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The purpose of this study is to develop an effective model and algorithm for 

estimating dynamic Origin-Destination demands for freeways. The primary challenge for 

this research subject lies in the fact that the number of unknown parameters is always 

more than the number of observable data, especially for a large network. Hence, the 

estimated O-D patterns may result in a large variance and insufficient reliability for use in 

practice. Besides, most existing approaches are grounded on the assumptions that a 

reliable initial O-D set is available and traffic volume data from detectors are accurate. 

However, in most highway network systems, both types of critical information are either 

unavailable or subjected to a significant level of measurement errors. 

To deal with those critical issues, this study has developed a set of dynamic 

models and solution algorithms for estimating freeway dynamic O-D matrices. The first 

extended model formulations can capture the speed discrepancy among drivers with an 

embedded travel time distribution function and the derivable interrelations between time-

varying ramp and mainline flows. These formulations also feature their best use of the 



available mainline information and travel time function, and hence substantially increase 

the system observability with fewer parameters. 

The second component is an iterative algorithm that can be used to provide a 

reliable estimate of the initial O-D set, which is often unavailable in practice. The 

proposed algorithm first divides the network into small sub-networks to reduce the 

number of unknown variables, and recursively compute the O-D proportions for each 

sub-network to well capture the relations between the O-D demands and the input 

information. 

To deal with the constraints that the available data usually contain measurement 

errors, this research has developed an interval-based model for estimating dynamic 

freeway O-D demands. This component includes a set of formulations that converts each 

model input as an interval with its boundaries based on the prior knowledge. 

This study has performed sensitivity analyses and explored their potential for real-

world application with the I-95 freeway corridor in Maryland. The numerical results 

under various traffic scenarios have indicated the promising properties of the proposed 

models and algorithms. 
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CHAPTER 1 INTRODUCTION 

 

1.1 BACKGROUND 

To contend with deteriorating traffic conditions and manage the available capacity 

of transportation networks, there has been an increasing demand of time-dependent 

Origin-Destination (O-D) information that can be used for short-term traffic controls and 

analysis of day-to-day network flow patterns. For instance, a variety of traffic control 

applications, such as real-time route guidance, dynamic traffic assignment and freeway 

corridor control, utilize time-dependent O-D demands as one of the essential input 

information. 

Traditionally, O-D information is estimated mainly from field survey data. 

However, due to the concern of costs and time associated with a rigorous survey, 

transportation researchers over the last several decades have devoted considerable efforts 

in developing effective approaches for reliably estimating time-dependent O-D demands. 

Depending on the employed assumptions and solution algorithms, one may classify those 

proposed in the literature for time-dependent O-D estimation into the categories of 

assignment-based and non-assignment-based approaches. The former category of 

approaches models the relationship between link flows and path flows with a link/path 

incidence matrix derived from a dynamic traffic assignment model. All approaches in this 

category require a reliable prior time-dependent O-D set and a proper route choice 
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behavior mechanism to predict the distribution of dynamic network O-D patterns (e.g. 

Ashok and Ben-Akiva, 2002). 

Research methods in the latter category were developed in response to the 

practical difficulties of having a reliable prior O-D set and an accurate route choice 

behavior model. Some researchers have explored the potential of using only observable 

information such as the time series of volume counts and travel times from network links 

to estimate the time-dependent O-D distribution over a target time period. With such a 

modeling methodology, one can reduce the dependency of the prior O-D information and 

circumvent the need to have a dynamic traffic assignment model (e.g., Chang and Wu, 

1994). Most modeling approaches in this category intend to directly formulate temporal 

and spatial relationship between time-dependent O-D patterns and the observable flows, 

such as on-ramp, off-ramp and/or mainline flows. Due to the underdetermined nature of 

such formulations, most solution algorithms proposed in the literature use the recursive 

estimation procedures to yield the best approximation of the true O-D distribution 

patterns. Hence, depending on the available information level and the network structure, 

the estimated time-dependent O-D patterns in this category may result in a large variance, 

and insufficient reliability for use in practice. Over the past two decades, despite the 

significant progress made by transportation professionals along this line, developing a 

reliable and effectiveness model for estimating time-dependent network O-D patterns 

remains a challenging issue in the transportation community. 
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1.2 RESEARCH OBJECTIVES 

Theoretically, a dynamic O-D model ready for use in practice should have the 

following desirable features: 

1 The proposed model can take full advantage of all available information and 

then well capture the dynamic interrelations between the estimated time-

dependent O-D patterns and the observable information. 

2 The formulations shall take into account real-world constraints, such as 

missing volume on some links or measurement errors of input data. 

3 The solution algorithm shall be sufficiently robust and efficient in solving a 

network of realistic size. 

Intending to embody all above desirable features in the proposed time-dependent 

network O-D model, this study has the following principal objectives: 

4 Modeling the complex temporal and spatial interrelations between time-

dependent O-D distributions and all observable information so as to increase 

the system observability with the minimal number of model parameters. 

5 Developing a robust solution algorithm that can solve the proposed model 

formulations for a large network under commonly encountered constraints. 

6 Demonstrating the applicability of the proposed model and algorithm for a 

large-scale freeway corridor with real-world system constraints, such as 

incomplete input information and measurement errors of the input data. 
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1.3 ORGANIZATION OF DISSERTATION 

Based on the proposed research objectives, this study has organized the results of 

primary research tasks and key activities into 6 chapters. The interrelations among those 

tasks are illustrated in Figure 1.1. 

Introduction

Dynamic O-D Estimation Model

� Travel Time Distribution

� Refined Mainline Formulation

An Algorithm for Estimating Initial O-D Set

� Network Decomposition

� Iterative Solution Algorithm

Numerical Examples

Sensitivity analysis

� Travel Time

� Initial Values

Literature Review

Conclusions and Recommendations

Numerical Examples

A large-scale network

- I-95 freeway corridor

An Interval-based Model and Algorithm

� Interval-based Model Structure

� Interval Kalman Filter Solution Algorithm

 

Figure 1.1. Interrelations between Primary Research Tasks 
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Chapter 2 presents a comprehensive literature review of existing dynamic O-D 

estimation approaches, including both model formulations and solution algorithms. 

Advantages and limitations of those approaches are also addressed along with their 

potential enhancements in this chapter. 

The primary focus of Chapter 3 is to develop a freeway dynamic O-D estimation 

model with an efficient solution algorithm that can circumvent those limitations 

identified in the literature review. The proposed estimation model can take into account 

the speed variance among vehicles, which have the same departure time, origin and 

destination, with an embedded travel time distribution function. This results in a 

substantial reduction of model parameters. To fully utilize both freeway mainline and 

ramp data, this study has further developed a set of mainline equations to capture the 

dynamic interrelations between the time-dependent O-D evolution patterns and the 

congestion level. Due to the nonlinear nature of the proposed formulations and concern 

with computing efficiency, this study has employed sequential extended Kalman filtering 

logic to develop a solution algorithm. Finally, extensive numerical analyses with both a 

small freeway network and the I-95 freeway corridor between Baltimore and Washington 

beltways have been conducted to test the sensitivity and reliability of the proposed model 

and its solution algorithm. 

Chapter 4 presents an initial O-D estimation algorithm developed for use in 

refining randomly or arbitrarily generated initial O-D sets through the iterative estimation 

procedures so that it can yield a more accurate set of time-dependent O-D patterns over 

subsequent time intervals. Performance evaluation of the initial O-D estimation algorithm 



 

 6 

with the example I-95 freeway corridor is also presented in this chapter. The carefully-

designed experiment for evaluation contains 100 randomly generated initial O-D sets, and 

employs the proposed initial O-D algorithm to refine those 100 data sets for subsequent 

estimation of time-varying O-D distribution over the target time period. 

Chapter 5 proposes an interval-based model and solution algorithm for estimating 

the time-varying O-D sets when the available traffic volume information actually vary 

within a range due to either measurement errors or some other factors. Performance 

evaluation of the proposed model and algorithm with the same I-95 freeway corridor is 

also presented in this chapter. This enhanced version of the dynamic O-D model and 

algorithm allow responsible agencies to circumvent the data deficiency embedded in 

most existing traffic surveillance systems. A set of rigorous numerical experiments has 

also been conducted and presented in this chapter. 

Chapter 6 summarizes the contributions of this research and future directions, 

including the development of statistics for evaluating the reliability of a dynamic O-D 

estimation model, and an approach for solving the proposed model formulations when 

only partial sensor information is available. 
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 INTRODUCTION 

One of the most promising research directions for estimating O-D matrices is to 

directly formulate the relationship between O-D patterns and link counts because such 

information is readily available. Initially, most efforts on this regard were limited to 

developing methods applicable only for long-term transportation planning (Van Zuylen 

and Willumsen, 1980; Cremer and Keller, 1981; Masher, 1983; Bell 1983; Cascetta, 

1984; Barbour and Fricker, 1994; Xu and Chan, 1993; Yang et al., 1991, 1992). 

However, these static methods did not take into account the time-varying nature of traffic 

flows and O-D trips. A comprehensive review of these static approaches can be found in 

the articles by Nguyen (1984), and Cascetta and Nguyen (1988). 

There has been an increasing demand for time-varying O-D information that may 

be used in short-term traffic control and analysis due to the needs for improving traffic 

conditions and managing transportation networks. Since the actual number of variables to 

be estimated for either a static or dynamic system is always far over the available 

information, transportation researchers over the past two decades have explored various 

methods to tackle this difficult issue. 

Nearly all O-D estimation approaches that are based on link flows consist of two 

primary steps. The first step is to formulate interrelationships between O-D patterns and 

link flows. Since the formulations for system equations generally do not have a unique 
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solution, the second step is to develop an algorithm to estimate the most feasible solution 

based on the employed assumptions and objective functions. 

This review of the literature related to dynamic O-D estimation is organized as 

follows. Various model formulations for capturing the relationship between dynamic O-D 

matrices and links flows are presented in the next section. The estimation algorithms for 

these O-D formulations, including non-recursive and recursive estimation algorithms, are 

reviewed in Section 2.3. Finally, deficiencies of the existing approaches and potential 

idea for further developments are outlined in Section 2.4. 

 

2.2 MODEL FORMULATIONS FOR DYNAMIC O-D ESTIMATION 

In the related literature review, recent studies for dynamic O-D estimation can be 

classified into two main categories: assignment and non-assignment based approaches 

(Wu, 1996). 

 

2.2.1 Dynamic Traffic Assignment (DTA) Based Approaches 

In modeling dynamic O-D matrices for general networks, the DTA based 

approaches employ the assumptions that a reliable prior time-dependent O-D set and an 

accurate dynamic traffic assignment model predicting the route choice behavior are 

available. With such critical assumptions, the general formulations between dynamic O-D 

distributions and link flows can be described with the following equation: 
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∑∑ −=
m ij

ij

m

ij )mk(T)k(P)k(y
ll

 (2.1) 

where  )mk(Tij − : Demand departing from origin i at time interval k destined to j; 

)k(y
l

: Observed flows arriving on link l  during time interval k; and 

)k(Pm

ijl : Proportion of demand departing from origin i at time k-m to destination j 

that will arrive on link l  at time k. 

A comprehensive review of the DTA based approaches can be found in many 

existing publications (Ashok and Ben-Akiva, 1993, 2002; Tavana and Mahmassani, 

2000; Peeta and Ziliaskopoulos, 2001). Some key research methods in this category are 

briefly reviewed below: 

• Model of a Static Extension 

To compute a dynamic O-D matrix, Willumsen (1984) first extended the static 

entropy maximization concept to a scenario of multiple time intervals. This class of 

approaches is known as the “Static Extension Model”. In essence, statistical methods for 

static O-D estimation can be extended to dynamic cases (Cascetta et al., 1993; Cassetta 

and Nguyen, 1988). The general model formulations are as follows: 

∑∑ ∑∑∑∑ −−⋅−−
k m ij

ij

m

ijj

m ij

ij

m

ij ])mk(T)k(P)k([y])mk(T)k(P)k([y .Min
l

lll
 (2.2) 

This approach experienced problems of computational inefficiency and lack of 

consideration for the natural constraints. Keller and Ploss (1987) extended the static 

model to a dynamic model by utilizing the cross correlation between entry flows and exit 

flows as an estimate for the O-D proportion: 
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where  iq : The average value of )k(q i ; 

)k(q i : The entry flow at origin i during time period k; 

jy : The average value of )k(y j ; and 

)k(y j : The exit flow at destination j during time period k. 

It is reported that the accuracy of results decreases as the degree of correlation 

decreases. 

• Auto-Regression Model 

Another class of approaches employs an auto-regression assumption for the 

relationship between O-D pairs in successive intervals (Okutani, 1987; Okutani and 

Stephanedes, 1984; Ashok and Ben-Akiva, 1993, 2000, 2002). The state-space model is 

presented as follows: 

)k(W)nk(T)k(A)1k(T
n

n +−⋅=+ ∑  (2.4) 

∑ +−⋅=
m

m )k(V)mk(T)k(P)k(Y  (2.5) 

where  )k(T = ),...]k(T[..., ij  represents the time-varying O-D matrix; 

)k(An  represents the corresponding auto-regression coefficient matrices; 

)k(Y = ),...]k(y[...,
l

 represents the time varying link flows; 
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)k(Pm = ),...]k(P[..., m

ijl  represents the link use pattern of O-D trips resulting from a 

DTA application; and 

)k(W  and )k(V  represent random error and noise terms, respectively, of the 

dynamic system and are assumed to follow Gaussian distributions. 

This dynamic O-D flow evolution model can be solved by the Kalman filtering 

algorithm to provide the recursive estimators. However, in order to calibrate the auto-

regression model, sufficient historical data on the relationship between time intervals 

needs to be collected. A complete review of the auto-regression model can be found in 

Ashok (1996). 

• AVI-based Models 

In addition to the aforementioned models, some researchers have applied the 

Automatic Vehicle Identification (AVI) to dynamic O-D estimation models (Dixon and 

Rilett, 2000; Zhou and Mahmassani, 2005). They proposed that the proportions of some 

O-D pairs can be computed based on vehicles with onboard identification devices, thus, 

reducing some unknown parameters. However, this type of models is based on the 

premise that the demand pattern for the AVI data is equal to that for vehicles in the 

network. 

In summary, all existing dynamic O-D estimation approaches based on the DTA 

concept have two major assumptions: 

• Some reliable prior O-D information is required, and 

• Accurate DTA parameters can be obtained. 
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This study intends to use the estimation approaches that only utilize the time 

series of available volume counts, and thus reduce the dependency on the prior O-D 

information. More in-depth review of these approaches is presented in the next section. 

 

2.2.2 Dynamic Non-Traffic Assignment (Non-DTA) Based Approaches 

Due to the practical difficulty in having a reliable prior O-D, most existing models 

classified in this category compute dynamic O-D matrices based on input/output flow 

relationship measured at network entrances and exits. Such modeling approaches use 

obvious relationships, such as the sum of O-D flows from the same origin equals the total 

trips entering the network from that origin, and the sum of O-D flows with the same 

destination is the total trips exiting the network at the target destination. A detailed 

description of the core formulation for this particular model category is presented below. 

Consider a typical freeway corridor with link count information as shown in 

Figure 2.1, where detectors are placed at on-ramps, off-ramps, and mainline links. The 

information that is readily available for estimation of its time-dependent O-D flow 

proportion or dynamic O-D distribution is the time series of entering flow, )k(q i , exiting 

flow, )k(y j , and mainline flow, )k(U
l

. 
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Figure 2.1. A Typical Freeway Corridor 
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Let )k(b ij  denote the proportion of vehicles entering from origin i  to destination 

j  during time interval k. By definition, it is subject to the following two natural 

constraints: 

1)k(b0 ij ≤≤ , Nji0 ≤<≤  (2.6) 

∑
+=

=
N

1ij

ij 1)k(b , 1N,...,1,0i −=  (2.7) 

The detailed reviews of the non-DTA based approaches are presented as follows: 

• Simple Linear Model 

For a small network, travel time from any origin to any destination is assumed to 

be negligible. The relation between entry and exiting flows is that the sum of O-D flows 

with the same destination is equal to the total trips exiting the network at the destination. 

