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One of the most common activities of our day to day life is walking. However simulat-

ing a human walking motion is one of the most difficult tasks to accomplish. Inherently

it is an inverted pendulum like system and involves a large number of degrees of free-

dom. In this thesis we have modeled the human walking motion. The system is designed

using a human body model in the form of a kinematic chain consisting of rigid links and

revolute joints. Human walking patterns contain information like identity, presence of

physical disability and loading conditions of a person like carrying a backpack. We

have extracted some of these information and have used our model to discriminate var-

ious walking motions. The information that we have used are joint torque and angle

sequences modeled using ARMA modeling and Dynamic Time Warping. Our human

walking model is validated by comparing it with Stanford marker data.
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Chapter 1

Introduction

1.1 Motivation

Walking is one of the most common activities performed by humans. But the process

of analyzing and simulating human gait is one of the most difficult problems to handle.

Inherently it is an inverted pendulum like system and also involves a large number of

degrees of freedom. Various methods have been employed for the purpose of human mo-

tion analysis for human recognition, abnormality detection and also medical purposes

like monitoring knee recovery after surgery. Human locomotion simulation is largely

studied in the fields of computer animation, biomechanics, robotics and also computer

vision.

Human walking patterns can provide very rich and detailed information. Just by

looking at the walking motion of a person we can detect whether he or she is happy,

has some physical disability or even tired. In most of the cases we can also predict

gender of a person. If the person is someone we know we can also recognize him or
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her by observing the way he or she walks. Certainly all of these pieces of information

are encoded in the walking patterns of all humans. However we can also say that they

are not included in a specific frame, but we have to look at the dynamics of the walking

process. We might not be able to say that a person is hurt or not from a single image,

but if we are presented with a video sequence of a walking person, we can very easily

infer about the pieces of information mentioned above.

In this work we are attempting to capture the variations in human walking due to

different loadings of the human body. By looking at a walking person we can usually

infer whether he or she is carrying a backpack or not. The loading conditions can be

carrying a heavy backpack or having something strapped to the chest or leg. We want

to analyze the effect of these loadings on human walking through the use of a dynamic

model for human locomotion.

The use of a dynamical model has been motivated by the idea that the information

that we are looking for is largely encoded in the dynamics of human motion. We can

capture human gait variations and discriminating features in the joint angle and joint

torque variations with time. Hence we largely concentrate at the time variations and

evolutions of joint angles and torques of a person and try to predict whether he or she

has some abnormality in his or her gait pattern.

The problem has been divided into two subproblems, namely

1. Inverse Dynamics to get the joint torques: The inverse dynamics problem [27]

[28] [29] is of solving the joint torques from the joint angles along with their first

and second order derivatives. This problem can be solved in several ways. In this
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work we have used the Newton-Euler recursive algorithm [27].

2. Forward Dynamics: This problem estimates the joint angles from joint torques.

This is done by representing the human body motion in the form of a differential

equation and then numerically integrating the equation. The general differential

equation of motion that arises in this problem is shown below.

τ = M(Θ)Θ̈ + V (Θ, Θ̇) + G(Θ) (1.1)

This equation represents [27] the general case of a dynamic model that includes the

model we have used.

The main applications of the systems can also be divided into two categories.

• Using the inverse dynamics algorithm we can find the joint torques of a human

from the joint angles. Then we can use these joint torque values to identify

whether a person is walking normally or abnormally. Also we can detect whether

a person is carrying some load on his body or not.

• Using the forward dynamics algorithm we can generate different types of gait

patterns. This validates the correctness of the model. It also helps us to generate

gait patterns when a person is carrying something on this back or strapped to his

chest or leg.
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1.2 Previous Work

Human gait has been a subject of interest in many fields like computer animation, biome-

chanics, robotics and computer vision.

Specially in computer animation, human motion generation is an area where a lot of

work has been done [1]. [2] [3] [4] [5] [6] have developed models which are physi-

cally realistic. These models takes into account all the different physical constraints like

gravity, surrounding environmental forces and also body muscle torques. In general, the

problem with these methods is that even if all the physical forces have been taken into

account, synthesized movement is not realistic. In this context we must mention [30],

which contains algorithms to simulate, analyze and generate human motion. The alter-

native to this is the use of kinematic methods [7] [8]. In this method the kinematics

data is captured and used for generating the animation. But the problem with kinematic

method of human motion generation is generalization for different types of situations.

In this context we must mention the method used by Ko and Badler [9] [10] [11] for

generalizing gait data. In their method there is a post processing step that checks the

feasibility of the pattern generated. Their generalization was across stride length and

also curved path locomotion. They have also showed that their model can be used to

generate gait patterns under different loading conditions. All these methods use some

biomechanical knowledge and some previously collected gait data for the generalization

purpose. Sun and Metaxas have combined these methods in [12].

In the robotics community bipedal locomotion is a very popular topic and we can

find several works on the same. In general a biped can be represented as an inverted
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pendulum system. This system under goes a constrained motion due to the impact of the

swing leg and the ground [13] [14]. In this context [13] provides a survey of modeling

and control of bipedal locomotion systems. [15] presents a motion control framework

that uses virtual components and robot control is achieved via the forces of interaction

between these virtual components and the robot. They have applied the algorithm for the

control of a planar bipedal robot. In [16] Chew and Pratt have explored the performance

of the algorithms under different load variations and have proposed a robust adaptive

controller to be used along with the ”Turkey Walking” algorithm. Parseghian [17]

presents a physically-based control method for a three-dimensional bipedal robot which

can leans sideways, pickup its foot and start walking. [18] presents an approach for

deriving control system models for different phases of the walking cycle, both single

support and double support phase. They deal with the holonomic constraints and the

ground reaction forces involved with the process of human walking.

