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Abstract

Our work is motivated by the problem of managing data
on storage devices, typically a set of disks. Such high de-
mand storage servers are used as web servers or multime-
dia servers, for handling high demand for data. As the sys-
tem is running, it needs to dynamically respond to changes
in demand for different data items. There are known algo-
rithms for mapping demand to a layout. When the demand
changes, a new layout is computed. In this work we study
the data migration problem, which arises when we need to
quickly change one layout to another. This problem has been
studied earlier when for each disk the new layout has been
prescribed. However, lack of such information leads to an in-
teresting problem that we call the correspondence problem,
whose solution has a significant impact on the solution for
the data migration problem. We examine algorithms for the
data migration problem in more detail and identify variations
of the basic algorithm that seem to improve performance in
practice, even though some of the variations have poor worst
case behavior.

1 Introduction

To handle high demand, especially for multimedia data, a
common approach is to replicate data objects within the
storage system. Typically, a large storage server consistsof
several disks connected using a dedicated network, called a
Storage Area Network. Disks typically have constraints on
storage as well as the number of clients that can access data
from a single disk simultaneously. The goal is to have the
system automatically respond to changes in demand patterns
and to recompute data layouts. Such systems and their�This research was supported by NSF Award CCR-0113192.yComputer Science Department and IMSC and ISI, University ofSouth-
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applications are described and studied in, e.g., [5, 6, 19]
and the references therein.

Approximation algorithms have been developed [13, 14,
15, 7, 10] to map known demand for data to a specific data
layout pattern to maximize utilization1. In the layout, we
compute not only how many copies of each item we need,
but also a layout pattern that specifies the precise subset of
items on each disk2. The problem isNP -hard, but there are
polynomial time approximation schemes [7, 14, 10]. Given
the relative demand for data, an almost optimal layout can be
computed.

Over time as the demand for data changes, the system
needs to createnew data layouts. The problem we are
interested in is the problem of computing a data migration
plan for the set of disks to convert an initial layout to a
target layout. We assume that data objects have the same
size (these could be data blocks or files) and that it takes
the same amount of time to migrate any data item between
any pair of disks. The crucial constraint is that each disk
can participate in the transfer of only one item – either as
a sender or as a receiver. Our goal is to find a migration
schedule to minimize the time taken (i.e., number of rounds)
to complete the migration (makespan) since the system is
running inefficiently until the new layout has been obtained.

A special case of this was studied in [8]—they compute
a movement schedule butdo not allow the creation of
new copies of any data object. It addresses only the data
movementproblem. (So for example, one cannot create extra
copies of any data item, but can just change on which disks
they are stored.) The problem studied in [8] is formally
defined as follows: given a set of disks, with each storing
a subset of items and a specified set of move operations
(each move operation specifies which data object needs to be
moved from one disk to another), how do we schedule these
move operations? If there are no storage constraints, then
this is exactly the problem of edge-coloring the following
multigraph. Create a graph that has a node corresponding to
each disk and a directed edge corresponding to each move
operation that is specified. Algorithms for edge-coloring

1Utilization refers to the total number of clients that can beassigned to
a disk that contains the data they want.

2This is not completely accurate and we will elaborate on thisstep later.
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multigraphs can now be applied to produce a migration
schedule since each color class represents a matching in the
graph that can be scheduled simultaneously. Computing a
solution with the minimum number of rounds is NP-hard,
but several good approximation algorithms are available for
edge coloring. With space constraints on the disk, the
problem becomes challenging. In [8] it is shown that with the
assumption that each disk has one spare unit of storage, very
good constant factor approximations can be developed. The
algorithms use at most4d�G=4e colors with at mostn=3
bypass nodes, or at most6d�G=4e colors without bypass
nodes3, where�G is the max degree of the transfer graph,
andn is the number of disks.

On the other hand, to handle high demand for popular
objects, new copies will have to be dynamically created and
stored on different disks. This means that we crucially need
the ability to have a “copy” operation in addition to “move”
operations. In fact, one of the crucial lower bounds used in
the work on data migration [8] is based on a degree property
of the multigraph. For example, if the degree of a node isÆ,
then this is a lower bound on the number of rounds that are
required, since in each round at most one transfer operation
involving this node may be done. For copying operations,
clearly this lower bound is not valid. For example, suppose
we have a single copy of a data item on a disk. Suppose
we wish to createÆ copies of this data item onÆ distinct
disks. Using the transfer graph approach, we could specify
a “copy” operation from the source disk to each of theÆ
disks. Notice that this would take at leastÆ rounds. However,
by using newly created copies as additional sources we can
createÆ copies indlog(Æ + 1)e rounds, as in the classic
problem of broadcasting by using newly created copies as
sources for the data object. (Essentially each copy spawns a
new copy in each round.)

Themost general problemof interest is thedata migra-
tion problem with cloning [11] when data itemi resides in
a specified (source) subsetSi of disks and needs to be moved
to a (destination) subsetDi. In other words, each data item
that initially belongs to a subset of disks, needs to be moved
to another subset of disks. (We might need to create new
copies of this data item and store it on an additional set of
disks.) Figure 1 depicts an example.

Different communication models can be considered
based on how the disks are connected. We use the same
model as in the work by [8, 1] where the disks may commu-
nicate on any matching; in other words, the underlying com-
munication graph allows for communication between any
pair of devices via a matching (a switched storage network
with unbounded backplane bandwidth). These algorithms
can also be extended to models where the size of the match-
ing for each round is constrained. This can be done by a

3A bypass node is a node that is not the target of a move operation but is
used as an intermediate holding point for a data item.
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Figure 1: An initial and target layouts as well as their
correspondingSi’s andDi’s
simple simulation, where we only choose a maximal subset
of transfers to perform in each round.

This model best captures an architecture of parallel
storage devices that are connected on a switched network
with sufficient bandwidth and is most appropriate for our
application.

1.1 The Correspondence Problem
Given a set of data objects placed on disks, we shall assume
that what is important is the grouping of the data objects and
not their exact location on each disk. For example, we can
represent a disk by the setfA;B;Cg indicating that data
objectsA;B, andC are stored on this disk. If we move the
location of these objects on the same disk, it does not affect
the set corresponding to the disk in any way.