This relation can be formulated as follows (Cremer and Keller, 1981): 

∑
−

=

=
1j

0i

iijj )k(q)k(b)k(y  (2.8) 

where  )k(q i  : The number of vehicle trips entering the freeway from on-ramp i during 

time interval k. 

)k(y j  : The number of vehicle trips exiting the freeway from off-ramp j during 

time interval k. 

)k(b ij  : The proportion of )k(q i  heading toward destination node j during time 

interval k. 
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Note that the number of unknown variables for the example freeway as shown in 

Figure 2.1 is 2/)1N(N +× , and the number of equations for Equation (2.8) is N. 

Obviously, when N is greater than 1, the model is underdetermined as there are more 

unknown parameters )}k(b{ ij  than system equations. 

It should be noted that most models that are based on input/output flow, employ 

the assumption that travel time between origins and destinations is either constant or 

negligible. However, when the travel time is significantly longer so that it affects the 

input and output flow relationships, Equation (2.8) is no longer valid, and consequently, 

travel time factors must be explicitly captured in dynamic formulations. 

• Linear Model with Travel Time Factors 

In analyzing turning movements at intersections, Bell (1991a) modeled a travel 

time factor based on the platoon dispersion concept (Roberson, 1969). Bell’s study 

assumed that the travel time needed for vehicles to pass through an intersection did not 

exceed one control time interval. Equation (2.9) was formulated based on the platoon 

dispersion relationship: 

)k(b)k(q)1k(y)1()k(y j

T

jjjj ⋅⋅+−⋅−= αα  (2.9) 

where jα  is an additional smoothing parameter ( 10 j ≤α≤ ) and needs to be estimated. 

This linear model captures the dynamic nature of small networks. However, the 

number of unknown variables has been increased to 2/)3N(N +× , and the number of 

system equations remains N. 
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• Linear Model with Freely Distributed Travel Times 

The aforementioned model can only be applied to a small network, in which the 

longer travel time is within one control time interval. To contend with freely distributed 

travel times, Bell (1991b) further proposed an extended linear model. He introduced a 

new parameter, ijmb , which denotes the proportion of trips from entrance i destined to 

exit j with a travel time of m intervals. Equation (2.10) is formulated based on the new 

parameter, and the new parameter is also subject to natural constraints (2.11) and (2.12). 

∑∑
=

−

=

−=
M

0m

1j

0i

ijmij )k(b)mk(q)k(y , N,...,2,1j =  (2.10) 

1)k(b
N

1ij

M

0m

ijm =∑∑
+= =

, 1N,...,1,0i −=  (2.11) 

1)k(b0 ijm ≤≤ , Nji0 ≤<≤ , M,...,1,0m =  (2.12) 

Equation (2.10) offers a more realistic formulation since the travel time for any O-

D pair may distribute up to M control time intervals. However, if the travel time spans 

more than two time intervals, the system equations would involve too many parameters, 

)k(b ijm . 

• Non-linear Model with Mainline Traffic Flow 

Chang and Wu (1994) proposed a freeway O-D estimation model by employing 

both mainline flow counts, )k(U
l

, and ramp flow measurements, )k(q i  and )k(y j , to 

construct a set of dynamic equations. To further capture the relationship between O-D 

flow proportions and traffic counts, they proposed a set of new variables, )k(ij
−θ  and 
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)k(ij
+θ , to represent the fraction of )mk(b)mk(q iji −−  trips that arrive at off-ramp j 

during time interval k. The model formulations are as follows: 

∑∑
=

−

=

−θ−=
M

0m

1j

0i

ij

m

ijij )mk(b)k()mk(q)k(y  N..., ,2 ,1j =  (2.13) 

∑∑∑
=

−

= +=

−θ−=−
M

0m

1

0i

N

1j

ij

m

ii )mk(b)k()mk(q)k(q)k(U
l

l

lll
 1N,2,1 −=l  (2.14) 

In this refined model, the number of unknown variables becomes 

2/)1N(N)1M( +××+  and the number of system equations increases to 1N2 − . To 

improve the operational efficiency, they also proposed an algorithm that aims to estimate 

an average O-D proportions, )k(bij , over several consecutive time intervals as shown in 

the following equations: 

∑
−

=

−−++ ⋅θ⋅−+θ⋅−=
1j

0i

ijijijiijijij )k(b)}k()]k(tk[q)k()]k(tk[q{)k(y , N..., ,2 ,1j =  (2.15) 

∑∑
−

= +=

−−++ −⋅θ⋅−+θ⋅−=−
1

0i

N

1j

ijiiiiii )mk(b)}k()]k(tk[q)k()]k(tk[q{)k(q)k(U
l

l

llllll
 

 1N,2,1 −=l  (2.16) 

The number of unknown variables under these refined formulations is reduced to 

2/)1N(N3 +× . These formulations are based on the assumption that the speed of 

vehicles entering the freeway at the same time interval is distributed in a relatively small 

range. 
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2.3 SOLUTION ALGORITHMS FOR DYNAMIC O-D ESTIMATION 

Since O-D flow proportions, )k(b ij , cannot be solved uniquely due to the 

underdetermined nature of the above formulations, it is essential that some additional 

assumptions or estimation algorithms be employed to yield a feasible solution. The 

estimation algorithms can be classified into two categories: non-recursive and recursive 

computation methods. 

2.3.1 Non-Recursive Estimation Algorithm 

To overcome the underdetermined nature, some studies assume that certain 

relationships exist between O-D patterns during successive time intervals. As a result, the 

entire model can then be reformulated and solved with statistical methods such as 

generalized least squares and constrained least squares (Cremer, 1983; Cremer and 

Keller, 1981, 1984, 1987; Nihan and Davis, 1987, 1989). A brief description of these 

estimation algorithms is presented below. 

• Least Squares Approaches 

Given an observation of consecutive K intervals in a dynamic O-D system, one 

can construct a least-square estimate, such as an ordinary least squares estimate (Cremer 

and Keller, 1981, 1987), a constrained least squares estimate (Nihan and Davis, 1987), 

and a generalized constrained least squares estimate (Kessaci et al., 1989). 

The ordinary least-squares approach is the most fundamental method, in which 

the O-D proportions are computed by minimizing the difference between detected traffic 

volumes and estimated traffic volumes as follow: 
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∑∑
= +=

−⋅−
K

1k

N

1ij

T

jj

T

jj )]k(qb)k([y)]k(qb)k([y .Min  (2.17) 

This approach does not take into account the natural constraints shown in 

Equations (2.6) and (2.7). Moreover, it requires computation of the matrix inversion. By 

taking into consideration of the natural constraints, the constrained least squares approach 

can yield relatively reliable estimation at the cost of an intensive computation burden 

(Nihan and Davis, 1987). 

Kessaci et al. (1989) proposed a more generalized model for constrained least-

square estimates: 

∑∑
= +=

−⋅⋅−
K

1k

N

1ij

T

jjjk

T

jj )]k(qb)k([ya)]k(qb)k([y .Min  (2.18) 

However, this model is even more computationally intensive than all previous 

methods due to the considerably high number of matrix inversion operation required. 

• Maximum Likelihood Approach 

The Maximum Likelihood (ML) approach is based on the assumption that O-D 

flow proportions are equal to probabilities of flows entering from entrance i to exit j as 

shown in Equation (2.19). 

)]k(b|)t(y),...2(y),1(y[P.Max  (2.19) 

To compute the ML estimator, it is necessary to compute the deviations of these 

probabilities, which are unfortunately unavailable from the observed data. To contend 

with this issue, Nihan and Davis (1989) employed the Expectation Maximization (EM) 

algorithm proposed by Dempster et al. (1977) for computing the ML estimator. This 
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approach assumes that O-D proportions are constant over time and requires the 

computation of the covariance matrices during each time iteration. 

• Fixed-point Approach 

Since the ML approach requires quite intensive computational work, Nihan and 

Hamed (1992) later proposed a fixed point approach, which simplified the ML algorithm 

so that each cell of the matrix can be estimated separately as the following iteration 

function: 

∑+=+
k

iijij )k(q/d)k(b̂)1k(b̂  (2.20) 

∑ ∑∑ −−−=
t i

iijij

t

iijjiijij ]})t(q)b1(b/])t(qb)t(y)[t(q)b1(b{d  (2.21) 

It is reported that this approach produced generally lower variances and more 

accurate estimates than with the least square-based approach (Nihan and Hamed, 1992). 

• Correlation Approach 

The correlation approach is based on static O-D estimation models (Ploss and 

Keller, 1986; Keller and Ploss, 1987). An initial estimate of a O-D matrix from the time 

series of input/output flows is first computed with a cross-correlation concept. Then, this 

prior O-D matrix is updated with the traffic counts of the current time interval. The O-D 

proportion is computed by the cross correlation between entry flows and exit flows: 

])t(y)t(q[

])t(y)t(q[

)k(b
k

Tkt

2

j

k

Tkt

2

i

2
k

Tkt

ji

ij

∑∑

∑

−=−=

−=

∆⋅∆

∆⋅∆

=  (2.22) 
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This approach was claimed (Ploss and Keller, 1986) to have a slight advantage 

over the recursive estimation algorithm by Cremer and Keller (1981). 

 

2.3.2 Recursive Estimation Algorithm 

All estimation algorithms in this category have the following recursive relation: 

Given initial bij(0), update each bij(k) recursively with the following: 

)]k(b̂)1k(q)1k(y[)k(G)k(b̂)1k(b̂ T ⋅+−+⋅+=+  (2.23) 

where G(k) is the gain term for updating the bij(k+1). A variety of algorithms has been 

proposed for computing the G(k) matrix. Some key studies on this category are reviewed 

below: 

• Stochastic Gradient (Gauss-Newton) Approach 

Cremer and Keller (1987) proposed the stochastic gradient algorithm that is 

intended to minimize the expected prediction error variance for each time iteration. 

2

j

T

jj )]]k(b)k(q)k(y[2/1[E)b(V −=  (2.24) 

The gradient of the )b(V j  is then 

)]}k(b)k(q)k(y[)k(q{E
b

)b(V
j

T

j

j

j
−⋅−=

∂

∂
 (2.25) 

The estimator and gain term are: 

)]1k(b̂)k(q)k(y)[k(q)k(G)1k(b̂)k(b̂ j

T

jjj −−⋅+−=  (2.26) 

Generally, this approach shows faster convergence and can be more robust with 

respect to choices of initial values and other design parameters (Nihan and Davis, 1987). 
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However, this approach does not consider the natural constraints, and thus Nihan and 

Davis (1987) reported that it performs worse and could be improved if the natural 

constraints are taken into account. 

• Recursive Least Squares Approaches 

This type pf approach, basically, is the recursive form of the aforementioned least 

squares method. Nihan and Davis (1987) were the pioneers credited with developing the 

recursive least squares algorithm. Its core concept is to recursively minimize the least-

square estimator 2T ]b)k(q)k(y[ − . The estimator and the gain term are defined as 

follows: 

)]1k(b̂)k(q)k(y)[k(G)1k(b̂)k(b̂ j

T

jjjj −−+−=  (2.27) 

)k(q)1k(P)k(q1

)1k(P)k(q)k(q)1k(P
)1k(P)k(P

j

T

j

T

j

jj
−+

−−
−−=  (2.28) 

)k(q)1k(P)k(q1

)k(q)1k(P
)k(G

j

T

j

j
−+

−
=  (2.29) 

Kessaci et al. (1989) derived the generalized recursive least squares algorithm for 

their proposed generalized least-square model. The approach has the advantage in 

satisfying both sets of the natural constraints, i.e., Equations (2.6) and (2.7). However, 

due to the need to invert the matrix in the gain matrix, this estimation procedure is 

computationally more intensive than most other recursive algorithms. 

To overcome this shortcoming, Nihan and Davis (1989) proposed the following 

two-stage process to incorporate the natural constraints in the estimation procedure: 

Step 1 – Truncation. Modifying the recursive formulation to: 
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)]k(b̂)1k(q)1k(y[)k(G)k(b̂)1k(b̂ j

T

jjjj ⋅+−+⋅⋅α+=+  (2.30) 

where α is chosen as the biggest scalar ( 10 ≤α≤ ) to satisfy the inequality 

constraints, i.e., 1)k(b̂0 ij ≤≤ . 

Step 2 – To satisfy the equality constraint by using either 

(a) Normalization: 

∑=
j

ijjj )k(b̂/)k(b̂)k(b̂ , or (2.31) 

(b) Projection: 

N/])k(b̂1[)k(b̂)k(b̂
j

ijijij ∑−+=  (2.32) 

It is reported that this results in greater accuracy (Nihan and Davis, 1987). This two-

step process can also be applied to other recursive algorithms. 

• Bayesian Updating Approach 

Maher (1983) was the first researcher who advocated the use of Bayesian 

statistical inference in O-D estimation. Instead of starting with a point estimate, he 

introduced a distribution of possible initial estimates in order to represent the degree 

belief in these prior probabilities. A posterior distribution of the possibilities was then 

produced from the prior distribution and observations using the Bayesian Theorem. Van 

der Zijpp (1996) proposed the Bayesian updating scheme using the multivariate normal 

assumption but in the truncated multivariate normal form for the subject probability 

distributions. 
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The advantage of this new procedure is that it deals with the inequality constraints 

in an appropriate statistical manner. This approach is an extended version of the Kalman 

filtering that incorporates the same inequality constraints. The core concept is to 

maximize the posterior distribution density of bj(k) by solving the following optimization 

problem: 

}1)k(b̂0|)]k(b̂)k(b[S)]k(b̂)k(b.{[Min ijjjj

T

jj ≤≤−−  (2.33) 

where Sj is the estimated covariance matrix of )k(b̂ j . Although this proposed method 

offers flexibility in the degree of belief on the prior estimate, the value, Sj, still needs to 

be determined in practice. 

• Kalman Filtering Approach 

The Kalman filtering approach is different from the aforementioned approaches, 

which are designed to minimize the distance between measured and predicted values. The 

method has been applied to O-D estimation problems by a number of researchers, namely 

Cremer and Keller (1987), Nihan and Davis (1987), Van der Zijpp and Hanerslag (1994), 

and Chang and Wu (1994). Prior to using any Kalman filtering method, one must provide 

the state and measurement equations. The former describes how the unknown parameters 

have evolved over time, while the latter captures the relationship between the unknown 

parameters and the measurements. In both equations, it is possible to specify uncertainty 

with noise terms. The following are examples of the state and measurement equations: 

)k(w)k(b)1k(b +=+  (2.34) 

)k(v)k(b)k(H)k(y T +=  (2.35) 
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where Equation (2.34) is the state equation assumed to follow the random walk and 

Equation (2.35) is the measurement equation describing the relation between traffic flows 

and O-D proportions. Given the state and measurement equations, one can define the 

recursive estimator, )k(b̂ , with the Kalman filtering concept as follows (Kalman, 1960). 

)]1k(b̂)k(H)k(y[)k(G)1k(b̂)k(b̂ T −−⋅+−=  (2.36) 

1T )]k(R)1k(P)k(H)[k(H)1k(P)k(G −+−−=  (2.37) 

)1k(P)k(H)]k(R)k(H)1k(P)k(H)[k(H)1k(P)1k(P)k(P T1T −+−−−−= −  (2.38) 

These equations define a recursion that begins with an initial estimate, )0(b , an 

initial covariance matrix, P(0), and the covariance matrices of those random terms, Q(k) 

and R(k). In practice, these can be provided using historical information or available 

model experience. A theoretical analysis on this approach can be found in van der Zijpp 

and Hamerslag (1994). 

Moreover, this estimate has been shown to be unbiased. If the noise terms and the 

initial state follow the Gaussian distribution, the Kalman filtering has been shown to 

produce unbiased estimates that yield minimum variance over all other estimators 

(Anderson and Moore, 1979). 

A fundamental problem associated with the application of the Kalman filtering 

equations to estimating O-D proportions lies in the difficulty of ensuring that the natural 

inequality and equality constraints are satisfied. The scheme of normalization and 

truncation proposed by Nihan and Davis (1989) can be applied to deal with this problem. 
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2.4 CLOSURE 

Existing approaches for estimating dynamic O-D matrices from time-series of 

traffic counts have been summarized and categorized into two classes based on input 

information and formulations. The main weakness of DTA-based approaches lies in that 

it requires both reliable prior O-D information and an accurate traffic assignment model. 