Computer vision mainly uses human gait for recognition of humans. There are two

types of methods, appearance based and model based. Appearance based models can be

deterministic [19] [20] or stochastic using a hidden Markov Model (HMM) [21] [22].

1.3 Contribution

In this work we have captured the variations of human motion using a 3-D dynamic

model. We have tried to discriminate human walking patterns under different loading

conditions of the human body, like carrying a backpack or having something strapped

to the chest or leg, using the angle and torque vector sequences. We have also simulated

different gait patterns under loading conditions using our model. To the best of our
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knowledge discriminating human gait patterns using the angle and torque is a new work

and has not been reported before. Also we have validated the model by showing that the

output of the model in the forward dynamics simulation closely matches the real human

motion data.

1.4 Organization Of The Thesis

The organization of this thesis is as follows. In this chapter we have provided an in-

troduction to the problem along with the previous work done in this area. Chapter 2

presents a detailed description of the human body model and the motion model that we

have used in our work. The inverse and forward dynamics algorithms used have been

described in chapter 3. The results of the inverse and forward dynamics experiments are

summarized in chapter 4. Finally chapter 5 contains the conclusions and future work.

6



Chapter 2

Human Body Model and the Motion

Model

The human body model used in this work is a kinematic chain of rigid links. A detailed

description of the model is provided in this section.

2.1 Human Body Characteristics

In order to simulate or analyze human motion using a dynamic model we need to take

a look at the general human body characteristics [23] [24]. These body characteristics

when incorporated into the model makes it more authentic and realistic. Since we are

aiming at discriminating human motion using our model, it is essential that we capture

the details of the human body characteristics.

Among the body characteristics the ones that are most important to us are the weight

distribution and the average dimensions of a human body. The following table shows

7



the weight distribution of an average human body [25]. It can be noticed that most of

the body mass is above the waist height.

Body Parts Mass Percentage per parts Number of Parts Total mass percentage
Head, Neck, Torso 31% 1 31%

Hands 5% 2 10%
Pelvis, Abdomen 27% 1 27%

Thigh 10% 2 20%
Shin, Foot 6% 2 12%

Table 2.1: Human body weight distribution

The following figure shows the average human body dimensions. The center of grav-

ity of the structure is at an height of about 38′′, which is just above the hip [23].

Figure 2.1: Average human body dimensions of an U.S. male. The dimensions are
shown in inches.

We have incorporated information on human body dimensions to make our analysis

more thorough and realistic. The next section provides a detailed description of the

8



model that we use.

2.2 Articulated Human body model

We have modeled the human body as a kinematic chain of rigid links. This type of a

model has been used earlier in [26], but with a different purpose. There are in all 11

links. The links are left lower leg, left upper leg, right lower leg, right upper leg, torso,

left upper arm, left lower arm, right upper arm, right lower arm, neck and head. The

stick figure is shown below in figure 2.2. All the links are assumed to be perfectly rigid

with zero diameter. The center of mass of the links are at the center of length.

Left Lower Leg

Left Upper Leg

Left Lower Arm
Torso

Left Upper Arm

Neck

Head

Right Upper Arm

Right Lower Arm

Right Lower Leg

Right Upper Leg

Figure 2.2: Kinematic linked structure used to model the human body. The individual
links are connected by revolute joints of one degree of freedom.

The junctions of the links are connected in general by spherical joints which can

rotate about all the three axes i.e. have 3 - degrees of freedom. Hence in general the

total number of degrees of freedom with 11 joints is 33. In this work we have constrained
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the motion of the model in the sagittal plane i.e. the plane passing through the center

line of a human body and divides the body symmetrically into two equal halves. Hence

the joints are modeled using revolute joints having their axis of rotation in the plane

perpendicular to the sagittal plane. The sagittal plane is shown in figure 2.3.

Figure 2.3: Figure shows the sagittal plane(green) of the human body

The total number of degrees of freedom for the body model is then 10, and all the

DOF’s correspond to a revolute joint. A revolute joint is shown in figure 2.4. We have

added another degree of freedom to the stance leg where the leg rests on the ground. We

have modeled the body ground joint as a revolute joint and torque is applied to this joint

to move the body forward. All the above joints mentioned are actuated joints and appro-

priate torque is applied to the joints to generate the human motion. Hence the total num-

ber of DOF of the model is 11, since their rotation is confined only to the sagittal plane.

A posture of the model can now be described using the following angle vector Θ ,

[θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11]
T . Similarly the torques applied to

the 11 joints can be described by τ , [τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11]
T
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Axis of rotation
θ

Figure 2.4: Figure shows a revolute joint

These vectors are used in computation of the forward and the inverse dynamics of the

model. The angle vectors are the inputs to the inverse dynamics system and the output

are the torque vectors. While the forward dynamics system takes the torque vectors as

input and produces the angle vectors as the outputs.

The following table shows the different joints in the model along with their symbols

and degrees of freedom.

