Generation of Maximum Independent
Sets of a Biparite Graph and Maximum
Cliques of a Circular-Arc Graph

by T. Kashiwabara, S. Masuda,
K. Nakajima, and T. Fujisawa

TECHNICAL
RESEARCH
REPORT

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 89-65

Generation of Maximum Independent Sets of a Bipartite Graph

and Maximum Cliques of a Circular-Arc Graph*

by

Toshinobu KASHIWABARA 1 and Sumio MASUDA

Department of Information and Computer Sciences
Osaka University, Toyonaka, Osaka 560, Japan

Kazuo NAKAJIMA
Electrical Engineering Department,
Institute for Advanced Computer Studies

and Systems Research Center
University of Maryland, College Park, Maryland 20742

and

Toshio FUJISAWA i

* This work was supported in part by the National Science Foundation Grants MIP-84-51510
and CDR-88-03012 (Engineering Research Centers Program) and in part by a grant from

AT&T.

+ T. Kashiwabara was on leave from Osaka University, with the Electrical Engineering Depart-
ment and Institute for Advanced Computer Studies, The University of Maryland, College
Park, Maryland 20742.

T T. Fujisawa was with the Department of Information and Computer Sciences, Osaka Univer-

sity, Toyonaka, Osaka 560, Japan. He deceased on December 15, 1988,

Generation of Maximum Independent Sets of a Bipartite Graph

and Maximum Cliques of a Circular-Arc Graph

by

Toshinobu Kashiwabara, Sumio Masuda,

Kazuo Nakajima and Toshio Fujisawa

ABSTRACT
We present an efficient algorithm for generating all maximum independent sets of a bipartite
graph. Its time complexity is O (n*°+(output size)), where n is the number of vertices of a
given graph. As its application, we develop an algorithm for generating all maximum cliques
of a circular-arc graph. When the graph is given in the form of a family of » arcs on a circle,

this algorithm runs in O (n*%4-(oulput size)) time.

1. Introduction

Among various types of combinatorial problems, such as decision problems to deter-
mine whether a given structure has specified properties and optimization problems to obtain a
best possible structure based on some criteria, generation problems to report all structures
that satisfy specified properties without duplication give rise to important applications. In
particular, problems of generating all mazimal or maxtmum sets of elements with specified pro-
perties for graphs have widely been investigated because of their practical significance [4,10-
15]. (A set of elements is called maximal if the addition of a new element to the set destroys
the properties the original elements satisfy. It is called maximum if its cardinality is the larg-
est among all maximal sets.)

Tor general graphs, the best known algorithms for generating all maximal independent
sets (and consequently, maximal cliques) [4,15] and all cutsets [14] require O (n m-a) and
O ((n +m)-a) time, respectively, where n, m and « are the numbers of vertices, edges and out-
put sets, respectively. Recently, for several restricted classes of graphs, faster algorithms have
been developed. For the generation of maximal independent sets, Leung [10] presented
O (n2%+~) time algorithms for interval graphs and circular-arc graphs and an O ((n +m)'«) time
algorithm for chordal graphs, where « is the output size, that is, the total sum of sizes of the
output sets. Later, Masuda ef al. [12] developed O (nlogn ++) time algorithms for the first two
clagses. They also showed that all mazimum independent sets can be found in O (n logn ++)
time for interval graphs and in O (n®+~) time for circular-arc graphs. For maximum clique
generation, Rotem and Urrutia [13] first presented an O (n?+~) time algorithm for overlap
graphs, and later Masuda ef al. [11] developed an O (nlogn +m ++) time algorithm.

The time complexities of the generation algorithms for all but one of the above men-
tioned restricted classes of graphs are the sum of a polynomial function of the input size and a
linear function of the output size. We call such generation algorithms pseudo-linear time algo-
rithms. In this paper we consider a new problem which admits a pseudo-linear time genera-

tion algorithm, that is, the problem of generating all closed ancestor sets (defined in Section 2)

of an acyclic directed graph. As an application of this algorithm, we present two other
pseudo-linear time generation algorithms. The flrst one produces all maximum independent
sets of a bipartite graph in O (n®®++) time. The second algorithm generates all maximum

cliques of a circular-arc graph in O (n®54+4) time.