In addition, since the development of a reliable DTA remains an on-going research issue, 

the requirement for having a DTA pattern certainly limits the potential application of 

such O-D estimation approaches. 

In contrast, the dynamic approaches with input/output flows are relatively 

promising since they need neither DTA nor a prior O-D matrix. Unfortunately, such 

approaches reported in the literature are effective mainly for special networks in which 

travel time is either negligible, constant, or with a limited range of variation. 

In conclusion, to advance existing models for real-world applications, one needs 

to overcome the following three critical issues: 

� The system equations for O-D estimation from traffic counts are clearly 

underdetermined as the number of equations is always far less than the 

number of O-D pairs. 

�  An efficient model for dynamic O-D estimation shall have the capability to 

deal with a large-scale freeway network. 

� A practically useful model shall not be based on the unrealistic assumption 

that all entry and exiting flow counts are available, or that a reliable set of 
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prior O-D exists for model calibration. In reality, such information may be 

neither complete nor accurate at the desirable level. 

This research is proposed to address these three critical issues, and is focused on 

developing a reliable and robust model that offers the potential for real-world 

applications. 
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CHAPTER 3 MODEL FORMULATIONS OF DYNAMIC O-D ESTIMATION 

FOR FREEWAY CORRIDORS 

 

3.1 INTRODUCTION 

Since the number of parameters to be estimated for both static and dynamic 

system is always greater than the available information, transportation researchers over 

the past two decades have studied various methods for contending with this difficult 

issue. Based on related literature reviewed in Chapter 2, one can classify recent studies 

for dynamic O-D estimation into two main categories: assignment and non-assignment 

based approaches. The former category of approaches is based on the assumption that a 

reliable prior O-D set and a dynamic traffic assignment model that predicts route choice 

behavior are available. Considering the practical difficulty in having the reliable prior O-

D information, some researchers have developed various estimation approaches that 

utilize only the time series of available volume counts, thus reducing the dependency on 

prior O-D information. This study focuses on non-assignment-based methods, and aims 

to estimate dynamic freeway O-D distribution, based mainly on all observable link and 

ramp flow rates. 

Note that if the travel time needed to traverse the network is constant, the 

dynamic O-D estimation for this type of scenario regresses back to the case of an isolated 

intersection or a small network, except when there is a constant time lag between each O-

D pair. However, under congested conditions, the link travel time may vary substantially 
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with flow rates. This impact on the distribution of time-varying O-D patterns thus needs 

to be properly incorporated in the model formulation. Moreover, the measurable input 

and output flows at ramps is based on the assumption that no congestion exists on the 

freeway segment. To address these two critical issues, this study proposes a robust model 

that captures the speed variance among vehicles with the same departure time, origin, and 

destination using a specially derived travel time distribution function that substantially 

reduces model parameters. To fully utilize traffic flow information on the mainline 

freeway, this study refines the mainline equations to capture dynamic interrelations 

between the O-D evolution pattern and the congestion level. 

The topics covered in this chapter are organized as follows: The basic relations 

between time-dependent O-D flows and time-series traffic measurements in a freeway 

corridor are formulated with a nonlinear dynamic system model as illustrated in Section 

3.2. In Section 3.3, an enhanced model for the freeway corridor is developed using an 

embedded function that allows travel times to exceed one unit control interval thereby 

capturing varying travel times. The base solution algorithm with extended Kalman 

filtering procedures is illustrated in Section 3.4. Evaluations and results on the 

effectiveness of the proposed model and algorithm are presented in Section 3.5 using 

extensive simulation experiments. The last section of this chapter summarizes current 

studies and key contributions. 
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3.2 NATURE OF PROBLEM AND BASIC FORMULATIONS 

Consider a freeway corridor of N segments from 0 to N-1 as shown in Figure 2.1. 

The set of variables used in modeling the dynamic traffic flow and O-D relations is 

defined as follows: 

)k(q0  : The number of vehicles entering the upstream boundary of the freeway 

section during time interval k. 

)k(q i  : The number of vehicles entering freeway from on-ramp i during time 

interval k, i = 1, 2, …, N-1. 

)k(y j  : The number of vehicles leaving freeway from off-ramp j during time 

interval k, j = 1, 2, …, N-1. 

)k(yn  : The mainline volume at the downstream end of the freeway section 

during time interval k. 

)k(U i  : The number of vehicles crossing the upstream boundary of segment i 

during time interval k, i = 1, 2, …, N-1. 

)k(Tij  : The number of vehicles entering the freeway from on-ramp i during time 

interval k that are destined to off-ramp j (i.e., the time-dependent O-D 

flow), where Nji0 ≤<≤ . 

0t  : The duration of one unit time interval. 

)k(t ij  : The average travel time from on-ramp i to off-ramp j departing during 

time interval k. 



 

 30 

)k(ijσ  : The standard deviation of the travel time for vehicles traveling from on-

ramp i to off-ramp j departing during time interval k. 

)k(b ij  : The proportion of )k(q i  heading toward destination node j during time 

interval k. 

)k(m

ijθ  : The fraction of )mk(Tij −  vehicles that arrive at off-ramp j during time 

interval k. 

Exploiting the preceding notations and using Figure 2.1, one can establish the 

following relationships: 

∑
+=

=
N

1ij

iji )k(T)k(q ,  1N,...,1,0i −=  (3.1) 

)k(b)k(q)k(T ijiij = , Nji0 ≤<≤  (3.2) 

Equations (3.1) and (3.2) are subject to the following constraints as previously discussed: 

1)k(b0 ij ≤≤ , Nji0 ≤<≤  (3.3) 

∑
+=

=
N

1ij

ij 1)k(b , 1N,...,1,0i −=  (3.4) 

Regarding speed variations among drivers, it is reasonable to assume that the 

departure time for vehicles from node i arriving at node j during time interval k are 

distributed among time intervals k, k–1, …, and k–M, where M is the maximum number 

of intervals required for vehicles to traverse the entire freeway section. The exit traffic 

volume, )k(y j , can thus be stated as: 
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iji )mk(b)k()mk(q , N..., ,2 ,1j =  (3.5) 

where )k(m

ijθ , a set of new time-dependent parameters satisfies the following constraints: 

10 m

ij ≤θ≤ , Nji0 ≤≤≤ , M,...,1,0m =  (3.6) 

∑
=

=+θ
M

0m

m

ij 1)mk( ,  Nji0 ≤<≤  (3.7) 

As discussed in the study by Chang and Wu (1994), Equation (3.5) is sufficient 

for capturing the dynamic relation between O-D patterns and link flows if the freeway is 

not congested and traffic flow is steady. Otherwise, the time varying traffic volume, 

)k(U
l

, cannot be determined with only the entrance and exit flow data, )k(q i  and 

)k(y j . Hence, the measurements of )}k(U{
l

 may actually provide additional valuable 

information for estimation. A set of constraints that utilizes the mainline traffic volume, 

)k(U
l

, is given as follows (Chang and Wu, 1994): 
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 (3.8) 

where 1N..., ,2 ,1 −=l . 

However, the system formulation contains a large number of the unknown 

parameters, i.e., )k(b ij  and )k(m

ijθ . The number of the unknown parameters increases as 
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the required M value increases. Therefore, more refinement is necessary to ensure that 

the proposed model is computationally efficient and tractable. An innovative concept that 

utilizes a function to capture a potentially wide range of speed variations with a limited 

number of unknown parameters is proposed in the next section. 

 

3.3 THE DYNAMIC O-D ESTIMATION MODEL WITH TRAVEL TIME 

DISTRIBUTION 

Assume that the travel time of drivers departing from node i during time interval k 

to node j follow a normal distribution, i.e., )]k(),k([N 2

ijij σµ , as shown in Figure 3.1, 

where: 

)k(t)k( ijij =µ  : The average travel time of vehicles departing from node i during 

interval k to node j 

)k(ijσ  : The standard deviation of the travel time of vehicles departing from 

node i during interval k to node j 

)k(m

ijρ  : The fraction of )mk(Tij −  vehicles departing from entry node i during 

time interval k that takes m time intervals to exiting node j. 

)k(m

jilρ  : The fraction of )mk(Tij −  trips from entry node i during time interval k 

that takes m time intervals to mainline node l . 
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)k(t ij)k(c)k(t ijij σ⋅− )k(c)k(t ijij σ⋅+ Travel Time

P
er
ce
n
ta
g
e

 

Figure 3.1. The Assumed Distribution of Travel Times for Drivers Departing from 

Node i during Time Interval k to Node j 

 

The use of normal distributions to approximate the travel time distribution of 

vehicles with the same O-D has previously been reported in literature by Bell (1991b), 

and Zhang and Maher (1998) as well as Grace and Potts (1964). Furthermore, Seddon 

(1972) examined the theoretical basis for the recurrence model and found that it 

corresponded to Pacey’s (1956) diffusion model of platoon dispersion when the normal 

distribution for vehicle speeds was replaced with a shifted geometric distribution for 

travel times. However, this concept has not yet been applied to formulate the O-D 

estimation model. 

As shown in Figure 3.2, since the travel time for an O-D pair departing during the 

same time interval follows a normal distribution, )k(m

ijρ  can be replaced with a 

cumulative density function within a time interval, m, as follows: 
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Figure 3.2. The Probability Distribution of Travel Time 

 

By applying the above travel time distribution concept, Equations (3.5) can be 

rewritten as: 

∑∑
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−

=
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where )x(f  is the density function of the travel time distribution with mean )k(t ij  and 

standard deviation )k(ijσ . To apply the travel time distribution concept to Equation (3.8), 

it is essential that the formulations are properly restructured to minimize the number of 

unknown parameters. Figure 3.3 illustrates an example of the relation between mainline 

volumes and entrance volumes. 
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Figure 3.3. The Relation between Mainline Volumes and Entrance Volumes 

 

As shown in Figure 3.3, the mainline volume U1 is comprised of the vehicles 

traveling from Origin 0 to Destination 2 and Destination 3, and entrance volume q1. If the 

speeds of vehicles are uniformly distributed, Equation (3.8) still holds. However, since 

normal distribution is applied to illustrate the travel time distribution, the fraction of trips 

in Equation (3.8) that arrive at the mainline segment is different from the fraction of trips 

that arrive at the off-ramp. A new parameter, )k(m

jilρ , is then introduced, which is defined 

as the fraction of )k(Tij  trips from on-ramp i during time interval k that takes m time 

intervals to mainline segment l . The previous equation can thus be modified as follows: 
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However, the contributions on this critical research issue would be more 

meaningful if additional observation constraints were identified without increasing the 

number of unknown parameters. Hence, this study has further assumed that the travel 

times for vehicles from origin i to mainline point l , i.e., )k(t jil , also follow a normal 

distribution, and one thus is able to construct the relation between the two fractions, 

)k(m

ijρ  and )k(m

jilρ . Assuming that the speed distribution for vehicles traveling from 

origin i to destination j remains unchanged, the relation between travel times )k(t ij  and 

)k(t jil  is the proportion of the corresponding distances as shown in Figure 3.3. Therefore, 

the distribution of travel time )k(t jil  can be presented as: 

)]k(),k(t[N~)k(t 2

ij

2

jiijjiji σ⋅γ⋅γ
lll

  (3.13) 

ij

i
ji

d

d
l

l
=γ  (3.14) 

where jilγ  is the ratio of the distance 
lid , to the distance ijd . Figure 3.4 shows an 

example of travel times )k(t ij  and )k(t jil . 
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Figure 3.4. Travel Times )k(t ij  and )k(t jil  

 

In addition to use normal distribution to demonstrate the variation of travel time, 

one can also estimate the average )k(bij  for consecutive intervals instead of solving the 

O-D flow distribution matrix for each small interval (Chang and Wu, 1994). Hence, all 

the )(b ij ⋅ terms in equations (3.11) and (3.12) can be replaced with )k(bij : 
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With the above enhancements, the average travel time for each O-D pair can be 

estimated with data provided by a surveillance system only leaving the O-D proportions, 

)k(bij , and standard deviations, )k(ijσ  as the unknown set of parameters. An estimation 

algorithm based on the extended Kalman filtering concept is presented in the next 

chapter. 

 

3.4 THE STATE-SPACE MODELING AND KALMAN FILTERING 

ESTIMATION ALGORITHM 

In most existing approaches, dynamic O-D parameters, )k(bij , are assumed to 

follow the random walk process: 

)k(w)k(b)1k(b ijijij +=+ , Nji0 ≤<≤  (3.17) 

where the random term, wij(k) is an independent Gaussian white noise sequence with zero 

mean and its covariance. By the same token, one can deduce a similar dynamic equation 

for σij(k): 

)k(v)k()1k( ijijij +σ=+σ , Nji0 ≤<≤  (3.18) 

where each vij(k) is a Gaussian white noise sequence with zero mean. 
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It is quite complex to apply the dynamic relationships of )k(b ij
&  to a matrix form 

because there exist time lag variables in Equations (3.15) and (3.16) that must be 

eliminated. However, with a simplified model proposed by Wu and Chang (1997) that 

estimates an average bij(k) for a consecutive number of the most recent time intervals, the 

time lag problem is no longer critical. To facilitate the formulation, the following 

variables are defined as:  

)]k(b[ ij=b(k)  

)]k(w[ ij=W(k)  

Note that both b(k)  and W(k)  are column vectors of dimension N(N+1)/2. 

Hence, the matrix form of Equation (3.17) is as follows: 

W(k)b(k)1)b(k +=+  (3.19) 

where W(k)  is the corresponding white noise sequence with zero mean and the 

corresponding covariance matrix, ]d,...,d[diag bb=bD  is a N(N+1)/2 dimensional 

matrix. Let σσσσ(k) denote the following N(N+1)/2 dimension column vector: 

[ ]TN,1N12N00201 )k(,),k(),k(,),k(),k( −σσσσσ= LLσ(k)  

and the vector V(k) be the corresponding vectors in the following matrix form: 

)V(kσ(k)1)σ(k +=+  (3.20) 

where V(k) is an N(N+1)/2 dimension Gaussian white noise vector with zero mean and 

covariance σD , which is a constant semi-positive matrix. 
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With the above refinements for b(k) and σσσσ(k), Equations (3.15) and (3.16) can be 

restructured into the following matrix form: 

e(k)b(k)]H[Z(k) +⋅= (k)σ ij  (3.21) 

where T

1N1N11N21 )]k(q)k(U),...,k(q)k(U);k(y),...,k(y),k(y[ −− −−=Z(k) , Z(k) is a 

column vector of dimension 2N-1, ]h[)k( k

rsij =σ ]H[  is a matrix of dimension  

(2N-1)×N(N+1)/2 with its entries given by the corresponding coefficients in equations 

(3.15) and (3.16), and e(k) is an observation noise vector of dimension (2N-1), which can 

be defined as a Gaussian white noise with zero mean and its covariance matrix, where 

R=Var[e(k)]=diag[r1,…,r2N-1] is a diagonal positive definite matrix of dimension (2N-1) 

×(2N-1).  

Through Equation (3.19)-(3.21), a canonical state-space system model has been 

established. Due to the nonlinear nature of the formulations and the concern of computing 

efficiency, this study has employed sequential extended Kalman filtering algorithm (Chui 

and Chen, 1999) and Gumbel distribution (an approximation of normal distribution) to 

develop a solution algorithm. A step-by-step description of the algorithm for estimating 

parameters, )k(b ij  and )k(ijσ  is presented below: 

Step 0: Initialization 

� Link length Li, i = 0, 1, …, N-1 

� Length of each time interval, t0, and the maximum number of intervals required to 

traverse the entire section M 

� Initial input mean speeds, Vi(m), m = -M, -M+1, …, 0 
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� Initial input flows, qi(m), m = -M, -M+1, …, 0 

� Initial travel times, tij(m) = Li / Vi(m) + … + Lj-1 / Vj-1(m), m = -M, -M+1, …, 0 

� Var[e(k)] = diag [r1, r2, …, r2N-1] 
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Step 1: Compute Travel Time (mean value) 

)k(t)k(u ijij =  

Step 2: Compute the Linearized Transformation Matrix 
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where each if  is a row vector of dimension N(N+1) 

� 
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Step 3: Initialization of sequential Kalman Filtering 

� Set 1)b(kb
0 −= , )1σ(kσ

0 −=  

� DPP 1k

0 += −  where, 







=

σD

D
D

b
, ]d,,d[diag bb L=bD  is a covariance 

matrix of W(k), and σD  is a constant semi-positive matrix. 

