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Abstract applications are described and studied in, e.g., [5, 6, 19]

Our work is motivated by the problem of managing da@d the references therein.

on storage devices, typically a set of disks. Such high de- Approximation algorithms have been developed [13, 14,
mand storage servers are used as web servers or multikte-7» 10] to map known_demgpd fpr data to a specific data
dia servers, for handling high demand for data. As the sy@Yout pattern to maximize utilizatidn In the layout, we

tem is running, it needs to dynamically respond to chanﬁ“pu'[e not only how many copies of each item we need,
in demand for different data items. There are known algByt also a Iayou_t pattern that spgcifies the precise subset of
rithms for mapping demand to a layout. When the demafi@ims on each disk The problem isV P-hard, but there are
changes, a new layout is computed. In this work we stuB9lynomial time approximation schemes [7, 14, 10]. Given
the data migration problemwhich arises when we need idghe relative demand for data, an almost optimal layout can be
quickly change one layout to another. This problem has befé}mpUted-_

studied earlier when for each disk the new layout has been OVer time as the demand for data changes, the system
prescribed. However, lack of such information leads to an fi€€ds to creat@ew data layouts. The problem we are
teresting problem that we call the correspondence probldiiérested in is the problem of computing a data migration
whose solution has a significant impact on the solution fBlan for the set of disks to convert an initial layout to a
the data migration problem. We examine algorithms for ti/get layout. We assume that data objects have the same
data migration problem in more detail and identify variatio Size (these could be data blocks or files) and that it takes
of the basic algorithm that seem to improve performancelf} Same amount of time to migrate any data item between
practice, even though some of the variations have poor watgy Pair of disks. The crucial constraint is that each disk

case behavior. can participate in the transfer of only one item — either as
a sender or as a receiver. Our goal is to find a migration
1 Introduction schedule to minimize the time taken (i.e., number of rounds)

To handle high demand, especially for multimedia data,t%co_mp_lete _the m|grat_|on (makespan) since the syst_em IS
unning inefficiently until the new layout has been obtained

common approach is to replicate data objects within the A special case of this was studied in [8]—they compute

storage system. Typically, a large storage server consfists movement schedule buto not allow the creation of

: i X a
several disks connected using a dedicated network, caIIer(]je\:;\v copies of any data object. It addresses only the data

Storage Area NetworkDisks typically have constraints on vemerproblem. (So for example, one cannot create extra

storage as well as the number of clients that can access das ; . : :
. . . ; coples of any data item, but can just change on which disks

from a single disk simultaneously. The goal is to have the Co .
t et%/ are stored.) The problem studied in [8] is formally

system automatically respond to changes in demand pattng ined as follows: given a set of disks, with each storing

and to recompute data layouts. - Such systems and tr(Jslta'srubset of items and a specified set of move operations

(each move operation specifies which data object needs to be
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multigraphs can now be applied to produce a migration Initial Layout S=2.3} D,={1}

schedule since each color class represents a matching in the S=(L2) D3}
~(12} D=

Soliion with the minimum number of rounds fs NP-harg, S | B2 | K3 ss 02

but several good approximation algorithms are availalie fo SA1} DA

edge coloring. With space constraints on the disk, the Target Layout S={1.2.3} D~}

problem becomes challenging. In [8] it is shown that with the

assumption that each disk has one spare unit of storage, ¥egure 1: An initial and target layouts as well as their
good constant factor approximations can be developed. Toeresponding;’s andD;’s

algorithms use at most[Aq /4] colors with at most:/3
bypass nodes, or at mo8fA¢/4] colors without bypass

nodes, whereA is the max degree of the transfer gralor%imple simulation, where we only choose a maximal subset

andn is the number of disks. :
. of transfers to perform in each round.
On the other hand, to handle high demand for popular This model best captures an architecture of parallel

objec(;s, n((aj\{\]ifcoplez_vvlgl h?l_\;? to be dynr?mmally crgaltled a rage devices that are connected on a switched network
stored on different disks. This means that we crucially neggyy, o gicient bandwidth and is most appropriate for our

the ability to have a “copy” operation in addition to “move’ -
. ) aRpllcanon.
operations. In fact, one of the crucial lower bounds used |

the work on data migration [8] is based on a degree propefty o Correspondence Problem

of the mu!tlgraph. For example, if the degree of a nodg 'SGiven a set of data objects placed on disks, we shall assume
then this is a lower bound on the number of rounds that are o : . .

. i . at what is important is the grouping of the data objects and
required, since in each round at most one transfer operation ,, . . .
ivolving this node mav be done. For copving o erationnsOt their exact location on each disk. For example, we can

g y . Pying op r%present a disk by the sé#, B, C'} indicating that data

clearly this lower bound is not valid. For example, suppos é'ectsA,B, andC are stored on this disk. If we move the

. X ; 0
we have a single copy of a data item on a disk. Suppcfgcation of these objects on the same disk, it does not affect
tlf%)? set corresponding to the disk in any way.

we wish to creaté copies of this data item o#i distinct
Data layout algorithms (such as the ones in [13, 14,

disks. Using the transfer graph approach, we could spec
10, 7]) take as input a demand distribution for a set of data

a “copy” operation from the source disk to each of the
disks. Notice that this would take at leasbunds. However, ((:)blj]ects and outputs a groupisy, Sy, . .. Sy as a desired
’ dAlta layout pattern on disks,2’,...,N’. (The current

by using newly created copies as additional sources we
created copies inflog(é + 1)] rounds, as in the classic . .
problem of broadcasting by using newly created copieslg{goUt is assumedto i, 3 ... Siv ) Itis not clear that we

. : need the data corresponding to the set of itéingo be on
sources for the data object. (Essentially each copy spawns a . . . . :
: original) disk 1. For example the algorithm simply regsire
new copy in each round.)

: . . that a new grouping be obtained where the items inSset
Themost general problerof interest is thalata migra- . . . L
. ) i N . be grouped together on a disk with certain capabilities. For
tion problem with cloning [11] when data itemi resides in

e . xample, ifS3 = Sy, then by simply “renaming” disk 3
;Sgiggzﬁng?ou;; ghzggﬁtﬁ: ?)Eg%;‘grgseesasgﬁ zgtr;i\é%(zs disk1l’ we have obtained a disk with the set of items
v ' S]Frl, assuming that disks and 3 have the same capabilities.
e

that initially belongs to a subset of disks, needs to be mov :
. . arly, we need to compute a perfect matching between the
to another subset of disks. (We might need to create new: ' .
. . . . " mial and final layout sets. An edge is present betwggn
copies of this data item and store it on an additional set 0 N . .
) . . andS;. if disk i has the same capabilities as djgk The
disks.) Figure 1 depicts an example.

Different communication models can be consider%’vﬁie'ghtonh's edge is obtained by the number of “new items

based on how the disks are connected. We use the sarﬁtneed to be moved  to obtainS;; . A minimum weight

model as in the work by [8, 1] where the disks may commB-er(?eCt matching in this graph gives tberrespondencthat

. .2t . minimizes the total number of changes, bot the number
nicate on any matching; in other words, the underlying com: ,
. L of rounds. Once we fix the correspondence, we need to
munication graph allows for communication between an . o
. . ; . . invoke an algorithm to compute a data migration schedule

pair of devices via a matching (a switched storage netwqrk . ~. : . :
. . ... 10 minimize the number of rounds. Since this step involves
with unbounded backplane bandwidth). These algorithms, . : )
) ving an NP-hard problem, we will use a polynomial

can also be extended to models where the size of the mafch-

ing for each round is constrained. This can be done b)‘l'rge approximation algonthm.for computing the migration.
owever, we still need to pick a certain correspondence

before we can invoke a data migration algorithm.