2. Definitions

We begin by the definitions of several terms on undirected graphs. Let G = (V, E) be
an undirected graph. If (v, v) € E, we say that v and v are adjacent and are incident on the
edge (u,v). If (v, v) & E, they are said to be independent. A set of vertices S C V is called
a clique (resp., independent set) of G if its vertices are pairwise adjacent (resp., independent).
A clique (resp., independent set) with the maximum cardinality is called a mazimum clique
(resp., maximum independent sef, which may be abbreviated as MIS). A set of edges M C E
is called a matching of G if no two edges in it have a common endpoint. If a vertex is incident
on some edge in M, it is said to be covered by M ; otherwise it is said to be eaposed. A match-
ing is called a perfect matching if it covers all the vertices of G. A path is a sequence of ver-
tices [vy, vs, ..., ;] such that (v;, v;4,) € E for ¢=1,2,...,k-1. An allernating path with respect
to M is a path that contains edges in M and edges not in M alternately (the words ‘““with
respect to M’ may be omitted if no confusion arises). A graph (V' , E') is called a subgraph
of G if V! CV and E!' CE. A subgraph (V' ,E’') of G is called the induced subgraph
defined on V' and may be denoted by G(V')If E' = {(u,v)€EE |u,v € V' }.

We now define some terms on directed graphs (digraphs, for short). Let G = (v, E)
be a digraph. Such terms as adjacent vertices, independent set, clique, matching, and induced
subgraph of a digraph are defined for its undirected version by ignoring edge directions. A
directed edge from vertex u to vertex v is denoted by (v — v). This edge is an outgoing edge
of v and an incoming edge of v. For a vertex v € V, the number of its incoming (resp., out-
going) edges is called the ¢ndegree (resp., outdegree) and are denoted by indegy(v) (resp.,

outdeggz (v)). If a vertex has indegree o, it is called a source. A directed path from vertex u to

vertex w is a sequence of vertices [u = v, vy, ..., % = w] such that (y; — v;) € E for
i=1,2,...,k-1. If v = w, the path is called a directed cycle. A digraph is said to be strongly
connected if for any pair of vertices v and v, there is a directed path from « to » and vice
versa. A strongly connected component of digraph & =(V,E) is a strongly connected
induced subgraph @'(U) such that for any v € V--U, @(U U {v }) is not strongly connected.

A digraph with no directed cycles is said to be acyclic. It is obvious that any acyclic
digraph has at least one source. In an acyclic digraph G = v, E), a vertex u is called an
ancestor (resp., descendent) of vertex v if either v = v or there exists a directed path from «
to v (resp., from v to u). A subset S of V is called a closed ancestor set (abbreviated as
CA-set) of G if, for any v € S, all ancestors of v are contained in §. An example is given in
Figure 1. An edge (v — v) € E is called a redundant edge of G if after its elimination, u is
still an ancestor of v. A graph H is called a transitive reduction of G if (i) H has the same
vertex set V and the same ancestor-descendant relationships as G has, and (ii) there is no
graph with the same vertex set but fewer edges than H that preserves the ancestor-descendant
relationships of G. It is known that, for any acyclic digraph @, its transitive reduction is
unique and can be constructed by removing all redundant edges from G [1]. Figure 2 depicts
the transitive reduction of the acyclic digraph of Figure 1.

For convenience, we may use a few additional notation. A clique of cardinality ¥ may
be called a k-clique. A set that contains ah element v may be called a v-in set. Thus a clique
of cardinality ¥ that contains vertex » may be called a v-in k-clique. For a graph or digraph
G = (V, E) and a set of vertices S € V, G-S denotes the induced subgraph G (V-5); that

is, the one obtained from G by eliminating all vertices in S and their incident edges.

