumination conditions. Errors

in shape and illumination estimates lead to errors in albedo. Here we show how

statistical characterization of the errors in estimates of normal and light source

directions can be utilized to obtain robust albedo estimates.

The problem of albedo estimation is formulated as an image estimation prob-

lem. Given an initial albedo map (obtained using available domain-dependent

average shape information), we obtain a robust albedo estimate by modeling the

true unknown albedo as a non-stationary mean and non-stationary variance field.

Unlike a stationary model, this model can account for the albedo variations present

in most real objects. The initial albedo map can be expressed as a sum of the true

unknown albedo and a signal-dependent non-stationary noise. The noise term in-

corporates the errors in surface normal and illumination information. Posing this

as an image estimation problem, the albedo is estimated as the Linear Minimum

Mean Square Error (LMMSE) estimate of the true albedo.

The theoretical formulation is extended to deal with images illuminated by

multiple unknown light sources. We propose an algorithm for estimating the

illumination conditions in such scenarios. The algorithm is based on an approxi-

mation to the linear subspace property of Lambertian surfaces [17] [99]. The es-

timated illumination information is used along with a domain-dependent average

shape to obtain an initial albedo map. Similar to the single source framework,

a robust albedo estimate is obtained by formulating it as an image estimation

problem.

Like albedo, shape is another intrinsic property of an object which is invariant

to changes in pose and illumination conditions. The importance of estimating the

shape of an object has probably been the guiding force behind the vast amount of

work that has been done to recover shape (shape-from-X) from images or videos.

An example in this category is the work done on the problem of shape from

shading [48] [140]. The goal of SFS research is to recover the 3D shape of an object
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from a single image. Dealing with an inherently ill-posed problem, SFS approaches

typically make simplifying assumptions like constant or piece-wise constant albedo

and/or known single distant light source. Such assumptions though useful to make

the problem more tractable, often limit the applicability of the approaches for real

world objects.

We focus on the general SFS problem of estimating the shape and albedo of an

object with varying albedo map and unknown illuminant direction from a single

image. To this end, we propose an algorithm that transforms the general SFS

problem to one of estimating the shape of an object with unit albedo and known

illuminant direction that can be addressed using a standard SFS approach.

3.1.1 Organization of the Chapter

The chapter is organized as follows. The proposed albedo estimation framework

is detailed in Section 3.2. This section describes in detail the image estimation

framework and the derivation of the required variances. Section 3.3 details the

steps involved in shape recovery using the estimated albedo. Experimental re-

sults are presented in Section 3.4. Section 3.5 concludes the chapter with a brief

summary.

3.2 Albedo Estimation

For Lambertian objects, the diffused component of the surface reflection is mod-

eled using the Lambert’s Cosine Law given by

I = ρ max(nT s, 0) (3.1)

where I is the pixel intensity, s is the light source direction, ρ is the surface

albedo and n is the surface normal of the corresponding surface point. The

expression implicitly assumes a single dominant light source placed at infinity. It
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is worthwhile to note that the Lambert’s law in its pure form is non-linear due to

the max function which accounts for the formation of attached shadows. Shadow

points do not reveal any information about their reflectivity and thus their albedo

cannot be estimated from the image.

Let n
(0)
i,j and s(0) be the initial values of the surface normal and illuminant

direction. The initial surface normal can be the domain dependent average value

or any estimate available or obtained from any other method. The Lambertian

assumption imposes the following constraint on the initial albedo ρ(0) obtained

ρ
(0)
i,j =

I i,j

n
(0)
i,j · s(0)

(3.2)

where · is the standard dot product operator. We suppress the explicit max

operator by considering only the pixels with positive intensity values. Clearly,

more accurate the denominator (n(0) · s(0)) is, the closer is the obtained initial

albedo to its true value ρ. For most applications, accurate initial estimates of

normals and light source direction are not available leading to erroneous ρ(0).

Figure 3.1 illustrates the nature of errors in the obtained albedo ρ(0) for a

synthetically generated face image using a frontal light source i.e. s = [0, 0,−1].

True surface normal information is used for estimating the albedo in this example.

One may expect the errors to be larger if inaccurate estimates or average value

of surface normals are used. The light source direction is estimated using the

method in [22] and the resulting s(0) is [0.1499,−0.0577,−0.9870]. Interestingly,

not only is ρ(0) quite far from the true value for quite a few points, but even the

error varies appreciably across pixels. The proposed estimation framework duly

accounts for these variations to obtain a robust albedo estimate.

3.2.1 Image Estimation Framework

Here we present the image estimation framework to obtain a robust albedo esti-

mate using the initial albedo map which is erroneous due to inaccuracies in surface
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Figure 3.1: Illustration of the nature of errors in the initial albedo ρ(0). (a) Input Image,

(b) True Albedo, (c) Obtained Albedo, (d) Difference Image, (Bottom) Pixel-wise error

variation in the initial albedo map ρ(0).

normal and light source estimates. The expression in (3.2) can be rewritten as

follows

ρ
(0)
i,j =

I i,j

n
(0)
i,j · s(0)

= ρi,j

ni,j · s
n

(0)
i,j · s(0)

(3.3)

where ρ, n and s are the true unknown albedo, normal and illuminant direction

respectively. ρ(0) can further be expressed as follows

ρ
(0)
i,j = ρi,j +

ni,j · s − n
(0)
i,j · s(0)

n
(0)
i,j · s(0)

ρi,j (3.4)

Substituting wi,j =
ni,j ·s−n

(0)
i,j ·s

(0)

n
(0)
i,j ·s

(0)
ρi,j, (3.4) simplifies to

ρ
(0)
i,j = ρi,j + wi,j (3.5)
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This can be identified with the standard image estimation formulation [7]. Here ρ

is the original signal (true albedo), the initial estimate ρ(0) is the degraded signal

and w is the signal dependent additive noise.

3.2.2 LMMSE Estimate of Albedo

The Minimum Mean Square Error (MMSE) estimate of the albedo map ρ given

noisy observed map ρ(0) is the conditional mean

ρ̂ = E(ρ|ρ(0)) (3.6)

In general, the MMSE estimate is non-linear and depends on the probability

density functions of ρ and w and is difficult to estimate. Imposing linear constraint

on the estimator structure, the LMMSE estimate is given by [105]

ρ̂ = E(ρ) + Cρρ(0)C−1
ρ(0)(ρ

(0) − E(ρ(0))) (3.7)

Here Cρρ(0) is the cross-covariance matrix of ρ and ρ(0). E(ρ(0)) and Cρ(0) are

the ensemble mean and covariance matrix of ρ(0) respectively. The LMMSE filter

requires the second order statistics of the signal and noise.

The expression for the signal-dependent noise w can be rewritten as follows

wi,j =
(ni,j − n

(0)
i,j ) · s + n

(0)
i,j · (s − s(0))

n
(0)
i,j · s(0)

ρi,j (3.8)

Assuming the initial values of surface normal n(0) and light source direction s(0) to

be unbiased, both E(w) and E(w|ρ) are zero. Since noise is zero mean, E(ρ(0)) =

E(ρ). So Cρρ(0) can be written as

Cρρ(0) = E[(ρ − E(ρ))(ρ(0) − E(ρ(0)))T ]

= Cρ + E[(ρ − E(ρ))wT ] (3.9)
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Similarly, if Cw is the covariance of the noise term, Cρ(0) can be written as

Cρ(0) = E[(ρ(0) − E(ρ(0)))(ρ(0) − E(ρ(0)))T ]

= Cρ + Cw + E[(ρ − E(ρ))wT ]

+ E[w(ρ − E(ρ))T ] (3.10)

Recalling that E(w) and E(w|ρ) are zero, E
(

(ρ−E(ρ))wT
)

= 0. This simplifies

(3.9) and (3.10) as follows

Cρρ(0) = Cρ and Cρ(0) = Cρ + Cw (3.11)

In conventional image estimation problems, the original signal is assumed to be

a wide-sense stationary random field. For albedo of real world objects, stationarity

may be an oversimplified assumption. Figure 3.2(a) shows the albedo of a face.

It is evident from the histogram (Figure 3.2(b)) which is not Gaussian that the

albedo is not a stationary random field.

(a)

0 100 200
0

100

200

300
(b) (c)

−5 0 5
0

100

200

300
(d)

Figure 3.2: Non-stationary mean and non-stationary variance model for the true albedo.

(a) True albedo, (b) Histogram of (a), (c) Normalized unit variance residual image, (d)

Histogram of (c).

Here we assume a Non-stationary Mean Non-stationary Variance (NMNV)

model [58] for the true albedo ρ. Unlike the stationary model, the original signal

is characterized by a non-stationary mean E(ρ) which describes the gross structure

of the signal. Under this model, the residual component (ρ−E(ρ)) which describes

the signal variations is assumed to be a non-stationary white process, i.e. it is
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statistically uncorrelated and characterized by its non-stationary variance σ2
i,j(ρ).

Figure 3.2(c) shows the normalized unit variance residual image. The normalized

image seems to have Gaussian-like histogram (Figure 3.2(d)) which justifies the

NMNV model for the true unknown albedo [58]. Under the NMNV assumption,

Cρ is a (non-constant) diagonal matrix. As Cρ is diagonal, Cρρ(0) is diagonal.

Since Cρ is diagonal, Cw and thus Cρ(0) are also diagonal. Therefore, the LMMSE

filtered output (3.7) simplifies to the following scalar (point) processor of the form

ρ̂i,j = E(ρi,j) + αi,j

(

ρ
(0)
i,j − E(ρ

(0)
i,j )
)

where, αi,j =
σ2

i,j(ρ)

σ2
i,j(ρ) + σ2

i,j(w)
(3.12)

where σ2
i,j(ρ) and σ2

i,j(w) are the non-stationary signal and noise variances respec-

tively. Recalling that E(ρ(0)) = E(ρ), (3.12) can be written as

ρ̂i,j = (1 − αi,j)E
(

ρi,j

)

+ αi,jρ
(0)
i,j (3.13)

So the LMMSE albedo estimate is the weighted sum of the ensemble mean E(ρ)

and the observation ρ(0), where the weight depends on the ratio of signal variance

to the noise variance. For low signal to noise ratio (SNR) regions, more weight

is given to the a priori mean E(ρ) as the observation is too noisy to make an

accurate estimate of the original signal. On the other hand, for high SNR regions,

more weight is given to the observation.

3.2.3 Noise Variance

From (3.8), the signal-dependent noise w is

wi,j =
(ni,j − n

(0)
i,j ) · s + n

(0)
i,j · (s − s(0))

n
(0)
i,j · s(0)

ρi,j (3.14)
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We assume that the error in surface normal (ni,j − n
(0)
i,j ) is uncorrelated in x, y

and z directions and their variances are same. A similar assumption on the error

in the light source direction (s − s(0)) leads to the following expression for the

noise variance σ2(w)

σ2
i,j(w) = σ2

i,j(w1) + σ2
i,j(w2) (3.15)

where,

σ2
i,j(w1) = σ2

i,j(n)

(

sx
2 + sy

2 + sz
2

(n
(0)
i,j · s(0))

2

)

E
(

ρ2
i,j

)

(3.16)

and

σ2
i,j(w2) = σ2(s)

(

(

n
(0)
x

)2
+
(

n
(0)
y

)2
+
(

n
(0)
z

)2

(n
(0)
i,j · s(0))

2

)

E
(

ρ2
i,j

)

(3.17)

Here σ2
i,j(n) and σ2(s) are the error variances in each direction of the surface

normal and light source direction respectively. {sx, sy, sz} and {n(0)
x , n

(0)
y , n

(0)
z }

are the three components of the illuminant direction and initial surface normal

respectively. [sx, sy, sz] and [n
(0)
x , n

(0)
y , n

(0)
z ] being unit vectors, the expression for

the noise variance can further be simplified as follows

σ2
i,j(w) =

σ2
i,j(n) + σ2(s)

(n
(0)
i,j · s(0))

2 E
(

ρ2
i,j

)

(3.18)

Appropriately, the noise variance is proportional to the error variances of normal

and light source estimates and the variance of the original signal. Interestingly,

the noise variance is inversely proportional to (n
(0)
i,j · s(0)) which is the cosine of

the angle between the estimates of surface normal and light source direction.

We investigate the correctness of such a relation using a synthetically generated

image. Figure 3.3 (left) shows the error in ρ(0) for a synthetically generated face

image. We see that the error actually varies inversely with (n
(0)
i,j · s(0)) when all the

other factors are constant. Such an observation can be attributed to the nature

of the cosine function as shown in Figure 3.3 (right). When the angle is small,

23



Chapter 3. Robust Estimation of Albedo for Illumination Insensitive
Matching and Shape Recovery

5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Pixel

   
E

rr
or

 in
 ρ

(0
)    

 , 
   

(n
(0

) ⋅s
(0

) )2   (
sc

al
ed

) pixel−wise albedo error

(n(0)⋅s(0))2

Figure 3.3: Left: Pixel-wise albedo error vs (n
(0)
i,j · s(0))

2
. Right: Cosine function ex-

plaining the error variation.

the cosine function changes slowly which implies that small errors in the angle

estimate (∆x) will not adversely affect the accuracy of ρ(0), i.e. ∆y1 is small. On

the other hand, when the angle is large, even a small error in the angle estimate

can lead to large errors in ρ(0). The noise variance expression used in the proposed

estimation framework is capable of accounting for this variation and thus has good

potential to obtain a fairly accurate estimate of albedo. The various steps of the

proposed algorithm to obtain the albedo estimate from an input intensity image

are enumerated in Figure 3.4.

3.2.4 Illustration with synthetically generated data

Figure 3.5 shows the albedo maps obtained using the proposed algorithm for a

face image. To facilitate comparisons with ground truth, the input face image

is generated using 3D facial data [20]. Both correct and average facial surface

normals are used as n(0) to show the efficacy of our approach for a wide range

of errors in surface normals. The other contextual information required to obtain

the LMMSE estimate of the albedo is determined as follows

• The illuminant direction s(0) is estimated using [22]. σ2(s) is estimated by

generating a large number of images under randomly selected lighting conditions
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• Input: 2D intensity image I and average surface normal n(0).

• Get initial estimate of source s(0) in a least squares manner assuming unit
albedo.

• Get initial raw estimate of albedo ρ(0) using n(0) and s(0)

ρ
(0)
i,j =

Ii,j

n
(0)
i,j · s(0)

• Estimate the non-stationary noise variance σ2
i,j(w) using

σ2
i,j(w) =

σ2
i,j(n) + σ2(s)

(n
(0)
i,j · s(0))

2 E
(

ρ2
i,j

)

• Calculate the LMMSE estimate of the true unknown albedo by linearly
combining the signal ensemble average E

(

ρ) and the initial raw albedo ρ(0)

as follows

ρ̂i,j = (1 − αi,j)E
(

ρi,j

)

+ αi,jρ
(0)
i,j

where, αi,j =
σ2

i,j(ρ)

σ2
i,j(ρ) + σ2

i,j(w)

Figure 3.4: Algorithm for finding the LMMSE estimate of albedo

and estimating their illumination directions.

• σ2(n) is estimated from 3D face data [20]. The data consists of surface normal

information for 100 laser-scanned faces.

• Initial albedo ρ(0) is obtained using (3.2).

• E
(

ρ
)

, σ2(ρ) and E
(

ρ2
)

are estimated from facial albedo data [20]. Figure 3.6

shows maps of E
(

ρ
)

, σ2(ρ) and σ2(n).
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(a) Input Image (b) ρ(0) (true n) (c) ρ(0) (average n)

(d) True albedo (e) Estimated albedo
             (true n)            

(f) Estimated albedo
           (average n)         
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Figure 3.5: Estimated albedo maps. Average per-pixel errors are in the ratio

(b):(e):(c):(f) :: 17:9:26:12. The plot shows the final albedo estimate as compared

to the true albedo, initial albedo ρ(0) and the ensemble average.

The estimated albedo maps (Figure 3.5) seem to be free of shadowy effects

present in the input image and are quite close to the true albedo map. As zero

intensity pixels do not provide any albedo information, a few black regions can be

seen in the estimated albedo maps.

(a) E(ρ) (b) σ2(ρ) (c) σ2(n)

Figure 3.6: Mean and variance maps used. (a) Ensemble mean of albedo, (b) Ensemble

variance of albedo, (c) Error variance of the surface normal.

The improvement in the albedo maps can be explained using the plot in Fig-

ure 3.5. Though both the ensemble average and the initial albedo ρ(0) are quite

far from the true albedo, their linear combination follows the true value closely.

Thus the approach does well in choosing appropriate combining coefficients αi,j

in (3.13), so that the variation in the accuracy of ρ(0) at different points is duly

accounted for. The improvement obtained over ρ(0) is significant and is consistent

across images of different faces in several different challenging illumination condi-
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tions. When tried on 1000 images, the average reduction in per-pixel albedo error

is observed to be over 33%. We observe that the improvement in albedo estimates

is consistent and is not overly sensitive to the used statistics.

3.3 Shape Recovery

In this section, we focus on the general SFS problem of estimating the shape of an

object with varying albedo map from a single image. This is an ill-posed problem

with too many unknowns and just one constraint per pixel. Traditionally, assump-

tions like constant/piece-wise constant albedo and known illuminant direction are

made to make the problem somewhat tractable. Though important to address

the ever-elusive problem of shape recovery from a single image, these assump-

tions make the SFS approaches ineffective for real objects with varying albedo.

In our approach, we transform the original problem of estimating shape of an

object with varying albedo map and unknown illumination, to one of estimating

the shape of an object with constant albedo and known light source direction that

can be addressed using traditional SFS approaches.

Figure 3.7: Schematic diagram of the proposed approach for shape recovery.

We describe in detail each step of the proposed algorithm using a face image

as an example. We use 3D information of an average face model as the initial

estimate. Using the average shape, we obtain an initial estimate of illuminant
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direction by formulating it as a linear Least Squares problem [22]

s(0) =

(

∑

i,j

n
(0)
i,j n

(0)
i,j

T

)−1
∑

i,j

I i,jn
(0)
i,j (3.19)

where n(0) is the average facial surface normal. Starting with these initial normal

and illuminant estimates, the algorithm proceeds as follows (Figure 3.7)

3.3.1 Albedo Estimation and Image Normalization

Given an image, a robust albedo estimate is determined using the image estimation

approach described in the preceding section. The albedo estimate ρ̂ is used to

normalize the input image to obtain an albedo-free image G as follows

Gi,j =
I i,j

ρ̂i,j

(3.20)

The normalized image G is an image of an object with the same shape as that

of the original one but with unit albedo map. Figure 3.8 shows an example

of the normalized image obtained from a synthetic face image. The normalized

image appears quite close to the true normalized image obtained directly from the

shape information. Also, both the images are quite different from the input image

highlighting the importance of such a normalization step before shape estimation.

(a) Input Image (b) True G (c) G (using estimated ρ)

Figure 3.8: Normalized image obtained using the albedo estimate.

For a Lambertian object, Gi,j represents the cosine of the angle between the
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true unknown surface normal ni,j and the true unknown illuminant direction s as

illustrated in Figure 3.10 (right). So using s(0) to recover the shape may introduce

errors in the output depending on the errors in the source estimate. Though the

normalized image can potentially be used to estimate the surface normal and

refine the illuminant direction estimate using a suitable iterative optimization

scheme (e.g., [22]), most traditional SFS approaches assume known light source

direction because of possible stability issues in such iterative optimizations. Here,

we propose an estimation framework to transform G to another albedo-free image

illuminated by a known light source.

3.3.2 Image Transformation

In this step, we transform Gi,j to another image H i,j that represents the cosine

of the angle between the true unknown surface normal ni,j and the known light

source estimate s(0) (Figure 3.10 (right)). An image estimation framework that

utilizes the statistics of error in the source estimate is used for this task. The

normalized image G can be written as

G = nT s (3.21)

Now for each pixel, writing the true illuminant direction s in terms of the initial

estimate s(0) and the difference between the two, we obtain

Gi,j = ni,j · s(0) + ni,j · (s − s(0)) (3.22)

Identifying that H i,j represents the cosine of the angle between the true normal

ni,j and the initial estimate of the illuminant direction s(0), (3.22) simplifies to

Gi,j = H i,j + νi,j (3.23)
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where ν i,j = ni,j · (s−s(0)). As before, this can be viewed as an image estimation

problem to obtain an estimate of the transformed image H . Here the normalized

image G is the degraded signal and ν is the observation noise.

Similar to the albedo estimation case, imposing linear constraint on the esti-

mator structure, the LMMSE estimate is given by [105]

Ĥ i,j = (1 − βi,j)E
(

H i,j

)

+ βi,jGi,j

where, βi,j =
σ2

i,j(H)

σ2
i,j(H) + σ2

i,j(ν)
(3.24)

Here σ2(ν) and σ2(H) are the non-stationary noise and signal variance respec-

tively. The derivation for the expression for the LMMSE estimate of H in (3.24)

follows in the same fashion as for albedo and hence omitted for brevity. As before,

assuming that the error in the illuminant direction (s − s(0)) is uncorrelated in

the x, y and z directions with the same variance σ2(s), we have

σ2
i,j(ν) = (nx

2 + ny
2 + nz

2)σ2(s) = σ2(s) (3.25)

(a) G (b) H
true

(c) H
est

Figure 3.9: The transformed image (c) obtained using the proposed estimation frame-

work. For comparison, the normalized image G and the true H (generated from the

3D data) are also shown. Average per-pixel errors in G and Ĥ are in the ratio of 3:1.