3A bypass node is a node that is not the target of a move opetatiois There are _tWO central que_StionS _in which we are inter-
used as an intermediate holding point for a data item. ested; these will be answered in Section 6.3:



Initial Configuration

e Which correspondence algorithm should we use?
We will explore algorithms based on computing a AvaCle‘
matching of minimum total weight and matchings 1o 23 AT
where we minimize the weight of the maximum weight  Final configuration ~. __~---~~<_
edge. Moreover, the weight function will be based on

A/B CDE A,B,C,D,Z

V, W, X,Y,Z A,B,CD,Z A/B,CY,Z A, BX)Y,Z A, WXY,Z
estimates of how easy or difficult it is to obtain copies = T > " 7
of certain data.
e How good are our data migration algorithms once ALL POSSIBLE TRANSFER EDGES
we fix a certain correspondence? Even though we z «
have bounds on the worst case performance of the [\Y . N
algorithm, we would like to find whether or not its © z 3 4 v
performance is a lot better than the worst case bound. = z
(We do not have any example showing that the bound
is tight.) In fact, it is possible that other heuristics == Correspondence chosen based on matchings

perform extremely well, even though they do not have

1 z Y 3 X w
good worst case bounds [11]. @ 2 4 (&= v

FINAL TRANSFER GRAPH
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Figure 3: Figure to illustrate how a good correspondence can
yield significantly better solutions for data movement.

A/BCDE A/B,C D,z A/BC Y, Z A BXYZ A, W, XY,Z

5!

3

1 | 2
I I
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V. W, X, Y, Z A/B,C, D, Z A/BCY,Z A BXY.Z A, W, XY,Z

On the other hand, if we use the correspondence as
v z 3 4 s shown by the dashed edges in Figure 3, we obtain a trans-
fer graph where each disk needs only one new data item and
such a transfer can be achieved in two rounds in parallel.
(The set of transfers performed by the data migration algo-
rithm are shown.)
O-—=10 © Finally, it is not clear that a solution obtained by the
w series of optimization problems we have identified (namely,
the correspondenceroblem and thelata migrationprob-

X lem) would necessarily give an optimal or close to optimal
\V v solution in the worst case.

ALL POSSIBLE TRANSFER EDGES
X,\Y,Z

1.2 Contributions

In recent work [11], it was shown that the data migration

Figure 2: Figure to illustrate how a bad correspondence d4h cloning problem is NP-hard and has a polynomial

yield an poor solution for data movement. time approximation algorithm with a worst case guarantee

of 9.5. Moreover, the work also explored a few simple

For example, in Figure 2 we illustrate a situation whefta migration algorithms. Some of the algorithms cannot

we have 5 disks with the initial and final configurations &J0vide constant approximation guarantee, while for some o

shown. By picking the correspondence as shown, we endtﬂﬁ algorithms no approximation guarantee is known. In this

with a situation where all the data on the first disk needsR8Per, we conduct an extensive study of these data migration

be changed. We have shown the possible edges that cadl@@rithms’ performance under different changes in user

chosen in the transfer graph along with the labels indigatifccess patterns. We also show that a good correspondence

the data items that we could choose to transfer from th@lution can improve the performance of the data migration

source disk to the destination disk. The final transfer graplgorithms by a factor of 2, relative to a bad solution. A

shown is a possible output of a data migration algorithffiore d_etalled observations and results of the study is given

This will take 5 rounds since all the data is coming to I8 Section 6.

single disk; node 1 will have a high in-degree. Itéhcan o

be obtained from tertiary storage, for example (or anotter Models and Definitions

device). Clearly, this set of copy operations will be slowd arin the data migration problemwe haveN disks andA data

will take many rounds. items. For each itemy there is a subset of disks and D;.

FINAL TRANSFER GRAPH



Initially only the disks inS; have items:, and all disks in edges from disks irG; to (8 — 1)L%J disks

D; want to receiva. Note that after a disk iD; receives in D; \ G; such that the out-degree of each node
item 4, it can be a source of iterhfor other disks inD; in G; is at most3 — 1 and the in-degree of each
which have not received the item yet. Our goal is to find a node inD; \ G; is 1. We redefineD; as a set
migration schedule using a minimum number of rounds, that of |[D; \ Gi| — (B —1) L@J disks which do not
is, to minimize the total amount of time to finish the data receive itemi so that thgy can be taken care of
migration schedule. We assume that the underlying network in Step 3. Note that the redefined g2t has size

is fully connected and the data items are all the same size, < B.

in other words, it takes the same amount of time to migrate

an item from one disk to another. The crucial constraint i3, Find a transfer graph for items such thay| < 3 as
that each disk can participate in the transfer of only omaite  fgjlows.

- either as a sender or as a receiver. Moreover, as we do not

use any bypass nodes, all data is only sent to disks thakdesir  (a) For each item, find a new source, in D;. A

It. disk j can be a sourc€ for several items as long
Our algorithms make use of known results on edge asy",c;. |Di| < 28— 1wherel; is a set of items
coloring of multigraphs. Given a grapgh with max degree of whicﬁj is a new source.

A and multiplicity i the following results are known (see . ,

[3] for example). Lety’ be the edge chromatic number®f (b) Send each itemfrom s; to s;.
_ (c) Create a transfer graph. We add a directed edge

THEOREM2.1. (Vizing [18]) If G’ has no self-loops then from the new source of iteni to all disks in

X' < Ag + p. D;\ {s}.

T,HEORBEMZ'Z' (Shannon [16]) I has no self-loops then 4 \ye now find an edge coloring of the transfer graph

X' < [54Ac]- obtained by merging two transfer graphs in Steps 2(c)
L ) and 3(c). The number of colors used is an upper bound

3 The Data Migration Algorithm on the number of rounds required to ensure that each

Define 8; as |{i|j € D;}|, i.e., the number of different disk in D; gets itemy.

sets D;, that a diskj belongs to. We then defing as

max;—;. n ;. In other wordsg is an upper bound on the There are several components needed to implement this

number of items a disk may need. Note tlfais a lower algorithm.

bound on the optimal number of rounds, since digkat

attains the maximum, needs at legstounds to receive all

the items;j such thati € Dj, as it can receive at most one

1. Step 1: we use a network flow approach to find an
optimal solution fora.

item in each round. 2. Step 2(a): we again use a network flow approach to find
Moreover, we may assume thaf # () andD;NS; = 0. the sets7;.

(We simply define the destination sBt as the set of disks

that need item and do not currently have it.) 3. Step 2(b): to get ad®(1) approximation this step is
Here we only give a high level description of the algo-  quite complex (see Appendix A). We also use a simpler

rithm. We describe the details in Appendix 6.3. broadcasting scheme which makes the worst case bound

Algorithm Data Migration. O(log N).