Data layout algorithms (such as the ones in [13, 14,
10, 7]) take as input a demand distribution for a set of data
objects and outputs a groupingS10 ; S20 ; : : : SN 0 as a desired
data layout pattern on disks10; 20; : : : ; N 0. (The current
layout is assumed to beS1; S2 : : : SN .) It is not clear that we
need the data corresponding to the set of itemsS10 to be on
(original) disk 1. For example the algorithm simply requires
that a new grouping be obtained where the items in setS10
be grouped together on a disk with certain capabilities. For
example, ifS3 = S10 then by simply “renaming” disk 3
as disk10 we have obtained a disk with the set of itemsS10 , assuming that disks10 and 3 have the same capabilities.
Clearly, we need to compute a perfect matching between the
initial and final layout sets. An edge is present betweenSi
andSj0 if disk i has the same capabilities as diskj0. The
weight of this edge is obtained by the number of “new items”
that need to be moved toSi to obtainSj0 . A minimum weight
perfect matching in this graph gives thecorrespondencethat
minimizes the total number of changes, butnot the number
of rounds. Once we fix the correspondence, we need to
invoke an algorithm to compute a data migration schedule
to minimize the number of rounds. Since this step involves
solving an NP-hard problem, we will use a polynomial
time approximation algorithm for computing the migration.
However, we still need to pick a certain correspondence
before we can invoke a data migration algorithm.

There are two central questions in which we are inter-
ested; these will be answered in Section 6.3:
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� Which correspondence algorithm should we use?
We will explore algorithms based on computing a
matching of minimum total weight and matchings
where we minimize the weight of the maximum weight
edge. Moreover, the weight function will be based on
estimates of how easy or difficult it is to obtain copies
of certain data.� How good are our data migration algorithms once
we fix a certain correspondence?Even though we
have bounds on the worst case performance of the
algorithm, we would like to find whether or not its
performance is a lot better than the worst case bound.
(We do not have any example showing that the bound
is tight.) In fact, it is possible that other heuristics
perform extremely well, even though they do not have
good worst case bounds [11].
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Figure 2: Figure to illustrate how a bad correspondence can
yield an poor solution for data movement.

For example, in Figure 2 we illustrate a situation where
we have 5 disks with the initial and final configurations as
shown. By picking the correspondence as shown, we end up
with a situation where all the data on the first disk needs to
be changed. We have shown the possible edges that can be
chosen in the transfer graph along with the labels indicating
the data items that we could choose to transfer from the
source disk to the destination disk. The final transfer graph
shown is a possible output of a data migration algorithm.
This will take 5 rounds since all the data is coming to a
single disk; node 1 will have a high in-degree. ItemV can
be obtained from tertiary storage, for example (or another
device). Clearly, this set of copy operations will be slow and
will take many rounds.
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Figure 3: Figure to illustrate how a good correspondence can
yield significantly better solutions for data movement.

On the other hand, if we use the correspondence as
shown by the dashed edges in Figure 3, we obtain a trans-
fer graph where each disk needs only one new data item and
such a transfer can be achieved in two rounds in parallel.
(The set of transfers performed by the data migration algo-
rithm are shown.)

Finally, it is not clear that a solution obtained by the
series of optimization problems we have identified (namely,
the correspondenceproblem and thedata migrationprob-
lem) would necessarily give an optimal or close to optimal
solution in the worst case.

1.2 Contributions
In recent work [11], it was shown that the data migration
with cloning problem is NP-hard and has a polynomial
time approximation algorithm with a worst case guarantee
of 9.5. Moreover, the work also explored a few simple
data migration algorithms. Some of the algorithms cannot
provide constant approximation guarantee, while for some of
the algorithms no approximation guarantee is known. In this
paper, we conduct an extensive study of these data migration
algorithms’ performance under different changes in user
access patterns. We also show that a good correspondence
solution can improve the performance of the data migration
algorithms by a factor of 2, relative to a bad solution. A
more detailed observations and results of the study is given
in Section 6.

2 Models and Definitions

In thedata migration problem, we haveN disks and� data
items. For each itemi, there is a subset of disksSi andDi.
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Initially only the disks inSi have itemi, and all disks inDi want to receivei. Note that after a disk inDi receives
item i, it can be a source of itemi for other disks inDi
which have not received the item yet. Our goal is to find a
migration schedule using a minimum number of rounds, that
is, to minimize the total amount of time to finish the data
migration schedule. We assume that the underlying network
is fully connected and the data items are all the same size;
in other words, it takes the same amount of time to migrate
an item from one disk to another. The crucial constraint is
that each disk can participate in the transfer of only one item
- either as a sender or as a receiver. Moreover, as we do not
use any bypass nodes, all data is only sent to disks that desire
it.

Our algorithms make use of known results on edge
coloring of multigraphs. Given a graphG with max degree�G and multiplicity� the following results are known (see
[3] for example). Let�0 be the edge chromatic number ofG.

THEOREM 2.1. (Vizing [18]) If G has no self-loops then�0 � �G + �.

THEOREM 2.2. (Shannon [16]) IfG has no self-loops then�0 � b 32�G
.
3 The Data Migration Algorithm

Define �j as jfijj 2 Digj, i.e., the number of different
setsDi, that a diskj belongs to. We then define� asmaxj=1:::N �j . In other words,� is an upper bound on the
number of items a disk may need. Note that� is a lower
bound on the optimal number of rounds, since diski that
attains the maximum, needs at least� rounds to receive all
the itemsj such thati 2 Dj , as it can receive at most one
item in each round.

Moreover, we may assume thatDi 6= ; andDi\Si = ;.
(We simply define the destination setDi as the set of disks
that need itemi and do not currently have it.)

Here we only give a high level description of the algo-
rithm. We describe the details in Appendix 6.3.
Algorithm Data Migration.

1. For an itemi decide a unique sourcesi 2 Si so that� = maxj=1;:::;N (jfijj = sigj + �j) is minimized.
In other words,� is the maximum number of items for
which a disk may be a source (si) or a destination.

2. Find a transfer graph for items such thatjDij � � as
follows.

(a) We first compute a disjoint collection of subsetsGi; i = 1 : : :�. Moreover,Gi � Di andjGij =b jDij� 
.
(b) We have each itemi sent to the setGi.
(c) We now create a transfer graph as follows. Each

disk is a node in the graph. We add directed

edges from disks inGi to (� � 1)b jDij� 
 disks
in Di n Gi such that the out-degree of each node
in Gi is at most� � 1 and the in-degree of each
node inDi n Gi is 1. We redefineDi as a set
of jDi n Gij � (� � 1)b jDij� 
 disks which do not
receive itemi so that they can be taken care of
in Step 3. Note that the redefined setDi has size< �.

3. Find a transfer graph for items such thatjDij < � as
follows.

(a) For each itemi, find a new sources0i in Di. A
disk j can be a sources0i for several items as long
as
Pi2Ij jDij � 2�� 1 whereIj is a set of items

of which j is a new source.