Step 4: Sequential Kalman Filtering Iteration 

For 1N2,,2,1i −= K  
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 (3.22) 

� Normalization: 

For 2N,,2,1m −= K  
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Step 5: Prediction of the States 

� Set 1N2P −=kP  
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k=k+1, go to Step 1 for the next interval. 

 

3.5 NUMERICAL EXAMPLES AND SENSITIVITY ANALYSES 

In order to evaluate the effectiveness of the proposed model with an embedded 

travel time distribution function, a small freeway network is designed for sensitivity 

analyses with respect to potential measurement errors in travel time and initial values. In 

addition, an example with a large freeway network is presented to demonstrate the 

advantage of incorporating mainline traffic volumes in the model formulation. 

3.5.1 Sensitivity Analysis for a Small Network 

To generate a meaningful data set for numerical analysis, an example freeway 

system using the presumed time series of O-D percentages was simulated with AIMSUN 

4.0 (TSS, 2001), to produce time-dependent link traffic volumes. The traffic flow data 

was collected at an interval of two minutes over the entire simulation duration of one 

hour. Figure 3.5 illustrates the example freeway corridor, and Table 3.1 presents the 

presumed time series O-D proportions. 
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Figure 3.5. A Small Example Freeway Section for Model Sensitivity Test 

Table 3.1. The Input Time Series of O-D Proportions 

O-D 

Interval 
b02 b03 b04 b12 b13 b14 

O-D 

Interval 
b02 b03 b04 b12 b13 b14 

0 0.19 0.34 0.46 0.27 0.40 0.33 15 0.16 0.29 0.55 0.26 0.36 0.38 

1 0.20 0.29 0.51 0.26 0.39 0.35 16 0.17 0.26 0.56 0.26 0.38 0.37 

2 0.18 0.29 0.53 0.22 0.36 0.41 17 0.21 0.29 0.50 0.23 0.40 0.37 

3 0.18 0.28 0.54 0.25 0.37 0.38 18 0.19 0.32 0.49 0.25 0.38 0.37 

4 0.20 0.28 0.52 0.23 0.38 0.39 19 0.16 0.30 0.54 0.26 0.37 0.37 

5 0.19 0.28 0.53 0.24 0.41 0.35 20 0.19 0.30 0.51 0.26 0.35 0.39 

6 0.16 0.28 0.56 0.25 0.40 0.36 21 0.18 0.34 0.49 0.24 0.38 0.39 

7 0.20 0.30 0.50 0.24 0.38 0.38 22 0.19 0.27 0.54 0.24 0.36 0.40 

8 0.18 0.33 0.50 0.27 0.34 0.39 23 0.16 0.29 0.55 0.28 0.32 0.41 

9 0.18 0.31 0.50 0.24 0.41 0.35 24 0.16 0.31 0.53 0.26 0.38 0.36 

10 0.21 0.25 0.54 0.24 0.41 0.36 25 0.20 0.31 0.49 0.22 0.41 0.37 

11 0.20 0.31 0.49 0.27 0.36 0.37 26 0.21 0.30 0.49 0.24 0.40 0.35 

12 0.20 0.32 0.48 0.23 0.35 0.42 27 0.19 0.25 0.56 0.27 0.33 0.40 

13 0.20 0.31 0.50 0.25 0.38 0.37 28 0.19 0.28 0.54 0.26 0.35 0.39 

14 0.18 0.28 0.54 0.28 0.37 0.35 29 0.19 0.33 0.48 0.29 0.36 0.35 

Note: bij denotes the O-D fraction from ramp i to j. 
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To test model performance under a different set of initial values, this study has 

generated the following three experimental sets: 

� R-1 = [0.19 0.34 0.46 0.27 0.40 0.33] – the exact initial value set 

� R-2 = [0.33 0.33 0.33 0.33 0.33 0.33] – the uniformed initial value set; and 

� R-3 = [0.70 0.10 0.20 0.70 0.10 0.20] – the initial value set with a certain 

random variation 

The graphical estimation results for these three sets of O-D proportions with 

comparison of the actual O-D proportions are reported in Figure 3.6 and the absolute 

error (AE) statistics are illustrated in Figure 3.7. 
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Figure 3.6a. Graphical Estimation Results with Different Sets of Initial Values –X02 
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Figure 3.6b. Graphical Estimation Results with Different Sets of Initial Values –X03 
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Figure 3.6c. Graphical Estimation Results with Different Sets of Initial Values –X02 
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Figure 3.6d. Graphical Estimation Results with Different Sets of Initial Values –X12 
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Figure 3.6e. Graphical Estimation Results with Different Sets of Initial Values –X13 
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Figure 3.6f. Graphical Estimation Results with Different Sets of Initial Values –X14 
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Figure 3.7a. Graphical Absolute Errors with Different Sets of Initial Values – X02 
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Figure 3.7b. Graphical Absolute Errors with Different Sets of Initial Values – X03 
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Figure 3.7c. Graphical Absolute Errors with Different Sets of Initial Values – X04 
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Figure 3.7d. Graphical Absolute Errors with Different Sets of Initial Values – X12 
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Figure 3.7e. Graphical Absolute Errors with Different Sets of Initial Values – X13 
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Figure 3.7f. Graphical Absolute Errors with Different Sets of Initial Values – X14 

 

 

In Figures 3.6a – 3.6f, the patterns of the estimation results are the same as the 

actual O-D proportions when the initial value set is created from the correct initial O-D 

set (R-1). It takes longer for the other two sets of initial O-D values to evolve to the same 

pattern, especially for the initial O-D set with a larger random variation (R-3). In Figures 

3.7a – 3.7f, the estimation errors for most estimated O-D sets are within 0.1. 

Table 3.2 presents statistical results for the average absolute estimation error with 

different sets of initial values. With the reasonable range of initial value set (e.g., R-2), 

the estimation results with the proposed model are quite stable and vary only slightly. 
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Table 3.2. The Absolute Error Statistics with Different Sets of Initial Values 

Abs. Error 

Initial Set 
X02 X03 X04 X12 X13 X14 Avg. Max. Min. 

R-1 0.0188 0.0237 0.0195 0.0254 0.0310 0.0283 0.0245 0.1190 0.0000 

R-2 0.0181 0.0376 0.0382 0.0263 0.0539 0.0532 0.0379 0.1449 0.0005 

R-3 0.0429 0.0579 0.0235 0.0606 0.0853 0.0328 0.0505 0.1676 0.0007 

 

Aside from the set of initial values, the actual distribution of travel times is one of 

the most important factors that could influence estimated O-D proportions. The major 

advantage of the proposed model is that it allows travel times to vary within a certain 

range. To test the effectiveness of the proposed travel time formulation, the exact initial 

value set, R-1, is selected for executing the estimation, and 5 cases are generated with the 

average travel time randomly increased or decreased within the range of 10% from the 

average travel time. 

Table 3.3 presents statistical results of the average absolute error associated with 

the 5 cases. It can be noted that the proposed model yields quite stable results, where the 

errors remain nearly constant even when the average travel times are subject to 

approximately 10% of variation. 

Figure 3.8 illustrates the graphical results for the 5 cases under different travel 

time scenarios, which generally follow the same pattern as the actual O-D distribution. 

The estimation errors, as expected, increase with the distance (or travel time) between 

each O-D pair. For example, b13 and b14 have relatively large estimation errors. 
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Table 3.3. The Absolute Error Statistics with Travel Time Variation 

Abs. Error 

Case 
X02 X03 X04 X12 X13 X14 Avg. Max. Min. 

Case 1 0.0213 0.0316 0.0281 0.0287 0.0421 0.0301 0.0303 0.1885 0.0001 

Case 2 0.0197 0.0247 0.0226 0.0283 0.0344 0.0271 0.0261 0.1080 0.0001 

Case 3 0.0252 0.0242 0.0219 0.0291 0.0369 0.0333 0.0284 0.1511 0.0002 

Case 4 0.0160 0.0262 0.0273 0.0265 0.0348 0.0420 0.0288 0.1086 0.0004 

Case 5 0.0191 0.0326 0.0368 0.0251 0.0420 0.0479 0.0339 0.1457 0.0001 

Average 0.0202 0.0279 0.0273 0.0275 0.0380 0.0361 0.0295 – – 
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Figure 3.8a. Graphical Estimation Results with Travel Time Variations-X02 
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Figure 3.8b. Graphical Estimation Results with Travel Time Variations-X03 
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Figure 3.8c. Graphical Estimation Results with Travel Time Variations-X04 
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Figure 3.8d. Graphical Estimation Results with Travel Time Variations-X12 
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Figure 3.8e. Graphical Estimation Results with Travel Time Variations-X13 
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Figure 3.8f. Graphical Estimation Results with Travel Time Variations-X14 

 

 



 

 57 

3.5.2 A Large Freeway Network Example 

To demonstrate the potential for on-line applications in real-world networks, this 

study has selected the I-95 northbound freeway corridor between two major beltways, I-

495 and I-695, as shown in Figure 3.9. 

 

 

Figure 3.9. I-95 Freeway Corridor between two Beltways 
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This freeway corridor consists of 7 main interchanges, 12 on-ramps, 14 off-ramps, 

and 120 O-D pairs. For purposes of practicability, each interchange is represented with 

only a pair of one on-ramp and one off-ramp, and the network is thus reduced to 7 pairs 

of on-ramps and off-ramps, and 36 O-D sets as shown in Figure 3.10, and Table 3.4 

presents the geometry information for each link. 
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Figure 3.10. A Graphical Illustration of the I-95 Freeway Corridor 

 

Table 3.4 The Geometry Information for each Link 

Link 

Information 
L0 L1 L2 L3 L4 L5 L6 L7 

Length (ft) 8,500 19,900 11,965 14,744 10,716 9,002 20,218 8,425 

No. Lanes 4 4 4 4 4 4 4 4 

Speed Limit (mph) 65 65 65 65 65 65 65 65 

 

To generate a meaningful data set for numerical analysis, the example freeway 

system under the assigned time series O-D percentages was simulated with AIMSUN 4.0, 

to produce time-dependent link traffic volumes. For each scenario, the simulation was 

executed for one hour using the dynamic O-Ds at an interval of 2 minutes. Table 3.5 

shows the aggregate input of O-D demands over the one-hour simulation with a unit 

interval of 2 minutes. 
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Table 3.5. Input O-D Demand for Simulation Experiments (unit: vph) 

Destination 

Origin 
1 2 3 4 5 6 7 8 Oi 

0 1,371 1,190 749 827 692 560 570 375 6,334 

1 – 212 303 186 214 226 264 210 1,615 

2 – – 484 395 196 348 224 311 1,958 

3 – – – 344 263 170 218 390 1,385 

4 – – – – 166 206 306 980 1,658 

5 – – – – – 185 134 248 567 

6 – – – – – – 318 1,031 1,349 

7 – – – – – – – 1,338 1,338 

Dj 1,453 1,022 1,359 1,517 1,138 1,244 1,916 4,144 13,793 

 

 

Following the simulation, one can obtain volume information for each link and 

the average value and variation of speed information for each O-D pair. Figures 3.11, 

3.12 and 3.13 show the progression of volume for each entry, exit and mainline link, 

respectively. Figure 3.14 shows the travel time distribution for each O-D pair. 
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Figure 3.11. Entry Traffic Volume Distribution 
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Figure 3.12. Exit Traffic Volume Distribution 
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Figure 3.13. Mainline Traffic Volume Distribution 
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Figure 3.14a. Travel Time Distribution for each O-D Pair – Origin 0 
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Travel Time from Origin 1
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Figure 3.14b. Travel Time Distribution for each O-D Pair – Origin 1 
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Figure 3.14c. Travel Time Distribution for each O-D Pair – Origin 2 
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Travel Time from Origin 3

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30

Time Interval

Time (sec)

b34 b35 b36 b37 b38
 

Figure 3.14d. Travel Time Distribution for each O-D Pair – Origin 3 
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Figure 3.14e. Travel Time Distribution for each O-D Pair – Origins 4 and 5 
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Figure 3.14f. Travel Time Distribution for each O-D Pair – Origins 6 and 7 

 

Using O-D proportions in the first time interval as the initial set of O-D values, 

this study demonstrates the estimation models with the entry/exit/mainline traffic volume 

and available travel time information. Table 3.6 compasses the aggregate absolute 

estimation errors from the origins under different scenarios: 

� R-1 – entry/exit volume and travel time information; and 

� R-2 – entry/exit/mainline volume and travel time information. 

As shown in Table 3.6, by adding the mainline information, the average 

estimation error for all O-D pairs is reduced from 0.0580 to 0.0543 (6.48%), which is not 

a substantial reduction. However, the standard deviation decreases significantly, i.e., from 

0.0524 to 0.0463 (11.60%), and the maximum estimation error also drops to 0.2857 
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(15.96%). By adding the mainline information, it can be concluded that the proposed 

formulation can yield a more accurate estimation. Figures 3.15–3.17 illustrate the 

graphical estimation results for R-1 and R-2. 

 

Table 3.6. Comparison of Estimation Error Statistics 

Origin 0 Origin 1 Origin 2 Origin 3 Abs. 

Errors R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2 

Avg. 0.0313 0.0317 0.0536 0.0487 0.0898 0.0666 0.0548 0.0710 

Dev. 0.0267 0.0283 0.0469 0.0431 0.0769 0.0492 0.0424 0.0574 

Max. 0.1128 0.1482 0.2203 0.2026 0.3400 0.2043 0.1969 0.2857 

Min. 0.0001 0.0000 0.0003 0.0005 0.0015 0.0004 0.0014 0.0012 

 

Origin 4 Origin 5 Origin 6 Overall Abs. 

Errors R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2 

Avg. 0.0655 0.0537 0.0719 0.0705 0.0581 0.0621 0.0580 0.0543 

Dev. 0.0454 0.0430 0.0468 0.0461 0.0378 0.0415 0.0524 0.0463 

Max. 0.1818 0.1785 0.2269 0.1970 0.1282 0.1614 0.3400 0.2857 

Min. 0.0004 0.0004 0.0020 0.0035 0.0007 0.0005 0.0001 0.0000 
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Figure 3.15. The Graphical Estimation Result for O-D Pair 01 
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Figure 3.16. The Graphical Estimation Result for O-D Pair 23 
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Figure 3.17. The Graphical Estimation Result for O-D Pair 46 

 

3.6 CLOSURE 

This chapter proposes a model for estimating the dynamic freeway O-D matrix 

with a measurable time series of ramp and mainline flows. The proposed model captures 

the speed variance among vehicles having the same departure time, origin and destination 

with a specially derived travel time distribution function that results in a substantial 

reduction in model parameters. 

Extensive numerical analyses with respect to sensitivity of both the input 

measurement errors and the selection of initial parameters have revealed that the 

proposed model is sufficiently robust for real-world applications. To test the application 
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of the proposed model to a large-scale network, the study has constructed a simulator 

based on the I-95 freeway corridor in Maryland using the simulation program, AIMSUN 

4.0 program, and performed a model applicability evaluation. The results indicate that the 

proposed model can yield reasonable estimates of dynamic O-D proportions for large 

freeway corridors. 

One of the more critical issues in development of a dynamic O-D model that 

requires further study is how to better approximate the initial values of each O-D set from 

measurable information so that the estimation process with the recursive computing 

algorithm (such as extended Kalman filtering logic) can evolve more efficiently to a 

reliable and stable state. 

 



 

 69 

CHAPTER 4 AN ALGORITHM FOR ESTIMATING THE INITIAL O-D 

MATRIX IN A LARGE FREEWAY NETWORK 

 

4.1 INTRODUCTION 

Since some essential data, such as initial O-D set information, for time-dependent 

O-D estimation may not be available in most real-world traffic networks, it is imperative 

that any developed system for such applications be sufficiently robust to accommodate to 

the potential missing information in the input data set. 

As reported in the literature (Chang and Wu, 1994; Lin and Chang, 2005), either a 

historical or an arbitrary O-D demand is often used as an initial O-D set. For a small 

network, how to set a proper initial O-D demand may not be a critical issue, as the 

resulting discrepancies, after subsequent use of time-varying traffic information, are 

mostly insignificant. However, for a large network, a more reliable initial O-D set can 

generally yield better and more stable estimation results. 