1. For an item; decide a unique sourcg € S; so that 4 Step 3(a): we use an algorithm for the generalized
a = maxj=1,.. ~(|{ilj = s} + B;) is minimized. assignment problem [17].
In other wordsg is the maximum number of items for
which a disk may be a source;) or a destination. 5. Steps 3(b) and 4: we use an algorithm for edge-coloring
multigraphs [2].

2. Find a transfer graph for items such that;| > 5 as

follows. THEOREM 3.1. (Khuller, Kim, and Wan [11]) The algo-

. L . ithm described above has a worst case approximation ratio
(a) We first compute a disjoint collection of subsets PP

G;,i =1...A. Moreover,GG; C D; and|G;| = 0f 9.5.

| D]
155 4 Different Algorithms for the Correspondence
(b) We have each iterhsent to the sef?;. Problem

(c) We now create a transfer graph as follows. Eadlb match disks in the initial layout with disks in the target
disk is a node in the graph. We add directddyout, we tried the following methods:

4



1. Find a perfect matching that minimizes the maximum in the initial layout. In other words, number

weight of the edges in the matching. Create a bipartite of copies of itemd,,...,l;_; are decreased
graph with two copies of disks. The weight of matching slightly, while the number of copies of item
diskp in the initial layout with diskg in the target layout I}, is increased significantly.

is the number of new items that digleeds to get from ii. EnlargingD; for items with smallS;: Repeat
other disks (because disksloes not have these items). the following for L%J times. Pick an itens

randomly having only one copy in the current
layout. For each item that has more than
one copy in the current layout, there is a

2. Minimum weighted perfect matching using the weight
function defined in (1).

3. Minimum weighted perfect matching with another probability of 0.5 that item: will randomly
weight function that takes the ease of obtaining an item give up the space of one of its copies, and the
into account. Suppose digkin the initial layout is space will be allocated to itemin the new
matched with disk; in the target layout, and Ie§ be Iayoutforthe next |te_rat|on. In other words, if
the set of items that disk needs which are not on there aret items having more than one copy
disk p. The weight for matching these two disks is at the beggmmg of this !teratlotr:, theg 'tfef'::
S, max(log %, 1). :tse?;tpi)gr?.te to gaif§ copies at the end of the

4. Direct correspondence. Disgkin the initial layout is

always matched with diskin the target layout. 3. Run different correspondence algorithms mentioned in

Section 4 to match a disk in the initial layout with a disk
5. Random matching. in the target layout. Now we can find the set of source
disks and destination disks for each item.
5 Experimental Framework

_ _ 4. Run different data migration algorithms, and record the
The framework of our experiments is as follows:

number of rounds needed to finish the migration.

1. RuntheindingwindowaIgorithm[7]tocreateaninitiaé 1 User Request Distributions

layout, given the number of user requests for each daf :
object. In Section 5.1 we describe the distributions v?é/% generate the number of requests for different data ob-

used in generating user requests. These distributionsl\%:etzS using a Zipf distribution and a Geometric distributio

2 . . e note that few large-scale measurement studies exist for
completely specified once we fix the ordering of dahgl\ L . :

. . . e applications of interest here (e.g., video-on-demgad s
objects in order of decreasing demand. o
tems), and hence below we are considering several poten-
2. Shuffle the ranking of items. Generate the new requéiatly interesting distributions. Some of these corresptm

demand for each item according to the probabiliti@Xisting measurement studies (as noted below) and others we

corresponding to the new ranking of the item. To obtafi9nsider to explore the performance characteristics oabur

a target layout, take one of the following approaches gorithms and to further improve the understanding of such

algorithms. For instance, a Zipf distribution is often used
(a) Run the sliding window algorithm again with theharacterizing people’s preferences.
new request demands. Zipf Distribution

(b) Use other (than sliding window) methods to crea?ebe Zipt distribution is defined as follows [12];

atarget layout. The motivation for exploring these Vie1l.... M
methods is (a) performance issues (as explained Prob(request for movi§) = <, a7nd ’
later in the paper) as well as (b) that other algo- v 0<f<1

rithms (other than sliding window) could be use-

ful for creating layouts. The methods considered 1 1-6 M 1
where ¢= —<- and H = 1 TT=F

here are as follows. Hyp’ M= e

i. Rotation of items: Suppose we numbered trend 6 determines the degree of skewness. For instance,
items in non-increasing order of the numbe&t = 1.0 corresponds to the uniform distribution, whereas
of copies in the initial layout. We make & = 0.0 corresponds to the skewness in access patterns
sorted list of items of sizé = L%J, and let often attributed to movies-on-demand type applicatiorms, e
the list bely,ls,...,1;. Iteml; in the target similar to themeasurementgerformed in [4]. We assigé
layout will occupy the space of itefiy,; in to be0 and0.5 in our experiments below.
the initial layout, while iteml;, in the target Geometric Distribution
layout will occupy the positions of iteny We also tried a geometric distribution in order to invesiga
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how a more skewed distribution affects the performance 08. Heuristics using unweighted matching. Repeatedly re-
the data migration algorithm. The distribution is defined as move an unweighted matching from the transfer graph.
follows: Its worst case time complexity 8(n*j3).

Yi=1,...,.M - . . .
! L 4. Heuristics using weighted matching. Repeatedly re-

o i—1
Prob(request for movig) = (1 —p)" 'p 0 <a;(j< 1 move a weighted matching from the transfer graph,
where the weight between digkandw is max;(1 +
where we use set to0.25 and0.5 in our experiments below. log ‘Ig-il‘)’ over all itemsi wherev € S;,w € D;, or
. w € éi,v € D;. The worst case time complexity here
5.2 Shuffling methods isO(n*p).

1. Randomly promote 20% of the items. For each chosen

item of ranki, we promoteittorank toi—1,randomly. 5. Broadcasting items one by one. We process each item
i sequentially and satisfy the demand by doubling the
number of copies of an item in each round. The worst
case time complexity here 3(n_3).

2. Promote the least popular item to the top, and demote
all other items by one rank.

5.3 Data Migration Algorithms

. : N .6
We now describe the different data migration algorithms i ) )
which we tried in the experiments. In this section we present the parameters used in the experi-

ments and a summary of our results.
1. 9.5-approximation algorithm for data migration. This

algorithm uses several complicated components goy pParameters

achieve constant factor approximation guarantee. W& ran a number of experiments with 60 disks. For each cor-
consider simpler variants of these components. Th&pondence method, user request distribution, and stguffl
variants may not give good theoretical bounds. method, we generated 20 inputs (i.e., 20 sets of initial and
target layouts) for each set of parameters, and ran differen
that there exist disjoint se¥; of size L%J- The dgta migration algorithms on those instan_ces. Inthe Z'Epf_di
- N tribution, we used values o) and0.5, and in the Geometric
value ofrn should be betweedl = 5_;_, ¥ and qiciibution, we assignegvalues of0.25 and0.5.
B. We tried three different pairs of settings for space and
(b) in Step 2(b) we use a simple doubling method {gad capacities, namely: (A) 15 and 40, (B) 30 and 35,
satisfy all requests i7;. Since all groups aregnd (C) 60 and 150. We obtained these numbers from the
disjoint, it takesmax; log |G;| rounds. specifications of the latest SCSI hard drives. For example,
(c) in Step 3 we do not find a new sourge Instead the latest 72GB 15,000 rpm disk can support a sustained
S; send itemi to D; directly for small sets. We try transfer rate of 75MB/s with an average seek time of around
to find a schedule that minimizes the maximur®.5ms. Considering MPEG-2 movies of 2 hours each with
total degree of disks in the final transfer graph iencoding rates of 6Mbps, and assuming the transfer rate
Step 4. under parallel load is 40% of the sustained rate, the disk can
(d) in Step 3(a) when we find new soureg S; can Store 15 movies and support 40 streams. The space capacity
be candidates as well @3;. If s/ € S;, then we 30 and the Ioa}d capacity 35 are obtalqed fromusing a 150GB
10,000 rpm disk with a 72MB/s sustained transfer rate. The
space capacity 60 and the load capacity 150 are obtained
The worst case time complexity of all of the abovgy assuming that movies are encoded using the MPEG-4

algorithms, except for variant (c), i©((n* + format. So a disk is capable of storing more movies and

A)n?Blog %). The worst case time complexitysupporting more streams.

of variant (c), which does not find new source€s is

O((n + A)nAlog (nzﬁ)z log A). 6.2 Summary of Results .