(b) Send each itemi from si to s0i.
(c) Create a transfer graph. We add a directed edge

from the new source of itemi to all disks inDi n fs0ig.

4. We now find an edge coloring of the transfer graph
obtained by merging two transfer graphs in Steps 2(c)
and 3(c). The number of colors used is an upper bound
on the number of rounds required to ensure that each
disk inDj gets itemj.
There are several components needed to implement this

algorithm.

1. Step 1: we use a network flow approach to find an
optimal solution for�.

2. Step 2(a): we again use a network flow approach to find
the setsGi.

3. Step 2(b): to get anO(1) approximation this step is
quite complex (see Appendix A). We also use a simpler
broadcasting scheme which makes the worst case boundO(logN).

4. Step 3(a): we use an algorithm for the generalized
assignment problem [17].

5. Steps 3(b) and 4: we use an algorithm for edge-coloring
multigraphs [2].

THEOREM 3.1. (Khuller, Kim, and Wan [11]) The algo-
rithm described above has a worst case approximation ratio
of 9.5.

4 Different Algorithms for the Correspondence
Problem

To match disks in the initial layout with disks in the target
layout, we tried the following methods:
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1. Find a perfect matching that minimizes the maximum
weight of the edges in the matching. Create a bipartite
graph with two copies of disks. The weight of matching
diskp in the initial layout with diskq in the target layout
is the number of new items that diskq needs to get from
other disks (because disksp does not have these items).

2. Minimum weighted perfect matching using the weight
function defined in (1).

3. Minimum weighted perfect matching with another
weight function that takes the ease of obtaining an item
into account. Suppose diskp in the initial layout is
matched with diskq in the target layout, and letS be
the set of items that diskq needs which are not on
disk p. The weight for matching these two disks isPi2S max(log jDijjSij ; 1).

4. Direct correspondence. Diski in the initial layout is
always matched with diski in the target layout.

5. Random matching.

5 Experimental Framework

The framework of our experiments is as follows:

1. Run the sliding window algorithm [7] to create an initial
layout, given the number of user requests for each data
object. In Section 5.1 we describe the distributions we
used in generating user requests. These distributions are
completely specified once we fix the ordering of data
objects in order of decreasing demand.

2. Shuffle the ranking of items. Generate the new request
demand for each item according to the probabilities
corresponding to the new ranking of the item. To obtain
a target layout, take one of the following approaches.

(a) Run the sliding window algorithm again with the
new request demands.

(b) Use other (than sliding window) methods to create
a target layout. The motivation for exploring these
methods is (a) performance issues (as explained
later in the paper) as well as (b) that other algo-
rithms (other than sliding window) could be use-
ful for creating layouts. The methods considered
here are as follows.

i. Rotation of items: Suppose we numbered the
items in non-increasing order of the number
of copies in the initial layout. We make a
sorted list of items of sizek = b�50
, and let
the list bel1; l2; : : : ; lk. Item li in the target
layout will occupy the space of itemli+1 in
the initial layout, while itemlk in the target
layout will occupy the positions of iteml1

in the initial layout. In other words, number
of copies of itemsl1; : : : ; lk�1 are decreased
slightly, while the number of copies of itemlk is increased significantly.

ii. EnlargingDi for items with smallSi: Repeat
the following forb�20
 times. Pick an items
randomly having only one copy in the current
layout. For each itemi that has more than
one copy in the current layout, there is a
probability of 0:5 that itemi will randomly
give up the space of one of its copies, and the
space will be allocated to items in the new
layout for the next iteration. In other words, if
there arek items having more than one copy
at the beginning of this iteration, then items
is expected to gaink2 copies at the end of the
iteration.

3. Run different correspondence algorithms mentioned in
Section 4 to match a disk in the initial layout with a disk
in the target layout. Now we can find the set of source
disks and destination disks for each item.

4. Run different data migration algorithms, and record the
number of rounds needed to finish the migration.

5.1 User Request Distributions
We generate the number of requests for different data ob-
jects using a Zipf distribution and a Geometric distribution.
We note that few large-scale measurement studies exist for
the applications of interest here (e.g., video-on-demand sys-
tems), and hence below we are considering several poten-
tially interesting distributions. Some of these correspond to
existing measurement studies (as noted below) and others we
consider to explore the performance characteristics of oural-
gorithms and to further improve the understanding of such
algorithms. For instance, a Zipf distribution is often usedfor
characterizing people’s preferences.
Zipf Distribution
The Zipf distribution is defined as follows [12]:

Prob(request for moviei) = 
i1�� 8i = 1; : : : ;M
and0 � � � 1

where 
 = 1H1��M and H1��M =PMj=1 1j1��
and � determines the degree of skewness. For instance,� = 1:0 corresponds to the uniform distribution, whereas� = 0:0 corresponds to the skewness in access patterns
often attributed to movies-on-demand type applications, e.g.,
similar to themeasurementsperformed in [4]. We assign�
to be0 and0:5 in our experiments below.
Geometric Distribution
We also tried a geometric distribution in order to investigate
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how a more skewed distribution affects the performance of
the data migration algorithm. The distribution is defined as
follows:

Prob(request for moviei) = (1� p)i�1p 8i = 1; : : : ;M
and0 < p < 1

where we usep set to0:25 and0:5 in our experiments below.

5.2 Shuffling methods
1. Randomly promote 20% of the items. For each chosen

item of ranki, we promote it to rank1 to i�1, randomly.

2. Promote the least popular item to the top, and demote
all other items by one rank.

5.3 Data Migration Algorithms
We now describe the different data migration algorithms
which we tried in the experiments.

1. 9.5-approximation algorithm for data migration. This
algorithm uses several complicated components to
achieve constant factor approximation guarantee. We
consider simpler variants of these components. The
variants may not give good theoretical bounds.

(a) in Step 2(a) we find the minimum integerm such
that there exist disjoint setGi of sizeb jDijm 
. The

value ofm should be between�� = PNi=1 �iN and�.

(b) in Step 2(b) we use a simple doubling method to
satisfy all requests inGi. Since all groups are
disjoint, it takesmaxi log jGij rounds.

(c) in Step 3 we do not find a new sources0i. InsteadSi send itemi toDi directly for small sets. We try
to find a schedule that minimizes the maximum
total degree of disks in the final transfer graph in
Step 4.

(d) in Step 3(a) when we find new sources0i, Si can
be candidates as well asDi. If s0i 2 Si, then we
can save some rounds to send itemi from si to s0i.

The worst case time complexity of all of the above
algorithms, except for variant (c), isO((n2 +�)n2� log (n2+�)2n2� ). The worst case time complexity
of variant (c), which does not find new sourcess0i, isO((n +�)n� log (n+�)2n� log�).