The quality of such initial O-D information may contribute to the estimation 

accuracy and the learning time for the computing algorithm to reach convergence, 

especially for large networks that contains a significant number of unknown system 

parameters. A failure to initialize the dynamic estimation process with a reliable O-D set 

may significantly degrade the quality of those subsequently computed O-D sets. 

This critical issue of setting a reliable initial O-D set has not been addressed in the 

literature for time-dependent O-D estimation with recursive methods, and it is one of the 
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primary reasons that existing methods for time-dependent O-D estimation are not 

sufficiently effective for use in large real-world networks. To embody dynamic O-D 

models with such desirable properties, this study presents an estimation algorithm for 

systematically refining randomly or arbitrarily generated initial O-D sets so that an 

employed recursive estimation algorithm can yield more accurate sets of time-dependent 

O-D patterns over subsequent time intervals. 

The remaining of the chapter is organized as follows. The core concept of the 

proposed estimation algorithm for refinement of an initial O-D set is presented in the 

following section. A step-by-step description of the initial O-D set estimation algorithm 

is presented in Section 4.3. Extensive numerical analyses for evaluating the effectiveness 

of the proposed formulations and solution algorithms are presented in Section 4.4. The 

key findings and conclusions are summarized in the last section. 

 

4.2 CONCEPTS AND RULES OF NETWORK DECOMPOSITION 

The core concept of the estimation algorithm is to estimate the partial O-D 

proportions iteratively from the first sub-network until the estimates reach the steady 

state, and then incorporate the estimated parameters to the next sub-network. This 

procedure is incrementally repeated for each sub-network until all the O-D proportions 

have been estimated. 

Note that, this estimation algorithm is applied only to compute the initial O-D set, 

based on input information observed over the first time interval. The time-dependent O-D 



 

 71 

demands are then computed subsequently, based on this estimated initial O-D set and 

other time-series measurements of information, such as traffic volumes and travel times. 

Figure 4.1 illustrates the flow chart of the decomposition algorithm. First of all, 

the entire freeway network is decomposed into Ω sub-networks so that the number of 

unknown parameters is relatively low in each sub-network. One can then execute the base 

solution approach for each sub-network, such as Kalman filter or Generalized Least 

Square (GLS) approaches, based on the initial input information when k=0 (e.g., travel 

time and volume) until it reaches convergency or meets the following relation: 

ε<−τ−τ |)1(b)(b| ijij , for Nji0 ≤<≤  (4.1) 

where τ  is the number of iterations and ε  is a small number for the convergence 

examination, such as 0.0001. 
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Figure 4.1. Flow Chart of the Decomposition Algorithm for Initial O-D Estimation 

 

The initial O-D set computed with the above algorithm is more robust than those 

generated by other means (e.g., historical information) due primarily to the following 

reasons: 

� The number of unknown parameters is relatively small in the sub-network due 

to the decomposed size of the network, and the replacement of some unknown 

parameters with estimated values from the previous sub-network. 
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� The recursive computing procedures that repeatedly employ actual travel 

volume and travel time information observed during the 1
st
 time interval have 

captured, to some extent, the relations between the initial O-D set and the 

resulting volume distribution to the network. 

In order to apply any solution approach in the proposed algorithm, one shall 

follow the following four rules of the network decomposition presented below with the 

illustrative freeway network shown in Figure 4.2.  
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Figure 4.2. A General Freeway Network 

 

Rule-1: In performing the decomposition, the following natural constraints shall still hold 

for each sub-network: 

1-N0,1,...,i              1)(b
N

1ij

ij ==τ∑
+=

 (4.2) 

Equation (4.2) is the natural constraint for each sub-network. Figure 4.3 illustrates 

an example of a decomposed sub-network from Figure 4.2, where Equation (4.2) can be 

written as: 1)(b)(b N,2N1N,2N =τ+τ −−−  and 1)(b N,1N =τ− . 
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Figure 4.3. An Example of a Decomposed Sub-network with Rule-1 

 

Rule-2: The first sub-network shall at least consist of two interchanges. 

The purpose of the second rule is to ensure that at least one unknown parameter 

can be estimated from the sub-network. As shown in Figure 4.3, the estimated 

proportions of the O-D pairs from the sub-network are: )(b 1N,2N τ−− , )(b N,2N τ−  and 

)(b N,1N τ− . Among these three O-D pairs, the first two are not the initial O-D pairs needed 

for computing in the O-D set for the entire network since their origin node is the mainline 

link. This type of parameters is defined as the “pseudo O-D parameters”, which denotes 

these O-D pairs with the mainline link as its origin node. The remaining unknown 

parameter in this sub-network is )(b N,1N τ− , which is obviously equal to 1 since, as shown 

in Figure 4.3, the only destination for Origin N-1 is N. Therefore, it is not necessary to 

estimate parameters for this sub-network. 

Figure 4.4 shows an example of a decomposed sub-network following Rule-2, in 

which the unknown parameters are )(b 1N,2N τ−− , )(b N,2N τ−  and )(b N,1N τ− , and the 

parameters )(b 2N,3N τ−− , )(b 1N,3N τ−−  and )(b N,3N τ−  are the intermediate parameters. 
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Figure 4.4. An Example of a Decomposed Sub-network with Rule-2 

 

Rule-3: The next extended sub-network shall increase at least one on-ramp. 

The core concept of the proposed algorithm is to compute the unknown 

parameters from the previous level of a decomposed sub-network, and then use these 

estimated parameters in the next level of the extended sub-network. By doing so, one can 

reduce the number of unknown parameters in the extended sub-network, and to improve 

its computing accuracy as well as efficiency. Hence, this rule is to ensure that every sub-

network contains more unknown parameters than its previous sub-network. 

Figure 4.5 illustrates an example of a decomposed sub-network generated 

subsequently after the sub-network shown in Figure 4.4. In this example, the unknown 

parameters in this sub-network are )(b 2N,3N τ−− , )(b 1N,3N τ−−  and )(b N,3N τ− , and the 

intermediate parameters are )(b 3N,4N τ−− , )(b 2N,4N τ−− , )(b 1N,4N τ−−  and )(b N,4N τ−  since 

parameters, )(b 1N,2N τ−− , )(b N,2N τ−  and )(b N,1N τ− , have been estimated from the previous 

sub-network. 
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Figure 4.5. An Example of a Decomposed Sub-network with Rule-3 
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Rule-4: Sub-network ω-1 shall be contained in Sub-network ω, and the final sub-network 

should be the entire network. 

This rule is to ensure that all initial O-D proportions can be estimated in different 

sub-networks. After executing all the estimation procedures for all sub-networks, the 

estimated O-D matrix shall be sufficiently robust to serve as a reliable initial O-D set for 

estimating the O-D parameters over the subsequent intervals. 

 

4.3 STEP-BY-STEP PROCEDURES OF THE SOLUTION ALGORITHM FOR 

INITIAL O-D SETS 

Based on the flow chart and the proposed rules, one can proceed the entire initial 

O-D set estimation algorithm with the following steps: 

Step 0: Network decomposition and initialization 

This step is to decompose the entire target network into Ω sub-networks (ω = 0 ~ 

Ω) and to reset the inputs of traffic volumes and travel times for each iteration to the 

initial values, i.e., qi(τ) = qi(0), yi(τ) = yi(0), Ui(τ) = Ui(0), for τ = 1~Τ, and set ω = 1, τ = 

0. 

Based on the proposed rules, the first sub-network shall consist of two 

interchanges as shown in Figure 4.4, and the second sub-network shown in Figure 4.5 

shall contain three interchanges, and so on. Finally, the last sub-network, as shown in 

Figure 4.2, is the entire network, which contains all N-1 interchanges. 
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Step 1: The O-D proportion estimation for sub-networks 

This step is to estimate the O-D proportions for Sub-network ω using the solution 

algorithm presented in Chapter 3. In Sub-network 1 (see Figure 4.4), its O-D matrix 

consists of three unknown O-D pairs ( 1N,2Nb −− , N,2Nb −  and N,1Nb − ) and three intermediate 

O-D pairs ( 2N,3Nb −− , 1N,3Nb −−  and N,3Nb − ). The following set of equations shows an 

example equation set for Sub-network 1, based on the exit traffic volumes: 

)(b])()m(U[)(y 2N,3N

m

m

2N,3N3N2N τ⋅τρ−τ=τ −−−−−− ∑  

)(b])()m(q[)(b])()m(U[)(y 1N,2N

m

m

1N,2N2N1N,3N

m

m

1N,3N3N1N τ⋅τρ−τ+τ⋅τρ−τ=τ −−−−−−−−−−− ∑∑  

)(b])()m(q[           

)(b])()m(q[)(b])()m(U[)(y

N,1N

m

m

N,1N1N

N,2N

m

m

N,2N2NN,3N

m

m

N,3N3NN

τ⋅τρ−τ+

τ⋅τρ−τ+τ⋅τρ−τ=τ

−−−

−−−−−−

∑

∑∑
 

 

Step 2: The convergence evaluation 

This step is to check whether the differences of the estimated O-D proportions 

between τ-1 and τ iterations are within a small range ε. The procedures for the 

convergence checking are summarized below: 

1. Set ε as a small number. 

2. Check if ε<−τ−τ |)1(b)(b| ijij . 

3. If yes, go to step 3. Otherwise, let τ = τ+1 and go to Step 1, and then 

execute the solution algorithm. 
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For example, one shall always check if the following inequalities are satisfied or 

not for Sub-network 1 (see Figure 4.4): 

ε<−τ−τ |)1(b)(b| ijij , Nji3N ≤<≤−  (4.1) 

 

Step 3: The replacement of parameters 

This step is designed to replace the unknown parameters in Sub-network ω+1 

with their estimates from Sub-network ω so as to reduce the number of unknown 

parameters. The procedures are summarized below: 

1. Set ω = ω+1, τ = 0. 

2. Set the O-D proportions estimated from Sub-network ω as given parameters 

and use these estimated values to replace those unknown parameters in Sub-

network ω+1. 

3. Check if ω < Ω. If yes, go to Step 1. Otherwise, stop. 

By repeating the above procedures and setting the unknown O-D proportions, 

1N,2Nb −− , N,2Nb −  and N,1Nb −  as given, one can have the equations for Exit Traffic Volume 

with Sub-network 2 as follows (see Figure 4.5): 

)k(b])k()mk(U[)k(y 3N,4N

m

m

3N,4N4N3N −−−−−− ⋅ρ−= ∑  

)k(b])k()mk(q[)k(b])k()mk(U[)k(y 2N,3N

m

m

2N,3N3N2N,4N

m

m

2N,4N4N2N −−−−−−−−−−− ⋅ρ−+⋅ρ−= ∑∑  
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Note that one shall repeat the above steps until all parameters have been estimated 

in the last sub-network Ω, and the estimated O-D set will be a robust initial set for 

estimating their subsequent time-dependent O-D sets. 

 

4.4 NUMERICAL EXAMPLE FOR EVALUATING THE INITIAL O-D 

ESTIMATION ALGORITHM 

This section presents the numerical evaluation results of the proposed algorithm 

using the I-95 corridor between I-495 and I-695 in Maryland (see Figure 3.9). The I-95 

corridor as presented in Chapter 3 is used to test the performance of the proposed 

estimation algorithm under various sets of initial values. 

To conduct a comprehensive evaluation, this study has randomly generated 100 

experimental initial O-D sets for testing the effectiveness of the proposed solution 

algorithm. All randomly generated initial O-D value sets shall satisfy the following 

natural constraints: 

1)k(b0 ij ≤≤ , Nji0 ≤<≤  (3.3) 
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∑
+=

=
N

1ij

ij 1)k(b , 1N,...,1,0i −=  (3.4) 

Table 4.1 shows the true initial value set along with the first 5 examples of the 

generated initial value sets and their estimated results with the decomposition algorithm. 

The estimation results of the initial O-D value sets shown in Table 4.1 reveal the 

following information: 

� After executing the initial O-D set estimation algorithm, each set of randomly 

generated initial O-D values has converted to a new O-D set, which is closer 

to their true initial values for most O-D pairs. For example, in Case 1, the 

randomly generated value of b03 is 0.02. After revised with the decomposition 

algorithm, it has adjusted to 0.10, which is very close to the true initial value 

of 0.12. 

� Regardless of their initial differences, all randomly generated initial O-D sets 

after revising by the decomposition algorithm tend to converge to a very 

similar set of O-D values, which is very close to the true initial O-D set. This 

seems to show the effectiveness of the proposed estimation algorithm. For 

example, in Case 4, the randomly generated initial O-D values for O-D pair 

b12 vary from 0.05 to 0.25. After executing the initial O-D set estimation 

algorithm, its estimated initial values for these 5 cases are all equal to 0.10, 

which is very close to its true initial O-D value of 0.13. 

Table 4.2 shows the improvement of the initial O-D sets after being refined with 

the proposed estimation algorithm for these 5 cases. The discrepancy between the set of 
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true O-Ds and those randomly generated as well as revised with the proposed estimation 

algorithm are also shown in Table 4.2. The measurement of improvement is defined as 

below: 

N

|)0(b)0(b̂|

Error Absolute Average
j,i

ijij∑ −

=  (4.3) 

where N is the total number of O-D pairs in the network, )0(bij  is the true initial O-D 

value, and )0(b̂ ij denotes either the randomly generated initial O-D value or the refined 

initial O-D value from the estimation algorithm. 
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Table 4.1a. The Example Initial Value Sets and the Estimated Initial Value Sets from the Initial O-D Set Estimation Algorithm 

bij b01 b02 b03 b04 b05 b06 b07 b08 b12 

True 0.21 0.19 0.12 0.13 0.11 0.09 0.09 0.06 0.13 

Case 1 0.13 (0.10) 0.06 (0.07) 0.02 (0.10) 0.14 (0.11) 0.07 (0.06) 0.13 (0.07) 0.19 (0.15) 0.27 (0.34) 0.05 (0.10) 

Case 2 0.11 (0.10) 0.17 (0.07) 0.14 (0.10) 0.20 (0.11) 0.15 (0.06) 0.04 (0.07) 0.14 (0.16) 0.06 (0.33) 0.15 (0.10) 

Case 3 0.02 (0.10) 0.00 (0.07) 0.01 (0.10) 0.13 (0.11) 0.06 (0.06) 0.15 (0.07) 0.18 (0.15) 0.44 (0.34) 0.11 (0.10) 

Case 4 0.16 (0.10) 0.05 (0.07) 0.16 (0.10) 0.20 (0.11) 0.16 (0.06) 0.09 (0.07) 0.13 (0.18) 0.06 (0.32) 0.25 (0.10) 

Case 5 0.07 (0.10) 0.19 (0.07) 0.16 (0.10) 0.02 (0.11) 0.00 (0.06) 0.06 (0.07) 0.06 (0.15) 0.44 (0.35) 0.08 (0.10) 

 

bij b13 b14 b15 b16 b17 b18 b23 b24 b25 

True 0.19 0.11 0.13 0.14 0.17 0.13 0.24 0.20 0.10 

Case 1 0.08 (0.13) 0.01 (0.13) 0.08 (0.07) 0.22 (0.08) 0.22 (0.16) 0.34 (0.33) 0.12 (0.16) 0.15 (0.17) 0.08 (0.09) 

Case 2 0.08 (0.13) 0.10 (0.13) 0.01 (0.07) 0.03 (0.08) 0.19 (0.17) 0.43 (0.32) 0.10 (0.16) 0.07 (0.17) 0.14 (0.09) 

Case 3 0.20 (0.13) 0.02 (0.14) 0.04 (0.07) 0.24 (0.08) 0.01 (0.16) 0.40 (0.33) 0.03 (0.16) 0.16 (0.17) 0.27 (0.09) 

Case 4 0.17 (0.13) 0.08 (0.13) 0.12 (0.07) 0.07 (0.08) 0.04 (0.19) 0.28 (0.30) 0.14 (0.16) 0.25 (0.17) 0.29 (0.09) 

Case 5 0.17 (0.13) 0.16 (0.14) 0.15 (0.07) 0.17 (0.08) 0.11 (0.15) 0.16 (0.33) 0.05 (0.16) 0.30 (0.17) 0.15 (0.09) 