In the tables below we present the average for the 20 inputs

2. Edge-coloring on a transfer graph. We can find mentioned above. In addition, in Figures 4 and 5 we present

transfer graph, given the initial and target layout. Finghr charts, corresponding to setting (A) (as describedin Se

an edge coloring of the transfer graph to obtain a valign 6.1) in Tables 2 and 4, in order to better illustrate the

schedule, and the number of colors used is an uppemparison of the algorithms’ average performance to the

bound on the total number of rounds. The worst cagfiver bound. Moreover, we present results of three repre-

time complexity here iX)((n + A)nfSlog (NZBA) + sentative inputs individually, to illustrate the perfonnea of

n%p?). the algorithms under the same initial and target layoutss Th

Results

(a) in Step 2(a) we find the minimum integersuch

can save some rounds to send itefrom s; to s;.
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presentation is motivated as follows. Thbsoluteperfor- degree of nodes in later steps such as in Step 2(c) and Step
mance of each run is largely a function of the differences [®where we send the item to disksih \ G;. However, the
tween the initial and the target layouts (and this is trueafbr experiments shown it usually performs slightly worse than
algorithms). That is, a small difference is likely to result the algorithm using.
relatively few rounds needed for data migration, and a large For Step 3(a) (where we identify new sourcéy we
difference is likely to resultin relatively many rounds ded found that the performance of the variant that includgs
for data migration. Since a goal of this study is to undewtaim additional to D;, as candidates for the new sourge
therelative performance differences between the algorithris mixed. Sometimes it is better than the origirteb-
described above, i.e., given the same initial and target lapproximation algorithm, but more often it is worse.
outs, we believe that presenting the data on a per run basis is For Step 2(b) (where we send the items from the sources
more informative (given our goal). That is, considering th€; to GG;), we found that doing a simple broadcast is gener-
average alone somewhat obscures the characteristics ofalhea better idea, as we can see from the results in (A), Input
different algorithms. 1in Table 4 and (A), Input 1 in Table 5. Even though this

For clarity of presentation, the tables below show resultekes the algorithm a@(logn) approximation algorithm,
using setting (A) described in Section 6.1, unless othexwigery rarely is the size ofnaxG; large. Under the input
noted. The results for the other two settings, (B) and (@)enerated by Zipf and Geometric distributions, the simple
are qualitatively similar and are included in Appendix B fdsroadcast generally performs the same as the original data
completeness. migration algorithm since the size afax G; is very small.
Different correspondence methods Out of all the heuristics, the matching-based heuristics
We first consider the correspondence problem. From therform very well in practice. The only cases where they
tables depicted below, we found that using a matching bageaform extremely badly correspond to hand-crafted (by us)
algorithm is important and can affect the performance of &lhd examples. Suppose, for example, a sef\otlisks
methods by a factor of 2 if a bad correspondence, usingre the sources foA items (each disk has alh items).
random matching for example, is chosen. However, usi8gppose further that the destination disks also havesize
a simpler weight function (2) or a more involved one (3ach and are disjoint. The result is listed in Table 1. Our
does not seem to affect the behavior in any significant walgorithm sends each of the items to one diskDinin the
(often these matchings are the same). We also observedvbay first round. After that, a broadcast can be done in the
the simple min max matching (1) always returns the samestination sets as they are disjoint, which takékg A)
matching as the simple min sum matching (2) in all instancerinds in total. The matching-based algorithm can take up to
we tried. Since direct correspondence does not perfofxrounds, as it can focus on sending itéat each round by
as well as other weight-based matchings, this also suggestsiputing a perfect matching of size between the source
that a good correspondence method is important. Howewlisks and the destination disks for iteimn each round.
the performance of direct correspondence was reason&itece any perfect matching costs the same weight in this
when we promoted the popularity of one item. This can lbase, the matching focuses on sending only one item in each
explained by the fact that in this case sliding window okgainound. We implemented a variant of the weighted matching
a target layout which is fairly similar to the initial layout  heuristic to get around this problem by adding a very small
Different data migration algorithms random weight to each edge in the graph. As we can see
After performing all these experiments, we do a post-mortédrom Table 1, although this variant does not perform as well
analysis of the data migration algorithm. We experimentad our migration algorithms, it only takéXlog A) rounds.
with different variants of the 9.5-approximation algonth Moreover, we ran this variant with the inputs generated
for data migration, because we found that the algoritiinom Zipf and Geometric distributions, and we found that it
spends a significant portion of rounds in certain steps. Hofrequently takes the same number of rounds as the weighted
ever, there exist simpler methods to perform the same stepching heuristic. In some cases it performs better than
that may not guarantee a constant approximation. For Steh& weighted matching heuristic, while in a few cases its
(where we want to satisfy small;), we found that sending performance is worse.
the items fromS; to small D; directly using edge coloring, Given the performance of different data migration algo-
without using new sources, is a much better idea. Everrithms illustrated in Figure 4 and Table 2, the two matching-
though this makes the algorithm ér{A) approximation al- based heuristics are comparable. Matching-based hesristi
gorithm, the performance is very good under both the Zipérform the best in general, then the edge-coloring héurist
and the Geometric distributions, since the sources are ti@n the data migration algorithms, while processing items
concentrated on one disk and only a few items increase the-by-one comes last. The main reason why edge-coloring
number of copies by a large amount. heuristic performs better than tl$e5-approximation data