Joint Name Joint Angle Symbol Joint Torque Symbol Joint DOF
Stance Leg and Ground θ1 τ1 1

Stance Leg Knee θ2 τ2 1
Stance Leg Hip θ3 τ3 1
Swing Leg Hip θ4 τ4 1

Swing Leg Knee θ5 τ5 1
Swing Leg side Shoulder θ6 τ6 1

Swing Leg side Elbow θ7 τ7 1
Stance Leg side Shoulder θ8 τ8 1

Stance Leg side Elbow θ9 τ9 1
Neck and Torso θ10 τ10 1
Neck and Head θ11 τ11 1

Table 2.2: Different model joints. All joint axes are orthogonal to the sagittal plane.

The next table shows the different parts of the model along with their mass distribution
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and length distribution. These values are representative and can be changed very easily

accordingly if the situation demands.

Model Parts (Links) Mass in metric system Length in metric system
Left and Right shin 5 0.4
Left and Right thigh 10 0.5

Torso 20 vertical: 0.5 Horizontal: 0.3
Left and Right upper arm 3 0.3
Left and Right lower arm 2 0.3

Neck 5 0.1
Head 10 Diameter: 0.2

Table 2.3: Model body weight and length distributions.

Figure 2.5 shows the complete human model that we have used in our work along

with the ground connection modeled as a revolute joint

to each of the revolute joints)
(We have attached a coordinate system

Swing Leg

Revolute joints

Stance Leg

Joint with ground
Ground

Figure 2.5: The complete human model along with ground connection

The next section provides a description of the motion model used in our work.
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2.3 General Human Motion Model

We have adopted the following human motion model which has been used in previous

works [26]. In general, human motion can be described by three states and the body

goes through all these states periodically. As the states are visited periodically, the

human gait is generated. The states are

Double Support In this state the body is supported by both the legs

Right Support In this state the body is supported by the right leg (support leg) only

and the left leg is the swing leg

Left Support In this state the body is supported by the left leg (support leg) only and

the right leg is the swing leg

The following figure shows the three states and the sequence in which the states are

visited.

Double support

Double support

Left Support Right Support

Figure 2.6: Figure shows the different states of human walking

In this work we have assumed that the time duration of the double support phase

is very small and the transition from the left support to the right support or from the
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right support to the left support is instantaneous. In fact the simulation of this system

alternates between the two phases.
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Chapter 3

The Inverse and Forward Dynamics

Modeling

This chapter provides a description of the entire system that we have developed along

with the algorithms used.

3.1 System Overview

In figure 3.1 the entire system is described. Initially, the joint angle data is manually

extracted from a video sequence by hand marking the points of interest in the video

frames or as in our case, marker data collected in Stanford Biomotion Lab is used to

locate the joint positions of a human body. The points of interest for our case are

the body joints like the ankle, knee, hip, shoulder, elbow etc, so that we can com-

pute the angles made by the links connected to the joint. The extraction of the joint

angles is done by the application concepts of 3-D geometry. Since the motion of the

model joints has been confined to one dimension only, the angles that are calculated
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are on the sagittal plane. As a result of this calculation for each frame we capture

the posture of the human model or the data in terms of the 11-dimensional angle vec-

tor Θ , [θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11]
T as we have already men-

tioned.

Computation of the joint
torques using Newton Euler
recursive inverse dynamics

algorithm

Controller
to generate the human motion.
Forward dynamics simulation

Model Disturbance

human figure
Video showing a walking 

Joint angle measurements

Figure 3.1: Block diagram of the human motion generation system

The process of calculating the joint angles is represented by the block shown as ”Joint

Angle Measurement”. These joint angle measurements are then fed to the inverse dy-

namics calculator for each frame. For the calculation of the joint torques we use the

Newton Euler recursive inverse dynamics algorithm [27] [28] [29]. This block finds

joint torques that are required to produce the desired human like motion. As men-

tioned earlier, all the joints are actuated in this model. However since the relative

motion between the shoulder and the head and neck is not significant, we have taken

these joints to be fixed. The output is obtained in the form of a 11-dimensional vector

τ , [τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11]
T . As a result of the computa-

tions mentioned above, we obtain a sequence of angle and torque vectors for a certain

video or marker data sequence.
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In the next stage of the system these torque and angle sequence of vectors are used to

discriminate the different walking patterns of humans by using ARMA modeling [31]

[32] [33] and Dynamic Time Warping (DTW) [31]. Using these techniques we find the

distance between the different walking patterns.

3.2 Inverse Dynamics

The inverse dynamics is calculated using the iterative Newton-Euler dynamic formula-

tion [27] [28] [29] which calculates the torque required to generate the given motion

of the human model. The inputs to this algorithm are the position, velocity and accel-

eration (Θ, Θ̇, Θ̈) of the joint angles. The angle vectors are obtained as mentioned in

the previous section. The velocity and acceleration vectors are obtained by taking fi-

nite differences of the angle vectors once and twice respectively. Along with these, we

also need the knowledge of the kinematics and the mass distribution of the model for

completing the calculations.

The iterative Newton-Euler dynamic formulation has two parts, an outward loop and

an inward loop. At the end of the algorithm we get the torques to be applied at each

joint. If the number of links are n, the algorithm can be represented as below.