2. Edge-coloring on a transfer graph. We can find a
transfer graph, given the initial and target layout. Find
an edge coloring of the transfer graph to obtain a valid
schedule, and the number of colors used is an upper
bound on the total number of rounds. The worst case
time complexity here isO((n + �)n� log (n+�)2n� +n2�2).

3. Heuristics using unweighted matching. Repeatedly re-
move an unweighted matching from the transfer graph.
Its worst case time complexity isO(n4�).

4. Heuristics using weighted matching. Repeatedly re-
move a weighted matching from the transfer graph,
where the weight between diskv andw is maxi(1 +log jDijjSij ), over all itemsi wherev 2 Si; w 2 Di, orw 2 Si; v 2 Di. The worst case time complexity here
isO(n4�).

5. Broadcasting items one by one. We process each itemi sequentially and satisfy the demand by doubling the
number of copies of an item in each round. The worst
case time complexity here isO(n�).

6 Results

In this section we present the parameters used in the experi-
ments and a summary of our results.

6.1 Parameters
We ran a number of experiments with 60 disks. For each cor-
respondence method, user request distribution, and shuffling
method, we generated 20 inputs (i.e., 20 sets of initial and
target layouts) for each set of parameters, and ran different
data migration algorithms on those instances. In the Zipf dis-
tribution, we used� values of0 and0:5, and in the Geometric
distribution, we assignedp values of0:25 and0:5.

We tried three different pairs of settings for space and
load capacities, namely: (A) 15 and 40, (B) 30 and 35,
and (C) 60 and 150. We obtained these numbers from the
specifications of the latest SCSI hard drives. For example,
the latest 72GB 15,000 rpm disk can support a sustained
transfer rate of 75MB/s with an average seek time of around
3.5ms. Considering MPEG-2 movies of 2 hours each with
encoding rates of 6Mbps, and assuming the transfer rate
under parallel load is 40% of the sustained rate, the disk can
store 15 movies and support 40 streams. The space capacity
30 and the load capacity 35 are obtained from using a 150GB
10,000 rpm disk with a 72MB/s sustained transfer rate. The
space capacity 60 and the load capacity 150 are obtained
by assuming that movies are encoded using the MPEG-4
format. So a disk is capable of storing more movies and
supporting more streams.

6.2 Summary of Results
In the tables below we present the average for the 20 inputs
mentioned above. In addition, in Figures 4 and 5 we present
bar charts, corresponding to setting (A) (as described in Sec-
tion 6.1) in Tables 2 and 4, in order to better illustrate the
comparison of the algorithms’ average performance to the
lower bound. Moreover, we present results of three repre-
sentative inputs individually, to illustrate the performance of
the algorithms under the same initial and target layouts. This
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presentation is motivated as follows. Theabsoluteperfor-
mance of each run is largely a function of the differences be-
tween the initial and the target layouts (and this is true forall
algorithms). That is, a small difference is likely to resultin
relatively few rounds needed for data migration, and a large
difference is likely to result in relatively many rounds needed
for data migration. Since a goal of this study is to understand
therelativeperformance differences between the algorithms
described above, i.e., given the same initial and target lay-
outs, we believe that presenting the data on a per run basis is
more informative (given our goal). That is, considering the
average alone somewhat obscures the characteristics of the
different algorithms.

For clarity of presentation, the tables below show results
using setting (A) described in Section 6.1, unless otherwise
noted. The results for the other two settings, (B) and (C),
are qualitatively similar and are included in Appendix B for
completeness.
Different correspondence methods
We first consider the correspondence problem. From the
tables depicted below, we found that using a matching based
algorithm is important and can affect the performance of all
methods by a factor of 2 if a bad correspondence, using a
random matching for example, is chosen. However, using
a simpler weight function (2) or a more involved one (3)
does not seem to affect the behavior in any significant way
(often these matchings are the same). We also observed that
the simple min max matching (1) always returns the same
matching as the simple min sum matching (2) in all instances
we tried. Since direct correspondence does not perform
as well as other weight-based matchings, this also suggests
that a good correspondence method is important. However,
the performance of direct correspondence was reasonable
when we promoted the popularity of one item. This can be
explained by the fact that in this case sliding window obtains
a target layout which is fairly similar to the initial layout.
Different data migration algorithms
After performing all these experiments, we do a post-mortem
analysis of the data migration algorithm. We experimented
with different variants of the 9.5-approximation algorithm
for data migration, because we found that the algorithm
spends a significant portion of rounds in certain steps. How-
ever, there exist simpler methods to perform the same steps
that may not guarantee a constant approximation. For Step 3
(where we want to satisfy smallDi), we found that sending
the items fromSi to smallDi directly using edge coloring,
without using new sourcess0i, is a much better idea. Even
though this makes the algorithm anO(�) approximation al-
gorithm, the performance is very good under both the Zipf
and the Geometric distributions, since the sources are not
concentrated on one disk and only a few items increase the
number of copies by a large amount.

In addition, we thought that making the setsGi slightly
larger by using� was a better idea. This reduces the average

degree of nodes in later steps such as in Step 2(c) and Step
3 where we send the item to disks inDi nGi. However, the
experiments shown it usually performs slightly worse than
the algorithm using�.

For Step 3(a) (where we identify new sourcess0i), we
found that the performance of the variant that includesSi,
in additional toDi, as candidates for the new sources0i
is mixed. Sometimes it is better than the original9:5-
approximation algorithm, but more often it is worse.

For Step 2(b) (where we send the items from the sourcesSi to Gi), we found that doing a simple broadcast is gener-
ally a better idea, as we can see from the results in (A), Input
1 in Table 4 and (A), Input 1 in Table 5. Even though this
makes the algorithm anO(log n) approximation algorithm,
very rarely is the size ofmaxGi large. Under the input
generated by Zipf and Geometric distributions, the simple
broadcast generally performs the same as the original data
migration algorithm since the size ofmaxGi is very small.

Out of all the heuristics, the matching-based heuristics
perform very well in practice. The only cases where they
perform extremely badly correspond to hand-crafted (by us)
bad examples. Suppose, for example, a set of� disks
are the sources for� items (each disk has all� items).
Suppose further that the destination disks also have size�
each and are disjoint. The result is listed in Table 1. Our
algorithm sends each of the items to one disk inDi in the
very first round. After that, a broadcast can be done in the
destination sets as they are disjoint, which takesO(log�)
rounds in total. The matching-based algorithm can take up to� rounds, as it can focus on sending itemi at each round by
computing a perfect matching of size� between the source
disks and the destination disks for itemi in each round.
Since any perfect matching costs the same weight in this
case, the matching focuses on sending only one item in each
round. We implemented a variant of the weighted matching
heuristic to get around this problem by adding a very small
random weight to each edge in the graph. As we can see
from Table 1, although this variant does not perform as well
as our migration algorithms, it only takesO(log�) rounds.
Moreover, we ran this variant with the inputs generated
from Zipf and Geometric distributions, and we found that it
frequently takes the same number of rounds as the weighted
matching heuristic. In some cases it performs better than
the weighted matching heuristic, while in a few cases its
performance is worse.