3. Closed ancestor set generation
In this section, we give a pseudo-linear time generation algorithm for the CA-sets of an
acyclic digraph. Let G = (V, E) with | V| = » be an acyclic digraph and G' be its transi-

tive reduction. Since G’ preserves the ancestor-descendant relationships among the vertices

of V, any CA-set of @ is a CA-set of @' and vise versa.

Given a subgraph H = (Vy, EH) of G' and a set of vertices S such that S C V-Vy,
the procedure CAS(H, S) (to be given below) finds all CA-sets W of H without duplication
and produces all sets W U S. Thus the execution of CAS(G' ,) yields all CA-sets of G' .

They are the CA-sets of G from the above observation. Our algorithm is described as follows:

Algorithm 1.
1. Let G' = (v, E!) be the transitive reduction of Gd.

2. CAS(G' ,9).0

We now explain how to construct CAS(ﬁ, S) If H = (8, 9), that is, a null graph, the
procedure (A, §) simply produces S. If H % (@, 0), it has at least one source. Let v be any
source of H. Among the sets that are to be produced by CAS(ﬁ, §), all sets W U § that con-
tain v in W are generated by executing CAS(H-{v}, § U {v}) and all sets W U S that do not
contain v are obtained by CAS(Ff—{a,ll descendants of v}, §). Thus, we derive the following

recursive procedure:

Procedure CAS(H,)
begin
if H = (9, 0)

then output 5.

else begin
v « a source of H.
CASH-{v}, S U {v}).
CAS(H -{all descendants of v}, §).

end

end O

In the remainder of this section, we analyze the time complexity of Algorithm 1. The

transitive reduction of @, as well as the “transitive closure’ of @, can be computed by matrix

multiplication [1]. Using the algorithm in [5], we can thus obtain G’ in O (n2®®*) time. To
find a source v of H when H £ (@, §) in the procedure CAS(H, S), we first determine a topo-
logical order of G' before we call CAS(G' , #). This can be done in O (n + | E' |) time [2].
Then, in each execution of CAS(:, *), a source of the graph can be found as the vertex with the
least index with respect to the topological order.

In order to analyze the time complexity of the other parts of the algorithm, we need a
few more definitions and lemmas. A pair of vertices is called an incomparable pair (abbrevi-
ates as ¢-pair) if neither one of them is an ancestor of the other. For any acyclic digraph
H = (Vy, EH) with no redundant edges, we denote the numbers of its CA-sets, v-in CA-sets,
and i-pairs, by Ngag (H), NéAs(ﬁ), and Ny, (17), respectively.

Lemma 1. |Ey | < 4N, (H)+| Vy |.

Proof. We will assign each edge to either a vertex or an i-pair. Let H = (Vy, E) be a sub-
graph of H such that (i) dndegy (v) < 1 and outdegy (v) < 1 for every v € Vy, and (ii) for any
¢ € Ey-E, (Vy,E U {e}) does not satisfy condition (i). Let ¢ — (v — v) be any edge in Ej.
Note that outdegy (u) = 1 or ¢ndegy (v) = 1 or both equal one. If ¢ € E, we assign it to vertex

v. Otherwise, ¢ € EH -F, and we assign it to an i-pair in the following manner:
Case 1. outdegy (u) = 0.
In this case, indegy (v) — 1. Let w be a vertex such that (w — v) € E. since H has no

redundant edges, {u , w} is an i-pair. We assign e¢ to this i-pair.