In addition, we thought that making the sétsslightly migration algorithm is because the input contains mostly
larger by using? was a better idea. This reduces the averagmve operations, i.e., the size §f and D; is at most2 for
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at least 80% of the items. The Zipf distribution does nathen the number of items is around 3500, and it can be lower
provide enough cloning operations for the data migratien #han 2 CPU seconds when the number of items is around 500.
gorithm to show its true potential (the sizes(@f are mostly We also collected the maximum space requirement for
zero, with one or two items having size of 1 or 2). Processach disk needed to complete the migration. Consider disk
ing items one by one is bad because we have a lot of iteBhé Figure 1 and suppose that another disk needs item 3
(more than 300 in setting (A)), but most of the operatioffiom disk 3. If disk 3 receives items 2 and 4 before sending
can be done in parallel (we have 60 disks, meaning that wug item 3, then its temporary maximum space requirement
can support 30 copy operations in one round). Under tise4. However, since all data migration algorithms listed in
Zipf distribution, since the sizes of most séfsare zero, the this paper do not optimize for the temporary maximum space
data migration variant that send items fréindirectly toD; requirement, in many instances, there exists a disk thatnee
is essentially the same as the coloring heuristic. Thus thegce the capacity of that disk to finish the migration. We
have almost the same performance. omit the details of the maximum space requirements results
Under different input parameters due to space limitation.
In additional to the Zipf distribution, we also tried the Geo
metric distribution because we would like to investigate tf6.3 Final Conclusions
performance of the algorithms under more skewed distriEer the correspondence problem question posed in Sec-
tions where more cloning of items is necessary. As we cagn 1.1, our experiments indicate that weighted matching
see in Figure 5 and Table 4, we found that the performancénthe best approach among the ones we tried.
the coloring heuristic is worse than our data migration algo  For the data migration problem question posed in Sec-
rithms, especially whepis large (more skewed) or when theion 1.1, our experiments indicate that the weighted match-
ratio of the load capacity to space capacity is high. Howevigrg heuristic with some randomness does very well. This
the matching-based heuristics still perform the best. suggests that perhaps a variation of matching can be used to
We also investigated the effect on the performance @iftain anO(1) approximation as well. Among all variants
different algorithms under higher ratio of the load capacibf the 9.5-approximation data migration algorithms, letting
to space capacity. We found that the results are qualitgtivg; send itemi to D; directly for the small sets, i.e. vari-
similar, and thus we omit them here. ant (c), performs the best. From the above described results
Moreover, in the Zipf distribution, we assigned differenwe can conclude that under the Zipf and Geometric distribu-
values off), which controls the skewness of the distributionions, where cloning does not occur frequently, the weighte
as 0.0 and0.5. We found that the results are similar irmatching heuristic returns a schedule which requires only
both cases. While in the Geometric distribution, a higharfew rounds more than the optimal. All variants of the
value ofp (0.5 vs 0.25) gives our data migration algorithms).5-approximation data migration algorithms usually take no
an advantage over coloring heuristics as more cloningni®re than 10 rounds more than the optimal, when a good
necessary. correspondence method is used.
Miscellaneous
Tables 5 and 6 show the performance of different algorithms ] o
using inputs where the target layout is derived from theiaa'hit-r""bk.e L. The number of rognds taken by different plata migration
layout, as described in Step 2(b)i and Step 2(b)iiin Seﬁion?!gor'thms’ wh_en asetdl disks are_the_sourges far items (each
o isk has allA items), and the destination disks also have size
Note t_ha_t when the |n|t|§1l Iayout and the target Iayou_t A8 ch and are disjoint.
very similar, the data migration can be done very quickly.

The number of rounds taken is much fewer than the number ’C':ﬁ;’fégj:jmsm: zg 32 42 Gg 8‘7)
of rounds taken using inputs generated from running the | pata Mig. (vanilla) 10 9]12|12] 14

-- . ; . e ; Data Mig. ((b) doubling) 6 6 7 7 8
sliding wmdpw algor|th_m twice. Th|_s illustrates t_hat it ma Data Mig. ((0)S: 10 D) w0l oli2l12] 14
be worthwhile to consider developing an algorithm which Data Mig. ()3, (¢) S; toD;) || 10 | 9| 12 | 12 | 14

; H Edge Coloring
takes in an initial layout and th_e new access p_attern, and Unweighted Matching % | 30 | 40 | &0 | 80
then derives a target layout, with the optimization of the Weighted Matching 21| 30| 40 | 61 | 80

; : ; ; P Random Weighted
data mlgrauon process in mmld. Developing these typ(_as of | iom by Item 20 | 30| 20| 60 | 80
algorithms and evaluating their performance charactesist
is part of our future efforts.

We now consider the running time of the different darﬁ
N i : - eferences
migration algorithms. Except for the matching heuristak,
other algorithms’ running times are at most 3 CPU seconds _ _
and often less than 1 CPU second, on a Sun Fire V880 serve E. Anderson, J. Hall, J. Hartline, M. Hobbes, A. Karlin,
The running time of the matching heuristics depends on the J- Saia, R. Swaminathan and J. Wilkes. An Experimental

total number of items. It can be as high as 43 CPU seconds Stuo_ly of Data Migration Algorithmsorkshop on Algorithm
Engineering 2001
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Table 2: The number of rounds taken by algorithms, with 60 disks, timg the last item to the top, with user requests following
the Zipf distribution § = 0) with space capacity 15 and load capacity 40 (A). We combitedresults using inputs generated by
correspondence methods 1 and 3 because they return the serherof rounds.

Instance: Input 1 Input 2 Input 3 Average
Correspondence]| 1/3 4 5| 13 4 5| 13 4 5 1/3 4 5
(A) | LowerBound 30 30 30| 30 30 30| 26 30 30| 281 30.0 30.0
Data Mig. (Vanilla) 37 40 48 | 37 41 47 | 32 38 46 | 34.8 40.7 46.1
Data Mig. (b) 37 40 48 | 37 41 47 | 32 38 46 | 34.8 40.7 46.1
Data Mig. (c) 30 35 40| 31 35 40| 27 33 39| 29.6 345 40.0
Data Mig. (a & c) 31 35 40| 32 36 40| 28 33 39| 30.0 34.9 40.0
Data Mig. (a, b &c) 31 35 40| 32 36 40| 28 33 39| 30.0 34.9 40.0
Data Mig. (d) 30 42 48 | 39 46 48 | 38 42 49| 355 42.7 50.2
Data Mig. (b & d) 34 42 48 | 35 46 48| 35 42 49| 36.0 42.8 50.2
Edge Coloring 30 35 40| 31 35 40| 27 33 39| 29.6 345 40.0
Unweighted Matching 30 38 35| 30 32 34| 27 34 33| 284 32.3 34.3
Weighted Matching 30 34 32 30 32 32| 26 32 31| 283 31.4 32.2
Random Weighted 30 32 32 30 31 31| 26 32 32| 282 30.8 321
Item by Item 333 492 873| 317 442 864| 335 494 869| 346.0 470.9 858.0

Table 3: The number of rounds taken by algorithms, with 60 disks, miamy 20% of items, with user requests following the Zipf
distribution @ = 0), with space capacity 15 and load capacity 40 (A).

Instance: Input 1 Input 2 Input 3 Average
Correspondence] 1 3 4 5 1 3 4 5 1 3 4 5 1 3 4 5
(A) | LowerBound 30 30 30 30| 30 30 30 30| 30 30 30 30| 294 29.5 30.0 30.0|
Data Mig. (Vanilla) 38 38 43 46| 37 37 40 44| 37 36 42 44| 36.2 36.1 41.4 44.8
Data Mig. (b) 38 38 43 46| 37 37 40 44| 37 36 42 44| 36.2 36.1 41.4 44.8
Data Mig. (c) 31 31 35 42| 31 31 35 39| 31 31 34 40| 30.7 30.6 354 39.2
Data Mig. (a & c) 32 32 35 42| 39 39 35 39| 31 31 34 40| 321 32.0 354 39.2
Data Mig. (d) 41 41 50 54| 35 35 48 55| 34 37 49 49| 36.8 36.7 48.2 50.6|
Edge Coloring 31 31 35 42| 31 31 35 39| 31 31 34 40| 30.7 30.6 354 39.2
Weighted Matching 31 31 32 35| 30 30 31 31| 30 30 31 32| 29.6 29.7 32.0 31.3
Item by Item 506 506 862 873| 482 482 839 869| 515 515 856 864| 489.2 489.3 840.7 868.0
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Table 4:The number of rounds taken by algorithms, with 60 disks, mtimg the last item to the top, with user requests following t
Geometric distributiong = 0.5). We combined the results using inputs generated by canetgmce methods 1, 3, and 4 because they
return the same number of rounds.