Given the performance of different data migration algo-
rithms illustrated in Figure 4 and Table 2, the two matching-
based heuristics are comparable. Matching-based heuristics
perform the best in general, then the edge-coloring heuristic,
then the data migration algorithms, while processing items
one-by-one comes last. The main reason why edge-coloring
heuristic performs better than the9:5-approximation data
migration algorithm is because the input contains mostly
move operations, i.e., the size ofSi andDi is at most2 for
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at least 80% of the items. The Zipf distribution does not
provide enough cloning operations for the data migration al-
gorithm to show its true potential (the sizes ofGi are mostly
zero, with one or two items having size of 1 or 2). Process-
ing items one by one is bad because we have a lot of items
(more than 300 in setting (A)), but most of the operations
can be done in parallel (we have 60 disks, meaning that we
can support 30 copy operations in one round). Under the
Zipf distribution, since the sizes of most setsGi are zero, the
data migration variant that send items fromSi directly toDi
is essentially the same as the coloring heuristic. Thus they
have almost the same performance.
Under different input parameters
In additional to the Zipf distribution, we also tried the Geo-
metric distribution because we would like to investigate the
performance of the algorithms under more skewed distribu-
tions where more cloning of items is necessary. As we can
see in Figure 5 and Table 4, we found that the performance of
the coloring heuristic is worse than our data migration algo-
rithms, especially whenp is large (more skewed) or when the
ratio of the load capacity to space capacity is high. However,
the matching-based heuristics still perform the best.

We also investigated the effect on the performance of
different algorithms under higher ratio of the load capacity
to space capacity. We found that the results are qualitatively
similar, and thus we omit them here.

Moreover, in the Zipf distribution, we assigned different
values of�, which controls the skewness of the distribution,
as 0:0 and 0:5. We found that the results are similar in
both cases. While in the Geometric distribution, a higher
value ofp (0:5 vs0:25) gives our data migration algorithms
an advantage over coloring heuristics as more cloning is
necessary.
Miscellaneous
Tables 5 and 6 show the performance of different algorithms
using inputs where the target layout is derived from the initial
layout, as described in Step 2(b)i and Step 2(b)ii in Section5.
Note that when the initial layout and the target layout are
very similar, the data migration can be done very quickly.
The number of rounds taken is much fewer than the number
of rounds taken using inputs generated from running the
sliding window algorithm twice. This illustrates that it may
be worthwhile to consider developing an algorithm which
takes in an initial layout and the new access pattern, and
then derives a target layout, with the optimization of the
data migration process in mind. Developing these types of
algorithms and evaluating their performance characteristics
is part of our future efforts.

We now consider the running time of the different data
migration algorithms. Except for the matching heuristics,all
other algorithms’ running times are at most 3 CPU seconds
and often less than 1 CPU second, on a Sun Fire V880 server.
The running time of the matching heuristics depends on the
total number of items. It can be as high as 43 CPU seconds

when the number of items is around 3500, and it can be lower
than 2 CPU seconds when the number of items is around 500.

We also collected the maximum space requirement for
each disk needed to complete the migration. Consider disk
3 in Figure 1 and suppose that another disk needs item 3
from disk 3. If disk 3 receives items 2 and 4 before sending
out item 3, then its temporary maximum space requirement
is 4. However, since all data migration algorithms listed in
this paper do not optimize for the temporary maximum space
requirement, in many instances, there exists a disk that needs
twice the capacity of that disk to finish the migration. We
omit the details of the maximum space requirements results
due to space limitation.

6.3 Final Conclusions
For the correspondence problem question posed in Sec-
tion 1.1, our experiments indicate that weighted matching
is the best approach among the ones we tried.

For the data migration problem question posed in Sec-
tion 1.1, our experiments indicate that the weighted match-
ing heuristic with some randomness does very well. This
suggests that perhaps a variation of matching can be used to
obtain anO(1) approximation as well. Among all variants
of the9:5-approximation data migration algorithms, lettingSi send itemi to Di directly for the small sets, i.e. vari-
ant (c), performs the best. From the above described results
we can conclude that under the Zipf and Geometric distribu-
tions, where cloning does not occur frequently, the weighted
matching heuristic returns a schedule which requires only
a few rounds more than the optimal. All variants of the9:5-approximation data migration algorithms usually take no
more than 10 rounds more than the optimal, when a good
correspondence method is used.

Table 1:The number of rounds taken by different data migration
algorithms, when a set of� disks are the sources for� items (each
disk has all� items), and the destination disks also have size�
each and are disjoint.

Number of items (�): 20 30 40 60 80
Lower Bound 5 5 6 6 7
Data Mig. (Vanilla) 10 9 12 12 14
Data Mig. ((b) doubling) 6 6 7 7 8
Data Mig. ((c)Si toDi) 10 9 12 12 14
Data Mig. ((a)��, (c)Si toDi) 10 9 12 12 14
Edge Coloring 20 30 40 60 80
Unweighted Matching 20 30 40 60 80
Weighted Matching 21 30 40 61 80
Random Weighted 6 10 13 23 34
Item by Item 20 30 40 60 80
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Table 4:The number of rounds taken by algorithms, with 60 disks, promoting the last item to the top, with user requests following the
Geometric distribution (p = 0:5). We combined the results using inputs generated by correspondence methods 1, 3, and 4 because they
return the same number of rounds.