Case 2. outdegy (u) = 1.
There exists a vertex w (s v) such that (v —» w)€ E and {v, w } is an i-pair. We assign
e to this i-pair.
In the manner described above, every edge ¢ € EH is assigned to a vertex or an i-pair.
Clearly, at most one edge is assigned to every vertex. We show that at most 4 edges are

assigned to every i-pair, which completes the proof. Assume that five edges e, eq, €35, ¢4, and

e are assigned to an i-pair {z, y}. Since they are incident on either z or y, at least two of
them are incoming edges of ¢ or y, or outgoing edges of # or y. For example, suppose that e,
and e, are incoming edges of z, and let e, = (u — 2) and e, = (v — z). Since ¢, EE'H—E
and e, is assigned to the i-pair {z, g }, the edge (v« > y) € E must exist due to Case 2. Like-
wise, (v — y) € E. Thus, indegy (y) > 2, which contradicts the definition of H. The other
cases lead to a similar contradiction. [}

Lemma 2. Ngus(H) > Ny (H)+ | Vy |-
Proof. For any v € Vg, {v’s ancestors} is a CA-set. Similarly, for any i-pair {«, v} of H,
{u’s ancestors} U {v’s ancestors} forms a CA-set. It is clear from the definition of i-pairs that
these | Vy | +N;, (H) sets are all distinct, and the lemma follows. [

Lemma 3. For any source v of H, | Vy |+ | By | < 4N&s(H).
Proof. If | Vy | =1, the lemma trivially holds. Suppose that | Vy | > 2 and let E, be the set
of all edges of graph H-{v}. From Lemma 1, |E,|< 41\[,-,,(17—{1; W+ | Vg |-1. Since
|Eq |- E,| <| Vg |-1, we have |Ey | < 4N, (H-{v})+2| Vg |-2. Furthermore, for any
CA-set § of H-{v}, § U {v} is a CA-set of H, and hence N&ys(H) > Ngus (ﬁ—{v }). There-
fore, by Lemma 2, ANGus(H) > 4Ny (H-{v })+4 | Vy | -4 > | By | +2| Vy |2
>|Vy |+|Eg|.O

Theorem 1. All CA-sets of a given acyclic digraph G can be generated in
O (n2**+7) time, where v is the output size.
Proof. As mentioned earlier, the construction of G' and the determination of a topological
order can be done in O (rn®*¥®*) and O(n+|E |) time, respectively. For a subgraph
H = (Vy,Ey)of G' and § C V-Vy, the execution of CAS(H, §) i) finds a source of H, say
s (H), i) adds s(H) to § and computes H-{s(H)}, and iii) computes H-{descendants of
s(ﬁ)}. All of these can clearly be performed in O(1+ | Vg |+ | By |) time, which may be

bounded by O (N&Z)(H)) time due to Lemma 3. Therefore, the overall time complexity of the

algorithm is O (n***4 32 NESE(H)), where the summation is taken for all & and S computed
n.s

in the algorithm. The output family of CAS(H, S), {W US | W is a CA-set of H}, has

Ng{B(H) sets that contain s (H). This implies that 3 N&Z(H) = O (4), which completes the
R,

proof. O
Remark. If G has no redundant edges, its CA-sets can be generated in O () time

since n + | E | = O(4) by Lemma 3. [J

4. Generation of maximum independent sets of a bipartite graph

A graph (V, E) is said to be bipartite if V can be partitioned into two disjoint
independent sets X and Y. Such a partition (X, Y') is called a bipartition. To specify the
bipartition, the bipartite graph may be denoted by (X, Y, E).

In this section, we consider the problem of generating all MIS’s of a bipartite graph
B =(X,Y,FE) We first reduce this problem to that of finding all MIS’s of a bipartite graph
that has a perfect matching. We then show that the latter problem can further be reduced to
the generation problem of all CA-sets of an acyclic digraph. These reductions will lead to a

pseudo-linear time MIS generation algorithm for B.