• Outward Loop: Link velocities and accelerations are computed iteratively start-

ing from link 1 to n

• Inward Loop: Forces, torques of interaction and the joint actuation torques are

computed recursively from link n to link 1
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3.2.1 Outward Loop

To calculate the inertial forces acting on each link of the model we have to calculate the

rotational velocity and linear and rotational acceleration of the center of masses of each

link. This is done by the outward loop starting from link 1 and going upto link n.

The propagation of the rotational velocity is expressed by the following equation,

i+1ωi+1 = i+1
i Riωi + θ̇i+1

i+1Ẑi+1 (3.1)

The equation for transforming the angular acceleration from one link to the next is

given by,

i+1ω̇i+1 = i+1
i Riω̇i + i+1

i Riω̇i×θ̇i+1
i+1Ẑi+1 + θ̈i+1

i+1Ẑi+1 (3.2)

The linear acceleration for each link is obtained by the following equation,

i+1vi+1 = i+1
i R(iω̇i×iPi+1 + iωi×(iωi×iPi+1) + iv̇i) (3.3)

Linear acceleration for the center of mass of each link is calculated as follows,

i+1v̇Ci+1
= i+1ω̇i+1×i+1PCi+1

+ i+1ωi+1×(i+1ωi+1×i+1PCi+1
) + i+1v̇i+1 (3.4)

Having obtained the linear and angular acceleration of each link we next find the
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inertial force and torque acting at the center of mass of each link.

i+1Fi+1 = mi+1
i+1v̇Ci+1

(3.5)

i+1Ni+1 = Ci+1Ii+1
i+1ω̇i+1 + i+1ωi+1×Ci+1Ii+1

i+1ωi+1 (3.6)

This is the end of the outward loop.

3.2.2 Inward Loop

In this section the actual joint torques required for the motion are calculated. The equa-

tions in play are based on the force balance and moment balance equations of a link.

From the force balance equation the following iterative relationship can be deduced,

ifi = i
i+1Ri+1fi+1 + iFi (3.7)

while from the moment balance equation the following iterative relationship can be

deduced,

ini = iNi + i
i+1Ri+1ni+1 + iPCi

×iFi + iPi+1×i
i+1Ri+1fi+1 (3.8)

Finally the joint torques for revolute joints are calculated using the following relation-
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ship.

τi = ini
T iẐi (3.9)

3.2.3 Simulation of the Inverse Dynamics System

Simulation of the inverse dynamics was carried out in Matlab. For the input to the

system we have to manually identify two keyframes, the start frame in which the human

is in the double support phase and the end frame in which the human enters the double

support phase for the next time. The angle vectors for each frame of this time duration

are fed to the inverse dynamics system as input.

3.3 Forward Dynamics

For the forward dynamics [27] [28] [29] it is convenient to express the equation of

motion of the model in a state space form that often hides the minute details of the

system, but shows the underlying structure of the equation. The dynamic equation can

be written in the following form,

τ = M(Θ)Θ̈ + V (Θ, Θ̇) + G(Θ) (3.10)

where M(Θ) is the mass matrix of the chain, V (Θ, Θ̇) is a vector of centrifugal and

Coriolis terms and G(Θ) is a vector of gravity terms. Each element of M(Θ) and G(Θ)

are complex functions of Θ, while each element of V (Θ, Θ̇) is a complex function of

both Θ and Θ̇. To compute the forward dynamics we are using the inverse dynamics

algorithm to find the matrix M and vectors V and G. This is a very convenient way of

computing the forward dynamics.
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Let us denote the inverse dynamics algorithm as InverseDynamics(q, q̇, q̈). The algo-

rithm takes the position, velocity and acceleration variables and returns the joint torque

values. Therefore we have,

InverseDynamics(q, q̇, q̈) = M(Θ)Θ̈ + V (Θ, Θ̇) + G(Θ) (3.11)

In this equation the variable q̈ is unknown. But if we put q̈ = 0 and the gravitational

constant g = 0 then we can calculate the vector V as follows

InverseDynamics(q, q̇, 0) = V (Θ, Θ̇) whereg = 0 (3.12)

Once we find the vector V, we put the value of g = 9.81m/s2 and q̈ = 0 and calculate

the G vector as follows

G(Θ) = InverseDynamics(q, q̇, 0)− V (Θ, Θ̇) whereg = 9.81m/s2 (3.13)

Finally putting the vectors V and G we compute the matrix M(Θ)Θ̈. To compute the

matrix we solve the InverseDynamics algoritm putting q̈ = δi where δi is a vector having

the ith element one and all other elements zero to get the ith column of M(Θ)Θ̈.

M(Θ)i = InverseDynamics(q, q̇, q̈)− V (Θ, Θ̇)−G(Θ) (3.14)

Once we have calculated the matrices we can iteratively calculate the angle vectors

starting from the very first frame. For the first frame we have to assume an initial
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condition for the angle vector.

3.3.1 Simulation and Visualization of the Forward Dynamics Sys-

tem

The computation of the forward dynamics is done as mentioned in the previous section.

Here the output that we obtain are the angle variations from one keyframe to the next.

However for the visualization of the forward dynamics system a different method is

used.

For the visualization of the forward dynamics a specific Simulink toolbox named Sim-

Mechanics has been used. In this toolbox we have developed a human body model

identical in mass and length distribution as our model described in the previous chapter.