Figure 3.9 shows the transformed image obtained using this approach. The

true source direction in this case is [0, 0, -1] while s(0) is taken to be [-0.86, 0, -0.52].

Clearly, the advantage gained using this image transformation step depends on the

error in s(0). We perform an experiment to observe the deviation in G and Ĥ from
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Figure 3.10: Left: The variation of error in G and Ĥ with an increase in the angular

difference between the estimated and true illuminant direction for different values of

σ2(s), Right: Image transformation.

H with the increase in error in the estimated illuminant direction. As shown in

Figure 3.10 (left), both G and Ĥ are close to H when the error in s(0) is small. The

difference |H − G| increases almost linearly with an increase in the source error.

On the other hand, the error in Ĥ saturates quickly, highlighting the advantage

of the proposed estimation framework to obtain a reliable estimate of H . The

experiment is repeated with different values for the source error variance. The

value of σ2(s) indicates the confidence in the estimated illuminant direction and

thus the weight given to the normalized image G in comparison to the ensemble

average E
(

H
)

.

To evaluate the usefulness of the proposed transformation from G to H , we

estimate the typical errors in light source estimate using 1000 synthetic images

and estimating illuminant direction using (3.19). The average error in the source

direction estimate is around 16◦ indicating approximately 50% reduction (0.145

to 0.07) in average per-pixel error from G to Ĥ for σ2(s) = 0.01, the value used

in our experiments. The different contextual information required to obtain the

transformed image is determined from the 3D facial surface normal data [20]. The

estimated illuminant direction s(0) is used for generating a large number of tran-
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Figure 3.11: The estimated albedo maps ρ̂ and transformed images Ĥ obtained for a

few subjects from Yale dataset [41].

formed images which are then used for estimating the ensemble mean E
(

H
)

and

variance σ2(H). Figure 3.10 (right) visually demonstrates the image transforma-

tion procedure.

Figure 3.11 shows the albedo maps and transformed images obtained using the

proposed approach on real images from the Yale Face Database B [41]. As desired,

the transformed images seem to be less affected due to variations in albedo than

the original input images. Note that Ĥ is the LMMSE estimate of the image of

an object with same shape as the original object but with unit albedo map and

illuminated by the light source s(0). Thus one can use a suitable SFS algorithm

to solve for the unknown shape.

3.3.3 Shape Estimation

In our implementation, we use the SFS approach by Tsai and Shah [130] that

uses a linear approximation of the reflectance function. Here we provide a brief

overview of the method for completion. For Lambertian surfaces, the reflectance

function R has the following form

R(pi,j, qi,j) =
s · [pi,j, qi,j, 1]T
√

1 + p2
i,j + q2

i,j

(3.26)
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where pi,j and qi,j are the surface gradients. Employing discrete approximations

for p and q using finite differences, we get

0 = f(Ĥ i,j, Zi,j, Zi−1,j, Zi,j−1)

= Ĥ i,j − R(Zi,j − Zi−1,j, Zi,j − Zi,j−1) (3.27)

where Zi,j denotes the depth values. For a given transformed image Ĥ , a linear

approximation of the function f about a given depth map Zn−1 leads to a linear

system of equations that can be solved using the Jacobi iterative scheme as follows

0 = f(Zi,j) ≈ f(Zn−1
i,j ) + (Zi,j − Zn−1

i,j )
d

dZi,j

f(Zn−1
i,j ) (3.28)

Now for Zi,j = Zn
i,j , the depth map at n-th iteration can be solved using

Zn
i,j = Zn−1

i,j +
−f(Zn−1

i,j )
d

dZi,j
f(Zn−1

i,j )
(3.29)

In our experiments, we use the domain-specific average shape as the initial depth

map. Figure 3.12 shows the various steps of the proposed albedo estimation and

shape recovery algorithm. Depending on the application, one can potentially

repeat the sequence of steps with the updated estimates to further refine the

albedo, shape and illuminant direction. In our experiments with face images, we

do not see much improvement in the estimates after first (or first few) iteration(s).

Therefore, all the results shown here are generated using a single parse through the

proposed steps. The whole process takes around 2-3 seconds using an unoptimized

MATLAB code on a regular desktop.

3.4 Experiments

We provide details of the experiments performed to evaluate the robustness and

usefulness of the albedo and shape estimates obtained using the proposed image
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Figure 3.12: Visual demonstration of the proposed algorithm.

estimation framework. We provide examples of albedo estimates obtained on

real images. The albedo estimates are also used to relight images under frontal

illumination condition. The illumination-insensitivity of the albedo estimates is

highlighted by using them to recognize faces across illumination variations. The

face recognition application requires albedo estimates from images illuminated by

multiple illumination sources. Therefore, the proposed estimation framework is

extended to deal with realistic multiple source scenarios.
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Other than the image estimation framework to estimate albedo, the main con-

tribution of the work is in transforming the input image to an albedo-free image

taken in the presence of known light source which can be used for shape recov-

ery using existing techniques. Therefore, we perform a recognition experiment to

evaluate the efficacy of the transformed image before using it to recover 3D shape.

The recovered shapes are compared with the available 3D information. The ef-

fectiveness of the approach is further highlighted by using the shapes recovered

from images downloaded from the web to generate novel views taken under novel

illumination.

3.4.1 Illumination-Insensitivity of Estimated Albedo

Figure 3.13: Albedo estimates obtained from several images of a subject from the PIE

dataset [115].

Figure 3.13 shows the albedo maps obtained from several images of a subject

from the PIE dataset [115] taken under different illumination conditions. Average

facial surface normals are used as n(0). The illuminant direction s(0) is estimated

using (3.19). The final albedo estimates obtained using the proposed approach

appear much better than the initial erroneous ones and do not seem to have the

shadowy effects present in the input images. In addition, as desired the estimated
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albedo maps appear quite similar to each other.

We also perform a relighting experiment using the estimated albedo maps

to generate images under frontal illumination. The relighting is performed by

combining the estimated albedo maps with average facial shape information. Fig-

ure 3.14 (second row) shows the relighted images and the corresponding input

images (first row) taken under challenging illumination conditions. The relighted

images seem quite similar to the actual frontally illuminated images of the same

subjects from the dataset shown in the third row.

Figure 3.14: Relighting results on a few images from the PIE dataset [115].

3.4.2 Face Recognition

We now evaluate the usefulness of the estimated albedo maps as an illumination-

insensitive signature. We perform recognition experiments on the PIE dataset

that contains face images of 68 subjects taken under several different illumination

conditions. Given the estimated albedo maps, the similarity between images is

measured using Principal Component Analysis (PCA). FRGC [95] training data

consisting of 366 face images is used to generate the (albedo) PCA space. Recogni-

tion is performed across illumination with images from one illumination condition

forming the gallery while images from another illumination condition forming the

probe set. In this experiment setting, each gallery and probe set contains just one
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image per subject. Table 3.1 shows the rank-1 recognition results obtained. Each

entry in the table shows the rank-1 performance obtained for one choice of gallery

and probe set. The albedo maps perform quite well as illumination-insensitive

signatures with an overall average recognition accuracy of 94%.

As shown in the table, the performance compares favorably with those of [145]

and [4] which follow similar experimental setting. The performance is also compa-

rable to the one reported by Romdhani et al. [103] and Zhang and Samaras [139].

Using a 3D morphable model based algorithm, Romdhani et al. obtain an average

recognition rate of 98% (same as ours with f12 as gallery) using the frontally il-

luminated images (flash f12) as gallery. An average recognition rate of 99% (with

f12 as gallery) is reported by Zhang and Samaras using a spherical harmonics-

based approach. Initial albedo maps ρ(0) perform poorly in this experiment with

an overall average rank-1 performance of 27%. This may be due to the fact that

average facial normals are far from the true normals leading to large errors. It is

worthwhile to note that the proposed estimation framework is able to take care

of such large errors leading to good recognition performance.

There are quite a few differences between [103, 139, 145, 4] and the proposed

approach that warrant some clarifications. First, our experimental setup is re-

strictive with face images assumed to be in frontal pose (though it is potentially

extensible to deal with non-frontal poses). However, there are quite a few advan-

tages that the proposed approach offers as compared to other existing approaches.

The proposed algorithm does not involve any costly optimization step and is easily

and efficiently implementable. In addition, albedo estimation requires limited do-

main knowledge in the form of ensemble means and variances. In fact, as discussed

in Section 3.4.6, one can replace the ensemble information by local statistics to

obtain albedo estimates using the proposed framework. This makes the approach

relatively easier to extend to general objects where the domain-dependent statis-

tics is not available. Moreover, the proposed albedo estimation approach does not

impose a linear statistical constraint on the unknown albedo and can be easily
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Table 3.1: Recognition results on the PIE dataset [115] using the estimated albedo. We

include averages from [145] and [4] for comparison. fi denotes images with ith flash ON

as labeled in PIE. Each (i, j)th entry is the rank-1 recognition rate obtained with the

images from fi as gallery and fj as probes. F denotes 100 percent.

Probe f08 f09 f11 f12 f13 f14 f15 f16 f17 f20 f21 f22 Avg Avg Avg
[145] [4]

Gallery
f08 - F F 99 93 91 79 72 44 F 96 85 87 89 92
f09 F - F F 99 97 91 90 75 F 99 93 95 93 97
f11 F F - F F 97 88 78 57 F F 93 92 92 95
f12 99 99 F - F F 96 96 87 F F 97 98 96 98
f13 99 99 F F - F 99 99 90 99 F F 99 98 F
f14 97 99 F F F - 99 97 90 F F F 98 99 99
f15 84 94 88 F F F - F 99 93 F F 96 96 97
f16 76 97 79 99 F 99 99 - F 75 99 F 93 91 94
f17 53 82 56 90 96 94 94 F - 54 96 97 83 80 87
f20 F F F F F F 94 78 57 - F 99 93 91 95
f21 99 99 F F F F 93 94 85 F - 97 97 96 99
f22 90 99 97 F F F F 97 91 97 F - 97 98 98
Avg 91 97 93 99 99 98 94 91 80 93 99 96 94 - -

Avg [145] 88 94 93 97 99 99 96 89 75 93 98 98 - 93 -
Avg [4] 90 97 94 99 99 99 98 93 87 95 99 99 - - 96

extended to realistic multiple illumination scenarios (Section 3.4.3).

3.4.3 Albedo Estimation in Multi-source Scenario

Our analysis so far assumes that the image is illuminated by a single light source.

However, the assumption does not hold in many realistic scenarios. One of the

main challenges in handling multiple light sources is the absence of a priori knowl-

edge of the number and placement of the sources. To handle this, we use the result

established by Lee et al. [70] that an image of an arbitrarily illuminated object

can be approximated by a linear combination of the images of the same object in

the same pose, illuminated by nine different light sources placed at pre-selected

positions. Using this approximation, the image formation equation becomes

I =

9
∑

k=1

γkIk where, Ik = ρ max (n · sk, 0) (3.30)
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{s1, s2, . . . , s9} are the pre-specified illumination directions. The following nine

illumination directions [70] are used

φ = {0, 49,−68, 73, 77,−84,−84, 82,−50}o

θ = {0, 17, 0,−18, 37, 47,−47,−56,−84}o (3.31)

Since the source directions are pre-specified, the only unknown to estimate the

illumination conditions is γ. Given an image I of an object and domain-dependent

average surface normals n(0), γ is estimated in a least squares sense as follows

γ̂ = W †I (3.32)

where I is the N dimensional vectorized image and W N×9 is given by

W =















max(n
(0)
1 · s1, 0) . . . max(n

(0)
1 · s9, 0)

max(n
(0)
2 · s1, 0) . . . max(n

(0)
2 · s9, 0)

...
. . .

...

max(n
(0)
N · s1, 0) . . . max(n

(0)
N · s9, 0)















The coefficients γ̂ can be used to obtain an initial value of the albedo for each

pixel as follows

ρ
(0)
i,j =

Ii,j
∑9

k=1 γ̂k max(n
(0)
i,j · sk, 0)

(3.33)

Robust albedo estimate is obtained by formulating an image estimation problem

as follows

ρ
(0)
i,j = ρi,j + wi,j (3.34)

where the signal dependent noise wi,j is given by

wi,j =

∑9
k=1

[

(γk − γ̂k)n · sk + γ̂k(n − n(0)) · sk

]

∑9
k=1 γ̂kn

(0) · sk

ρ
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Subscripts (i, j)′s and explicit max operator have been dropped in the above

expression for clarity. Similar to the analysis for the single light source case, the

NMNV model for the true albedo leads to the following LMMSE albedo estimate

ρ̂i,j = (1 − αi,j)E
(

ρi,j

)

+ αi,jρ
(0)
i,j where, αi,j =

σ2
i,j(ρ)

σ2
i,j(ρ) + σ2

i,j(w)
(3.35)

Assuming that the errors in estimation of γk’s are uncorrelated and have same

variance σ2(γ), the noise variance for each pixel is given by

σ2(w) =

∑9
k=1

[

σ2(γ)E[(n · sk)
2] + σ2(n)γ̂2

k

]

(
∑9

k=1 γ̂kn
(0) · sk)2

E(ρ2)

where, E[(n · sk)
2] = (n(0) · sk)

2 + σ2(γ)σ2(n)

(a) Input Image (b) ρ(0)

Single Source Algm

(c) ρ(0)

Mult. Source Algm

(d) True Albedo (e) Estimated Albedo (f) Estimated Albedo

Figure 3.15: Comparison between albedo maps obtained using single and multi-source

frameworks. Average per-pixel errors are in the ratio (b):(e):(c):(f)::30:19:22:12. The

input image is illuminated by three light sources.

Figure 3.15 shows the albedo maps obtained using the proposed approach for

a face image illuminated by three light sources. Average facial surface normals

are used as n(0) in this experiment. The proposed multi-source approach provides

the best result and has less shadowy effects than the others. The single source

estimation framework also improves the corresponding initial albedo ρ(0), but
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Table 3.2: Accuracy of albedo estimates using single and multiple source frameworks.

Entries show average per-pixel albedo errors.

Single Multiple Error
source source reduction

framework framework

ρ(0) 35 22 37%
ρ̂ 23 14 39%

Error
reduction 34% 36% 60%

the result is not as good as the one obtained using the multiple source algorithm.

Table 3.2 compares the accuracy of various albedo estimates obtained from images

illuminated by multiple light sources. As shown, the single light source assumption

results in larger errors. Overall improvement in the albedo estimate obtained by

the multiple light framework as compared to the initial albedo map obtained under

the single light source assumption is about 60%. One thousand images were used

to generate the statistics.

3.4.4 Face Recognition : Multiple Light Sources

In this section, we evaluate the usefulness of the proposed multi-source framework

over the single source one when the images are illuminated by several light sources.

In the absence of a controlled multi-light source dataset, we generate multi-light

source scenarios using the PIE dataset by combining multiple images for each

subject. Randomly chosen two, three or four images under different illumination

conditions are combined to form twelve different multi-light source scenarios. For

the recognition experiment, one image per subject is randomly selected from the

twelve illumination conditions for gallery and another one for the probe set. The

experiment is repeated 100 times for different random combinations of gallery and

probe sets. Figure 3.16 shows Cumulative Match Characteristic (CMC) curves
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comparing the recognition performance obtained using the albedo maps estimated

by the single source framework with that of multiple source framework. Error

bars reflect the variations in recognition performance for the different trials. As

expected, the multi-source framework significantly outperforms the single-source

one. As before, the initial albedo maps ρ(0) for both single and multiple source

frameworks perform poorly in this experiment.
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Figure 3.16: Recognition performance on multiply-illuminated PIE dataset.

3.4.5 Shape Recovery

As far as the problem of shape recovery is concerned, the main contribution of

this work is in generating the albedo-free transformed image with known illumi-

nant direction. Therefore, we first evaluate the robustness of the transformed

images generated using the proposed approach. Unlike albedo estimates, the

transformed images are not illumination-invariant. In fact, a transformed image

represents the cosine of the angle between the true unknown surface normal and

the known estimate of light source direction, which depends on the illumination

in the input image (Figure 3.10 (right)). Therefore, unlike albedo, one cannot

directly perform a recognition experiment to evaluate the accuracy of the trans-

formed images. Instead, we make use of the statistical facial shape information to
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Table 3.3: Recognition results on the PIE dataset [115] using the transformed images.

fi denotes images with ith flash ON as labeled in PIE. Each (i, j)th entry is the rank-1

recognition rate obtained with the images from fi as gallery and fj as probes. F denotes

100 percent.

Probe f08 f09 f11 f12 f13 f14 f15 f16 f17 f20 f21 f22 Avg

Gallery
f08 - 99 99 94 88 74 53 47 26 97 85 57 74
f09 94 - 94 99 99 94 71 66 46 93 99 79 85
f11 99 99 - F 99 96 74 57 46 F F 87 87
f12 91 99 F - F F 96 87 71 F F 99 95
f13 87 93 97 F - F 99 94 90 96 99 F 96
f14 71 96 97 F F - F 99 94 F F F 96
f15 60 76 75 96 F F - F F 82 97 F 90
f16 41 69 54 90 96 F F - F 62 93 F 82
f17 28 44 47 84 93 97 F F - 59 88 99 76
f20 94 96 F F 97 96 85 60 57 - F 91 89
f21 85 99 F F F F 97 93 79 F - 99 96
f22 59 84 85 99 F F F F F 96 99 - 93

Avg 74 87 86 97 97 96 89 82 74 90 96 92 88

derive illumination-insensitive signatures from transformed images. In essence, we

force a rank constraint on the unknown shape by writing the transformed image

in terms of the basis surface normals as follows

H i,j = max
(

ni,j · s(0), 0
)

=

K
∑

k=1

ak max
(

nk
i,j · s(0), 0

)

(3.36)

where nk is the kth basis surface normal and ak is the corresponding combining

coefficient. The coefficient vector a being independent of s(0), can be used to

perform recognition across illumination variations.

Table 3.3 shows the recognition results obtained on the PIE dataset using the

coefficient vectors a obtained from the corresponding transformed images. The

basis normal vectors are derived from the 3D facial data [20] and the coefficient

vectors are computed using a closed-form linear least square approach. The overall
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average recognition rate achieved in this experiment is 88%. This signifies the

efficacy of the proposed approach in generating robust transformed images.

Figure 3.17: Comparison with the ground truth. (a) Input image (FRGC dataset), (b)

Estimated albedo, (c) Recovered shape, (d) True shape.

We now demonstrate the usefulness of the transformed images for the task

of shape recovery. Figure 3.17 shows a comparison of the recovered shapes with

the 3D shapes of the corresponding subjects from the FRGC dataset [95]. The

proposed approach seems to recover various person-specific facial features around

lips, eyes, etc. Note that the 3D shapes available in the database are captured on

a different day than the input intensity images, leading to slightly different facial

expressions in the estimated and true shapes.

We perform another experiment to quantitatively evaluate the shape estimates

obtained using the transformed images. We compare the shape estimates with

the ones obtained using the approach in [130] that directly uses intensity images

as input. One thousand synthetically generated images (using Vetter’s 3D face

data) are used to determine the angular error in the estimated normal maps for

comparison. We observe an improvement of over 15% using our approach. We also

test the efficacy of the approach on images downloaded from the web with little

control over the illumination and other imaging conditions. Figure 3.18 shows the

albedo and shape estimates obtained along with a few novel views synthesized
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under novel illumination conditions.

Figure 3.18: Novel view synthesis in the presence of novel illumination conditions. (a)

Input image, (b) Estimated albedo, (c) Recovered shape, (d)-(j) Synthesized views under

novel illumination conditions.

3.4.6 Application to general objects

All the experiments are conducted on faces but the approach is applicable to

any domain in general where the required error statistics are available. In the

absence of ensemble information, the required means and variances can possibly

be approximated by local spatial statistics. Under such an approximation, the

LMMSE albedo estimate is given by [58]

ρ̂i,j = ρ̄i,j + αi,j

(

ρ
(0)
i,j − ρ̄

(0)
i,j

)

where, αi,j =
v2

i,j(ρ)

v2
i,j(ρ) + σ2

i,j(w)
(3.37)

where ρ̄i,j and ρ̄
(0)
i,j are the local spatial means of ρi,j and ρ

(0)
i,j respectively, and

v2
i,j(ρ) is the local spatial variance of ρi,j. The local statistics of ρi,j can be
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calculated from that of the degraded signal using the following relations

ρ̄i,j = ρ̄
(0)
i,j (3.38)

v2
i,j(ρ) =

v2
i,j(ρ

(0)) −
(

ρ̄
(0)
i,j

)2
Ai,j

1 + Ai,j

, where Ai,j =
σ2

i,j(n) + σ2(s)

(n
(0)
i,j · s(0))

2 (3.39)

Though not too accurate, these approximations are probably the best one can

do in the absence of any ensemble information. Figure 3.19 (middle row) shows the

albedo estimates obtained this way for a few images (top row) from the Amsterdam

Library of Object Images [43]. As desired, the illumination effects present in the

input images are less visible in the albedo maps. This is further highlighted in

the shadow maps shown in Figure 3.19 (bottom row). In these examples, the

surface normals required to obtain the initial albedo map are assigned manually.

For example, the cylindrical shape is used for the mug and the coke can while

the cuboidal shape is used for the boxes shown in the figure. Figure 3.20 shows

some more examples of the albedo estimates obtained along with a few zoomed-in

regions to signify the usefulness of the approach for general objects.