Note: The number in each parenthesis shows the refined initial O-D value from the estimation algorithm. 
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Table 4.1b. The Example Initial Value Sets and the Estimated Initial Value Sets from the Initial O-D Set Estimation Algorithm 

bij b26 b27 b28 b34 b35 b36 b37 b38 b45 

True 0.18 0.12 0.16 0.25 0.19 0.12 0.16 0.28 0.10 

Case 1 0.25 (0.10) 0.09 (0.09) 0.31 (0.39) 0.17 (0.28) 0.26 (0.14) 0.05 (0.15) 0.13 (0.15) 0.39 (0.28) 0.17 (0.19) 

Case 2 0.19 (0.10) 0.20 (0.09) 0.30 (0.40) 0.06 (0.28) 0.01 (0.14) 0.13 (0.15) 0.05 (0.14) 0.76 (0.29) 0.31 (0.19) 

Case 3 0.09 (0.10) 0.33 (0.09) 0.13 (0.39) 0.01 (0.28) 0.14 (0.14) 0.17 (0.15) 0.21 (0.15) 0.48 (0.28) 0.17 (0.19) 

Case 4 0.01 (0.10) 0.06 (0.08) 0.25 (0.40) 0.10 (0.28) 0.11 (0.14) 0.15 (0.15) 0.06 (0.13) 0.58 (0.30) 0.30 (0.19) 

Case 5 0.03 (0.10) 0.27 (0.09) 0.20 (0.39) 0.11 (0.28) 0.21 (0.14) 0.08 (0.15) 0.17 (0.15) 0.44 (0.28) 0.17 (0.19) 

 

bij b46 b47 b48 b56 b57 b58 b67 b68 b78 

True 0.12 0.19 0.59 0.33 0.24 0.43 0.24 0.76 1.00 

Case 1 0.22 (0.21) 0.19 (0.20) 0.43 (0.39) 0.35 (0.27) 0.34 (0.25) 0.31 (0.48) 0.32 (0.29) 0.68 (0.71) 1.00 (1.00) 

Case 2 0.33 (0.21) 0.18 (0.20) 0.17 (0.40) 0.41 (0.27) 0.40 (0.24) 0.19 (0.49) 0.39 (0.32) 0.61 (0.68) 1.00 (1.00) 

Case 3 0.27 (0.21) 0.04 (0.21) 0.52 (0.39) 0.34 (0.27) 0.17 (0.26) 0.48 (0.48) 0.25 (0.27) 0.75 (0.73) 1.00 (1.00) 

Case 4 0.25 (0.21) 0.06 (0.18) 0.40 (0.41) 0.06 (0.27) 0.03 (0.23) 0.91 (0.51) 0.34 (0.39) 0.66 (0.61) 1.00 (1.00) 

Case 5 0.25 (0.21) 0.15 (0.21) 0.43 (0.38) 0.19 (0.27) 0.49 (0.26) 0.32 (0.48) 0.31 (0.26) 0.69 (0.74) 1.00 (1.00) 

Note: The number in each parenthesis shows the refined initial O-D value from the estimation algorithm. 
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Table 4.2. The Average Absolute Error and Improvement of the Initial O-D Sets 

Avg. Abs. 

Error 

Randomly generated 

initial O-D set 

Initial O-D set revised by 

decomposition algorithm 
Improvement 

Case 1 0.0827 0.0653 20.97% 

Case 2 0.1159 0.0666 42.50% 

Case 3 0.1034 0.0646 37.59% 

Case 4 0.1118 0.0718 35.79% 

Case 5 0.0890 0.0639 28.19% 

 

As shown in Table 4.2, the average absolute errors of the initial O-D values in 

these five cases decrease from 20% up to 40% due to the revision with the initial O-D set 

estimation algorithm. 

To further evaluate the effectiveness of the proposed algorithm, those 100 

adjusted initial O-D sets are applied to estimate the time-dependent O-D matrices over 

subsequent time intervals. The estimation results with their originally generated O-D sets 

are used as the base line for comparison. The time-average absolute error (TAAE) 

statistics serve as the evaluation criterion: 

 

K

|)k(b)k(b̂|

TAAE

K

0k

ijij∑
=

−

=  (4.4) 

 

Table 4.3 shows the TAAE results of the first 5 cases, which includes the average 

TAAE of all O-D pairs, deviation, maximum and minimum of the TAAE, and the 

average improvement percentage of the results with the proposed estimation algorithm. 
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Table 4.3. The TAAE Results of the First 5 Cases 

Random initial O-D 
Refined with the 

estimation algorithm AES 

Average Deviation Max Min Average Deviation Max Min 

Average 

Improve 

Case 1 0.128 0.119 0.650 0.000 0.077 0.072 0.450 0.000 39.44% 

Case 2 0.119 0.108 0.562 0.000 0.074 0.074 0.492 0.001 38.03% 

Case 3 0.117 0.113 0.673 0.000 0.080 0.074 0.437 0.000 31.60% 

Case 4 0.116 0.106 0.693 0.000 0.083 0.078 0.424 0.000 28.39% 

Case 5 0.109 0.106 0.618 0.000 0.080 0.082 0.533 0.000 26.67% 

 

As shown in Table 4.3, the proposed estimation algorithm not only has resulted in 

significant improvement on the estimated time-dependent O-D sets (e.g., ranging from 

26% to 39%), but also has substantially reduced their deviations and the maximum of the 

TAAE. Figures 4.6-4.10 present the estimated results of one example O-D pair in each 

case with two different initial conditions: randomly generated initial O-D set (R-2), and 

the initial O-D set refined from the initial O-D set estimation algorithm (R-3), compared 

with the true time-dependent O-D demands (R-1). 
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Case 1 -- b03
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Figure 4.6. Example Estimation Results for O-D pair b03 in Case 1 

Case 2 -- b13
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Figure 4.7. Example Estimation Results for O-D pair b13 in Case 2 
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Case 3 -- b38
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Figure 4.8. Example Estimation Results for O-D pair b38 in Case 3 

Case 4 -- b12
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Figure 4.9. Example Estimation Results for O-D pair b12 in Case 4 
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Case 5 -- b26
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Figure 4.10. Example Estimation Results for O-D pair b26 in Case 5 

 

Figure 4.6 presents an example of the estimation results of O-D pair b03 in Case 1, 

in which the estimation results with the initial O-D estimation algorithm exhibit the 

similar pattern as the one with the true initial O-D set. For this O-D pair, the randomly 

generated initial O-D is 0.02 and the TAAE based on this initial O-D is 0.1203, but the 

initial O-D after being refined with the proposed estimation algorithm is adjusted to 0.10, 

which is very close to the true initial O-D of 0.12 (see Table 4.1). The TAAE based on 

the refined initial O-D is 0.024, which has achieved about 80% improvement compared 

with the one with only the randomly generated set. 

The estimated time-varying O-D pair b13 in Case 2 is presented in Figure 4.7. For 

this O-D pair, its initial O-D values after employing the proposed estimation algorithm is 
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adjusted from 0.48 to 0.28, while the true initial O-D value is 0.28. Although the 

estimated time-varying O-D patterns, based on the adjusted initial O-D values, exhibit 

some discrepancy from the true O-D demands (see Figures 4.7), the TAAE is still 

reduced from 0.2315 to 0.0899, about a 60% improvement. Similar findings also appear 

for O-D pair b38 in Case 3 as shown in Figures 4.8, in which its initial O-D value is 

adjusted from 0.08 to 0.13, very close to the true initial O-D value of 0.19. The resulting 

TAAE has been reduced from 0.1581 to 0.0570 (about 64% improvements). 

As shown in Figures 4.9 and 4.10, the time-series O-D patterns estimated with the 

refined initial O-D sets exhibit very similar patterns as the true time-series O-D demands. 

In Figure 4.9, the initial O-D value for O-D pair b12 in Case 4 is revised from 0.25 to 

0.10, which is close to the true initial O-D value of 0.13. The TAAE, based on this 

refined initial O-D, has achieved more than 80% improvement compared with the one 

based on the randomly generated initial O-D set. For the O-D pair b26 in Case 5 (see 

Figure 4.10), the initial O-D has been adjusted from 0.03 to 0.10, which results in the 

improvement of the TAAE for over 60%. 

Table 4.4 reports the AES for these 100 randomly generated cases, where the 

proposed algorithm has resulted in significant improvement in 89 out of those 100 cases. 

The average improvement (in parameter accuracy) is about 12.02%, and the maximal 

improvement is 39.44%. For those without improvement, the TAAE only increases, on 

average, about 4%, which stay about the same level as those with randomly generated 

initial sets of O-D. The overall improvement in TAAE, due to the use of a better initial 
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O-D set from the decomposition algorithm, for those 100 randomly generated cases is 

about 10.25%. 

 

Table 4.4. The Average Absolute Error Statistics 

AES 

Random Initial 

O-D sets 

Refined Initial 

O-D set 

Improvement 
 

Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. 

No. 

Cases 

Cases with 

Improvement 
0.1080 0.1449 0.0743 0.0948 0.1206 0.0735 12.02% 39.44% 0.42% 89 

Cases without 

Improvement 
0.0965 0.1154 0.0801 0.1004 0.1193 0.0850 -4.07% -12.92% -0.33% 11 

Total 0.1068 0.1449 0.0743 0.0954 0.1206 0.0735 10.25% N/A N/A 100 

 

 

4.5 CLOSURE 

The proposed initial O-D set estimation algorithm can effectively refine a 

randomly selected set of initial O-D, and yield a significantly better estimate for 

subsequent time-dependent O-D demands. The potential contribution of such an 

algorithm to estimation accuracy may increase with the network size and the deficiency 

level of available historical information. The effectiveness of the proposed algorithm is 

due mainly to the following reasons: 

� The ratio between the number of unknown variables and the number of 

equations for each sub-network is relatively small compared with the one for 

the entire network. 
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� The iterative estimation procedures ensure that these estimates will converge 

to a set of values, which are more consistent with the observable travel time 

and volume information when compared with those preset with any other 

mean. 

� The proposed algorithm has taken advantage of all observable information, 

including travel time information, on-ramp, off-ramp, and mainline volumes. 

This study has also presented the performance evaluation results of the proposed 

estimation algorithm, based on the I-95 freeway corridor between I-495 and I-695 in 

Maryland. The results have revealed that the estimated time-varying O-D proportions for 

this example freeway corridor are more reliable due to the use of the algorithm for 

approximating the initial O-D set. 
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CHAPTER 5 MODELING THE FREEWAY DYNAMIC O-D ESTIMATION 

SYSTEM WITH MEASUREMENT ERRORS 

 

5.1 INTRODUCTION 

As reported in the literature, most existing approach for dynamic O-D estimation 

require the use of time-dependent ramp/mainline volumes as model inputs that are 

generally assumed to be available and contain no measurement errors. However, the 

assumption of having accurate link volume data is often subject to challenge, as most 

traffic volume data from detectors are constantly suffering from the hardware quality 

deficiency. Neglecting the impact of the data quality in the model formulations may 

contribute to significant estimation errors, especially for a large network as most dynamic 

O-D estimation models generally contain a large number of unknown system parameters. 

Depending on the information availability and the network structure, the time-

dependent O-D patterns estimated with those approaches may yield insufficient reliability 

for use in practice. To deal with such deficiencies embedded in the existing models, this 

study has developed an interval-based dynamic O-D model to account for measurement 

variances in network link volumes, which may vary significantly from their average 

levels. The proposed interval-based model recognizes the inevitable variation of day-to 

day link volumes and the limitations of sensor technologies, allowing users to incorporate 

the reasonable upper and lower bounds of all input data in the model formulations and 
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parameter estimation. The dynamic O-D patterns estimated with the proposed methods 

are thus more likely to be reliable and relatively insensitive to data measurement errors. 

The remaining of chapter is organized as follows. The next section presents the 

extended model formulations with measurement errors, based on the method proposed in 

Chapter 3. Section 5.3 illustrates an interval-based solution algorithm to contend with the 

input volume variance. Section 5.4 presents the detailed discussions of extensive 

numerical analyses for evaluating the effectiveness of the proposed model and solution 

algorithm. Finally, the summary of this chapter is presented in the last section. 

 

5.2 THE MODEL FORMULATIONS TO ACCOUNT FOR MEASUREMENT 

ERRORS 

This section presents an interval-based model that can estimate time-dependent O-

D demands under the circumstances that the traffic volumes may vary within a feasible 

range due to some measurement errors. Consider the following state-space system for 

estimating time-dependent O-D demands as presented in Chapter 3: 

b(k+1) = b(k) + W(k) (3.19) 

σσσσ(k+1) = σσσσ(k) + V(k) (3.20) 

Z(k) = H(k) b(k) + e(k) (3.21) 

where Equations (3.19) and (3.20) are for illustrating the temporal evolution of the target 

system, and Equation (3.21) is for the measurement relation. One can solve such a system 
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with various existing solution approaches, such as the Kalman filtering or the least 

squares estimation approaches. 

The matrices Z(k) and H(k) in Equation (3.21) consist of the time-series 

measurement of traffic volumes, qi(k), yi(k) and Ui(k). If the traffic volume information 

contains some measurement errors, which may change progressively over time, most 

existing models and solution algorithms will not be applicable. The model formulations 

and the solution algorithm presented hereafter are proposed for tackling this critical issue. 

Suppose that these two matrices of Z(k) and H(k) contain some level of 

uncertainty, which are only known to be bounded, one can then rewrite these two 

matrices as follows: 

Z
I
(k) = [Z(k) - |∆∆∆∆Z(k)|, Z(k) + |∆∆∆∆Z(k)|] (5.1) 

H
I
(k) = [H(k) - |∆∆∆∆H(k)|, H(k) + |∆∆∆∆H(k)|] (5.2) 

where |∆∆∆∆Z(k)| and |∆∆∆∆H(k)| are the positive constant bounds for those unknowns, and 

Z
I
(k) and H

I
(k) are the interval matrices with their lower and upper bounds. Hence, 

Equation (3.21) can be written with the following interval expression: 

Z
I
(k) = H

I
(k) b

I
(k) + e

I
(k) (5.3) 

with b
I
(k) denotes the interval matrix of unknown variables and e

I
(k) is the interval 

matrix of error terms. Equations (3.19) and (3.20) become: 

b
I
(k+1) = b

I
(k) + W

I
(k) (5.4) 

σσσσI
(k+1) = σσσσΙΙΙΙ(k) + V

I
(k) (5.5) 

Equation (5.3) along with Equations (5.4) and (5.5) forms an interval-based state 

space system, which formulates the observable volumes as intervals rather than constants. 
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Since the unknown variables, bij(k), in the revised formulations, become intervals 

other than constant values, one needs to restructure these two natural constraints in 

Equations (3.3) and (3.4): 

1)k(b0 ij ≤≤ , Nji0 ≤<≤  (3.3) 

∑
+=

=
N

1ij

ij 1)k(b , 1N,...,1,0i −=  (3.4) 

To reformulate these two natural constraints, let the lower and upper bounds of 

the unknown variables be defined as )k(b ij  and )k(bij , respectively, with their 

boundaries lie within 0 and 1 (See Equations (5.6) and (5.7)). 

1)k(b0 ij ≤≤ , Nji0 ≤<≤  (5.6) 

1)k(b0 ij ≤≤ , Nji0 ≤<≤  (5.7) 

With the above definitions, one can restructure Equations (3.4) as Equations (5.8) 

and (5.9). Note that Equation (5.8) is to ensure that the sum of the lower bound, )k(b ij , 

of all O-D proportions with the same origin lies between zero and one, where as Equation 

(5.9) is to let the sum of the upper bound, )k(bij , of all O-D proportions with the same 

origin be equal or larger than one. If all the O-D proportions satisfy these two constraints, 

it is guaranteed that there exists at least one combination that can satisfy Equation (3.4). 

1)k(b0
N

1ij

ij ≤≤ ∑
+=

, 1N,...,1,0i −=  (5.8) 

1)k(b
N

1ij

ij ≥∑
+=

, 1N,...,1,0i −=  (5.9) 
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Since )k(b I

ij  is an interval, many possible combinations can satisfy this constraint. 