(A) Space cap: 15, load cap: 40. (B) Space cap: 30, load cap: 35.
Instance: Input 1 Input 2 Input 3 Average

Correspondence: 1/3/4 5 1/3/4 5 1/3/4 5 1/3/4 5
(A) Lower Bound 8 30 6 30 6 30 6.0 29.9

Data Mig. (Vanilla) 16 56 13 57 13 56 13.5 56.9
Data Mig. (b) 15 56 13 57 13 56 13.0 56.9
Data Mig. (c) 13 43 12 45 11 43 12.0 45.0
Data Mig. (a & c) 14 43 12 45 12 43 12.3 45.0
Data Mig. (d) 14 53 14 56 14 53 14.6 57.7
Edge Coloring 31 55 34 56 31 55 33.7 57.7
Weighted Matching 8 33 9 32 7 34 8.6 35.7
Item by Item 50 846 77 845 69 846 76.1 828.6

(B) Lower Bound 18 60 18 60 22 60 19.9 60.0
Data Mig. (Vanilla) 29 113 29 115 34 113 31.2 115.3
Data Mig. (b) 29 113 29 115 34 113 31.2 115.3
Data Mig. (c) 26 89 22 89 25 87 25.6 89.9
Data Mig. (a & c) 24 89 24 89 27 87 25.8 89.4
Data Mig. (d) 31 96 27 103 30 112 30.5 116.7
Edge Coloring 36 89 38 89 41 87 39.4 91.8
Weighted Matching 19 66 20 66 25 63 22.1 72.2
Item by Item 66 1748 66 1748 167 1746 113.8 1711.9

Table 5:The number of rounds taken by algorithms, with 60 disks and user requests following the Zipf distribution (� = 0) with space
capacity 15 and load capacity 40, and target layout is obtained from the method described in Step 2(b)i in Section 5 (rotation of items).
We combined the results using inputs generated by correspondence methods 1, 3, and 4 because they return the same number of rounds.

Instance: Input 1 Input 2 Input 3 Average
Correspondence: 1/3/4 5 1/3/4 5 1/3/4 5 1/3/4 5

(A) Lower Bound 5 30 5 30 7 30 5.4 30.0
Data Mig. (Vanilla) 12 48 10 46 11 50 10.3 48.8
Data Mig. (b) 11 48 10 46 11 50 10.2 48.8
Data Mig. (c) 10 42 8 40 11 43 9.3 42.2
Data Mig. (a & c) 9 42 10 40 11 43 9.2 42.2
Data Mig. (d) 12 59 12 49 11 55 10.6 53.2
Edge Coloring 9 42 10 40 10 43 9.6 42.2
Weighted Matching 5 41 6 34 7 35 5.8 36.2
Item by Item 50 846 49 855 51 874 48.0 853.4

Appendix A: Details of the algorithm

In this appendix, we describe the details of our migration
algorithm briefly outlined in Section 3.

1. Step 1: We find a sourcesi 2 Si for each itemi so thatmaxj=1;:::;N (jfijj = sigj + �j) is minimized, using
a flow network as follows. We create a flow network
with a sources and a sinkt as shown in Figure 6. We
have two set of nodes corresponding to disks and items.
Add directed edges froms to nodes for items and also
directed edges from itemi to disk j if j 2 Si. The
capacities of all those edges are one. Finally we add an
edge from the node corresponding to diskj to t with
capacity� � �j . We want to find the minimum� so
that the maximum flow of the network is�. We can do
this by checking if there is a flow of� with � starting
from max�j and increasing by one until it is satisfied.
If there is outgoing flow from itemi to diskj, then we
setj assi.

2. Step 2(a): We choose disjoint setsGi for eachi =

1 : : :�, again using a network flow approach. As
shown in Figure 7, we create a flow network with a
sources and sinkt. In addition we have two sets of
verticesU andW . The first setU has� nodes, each
corresponding to a disk that is the source of an item.
The setW hasN nodes, each corresponding to a disk in
the system. We add directed edges froms to each node
in U , such that the edge(s; i) has capacityb jDij� 
. We
also add directed edges with infinite capacity from nodei 2 U to j 2 W if j 2 Di. We add unit capacity edges
from nodes inW to t. We find a max-flow froms to t
in this network. An integral max flow in this network
will correspond tojGij units of flow going froms to i,
and fromi to a subset of vertices inDi before reachingt. The vertices to whichi has non-zero flow will form
the setGi.

3. Step 2(b): The simple solution would be to broadcast
the data to each groupGi from the chosen source,
since the groups are disjoint. However, this broadcast
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Table 6:The number of rounds taken by algorithms, with 60 disks and user requests following the Zipf distribution (� = 0) with space
capacity 15 and load capacity 40, and target layout is obtained from the method described in Step 2(b)ii in Section 5 (enlargingDi for
items with smallSi). We combined the results using inputs generated by correspondence methods 1, 3, and 4 because they return the
same number of rounds.

Instance: Input 1 Input 2 Input 3 Average
Correspondence: 1/3/4 5 1/3/4 5 1/3/4 5 1/3/4 5

(A) Lower Bound 2 30 3 30 2 30 2.7 30.0
Data Mig. (Vanilla) 2 48 4 45 4 47 3.6 48.0
Data Mig. (b) 2 48 4 45 3 47 3.3 48.0
Data Mig. (c) 2 43 4 43 4 43 3.5 43.3
Data Mig. (a & c) 2 43 4 43 4 43 3.5 43.3
Data Mig. (d) 2 58 5 49 4 53 4.0 52.9
Edge Coloring 2 43 3 43 3 43 3.1 43.3
Weighted Matching 2 41 3 40 3 38 3.0 37.7
Item by Item 14 832 15 845 17 859 15.7 839.8

Figure 4: The number of additional rounds taken by algo-
rithms as compared to the lower bound, averaged over 20
inputs, with 60 disks, promoting the last item to the top, user
requests following the Zipf distribution (� = 0), space cap
of 15, and load cap of 40.

takes at leastmaxi log jGij rounds. Unfortunately, this
would give us anO(logN) approximation guarantee.
The method described below, develops stronger lower
bounds for this situation.

Let M be the number of steps required to send all
items i to all disks inGi in an optimal schedule of
Step 2(b). To find a lower bound forM , we construct
the following flow networkFm (parameterized by an
integerm) as shown in Figure 8. We have a sources and two sets of nodesU and V . U hasN � m
nodesxjk(j = 1 : : :N; k = 1 : : :m). V has� nodesyi(i = 1 : : :�) andyi has demandjGij. There is an
edgeeijk from xjk to yi and its capacity
ijk is 2m�k
if a disk j has itemi initially. There are edges froms
to nodesxjk in U with capacity2m�k. If m0 be the
smallest number such that we can construct a solution
of Fm0 that satisfies all demandsjGij, thenM � m0.

Figure 5: The number of additional rounds taken by algo-
rithms as compared to the lower bound, averaged over 20
inputs, with 60 disks, promoting the last item to the top,
user requests following the Geometric distribution (p = 0:5),
space cap of 15, and load cap of 40.