3.5 Summary

We proposed an image estimation formulation for the task of albedo estimation

from a single image. Errors in illumination and surface normal information lead

to erroneous albedo maps. The proposed estimation framework effectively utilizes

the statistics of error in illumination and normal information for robust estimation

of albedo. Extensive experiments are performed to show the usefulness of the

estimated albedo maps as illumination-insensitive signatures. The albedo maps

are also used to obtain albedo-free images for shape recovery.
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Figure 3.19: Top: Images from the Amsterdam Library of Object Images [43]; Middle:

Estimated albedo; Bottom: Shadow maps (albedo-free images of the corresponding

input images).

Figure 3.20: Top row: Original images of a few objects; Bottom row: Estimated albedo

maps obtained using local statistics. The zoomed in regions are shown to highlight the

difference between the input images and the corresponding albedo estimates.
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Pose-Robust Albedo Estimation from a Single

Image

In Chapter 3, we proposed a model based approach based on the image formation

model for robust estimation of albedo from a single face image. The approach

uses a stochastic filtering framework for handling the errors due to inaccuracies

in the surface normals and light source direction to estimate albedo across wide

range of challenging illumination conditions. One limitation of the approach is

that it requires accurate knowledge of the pose of the face that may not typically

be available. To be able to recognize faces in real and unconstrained scenarios

which is the ultimate goal, it may not be realistic to assume either frontal pose

or an accurate knowledge of the pose since facial pose estimation is by itself a

challenging research problem [87].

In this chapter, we build upon the formulation in the previous chapter to ac-

count for inaccurate pose information in addition to inaccuracies in light source

and surface normal information. The proposed approach is an image estimation

framework that utilizes class-specific statistics of the imaged object to iteratively

improve pose and albedo estimates. In each iteration, given the current albedo

estimate, 3D facial pose is estimated by solving a linear Least-Squares (LS) prob-

lem which is used to further improve the albedo estimate, and so on. The input

to the algorithm is a face image in which face and eyes are automatically located

using OpenCV’s Haar-based detectors.

Extensive experiments are performed to evaluate the usefulness of the pro-

posed approach. Experimental results on synthetic data in varying poses are

provided to show the accuracy of the albedo and 3D pose estimates for different
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unknown poses. To show the usefulness of the estimated albedo maps as illumina-

tion insensitive measures, the estimated albedo maps are used for the task of face

recognition. We also provide comparison with ground truth for the estimated 3D

facial poses. Experiments on unconstrained real face images from the net further

highlight the usefulness of the approach.

The rest of the chapter is organized as follows. The proposed albedo and pose

estimation framework is described in Section 4.1. The details of the proposed

algorithm are given in Section 4.2. The results of experimental evaluation are

presented in Section 4.3. The chapter concludes with a summary and discussion.

Notation: Throughout the chapter, ρ, n, s, Θ denote the true unknown

albedo, surface normals and illuminant direction and pose of the object while ρ̄,

n̄, s̄, Θ̄ represent the initial estimates of the corresponding variables.

4.1 Albedo Estimation from a Single Image

For the class of Lambertian objects, the diffused component of the surface reflec-

tion is modeled using the Lambert’s Cosine Law

I = ρ max(nT s, 0) (4.1)

where I is the pixel intensity, s is the light source direction, ρ is the surface albedo

and n is the surface normal of the corresponding point. The max function in the

relation accounts for the formation of attached shadows.

Let n̄i,j and s̄ be some initial estimate of the surface normal and illuminant

direction respectively. Let Θ̄ represents initial knowledge of the pose. The Lam-

bertian assumption imposes the following constraint on the initial albedo ρ̄ ob-

tained at pixel (i, j)

ρ̄i,j =
Ii,j

n̄Θ̄
i,j · s̄

(4.2)

where · is the standard dot product operator. In most real applications, the input
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is only a single intensity image and so we do not have accurate estimates of the

(a) pose, (b) surface normals and the (c) light source direction. Inaccuracies in

these initial estimates lead to considerable errors in the initial albedo estimate

(Figure 4.1).

Figure 4.1: Illustration of errors in albedo due to errors in surface normals, illuminant

direction and pose. (a) Input Image; (b) True albedo; (c) Albedo estimate using average

facial surface normal, estimated illuminant direction and true pose; (d) Error map for

(c); (e) Albedo estimate using true values of surface normal and illuminant direction

and assuming frontal pose; (f) Error map for (e) due to inaccuracies in pose information.

As shown in the figure, even if surface normal and illuminant directions are

accurately known, error in pose information can result in unacceptable errors in

the albedo map. In Chapter 3, an image estimation formulation was proposed to

account for the inaccuracies in the surface normals and the light source direction,

but knowledge of the pose was assumed to be known a priori. In this work, we

extend the framework to address the more general scenario where the pose is

unknown. As a byproduct of the formulation, we also get an estimate of the 3D

pose which is itself a challenging problem and an active area of research [87].

4.1.1 Image Estimation Formulation

Here we formulate the image estimation framework to obtain a robust albedo

estimate using the initial albedo map which is erroneous due to inaccuracies in

pose, surface normal and light source estimates. The expression in (4.2) can be
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4.2 Albedo Estimate

rewritten as follows

ρ̄i,j =
Ii,j

n̄Θ̄
i,j · s̄

= ρi,j

nΘ
i,j · s

n̄Θ̄
i,j · s̄

(4.3)

where ρ, n and s are the true unknown albedo, normal and illuminant direction

respectively and Θ denotes the true unknown pose. ρ̄i,j can further be expressed

as follows

ρ̄i,j = ρi,j

n̄Θ
i,j · s̄

n̄Θ̄
i,j · s̄

+
nΘ

i,j · s − n̄Θ
i,j · s̄

n̄Θ̄
i,j · s̄

ρi,j (4.4)

We substitute

wi,j =
nΘ

i,j · s − n̄Θ
i,j · s̄

n̄Θ̄
i,j · s̄

ρi,j , hi,j =
n̄Θ

i,j · s̄
n̄Θ̄

i,j · s̄
(4.5)

So equation (4.4) simplifies to

ρ̄i,j = ρi,jhi,j + wi,j (4.6)

This can be identified with the standard image estimation formulation [7]. Here

ρ is the original signal (true albedo), the rough albedo estimate ρ̄ is the degraded

signal and w is the signal dependent additive noise. When the head pose is known

accurately, i.e. if Θ̄ = Θ, hi,j = 1. So this is a generalization of the formulation

proposed in Chapter 3 for the case of unknown head pose.

4.2 Albedo Estimate

Several methods have been proposed in literature to solve image estimation equa-

tions of the form (4.6). Here we compute the Linear Minimum Mean Squared

Error (LMMSE) albedo estimate which is given by [105]

ρest = E(ρ) + Cρρ̄C
−1
ρ̄ (ρ̄ − E(ρ̄)) (4.7)
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Here Cρρ̄ is the cross-covariance matrix of ρ and ρ̄. E(ρ̄) and Cρ̄ are the ensemble

mean and covariance matrix of ρ̄ respectively. The LMMSE filter requires the

second order statistics of the signal and noise.

From (4.5), the expression for the signal-dependent noise wi,j can be rewritten

as follows

wi,j =
(nΘ

i,j − n̄Θ
i,j) · s + n̄Θ

i,j · (s − s̄)

n̄Θ̄
i,j · s̄

ρi,j (4.8)

Assuming the errors in illumination and surface normals to be unbiased, the noise

w is zero-mean. Under this assumption, the expressions for Cρρ̄ and Cρ̄ simplify

(details in the Appendix) to

Cρρ̄ = CρH
T and Cρ̄ = HCρH

T + Cw (4.9)

where H is the matrix containing h’s for the entire image as its diagonal entries

and Cw is the covariance of the noise term.

Here, we assume a Non-stationary Mean Non-stationary Variance (NMNV)

model for the original signal, which has been shown to be a reasonable assumption

for many applications [58]. Under this model, the original signal is characterized

by a non-stationary mean and a diagonal covariance matrix with non-stationary

variance. Under the NMNV assumption, the LMMSE filtered output (4.7) sim-

plifies (details in Appendix) to the following scalar (point) processor of the form

ρest
i,j = E(ρi,j) + αi,j

(

ρ̄i,j − E(ρ̄i,j)
)

where, αi,j =
σ2

i,j(ρ)hi,j

σ2
i,j(ρ)h2

i,j + σ2
i,j(w)

(4.10)

where σ2
i,j(ρ) and σ2

i,j(w) are the non-stationary signal and noise variances respec-

tively. Since noise w is zero-mean, E(ρ̄i,j) = hi,jE(ρi,j). Therefore, (4.10) can be

written as

ρest
i,j = (1 − hi,jαi,j)E

(

ρi,j

)

+ αi,jρ̄i,j (4.11)
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4.2 Albedo Estimate

So the LMMSE albedo estimate is the weighted sum of the ensemble mean E(ρ)

and the observation ρ̄, where the weight depends on the ratio of signal variance

to the noise variance. Now we derive the different entities in the expression for

the albedo estimate.

4.2.1 Expression for the Noise Variance

From (4.8), assuming the errors in surface normal (ni,j − n̄i,j) to be uncorrelated

in the x, y and z directions and their variances are same, the expression for the

noise variance can be shown to be (details in Appendix)

σ2
i,j(w) =

σ2
i,j(n) + σ2(s)

(n̄Θ̄
i,j · s̄)

2 E
(

ρ2
i,j

)

(4.12)

Here σ2
i,j(n) and σ2(s) are the error variances in each direction of the surface

normal and light source direction respectively.

4.2.2 Expression for hi,j

The expression for hi,j is given by

hi,j =
n̄Θ

i,j · s̄
n̄Θ̄

i,j · s̄
= 1 +

(n̄Θ
i,j − n̄Θ̄

i,j) · s̄
n̄Θ̄

i,j · s̄
(4.13)

The term hi,j depends on the difference of the surface normal corresponding to

the pixel location (i, j) between the initial pose information and the true pose.

The term is present due to the fact that an incorrect pose Θ̄ is used to compute

the initial albedo that is different from the true unknown pose Θ.

Let Figure 4.2 (a) represents the initial pose Θ̄ and Figure 4.2 (b) represents

the true pose Θ. Let us consider the surface points corresponding to the same

pixel location (i, j) for the two poses. Let P1 be the surface point of the face in

the initial pose which corresponds to pixel (i, j) (which is P ′
1 in the true pose)
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and P ′
2 be the surface point in the true pose for the same pixel (i, j) (which is P2

in the initial pose). P1 and P ′
2 which correspond to the same pixel location are

physically different surface points since the initial pose is different from the true

pose. Let us assume that the initial pose and the true pose are related by (Ω, T ).

Here Ω = [Ωx, Ωy, Ωz], denotes the rotation about the centroid of the face and

T = [Tx, Ty, Tz] denotes the translation of the centroid.

Figure 4.2: Illustration to explain the relation between surface normals of two different

surface points corresponding to the same pixel location. (a) Initial pose; (b) True pose.

Here P1 and P ′
2 correspond to the same pixel location (i, j), though they are physically

different points.

In this case, the difference between the normals can be expressed as

∆n = nP ′

2
− nP1 = JP1∆ + ∆nP2,P ′

2
(4.14)

Here, ∆ = P2−P1 is the difference in the co-ordinates of P2 and P1 and JP1 is the

Jacobian matrix of the surface normal nP1 at surface point P1. The term ∆nP2,P ′

2

denotes the difference in surface normals between nP2 and nP ′

2
. The first term

encodes that P2 is a different surface point from P1 and the second term takes

care of the fact that the surface normal nP ′

2
is a rotated version of the surface

normal nP2.

54



4.2 Albedo Estimate

In [136], Xu and Roy-Chowdhury use a similar equation to relate different

frames of a video sequence when the object under consideration was undergoing

rotation and translation. They showed that under small motion assumption, the

difference in normal can be expressed as a linear function of the object motion

variables, i.e., the equation (4.14) can be expressed as

∆ni,j = Ai,jΩ + Bi,jT (4.15)

where the variables A and B can be computed from the average surface normal

at the initial pose. The exact expressions for these variables are given in the

Appendix. Figure 4.3 illustrates how well the linear expression for ∆ni,j approx-

imates the true difference n̄Θ
i,j − n̄Θ̄

i,j for average 3D face model. The figure shows

the average angular errors due to the linear approximation of ∆ni,j for different

values of pitch and yaw. We see that for small rotations, the error is quite small

which means that the approximation is quite good. Using (4.15), the expression

for hi,j can be written in terms of rotation and translation (Ω, T ) as

hi,j = 1 +
(Ai,jΩ + Bi,jT ) · s̄

n̄Θ̄
i,j · s̄

(4.16)

4.2.3 Algorithm for Albedo and Pose Estimation

In this section, we describe the proposed algorithm for estimating the unknown

albedo map and the pose using the described formulation. From (4.10) and (4.12),

we can express the LMMSE albedo estimate as a function of pose and class-based

statistics as follows

ρest = f(S, Θ) (4.17)

where S represents the various statistics like E
(

ρi,j

)

, σ2
i,j(ρ) and σ2

i,j(w) and Θ

represents the pose which is given by rotation Ω and translation T . The statistics
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Figure 4.3: Average angular errors in surface normals for average 3D face model due to

the linear approximation of n̄Θ
i,j − n̄Θ̄

i,j (4.15).

implicitly depends on the facial pose. If the pose is known, the LMMSE albedo

estimate can be computed using the above relation and visa versa. Based on this,

we propose an iterative algorithm to alternately estimate albedo and pose.

The input to the algorithm is a single intensity image and some initial estimates

of surface normals and pose. In all our experiments, we use an average 3D face

model as the initial estimate of the surface normals. Initial pose is assumed to be

frontal in all our experiments. Given the image, OpenCV Haar-based detectors

are used to obtain face and eye locations that serve to provide initial localization

of the face region. Using the average shape and initial pose information, we obtain

an initial estimate of illuminant direction as follows [22]

s̄ =

(

∑

i,j

n̄Θ̄
i,jn̄

Θ̄
i,j

T

)−1
∑

i,j

I i,jn̄
Θ̄
i,j (4.18)

where n̄Θ̄
i,j is the average facial surface normal at initial pose Θ̄. The required

class statistics S is computed based on the initial pose information using Vetter’s

3D face data [20]. The rest of the algorithm proceeds as follows
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4.2 Albedo Estimate

1. Using the current estimate of the pose, the LMMSE albedo estimate ρest is

computed using (4.11).

2. If the current pose estimate is very different from the true unknown pose, the

current albedo estimate can be quite erroneous. So we perform a regulariza-

tion step where the current albedo estimate is projected onto a statistical

albedo model to ensure that the resulting albedo map lies within the space of

allowable facial albedo maps. In our implementation, we use standard Prin-

cipal Component Analysis (PCA)-based linear statistical model to preform

this regularization. Let the regularized albedo map be denoted by ρreg.

To avoid computation of the statistical model for every intermediate pose,

we bring the albedo map to the frontal pose before regularization. The

albedo map at the frontal pose ρfrontal is related to the albedo map at the

current pose ρest as follows

ρfrontal
i,j = ρest

i,j − ∆ρi,j (4.19)

From Figure 4.2, the albedo changes from P1 to P2, but is the same for P2

and P ′
2. Therefore, ∆ρ = ρP ′

2
− ρP1

= ∆ρP1∆ where ∆ρP1 is the gradient

of ρ at point P1. ∆ρ can further be approximated as [136]

∆ρi,j = Ci,jΩ + Di,jT (4.20)

where the variables C and D are computed from the class statistics (details

are in Appendix).

3. The regularized albedo map is further used to compute a revised estimate

of the pose. From (4.17), we can express the pose in terms of the albedo
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Chapter 4. Pose-Robust Albedo Estimation from a Single Image

estimate as follows

(

X1 X2

)





Ω

T



 = (ρ̄ − ρreg)n̄Θ̄ · s̄ (4.21)

where X1 = ρregs̄T A − C and X2 = ρregs̄T B − D. The subscript i, j has

been omitted from (4.21) for clarity. (4.21) is used to obtain the new pose

estimate using the LS method.

4. if the albedo and pose estimates between two successive iterations are below

a pre-specified threshold, terminate the algorithm and output the current

albedo and pose. Otherwise, using the updated pose and illuminant esti-

mates, repeat the iteration.

As we have seen from Figure 4.3, the linear approximation for ∆ni,j in (4.15)

works well for small difference between the initial pose and the true pose which

imposes a limit on the pose difference which the above algorithm can handle.

Experimentally, we have seen that the above algorithm can handle rotation about

5−6 degrees. To generalize the method to larger pose difference, we de-rotate and

de-translate the input image by the estimated rotation and translation after every

iteration. Then we use the new de-rotated and de-translated image as input to

the next iteration. Figure 4.4 shows the different steps of the proposed algorithm.

As shown, we obtain pose and albedo (in frontal pose) estimates as the output

of the algorithm. The number of iterations required depends on the pose but we

observed that typically it takes around 5-6 iterations for a pose error of around 20◦.

Our MATLAB implementation of the algorithm converges in around 1.5 minutes

on a Pentium M 1.60 GHz laptop out of which over 92% of the time is used in

warping the class statistics (which can be made a lot faster using a GPU-based

parallel implementaion).

Figure 4.5 shows the albedo map and 3D pose obtained using the proposed

algorithm for a face image generated using 3D facial data [20]. The derotated
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4.2 Albedo Estimate

Figure 4.4: Flowchart illustrating the different steps of the proposed algorithm.
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Figure 4.5: (a) Input image; (b) Initial rough albedo estimate using frontal pose; (c)

Estimated 3D pose; (d) Estimated albedo map; (e) True albedo; (f) The derotated

images after every iteration.

images after every iteration are shown in the second row. The albedo estimate at

the true pose is obtained using the pose estimate and the estimated albedo at the

frontal pose.

To further illustrate the working of the algorithm, we present the error surface

along with the path traversed by the proposed iterative algorithm (Figure 4.6).

The error surface is generated by computing average per-pixel albedo error for

albedo estimates obtained for different pose hypotheses. The error is minimum

at the true pose of 20 degrees yaw. The algorithm starts with the assumption of

frontal pose and converges to a pose close to the true pose in 5 iterations (red line

in the plot).

Discussion: We now analyze the reason for the proposed algorithm to work

reliably for pose errors over 30◦ even though the linear approximation for ∆ni,j

in (4.15) seems to be accurate only for much smaller angles. Note that the error

plot in Figure 4.3 shows the errors averaged over the entire face but we observe

that most of these errors come from the nose region. The linear approximation is

fairly accurate for angles as large as 30◦ for face points that are not close to the
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Figure 4.6: Visualization of the error surface for a synthetic image. (Left) Average

per-pixel error in the albedo map for different poses. The path taken by our algorithm

is shown in red. (Right) Top view of the error surface.

nose making the proposed algorithm capable to deal with such large pose errors.

4.3 Experimental Evaluation

4.3.1 Experiment on synthetically generated data

Table 4.1: Average accuracy in the pose estimates (in deg) for synthetic data under

different illumination conditions and poses. The results are averaged over 1000 images.

The initial pose is always taken to be frontal.
Mean and std 5◦ 10◦ 15◦ 20◦ 25◦ 30◦

Yaw
Mean 5.9 10.3 15.2 20.1 24.3 28.8
Std 1.05 1.3 1.3 1.6 1.5 1.6

Pitch
Mean 5.4 10.3 14.9 20.1 24.9 29.2
Std 1.3 1.5 1.9 1.6 1.6 2.1

Roll
Mean 4.7 9.7 14.5 19.5 24.1 28.6
Std 1.3 1.5 1.6 1.5 1.5 1.4

For comparison with the ground truth, we first evaluate the proposed approach

for images synthetically generated form 3D facial data [20]. Table 4.1 and Table 4.2

show the average accuracy in the pose and albedo estimates obtained for 1000

images generated under different illumination conditions and poses. For all the
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images, the initial pose was assumed to be frontal, so the table shows the results

of the algorithm for increasing errors in the initial pose. The albedo estimates

obtained are significantly more accurate (around 40%) compared to the initial

noisy maps obtained assuming frontal pose.

Table 4.2: Average accuracy in the albedo estimates for the experiment described in

Table 4.1. The entries in the table represent the average per-pixel errors in albedo

estimates.
5◦ 10◦ 15◦ 20◦ 25◦ 30◦

Yaw 14.8 14.9 14.4 14.9 14.9 15.1
Pitch 14.3 14.4 15.2 15.4 15.9 16.1
Roll 14.7 14.8 14.8 15.2 15.3 15.9

4.3.2 Recognition across illumination and pose

Figure 4.7 shows the estimated frontal albedo maps for several images under differ-

ent illumination conditions and poses for one subject from the PIE dataset [115].

As desired, the albedo maps look quite similar to each other with much of the

Figure 4.7: Albedo estimates obtained for several images of the same subject from the

PIE dataset [115].

illumination and viewpoint differences removed. We further use the estimated

albedo maps as illumination and pose insensitive signatures in a face recognition

experiment on the PIE dataset that contains face images of 68 subjects taken

under several different illumination conditions and pose. The estimated albedo
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maps are then projected onto a albedo PCA space (generated from FRGC train-

ing data) to compute similarity across gallery and probe images. Here the gallery

images are in frontal pose and frontal illumination f12 and the probe images are

in side pose and 21 different illumination conditions. In this experiment, each

gallery and probe set contains just one image per subject. Table 4.3 shows the

rank-1 recognition results obtained. We see that the proposed algorithm compares

favorably with the state-of-the-art [103] [139].