(A) Space cap: 15, load cap: 40. (B) Space cap: 30, load cap: 35

Instance: Input 1 Input 2 Input 3 Average

Correspondence]| 1/3/4 5| 1/3/4 5| 1/3/4 5| 1/3/4 5

(A) | LowerBound 8 30 6 30 6 30 6.0 29.9
Data Mig. (Vanilla) 16 56 13 57 13 56 135 56.9

Data Mig. (b) 15 56 13 57 13 56 13.0 56.9

Data Mig. (c) 13 43 12 45 11 43 12.0 45.0

Data Mig. (a & c) 14 43 12 45 12 43 12.3 45.0

Data Mig. (d) 14 53 14 56 14 53 14.6 57.7

Edge Coloring 31 55 34 56 31 55 33.7 57.7
Weighted Matching 8 33 9 32 7 34 8.6 35.7

Item by Item 50 846 77 845 69 846 76.1 828.6

(B) | LowerBound 18 60 18 60 22 60 19.9 60.0
Data Mig. (Vanilla) 29 113 29 115 34 113 31.2 115.3

Data Mig. (b) 29 113 29 115 34 113 31.2 115.3

Data Mig. (c) 26 89 22 89 25 87 25.6 89.9

Data Mig. (a & c) 24 89 24 89 27 87 25.8 89.4

Data Mig. (d) 31 96 27 103 30 112 30.5 116.7

Edge Coloring 36 89 38 89 41 87 39.4 91.8
Weighted Matching 19 66 20 66 25 63 22.1 72.2

Item by Item 66 1748 66 1748 167 1746| 113.8 17119

Table 5:The number of rounds taken by algorithms, with 60 disks amal tequests following the Zipf distributiod (= 0) with space
capacity 15 and load capacity 40, and target layout is obtbfrom the method described in Step 2(b)i in Section 5 (i@iadf items).
We combined the results using inputs generated by corréspoe methods 1, 3, and 4 because they return the same nuimbends.

Instance: Input 1 Input 2 Input 3 Average
Correspondence]| 1/3/4 5| 1/3/4 5| 1/3/4 5| 1/3/4 5
(A) Lower Bound 5 30 5 30 7 30 5.4 30.0
Data Mig. (Vanilla) 12 48 10 46 11 50 | 10.3 48.8
Data Mig. (b) 11 48| 10 46| 11 50| 102 488
Data Mig. (c) 10 42 8 40| 11 43| 93 422
Data Mig. (a &c) 9 42 10 40 11 43 9.2 42.2
Data Mig. (d) 12 59 12 49 11 55| 10.6 53.2
Edge Coloring 9 42| 10 40| 10 43| 96 422
Weighted Matching 5 41 6 34 7 35 5.8 36.2
Iltem by Item 50 846| 49 855| 51 874| 480 8534
Appendix A: Details of the algorithm 1...A, again using a network flow approach. As
In this appendix, we describe the details of our migration Shown in Figure 7, we create a flow network with a
algorithm briefly outlined in Section 3. sources and sinkt. In addition we have two sets of
verticesU andWW. The first set/ hasA nodes, each
1. Step 1: We find a soureg € S; for each itemi so that corresponding to a disk that is the source of an item.
max;j=1,.,~(|{ilj = si}| + B;) is minimized, using The sefiV’ hasN nodes, each corresponding to a disk in
a flow network as follows. We create a flow network  the system. We add directed edges frotn each node
with a sources and a sinkt as shown in Figure 6. We in U, such that the edge, i) has capacit;{'%'J. We

have two set of nodes corresponding to disks and items. 4150 add directed edges with infinite capacity from node
Add directed edges fromto nodes foritems and also ;¢ (7 t0j € W if j € D;. We add unit capacity edges

directed edges from itemto diskj if j € Si. The from nodes ini¥’ to t. We find a max-flow froms to ¢
capacities of all those edges are one. Finally we add an j, this network. An integral max flow in this network
edge from the node corresponding to djsko ¢ with will correspond toG;| units of flow going froms to i,
capacitya — f3;. We want to find the minimuna so and fromi to a subset of vertices iP; before reaching
that the maximum flow of the network is. We can do t. The vertices to whicti has non-zero flow will form
this by checking if there is a flow aA with « starting the set;.

from max 3; and increasing by one until it is satisfied.
If there is outgoing flow from itemi to disk j, then we

setj ass;. 3. Step 2(b): The simple solution would be to broadcast

the data to each grou@; from the chosen source,
2. Step 2(a): We choose disjoint sets for eachi = since the groups are disjoint. However, this broadcast
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Table 6:The number of rounds taken by algorithms, with 60 disks amal tequests following the Zipf distributiod (= 0) with space
capacity 15 and load capacity 40, and target layout is obtbirom the method described in Step 2(b)ii in Section 5 ¢girig D; for
items with smallS;). We combined the results using inputs generated by canelgmce methods 1, 3, and 4 because they return the
same number of rounds.

Instance: Input 1 Input 2 Input 3 Average
Correspondence]| 1/3/4 5| 1/3/4 5| 1/3/4 5| 1/3/4 5
(A) | Lower Bound 2 30 3 30 2 30 2.7 30.0
Data Mig. (Vanilla) 2 48 4 45 4 47 3.6 48.0
Data Mig. (b) 2 48 4 45 3 47 33 48.0
Data Mig. (c) 2 43 4 43 4 43| 35 433
Data Mig. (a & ¢) 2 43 4 43 4 43| 35 433
Data Mig. (d) 2 58 5 49 4 53 4.0 52.9
Edge Coloring 2 43 3 43 3 43 3.1 43.3
Weighted Matching 2 41 3 40 3 38 3.0 37.7
Item by ltem 14 832 15 845 17 859 | 15.7 839.8
Data Mig. (Vanilla) Data Mig. (Vanilla) ‘ ‘ ]
Data Mig. (b) F ‘ ‘
Data Mig. (c) Data Mig. (b) ]
Data Mig. (a & ¢) Data Mig. (c) E
Data Mig. (a, b & c) @13 [

Data Mig. (d) m4 Data Mig. (a & ¢) ——————— E;/m

Data Mig. (b & d) as C

E . I
Data Mig. (d
Edge Coloring % ata Mig. (d) ‘ ‘ ‘

Unweighted Matching 5 Edge Coloring l‘
Weighted Matching =, L
Random Weighted 5 Weighted Matching %
0 5 10 15 20 25 0 5 100 15 20 25 30

Figure 4. The number of additional rounds taken by algbigure 5: The number of additional rounds taken by algo-
rithms as compared to the lower bound, averaged overrtims as compared to the lower bound, averaged over 20
inputs, with 60 disks, promoting the last item to the toprus@puts, with 60 disks, promoting the last item to the top,
requests following the Zipf distributior (= 0), space cap user requests following the Geometric distributipn< 0.5),

of 15, and load cap of 40. space cap of 15, and load cap of 40.

takes at leashax; log |G;| rounds. Unfortunately, this ~ The solution of the flow network,,, may not corre-

would give us arD(log N) approximation guarantee. ~ SPond to a valid schedule since a nadg may send
The method described below, develops stronger lower flow to several nodes. we convert the solution to a solu-
bounds for this situation. tion satisfying the following properties.