4.1 First Reduction

Let M be a maximum matching of B. Let X, (resp., Y,) be the set of exposed vertices
in X (resp., Y). Let Ly (resp., Ly) be the union of X, (resp., ¥,) and the set of all vertices of
B that lie on some alternating path from a vertex in X, (resp., Y,). Due to the maximality of
M, Ly N Ly = §. Finally, we define X’ = X-Ly~Ly and Y' = Y-Ly-Ly. An example is
shown in Figure 3. Recall that B (U) is the induced subgraph of B defined on a set of vertices
U. For simplicity, we denote graph B(X' U Y') by B’ . Let M' be the intersection of M

and the edge set of B! . It is not difficult to see that M’ is a perfect matching of B’ . The

following theorem enables us to reduce the problem of generating all MIS’s of B to that of
generating all MIS’s of B! .

Theorem 2. The family of MiIS's of B is equal to the family
{Lxy nXHULy NY)UZ|Z isanMISof B' }.0O

In order to prove this theorem, we need two lemmas. The proof of Lemma 4 is elemen-
tary and is left out.

Lemma 4. B has no edge between i) a vertex in Ly NX and a vertex in
(Ly NY)U Y' norii)avertexin Ly N'Y and a vertex in (Ly N X)Uu X' . O

Theorem 1 in Desler and Hakimi [6] shows that both (Ly NX)U {v € Y | v is not
adjacent to any vertex in Ly} and (Ly N Y) U {veX | v is not adjacent to any vertex in
Ly} are MIS’s of B. Thus, by Lemma 4, we have Lemma, 5.

Lemma 5. (Ly NX)ULy NY)UX' and Ly NX)UWLy NY)U Y’ are MIS’s of

We are now ready to prove Theorem 2.
Proof of Theorem 2. (“2” part) Let Z be an MIS of B! . Since B' has a perfect matching
M', |Z|=|X" |=|Y'|. Furthermore, (Ly N X)U (Ly N Y)U Z is an independent set
due to Lemma 4, and Z is disjoint from (Lyx NX)U(Ly NY). Therefore,
Lx NX)U Ly NY)U Z is an MIS of B by Lemma 5.
(“C” part) Let D be an MIS of B. Applying Lemma 5 to B(Ly) and B(Ly), we see that
LynX and LynNY are MISs of B(Ly) and B(Ly), respectively. Therefore,

| D NLy | <|LyNnX| and |DNLy |L|LyNnY|. Since B’ has a perfect matching,

X' is an MIS of B’ and |[DNX'UY')|<|X'"|. By Lemma 35,
|[D |=|Ix NX)ULy NYUX' |=|LyxnNX|+|LynY |+]|X" |. Thus,
I DNLy |=|LxNnX|, | DNLy|=|LyNnY| and |[DNX'UY'")|=|X" |, and

hence D NLy, D NLy and D N{(X' U Y'")are MIS’s of B(Ly), B(Ly) and B’ , respectively.

10

The proof will be completed by showing that Ly N X (resp., Ly N Y) is the only MIS
of B(Ly) (resp., B(Ly)). We prove the case for Ly (the other case is similarly proved).
B (Ly-X,) has a perfect matching that consists of edges in M. We denote it by My. Ly con-
sists of 2- | Ly N Y | vertices covered by My and | X,| exposed vertices. Let Dy be any MIS
of B(Ly). Since |Dy |=|Lx NX |=|X,|-+|Lx NY |, Dx contains all vertices in X, and
exactly one endpoint of every edge in My. Let y be any vertex in Ly NY and
(o Yi» T1» Yor o s Yi» T, ¥y] be an alternating path, where z,€ X, v, ... 9% €ELx NY,
T, o2 €Ly NX, and (y,2)€ My for (=12,.k. Since z,€ Dy, y,& Dx. Thus,
z,€ Dy and y, & Dx. Repeating this argument k-1 more times, we know that y & Dy.

Therefore, Dy has no vertex in Ly N Y, and hence Dy = Ly NX. O

4.2 Second Reduction

We now show that the generation of all MIS’s of B’ can be reduced to that of all CA-
sets of an acyclic digraph. Recall that B’ has a perfect matching M' . For each edge
¢ = (u, v) such that « € X' and v € Y’ , we give a direction from v to v if ¢ € M' , and
from u tov if ¢ € M' . We denote the resultant digraph by B =x', Y oL).