Three types of simulations can be done in SimMechanics, forward dynamics, inverse

dynamics and kinematics. We have used the forward dynamics part for our visualization

purpose. The following figure shows the model that has been developed.

(a) (b) 

Figure 3.2: Complete human model developed using the SimMechanics toolbox (a)
Convex Hull visualization (b) Equivalent ellipsoid visualization
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3.3.2 Controller for Forward simulation

The forward dynamics calculation is numerically very unstable and hence the controller

[28] is used to stabilize the computations. The controller used in our work is a propor-

tional derivative feedback controller which use the error and error derivative of the angle

as the feedback.

3.4 Modeling of Angle and Torque vectors

In this section we provide a brief description of the ARMA modeling and the DTW

[31] methods that have been used for finding the similarity been sequences of angle and

torque vectors.

3.4.1 ARMA Modeling

We model the torque and the angle sequences as ARMA processes [31] [32] [33].

The dynamical model thus learnt is then used for identification of human gait variations

due to loading by calculating the distance between the models. The models thus learnt

are continuous state discrete time and since the model parameter lie in a non-Euclidean

space the distance calculation is nontrivial.

The ARMA model that has been used is defined as

α(t) = Cx(t) + w(t) where w(t) ∼ N(0, R) (3.15)

x(t + 1) = Ax(t) + v(t) where vw(t) ∼ N(0, Q) (3.16)
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The cross correlation between w and v is assumed to be S. It is quite clear that

the parameters of the model are A and C. However the matrices A,C,R,Q and S are

not unique. Hence we transform the model to the ”innovation representation” which is

unique.

Given the observation vectors of the torque or angle sequence say [α(1) α(2) . . . α(t)]

we learn the parameters of the innovation representation namely Â, Ĉ and K̂ (Kalman

gain matrix) as follows. First we do a singular value decomposition of the data as

[α(1) α(2) . . . α(t)] = UΣV T (3.17)

Then we can say

Ĉ(t) = U (3.18)

Â = ΣV T D1V (V T D2V )−1Σ−1 (3.19)

where we have D1 = [0 0; It−1 0] and D2 = [It−1 0; 0 0]

Distance between two ARMA model is defined in terms of the subspace angles [33]

between the two models. The subspace angle between two ARMA models are defined

as the principal angles (θi, i = 1, 2, . . . , n) between the column spaces generated by the

observability spaces of the two models augmented with the observability matrices of the

inverse models. The Frobenius distance is then defined as

dF =

√√√√2
n∑

i=1

sin2θi (3.20)
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and Gap distance is defined as

dg = sin θmax (3.21)

In our work we have used these two distance measures to quantify the similarity between

two ARMA models.

3.4.2 Dynamic time warping

Dynamic time warping is a nonparametric method for comparing two vector sequences.

It is basically the best nonlinear time normalization used to match two sequences of vec-

tors by searching the space of all allowed time normalizations. In this implementation

we have used some temporal constraints. Further details are provided in [31]. The best

warping function and the global warping error are efficiently calculated using dynamic

programming.
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Chapter 4

Data, Experiments and Results

We have conducted several experiments to judge the validity of our model. This section

provides a detailed description of the experiments that we have performed and also

the supporting results. Most of the experiments have been done using the marker data

collected in the Stanford Biomotion Laboratory. However the same tests can be run on

any video data as long as we can extract sufficient information from the video sequence.

The information required from the sequence are the joint locations of the human body.

A brief description of the Stanford Marker data is also included for ease of reading.

The experiments performed can be broadly divided into three categories. The cate-

gories that we have defined for the experiments are as follows.

• Discrimination of Walking Patterns

• Simulation of Walking Patterns

• Validation of the Model using the marker data
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4.1 The Stanford Marker Data

This section gives a brief description of the Stanford Marker data used extensively in

our experiments. The following figure shows screen shots of a data file that have been

visualized.

Figure 4.1: Few screenshots of the Stanford Marker Data

The sequences are tracked and the marker positions in 3-D space are obtained. These

marker positions are then used to compute the joint angles of the subjects. There are
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data corresponding to 6 individuals. Three types walking motion are represented in this

dataset.

• Normal Walking

• Walking with a Backpack

• Limping

• Walking with one bare foot

Among these three types of walking, we have used the first three for our experiments

for five individuals. For each type of walking and each individual there are 4 sequences.

So in our case the dataset contains 60 sequences having 20 sequences of each type of

walking. The following table summarizes the dataset.

Number of sequences Normal Walking Walking with Backpack Limping
Individual 1 4 4 4
Individual 2 4 4 4
Individual 3 4 4 4
Individual 4 4 4 4
Individual 5 4 4 4

Table 4.1: Data used in our experiments

4.2 Discrimination of Walking Patterns

In this category of experiments the input to the system is the joint angle data that we

receive from the video sequence or the marker data that have been used by us. The first

step is extraction of the joint torques from the angle data that is obtained by using the

joint locations of the human body. We have used this torque data to discriminate the
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different loading conditions of the human body and also to detect any abnormalities in

the walking pattern.

The different modeling methods used for the torque data are

1. ARMA modeling

2. Dynamic Time Warping

In both the methods we have tried to find the distance between the torque data that we

have received as the output of the system and also the angle data which is the input to the

system. As we all know ARMA modeling technique is a well known method for study-

ing time series data and characterizing them. While Dynamic Time Warping involves

warping the time axis in order to match two sequences and in the process computes the

distance between two time series data.