Table 4.3: Recognition results on the PIE dataset [115]. The recognition rates of [103]

[139] are included for comparison.

Illumination source from PIE

f02 f03 f04 f05 f06 f07 f08 f09 f10 f11 f12

[103] 60 78 83 91 89 92 94 97 89 97 98
[139] 81 88 91 89 92 95 93 96 97 98 99
Our 68 84 91 96 97 97 97 97 99 97 99

Illumination source from PIE

f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 Avg
[103] 97 98 97 94 89 85 86 97 98 97 90.8
[139] 93 94 93 91 92 88 90 94 96 95 92.6
Our 97 97 97 93 90 96 97 97 96 97 94.2

4.3.3 Head pose estimation and comparison with ground truth

Figure 4.8 shows the results of head pose estimation using the proposed algorithm

on a set of images from the BU data [60]. The sequence has 200 frames out of

which we considered every alternate frame. For every frame, we started with the

frontal pose as the initial pose. The first row in Figure 4.8 shows some of the

frames from the sequence and the second row shows the comparison of the pose

estimates obtained against the ground truth provided with the dataset. As can

be seen, the proposed estimates are quite close to the ground truth.

We also use the proposed algorithm to estimate albedo and pose on images
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Figure 4.8: Comparison of the pose estimation results on the BU dataset [60] with the

provided ground truth.

downloaded from the web with little control over the imaging conditions. Fig-

ure 4.9 shows the albedo and pose estimates obtained.

4.4 Summary and Discussion

In this chapter, we have proposed an approach for simultaneous estimation of

albedo and 3D head pose from a single image. In all our experiments, we used

OpenCV’s Haar-based detectors to automatically detect faces and eyes for initial

localization. Compared to most state-of-the-art approaches [104], the proposed

approach does not require manually marked landmarks and is completely auto-

matic. In addition, the method does not impose any linear statistical constraint

on the unknown albedo and the statistical albedo model is used only for regular-

ization. Currently, we do not estimate 3D shape of the input face image that will

be part of our future research. The proposed algorithm works well for a wide range

of poses (around 30◦ on either side for a total range of around 60◦). Starting with

a different canonical pose, the method can easily be extended for more extreme
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Figure 4.9: Row 1: A few images downloaded form the web; Row 2: Estimated 3D head

pose; Row 3: Estimated albedo map.

poses. Multiple illumination sources can easily be incorporated in the proposed

formulation as in the previous chapter.

Appendix

Expression for the various terms: Assuming P1 is the 3D face point corre-

sponding to the pixel i, j in the initial pose, the expressions for A and B in (4.15)

are given by

A = JP1MP̂1 − n̂P1; B = −JP1M (4.22)

The subscript i, j has been omitted for clarity. Here,

M = I − 1

nT
P1

u
unT

P1

where I is the identity matrix and u is the unit vector in the direction joining

the optical center of the camera to the surface point P1 corresponding to the pixel
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(i, j). The skew symmetric matrix of a vector

X =









x1

x2

x3









; is X̂ =









0 −x3 x2

x3 0 −x1

−x2 x1 0









The expressions for C and D in (4.20) are given by

C = ∆ρP1MP̂1; D = ∆ρP1M

The subscript i, j has been omitted for clarity. For derivations of these expressions,

readers are referred to [136].

Derivation of LMMSE albedo estimate: Here we compute the Linear Min-

imum Mean Squared Error (LMMSE) albedo estimate which is given by [105]

ρest = E(ρ) + Cρρ̄C
−1
ρ̄ (ρ̄ − E(ρ̄)) (4.23)

Here Cρρ̄ is the cross-covariance matrix of ρ and ρ̄. E(ρ̄) and Cρ̄ are the ensemble

mean and covariance matrix of ρ̄ respectively. The LMMSE filter requires the

second order statistics of the signal and noise.

The expression for the signal-dependent noise wi,j can be rewritten as follows

wi,j =
(nΘ

i,j − n̄Θ
i,j) · s + n̄Θ

i,j · (s − s̄)

n̄Θ̄
i,j · s̄

ρi,j (4.24)

Assuming the initial values of surface normal and light source direction to be

unbiased, both E(w) and E(w|ρ) are zero. Since noise w is zero-mean, E(ρ̄i,j) =

hi,jE(ρi,j).

So, Cρρ̄ can be written as

Cρρ̄ = E[(ρ − E(ρ))(ρ̄ − E(ρ̄))T ]

= CρH
T + E[(ρ − E(ρ))wT ] (4.25)
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Similarly, if Cw is the covariance of the noise term, Cρ̄ can be written as

Cρ̄ = E[(ρ̄ − E(ρ̄))(ρ̄ − E(ρ̄))T ]

= HCρH
T + Cw + HE[(ρ − E(ρ))wT ]

+ E[w(ρ − E(ρ))T ]HT (4.26)

Recalling that E(w) and E(w|ρ) are zero, E
(

(ρ−E(ρ))wT
)

= 0. This simplifies

(4.25) and (4.26) as follows

Cρρ̄ = CρH
T and Cρ̄ = HCρH

T + Cw (4.27)

where H is the matrix containing hi,j’s for the entire image as its diagonal entries

and Cw is the covariance of the noise term.

Here, we assume a Non-stationary Mean Non-stationary Variance (NMNV)

model for the original signal. Under the NMNV assumption, Cρ is a (non-

constant) diagonal matrix. As Cρ and H are both diagonal, Cρρ̄ is diagonal.

Since Cρ is diagonal, Cw and thus Cρ̄ are also diagonal. Therefore, the LMMSE

filtered output (4.23) simplifies to the following scalar (point) processor of the

form

ρest
i,j = E(ρi,j) + αi,j

(

ρ̄i,j − E(ρ̄i,j)
)

where, αi,j =
σ2

i,j(ρ)hi,j

σ2
i,j(ρ)h2

i,j + σ2
i,j(w)

(4.28)

where σ2
i,j(ρ) and σ2

i,j(w) are the non-stationary signal and noise variances respec-

tively. Since E(ρ̄i,j) = hi,jE(ρi,j), (4.28) can be written as

ρest
i,j = (1 − hi,jαi,j)E

(

ρi,j

)

+ αi,jρ̄i,j (4.29)
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So the LMMSE albedo estimate is the weighted sum of the ensemble mean E(ρ)

and the observation ρ̄, where the weight depends on the ratio of signal variance

to the noise variance.

Noise Variance: The expression for the signal-dependent noise wi,j is given by

wi,j =
(nΘ

i,j − n̄Θ
i,j) · s + n̄Θ

i,j · (s − s̄)

n̄Θ̄
i,j · s̄

ρi,j (4.30)

Assuming the errors in surface normal (ni,j−n̄i,j) and the light source direction

(s−s̄) to be uncorrelated in the x, y and z directions and their variances are same,

the expression for the noise variance can be shown to be

σ2
i,j(w) = σ2

i,j(w1) + σ2
i,j(w2) (4.31)

where,

σ2
i,j(w1) = σ2

i,j(n)

(

sx
2 + sy

2 + sz
2

(n̄Θ̄
i,j · s̄)

2

)

E
(

ρ2
i,j

)

(4.32)

and

σ2
i,j(w2) = σ2(s)

(

(

n̄Θ
x

)2
+
(

n̄Θ
y

)2
+
(

n̄Θ
z

)2

(n̄Θ̄
i,j · s̄)

2

)

E
(

ρ2
i,j

)

(4.33)

Here σ2
i,j(n) and σ2(s) are the error variances in each direction of the surface

normal and light source direction respectively. {sx, sy, sz} and {n̄Θ
x , n̄Θ

y , n̄Θ
z } are

the three components of the illuminant direction and initial surface normal re-

spectively. [sx, sy, sz] and [n̄Θ
x , n̄Θ

y , n̄Θ
z ] being unit vectors, the expression for the

noise variance can further be simplified as follows

σ2
i,j(w) =

σ2
i,j(n) + σ2(s)

(n̄Θ̄
i,j · s̄)

2 E
(

ρ2
i,j

)

(4.34)
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Face Recognition across Aging

Face recognition is one of the most successful applications of decades of research on

image analysis and understanding [144]. Research in this area has traditionally fo-

cused on analyzing and modeling changes in facial appearance due to variations in

illumination conditions, facial pose, expressions, etc. Other than these commonly

occurring variations, aging is another phenomenon that affects facial appearance

significantly. Though effects of aging on facial appearance have been studied for a

long time, it is only recently that efforts have been made to recognize faces across

age progression. Automatic matching of faces as people age is particularly useful

for tasks like passport/visa renewal where authorities need to verify if the old and

new photographs belong to the same person. Unlike other variates like illumi-

nation conditions and viewpoint, there is no simple geometric/statistical model

to analyze appearance changes due to aging. Changes in facial appearance due

to aging typically depend on quite a few factors like race, geographical location,

eating habits, stress level, etc., that makes the problem of matching faces across

aging extremely difficult.

Most existing works [59,23,135,126,63,64,100,108,117,40,101] on facial aging

focus primarily on modeling and simulating aging effects on human face and report

impressive simulation results. Given the infinite different ways in which a person

can age depending on his/her surroundings, habits, etc., it is difficult to predict

how a person will appear at a different age. Also, simulating face images at target

age assumes that both the base and target age are known or can be estimated

which by itself is a difficult problem. But in spite of this large variability, humans

are quite good at matching faces across age progression. This may mean that
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irrespective of the exact manner in which a person ages, there is a certain pattern

in the way facial appearance changes with age.

Here, we propose an alternate approach for matching age-separated faces by

analyzing whether the changes in shape and appearance can be attributed to aging

effects. Facial aging effects manifest in the form of wrinkles, skin texture variation

and facial shape change in addition to other intangibles. The relative effects of

these factors typically depend on the age being considered [80]. Shape variations

are more pronounced in children, while most facial aging effects in adults can be

attributed to 1) wrinkles, 2) skin texture variations, and 3) drift of facial features

due to subtle shape variation or sagging of underlying muscles.

First we show that if the two images belong to the same subject, the drift in

features seems to follow a coherent pattern which is usually not the case if the

images belong to different subjects. Unlike feature drift, textural variations cannot

be modeled directly from face images due to differences in illumination conditions

across images. To capture textural variations, we use ratio of albedo maps of

the input images. Given two images of the same person, such a ratio captures

the change in appearance due to wrinkles and other skin texture variations which

follows a coherent pattern. The ratio is characterized using local histograms of

LBP based features [92]. Using this LBP based histogram representation, we use

the following two approaches to perform verification: 1) train a Support Vector

Machine (SVM) to separate genuine and impostor image pairs, and 2) kernel

density estimation approach [31] to learn the probability density function (pdf) of

the aging functions. Illustrations and experimental evaluation show the efficacy

of such the proposed features for matching faces across age progression.

The rest of chapter is organized as follows: The following section discusses a

few related works from the literature. Section 5.2 gives the motivation for the

work using drifts in facial features. Details of textural analysis are described

in Section 5.3. Results of experiments performed to evaluate the efficacy of the

approach are shown in Section 5.4. The chapter concludes with a discussion.
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5.1 Related work

Facial aging has been an area of interest for decades [96, 97,81, 80], but it is only

recently that efforts have been made to address problems like age estimation, age

transformation, etc. from a computational point of view [59, 23, 135, 126, 63, 64,

100, 108, 117, 40, 101]. Burt and Perrett [23] investigate visual cues to age using

facial composites that blend facial shape and color from multiple faces. Kwon and

Lobo [59] classify input images as babies, young adults and senior adults based on

cranio-facial development and skin wrinkle analysis. Wu et al. [135] describe a skin

deformation model to simulate face wrinkles using an elastic process assembled

with visco and plastic units. Tiddeman et al. [126] present a wavelet-based method

for prototyping and transforming facial features to increase the perceived age of the

input images. Lanitis et al. [64] use PCA-based transformation models to explain

the effects of aging on facial appearance. The proposed statistical model is used

for tasks like 1) age estimation from new face images, 2) simulating aging effects,

and 3) face recognition across age variations. A similar PCA-based statistical face

transformation model is used in [63] to obtain a compact parametric representation

of an input face image for the task of automatic age estimation. Different classifiers

are designed and compared that predict age given the parametric description of

the input image.

In [100], Ramanathan and Chellappa study the effect of age progression on

facial similarity between a pair of images of the same individual. A Bayesian age

difference classifier is proposed to classify images based on age differences and per-

form face verification across age progression. In [101], they propose a craniofacial

growth model to characterize growth related facial shape variations in children.

This model makes use of anthropometric evidences to predict appearance across

years and to perform face recognition using the synthesized images. Geng et

al. [40] propose a subspace based approach for automatic age estimation. Given

a previously unseen image, its aging pattern is determined by projecting it onto a
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subspace obtained using training data consisting of several time-separated images

of individuals. Suo et al. [117] simulate aging effects using a dynamic Markov

process on a multi-layer AND-OR graph integrating the effects of global appear-

ance changes in hair style and shape, deformation and aging effects of different

facial components, and wrinkle appearance. In [108], Scandrett et al. propose

linear and piecewise models that rely on average developmental trends, to predict

aging effects on human faces. In a recent paper, Ling et al. [75] use gradient ori-

entation pyramid in a Support Vector Machine (SVM) based framework to verify

images across age progression.

Most existing works address the problem of face verification across age pro-

gression from a simulation point of view (other than [75]). Given the difficulty

of simulating effects of different factors that can affect the way a person ages, an

alternative is to analyze if the difference in two input images can be attributed

to aging. In contrast, we propose an approach to perform face verification across

age progression based on the coherency of textural variation in the input images.

5.2 Motivation from Feature drifts

Aging brings about a wide variety of changes in the appearance of human faces.

While for children, these changes are mainly manifested in the shape, textural

variations are more prominent in adults faces [80]. Though the overall shape does

not change significantly for adults, there is subtle drift in facial features due to

various factors like muscle sagging, weight gain or loss, etc. The features do not

drift independent of each other. Depending on the underlying shape and muscle

structure of the individual, there is some coherency among these drifts. Figure 5.1

illustrates such coherency in feature drifts for a few images from the FGnet aging

database [1]. The drift maps shown in Figure 5.1 are obtained directly using the

manually marked feature points available in the dataset. For images of different

subjects, due to different shape and muscle structure, the feature drifts computed
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this way may not be coherent (Figure 5.1). Now, we try to capture this coherency

in the facial feature drifts.

Figure 5.1: Drifts in facial features for a few age-separated face images from the FGnet

aging database. The drifts across images of same individuals appear coherent (top

two rows) while they are somewhat incoherent (third row) when the images belong to

different individuals. (Best viewed in color)

We define a measure of incoherency between two feature drifts as

Uij =
‖ ai − aj ‖

rij

(5.1)

Here ‖ ai − aj ‖ is the magnitude of the vector difference between the two fea-

ture drifts ai and aj while rij is the distance between the corresponding feature

locations. The drift incoherency is inversely proportional to the distance between

the two feature locations in consideration. This follows nicely from the fact that

neighboring drifts resulting from the sagging of the same underlying muscle will
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be coherent. In addition, this allows for far-off regions of the face with different

underlying muscles to drift relatively independent of each other, without adding

to the incoherency of the drift map. The combined potential energy of the drift

map characterized by K feature drifts is given by

Clocal =
K
∑

i=1

K
∑

j=i+1

Uij (5.2)

5.3 Textural variations with aging

In this section, we focus on the changes in facial appearance due to textural

variations. The surface normals, albedo and the intensity image are related by

an image formation model. We assume Lambertian reflectance model for the

facial surface. For such objects, the diffused component of the surface reflection

is modeled using the Lambert’s Cosine Law given by

I i,j = ρi,j max(nT
i,js, 0) (5.3)

where I i,j is the pixel intensity, s is the light source direction, ρi,j is the surface

albedo and ni,j is the surface normal of the corresponding surface point. Albedo is

an illumination-insensitive characteristic of a surface that represents the fraction

of light that a surface point reflects when it is illuminated. The max function

accounts for the formation of attached shadows. Taking logarithm on both sides

and rearranging the terms, we obtain

log(I i,j) = log(ρi,j) + log(nT
i,js) (5.4)

Here, we omit the explicit max operator by considering only non-zero pixels in the

input image. Due to the difference in illumination conditions across images, the

variation in texture cannot be analyzed using the input images directly. Instead,

one needs to model skin texture variation across aging using albedo maps derived
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from the input images. If the surface normal and illuminant direction are known,

one can obtain the albedo map easily from (5.4).

Similar to the feature drift analysis, given albedo maps corresponding to the

two input images, we need a way to identify if the change can be ascribed to aging

effects or not. Let us assume that albedo maps of an individual at different ages

are related as follows

ρ(t2) = f(ρ(t1)) (5.5)

where f denotes the aging function that maps albedo at base age t1 to the target

age t2. In reality, such an aging function can be very complicated depending

on innumerable factors like individual living conditions, stress-level, habits, etc.

that affect how skin texture varies with age. Learning such a function in its true

generality is not easy in practice. Here we model the variations in albedo due to

aging using a linear function as follows

ρi,j(t2) = f i,j(t2, t1) ∗ ρi,j(t1) (5.6)

In this form, the aging function depends only on the age difference between the two

images. Such a model has also been suggested by Ling et al. [75] and Hussein [52].

Considering the problem of face matching across age separation, if the two images

are of the same individual, but possibly different illumination conditions, then we

have

∆log(ρi,j) = log(ρi,j(t2)) − log(ρi,j(t1))

= log(f i,j(t2, t1)) (5.7)

In other words, the difference between these logarithm-transformed albedo maps

depends only on the aging function if the two albedo maps belong to the same

individual. When input images are from different individuals, the term ∆log(ρ)

depends not only on the aging function, but also on the identity of the individuals.
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Using this formulation, if we can learn a generic aging function, given a pair of

images, we can verify if the corresponding ∆log(ρ) term can be attributed to

textural aging or not.

Most real age-separated images contain variabilities due to differences in pose,

expression, image noise, etc. in addition to aging effects. Therefore, we first

illustrate the intuition behind the proposed formulation using a few synthetically

aged/de-aged images downloaded from the web. Figure 5.2 shows the original

images, albedo maps and the corresponding ∆log(ρ) terms for two such pairs

of age-separated images. In most practical scenarios, accurate estimates of shape

and illuminant direction are not available, making the albedo map computed using

(5.4) erroneous. Here, we use the non-stationary stochastic filtering framework

proposed in Chapter 3 to obtain a more accurate albedo map from the input image.

The approach utilizes the statistics of errors in erroneous shape and illuminant

information to refine the initial albedo map. As desired in our application, the

estimated albedo maps and the corresponding textural aging map are able to

capture the aging effects like appearance of wrinkles, skin folds, etc.

Figure 5.2: Textural variations: (a) Young image; (b) Old image; (c) Albedo of image

in (a); (d) Albedo of image in (b); (e) ∆log(ρ).

Figure 5.3 shows the albedo maps and the corresponding aging maps for a

couple of age-separated image pairs from the FGnet dataset. One can observe that
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these maps preserve the textural variations due to aging. Due to other variations

and subtle mis-alignments, wrinkles, skin folds, etc. are not as prominent in these

maps as they are in Figure 5.2 with synthetic examples.

Figure 5.3: Textural variations: (a) Young image; (b) Old image; (c) Albedo of image

in (a); (d) Albedo of image in (b); (e) ∆log(ρ).

5.3.1 Computation of textural coherency

Given ∆log(ρ) obtained from the input images, one needs to verify if this can be

attributed to aging. It is worthwhile to note that quite a few changes in facial skin

due to aging, like appearance of wrinkles follow a coherent pattern determined by

the underlying muscle structure. For example, contraction of the frontalis muscle

that runs vertically on the forehead causes the formation of horizontal wrinkles

on the forehead. If the input images belong to the same subject, ∆log(ρ) being

an aging function should have this coherency. In this work, we characterize this

coherency using local binary pattern (LBP) based texture features [92, 5].

The LBP operator is known to be a powerful descriptor for textures. Given

an input image, the operator assigns a label to each pixel based on its intensity

value relative to its neighborhood. The label is the binary string obtained by

thresholding the neighborhood of each pixel using the center value. The oper-
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Figure 5.4: A schematic of the proposed approach for face verification across age pro-

gression.

ator is invariant to monotonic gray level changes and has proved to be highly

discriminative [92,5]. Given ∆log(ρ), we first compute 8 bit binary label for each

pixel using a 3x3 neighborhood. We further compute region-wise histograms of

LBP labels by dividing the ∆log(ρ) map in 9 regions arranged in a regular square

grid. Such region-wise histogram approach has the capability to characterize local

variations without being overly sensitive to alignment errors.

Due to the vast variations in aging patterns, it may not be possible to use such

representation directly to verify if the two input images are age separated images

of the same person or not. So using this LBP based histogram representation,

we use the following two approaches to perform verification: 1) train a Support

Vector Machine (SVM) to separate genuine and impostor image pairs, and 2)

kernel density estimation approach [31] to learn the probability density function

(pdf) of the aging functions.
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5.4 Experimental evaluation

Figure 5.4 shows a schematic of the proposed non-generative approach for face

verification across age progression. In this section, we evaluate our approach for

matching age-separated facial images and analyze the results obtained. Here, we

focus primarily on aging effects in adults. For this purpose, we use a part of a pri-

vate Passport dataset which consists of age-separated pairs of adult face images.