Let M be the number of steps required to send all * nodez;;, sends flow to at most one nodelin
items s to all d_lsks inG; in an optimal schedule of e the solution satisfies at |ed§i|—2mlfl demands
Step 2(b). To find a lower bound fdv/, we construct for each iteny.

the following flow networkF,, (parameterized by an
integerm) as shown in Figure 8. We have a source First, we define a variable;;;, for an edge frome

s and two sets of node& andV. U hasN - m to y; and setz;j;, = fiji/cijr Where fij;, is the flow
nodesz;,(j = 1...N,k = 1...m). V hasA nodes throughe;;;, in solution F3,,,. We substitute nodes
yi(t = 1...A) andy; has demandi@;|. There is an ya(l = 1... LZM zijk]) for each nodey; in V. We
edgee;;i, from zj;, to y; and its capacity; is 2m~* distribute edges having nonzero flow gpas follows.

if a disk j has itemi initially. There are edges from Sort edges in non-increasing order of their capacities.
to nodesz ;. in U with capacity2™*. If m’ be the Assign edges tg;; until the sum of: values of assigned
smallest number such that we can construct a solution edges is greater than or equal to one. If the sum is
of F,,,; that satisfies all demandi§;|, theni > m/'. greater than one, we split the last edge (denotg;as)
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Disks

Iltems

Figure 6: Flow network to find:

Items U Disks W

Figure 7: Flow network to find;

Figure 8: An example of constructing,, whereA = 6

7/.\ S1-S4

s D3

(a) (b)

Figure 9: An example of Step 3 whetie= 4 andj = 4. (a)
migration froms; to s} (b) migration froms’ to D; \ {s}}.

into €ijrk, and €ijik, - Assigneij,krl to y;; and define
zijrk; SO that the sum of values of edges assigned to
y;1 IS exactly one. Sedijiry, = zijrk —2ij0k; - We repeat
this so that for all nodeg;;, the sums ot values of the

assigned edges are one. In the resulting bipartite graph

with U andV' = {y; }, z makes dractional matching
which matches all vertices i’. Therefore, we can find
an integral matching that matches all vertice¥fnand
the matching satisfies the first property in the lemma.
Now we merge nodeg; into y;. Then eachy; matches
exactly| " , 2] edges.

Now Step 2(b) can be done im + 2m' + 1 rounds
based on the above solution. First we choose
min([3_; , zijr] +1,|G;|) disks inG; and denote those
disks asH;. Disk j sends item to a disk inH; if edge
eijx 1S matched for some. If |H;| > LZM Zijk ],
there is one disk idZ; which cannot receive item The
disk receives itenifrom s;. It can be done im'+«a 42
rounds. SinceG;|/|H;| < 2™ ~!, we can make all
disks inG; have itemi in additionalm’ — 1 rounds.

. Step 3(a): the following result from Shmoys-Tardos
[17] will be used for this step.

12

THEOREM®6.1. (Shmoys-Tardos [17]) We are given a
collection of jobg7, each of which is to be assigned to
exactly one machine among the get; if job j € J

is assigned to maching € M, then it requiresp;;
units of processing time, and incurs a cogt Suppose
that there exists a fractional solution (that is, a job can
be assigned fractionally to machines) with makespan
and total cosC'. Then in polynomial time we can find a
schedule with makespdh+ max p;; and total cosU.

For each itemi we wish to choose a source digksuch
that the following properties hold { denotes the set of
items for which diskj is a source).

o Ifie Ij thenj € D;.
° Eielj |D;| <25 —1.

We create an instance of the problem of scheduling
machines with costs. Items correspond to jobs and disks
correspond to machines. For each itémve define a
cost function as follows.C(i,j) = 1 if and only if
j € D, otherwise it is a large constant. Processing



time of jobi (corresponding to iters) is | D;| (uniform
processing time on all machines). Using Theorem 6.1
[17], the scheduling algorithm finds a schedule that
assigns each job (item) to a machine (disk) to minimize
the makespan. They show that the makespan is at
most the makespan in a fractional solution plus the
processing time of the largest job. Moreover, the cost of
their solution is at most the cost of the optimal solution,
namely the number of items. We cannot assign an
item (job) to a disk (machine) if the disk is not in the
destination set for the item.

Appendix B: Additional Results

In this appendix, we include the remaining data from the
tables given in Section 6, as mentioned earlier in the paper.
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Table 7:The number of rounds taken by algorithms, with 60 disks, mtimg the last item to the top, with user requests following t
Zipf distribution ¢ = 0). We combined the results using inputs generated by carnelgmce methods 1 and 3 because they return the
same number of rounds.

(B) Space cap: 30, load cap: 35. (C) Space cap: 60, load c@p: 15

Instance: Input 1 Input 2 Input 3 Average
Correspondencej| 1/3 4 5| 1/3 4 5| 13 4 5 1/3 4 5
(B) Lower Bound 46 46 60 48 48 60 46 46 60 48.3 48.4 60.0
Data Mig. (Vanilla) 52 52 93| 53 53 89| 51 51 90 | 54.2 54.3 90.5
Data Mig. (b) 52 52 93| 53 53 89| 51 51 90 | 54.2 54.3 90.5
Data Mig. (c) 46 46 85 48 48 87 47 47 85 48.6 48.7 85.2
Data Mig. (a &c) 47 47 85 49 49 87 48 48 85 49.3 49.4 85.2
Data Mig. (a, b &) 47 47 85 49 49 87 48 48 85 49.3 49.4 85.2
Data Mig. (d) 46 46 93| 48 48 96 | 46 46 105 | 49.0 49.1 105.7
Data Mig. (b & d) 47 47 93| 49 49 96 | 47 47 105| 50.1 50.1 105.7
Edge Coloring 46 46 85 48 48 87 47 47 85 48.6 48.7 85.2
Unweighted Matching 46 46 66 48 48 63 46 46 64 48.3 48.4 69.4
Weighted Matching 46 46 65 48 48 62 46 46 62 48.3 48.4 67.5
Random Weighted 46 46 62| 48 48 61| 46 46 61| 483 48.4 64.3
Item by Item 300 300 1778| 345 345 1777| 324 324  1775| 377.8 379.0 1746.4
(C) | LowerBound 110 120 120 65 65 120 | 110 120 120 925 1028 120.0
Data Mig. (Vanilla) 116 135 167 72 72 175| 120 156 173| 1014 1211 176.1
Data Mig. (b) 116 135 167 72 72 175 | 120 156 173| 101.4 121.1 176.1
Data Mig. (c) 110 129 165 71 71 171 112 149 168 96.6 115.7 170.9
Data Mig. (a &c) 110 129 165 71 71 171| 112 149 168| 96.6 115.7 170.9
Data Mig. (a, b &c) 110 129 165 71 71 171| 112 149 168| 96.6 115.7 170.9
Data Mig. (d) 131 159 191 84 84 193 | 112 154 189 108.1 129.7 219.4
Data Mig. (b & d) 131 159 191 84 84 193 | 112 154 189 108.2 129.8 219.4
Edge Coloring 110 129 165 71 71 171 112 149 168 96.6 115.7 170.9
Unweighted Matching|| 110 120 127| 67 67 127| 110 129 128| 93.3 107.0 142.2
Weighted Matching 110 120 128| 66 66 123 | 110 128 123 931 1074 140.0
Random Weighted 110 121 123 66 66 122 | 110 122 122 93.2 104.2 133.0
Item by ltem 930 1122 3555| 497 497 3574| 860 1099 3561| 708.0 837.2 3512.3

Table 8: The number of rounds taken by algorithms, with 60 disks, miamy 20% of items, with user requests following the Zipf
distribution @ = 0).