For ARMA modeling we compute the similarity matrices between different torque

and angle sequences using Frobenius and Gap distance. For DTW modeling the global

warping error is used as the distance between the models. First few plots show the an-

gle sequences and torque sequences for normal walking, walking with a backpack and

limping. The second set of plots illustrate the similarity matrices. All the matrices are

60 × 60. The first 20 rows/columns correspond to normal walking sequences, next 20

correspond to sequences with backpack and the last 20 correspond to limping sequences.

The matrices are shown as images and darker the pixel lesser is the corresponding dis-

tance between the models.

The following figures show the results of these experiments.

29



4.2.1 Results
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Figure 4.2: The plots of angle data input to the inverse dynamics system block for a
single gait cycle. Angle between (a) Ground and the shin of the support leg (b) Right
shin and right thigh (c) Right thigh and torso (d) Left thigh and torso (e) Left thigh and
shin (f) Torso and left upper arm (g) Left upper arm and lower arm (h) Torso and right
upper arm (i) Right upper arm and lower arm
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Figure 4.3: The plots of torque data which is the output of the inverse dynamics system
block for a single gait cycle. Torque of joint between (a) Ground and the shin of the
support leg (b) Right shin and right thigh (c) Right thigh and torso (d) Left thigh and
torso (e) Left thigh and shin (f) Torso and left upper arm (g) Left upper arm and lower
arm (h) Torso and right upper arm (i) Right upper arm and lower arm (j) Torso and neck
(k) Neck and head
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Figure 4.4: The plots of angle data for a normal human, human with a backpack and
a limping human, input to the inverse dynamics system block for a single gait cycle.
Angle between (a) Ground and the shin of the support leg (b) Right shin and right thigh
(c) Right thigh and torso (d) Left thigh and torso (e) Left thigh and shin (f) Torso and
left upper arm (g) Left upper arm and lower arm (h) Torso and right upper arm (i) Right
upper arm and lower arm
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Figure 4.5: The plots of torque data of a normal human, human with backpack and a
limping human, which is the output of the inverse dynamics system block for a single
gait cycle. Torque of joint between (a) Ground and the shin of the support leg (b) Right
shin and right thigh (c) Right thigh and torso (d) Left thigh and torso (e) Left thigh and
shin (f) Torso and left upper arm (g) Left upper arm and lower arm (h) Torso and right
upper arm (i) Right upper arm and lower arm (j) Torso and neck (k) Neck and head
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Figure 4.6: The plots of angle data for a normal human, human with a backpack and a
limping human, input to the inverse dynamics system block for a single gait cycle and
5 different individuals. Angle between (a) Ground and the shin of the support leg (b)
Right shin and right thigh (c) Right thigh and torso (d) Left thigh and torso (e) Left thigh
and shin (f) Torso and left upper arm (g) Left upper arm and lower arm (h) Torso and
right upper arm (i) Right upper arm and lower arm
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Figure 4.7: The plots of torque data of a normal human, human with a backpack and a
limping human, which is the output of the inverse dynamics system block for a single
gait cycle and 5 different individuals. Torque of joint between (a) Ground and the shin
of the support leg (b) Right shin and right thigh (c) Right thigh and torso (d) Left thigh
and torso (e) Left thigh and shin (f) Torso and left upper arm (g) Left upper arm and
lower arm (h) Torso and right upper arm (i) Right upper arm and lower arm (j) Torso
and neck (k) Neck and head
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Figure 4.8: The similarity matrix of the angle data using ARMA modeling and gap
distance. First 20 are normal, next 20 are with backpack and the last 20 correspond to
limping sequences

Figure 4.9: The similarity matrix of the torque data using ARMA modeling and gap
distance. First 20 are normal, next 20 are with backpack and the last 20 correspond to
limping sequences
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Figure 4.10: The similarity matrix of the angle data using ARMA modeling and Frobe-
nius distance. First 20 are normal, next 20 are with backpack and the last 20 correspond
to limping sequences

Figure 4.11: The similarity matrix of the torque data using ARMA modeling and Frobe-
nius distance. First 20 are normal, next 20 are with backpack and the last 20 correspond
to limping sequences
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Figure 4.12: The similarity matrix of the angle data using dynamic time warping. First
20 are normal, next 20 are with backpack and the last 20 correspond to limping se-
quences

Figure 4.13: The similarity matrix of the torque data using dynamic time warping. First
20 are normal, next 20 are with backpack and the last 20 correspond to limping se-
quences
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4.2.2 Discussion

This section presented the results obtained in the experiments for discriminating differ-

ent walking patterns. We have tried to distinguish between different types of human

walking using the torque and the angle data based on ARMA modeling and Dynamic

time warping.

Figures 4.4 and 4.5 show angle and the torque plots respectively for 3 types of walk-

ing for the same individual. These plots show good amount of variations between the

three walking patterns and these variations are captured by the ARMA modeling and

the DTW techniques as shown by similarity matrices in Figures 4.8 to 4.13. Also we

observe that when we plot the three different types of torque and angle data for five

different individuals the sequences corresponding to similar walking patterns tend to

cluster together.

4.3 Simulation of Walking Patterns

In this part of the experiments we have simulated different walking patterns of humans.