In our experiments, we use 700 genuine pairs of age separated images with average

age separation of slightly over 9 years. Figure 5.5 provides the distribution of age

separation for these image pairs. 4200 randomly chosen impostor pairs are used

in the verification experiments. For the proposed textural coherency, we perform

two-fold cross-validation on the available match and non-match image pairs. Av-

erage performance of the two folds is considered as the verification performance.

As the proposed feature drift coherency does not involve any training, we use the

entire set of match and non-match pairs for testing.
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Figure 5.5: Distribution of age difference between the pairs of images used in the ex-

perimental evaluation.

Feature Drift Coherency: To compute feature drift coherency, we need to

locate the facial features reliably to obtain the drift maps. In our implementation,

we use Active Appearance Models (AAM) [27] to detect the facial landmarks.
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Figure 5.6: Facial landmarks as located automatically using the trained AAM-based

face model. The detected landmarks are used to compute feature-drift incoherency.

First a face model is trained using 20 images with manually marked landmark

points which is then used to locate features for the remaining images used in the

verification experiment. Figure 5.6 shows the facial feature locations detected on

a few examples images using the trained face model. Given the facial landmarks,

the overall incoherency of the drifts is measured using (5.2). Figure 5.7 shows the

Receiver Operator Characteristic (ROC) curve obtained using this incoherency

measure as the distance between the input pair of images. The plot compares

correct rejection rate against correct acceptance rate. The correct rejection rate

is the fraction of correctly rejected impostor pairs while the correct acceptance

rate is the fraction of correctly accepted genuine pairs. Ideally, one would want

to have both these quantities close to one simultaneously. As desired, despite

being extremely simple (the incoherency measure depends on a few corresponding

points), the proposed measure is able to reasonably separate the genuine pairs

from impostors.

Textural Coherency: Given a pair of input images for verification, texture

analysis involves estimation of their respective albedo maps followed by compu-

tation of LBP-based histograms as described in Section (5.3). Given the LBP

signatures, verification is performed by training a SVM classifier with Radial Ba-

sis Function (RBF) kernel to separate genuine and impostor classes. Figure 5.7

shows the verification performance using this feature. The corresponding distrib-
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utions of match and non-match scores are shown in Figure 5.8.

Comparison with other Approaches: To evaluate the performance of the

proposed approaches, we compare their performance with two methods that have

recently been used for matching age-separated face images [75]:

1. SVM+GOP [75]: Gradient orientation pyramid feature with SVM as clas-

sifier, and

2. SVM+diff [94]: Differences of normalized images with SVM as classifier.

The images are first aligned with the help of the eye locations and then cropped

using an elliptic region as in [75]. The images are resized to 80 × 70 for effi-

cient computation and subsequent training using SVM classifier. For SVM+GOP

implementation, we use 3 pyramid layers and a Gaussian kernel with standard

deviation of 0.5 as used in [75]. For SVM+diff implementation, each image is

first normalized to have zero mean and unit variance before computing the image

difference. SVM classifier with RBF kernel is used for both these methods. The

performance obtained using the two methods on the Passport dataset is shown in

Figure 5.7. We use the same classifier for all methods to be able to better evaluate

the usefulness of the proposed feature for capturing the textural variations with

aging. The proposed approach performs better than the other two methods which

is also evident from the EER values in Table 5.1. Note that the performance of

SVM+GOP and SVM+diff is different from the one reported in [75]. As the im-

plementation of the two approaches is quite straight-forward and we use the same

parameters as suggested in [75], the difference may be due to the difference in the

dataset used. Also among the proposed methods, the textural measure performs

better than its feature drift counterpart.

We also evaluate the usefulness of the proposed textural coherency feature

using kernel density estimation to learn the probability density function (pdf)

of the aging function using the training match pairs. The similarity score of

two novel test images is given by the likelihood that the LBP-based histograms
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Figure 5.7: Verification performance obtained using the proposed feature drift and

texture coherency measure. The performance is compared to that obtained by gradient

orientation pyramid [75] and image difference [94] features and SVM as the classifier.

come from the learnt pdfs (one for each image region). We obtain slightly better

performance than the one obtained using SVM. This indicates that the proposed

feature does well in capturing the different variations due to aging and provides

a useful measure for matching age-separated face images.

Table 5.1: Comparison of the Equal Error Rates (EER) obtained using the proposed

measures.

SVM+diff SVM+GOP Feature Texture Texture
Drifts (full image) (9 parts)

28.24% 25.00% 27.34% 20.99% 17.13%

5.4.1 Effect of age separation on matching performance

One of the main factors that may affect the performance of matching faces across

age-progression is the age separation between the images. Therefore, it is im-

perative to analyze how the performance of the proposed approach varies across
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Figure 5.8: Genuine and impostor score distributions obtained using the textural analy-

sis for matching age-separated face images.

different age-separations. Since we use a Passport dataset, the age gaps of the

images is mainly concentrated around 9− 10 years (thats when people visit pass-

port office for renewal, the very problem we are interested in) with the minimum

age gap being 5 years as shown in Figure 5.5. In our analysis, we divide the

intra-personal image pairs in the dataset into three groups based on their age

gaps: 1) Age gap from 5− 7 years consisting of 70 matching image pairs, 2) from

7 − 9 years having 240 matching pairs and 3) greater then 9 years having 600

matching pairs. For each group, all the available intra-personal image pairs and

a large number (around 6-times the number of intra-personal for each age group)

of randomly chosen inter-personal image pairs are taken as the testing set. The

training set is the same as used in the previous experiment. EERs are used as

the criterion to evaluate the performance. Table 5.2 shows the performance of the

proposed approach for the different age groups. We see that the performance is

more-or-less consistent for all the tested age groups. Such an observation has also

been reported by [75]. Ling et al. report that the difficulty of matching images
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across age separation saturates for age gaps larger than four years.

Table 5.2: Comparison of the Equal Error Rates (EER) obtained for different age

separations on the Passport dataset.

5 − 7 years 7 − 9 years > 9 years
17.04% 15.78% 18.56%

5.5 Discussion and future work

The aging pattern of an individual depends on a variety of different factors that

are difficult to model in a computational framework. This makes it extremely dif-

ficult to predict the exact appearance of a person as he/she ages. In spite of the

large variability, humans are quite good at matching faces across age progression.

This may mean that irrespective of the exact manner in which a person ages,

there is a coherency in the way facial appearance changes with age. This moti-

vates us to capture and utilize this coherency to recognize age-separated faces.

Specifically, we analyze the coherency of the drifts in the various facial features

and texture variations to verify whether two age-separated images belong to the

same individual or not.

Experimental evaluation presented verify the effectiveness of such a non-generative

approach even with simple measures of capturing coherency in aging. Since the

drifts of features depends on the underlying facial muscle structure, this infor-

mation may be used to obtain a better measure of drift coherency. For textural

variation, we model variations in facial albedo using a simple linear relation. A

more physically driven model of the aging function may be better suited to capture

the textural variations that takes place as a person ages.
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Chapter 6

Specularity Removal

Lambertian reflectance for the imaged scenes/objects has been commonly assumed

in a variety of computer vision algorithms, such as shape reconstruction, image

matching, motion detection, as well as photometric and multi-view stereo. How-

ever, most real world surfaces exhibit a combination of diffuse and specular com-

ponents [111] making this assumption very restrictive in practice. Automatic sep-

aration of these components would enable these algorithms to be readily applied

to a much wider class of non-Lambertian objects. Though the earliest research on

reflection component separation using a single image dates back to mid 80’s [111],

the challenges involved in achieving this automatically and robustly on real images

continue to interest researchers.

Most early approaches require explicit color segmentation to handle multi-

colored surfaces [111] [57] [12]. Not only is automatic color segmentation a research

challenge in itself in the presence of specular highlights, it is extremely difficult to

perform such a task even manually for complex scenes. A few recent algorithms

overcome this limitation by relying on local interactions of pixels [78] [121] to re-

move specularity in complex textured scenes. While these methods do not require

explicit color segmentation, they often involve detection of color boundaries in

the input image [121] which might lead to unwanted artifacts around the detected

boundaries. Most specularity removal approaches rely on the presence of one or

more diffuse pixels of same surface color. The local-interaction based methods

cannot take advantage of useful information present elsewhere in the image. In

the absence of diffuse pixels in one part of the image, the information of the diffuse

pixels present in other non-contiguous parts of the image cannot be utilized for
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specularity removal. Also, most approaches for reflection component separation

assume that the illumination source color is known a priori or can be estimated

accurately. Errors in the illumination color estimation lead to errors in the recov-

ered diffuse and specular components. To the best of our knowledge, not much

effort has gone into analyzing these errors so far.

Here, we propose a global approach which effectively characterizes the errors

in the illumination color estimation to robustly estimate diffuse and specular re-

flection components in complex textured scenes. For dichromatic surfaces, pixels

with the same underlying surface color lie on a plane which also contains the il-

lumination source color vector [111]. Error in illumination color information may

disturb this co-planarity leading to erroneous separation of diffuse and specular

components. The analysis we present here shows how errors in the illumination

color can lead to spatially varying uncertainty (in RGB color space) for determin-

ing which pixels lie on the same dichromatic plane. The error analysis results in

a very simple, effective and robust algorithm which requires just a single parse of

the image pixels to separate the diffuse and specular components. The proposed

approach offers the following advantages:

• Statistics of errors in the illumination color estimate is effectively utilized for

robust recovery of the diffuse and specular reflection components.

• The presented error analysis is very general and may be used with any existing

algorithm to make them robust to errors in the illumination color estimate.

• The method is non-iterative and does not require explicit color segmentation

or color boundary detection and thus can handle very complicated textures.

In addition, we propose a 4D Hough transform based algorithm to automati-

cally estimate the illumination source color from a single color image. Unlike the

state-of-the-art approaches for illumination color estimation for textured dichro-

matic surfaces [123] [127], the proposed approach does not depend on a candidate
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list of illumination colors or require detection of specular highlights. In our ap-

proach, the illumination color is estimated directly by integrating evidences from

image pixels. Results on complex textured surfaces show the usefulness of the

proposed algorithms.

6.0.1 Organization of the chapter

The rest of the chapter is organized as follows. Section 6.1 briefly describes the

Dichromatic Reflectance Model. The proposed approach for illumination color

estimation is detailed in Section 6.2. Section 6.3 presents the error analysis along

with the proposed algorithm to separate the reflection components. Results of

experimental evaluation are presented in Section 6.4. Section 6.5 concludes the

chapter with a brief summary.

6.1 Dichromatic Reflectance Model

According to the dichromatic reflectance model [111], the Bidirectional Reflectance

Distribution Function (BRDF) of the surface is a linear combination of two com-

ponents: the interface (specular) reflectance and the body (diffuse) reflectance.

Using this model, the image formation equation (for the kth channel) for a point

x = {x, y} with normal n̂ can be written as

Ik(x) =
(

m̄d(x)Λk(x) + m̄s(x)Γk

)

n̂ · ŝ (6.1)

where ŝ is the light source direction and functions m̄d(x) and m̄s(x) are the dif-

fuse and specular BRDFs, respectively. Γk represents the effective illumination

source strength for the kth channel and Λk is the effective albedo in that channel.

Combining the three color channels as measured using a typical camera, we obtain

I(x) = md(x)Λ(x) + ms(x)Γ (6.2)
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where md(x) = m̄d(x)(n̂ · ŝ), ms(x) = m̄s(x)(n̂ · ŝ), I = [Ir, Ig, Ib], Γ = [Γr, Γg, Γb]

and Λ = [Λr, Λg, Λb]. Without loss of generality, we assume ‖Γ‖ = ‖Λ‖ = 1 as

scale can be taken care of in md(x) and ms(x).

6.2 Illumination Color Estimation

For a dichromatic surface, any pixel I(x) is formed by the linear combination of

the two vectors (6.2): the surface color of that pixel denoted by Λ(x) and the

illumination color of the image denoted by Γ with md(x) and ms(x) being the

combining coefficients. In other words, all pixels with the same surface color Λ

lie on a plane (known as the dichromatic plane) formed by Γ and Λ.

In this section, we describe the proposed algorithm to estimate the illumination

source color from a single image consisting of dichromatic surface(s). Assuming

that the image is illuminated by a single light source, the illumination color Γ

is same throughout the image. Different dichromatic planes corresponding to

different surface colors in the image form a pencil of planes in the RGB color space

(Figure 6.1(c)). The axis of the pencil is the unknown Γ we aim to estimate. Here

we propose a Hough transform based approach for illumination color estimation

that does not require explicit color segmentation. We first briefly describe the

basics of Hough transform for ease of understanding.

The classical Hough transform is used to detect straight lines in 2D from a

given point set. The main idea is to gather evidence for each straight line by

mapping the points from the image space to a parameter space. This is done by

first representing the unknown straight lines in terms of their parameters (e.g.,

slope and intercept) instead of (x, y) co-ordinates. Each input point (xi, yi) then

votes in the chosen parameter space for all lines that can potentially pass through

it. If there exists a set of collinear points in the input space, they all vote for

the corresponding line, resulting in a peak in the parameter space. Hence, lines

in the input space are detected based on the location of peaks in the parameter
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6.2 Illumination Color Estimation

Figure 6.1: (a) Vector diagram for dichromatic surfaces; (b) Input color image; (c) The

sheaf of planes formed by three dominant surface colors in the image; (d) The histograms

of normals for the correct illumination color.

space. Here we use a modified form of the Hough transform to locate the axis of

the pencil directly without requiring to first detect the different planes separately.

The proposed method does not require any candidate list of illumination colors

or detection of specular highlights.

Suppose the input image I is composed of K different surface colors (unknown)

denoted by {Λ1,Λ2, . . . ,ΛK} and Γ denotes the unknown illumination color. Each

surface color Λi forms a distinct plane which is characterized by its normal vector

ni, given by

ni = Λi × Γ, i ∈ {1, 2, . . . , K} (6.3)

Here we consider a 4D voting space consisting of parameters characterizing the

unknown illumination color vector and these normals. Both illumination color

vector and normals to the planes are represented using their elevation and azimuth

({θΓ, φΓ} and {θn, φn} respectively). Γ being a color in the RGB space, Γr ≥
0, Γg ≥ 0, Γb ≥ 0, so 0◦ ≤ θΓ, φΓ ≤ 90◦. On the other hand, the range for the

parameters for the normals is 0◦ ≤ θn ≤ 180◦ and 0◦ ≤ φn ≤ 360◦.

Following a Hough transform based approach, a color vector I(x) with surface

color Λi votes for all the planes that can pass through it and the corresponding

illumination color vectors. Note that among all the planes that pass through I(x),

there is one and only one plane that passes through the vector representing the
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true unknown Γ which is given by

I(x) × Γ =
(

md(x)Λi + ms(x)Γ
)

× Γ = md(x)n̂i (6.4)

Quite clearly, all pixels with surface color Λi will form the same plane (with nor-

mal n̂i) with the true Γ, thereby resulting in a peak at {θΓ, φΓ, θni
, φni

} in the 4D

parameter space. Similarly, pixels corresponding to other surface colors Λj, ∀j ∈
{1, 2, . . . , K}, j 6= i form respective peaks at the locations {θΓ, φΓ, θnj

, φnj
}. There-

fore, the voting in 4D parameter space results in K peaks for the correct {θΓ, φΓ}
pair, one corresponding to each of the K dichromatic planes as illustrated in

Figure 6.1(d).

Given an input color image, the number of dichromatic planes forming the

pencil and their orientation in the RGB space is not known. Therefore, the un-

known illumination color cannot be determined by locating {θΓ, φΓ} which forms

peaks corresponding to each of the surface colors in the image. If the voting

space is appropriately thresholded and marginalized over the two dimensions cor-

responding to normals to the plane {θn, φn}, the true illumination color {θΓ, φΓ}
should get the highest number of votes assuming the surfaces in the image follow

the dichromatic model strictly.

For real data, due to factors like camera noise and deviations from the model,

all pixels of one surface color do not always form a nice plane with the true

illumination color vector. Also, if there are very few pixels of a certain surface

color in the image, the peak formed even at the correct illumination color is

very small. This makes automatic selection of the threshold quite difficult. In

our implementation, we use the sum of the two highest peaks as the measure

for determining the correct illumination color vector. We find this measure to

be quite robust for real data as illustrated in our experimental evaluation. This

kind of measure implicitly assumes that the image has at least two surface colors

containing significant number of pixels.
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6.2.1 Illumination color estimation for surfaces with single surface

color

The approach for estimating the illumination source color presented here assumes

that the image has K ≥ 2 different surface colors. For a uniformly colored surface,

all pixels lie on the same plane defined by the corresponding surface color Λ and

the illumination color Γ. Therefore, the correct {θΓ, φΓ} will have just one peak

corresponding to this plane in the 4D parameter space. This peak also exists

for other prospective {θΓ, φΓ} lying in the same dichromatic plane, making it

impossible to identify the correct illumination color.

Uniformly colored surfaces can be identified beforehand by verifying if a plane

can be fit through the input color pixels in the RGB space. In our implementation,

we use Eigen-analysis for this purpose. To estimate the illumination color for such

images, we first transform the input color vectors in the 3D RGB space to the local

co-ordinate system of the dichromatic plane. Since Λ(x) is constant throughout

the image, different pixels differ only due to the combining coefficients md(x)

and ms(x). Interestingly, if there exists a set of pixels with same md(x), the

corresponding points will form a straight line on the dichromatic plane as shown

in Figure 6.2. If there are considerable number of pixels for each md value in

the image, they form a collection of straight lines with different intercepts on

the Λ-axis but slope same as that of the illumination color vector (Figure 6.2).

These lines can easily be detected using the classical 2D Hough transform by

transforming the points on the dichromatic plane to the slope-intercept parameter

space. This results in several peaks (one for each md(x) value) for the slope

corresponding to the illumination vector. This can be detected using appropriate

thresholding and marginalization of the 2D voting space of intercept and slope.

The value of md depends on the diffuse albedo of the pixel, the intensity of the

incident light, and the angle between the lighting direction and the surface normal.

So, in general the value of md is different for different pixels in the image. Often
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Figure 6.2: Illumination color estimation for uniformly colored surfaces; (a) A sketch

illustrating the underlying intuition; (b) Example image; (c) Color vectors in the local

co-ordinate system of the dichromatic plane; (d) The thresholded and marginalized

votes in the 2D Hough space.

for neighboring pixels, the variation of md is small and so it can be approximated

as constant. This is a reasonable assumption for ordinary digital cameras because

of their accuracy limitation.

6.3 Separation of Reflection Components

Most of the existing methods for reflectance components separation assume ac-

curate knowledge of illumination color which is a restrictive assumption. But

in most practical cases, the illumination color is not known a priori and it has

to be estimated which introduces errors in the illumination color estimate. In

this section, we propose an approach for separation of the diffuse and specular

components which takes into account errors in the illumination color estimate.

6.3.1 Analysis of Errors in Illumination Color Γ

For a dichromatic surface, any pixel I(x) is formed by the linear combination of

the two vectors (6.2): the surface color of that pixel denoted by Λ(x) and the

illumination color of the image denoted by Γ with md(x) and ms(x) being the
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combining coefficients. In other words, all pixels with the same surface color Λ

lie on a plane (known as the dichromatic plane) formed by Γ and Λ. Hence, for

any two pixels I(xi) and I(xj) of the same surface color,

I(xj) ·
(

Î(xi) × Γ
)

= 0 (6.5)

where Î(xi) is the normalized color vector. The operators · and × denote the vector

dot and cross product respectively. Equation (6.5) assumes that the illumination

color is accurately known. We now analyze how errors in Γ affect this relation.

Let the estimated illumination color be denoted as Γest. Note that the left

hand side of (6.5) essentially represents the perpendicular distance of color vector

I(xj) from the plane formed by Î(xi) and Γ. Using the erroneous estimate Γest of

the illumination color, this distance (say, d) can be written as

d = I(xj) ·
(

Î(xi) × Γest
)

= Γest ·
(

I(xj) × Î(xi)
)

(6.6)

Expressing the estimated illumination color in terms of its true value and an error

term, we get

d =
(

Γ + Γerr
)

·
(

I(xj) × Î(xi)
)

(6.7)

Since the two color vectors lie in the same plane as the true unknown illumination

color, Γ ·
(

I(xj) × Î(xi)
)

= 0. Therefore, the expression for d simplifies to

d = Γerr ·
(

I(xj) × Î(xi)
)

= Γerr ·
(

sin(θ) ‖ I(xj) ‖ n̂
)

(6.8)

where θ is the angle between the two vectors and n̂ = [n̂r, n̂g, n̂b] is the unit

normal to the plane formed by them. One can express the error in illumination

color in terms of its components along the three color channels. Assuming that the

error in illumination color is unbiased along the three channels, we have E(Γerr
r ) =

E(Γerr
g ) = E(Γerr

b ) = 0. Thus from (6.8), the expected value of the perpendicular
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distance is zero, i.e., E(d) = 0. The expression for the variance σ2(d) is given by

σ2(d) = K2E
(

Γerr
r n̂r + Γerr

g n̂g + Γerr
b n̂b

)2
(6.9)

where, K = sin(θ) ‖ I(xj) ‖

Assuming that the error in illumination color estimate is uncorrelated in the three

color channels and the variances are same i.e., E(Γerr
r )2 = E(Γerr

g )2 = E(Γerr
b )2 =

ǫ2, the expression for the variance σ2(d) simplifies to

σ2(d) = K2ǫ2
(

n̂2
r + n̂2

g + n̂2
b

)

= K2ǫ2 (6.10)

since n̂ = [n̂r, n̂g, n̂b] is a unit normal vector. Appropriately, the variance σ2(d)

is proportional to the error variance of illumination color vector and ‖ I(xj) ‖2.