The solution of the flow networkFm0 may not corre-
spond to a valid schedule since a nodexjk may send
flow to several nodes. we convert the solution to a solu-
tion satisfying the following properties.� nodexjk sends flow to at most one node inV .� the solution satisfies at leastjGij�2m0�1 demands

for each itemi.
First, we define a variablezijk for an edge fromxjk
to yi and setzijk = fijk=
ijk wherefijk is the flow
through eijk in solution Fm0 . We substitute nodesyil(l = 1 : : : bPj;k zijk
) for each nodeyi in V . We
distribute edges having nonzero flow toyi as follows.
Sort edges in non-increasing order of their capacities.
Assign edges toyi1 until the sum ofz values of assigned
edges is greater than or equal to one. If the sum is
greater than one, we split the last edge (denote aseij0k0 )
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Figure 6: Flow network to find�
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Figure 7: Flow network to findGi
into eij0k01 andeij0k02 . Assigneij0k01 to yi1 and definezij0k01 so that the sum ofz values of edges assigned toyi1 is exactly one. Setzij0k02 = zij0k0�zij0k01 . We repeat
this so that for all nodesyil, the sums ofz values of the
assigned edges are one. In the resulting bipartite graph
with U andV 0 = fyilg, z makes afractional matching
which matches all vertices inV 0. Therefore, we can find
an integral matching that matches all vertices inV 0 and
the matching satisfies the first property in the lemma.
Now we merge nodesyil into yi. Then eachyi matches
exactlybPj;k zijk
 edges.

Now Step 2(b) can be done in� + 2m0 + 1 rounds
based on the above solution. First we choosemin(bPj;k zijk
+1; jGij) disks inGi and denote those
disks asHi. Disk j sends itemi to a disk inHi if edgeeijk is matched for somek. If jHij > bPj;k zijk
,
there is one disk inHi which cannot receive itemi. The
disk receives itemi from si. It can be done inm0+�+2
rounds. SincejGij=jHij � 2m0�1, we can make all
disks inGi have itemi in additionalm0 � 1 rounds.

4. Step 3(a): the following result from Shmoys-Tardos
[17] will be used for this step.

|G1|

|G4|

|G6|

|G3|

|G2|

|G5|

Figure 8: An example of constructingFm where� = 6
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Figure 9: An example of Step 3 where� = 4 and� = 4. (a)
migration fromsi to s0i (b) migration froms0i toDi n fs0ig.

THEOREM 6.1. (Shmoys-Tardos [17]) We are given a
collection of jobsJ , each of which is to be assigned to
exactly one machine among the setM; if job j 2 J
is assigned to machinei 2 M, then it requirespij
units of processing time, and incurs a cost
ij . Suppose
that there exists a fractional solution (that is, a job can
be assigned fractionally to machines) with makespanP
and total costC. Then in polynomial time we can find a
schedule with makespanP +max pij and total costC.

For each itemi we wish to choose a source disks0i such
that the following properties hold (Ij denotes the set of
items for which diskj is a source).� If i 2 Ij thenj 2 Di.� Pi2Ij jDij � 2� � 1.

We create an instance of the problem of scheduling
machines with costs. Items correspond to jobs and disks
correspond to machines. For each itemi we define a
cost function as follows.C(i; j) = 1 if and only ifj 2 Di, otherwise it is a large constant. Processing
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time of jobi (corresponding to itemi) is jDij (uniform
processing time on all machines). Using Theorem 6.1
[17], the scheduling algorithm finds a schedule that
assigns each job (item) to a machine (disk) to minimize
the makespan. They show that the makespan is at
most the makespan in a fractional solution plus the
processing time of the largest job. Moreover, the cost of
their solution is at most the cost of the optimal solution,
namely the number of items. We cannot assign an
item (job) to a disk (machine) if the disk is not in the
destination set for the item.

Appendix B: Additional Results

In this appendix, we include the remaining data from the
tables given in Section 6, as mentioned earlier in the paper.
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Table 7:The number of rounds taken by algorithms, with 60 disks, promoting the last item to the top, with user requests following the
Zipf distribution (� = 0). We combined the results using inputs generated by correspondence methods 1 and 3 because they return the
same number of rounds.

(B) Space cap: 30, load cap: 35. (C) Space cap: 60, load cap: 150.
Instance: Input 1 Input 2 Input 3 Average

Correspondence: 1/3 4 5 1/3 4 5 1/3 4 5 1/3 4 5
(B) Lower Bound 46 46 60 48 48 60 46 46 60 48.3 48.4 60.0

Data Mig. (Vanilla) 52 52 93 53 53 89 51 51 90 54.2 54.3 90.5
Data Mig. (b) 52 52 93 53 53 89 51 51 90 54.2 54.3 90.5
Data Mig. (c) 46 46 85 48 48 87 47 47 85 48.6 48.7 85.2
Data Mig. (a & c) 47 47 85 49 49 87 48 48 85 49.3 49.4 85.2
Data Mig. (a, b & c) 47 47 85 49 49 87 48 48 85 49.3 49.4 85.2
Data Mig. (d) 46 46 93 48 48 96 46 46 105 49.0 49.1 105.7
Data Mig. (b & d) 47 47 93 49 49 96 47 47 105 50.1 50.1 105.7
Edge Coloring 46 46 85 48 48 87 47 47 85 48.6 48.7 85.2
Unweighted Matching 46 46 66 48 48 63 46 46 64 48.3 48.4 69.4
Weighted Matching 46 46 65 48 48 62 46 46 62 48.3 48.4 67.5
Random Weighted 46 46 62 48 48 61 46 46 61 48.3 48.4 64.3
Item by Item 300 300 1778 345 345 1777 324 324 1775 377.8 379.0 1746.4

(C) Lower Bound 110 120 120 65 65 120 110 120 120 92.5 102.8 120.0
Data Mig. (Vanilla) 116 135 167 72 72 175 120 156 173 101.4 121.1 176.1
Data Mig. (b) 116 135 167 72 72 175 120 156 173 101.4 121.1 176.1
Data Mig. (c) 110 129 165 71 71 171 112 149 168 96.6 115.7 170.9
Data Mig. (a & c) 110 129 165 71 71 171 112 149 168 96.6 115.7 170.9
Data Mig. (a, b & c) 110 129 165 71 71 171 112 149 168 96.6 115.7 170.9
Data Mig. (d) 131 159 191 84 84 193 112 154 189 108.1 129.7 219.4
Data Mig. (b & d) 131 159 191 84 84 193 112 154 189 108.2 129.8 219.4
Edge Coloring 110 129 165 71 71 171 112 149 168 96.6 115.7 170.9
Unweighted Matching 110 120 127 67 67 127 110 129 128 93.3 107.0 142.2
Weighted Matching 110 120 128 66 66 123 110 128 123 93.1 107.4 140.0
Random Weighted 110 121 123 66 66 122 110 122 122 93.2 104.2 133.0
Item by Item 930 1122 3555 497 497 3574 860 1099 3561 708.0 837.2 3512.3

Table 8: The number of rounds taken by algorithms, with 60 disks, promoting 20% of items, with user requests following the Zipf
distribution (� = 0).