We simulated the following patterns

• Normal Walking

• Walking with a heavy backpack

• Walking when the Right upper leg is loaded

For the normal walking patterns we have provided the input as the torque sequence

obtained in the previous step corresponding to a normal walking sequence. Then we
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have visualized and compared the angle sequences obtained as output. While in case of

the pattern with a heavy backpack we have increased the weight of the torso of the model

considerably so as to simulate the situation of carrying a heavy backpack. The input still

remains the same as in the previous step that is the torque sequence corresponding to a

normal walking sequence. For the right upper leg loaded condition we have increased

the weight of the right upper leg of the model keeping the input same. According to our

assumptions and modeling the human model was expected to generate sequences similar

to sequences corresponding to normal walking, walking with a heavy backpack and

limping. The results of our experiments are quite encouraging and show considerable

similarity to the corresponding walking patterns. The following figures show the results

of these experiments. For both the backpack and the right leg loading, two loads have

been considered to see how the model behaves when the loading is changed. But even

if we change the loading, it is observed that the sequences remain similar and cluster

together.

The initial plots show the system inputs and the system outputs for different types

of walking that is the input torque sequence and the output angle sequences. Some

plots also show the torque sequences computed using the angle sequences obtained as

output of the forward dynamics simulation. They are considerably similar to the original

torque sequences computed from the marker data. The latter part contains the similarity

matrices of the torque and the angle data. In this case too we have used both ARMA

modeling and DTW.

The following figures show the results of these experiments.
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4.3.1 Results
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Figure 4.14: Plots of angle data output of the forward dynamics system block for a
single gait cycle. Angle between (a) Ground and the shin of the support leg (b) Right
shin and right thigh (c) Right thigh and torso (d) Left thigh and torso (e) Left thigh and
shin (f) Torso and left upper arm (g) Left upper arm and lower arm (h) Torso and right
upper arm (i) Right upper arm and lower arm
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Figure 4.15: Plots of torque data which are input to the forward dynamics system block
for a single gait cycle using the controller. Torque of joint between (a) Ground and the
shin of the support leg (b) Right shin and right thigh (c) Right thigh and torso (d) Left
thigh and torso (e) Left thigh and shin (f) Torso and left upper arm (g) Left upper arm
and lower arm (h) Torso and right upper arm (i) Right upper arm and lower arm (j) Torso
and neck (k) Neck and head
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Figure 4.16: Plots of angle data for a normal human, human with a backpack and a
limping human, output of the forward dynamics system block for a single gait cycle.
Angle between (a) Ground and the shin of the support leg (b) Right shin and right thigh
(c) Right thigh and torso (d) Left thigh and torso (e) Left thigh and shin (f) Torso and
left upper arm (g) Left upper arm and lower arm (h) Torso and right upper arm (i) Right
upper arm and lower arm
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Figure 4.17: Plots of torque data of a normal human, human with backpack and a limp-
ing human, which are output to the inverse dynamics system block for a single gait cycle
using the controller. Torque of joint between (a) Ground and the shin of the support leg
(b) Right shin and right thigh (c) Right thigh and torso (d) Left thigh and torso (e) Left
thigh and shin (f) Torso and left upper arm (g) Left upper arm and lower arm (h) Torso
and right upper arm (i) Right upper arm and lower arm (j) Torso and neck (k) Neck and
head
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Figure 4.18: The similarity matrix of the angle data using ARMA modeling and Frobe-
nius distance. The first column corresponds to normal walking simulation, the second
and the third correspond to walking with a backpack and the last two correspond to
limping.

Figure 4.19: The similarity matrix of the torque data using ARMA modeling and Frobe-
nius distance. The first column corresponds to normal walking simulation, the second
and the third correspond to walking with a backpack and the last two correspond to
limping.
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Figure 4.20: The similarity matrix of the angle data using ARMA modeling and Gap
distance. The first column corresponds to normal walking simulation, the second and
the third correspond to walking with a backpack and the last two correspond to limping.

Figure 4.21: The similarity matrix of the torque data using ARMA modeling and Gap
distance. The first column corresponds to normal walking simulation, the second and
the third correspond to walking with a backpack and the last two correspond to limping.
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Figure 4.22: The similarity matrix of the angle data using Dynamic time warping. The
first column corresponds to normal walking simulation, the second and the third corre-
spond to walking with a backpack and the last two correspond to limping.

Figure 4.23: The similarity matrix of the torque data using Dynamic time warping.
The first column corresponds to normal walking simulation, the second and the third
correspond to walking with a backpack and the last two correspond to limping.
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4.3.2 Discussion

In this section we have summarized the results of the simulations for generating different

walking patterns. Figures 4.14 to 4.17 show the torque and the angle plots. The rest of

the figure show the similarity matrices. All the similarity matrices are 5× 5. For all the

matrices, the first row/column correspond to normal walking. the second and the third

correspond to walking with a backpack and the last two correspond to limping.

The important observation of this section is that the outputs are quite well distin-

guished by the ARMA and DTW modeling. The output video sequences of SimMe-

chanics also show visual confirmation of the variations due to loading. The models

react in the expected way with the backpack and also the leg loading conditions.

4.4 Validation of the Model with the marker data

In this section we have compared the output of the model with the marker data to justify

the validity of our model. This portion of the results is probably the most important part

of the results as this section validates the model.