Interestingly, the variance is also proportional to sin2(θ) where θ is the angle

between the two considered color vectors.

We investigate the validity of such a relation using a synthetic image [122]

(Figure 6.3(a)). The color vectors are normalized to unit norm to analyze solely

the effect of angle between color vectors. The angular error between the true

and erroneous illumination color vectors is 4.4◦ in this experiment. The maps in

Figure 6.3 (b) and (d) show the perpendicular distances obtained using the top-left

corner and center pixels as reference Î(xi) respectively. The corresponding sin(θ)

maps are shown in Figure 6.3 (c) and (e). As can be seen, the corresponding

perpendicular distance and sin(θ) maps are similar justifying the analysis. Most

existing approaches do not account for any error in illumination color, thereby

implicitly assuming such maps to be uniform.

The above analysis considers two color vectors of the same surface color. Now

let us consider the case where the two color vectors have different surface colors

and thus lie on different dichromatic planes. Following a similar analysis, the

perpendicular distance (d) of color vector I(xj) from the plane formed by Î(xi)
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Figure 6.3: An illustration to validate the dependence of σ2(d) on the sine of the angle

between the two color vectors as given by (6.10). (a) Input synthetic image; (b) and (d)

show the perpendicular distance maps for two different choices of reference pixel Î(xi);

(c) and (e) are the corresponding sin(θ) maps.

and the erroneous illumination color estimate Γest can be written as

d =‖ I(xj) ‖ sin(α) sin(β) + Γerr ·
(

sin(θ) ‖ I(xj) ‖ n̂
)

(6.11)

Here α is the angle subtended by the color vector I(xj) with the true illumination

color vector Γ. β is the angle between the normals to the two dichromatic planes.

Following similar analysis as in the same surface color case, we get the expression

of the mean E(d) and variance σ2(d) of the distance as follows

E(d) = ‖ I(xj) ‖ sin(α) sin(β)

σ2(d) = sin2(θ) ‖ I(xj) ‖2 ǫ2 (6.12)

From (6.10) and (6.12), errors in illumination color information result in uncer-

tainty in determining if two pixels lie on the same dichromatic plane or not. Since

such a task is the underlying theme in all dichromatic model based separation

algorithms, errors in source color lead to errors in estimation of diffuse and spec-
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ular components. These expressions for σ2(d) indicate how to account for errors

in source color as long as the errors are not large enough to overcome the E(d)

factor in (6.12).

6.3.2 Proposed algorithm

Based on the error analysis given in the previous section, we propose a simple and

effective algorithm to robustly separate diffuse and specular reflection components

given a single image. The different steps of the proposed algorithm are described

in this section.

Determination of dichromatic planes: In the absence of any error in

the illumination color estimate (and any other modeling error), one can directly

use (6.5) to determine all pixels whose color vectors lie on the same dichromatic

plane. Such an approach will not give the desired result in the presence of any

noise. Based on the error analysis, the proposed approach uses the dichormatic re-

flectance model to robustly separate input pixels based on their underlying surface

color (not input pixel intensities which may show large variations due to specular

highlights).

If the error in the illumination color in the r, g, b color channels has a mean

0 and variance ǫ2, the the perpendicular distance d of a color vector I(xj) from

a dichromatic plane formed by I(xi) (of same surface color) and Γ has mean 0

and variance σ2(d) respectively (6.10). Thus, if a test color vector has Euclidean

distance of x from the plane, the corresponding Mahalanobis distance is given by

DM(x) =
x

sin(θ) ‖ I(xj) ‖ ǫ
(6.13)

If we further assume that the distribution is normal, then the probability of the
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test point lying in the same dichromatic plane is given by

P (x) =
1

sin(θ) ‖ I(xj) ‖ ǫ
√

2π
e−DM

2(x) (6.14)

Refinement of illumination color estimate: The normals to the dichro-

matic planes are obtained in a Least Squares (LS) fashion by solving the following

homogeneous system of linear equations


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n̂LS
i = 0 (6.15)

where [Ii1, Ii2, . . . , IiNi
] are the Ni pixels that are determined to lie on ith dichro-

matic plane in the previous step. Since the true illumination color vector is per-

pendicular to these dichormatic normals, a new estimate (ΓLS) of the illumination

color vector is obtained in a similar LS method.

Separation of diffuse and specular reflection components: Suppose

{Si} denotes the set of pixels in the given image which lie on the same dichromatic

plane n̂i. The plane and thus all pixels in {Si} are bounded by the illumination

color vector on one side and the surface color Λi on the other. Now, if the set

contains one or more purely diffuse pixels, (for which the specular coefficient

ms = 0), the corresponding vectors I(x) = md(x)Λi will have the same direction

(say l̂i) as the surface color Λi. Since the vector corresponding to surface color

(and thus the diffuse pixels) forms the largest angle with the direction of the

illumination color vector, the desired direction l̂i is given by

l̂i = arg max
I(xi)∈{Si}

{

cos−1

(

I(xi) · ΓLS

‖ I(xi) ‖

)

}

(6.16)
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The diffuse component of a pixel I(x1) is thus given by its projection on the

determined surface color direction

Id(x1) = md(x1)̂li, md(x1) =
‖ I(x1) × ΓLS ‖
‖ l̂i × ΓLS ‖

(6.17)

Similarly, the specular reflection component is given by the projection along the

illumination color vector

Is(x1) = ms(x1)Γ
LS, ms(x1) =

‖ I(x1) × l̂i ‖
‖ ΓLS × l̂i ‖

(6.18)

Figure 6.4: A sketch illustrating the separation of reflectance components in the absence

of purely diffuse pixels.

The above analysis assumes that the set {Si} contains one or more purely

diffuse pixels for which ms = 0. In the absence of any purely diffuse pixels, no

pixel in the set has the same direction as the surface color Λi, and thus the surface

color cannot be determined by (6.16). In this case, l̂i denotes the most diffuse

direction and projection along this direction gives a more diffuse version of the

pixel given by

I′(x1) = m′
d(x1)Λi + m′

s(x1)Γ
LS (6.19)

98



6.4 Experimental Evaluation

Using (6.17) and (6.18) , it is straightforward to prove that

m′
d(x1) = md(x1) and m′

s(x1) < ms(x1) (6.20)

where md(x1) and ms(x1) are the true unknown diffuse and specular coefficients

of I(x1) respectively. The image I′(x1) has the same diffuse component as the

original image, but is less specular. This is illustrated in Figure 6.4.

6.4 Experimental Evaluation

In this section, we report the results of experimental evaluation of the proposed

approaches.

6.4.1 Robustness to errors in source color

One of the main advantages of the proposed approach for specularity removal is

its robustness to errors in illumination color estimate. Therefore, it is important

to evaluate the performance of the method for varying degrees of errors in the

illumination color estimate. Figure 6.5 shows the result for varying degrees of

angular errors in the illumination color estimate. As desired, the recovered diffuse

component seems quite robust to the errors and degrades very gracefully with the

increase in error. Both the input images have been taken from the dataset pro-

vided by Simon Fraser University for evaluation of computational color constancy

algorithms [16] which also contains the true illumination color information.

6.4.2 Importance of global information

For complex textured surfaces, pixels with same surface color may not always

occur in a single contiguous region and may be spread throughout the input

image as shown by the highlighted regions in Figure 6.6. Even if some parts of

the image (shown by oval) are completely specular with no diffuse pixels, the
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Figure 6.5: Robustness of the proposed approach to errors in illumination color. First

column: Original images; Other columns show the recovered diffuse reflectance com-

ponent with varying errors in the illumination color (the numbers under each image

indicate the angular error with the true illumination color).

proposed algorithm can effectively utilize the diffuse pixels of the same surface

color present elsewhere in the image (shown by square) to remove the specularity.

This is due to the fact that irrespective of the spatial location in the image, all

pixels of the same surface color will lie on the same dichromatic plane.

Figure 6.6: Dealing with spatial discontinuity of pixels with same surface color. Left:

Original image; Middle: Diffuse component; Right: Specular component.

Also, the proposed method gives a more diffused image in the absence of purely

diffused pixels. Figure 6.7 shows another result on the same image in which a

component along the direction of illumination color is added to each pixel. This

ensures that the image does not contain any purely diffuse pixels. As desired, the

method is successful in removing a significant amount of specularity.
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Figure 6.7: Reflectance component separation in the absence of purely diffuse pixels.

Left: Original image; Middle: Diffuse component; Right: Specular component.

6.4.3 Robust color segmentation in the presence of specular highlights

The surface color information for each pixel (obtained in an intermediate step of

the proposed approach) can also be used to obtain surface color segmentation on

textured surfaces in the presence of specularity. Figure 6.8 shows the result of such

a surface color labeling. Not that this is different from color segmentation which

is based on pixel intensities which may show large variations due to specular high-

lights. Color segmentation results on the same images using Mean Shift algorithm

are provided for comparison (http://www.caip.rutgers.edu/riul/research/code.html).

Unlike Mean Shift algorithm, the labeling obtained using the proposed approach

is able to account for specularity in the input image.

More results on complex textured surfaces are shown in Figure 6.9. As shown,

the proposed approach does well in separating the diffuse and specular reflectance

components. All the images used in this experiment are taken from the datasets

used in [78] and [119]. The illumination colors for these images have been esti-

mated using the proposed Hough transform based approach.

6.4.4 Illumination color estimation

We test the proposed illumination color estimation approach on the dataset pro-

vided by Simon Fraser University [16]. The database contains images of different

scenes taken under 11 different lights. As the proposed algorithm is meant for

dichromatic surfaces (with non-trivial specular component), we select a subset of

over 60 images from the database which have significant amount of specularity.
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Figure 6.8: (a) Input image; (b) Surface color labeling obtained using our algorithm;

(c) Image color segmentation obtained using the Mean Shift algorithm.

The number of selected images in each category along with the mean angular

error of the estimated illumination color is given in Table 6.1. The angular errors

obtained compare favorably to the ones reported in [127].

Table 6.1: Evaluation of the proposed illumination color estimation approach
Data category [16] books-4 books-5 fruit-1 plastic-1 plastic-2 tape-1 apples
Number of images 3 5 11 11 11 11 11
Mean angular error 4.9◦ 6.2◦ 6.3◦ 7.0◦ 3.4◦ 3.7◦ 2.7◦

6.5 Summary

The main contribution of this work is the analysis of errors in source color informa-

tion to perform robust separation of diffuse and specular reflectance components

from a single image. The error analysis is very general and should be useful even

for other algorithms to account for source color errors. The analysis leads to a very
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Figure 6.9: Separation results; First Row: Original images; Second Row: Diffuse compo-

nent; Third Row: Specular component. Estimated illumination colors for these images

(from left to right) are [0.66 0.56 0.50], [0.55 0.57 0.61], [0.59 0.61 0.53], [0.56 0.66 0.48]

and [0.54 0.62 0.57].

simple and robust algorithm to separate the two reflection components. Unlike

many recent techniques which deal with complex textures, our method is global

in nature and does not rely solely on the local information provided by the neigh-

boring pixels. In addition, we also presented a Hough transform based approach

for source color estimation that does not require color segmentation or candidate

list of source colors. Illustrations and results of experimental evaluations show the

usefulness of the proposed algorithm.
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Chapter 7

Efficient Shape Representation and Matching

Numerous applications of shape matching and recognition have made it a very

important area of research in the field of computer vision (see Figure 7.1). Charac-

ter recognition, trademark logo retrieval, activity recognition, object recognition,

human pose estimation and matching range data are a few of the challenging

applications that can benefit from accurate and efficient shape matching tech-

niques. Different applications require different representations and hence different

matching algorithms to handle the large variations in shapes. Also with the re-

cent advancement in technology and the availability of different kinds of sensors,

the amount of data to be handled has increased tremendously over the last few

decades. So even though research in the area of shape matching has matured, the

challenges involved in achieving high performance in terms of both accuracy and

computational complexity continues to interest researchers.

Matching shapes across complex deformations has been the main focus of

most works in recent times. Many existing shape matching algorithms require

computationally demanding matching schemes to be able to handle the different

variabilities making them not so effective for large databases. In contrast, we

propose an indexing system for fast and robust matching and retrieval of shapes.

We envisage a shape matching system which can efficiently scale to large databases

without compromising on the retrieval performance obtained by the state-of-the-

art shape matching algorithms.

We model a shape as a collection of landmark points arranged in a plane (2D)

or in 3D space. In our approach, each shape is characterized by features that are

used to index it to a table. The table is analogous to the inverted page table
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Figure 7.1: A few applications that can benefit from robust and efficient shape match-

ing. (a) Matching and retrieval of 2D shapes [66], like digit recognition [68], trademark

retrieval [18], leaf recognition [74]; (b) Activity Classification [102]; (c) Gesture recog-

nition; (d) Pose estimation in sports clips [133].

used to index web pages using words/phrases. Given a test shape, similar ones

from a pre-indexed collection are determined based on its characterizing features.

The computational overhead (of establishing point-wise correspondence) involved

in the traditional way of matching the query with each shape in the dataset is

thereby avoided. As we deal with shapes, the only information usually available

is the underlying geometry. Appropriate features are chosen to encode this geom-

etry as richly as possible, without compromising on robustness. Quite clearly,

the set of useful features vary depending on the particular application at hand.

For example, invariance to articulations of part structures is very important in

applications like gait-based human identification whereas the same feature is not

desired for applications like retrieval based on human pose. Similarly, scale invari-

ance may be critical for some application but detrimental to another. Our goal

here is to develop a system that supports fast retrieval of shapes without needing

any costly correspondence step during matching. To this end, we use (or propose)

features that address most challenges faced by shape matching tasks including

invariance to object translation, rotation, scale, articulations, etc. Depending on
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the demands of the application at hand, all or a subset of the proposed features

are used for indexing and retrieval. A given shape is then represented using a col-

lection of feature vectors, each characterizing a geometrical relationship between a

pair of landmark points. The features should be easily computable for the match-

ing algorithm to be efficient and to be able to scale up to large database sizes. The

feature vectors are suitably quantized for indexing. The fact that feature vectors

depend only on a few points and are quantized, provides the necessary robustness

to the representation which is required to generalize across large intra-class vari-

ability. Since all the desired characteristics of a shape matching algorithm like

invariance to rotation, articulation, etc., are incorporated in the feature vectors

themselves, this kind of representation allows the proposed system to have a very

simple and efficient retrieval scheme. Experimental results are provided to show

the usefulness of the proposed approach.

The rest of the chapter is organized as follows: Section 7.1 introduces the

indexing framework proposed in the chapter. Section 7.2 describes the feature

based 2D shape representation along with the different features used. A detailed

description of the indexing and retrieval algorithms is given in Section 7.3. Sec-

tion 7.4 presents the results of extensive evaluations done to compare the proposed

algorithm with others. Some real applications of shape matching are shown in

Section 7.5. Finally we also discuss a implicit surface based approach for repre-

sentation and matching of 3D range data in Section 7.6. The chapter concludes

with a summary and discussion.

7.1 Indexing Framework - A Glance

Our focus here is to come up with a fast and efficient framework for shape in-

dexing and retrieval that performs robust shape matching. In most approaches,

given a query, it needs to be compared with every shape in the dataset to return

the most similar ones. Comparisons often involve computationally demanding
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operations like registration, establishing correspondence, etc., which are repeated

for each shape in the dataset. Such approaches are usually not scalable since

the computational load can become prohibitively high as the size of the database

increases.

In contrast, we propose a scalable and efficient shape matching and retrieval

scheme. Figure 7.2 illustrates a prototype of our indexing framework. Here, a

shape is represented using a set of indexable feature vectors which are appropri-

ately mapped to a hash table. For a shape sk, a bin i in the hash table stores

an entry 〈sk, nki〉, nki > 0 where nki is the number of feature vectors from shape

sk that get hashed to bin i. The hash table is populated by performing the op-

eration for each shape in the database. The resulting table typically has several

2-tuples from different shapes in each bin. The quantization scheme determines

how uniformly the entries are distributed across the hash table.

Figure 7.2: A prototype of the proposed shape indexing framework. Each shape in the

database is indexed to a hash table using a set of indexable feature vectors extracted

from the shape.

Given a test shape st, its feature vectors are extracted and its hash table entries

〈st, nti〉, ∀nti > 0 are determined by mapping the feature vectors to the table. Once

this is done, its similarity with the shapes in the database can be estimated using

a single parse through the matching bins. Parsing through the bins that contain
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a 2-tuple 〈st, nti〉, one can simultaneously compute the similarity of the query

with all the shapes in the database. In such a retrieval scheme, the processing

time depends only on the number of 2-tuples 〈st, nti〉 and the number of database

entries in the matching bins. Quite clearly, the more uniformly distributed the

hash table is, less is the average time required to process a query. Typically, the

processing time increases much slowly as compared to the database size.

7.2 Feature based Shape Representation

In this section, we describe features which are invariant to different deformations

like rigid transformations and articulations as required by the application at hand.

The choice of features affects both the generalizability and discriminability of the

approach. Therefore, we look for features that depend only on a few points on

the shape and also take the global shape into account. The dependence on only

a few points ensures robustness while their relative configuration with respect to

the global shape provides discriminability.

Complexity of a typical matching algorithm depends on the complexity of the

type of transformations that need to be handled which in turn depends on the

application. In the proposed approach, we choose the features to be invariant to

these transformations to make the retrieval process fast and efficient. Articulation

of part structures being one of the most difficult kind of deformations addressed by

several recent shape matching techniques, here we describe representative features

that are invariant to articulations in addition to rigid transformations.

7.2.1 Pairwise Geometrical Features

Following these guidelines, each shape is characterized by a set of feature vectors

where each vector encodes pairwise geometrical relationships on the shape. Each

vector consists of the following features that are robust to different deformations.
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7.2.1.1 Inner distance between the two points

The Euclidean distance between two interest points is invariant to rigid trans-

formations of the shapes and is useful for applications where it is required to

preserve articulation-dependent discriminability. But even small articulations can

change the Euclidean distance significantly for several point-pairs on the shape.

Therefore, for applications requiring invariance to articulations, we use the inner

distance (ID) [74] which is robust to articulations of part structures. The inner

distance between two points is the length of the shortest path within the silhou-

ette of the shape. Figure 7.3 (Left) illustrates the difference of inner distance over

the standard Euclidean one.

Computation of inner distance involves forming a graph with landmark points

on the shape forming the nodes. Two nodes in this graph are connected if there is a

straight line path between the corresponding points which is completely inside the

shape contour. The corresponding edge weight is the Euclidean distance between

the two. From this graph, any standard shortest path algorithm can be used to

compute the inner-distance for all the unconnected nodes.

Figure 7.3: Inner distance and Relative angles. The two human silhouettes on the left

show the insensitivity of inner distance with articulation of part structures.

7.2.1.2 Relative Angles

Relative angles (A1 and A2) encode the angular relationship between a pair of

points. Absolute orientation of the line segment connecting the points is not in-

variant to rotations. Therefore, relative orientation of the connecting line segment
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with respect to the incident tangents at each end point is used. When using the

inner distance, this becomes the relative orientation of the first segment of the

path corresponding to the inner distance (Figure 7.3) (Right). The angles can be

computed easily during inner distance computation.

7.2.1.3 Contour Distance

The contour distance (CD) is analogous to geodesic distance for 3D shapes. For

2D silhouettes, the contour distance between two points is simply the length of

the contour between the two points. It captures the relative positions of the two

points with respect to the entire shape contour. The distance is robust to both

articulations and contour length preserving deformations. It complements inner

distance in characterizing the relative location of the point pair with respect to

the entire shape. Figure 7.4 shows the contour distance between two points of an

object across several deformations. Though the contour distance may seem sensi-

tive to missing points and outliers, we observe that quantization during indexing

phase makes it reasonably robust.

Figure 7.4: Contour Distance. The shown shapes illustrate the insensitivity of contour

distance to length-preserving deformations.

7.2.1.4 Articulation-invariant Center of Mass

The features described so far depend on the entire shape, but none of them capture

much information about the relative placement of various point pairs in the shape.

Though robust, such a representation may not be able to provide the desired level

of discriminability. To encode the relative placement, one can use the distance of
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the points and the line segment joining them from the center of mass as additional

features where shapes need to be matched across rigid deformations. But clearly,

these features are not invariant to articulations as the center of mass can change

appreciably with articulations. Therefore, we propose an articulation-insensitive

alternative to the traditional center of mass if invariance to articulation is required.

Here, we first describe how the location of articulation invariant center of mass

is determined followed by a description of the features derived from it. Determin-

ing such a point directly is not easy. The proposed approach first transforms a

given shape to an articulation-invariant space. All objects related by articulations

of their part structures get transformed to the same shape in the new space. This

essentially means that the distances between the transformed points are invariant

to articulations. In other words, the Euclidean distances between transformed

points should be the same as the inner distances in the original space.