(B) Space cap: 30, load cap: 35. (C) Space cap: 60, load c@p: 15

Instance: Input 1 Input 2 Input 3 Average
Correspondence} 1 3 4 5 1 3 4 5 1 3 4 5 1 3 4 5
(B) | Lower Bound 60 60 60 60 58 58 60 60 60 60 60 60 59.9 59.9 60.0 60.0
Data Mig. (Vanilla) 66 66 70 85 65 65 73 89 67 67 69 84| 654 65.5 70.1 85.1
Data Mig. (b) 66 66 70 85 65 65 73 89 67 67 69 84| 654 65.5 70.1 85.1
Data Mig. (c) 60 60 66 81 59 59 68 81 61 61 64 79 60.4 60.6 65.8 79.4
Data Mig. (a & c) 60 60 66 81 59 59 68 81 61 61 64 79 60.4 60.6 65.8 79.4
Data Mig. (d) 70 70 99 100| 70 70 100 110{ 77 7 95 100 68.8 68.4 95.4 99.4
Edge Coloring 60 60 66 81 59 59 68 81 61 61 64 79 60.4 60.6 65.8 79.4
Weighted Matching 62 62 62 61 59 59 66 62 60 60 64 64| 60.1 60.1 65.4 64.1
Item by Item 857 857 1709 1774 890 890 1715 1769 904 904 1668 1770 8429 8429 1696.3 1755.8
(C) | Lower Bound 118 119 120 120 118 118 120 1200 120 120 120 1200 1195 1194 120.0 120.
Data Mig. (Vanilla) 123 126 145 163 125 125 146 166/ 127 127 167 166 125.2 125.3  149.0 163.4
Data Mig. (b) 123 126 145 163 125 125 146 166/ 127 127 167 166 125.2 1253  149.0 163.4
Data Mig. (c) 119 122 140 158 119 119 141 162 121 121 162 165 121.0 1214 1443  159.4
Data Mig. (a & c) 119 122 140 158 119 119 141 162 121 121 162 165 121.0 1214 1443 1594
Data Mig. (d) 142 146 178 201 149 149 187 198 154 154 189 197 1435 1432 187.2 1985
Edge Coloring 119 122 140 158 119 119 141 162 121 121 162 165 121.0 1214 1443  159.4
Weighted Matching|| 119 119 136  121f 118 118 151 122 121 121 133 123 119.8 119.7 1331 126.3
Item by Item 1869 1869 3427 357() 1851 1851 3413 3576 1869 1869 3459 3562 1860.1 1860.1 3412.7 35370
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Table 9:The number of rounds taken by algorithms, with 60 disks ard rexjuests following the Zipf distributiodd (= 0), and target
layout is obtained from the method described in Step 2(Igidation 5 (rotation of items). We combined the results usipgts generated
by correspondence methods 1, 3, and 4 because they retwsartteenumber of rounds.

(B) Space cap: 30, load cap: 35. (C) Space cap: 60, load c@p: 15

Instance: Input 1 Input 2 Input 3 Average

Correspondence]| 1/3/4 5| 1/3/4 5| 1/3/4 5| 1/3/4 5

(B) Lower Bound 12 60 9 60 8 60 7.6 60.0
Data Mig. (Vanilla) 17 94 13 90 12 90 11.8 91.7

Data Mig. (b) 17 94 13 90 12 90 11.8 91.7

Data Mig. (c) 14 89 10 86 11 85 9.8 87.4

Data Mig. (a &c) 15 89 12 86 11 85 10.7 87.4

Data Mig. (d) 16 118 13 106 12 116 115 108.8

Edge Coloring 12 89 9 86 9 85 9.5 87.4
Weighted Matching 12 87 9 82 8 78 7.7 76.5

Item by Item 76 1725 73 1752 75 1780 72.9 1740.6

©) Lower Bound 9 120 12 120 10 120 11.2 120.0
Data Mig. (Vanilla) 12 176 15 175 14 172 14.9 175.7

Data Mig. (b) 12 176 15 175 14 172 14.9 175.7

Data Mig. (c) 11 175 12 171 11 170 12.4 171.8

Data Mig. (a &c) 11 175 13 171 11 170 13.1 171.8

Data Mig. (d) 14 232 13 208 15 232 15.1 216.1

Edge Coloring 11 175 12 171 10 170 12.6 171.8
Weighted Matching 9 173 12 171 10 165 11.3 155.8

Item by Item 142 3461 | 144 3510| 134 3564 | 140.4  3486.5

Table 10:The number of rounds taken by algorithms, with 60 disks amd rexjuests following the Zipf distributiod & 0), and target
layout is obtained from the method described in Step 2(b)8éction 5 (enlarging; for items with smallS;). We combined the results
using inputs generated by correspondence methods 1, 3,lzechdse they return the same number of rounds.

(B) Space cap: 30, load cap: 35. (C) Space cap: 60, load c@p: 15

Instance: Input 1 Input 2 Input 3 Average

Correspondence]| 1/3/4 5| 1/3/4 5| 1/3/4 5| 1/3/4 5

(B) Lower Bound 2 60 4 60 4 60 35 60.0
Data Mig. (Vanilla) 2 94 4 91 4 89 3.9 92.4

Data Mig. (b) 2 94 4 91 4 89 3.9 92.4

Data Mig. (c) 2 89 4 89 4 85 3.8 87.9

Data Mig. (a & ¢) 2 89 4 89 4 85| 3.8 87.9

Data Mig. (d) 2 119 6 107 4 114 4.5 109.4

Edge Coloring 2 89 4 89 4 85 3.7 87.9
Weighted Matching 2 87 4 87 4 84 3.6 78.6

Item by Item 30 1717 31 1745 28 1772 | 28.7 1732.3

(C) | LowerBound 6 120 4 120 4 120 43 120.0
Data Mig. (Vanilla) 7 183 4 180 4 175 4.9 179.5

Data Mig. (b) 7 183 4 180 4 175 4.9 179.5

Data Mig. (c) 6 178 4 174 4 173 4.7 175.5

Data Mig. (a & ) 7 178 4 174 4 173 4.8 1755

Data Mig. (d) 9 233 7 207 5 219 6.4 215.5

Edge Coloring 6 178 4 174 4 173 4.5 175.5
Weighted Matching 6 176 4 174 4 171 4.5 160.0

Item by Item 53 3451 47 3505 48 3559 | 48.8 3479.5
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