Theorem 3. Let K be the vertex set of a strongly connected component of B' . For
any MIS D of B! , either) K NX' €D and (K NY')ND =@, ori)) KNY' CD and
(KNnX'")ynD =40
Proof. If |K | =1, the theorem trivially holds. If |K | > 1, it is clear that | K | > 4 and
that |[K NX' |>2 and |[KNY' |>2 Let « be any vertex in K NX' . For any
v € () N X')-{u}, there are a directed path from « to v and a directed path from v to u.
When the edge directions are ignored, the path from u to v is an alternating path with
respect to M' and begins with an edge not in M' . Since M' is a perfect matching, any MIS

D of B’ contains exactly one endpoint of each edge in M' . Therefore, by the same reason-

11

ing as the one used in the proof of Theorem 2, we can show that if « € D, then v € D and
K nY' & D. Applying the same argument to the directed path from » to u, we can also
show that if « € D, then v € D.

Consequently, if « € D, then (K NX')ND =0, and if « € D, then K NX' CD
and K NY' € D. A similar result can be derived for any vertex in K N Y’ . The theorem
immediately follows from these results. [J

Theorem 3 shows that, for the vertex set K of every strongly connected component of
B', K nX' and K NY' each may be treated as a group. This motivates us to contract
each of them into a single vertex and create an edge directed from the vertex for K nY' to
the one for K N X' . Let B = (X, ¥, E) be the graph obtained from B’ by performing such
contractions for every strongly connected component (multiple edges are replaced by single
edges). Thus, the generation of all MIS’s of B' is reduced to that of all MIS’s of B. Clearly
B is acyclic. Furthermore, it has a perfect matching M that corresponds to M’ and that
contains all the new edges. Suppose that X — {¢, %5 .. %}, ¥ = {y1 Yo ..., 44 }, and
(y; — ;) € M for i=1,2,...k. Note that each edge in £-M is directed from a vertex in X to
a vertex in Y.

The second reduction is completed by contracting two endpoints of every edge
(y; — ;) € M into a single vertex v; (self-loops are eliminated). Let G = (V, E) be the resul-
tant digraph. Since B is acyclic, G is also acyclic. An example is shown in Figure 4. We
define a function from the family of all the subsets of V to the family of sets of vertices in B
by F(S)={2; €X |v; €S}U{y €Y |v; €S} forevery § C V. It is obvious that F(§) is
a one-to-one function.

Theorem 4. The family of MIS’s of B is equal to {F(S)| S is a CA-set of G }.

Proof. (““O” part) Assume that there exists a CA-set 5 of G such that F'(S) contains adja-

cent vertices #; and Yj of B. The edge connecting them is not a member of M, and hence it is

12

directed from «; to g . By the definition of F(S), v €S and v, €85. Since
(2, — y;) € E-M, (v; — v;) € E. This contradicts the assumption that S is a CA-set. There-
fore, F(S) is an independent set of B. It is clearly maximum since |F(S)|=|X |=|T|.
(“C” part) Let D be an MIS of B and let S = {v; € V |y; € D}. For each (y; — z;) € M,
D contains either #; or y;. Therefore, D = F(S§). Let (v; — v) be any edge in E such that
v; €5. Since y; € D and (z; — %) € F, the independence of D implies that z; € D, and
hence v; € S. Thus, S is a CA-set of G. [0

Theorems 2, 3 and 4 lead to the following algorithm for generating all MIS’s of a given

bipartite graph B.

Algorithm 2.

1. Find a maximum matching M of B. Determine sets Ly, Ly, X', and Y' with respect

to M and determine graph B’ with its perfect matching M’ .

2. Determine graph B' and find all of its strongly connected components. Construct graph

B and its perfect matching M .
3. By contracting every edge in M, construct graph G from B.
4. Generate all CA-sets of G and find {F(S)| S is a CA-set of G }.