The transformation is done using multi-dimensional scaling (MDS) [32]. MDS

essentially places the points in a new Euclidean space such that the inter-point dis-

tances are as close as possible to the given inner distances in a collective manner.

We use the classical MDS as opposed to other more accurate but iterative algo-

rithms for efficiency. The transformation computation involves spectral decompo-

sition of inner product matrix B, which is related to the (squared) inner-distance

matrix Dn×n as follows

B = −1

2
JDJ

J = I − 1

n
11T where, 11×n = [1, 1, · · · , 1]T (7.1)

The matrix B is symmetric, positive semidefinite and can be expressed as

B = V ΛV T where, Λ = diag(λ1, λ2, ....., λn) (7.2)

The required transformed coordinates in an m-dimensional output space can be
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obtained by

Xn×m = Vn×mΛ
1
2
m×m (7.3)

Figure 7.5 shows the result of performing MDS on a few shapes. Here m is taken to

be two for visualization. The approximation improves with the dimensionality of

the output space. As expected, the transformed shapes look quite similar across

articulations. The desired articulation-invariant center of mass is the center of

mass of the transformed shape.

Figure 7.5: Articulation-invariant center of mass. Row 1: Original shapes, Row 2:

Transformed shapes after MDS.

Given the articulation-invariant center of mass of a shape, we derive features

which capture the relative positioning of the point pairs. For each point pair,

distances (D1, D2, D3) of the points and the line segment joining them from the

estimated center of mass are computed. This is done in the transformed space

itself as the distances in the transformed space are insensitive to articulations.

7.2.2 Bag of Features

Given a shape, the pairwise geometrical features are computed for each pair of

landmark points on the shape. Here, each point pair is characterized by a 7-

dimensional feature vector (or less, depending on the invariant properties required

for the application), comprising of the features described above. The distance

based features in the vector are made robust to variations in scale by normalizing
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each with their medians. Note that here we provide a basic set of features that

are robust to rigid transformations and articulations of part structures. The exact

choice of the set of features may depend upon the semantics of the application

at hand. The collection of such feature vectors for all pairs of landmark points

characterize the shape.

It is worthwhile to note that though the various features are not entirely un-

correlated, they capture different characteristics of the shape. Even experiments

show that each one of them contributes to the good performance of the system.

7.3 Indexing and Retrieval of Shapes

In this section, we describe how the proposed representation is used for shape

indexing and retrieval. A shape is indexed by hashing each of its feature vectors to

the index table. This requires discretization of the space of feature vectors. Here,

we quantize each dimension of the vector independently using a suitably chosen

number of levels for each. Suppose {f1, f2, . . . , f7} denotes the 7-dimensional

feature vector. The number of levels assigned to each feature is empirically chosen

based on the robustness of the feature. If the number of quantization levels for

feature fi is given by 2Ni, then Ni bits are required to represent the feature. So

each feature vector consisting of 7 features is represented using N = N1 + · · · +
N7 number of bits. There are 2N possible combinations of the feature vectors

and hence any vector belongs to one of the 0, 1, 2, . . . , (2N − 1) bins in the hash

table. Though the appropriate number of bits assigned to each feature may vary

depending on the application, Table 7.1 shows the typical number of bits assigned

to each feature in our system.

Table 7.1: Number of quantization bits for the used features.
ID A1 A2 CD D1 D2 D3
4 2 2 4 2 2 2
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The quantization boundaries for each feature are chosen such that there are

almost same number of entries in each level. This is done by using a set of

training shapes which are representative of the database. In addition to being

the basic requirement of an indexing system, quantization provides robustness to

the variations in the actual values of the features across different instances of the

same shape.

7.3.1 Indexing

Figure 7.2 illustrates the overall indexing procedure. The steps in the indexing

are described below in detail.

1. For each shape in the database, landmark points are extracted from the

shape contour. Though one can choose these points judicially, we simply

pick points uniformly on the shape contours in all our experiments.

2. For each pair of landmark points, features are computed as described in

the previous chapter. This results in a collection of feature vectors for each

shape. If there are n landmark points, we have
(

n

2

)

feature vectors.

3. Each feature vector is quantized using the proposed quantization scheme.

4. The quantized feature vectors are mapped on to the appropriate bins in

the hash table. The ith bin contains 2-tuples of the form 〈sk, nki〉 ∀nki > 0,

where sk is the kth shape in the database and nki denotes the number of

feature vectors of shape sk that hash to bin i.

7.3.2 Retrieval

Given a query shape, the aim is to retrieve the similar shapes in the database as

efficiently as possible. Figure 7.6 illustrates the retrieval phase using a flow chart.

The different steps involved in the retrieval phase are enumerated below.
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Figure 7.6: Retrieval Algorithm.

1. Feature vectors for the query shape st are extracted in a manner similar to

the one used for indexing.

2. Each vector is quantized using the same quantization steps as used for the

shapes enrolled in the database.

3. Hashing each feature vector to the index table results in a list of matching

bins M = {i|nti > 0}, where nti is the number of query feature vectors

which hash to bin i. In general, the number of matching bins is much less

than the total number of bins in the hash table.
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4. The distance D(t, k) of the query st with each shape sk in the database is

initialized to zero.

5. Now we parse through the list M and update the distance of the query with

each enrolled shape at every step using the following distance metric

D(t, k) = D(t, k) +
1

2

(nti − nki)
2

nti + nki

(7.4)

where the shape sk has an entry 〈sk, nki〉 in the ith matching bin. If there is

no such entry for a shape sp in the bin, npi is taken to be zero. The choice

of distance metric is inspired by the standard χ2 statistic.

6. If during parsing, the distance for any particular shape in the database

exceeds a pre-specified threshold, then that shape is discarded from further

computation.

7. At the end of the parse, we get a list of shapes from the database which are

most similar to the query shape.

7.3.3 Computational Complexity

The computational complexity of the indexing phase depends on the complexity of

feature extraction. For a shape with n landmarks, the inner distance computation

is of complexity O(n3). Computation of relative angles and contour distances take

O(n). The complexity of calculating the articulation invariant center of mass is

O(n2) while deriving features based on it take O(n). Therefore, indexing a shape

takes O(n3). Note that indexing can be done off-line so that query processing

time is not affected. To ensure fairness, all running times reported here include

the time spent in indexing.

As in the indexing phase, for a query shape with n landmarks, feature extrac-

tion and hashing is O(n3). Hashing results in m ≪
(

n

2

)

matching bins. Suppose

each bin has p ≪ N entries, where N is the number of shapes in the database, we
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need to perform O(pm) distance updates (Equation 7.4). This does not take into

account the fact that a lot of shapes are discarded during retrieval which would

further reduce the query processing time. It is difficult to put a bound on how

large m and p can be. In the worst case, m can be as large as
(

n

2

)

and p as large

as N , but that does not happen in practice. With suitable quantization, p in-

creases much slower than N . Moreover, if elimination of dissimilar shapes during

retrieval process is taken into account, the complexity of the process depends on

the number of those database shapes which are somewhat similar to the query.

These attributes make the system quite scalable.

7.4 Experiments

In this section, we report the results of empirical evaluation of the proposed sys-

tem. The performance of the system is compared with many state-of-the art

matching algorithms on standard datasets. In addition, we highlight the com-

putational advantages of our indexing approach. In the next section, we also

perform experiments on human pose estimation and activity classification to fur-

ther highlight the usefulness of the proposed framework for real world problems

that involve large size databases. In all the experiments, we take 100 uniformly

sampled points on the shape contour as landmarks.

7.4.1 MPEG7 Shape Dataset

As our focus is to show the efficiency of the proposed system along with its ac-

curacy, we first test it on the MPEG7 CE-Shape-1 [66] dataset, which is the

probably the largest benchmark used for evaluating shape matching algorithms.

The dataset consists of 1400 silhouettes with 20 images each for 70 different ob-

jects. Figure 7.7 (Left) shows a few images from the dataset. The standard test

for this dataset is the Bullseye test. It is a leave-one-out kind of test where 40

most similar shapes are determined for every query shape. The final score is given
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by the ratio of the number of correct hits to the best possible number of hits

(20 × 1400).

Figure 7.7: (Left) Example shapes from MPEG7 CE Shape 1 dataset [66]; (Right)

Articulation database [74]: There are 8 objects with 5 shapes each. Each column in the

figure shows the different articulated state of an object from the database.

Table 7.2 compares the performance and computation time of the proposed

approach with many algorithms reported in the literature. In terms of accuracy,

the proposed algorithm performs quite well, though the performance is not ex-

actly at par with some of the very recently published approaches. On the other

hand, as can be seen from Table 7.2, the proposed approach takes several order

of magnitudes less time than other approaches. The system runs on a regular

desktop and is implemented in MATLAB. The run-times reported for other al-

gorithms are directly taken from the respective references and may vary slightly

due to differences in machine configurations. The accuracy and computational

time comparisons show that the proposed system achieves the original goal of de-

veloping a fast and efficient shape matching system that is scalable for large size

datasets without comprising much on the accuracy.

7.4.2 Articulation Database

The features used in our framework were chosen so as to support articulation-

invariant matching. Therefore, it is important to evaluate the performance of

the system on a dataset which explicitly deals with large articulations. Here we
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Table 7.2: Performance comparison on MPEG7 dataset. Dsc: shape context distance.

DP: dynamic programming based matching.
Algorithm Score Computation Time
CSS [83] 75.44%

Visual Parts [65] [66] 76.45%
Curve Edit [110] 78.17% 1s × 1400C2

(50 segments)
Gen. Models [131] 80.03% 0.2s × 1400C2

SC + Dsc [74] 64.59%
SC + TPS [18] 76.51% 0.2s × 1400C2

IDSC + Dsc [74] 68.83%
IDSC + DP [74] 85.40% 0.31s × 1400C2

HPM-Fn [82] 86.35% 0.1 − 0.2s × 1400C2

Shape Tree [34] 87.70% 0.5s × 1400C2

Proposed 81.8% 10 minutes

use the articulation dataset introduced in [74] which consists of 8 objects with 5

shapes each as shown in Figure 7.7 (Right).

We use the same test scheme as in [74]. For each shape, 4 most similar shapes

are selected and the number of correct hits for ranks 1, 2, 3 and 4 are calculated.

Clearly, the best performance of any system possible is to get 40 correct matches

at all the four ranks. Table 7.3 summarizes the results obtained. The proposed

approach favorably compares with other approaches. It is noteworthy that unlike

other approaches, our system does not require any alignment or costly matching

for computing similarity with each shape in the dataset.

Since the proposed set of features are meant to be insensitive to articula-

tions, we perform an analysis of the features on the articulation dataset. For this

analysis, we divide the features into three sets namely, inner distance + relative

angles, contour distance and articulation-invariant center of mass (AICM) based

features. Table 7.4 summarizes the performance of these feature sets on the artic-

ulation dataset. Interestingly, even individually all three feature sets outperform

the performance obtained using Shape Context based approach (Table 7.3).
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Table 7.3: Retrieval result on the articulation dataset.
Algorithm Rank 1 Rank 2 Rank 3 Rank 4

SC + DP [74] 20/40 10/40 11/40 5/40
IDSC + DP [74] 40/40 34/40 35/40 27/40

Proposed 40/40 38/40 33/40 20/40

Table 7.4: Analysis of the various features used on the articulation dataset.
Feature Rank 1 Rank 2 Rank 3 Rank 4

Inner distance + Angles 33/40 33/40 21/40 11/40
Contour distance 36/40 31/40 28/40 23/40

AICM-based 25/40 12/40 9/40 11/40
All combined 40/40 38/40 33/40 20/40

7.4.3 Kimia Dataset 1 and 2

Kimia dataset 1 [112] (Figure 7.8 (a)) consists of 25 shapes from 5 categories. The

experiment is run in a leave-one-out pattern. Similar to the articulation dataset,

the performance is measured by accumulating the correct matches at ranks 1, 2

and 3. The best one can get at any rank is 25. Table 7.5 compares the results

obtained with other approaches. The proposed indexing approach compares well

with other approaches.

Figure 7.8: Kimia database. (a) Kimia dataset 1 [112] consisting of 25 shapes from 5

categoris, (b) Kimia dataset 2 [109] consisting of 99 silhouettes from 9 categories.

Kimia dataset 2 [109] (Figure 7.8 (b)) is a larger version of dataset 1. It
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consists of 99 silhouettes from 9 categories. The performance is measured by

examining the correct matches at top 10 ranks for each query. The best one can

get for each rank is 99. Table 7.6 summarizes the results obtained. In addition to

being extremely efficient, the proposed approach compares favorably with many

existing algorithms.

Table 7.5: Retrieval result on Kimia 1 dataset.
Algorithm Rank 1 Rank 2 Rank 3

Sharvit et al. [112] 23/25 21/25 20/25
Gdalyahu et al. [39] 25/25 21/25 19/25
Belongie et al. [18] 25/25 24/25 22/25
IDSC + DP [74] 25/25 24/25 25/25

Proposed 25/25 25/25 23/25

Table 7.6: Retrieval result on Kimia 2 dataset.
1 2 3 4 5 6 7 8 9 10

SC [18] 97 91 88 85 84 77 75 66 56 37
Gen. Models [131] 99 97 99 98 96 96 94 83 75 48
Shock Edit [109] 99 99 99 98 98 97 96 95 93 82
IDSC + DP [74] 99 99 99 98 98 97 97 98 94 79

Our Method 99 97 98 96 97 97 96 91 83 75

7.4.4 ETH-80 database

The ETH-80 database [72] contains a total of 80 objects, 10 each from 8 differ-

ent categories (Figure 7.9). Each object is represented by 41 images taken from

viewpoints spaced equally over the upper viewing hemisphere resulting in a total

of 3280 images. We follow the intended testing protocol for the database which

is leave-one-object-out cross-validation. Each image in the database is compared

with all the images (all 41 views) from the other 79 objects and if the correct cat-

egory label is assigned, the recognition is considered successful. The recognition

rate is averaged over all the objects.
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Figure 7.9: The 8 object categories of the ETH-80 database [72]. Each category contains

10 objects with 41 views per object.

Table 7.7 summarizes the results obtained. The approaches listed in the table

use a single cue (either appearance or shape) for performing object recognition [72].

It is worthwhile to note that the best reported result on this dataset (to the best

of our knowledge) is 93.02% which is obtained using a decision trees [72] based

approach that combines the first seven approaches (i.e., combines multiple cues

of shape, color, etc.) for better performance. We see that among the approaches

which use only a single cue (as our approach uses only shape information), the

proposed approach performs quite well and is only next to IDSC+DP.

Table 7.7: Recognition result on the ETH-80 image dataset. The first row show sthe

different algorithms and the second row shows the recognition rate. All results other

the proposed one are obtained from [72].
Color DxDy Mag-Lap PCA PCA SC SC IDSC Proposed
Hist Masks Gray Greedy +DP +DP

64.85% 79.79% 82.23% 83.41% 82.29% 86.40% 86.40% 88.11% 87.48%
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7.5 Applications

Efficient shape matching and retrieval is useful for many practical applications.

Here, we describe two such applications, namely human pose estimation and ac-

tivity classification.

7.5.1 Human Pose Estimation

Due to the easy availability of capturing and storage devices, large amounts of

visual data is being captured. Data retrieval based on content rather than hu-

man annotation which might be absent or erroneous, has received much attention

recently. The ability to automatically describe human activities in long video

sequences is very useful for automatic video archiving, browsing and retrieval.

Though motion is a very important cue, human activities in videos can often be

described by the body pose in still frames [133]. In our context, human pose

estimation implies matching the corresponding human silhouettes in the 2D im-

ages based on their body posture and not explicitly estimating the 3D pose. For

efficient handling of large database sizes, the shape matching algorithms need to

be able to scale up to large database sizes.

7.5.1.1 Evaluation Protocol

As the underlying pose space is continuous, so exemplars cannot be easily classified

into positive and negative samples. Here, we use the same evaluation protocol as

followed by Tresadern and Reid [128]. If the body joint locations are known, then

for each query image Iq, the sum of squared errors between corresponding joint

center projections in the image between the query image and each image It in

the database are calculated. Let this distance in the pose space be denoted by

d(It, Iq). The database poses are then ranked in order of similarity to the query as

determined by the shape descriptor. Let the index of the closest training example

be r(1) and the furthest be r(N) where N is the number of images in the database.
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The curve f(k), given by

f(k) =

∑k

j=1 d(Ir(j), Iq)

k
. (7.5)

represents the mean distance of the k highest ranking database examples to the

query for k = 1, · · · , N . Intuitively speaking, the function determines how well

the ranking obtained using the shape descriptors correlates with the one given by

joint locations. Clearly, for a good shape matching approach, the best ranking

poses are closer to the query in joint locations space also. The exact shape of

the ideal curve (perfect correlation) is determined by the discriminability across

various poses in the joint locations space.

7.5.1.2 Experiments on MOCAP Data

We first evaluate the proposed shape indexing method using binary silhouettes of

a human body model generated from motion capture data which contains infor-

mation about the joint centers (http://mocap.cs.umd.edu). Figure 7.10 shows a

few examples of binary silhouettes.

Figure 7.10: Example silhouettes from the CMU MOCAP dataset.

The training data consists of 1500 binary silhouettes of size 128×128 from dif-

ferent motions. The evaluation is performed on over 400 synthetically generated

test silhouettes. The silhouettes generated from the synthetic data were auto-

matically labeled with the image projections of the joint centers for evaluation.
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Figure 7.11 shows the normalized curve of k/N against f(k)/f(N) where N is the

total number of training images. As mentioned earlier, the lower the curve is, the

better is the performance.

To evaluate the effectiveness of the proposed approach for human pose estima-

tion, we compare the results with two different approaches for shape representation

which are briefly discussed below.

Lipschitz embeddings: Often computing the distance of the query image

with all the images in the database is very costly. One solution is to embed

the data objects in a vector space so that the distances of the embedded objects

approximates the actual distances [47]. In Lipschitz embeddings, every image is

represented by the vector of distances from a chosen set of exemplars. Intuitively,

similar images will have similar distances to the chosen exemplars and thus have

similar feature vectors. This global shape representation has been successfully

used for estimating the 3D hand pose given an input image [10].

Histogram of Shape Contexts: Given an input silhouette, every contour

point is represented by its shape context which characterizes the distribution of the

other neighborhood contour points. The shape contexts of all the contour points

are then clustered using k-means and the cluster centers are used as a vector

quantization codebook for assigning each contour point on a given silhouette to a

cluster. A histogram over cluster assignments forms the feature vector for a given

silhouette. Recently this shape representation has been used for estimating the

3D pose of a human body from an input image [3].

Comparison of these approaches with the proposed approach for the task of

human pose estimation is shown in Figure 7.11. We see that the performance

of the proposed approach compares favorably with other shape descriptors. The

dashed line at unity indicates the average curve produced by random ordering

while the dash-dot curve indicates the best possible ranking where distance in

image space correlates perfectly with distance in pose space.

Table 7.8 compares the time (in seconds) taken by the different methods for
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Figure 7.11: Evaluation of the proposed method for human pose estimation. Compar-

isons with (a) Lipschitz embeddings (lipschitz) and (b) Histogram of Shape Contexts

(hists) are also shown. The dashed line at unity indicates the average curve produced

by random ordering while the dash-dot curve indicates the best possible ranking where

distance in image space correlates perfectly with distance in pose space.

the task of pose estimation in this experiment. We see that the proposed ap-

proach is much faster than Histogram of Shape Contexts but gives similar/better

performance. Though our approach takes longer time than Lipschitz embeddings,

the performance is significantly better.

Table 7.8: Time taken by different algorithms (in seconds) for human pose estimation.

Lipschitz HoSC Proposed Approach
101 985 393

7.5.1.3 Experiment on Figure Skating Data [133]

We also perform human pose estimation on a real figure skating dataset [133]. The

data consists of figure skating videos. As expected, it is unconstrained and involves

swift motion of the skater and real-world motion of the camera including pan, tilt
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and zoom making it very challenging. Figure 7.12 shows some representative

frames from the dataset.

Figure 7.12: Sample frames from the Figure Skating Data [133].

In [133], Wang et al. address the problem of discovering actions performed

by humans from still images in an unsupervised manner based on the body pose

and they perform experiments on figure skating data. They propose a deformable

template matching algorithm which tries to find an optimal assignment between

sets of points sampled from the two images using a linear programming-based re-

laxation technique. This being a computationally expensive process, they employ

a fast pruning method using shape contexts to handle large collection of images.

But in such a two stage process, if similar images are falsely discarded in the

initial pruning, those mistakes cannot be rectified in the later stage. Since the

proposed indexing framework is meant for efficient matching in large databases,

we evaluate it for the task of pose classification in this challenging dataset.

Low-level pre-processing of data: We first perform simple pre-processing

of the raw video data to obtain the binary silhouettes of the skater. First the

foreground pixels are separated from the background by building color models

for both which is followed by median filtering to reject small isolated blobs. A

bounding box is then fit to the foreground pixels by estimating the 2D mean and

second order moments along x and y directions and the binary image of the pix-

els inside the bounding box is used as the input to our algorithm. Though the

described pre-processing steps work reasonably well, the unconstrained nature of
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Figure 7.13: Visualization of similarity of the different poses of the skater using MDS.