(B) Space cap: 30, load cap: 35. (C) Space cap: 60, load cap: 150.
Instance: Input 1 Input 2 Input 3 Average

Correspondence: 1 3 4 5 1 3 4 5 1 3 4 5 1 3 4 5
(B) Lower Bound 60 60 60 60 58 58 60 60 60 60 60 60 59.9 59.9 60.0 60.0

Data Mig. (Vanilla) 66 66 70 85 65 65 73 89 67 67 69 84 65.4 65.5 70.1 85.1
Data Mig. (b) 66 66 70 85 65 65 73 89 67 67 69 84 65.4 65.5 70.1 85.1
Data Mig. (c) 60 60 66 81 59 59 68 81 61 61 64 79 60.4 60.6 65.8 79.4
Data Mig. (a & c) 60 60 66 81 59 59 68 81 61 61 64 79 60.4 60.6 65.8 79.4
Data Mig. (d) 70 70 99 100 70 70 100 110 77 77 95 100 68.8 68.4 95.4 99.4
Edge Coloring 60 60 66 81 59 59 68 81 61 61 64 79 60.4 60.6 65.8 79.4
Weighted Matching 62 62 62 61 59 59 66 62 60 60 64 64 60.1 60.1 65.4 64.7
Item by Item 857 857 1709 1772 890 890 1715 1765 904 904 1668 1770 842.9 842.9 1696.3 1755.8

(C) Lower Bound 118 119 120 120 118 118 120 120 120 120 120 120 119.5 119.4 120.0 120.0
Data Mig. (Vanilla) 123 126 145 163 125 125 146 166 127 127 167 166 125.2 125.3 149.0 163.4
Data Mig. (b) 123 126 145 163 125 125 146 166 127 127 167 166 125.2 125.3 149.0 163.4
Data Mig. (c) 119 122 140 158 119 119 141 162 121 121 162 165 121.0 121.4 144.3 159.4
Data Mig. (a & c) 119 122 140 158 119 119 141 162 121 121 162 165 121.0 121.4 144.3 159.4
Data Mig. (d) 142 146 178 201 149 149 187 198 154 154 189 197 143.5 143.2 187.2 198.5
Edge Coloring 119 122 140 158 119 119 141 162 121 121 162 165 121.0 121.4 144.3 159.4
Weighted Matching 119 119 136 121 118 118 151 122 121 121 133 123 119.8 119.7 133.1 126.3
Item by Item 1869 1869 3427 3570 1851 1851 3413 3576 1869 1869 3459 3562 1860.1 1860.1 3412.7 3537.0
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Table 9:The number of rounds taken by algorithms, with 60 disks and user requests following the Zipf distribution (� = 0), and target
layout is obtained from the method described in Step 2(b)i inSection 5 (rotation of items). We combined the results usinginputs generated
by correspondence methods 1, 3, and 4 because they return thesame number of rounds.

(B) Space cap: 30, load cap: 35. (C) Space cap: 60, load cap: 150.
Instance: Input 1 Input 2 Input 3 Average

Correspondence: 1/3/4 5 1/3/4 5 1/3/4 5 1/3/4 5
(B) Lower Bound 12 60 9 60 8 60 7.6 60.0

Data Mig. (Vanilla) 17 94 13 90 12 90 11.8 91.7
Data Mig. (b) 17 94 13 90 12 90 11.8 91.7
Data Mig. (c) 14 89 10 86 11 85 9.8 87.4
Data Mig. (a & c) 15 89 12 86 11 85 10.7 87.4
Data Mig. (d) 16 118 13 106 12 116 11.5 108.8
Edge Coloring 12 89 9 86 9 85 9.5 87.4
Weighted Matching 12 87 9 82 8 78 7.7 76.5
Item by Item 76 1725 73 1752 75 1780 72.9 1740.6

(C) Lower Bound 9 120 12 120 10 120 11.2 120.0
Data Mig. (Vanilla) 12 176 15 175 14 172 14.9 175.7
Data Mig. (b) 12 176 15 175 14 172 14.9 175.7
Data Mig. (c) 11 175 12 171 11 170 12.4 171.8
Data Mig. (a & c) 11 175 13 171 11 170 13.1 171.8
Data Mig. (d) 14 232 13 208 15 232 15.1 216.1
Edge Coloring 11 175 12 171 10 170 12.6 171.8
Weighted Matching 9 173 12 171 10 165 11.3 155.8
Item by Item 142 3461 144 3510 134 3564 140.4 3486.5

Table 10:The number of rounds taken by algorithms, with 60 disks and user requests following the Zipf distribution (� = 0), and target
layout is obtained from the method described in Step 2(b)ii in Section 5 (enlargingDi for items with smallSi). We combined the results
using inputs generated by correspondence methods 1, 3, and 4because they return the same number of rounds.

(B) Space cap: 30, load cap: 35. (C) Space cap: 60, load cap: 150.
Instance: Input 1 Input 2 Input 3 Average

Correspondence: 1/3/4 5 1/3/4 5 1/3/4 5 1/3/4 5
(B) Lower Bound 2 60 4 60 4 60 3.5 60.0

Data Mig. (Vanilla) 2 94 4 91 4 89 3.9 92.4
Data Mig. (b) 2 94 4 91 4 89 3.9 92.4
Data Mig. (c) 2 89 4 89 4 85 3.8 87.9
Data Mig. (a & c) 2 89 4 89 4 85 3.8 87.9
Data Mig. (d) 2 119 6 107 4 114 4.5 109.4
Edge Coloring 2 89 4 89 4 85 3.7 87.9
Weighted Matching 2 87 4 87 4 84 3.6 78.6
Item by Item 30 1717 31 1745 28 1772 28.7 1732.3

(C) Lower Bound 6 120 4 120 4 120 4.3 120.0
Data Mig. (Vanilla) 7 183 4 180 4 175 4.9 179.5
Data Mig. (b) 7 183 4 180 4 175 4.9 179.5
Data Mig. (c) 6 178 4 174 4 173 4.7 175.5
Data Mig. (a & c) 7 178 4 174 4 173 4.8 175.5
Data Mig. (d) 9 233 7 207 5 219 6.4 215.5
Edge Coloring 6 178 4 174 4 173 4.5 175.5
Weighted Matching 6 176 4 174 4 171 4.5 160.0
Item by Item 53 3451 47 3505 48 3559 48.8 3479.5
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