5. For each set F'(S), replace each vertex by the original vertices of B and add to them the

vertices in (Ly N X) U (Ly N Y). Generate the resultant vertex sets. [J

Step 1 can be done in O (»2®) time by using the Hopcroft-Karp matching algorithm [9],
where n is the number of vertices in B. Step 4 can be performed in O (n****4+) time due to
Theorem 1, where ~ is the output size. Steps 2, 3 and 5 use O(n?, O(n®), and O (y) time,
respectively. Thus, we have the following theorem:

Theorem 5. All MIS’s of a bipartite graph can be generated in O (n2%+4) time, where

a is the number of vertices of the graph and ~ the output size. [

13

5. Generation of maximum cliques of a circular-arc graph

For a family A of arcs on a circle, a graph (V, E) is called the circular-arc graph for A
if there exists a one-to-one correspondence between V and A such that two vertices in V' are
adjacent if and only if the corresponding arcs in A intersect. For convenience, we use two
terms ‘“vertex’’ and ‘“‘arc’’ interchangeably. Moreover, we may call a cligue of the circular-arc
graph for A simply a clique of A .

In this section, we present a pseudo-linear time generation algorithm for all maximum
cliques of a circular-arc graph. We assume that the graph is given in the form of a family of
arcs A = {a,, @, ..., a, } such that their endpoints are all distinct and no single arc covers the
whole circle. We assume that arc e¢; does not contain any arc in {e¢;,,, ;44 ..., @, } for
i{=1,2,...,n—1 (if necessary, the renumbering can be done by sorting the arcs in ascending
order of their lengths). Let p denote the cardinality of a maximum clique of A. For
i=1,2,...n, let A; = {a;, ¢; 4, ..., ¢, } and let M; denote the family of all ¢;-in p-cliques of A;.
Note that M; may be empty.

It is easy to show that M; N M; =@ for ¢ # j and that the family of maximum

n
cliques of A is UM, Therefore, our goal is to find M, M,, ..., M, . In the following, we show

{=1
that this problem can be reduced to the generation of all MIS’s of a bipartite graph. Let p,-’ be
one endpoint of arc ¢; and p;” the other endpoint. We denote by Al (resp., A;) the set of all
arcs in A; that contain p but not p;” (vesp., p{” but not p/) and by A/ the set of all arcs in 4;
that contain both p} and p/. Let B; = (A} UAS, By with B; = {(u,v)|u,v € Al U AT, arcs
u and v do not intersect}. An example is given in Figure 5. B; is a bipartite graph with
bipartition (A;’, AN. Such a bipartite graph was used in [7] to obtain a maximum clique of a
circular-arc graph. Let r; denote the cardinality of an MIS of B;. If 7;+ | Al +1 < u, we

know that M; = .

14

Theorem 6. If 7, + | A" | +1 = p, then M; = {4/ U {¢;} U T | I is an MIS of B; }.
Proof. (“2” part) By the definition of B;, any MIS I of B; is a clique of A;. Since every arc
in Af U {q¢; } intersects all arcs in I, A" U {¢;} UT is an ¢;-in p-clique of A; .
(“C part) Let C be an g;-in p-clique of 4;. C-{a; }-A/" is a clique of A} U A/, and thus it is
an independent set of B;. Since |C |=u, |C-{e}-Af|> p-1-]| A | = 7;. Therefore,
C—~{a; }-A{"is an MIS of B;. O