MDS places the input silhouettes in a new Euclidean space such that the inter-silhouette

distances in the transformed space are as close to the distances obtained using the

proposed shape matching approach. We see that similar poses appear closer to each

other even after the dimensionality of the transformed space is reduced to two.

the input skating video presents numerous challenges like motion blur that cannot

be handled using such simple heuristics. Therefore, the extracted silhouettes are

noisy and present quite a challenge for any shape matching algorithm.

Matching result: We now evaluate our shape matching framework for the ex-

tracted noisy skating silhouettes. Since the pose space here is continuous, it is not

straightforward to divide the data into separate classes and perform quantitative

evaluation of the retrieval results. Here, we use MDS to analyze the effectiveness

of the proposed method for representing the different poses of the skater. MDS

places the input binary silhouettes in a new Euclidean space such that the inter-
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point distances (here each point represents an input silhouette) in the new space

are as close to the inter-silhouette distances obtained using the proposed shape

matching approach.

Note that to facilitate such a transformation, we need to have the inter-

silhouette shape distances across all the used shapes. Therefore, the proposed

retrieval process is performed without discarding any silhouette. Figure 7.13 shows

the result of performing MDS on a subset of the figure skating data. Here the

output space is taken to be two-dimensional for visualization purposes. The ap-

proximation obviously improves with the dimensionality of the output space. As

desired, similar poses appear closer to one another and different poses appear

farther apart in the transformed space.

Figure 7.14: Image retrieval based on pose. First column shows query image. Second

to sixth columns show the top 5 matches.

We also perform a retrieval experiment to retrieve similar poses from the data-

base for qualitative evaluation. Figure 7.14 shows the top five matches for a few

query images (shown in the first column). In the figure, other than for the sec-

ond query, the algorithm successfully returns images having similar pose as in the
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query. These examples show the ability of the proposed framework to effectively

match complicated shapes using noisy silhouettes extracted from real data.

7.5.2 Activity Classification

Though the proposed framework works quite well for matching human poses using

silhouettes from a still image (or a video frame), depending on the application it

may be necessary to analyze a sequence of contiguous frames jointly to infer the

action/activity taking place in those frames. For example, considering a single

frame of human walking sequence may not be sufficient to discriminate it against

other similar activities like running, jumping, etc.

The goal of activity classification is to classify the content of human activity

sequences in an unsupervised manner without any prior knowledge of the type

of actions being performed. Many activity classification methods have addressed

this task from a shape matching perspective [24] [21] [90] [137] [45]. Approaches

based on key frames [24] or eigenshapes [44] of foreground silhouettes perform

classification without taking the temporal information into account. Bobick and

Davis [21] incorporate the temporal information in the form of temporal templates

representing the motion properties at different spatial locations of an image se-

quence. Braided patterns extracted from a person walking in a direction orthogo-

nal to the optical axis of the camera has been used by Niyogi and Adelson [90] for

analyzing and recognizing walking figures. Recently, there has been tremendous

interest to consider space-time shapes generated in the space-time volume by the

performed activity [137] [45].

Here, we present a very simple approach to show the usefulness of the proposed

indexing approach for the task of activity classification. In addition to analyzing

the sequence of silhouettes to characterize the spatial information, we propose a

novel temporal shape representation to capture temporal characteristics of the ob-

served activity. Given an input silhouette sequence, a certain number of landmark
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frames containing both the spatial and temporal information is automatically ex-

tracted and analyzed using the indexing framework to recognize the activity in

the sequence. Note that any method which transforms the activity classification

task into a shape matching problem can benefit from the computational efficiency

provided by our framework, irrespective of the exact form of representation. The

following discussion provides the details of the approach and the results of the

experiments performed for its evaluation.

Spatial characterization: Depending on the input video sequence, the fore-

ground silhouettes are obtained using low-level image processing techniques. Tem-

poral clustering is performed on these silhouettes to obtain N number of clusters

based on the pose (N = 5 in our experiments). We use the distance transform to

do the clustering. But they can be taken as key frames or any shape representa-

tions from the approaches which view activity classification as a shape matching

problem. Temporal clustering results in N silhouettes which provide the spatial

characterization of the sequence of foreground silhouettes.

Temporal characterization: The indexing approach presented is useful for

efficient matching of shapes. In order to efficiently utilize the temporal information

for activity classification, we transform it to another shape matching problem. As

described before, an activity sequence can be represented using a 3D space-time

volume. The silhouettes are essentially slices of this volume taken at different

instances along the temporal axis. In a similar manner, one can slice the space-

time 3D volume along one of the spatial axis (here y-axis) to obtain 2D space-time

shapes which we call as temporal shapes. Similar to the temporal clustering of the

silhouettes, spatial clustering is performed on these temporal shapes to obtain

K (K = 5 in our experiments) key temporal shapes. Figure 7.15 shows the

landmark silhouettes and temporal shapes for a few activities. From the figure,

we see that this representation seems to contain discriminative information which

can be utilized for classifying different activities.

Using such silhouette and temporal shape representation, each video sequence
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Figure 7.15: The silhouettes (first column) and temporal shapes (second column) for a

few activities as chosen by our algorithm.

is represented with (N + K) 2D shapes (N silhouettes and K temporal shapes).

Note that these 2D shapes are ordered (in time and space, respectively). Each

shape is then indexed based on the computed features, resulting in separate (N +

K) hash tables. During retrieval, each shape of the query video is used to retrieve

similar shapes from the corresponding hash table in a manner similar to the one

described in the previous sections. The similarity scores of the retrieved shapes

are then fused in an additive manner to obtain the final similarity scores.

7.5.2.1 Experimental Evaluation

We evaluate the proposed approach on the activity dataset introduced in [45].

The dataset consists of 90 video sequences of nine different persons performing

ten different activities, namely, run, walk, skip, jumping jack (or jack in short)

jump forward on two legs (or jump in short), jump in place with two legs (pjump),

gallop sideways (side), wave with two hands (wave2), wave with one hand (wave1)

and bend. We follow a leave-one-out protocol as suggested in [45], i.e., for each

query sequence , we remove the entire sequence from the database and compare

it against the remaining 89 sequences. Table 7.9 shows the performance obtained

in this experiment using the proposed spatial and temporal characterization of
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activity sequences. The performance is measured by verifying if the best match

for each query sequence is from the same category or not. Clearly, the best

performance possible is to get 9 correct matches in all the diagonal entries (as

there are 9 instances per category that act as queries in a leave-one-out fashion).

The performance is comparable to the approach in [45] which computes features

from the complete space-time volume for classification.

Table 7.9: Activity classification performance obtained from silhouettes-based spatial

and temporal characterization. The two numbers in each table entry shows the perfor-

mance obtained using the proposed spatial and temporal characterizations, respectively.
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

bend (a1) 9/9 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
jack (a2) 0/0 8/9 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/0
jump (a3) 0/0 0/0 9/9 0/0 0/0 0/0 0/0 0/0 0/0 0/0
pjump (a4) 0/0 0/0 0/0 8/9 0/0 1/0 0/0 0/0 0/0 0/0

run (a5) 0/0 0/0 0/0 0/0 9/9 0/0 0/0 0/0 0/0 0/0
side (a6) 0/0 0/0 0/0 1/0 0/0 8/9 0/0 0/0 0/0 0/0
skip (a7) 0/0 0/0 1/0 0/0 0/1 0/0 8/7 0/1 0/0 0/0
walk (a8) 0/0 0/0 0/0 0/0 0/0 0/0 0/0 9/9 0/0 0/0
wave1 (a9) 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 8/8 1/1
wave2 (a10) 0/0 0/1 0/0 0/0 0/0 0/0 0/0 0/0 1/1 8/7

7.6 Representation of 3D range data

In this section, we address the problem of representation of 3D range data. The

representation should not only describe the object well but also generalize and

extend seamlessly to perform robust recognition and registration. In addition, we

also address the problem of registration and recognition of 3D point clouds i.e.,

given a pair of 3D point clouds we should be able to estimate the similarity of

the two and also find the rigid transformation that relates the two in case they

are reasonably similar. The aim is to develop an approach which does not rely

on either knowing or estimating the point-to-point correspondence between the
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two sets. Also, the approach should be able to match and register point clouds

separated by all possible rigid transformations and should degrade gracefully in

the presence of outliers or in the event of missing data.

Shape histograms [8], shape distributions [93], Extended Gaussian Images [49],

wavelets [38], higher order moments [33] etc. are a few of the descriptors which

have been explored to describe 3D shapes. Other than a few histogram based

features which are invariant to geometric transformations, the descriptors are nor-

malized by using the center of mass for translation, standard deviation for scale

and principal axes based alignment for rotation. Though translation and scale

normalizations perform reasonably well, PCA-normalization falls short of provid-

ing a robust alignment [56]. To this end, Kazhdan et al. [56] propose a spherical

harmonic representation of such descriptors to achieve rotation invariance. Here,

we also use spherical harmonics for rotation invariance but we apply it on implicit

values based feature vector which, as we show, is a more complete and robust

representation.

The alternative approach involves explicitly solving for optimal transformation

using registration methods like Iterative Closest Point Matching (ICP) [19] [141],

Generalized Hough Transform [13], Geometric Hashing [61], etc. before computing

the similarity of the models. Such approaches can be quite inefficient in a database

retrieval kind of application as one will need to register every query model with

all the models in the database (assuming the algorithm is able to register models

correctly across large transformations).

Given the advantages implicit representation provides, implicit surface gener-

ation has been an important area of research in Computer Graphics. The book

by Bloomenthal et al. [54] provides an excellent overview of the area. Most of

the methods define implicit surfaces in the form of quadrics, blobs or radial basis

functions around the input 3D points. Almost all of them assume that a polygonal

mesh connecting the 3D point cloud is given as input. In contrast, we generate

implicit surface using only 3D point clouds. The parameters of the implicit sur-
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face can be obtained by solving a set of linear equations which can be used to

perform robust recognition and registration. To perform object matching across

affine transformations, spherical harmonic decomposition is used to achieve ro-

tation invariance. Non-linear optimization is required to explicitly solve for the

transformation parameters.

7.6.1 Implicit representation of a surface

We use implicit surfaces based on a variational interpolation technique which is

a generalization of thin-plate interpolation. The method is similar to the one

proposed by Yngve et al. [37] with two main differences:

1. We do not use the polygonal mesh information and generate implicit surfaces

using just the 3D point cloud.

2. We use uniformly sampled points on concentric spheres as the pivot points

instead of choosing them adaptively in an iterative fashion as done in [37].

This provides us with a globally unique representation of the object. The draw-

back is that this can prevent us from getting a very precise representation of the

object but that is not the goal here as opposed to [37] where accurate recon-

struction is the main objective. The approximate isosurface, we obtain, helps in

generalization while not losing discriminable characteristics. These are the kind

of properties one desires from a representation for the task of matching.

Generation of variational implicit surfaces involves solving a scattered data

interpolation problem [132]. To create a variational implicit function, one needs

to choose a certain number of constraint points {x1, x2, . . . , xn}, along with a

set of implicit function values {h1, h2, . . . , hn} at the given constraint positions.

Typically, there are three types of constraints. Boundary constraints are those

constraint points which lie on the surface and take the value zero. The interior

constraints lie inside the surface represented by the point cloud and are given
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positive values. The exterior constraints lie outside the surface and are assigned

negative values. We use an implicit function of the form:

f(x) =

k
∑

j=1

djφ(x − cj) + P (x) (7.6)

Here cj are the locations of the pivots, dj are the weights which we need to

estimate, P (x) is a first degree polynomial to account for the linear and constant

portions of the implicit function f .

As we deal with point sets which represent object surfaces, the implicit func-

tions should be chosen to make the surfaces reasonably smooth. The smooth-

ness is also useful in making the representation fairly robust to outliers. There-

fore, we take φ(x) =‖ x ‖3 as this function minimizes the curvature functional
∫

xǫΩ

∑

i,j

(

∂2f(x)
∂xi∂xj

)2

dx [30]. Given a set of 3D points, we solve for the weights dj

and coefficients of the polynomial P (x) using the following linear constraints:

hi =

k
∑

j=1

djφ(xi − cj) + P (xi) (7.7)

These equations being linear with respect to dj and the coefficients of P (x),

can be formulated as
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The pivot points cj are sampled uniformly on a bunch of concentric spheres

around the center of mass of the object. As they are fixed irrespective of the
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object, we get a globally unique and compact representation of the 3D point

cloud in the form of the parameter vector (containing d’s and p’s) obtained by

solving the system in (7.8).

We use all the input 3D points to generate linear constraints of the form (7.7)

with zero as the implicit function value. As we do not use the polygon information,

it is not easy to identify the points which lie inside the object with certainty (if

the object is not convex). In comparison, choosing exterior points is much easier

even without any polygonal information. We envelop the point cloud with a

tight fitting ellipsoid with the axes of the ellipsoid aligned in the direction of the

principal components of the distribution of the 3D points. Points are sampled on

the enveloping ellipsoid to get the exterior constraints. The points on the ellipsoid

which lie inside the convex hull of the 3D point cloud are not considered. The

negative of the distance of each exterior point from the closest point in the point

cloud is assigned as the implicit function value to get the linear constraints of the

form (7.7).

Though one can come up with more complex and iterative strategies [37] to

get a better reconstruction but as mentioned before that is not our goal. We aim

at generating a smooth and approximate isosurface for a given object which is

representative of its class. Figure 7.16 shows a few isosurfaces generated using

this approach. It is worthwhile to note that only point cloud information is used

to generate these surfaces. In contrast, most state-of-the-art graphics approaches

use polygonal or volumetric information to generate isosurfaces.

7.6.2 Rotation invariant representation

Though the choice of the same set of pivots to model any point cloud provides

us with a unique representation, the estimated parameters are not invariant to

similarity transformations of the object. Thus two point clouds cannot be directly

compared based on their estimated parameter values.

Spherical harmonic decomposition of a spherical function provides a very sim-
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Figure 7.16: A few examples of the generated isosurfaces. All the surfaces were generated

using just 500 pivot points.

ple and efficient way to obtain a rotation invariant representation (though not loss-

less) of the function. The proposed approach provides a very efficient method to

generate approximate smooth isosurfaces of given 3D point clouds which as shown

in Figure 7.16, can help generalize without losing discriminability. Therefore, in-

stead of extracting some generic feature and using spherical harmonic transfor-

mation, we intend to use the isosurfaces generated from 3D point clouds to obtain

the rotation-invariant descriptor. To this end, we propose using implicit function

values as the spherical feature. We compute implicit function values using (7.6)

at uniformly sampled points on a set of concentric spheres around the object. The

spherical harmonic decomposition of these implicit values based spherical func-

tions is then computed for each sphere to get the rotation invariant signature as

described below.

If the implicit values based function can be represented in terms of spherical

harmonics as,

f(θ, φ) =

k
∑

l=0

l
∑

m=−l

almY m
l (θ, φ) (7.9)

then the norms,
√

∑

−l≤m≤l |alm|2 ∀ 0 ≤ l < k, are invariant to rotation.

These rotation invariant energies at different harmonic levels for all the concentric

spheres are used to form the desired rotation invariant feature vector. Quite
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clearly, larger the value of k is, the better the function can be represented using

the spherical harmonics. In our experiments, we set k to 64. Figure 7.17 shows

the ability of the proposed feature vector to measure similarity of various models

(from The Princeton Shape Benchmark [113]) reliably across changes in scale and

rotation.

The proposed rotation invariant descriptor helps in matching 3D point clouds
across arbitrary rotations.

Figure 7.17: The figure displays the ability of the proposed feature vector to match

objects across geometric transformations. In each row, the models are arranged in the

order of decreasing estimated similarity w.r.t. the leftmost model in the row.
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7.6.3 Estimation of the rigid transformation using isosurfaces

In this section, we will show how to estimate the underlying rotation between

two reasonably similar objects using their generated isosurfaces. Spherical har-

monic decomposition for handling rotation in 3D is analogous to that of Fourier

decomposition for handling translation. Though the phase information in Fourier

decomposition is useful in estimating the translation, spherical harmonics can not

directly be used for estimating the underlying rotation.

The approach makes use of the intuition that correct rotation will make a point

cloud satisfy the implicit function (Equation (7.6)) of the other at most points

and vice-versa i.e., R′ = R minimizes the following implicit function value for all

points if the correct underlying rotation is R:

f(xR
i ) =

k
∑

j=1

djφ(xR
i − R

′

(cj)) + P ((R
′

)−1(xR
i )) (7.10)

where xR
i are the points of the rotated object, cj are the pivots of the base object

while dj and P are the estimated isosurface parameters of the base object and R′ is

the rotation matrix corresponding to the hypothesized rotation. The optimization

to obtain the optimal R is done using lsqnonlin function in MATLAB. Transla-

tion and scale variations are taken care of using the traditional normalizations.

Figure 7.18 shows an example of registering two animals using this approach. It

is worthwhile to note that the method is able to cope with small mis-alignment

of the center-of-mass of the objects as can be seen in the shown example. In

addition, unlike ICP [19], the proposed approach performs registration without

explicitly solving for correspondence.
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Figure 7.18: Registration result: The figure shows two models before and after regis-

tration using the proposed approach.

7.7 Summary and Discussion

We presented an efficient and robust approach for fast matching and retrieval of

shapes. In most existing techniques, the alignment process has to be repeated

for every shape in the database for retrieval, making them much slower than the

proposed scheme. As dissimilar shapes are eliminated very early during our re-

trieval process, little effort is wasted in comparing a query to the database shapes

which are very different, making the system scalable. The extensive experimen-

tal evaluations performed illustrate the effectiveness of the proposed indexing

framework. Due to increase in the amount of data to be handled, most real-life

applications require efficient algorithms which can scale upto large size databases.

The results obtained are extremely promising and make a strong case for such

an efficient indexing based framework for shape matching. We also presented

an isosurface-based approach for representation and matching of 3D range data

without requiring correspondence establishment.
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Chapter 8

Directions for Future Research

Though the proposed methods work quite well for the problems they address, a

lot more needs to be done to apply the algorithms for more general objects and

scenes. The problems addressed in this dissertation and the different approaches

proposed leads to many interesting future directions of research. We will discuss

some of these research directions in this chapter.

8.1 Face recognition in challenging scenarios

In this dissertation, we have proposed a model based approach to estimate the

albedo of an object for matching objects across illumination and pose variations.

Other than variations in illumination and view-point, depending on the imaging

environment, there can be other external factors which result in deterioration of

the image quality. Blur, low resolution, occlusion in face images are often encoun-

tered in many scenarios, specially for images captured from a large distance. The

proposed approach uses an image estimation formulation to obtain the albedo es-

timate. The formulation can be extended to account for factors such as blur in the

input image. To account for large occlusions, recently Wright et al [134] proposed

a sparse representation for faces. In their approach, each test face image is written

as a linear combination of the face images of the same person in the gallery and

illumination variations is handled by including multiple images under different

illumination conditions in the gallery. It has been shown [70] that an image of

an arbitrarily illuminated face can be approximated by a linear combination of

the images of the same face, illuminated by nine different light sources placed at
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pre-selected positions. Since the estimated albedo can be used along with aver-

age facial surface normal to generate images under different illuminations, these

relighted images can be used along with the sparse representation to handle large

occlusions in addition to illumination variations with one a single image in the

gallery.

8.2 Illumination invariant tracking and recognition in video

In the dissertation, a single image was used for estimating the albedo of the object.

Since the accuracy of the initial albedo estimate depends on the angle between the

surface normal and the light source direction, if multiple images under different

illumination conditions are present, they can be suitably combined to obtain a

more accurate albedo estimate than what can be obtained using either one of

them. This is particularly important for shadow pixels and also finds natural

use in video based recognition where multiple frames are present, usually under

varying illumination conditions.

Many existing video-based face recognition methods [146] use very simple in-

tensity normalization techniques to account for the illumination variations across

frames. Though these measures work for simple cases, such simple techniques

may not be adequate in more complicated realistic scenarios when there may be

large illumination variation across the frames. Failure to handle these variations

can lead to poor tracking performance which in turn will lead to poor recognition

results. Using the albedo estimation technique from multiple images, we propose

an algorithm for illumination-invariant tracking and recognition of faces for video.

• The input to the algorithm is the video sequence, average surface normal and

the pose in the first frame.

• The albedo is estimated from the first frame of the video sequence.

• The face is tracked to the next frame. The albedo from the current frame is
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estimated and the correctness of the tracking result is evaluated by comparing

the albedo obtained with that of the previous frames.

• The albedo estimate is updated using the multiple image based formulation

and the sequence is repeated for each frame in the video.

The proposed method will probably be capable of dealing with large illumina-

tion changes since it is based on the albedo which is a intrinsic property of the

object. Also use of 3D information for tracking will make it possible for tracking

across large pose changes.

8.3 Hashing 3D shapes for fast matching and retrieval

We have described an approach for efficient articulation-invariant indexing and

retrieval of 2D contours. This can be directly extended for 3D range data. Using

line segments to model geometry of 3D shapes may not be rich enough for efficient

and discriminative characterization. One way of making the representation rich

is to use planes or tetrahedron as basis geometric entity.

Another way of characterizing 3D shapes is by representing them as a union

of 2D curves on the shape. Samir et al. [107] represent 3D surfaces using union of

level curves for the task of three-dimensional face recognition. Such an approach

essentially reduces the problem of matching 3D shapes to one of matching multiple

2D contours which can easily be modeled using the approach presented in the

chapter. The ideas from 2D shape matching and implicit surface matching can

also probably be combined for fast object matching under articulations which is

scalable for large databases.
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