For example, two O-D proportions with the same origin are b01=0.65 and b02=0.35 and 

the sum of these two proportions equals 1. If these two O-D proportions are presented in 

an interval representation as I

01b = [0.6, 0.8] and I

02b =[0.3, 0.5]. It is not necessary that 

either the sum of the lower bound or the sum of the upper bound be equal to one as there 

exists many possible combinations. In such a case, the estimated O-D proportions are 

valid as long as there exist combinations that can satisfy the constraint. Hence, one can 

present the interval-based system as follows: 

Z
I
(k) = H

I
(k) b

I
(k) + e

I
(k) 

b
I
(k+1) = b

I
(k) + W

I
(k) 

σσσσI
(k+1) = σσσσΙΙΙΙ(k) + V

I
(k) 

1)k(b0 ij ≤≤ , 1)k(b0 ij ≤≤ , Nji0 ≤<≤  

1)k(b0
N

1ij

ij ≤≤ ∑
+=

, 1)k(b
N

1ij

ij ≥∑
+=

, 1N,...,1,0i −=  

 

5.3 AN INTERVAL-BASED SOLUTION ALGORITHM 

With Equations (5.3)–(5.5), one can construct an interval-based dynamic model 

for time-dependent O-D estimation that takes into account potential measurement errors. 

This set of formulations represents each traffic volume as an interval so it consists of the 

upper and lower bounds in the system equations. For such a dynamic system, the solution 

generated from standard algorithms, such as the standard Kalman filtering methods, may 
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not encompass all possible optimal solutions within the specified intervals. (i.e., 

Equations (5.3)–(5.5)). Hence, this study employs the interval Kalman filtering scheme 

(Chui and Chen, 1999) concept to derive a solution algorithm for the proposed interval-

based dynamic system. The core logic of the interval Klaman filtering approach is 

summarized below. Some other related details interval arithmetic and interval analysis 

are available in Appendix A. 

 

Initialization: ][Eˆ (0)b(0)b
II = , ][Var (0)b(0)P

II =  

For k=1, 2, … 

1)Q(k1)(kP1)(kM
II −+−=−  (5.10) 

G
I
(k) = M

I
(k-1) [H

I
(k)]

T
 [H

I
(k) M

I
(k-1) [H

I
(k)]

T 
+ Rk]

-1
 (5.11) 

]ˆ[ˆˆ 1)(kb(k)H(k)v(k)G1)(kb(k)b
IIIII −−+−=  (5.12) 

TT ][][][][ (k)GR(k)G(k)(k)HGI1)(kM(k)(k)HGI(k)P
I

k

IIIIIII +−−−= (5.13) 

 

where Q is the covariance matrix for the measurement errors, and R is the covariance 

matrix of the random error.  

Equation (5.11) involves a complex computation of the interval matrix inversion. 

To improve the computational efficiency, one can replace this inversion part with its 

worse-case inversion (Chen, et al., 1997). Then, Equation (5.11) is simplified as: 

1TT ]][[][ −+−−= k

III
RH(k)1)H(k)M(k(k)H1)(kM(k)G  (5.14) 
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As reported in the literature (Nihan and Davis, 1989), most studies employ the 

methods of truncation and normalization (as shown in Chapter 3) to tackle the difficulty 

of taking into account the natural constraints. In applying the method of truncation to this 

set of formulations, one shall compute the following equation: 

]1g]b[0|[MAX ii1i

10
≤αδ+≤α=α′ −

≤α≤
 and set ii

1i

1i

i

i

g
bb

δα′+








σ
=









σ −

−

 (3.22) 

By the same token, in performing the normalization, it is necessary to compute 

the following relations:  

∑
+=

=β
N

1mj

i

mjm b  and m

i

mj

i

mj /bb β= , N,,1mj K+= , for 2N,,2,1m −= K  (3.23) 

To incorporate the above concepts in the specified natural constraints (i.e., 

Equations (5.6)–(5.9)), one needs to modify the truncation and normalization process as 

follows: 

I

n

I

nI

1n

I

1n

I

n

I

n g
bb

⋅δ⋅α′+








σ
=









σ −

−  

where ]1g]b[0|[MAX I

n

I

n

I

1n
10

≤⋅δ⋅α+≤α=α′
−

≤α≤
 (5.15) 

1b0
N

1mj

1n

mj ≤≤ ∑
+=

−
, }g]b{[bound lower]b[ I

n

I

n

I

1n

1n

mj ⋅δ⋅α+= −

−
, N,,1mj K+=  (5.16) 

1b
N

1mj

1n

mj ≥∑
+=

− , }g]b{[bound upper]b[ I

n

I

n

I

1n

1n

mj ⋅δ⋅α+= −

−
, N,,1mj K+=  (5.17) 
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Note that the purpose of the truncation is to find the largest step of improvement 

for the unknown variables, b and σ, for the next time interval so that the O-D proportions, 

bij, can still satisfy Equations (5.6) and (5.7). To incorporate this concept in developing 

the solution algorithm, it is essential that Equation (3.22) be restated as Equation (5.15), 

where α is a value that represents the largest step of improvement so that all the possible 

values of bij can satisfy Equations (5.6) and (5.7). The normalization step is employed to 

satisfy Equations (5.8) and (5.9). Hence, one can formulate such relationship with 

Equations (5.16) and (5.17). 

With all aforementioned reformulations, this research has presented an enhanced 

solution algorithm for solving the system formulations of Equations (5.3)–(5.5) and the 

interval-based natural constraints (5.6)–(5.9) as follows: 

 

Step 0: Initialization 

� Link length Li, i = 0, 1, …, N-1 

� Length of each time interval, t0, and the maximal number of intervals required to 

traverse the entire section M 

� Initial input mean speeds, Vi(m), m = -M, -M+1, …, 0 

� Initial input flows, )m(q I

i , m = -M, -M+1, …, 0 

� Initial travel times, tij(m) = Li/Vi(m) + … + Lj-1/Vj-1, m = -M, -M+1, …, 0 

� ]r,,r,r[diag)]k(e[Var 1N221 −= K  
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Step 1: Compute the Travel Time (mean value) 

)k(t)k(u ijij =  

Step 2: Compute the Linearized Transformation Matrix 

� 2/)1N(N)*1N2(

I

rs )]k(h[ +−=(k)H
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∑ ∫
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⋅
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M
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0
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� 0)k(h I

rs =  and 0)k(jIrs = , for the other entries of matrix (k)H
I  and (k)J

I  
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where each I

if  is a row vector of dimension N(N+1) 



 

 101 

� 





















=

−
I

1N2

I

2

I

1

z

z

z

M
(k)Z

I TI

1N

I

1N

I

1

I

1

I

N

I

1 )]k(q)k(U,),k(q)k(U),k(y,),k(y[ −− −−= KK  

Step 3: Initialization of the sequential Kalman Filtering 

� Set )1k(bb II

0 −= , )1k(II

0 −σ=σ  

� D)1k(PP II

0 +−=  

Step 4: Sequential Kalman Filtering Iteration 

For 1N2,,2,1n −= K  

� 
1

n

T

1n1nn

TI

n

I

1n

I

n ]r)f(Pf[)f(Pg −
−−− +=  

� 
I

1n

I

n

I

n

I

1n

I
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� )1k(bf)k(y II

n

I

n

I
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Step 5: Prediction of the States 

� Set I

1n2

I P)k(P −=  










σ+σ

+
=









σ −−

−−

2/)(

2/)bb(

)k(

)k(b

1N21N2

1N21N2

 

k=k+1, go to Step 1 for the next interval. 

 

 

5.4 NUMERICAL EXAMPLES FOR EVALUATING THE INTERVAL-

BASED DYNAMIC O-D ESTIMATION MODEL 

This section presents the evaluation results of the proposed interval-based model 

and algorithm using the I-95 northbound freeway corridor between two major beltways, 

I-495 and I-695 as presented in Chapter 3 (see Figure 3.9). 

5.4.1 Data Generation and Experiment Designs 

This section describes the process of data generation and the design of 

experiments for evaluating the performance of the proposed interval-based model and 

algorithm. 

Figure 5.1 illustrates the procedures for data generation for the performance 

evaluation. As mentioned in Chapter 3, the I-95 corridor was simulated with AIMSUN 

4.0 using the assigned time series O-D percentages (see Table 3.4). Based on the 

simulation results, one can obtain the volume for each link and the average travel time for 

each O-D pair. The time series of traffic flows on both ramps and mainline links are 
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randomly increases or decreased (i.e., ± 5% or ± 10%) to represent the measurement 

errors caused by detection devices. As shown in Figure 5.1, a set of time-dependent O-D 

data estimated from Approach-1 (i.e., the scalar-based approach presented in Chapter 3) 

is set as the basis for comparing with Approach-2 (i.e., the proposed interval-based model 

and algorithm). 
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link traffic flows
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Figure 5.1. Data Generation Procedures 

 

To conduct a comprehensive evaluation for the proposed model and algorithm, 

this study has developed two experiment designs as below. 

 

Experiment-1: Comparing the performance of Approach-1 and Approach-2 under 

different levels of measurement errors in input flow data 
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This experiment is mainly designed to see if the interval-based approach 

(Approach-2) can overcome the deficiency of the input data under different levels of 

measurement errors. Table 5.1 presents five scenarios with the level of input 

measurement errors ranging from 5% to 30%. In these scenarios, the initial O-D set is 

pre-estimated from the initial O-D estimation algorithm proposed in Chapter 4. 

 

Table 5.1. Scenarios under Different Levels of Measurement Errors in Flow Data 

Data 

Scenario 
Ramp/mainline Flow Initial O-D Set 

Scenario-1 
Available with ±  5% 
measurement errors 

A reliable initial O-D matrix from the initial 

O-D estimation algorithm 

Scenario-2 
Available with ± 10% 
measurement errors 

A reliable initial O-D matrix from the initial 

O-D estimation algorithm 

Scenario-3 
Available with ±15% 
measurement errors 

A reliable initial O-D matrix from the initial 

O-D estimation algorithm 

Scenario-4 
Available with ± 20% 
measurement errors 

A reliable initial O-D matrix from the initial 

O-D estimation algorithm 

Scenario-5 
Available with ± 30% 
measurement errors 

A reliable initial O-D matrix from the initial 

O-D estimation algorithm 

 

Experiment-2: The performance evaluation of the interval-based approach with the 

initial O-D estimation algorithm 

To further evaluate the compound effect of the interval-based algorithm and 

initial O-D estimation algorithm, the study designed the second set of experiments as 

shown in Table 5.2. Scenario-1 is the worst case without pre-estimated initial O-D set and 

Scenario-2 is the best case, which has the true initial O-D set. Scenatrio-3 has the initial 
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O-D set estimated from the initial O-D estimation algorithm proposed in Chapter 4, while 

the uniformed distributed initial O-D set is used in Scenario-1. 

 

Table 5.2. Scenarios under Different Levels of Availability in Initial O-D set 

Data 

Scenario 
Ramp/mainline volume Initial O-D matrix 

Scenario-1 
Available with ± 10% 
measurement errors 

Not available (uniformly distributed O-D set) 

Scenario-2 
Available with ±10% 
measurement errors 

A True Initial O-D Matrix 

Scenario-3 
Available with ± 10% 
measurement errors 

A reliable initial O-D matrix from the initial 

O-D estimation algorithm 

 

5.4.2 Evaluations and Comparisons of Estimation Results  

To evaluate the model performance, the average absolute error (AAE) statistics 

for the estimated O-D proportions serves as the evaluation criterion, which has been 

defined in Chapter 4 as: 

K

|)k(b)k(b̂|

AAE

K

0k

ijij∑
=

−

=  (4.4) 

The comparisons of the estimation results from the proposed two sets of 

experiments (see Tables 5.1 and 5.2). The evaluation information includes the average 

AAE statistics of estimation results for each scenario, and the percentage of improvement 

modeled by Approach-2 (i.e., the interval-based approach) over Approach-1 (i.e., the 

scalar-based approach). Examples of graphical results for the time-dependent O-D 

demands are also depicted in this section. 
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Experiment-1: Comparing the performance of Approach-1 and Approach-2 under 

different levels of measurement errors in input flow data 

Tables 5.3 and 5.4 present the TAAE statistics of the O-D proportions estimated 

with Approach-1 (i.e., scalar-based approach) and Approach-2 (i.e., interval-based 

approach), respectively, under different levels of input measurement errors. Table 5.5 

summarizes the average AAE of the estimated O-D proportions in each scenario, and the 

improvement by Approach-2 over Approach-1, including the average, maximal and 

minimal values of the AAE statistics. 

As shown in Tables 5.3 and 5.4, the estimation errors with Approach-1 increase 

from 0.0772 to 0.1091 (more than 40%) due to the increase in the measurement errors in 

the input flow data. In contrast, while the estimation results with Approach-2 are not 

sensitive to the input measurement errors in these five scenarios. For example, as shown 

in Table 5.4, the average estimation error is 0.0748 in the scenario of 30% measurement 

errors, compared with 0.0720 in the scenario of 5% measurement errors. As shown in 

Table 5.5, in the scenarios of measurement errors less than 10 % (i.e., Scenario-1 and 

Scenario-2), the improvement with Approach-2 (i.e., the interval-based approach) is not 

significant. However, when the measurement errors are more than 10 % (i.e., Scenario-3 

to Scenario-5), Approach-2 has yielded substantially better estimation results, ranging 

from 27.58% to 45.88% improvement. 

Overall, the interval-based approach substantially improves the estimation results, 

especially when the measurement errors in the flow data are significant. To further 

illustrate the estimation results, this study has depicted the example graphical results of 
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the estimated time-dependent O-D proportions in Figures 5.2 and 5.3. It is obvious that, 

over the entire computation period, the estimation results from the interval-based 

approach are closer to the true O-D values than those by Approach-1. 

 

Table 5.3. AAE Statistics of Estimation Results with Approach-1 – Experiment-1 

AAE b01 b02 b03 b04 b05 b06 b07 b08 b12 

5% 0.0193 0.0237 0.0640 0.0367 0.0240 0.0356 0.0373 0.0430 0.0307 

10% 0.0298 0.0287 0.0402 0.0297 0.0396 0.0335 0.0266 0.0532 0.0235 

15% 0.0275 0.0431 0.0497 0.0358 0.0317 0.0388 0.0302 0.0497 0.0479 

20% 0.0408 0.0317 0.0506 0.0256 0.0364 0.0338 0.0456 0.0632 0.0691 

30% 0.0674 0.0433 0.0666 0.0671 0.0425 0.0495 0.0505 0.0672 0.0860 

AAE b13 b14 b15 b16 b17 b18 b23 b24 b25 

5% 0.0840 0.0700 0.0556 0.0751 0.0930 0.1623 0.1650 0.0838 0.0602 

10% 0.0752 0.0586 0.0730 0.0843 0.0907 0.1684 0.1334 0.0675 0.0402 

15% 0.1320 0.1071 0.0616 0.0708 0.0710 0.1217 0.1186 0.0912 0.0502 

20% 0.0994 0.0902 0.0708 0.0947 0.0507 0.1509 0.1481 0.0615 0.0502 

30% 0.0614 0.1048 0.0741 0.0761 0.0701 0.0833 0.1459 0.0908 0.0641 

AAE b26 b27 b28 b34 b35 b36 b37 b38 b45 

5% 0.0996 0.0769 0.2535 0.0692 0.0533 0.0485 0.1029 0.0442 0.0659 

10% 0.0368 0.0610 0.2420 0.0613 0.0700 0.0360 0.0766 0.0717 0.0548 

15% 0.0657 0.0836 0.2596 0.0739 0.0557 0.0593 0.0732 0.0959 0.0652 

20% 0.0575 0.0812 0.2220 0.1067 0.0747 0.0896 0.0762 0.0795 0.0722 

30% 0.0991 0.0737 0.3655 0.1205 0.0849 0.0530 0.0658 0.1801 0.1897 

AAE b46 b47 b48 b56 b57 b58 b67 b68 Avg. 