For ¢{=1,2,..,n, we first compute 7; by finding a maximum clique of A;. Using the
algorithm by Apostolico and Hambrusch [3], this can be done in O (n®log logn) time for each 7.
p can be determined as Maz {r; +1+ | A/ | i=12,..n}. If 7y < p-1-| A/"| for some i, we
do not proceed further for ¢. On the other hand, if 7, = p~1-| A/ |, we find M; in the follow-
ing manner: (1) construct graph B;, (2) generate all MIS’s of B;, and (3) add {a;} U A/ to
each of them. The execution times of the first and third steps for all ¢ are O (2% and O (»),
respectively. Due to Theorem 5, the second step can be done in O (n%%++~;) time for each ¢,

where ~; is the total size of the MIS’s of B;. Since by v = O (v), we have the follow-
=== | A

ing theorem:
Theorem 7. The generation of all maximum cliques of a circular-arc graph can be
done in O (n®%++) time, where n is the number of vertices of the graph and ~ the output size.

i

References

[1] A. V. Aho, M. R. Garey and J. D. Ullman, The Transitive Reduction of a Directed

Graph, SIAM J. Comput. 1 (1972), 131-137.

[2] A. V. Aho, J. E. Hopcroft and J. D. Ullman, “The Design and Analysis of Computer

Algorithms,”” Addison-Wesley, Reading, Mass., 1972.

(3]

(10]

[11]

[12]

15

A. Apostolico and S. E. Hambrusch, Finding Maximum Cliques on Circular-Arc Graphs,

Info. Proc. Lett. 26 (1987), 209-215.

N. Chiba and T. Nishizeki, Arboricity and Subgraph Listing Algorithms, SIAM J. Com-

put. 14 (1985), 210-223,

D. Coppersmith and 8. Winograd, On the Asymptotic Complexity of Matrix Manipula-

tion, SIAM J. Comput. 11 (1982), 472-492.

J. F. Desler and S. L. Hakimi, On Finding a Maximum Internally Stable Set of a Graph,
in ““Proc. 4th Annual Princeton Conf. on Information Sciences and Systems,” pp. 459-

462, Princeton, NJ, 1970.

F. Gavril, Algorithms on Circular-Arc Graphs, Networks 1 (1974), 357-369.

M. C. Golumbic, *“Algorithmic Graph Theory and Perfect Graphs,” Academic Press, New
York, NY, 1980.

J. E. Hopecroft and R. E. Karp, An n2% Algorithm for Maximum Matching in Bipartite
Graphs, SIAM J. Comput. 2 (1973), 225-231.

J. Y.-T. Leung, Fast Algorithms for Generating All Maximal Independent Sets of Inter-

val, Circular-Arc and Chordal Graphs, J. Algorithms 5 (1984), 22-35.

S. Masuda, K. Nakajima, T. Kashiwabara and T. Fujisawa, “Efficient Algorithms for
Finding Maximum Cliques of an Overlap Graphs,” Networks, to appear.

S. Masuda, K. Nakajima, T. Kashiwabara and T. Fujisawa, ‘‘Efficient Enumeration of
Maximal and Maximum Independent Sets of an Interval Graph and a Circular-Arc
Graph,” Technical Report UMIACS-TR-87-33, University of Maryland, College Park,

MD, 1987.

[13]

[14]

[15]

16

D. Rotem and J. Urrutia, Finding Maximum Cliques in Circle Graphs, Networks 11

(1981), 269-278.

S. Tsukiyama, H. Ariyoshi, I. Shirakawa and H. Ozaki, An Algorithm to Enumerate All
Cutsets of a Graph in Linear Time per Cutset, J. Assoc. Comput. Mach. 27 (1980), 619-

632.

S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirakawa, A New Algorithm for Generating All

the Maximal Independent Sets, SIAM J. Comput. 6 (1977), 505-517.

Fig. 1. An example of a CA-set.

Fig. 2. The transitive reduction for the acyclic digraph of Fig. 1.

17

Fig. 3- sets Xo

————

Yo Lx Ly, X! and Y!

Fig. 4. Construc

o

—-———

(the edges of M are drawn in poldface).

tion of graph G.

18

Al
Vi
(
A
Uy vz
u, v3
U;

(a)

B;.
h
P
ra

G

(b)

lr‘

Al

" and

{ A.‘

Al' »

ts

Se

(a)

5.

ig.

F

19