In this section also we have used ARMA modeling and DTW for comparing the

torque and angle sequences obtained from the model and that obtained from the marker

data. The figures show the similarity matrices computed using both torque and angle

sequences. The columns of the similarity matrices correspond to the data obtained from

the model and the rows correspond to that obtained from the marker data. The model

data is the one obtained in the previous section and have in all five sequences, the first

one correspond to normal walking, the next two correspond to walking with a backpack
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and the last two correspond to limping. The 60 rows correspond to the 60 marker se-

quences. The first 20 correspond to normal walking, the next 20 correspond to walking

with a backpack and the last 20 correspond to limping.

The similarity matrices hence have 5 columns and 60 rows. However in the images

they are shown as square matrices. The five columns are distinguishable due to the

darkening effect of the similarities.

The following figures show the results of these experiments.

4.4.1 Results

Figure 4.24: The similarity matrix of the angle data of the forward dynamics simulation
and the actual marker data using ARMA modeling and Frobenius distance. The first
column corresponds to normal walking simulation, the second and the third correspond
to walking with a backpack and the last two correspond to limping. The rows correspond
to the sixty data sequences. First 20 are normal, next 20 are with backpack and the last
20 are limping sequences.
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Figure 4.25: The similarity matrix of the torque data of the forward dynamics simulation
and output of the Inverse dynamics simulation using ARMA modeling and Frobenius
distance. The first column corresponds to normal walking simulation, the second and
the third correspond to walking with a backpack and the last two correspond to limping.
The rows correspond to the sixty data sequences. First 20 are normal, next 20 are with
backpack and the last 20 are limping sequences.

Figure 4.26: The similarity matrix of the angle data of the forward dynamics simulation
and the actual marker data using ARMA modeling and Gap distance. The first column
corresponds to normal walking simulation, the second and the third correspond to walk-
ing with a backpack and the last two correspond to limping. The rows correspond to the
sixty data sequences. First 20 are normal, next 20 are with backpack and the last 20 are
limping sequences.
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Figure 4.27: The similarity matrix of the torque data of the forward dynamics simulation
and output of the inverse dynamics simulation using ARMA modeling and Gap distance.
The first column corresponds to normal walking simulation, the second and the third
correspond to walking with a backpack and the last two correspond to limping. The
rows correspond to the sixty data sequences. First 20 are normal, next 20 are with
backpack and the last 20 are limping sequences.

Figure 4.28: The similarity matrix of the angle data of the forward dynamics simulation
and the actual marker data using DTW. The first column corresponds to normal walking
simulation, the second and the third correspond to walking with a backpack and the last
two correspond to limping. The rows correspond to the sixty data sequences. First 20
are normal, next 20 are with backpack and the last 20 are limping sequences.
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Figure 4.29: The similarity matrix of the torque data of the Forward dynamics simula-
tion and output of the Inverse dynamics simulation using Dynamic time warping. The
first column corresponds to Normal walking simulation, the second and the third cor-
respond to walking with a backpack and the last two correspond to limping. The rows
correspond to the sixty data sequences. First 20 are normal, next 20 are with backpack
and the last 20 are limping sequences.

4.4.2 Discussion

The similarity matrices in this section show that the model closely corresponds to the

actual marker data and hence is a valid model to use in discriminating the different

walking patterns of humans.
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Chapter 5

Conclusion and Future Work

In this thesis we presented a dynamic model for simulating human walking and also

identification of some unnatural loading conditions of the walking person. The model

consists of an articulated body model made of rigid links connected by joints. The

modeling problem has been divided into two different part

• Inverse Dynamic modeling

• Forward Dynamic modeling

The inverse dynamics problem has been solved using the iterative Newton Euler for-

mulation for joint torque computation. We have adopted a model that has in all 11-

degrees of freedom. The degrees of freedom are associated with the 11 joints which we

consider to be actuated joints. The input to the inverse dynamics system is the joint an-

gle vector obtained from a video sequence or marker data. The output of the system is a

11-dimensional torque vector. This torque vector and also the joint angle vector is then

used for identifying any loading like a backpack or something strapped to the leg of the
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human body. The work clearly shows that this torque data and also the angle data has

discriminative power to identify the loading conditions of the human body as illustrated

by the similarity matrices shown in the results section. The similarities were calculated

using ARMA modeling and also DTW technique.

In the next part of the work the forward dynamics problem has been solved to gen-

erate human gait patterns under different loading conditions. The model has also been

validated using the real human marker data by computing the similarity between the

artificial gait patterns generated by the forward dynamic model and the Stanford marker

data. The artificial patterns show close similarity to the actual human gait data and thus

validates the model for use in further research.

There are quite a few modifications and additions that can be done to the model.

• Acquisition of the human joint data from the video sequence needs to be auto-

mated so that we can extract the joint data from any unconstrained video data.

Presently we have to hand mark the joint positions in the video frames in order to

use the model and this is not a practical way of solving the problem.

• The forward dynamics simulation is extremely sensitive to numerical instabilities

and more robust algorithms should be used for this portion of the work. This

will make the gait pattern generation more accurate and would yield an improved

representation for human walking motion.

• Other types of loading conditions should be tried with the model so that we can

identify any general condition of the walking human

• Other variations of modeling technique should be tried for the characterization of
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torque and angle vectors apart from ARMA modeling and DTW which may lead

to better discriminative power and provide us even better results in this area

• The torque and angle vectors can also be tried for human recognition
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