5% 0.0934 0.0713 0.1266 0.0608 0.0826 0.1125 0.2332 0.2332 0.0831 

10% 0.0942 0.0659 0.0784 0.0774 0.0857 0.1205 0.2248 0.2248 0.0772 

15% 0.0641 0.1110 0.1262 0.0426 0.0898 0.1123 0.2698 0.2698 0.0860 

20% 0.0707 0.0859 0.1283 0.0627 0.0880 0.0988 0.2659 0.2659 0.0872 

30% 0.1189 0.0975 0.2823 0.1730 0.0839 0.1852 0.2223 0.2223 0.1091 
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Table 5.4. AAE Statistics of Estimation Results with Approach-2 – Experiment-1 

AAE b01 b02 b03 b04 b05 b06 b07 b08 b12 

5% 0.0246 0.0257 0.0484 0.0201 0.0171 0.0403 0.0184 0.0551 0.0227 

10% 0.0298 0.0356 0.0295 0.0226 0.0256 0.0467 0.0211 0.0664 0.0377 

15% 0.0277 0.0358 0.0321 0.0217 0.0269 0.0212 0.0220 0.0383 0.0406 

20% 0.0430 0.0239 0.0372 0.0269 0.0292 0.0255 0.0329 0.0499 0.0322 

30% 0.0651 0.0421 0.0336 0.0443 0.0263 0.0259 0.0348 0.0343 0.0500 

AAE b13 b14 b15 b16 b17 b18 b23 b24 b25 

5% 0.0804 0.0465 0.0500 0.0609 0.0484 0.1347 0.1291 0.0483 0.0421 

10% 0.0661 0.0470 0.0620 0.0557 0.0452 0.1098 0.0884 0.0504 0.0367 

15% 0.0869 0.0701 0.0655 0.0680 0.0567 0.0924 0.0565 0.0617 0.0258 

20% 0.0788 0.0628 0.0655 0.0594 0.0422 0.0982 0.1138 0.0629 0.0266 

30% 0.0570 0.0813 0.0577 0.1017 0.0529 0.0863 0.0526 0.0451 0.0328 

AAE b26 b27 b28 b34 b35 b36 b37 b38 b45 

5% 0.0690 0.0523 0.1973 0.0589 0.0655 0.0630 0.0816 0.0399 0.0549 

10% 0.0903 0.0553 0.1574 0.0620 0.0550 0.0687 0.0797 0.0448 0.0641 

15% 0.0349 0.0597 0.1761 0.0613 0.0647 0.0386 0.0633 0.0479 0.0578 

20% 0.0370 0.0573 0.1685 0.0500 0.0584 0.0588 0.0656 0.0410 0.0401 

30% 0.0672 0.0557 0.1325 0.0819 0.0402 0.0345 0.0616 0.0680 0.1112 

AAE b46 b47 b48 b56 b57 b58 b67 b68 Avg. 

5% 0.1167 0.0520 0.1295 0.0662 0.0748 0.1141 0.2226 0.2226 0.0720 

10% 0.1177 0.0529 0.1414 0.0786 0.0728 0.1190 0.2170 0.2170 0.0714 

15% 0.0537 0.0751 0.1199 0.0666 0.0778 0.1068 0.2365 0.2365 0.0674 

20% 0.0804 0.0520 0.0733 0.0842 0.0804 0.1150 0.2244 0.2244 0.0673 

30% 0.1413 0.0836 0.2095 0.0966 0.0725 0.1194 0.1967 0.1967 0.0748 
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Table 5.5. The Overall Statistical Results for the Five Scenarios – Experiment-1 

AAE Average Max. Min. 

Approach-1 0.0831 0.2535 0.0193 

Approach -2 0.0720 0.2226 0.0171 

Scenatio-1: With 5% 

Measurement Errors 

in Flow Data 

Improvement 15.32% 13.87% 12.85% 

Approach-1 0.0772 0.2420 0.0235 

Approach -2 0.0714 0.2170 0.0211 

Scenatio-2: With 10% 

Measurement Errors 

in Flow Data 

Improvement 8.09% 11.50% 11.32% 

Approach-1 0.0860 0.2698 0.0275 

Approach -2 0.0674 0.2365 0.0212 

Scenatio-3: With 15% 

Measurement Errors 

in Flow Data 

Improvement 27.58% 14.05% 29.97% 

Approach-1 0.0872 0.2659 0.0256 

Approach -2 0.0673 0.2244 0.0239 

Scenatio-4: With 20% 

Measurement Errors 

in Flow Data 

Improvement 29.64% 18.49% 7.21% 

Approach-1 0.1091 0.3655 0.0425 

Approach -2 0.0748 0.2095 0.0259 

Scenatio-5: With 30% 

Measurement Errors 

in Flow Data 

Improvement 45.88% 74.46% 64.18% 
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Figure 5.2. The Graphical Illustration of Estimation Results (b01) – Experiment-1 
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Figure 5.3. The Graphical Illustration of Estimation Results (b38) – Experiment-1 
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Experiment-2: The performance evaluation of the interval-based approach with the 

initial O-D estimation algorithm 

This experiment is mainly designed to evaluate the compound effect of the 

interval-based model and the initial O-D estimation algorithm on the estimation accuracy. 

To do so, this study has compared the estimation results with the interval-based approach 

(Approach-2) under different data quality levels of the initial O-D set (see Table 5.2). 

Table 5.6 presents the overall statistical results for those three scenarios and 

Figures 5.4 and 5.5 illustrate the examples of the time-dependent O-D estimation results. 

As shown in Table 5.6, the statistical results reveal that Scenario-2 yields the best results 

scenario with the average AAE value of 0.0474, and Scenario-1 produces the worst 

estimates among the three scenarios as it uses the uniformly distributed initial O-D set as 

an input. In Scenario-3, the initial O-D set is generated with the initial O-D estimation 

algorithm. Hence, as expected, its estimation quality lies between Scenario-1 and 

Scenario-2. Figures 5.4 to 5.7 provide some further numerical evidences of such a 

relation. 
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Table 5.6. The Summary of Estimation Errors from All Scenarios – Experiment-2 

AAE b01 b02 b03 b04 b05 b06 b07 b08 b12 

Scenario-1 0.0147 0.0290 0.0396 0.0366 0.0295 0.0549 0.0446 0.0584 0.0455 

Scenario-2 0.0161 0.0307 0.0228 0.0197 0.0361 0.0378 0.0191 0.0117 0.0319 

Scenario-3 0.0243 0.0347 0.0281 0.0214 0.0261 0.0429 0.0236 0.0513 0.0379 

AAE b13 b14 b15 b16 b17 b18 b23 b24 b25 

Scenario-1 0.0514 0.0527 0.0371 0.0408 0.0502 0.0328 0.0849 0.0488 0.0396 

Scenario-2 0.0591 0.0793 0.0392 0.0515 0.0716 0.0377 0.0941 0.0351 0.0351 

Scenario-3 0.0579 0.0512 0.0602 0.0565 0.0453 0.0912 0.0897 0.0551 0.0361 

AAE b26 b27 b28 b34 b35 b36 b37 b38 b45 

Scenario-1 0.0751 0.0354 0.0373 0.0501 0.0451 0.0827 0.0349 0.0828 0.1101 

Scenario-3 0.1073 0.0311 0.0324 0.0510 0.0633 0.0751 0.0451 0.0403 0.0224 

Scenario-3 0.0939 0.0598 0.1761 0.0655 0.0486 0.0671 0.0821 0.0434 0.0861 

AAE b46 b47 b48 b56 b57 b58 b67 b68 Avg. 

Scenario-1 0.1439 0.0665 0.3104 0.0589 0.1012 0.1254 0.2430 0.2430 0.0733 

Scenario-2 0.0296 0.0543 0.0716 0.0648 0.0673 0.0934 0.0646 0.0646 0.0474 

Scenario-3 0.1129 0.0554 0.1552 0.0817 0.0742 0.1246 0.2052 0.2052 0.0714 
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Figure 5.4. The Graphical Illustration of Estimation Results (b03) – Experiment-2 
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Figure 5.5. The Graphical Illustration of Estimation Results (b07) – Experiment-2 
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Figure 5.6. The Graphical Illustration of Estimation Results (b24) – Experiment-2 
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Figure 5.7. The Graphical Illustration of Estimation Results (b45) – Experiment-2 
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5.5 CLOSURE 

This chapter has developed an interval-based model and its solution algorithm for 

contending with the inevitable measurement errors embedded in most traffic data due to 

hardware deficiencies. The interval-based model for dynamic O-D estimation has 

captured the variance of all required input data in the formulations, and allows the users 

to set the reasonable upper and lower boundaries for each available input. To solve the 

proposed interval-based model, the study has further presented a recursive solution 

algorithm developed with the Interval Kalman filter. 

This chapter has also presented the performance evaluation results of the 

proposed interval-based model using the I-95 freeway corridor as Chapter 3. The results 

from the first experiment have revealed the fact that the time-dependent O-D estimates 

from the interval-based model are relatively insensitive to the input measurement errors. 

A second experiment has also been contented to evaluate the compound effect of the 

interval-based model and the initial O-D estimation algorithm proposed in Chapter 4. The 

extensive numerical results presented in this chapter have indicated the potential for an 

integrated application of both algorithms in the estimation of large dynamic freeway O-D 

distributions. 
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CHAPTER 6 CONCLUSIONS AND FUTURE RESEARCH 

 

6.1 SUMMARY OF RESEARCH ACCOMPLISHMENTS 

This research has mainly investigated potential technical issues associated with 

the estimation of dynamic O-D patterns for a large freeway corridor. Based on the 

deficiencies of existing models and limitations of data quality in real-world traffic 

surveillance systems, this study has focused on the following three aspects: 

� Reformulating state-of-the-art formulations for dynamic O-D estimation with 

a travel time distribution function that can best take advantage of observable 

dynamic interrelations between system components with a reduced number of 

unknown variables; 

� Constructing a recursive algorithm for approximating the initial O-D set, 

which is generally not available but is an essential start point for any 

algorithm to execute the dynamic O-D estimation; and 

� Developing an interval-based model and solution algorithm to account for the 

measurement errors due to traffic sensor deficiencies or the available data 

quality. The primary accomplishments of this study include: 
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Formulating a Dynamic O-D Estimation Model with an Embedded Travel Time 

Distribution Function 

Most existing freeway dynamic O-D estimation models suffer from two main 

limitations: insufficient observations and unrealistic assumptions. Chapter 3 has 

presented a model and its solution algorithm for estimating the time-dependent O-D 

demands in a large freeway corridor to overcome these deficiencies. The proposed model 

can reflect the speed variance among vehicles having the same departure time, origin and 

destination with an embedded travel time distribution function, and consequently provide 

a set of formulations with fewer unknown variables. Its solution algorithm developed 

with the sequential extended Kalman filtering logic has proven to be sufficiently efficient 

and reliable for use in practice. 

Developing an Initial O-D Set Estimation Algorithm for Estimating a Reliable Initial O-D 

Set for a Large Freeway Network 

This algorithm is developed for addressing the commonly encountered issue in 

real-world applications, that is, to compute the initial O-D set, which is often not 

available but an essential input of most existing dynamic models for estimating 

subsequent time-dependent O-D distributions. The key concept of the proposed algorithm 

is to decompose a large freeway corridor into several small segments so as to reduce the 

number of unknown variables in each freeway segment. The algorithm can capture the 

relations between the estimated initial O-D proportions and the flow information due to 

the iterative use of the input information observed during the first time interval. 

Furthermore, the replacement of the unknown variables estimated from the previous 
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segment can also reduce the number of unknown variables and improve the estimation 

accuracy and efficiency. 

Proposing an Interval-based Algorithm for Estimating Dynamic O-D Patterns with 

Variance in the Available Information 

This study has developed an interval-based model to tackle the input 

measurement errors due to the deficiencies of surveillance systems. Since the accurate 

traffic flows are likely to lie within intervals rather than constant values, the proposed 

model has formulated each input variable with a lower and upper bounds. To 

accommodate the unique modeling features, the study has further derived an interval-

based solution algorithm with the Interval Kalman filter method. This set of interval-

based model and solution algorithm can yield the estimation results that are less sensitive 

to the measurement errors embedded in input data. 

Conducting Extensive Model Sensitivity Analyses and Performance Evaluation with a 

Real-World Freeway Corridor 

This study has presented the sensitivity analyses of the dynamic O-D estimation 

model proposed in Chapter 3 with respect to the key system factors and parameters, 

including the initial O-D set and travel time variance. The numerical analyses have 

revealed that the proposed dynamic O-D estimation model is sufficiently effective for 

tackling the travel time variance with a certain range. 

This study has also used the I-95 freeway corridor between Baltimore and DC 

beltways to evaluate the performance of the proposed models and algorithms and to 

demonstrate its applicability. The results of extensive experiments have indicated that the 
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dynamic O-D estimation model proposed in Chapter 3 can yield reasonable time-

dependent O-D estimates with a reliable initial O-D set. The numerical experimental 

results have also evidenced that it is necessary to employ the interval-based model and 

algorithm if the available input data set is subjected to some degree of measurement 

errors. 

 

6.2 FUTURE RESEARCH 

In spite of the contributions made in this research, many key issues remain to be 

investigated so as to improve the applicability of the time-dependent O-D estimation 

model. Examples of these essential research issues are summarized below. 

� Reliability Analysis for the Dynamic O-D Estimation Model 

One of the critical issues remains to be investigated in the area of time-dependent 

O-D estimation is to estimate the interrelation between model reliability and the available 

information. Ideally, one should have some effective statistics or procedures to evaluate if 

the available detector information is sufficient to render a target level of estimation 

quality. Such information will serve as the basis to evaluate the number of detectors 

needed to generate the data set for a reliable O-D estimation. 

The proposed statistics for reliability analysis may offer the potential guidelines 

for determining the detector locations and spacing under the resource constraints. For 

instance, one shall be able to use the developed statistics to best approximate the number 
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of detectors needed and the distribution of their locations with a target level of reliability 

and the intended estimation model. 

� The Dynamic O-D Estimation with Only Partial Information 

As mentioned in the previous chapters, most existing approaches for estimating 

dynamic O-D matrices require a set of initial/prior O-D and ramp/mainline volumes as 

model inputs. Depending on the available information and the network structure, the O-D 

patterns estimated with those approaches may result in a large variance, and thus 

insufficient reliability for use in practice. Besides, many of those essential data, such as 

on/off ramp volumes, may not be available in most real-world freeway networks. 

Note that the detectors in most freeway systems are mostly deployed on the 

mainline segments, not at the on-ramps and off-ramps. However, nearly all existing O-D 

estimation models assume that a complete set of on-ramp and off-ramp volume 

information is always available. To deal with these commonly encountered constraints, 

one may focus on developing a model to estimate the ramp volumes, based on the 

available mainline detected volumes and historical travel time information if available. 
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APPENDIX A. INTERVAL ARITHMETIC 

Let ]x,x[  be an interval which is a closed and bounded subset in R=(-∞,∞). This 

interval computation shall obey the following properties (Chui and Chen, 1999): 

• Equality: ]x,x[]x,x[ 2211 =  if and only if 21 xx =  and 21 xx = . 

• Inequality: ]x,x[]x,x[ 2211 <  if and only if 21 xx < , and ]x,x[]x,x[ 2211 >  if 

and only if 21 xx > . 

• Intersection: }]x,xmin{},x,x.{[max]x,x[]x,x[ 21212211 =∩ . 

• Union: }]x,xmax{},x,x.{[min]x,x[]x,x[ 21212211 =∪ , only if 

φ≠∩ ]x,x[]x,x[ 2211 . 

• Disjoint: φ=∩ ]x,x[]x,x[ 2211 . 

• Inclusion: ]x,x[]x,x[ 2211 ⊆  if and only if 12 xx ≤  and 21 xx ≤ . 

In addition to the foregoing properties, the interval arithmetic operations are 

defined differently from a single value: 

• Addition: ]xx,xx[]x,x[]x,x[ 21212211 ++=+  

• Subtraction: ]xx,xx[]x,x[]x,x[ 21212211 −−=−  

• Reciprocal Operation: If ]x,x[0∉ , then ]x/1,x/1[]x,x[ 1 =− . If ]x,x[0∈ , 

then 1]x,x[ −  is undefined. 

• Multiplication: ]y,y[]x,x[]x,x[ 2211 =⋅  

where }xx,xx,xx,xx.{miny 21212121=  and }xx,xx,xx,xx.{maxy 21212121=  

• Division: if ]x,x[0 22∉ , then 1

22112211 ]x,x[]x,x[]x,x/[]x,x[ −⋅= . Otherwise, 

it is undefined. 
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