

ABSTRACT

Title of Document: A FRAMEWORK FOR SOFTWARE

RELIABILITY MANAGEMENT BASED ON

THE SOFTWARE DEVELOPMENT PROFILE

MODEL

 Arya Khoshkhou, PhD, 2011

Directed By: Associate Professor Michel Cukier, ENRE

Professor Ali Mosleh, ENRE

Recent empirical studies of software have shown a strong correlation between change

history of files and their fault-proneness. Statistical data analysis techniques, such as

regression analysis, have been applied to validate this finding. While these

regression-based models show a correlation between selected software attributes and

defect-proneness, in most cases, they are inadequate in terms of demonstrating

causality. For this reason, we introduce the Software Development Profile Model

(SDPM) as a causal model for identifying defect-prone software artifacts based on

their change history and software development activities. The SDPM is based on the

assumption that human error during software development is the sole cause for

defects leading to software failures. The SDPM assumes that when a software

construct is touched, it has a chance to become defective. Software development

activities such as inspection, testing, and rework further affect the remaining number

of software defects. Under this assumption, the SDPM estimates the defect content of

software artifacts based on software change history and software development

activities. SDPM is an improvement over existing defect estimation models because

it not only uses evidence from current project to estimate defect content, it also allows

software managers to manage software projects quantitatively by making risk

informed decisions early in software development life cycle. We apply the SDPM in

several real life software development projects, showing how it is used and analyzing

its accuracy in predicting defect-prone files and compare the results with the Poisson

regression model.

A FRAMEWORK FOR SOFTWARE RELIABILITY MANAGEMENT BASED ON

THE SOFTWARE DEVELOPMENT PROFILE MODEL

By

Arya Khoshkhou

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2011

Advisory Committee:

Associate Professor Michel Cukier, Committee Chair and Advisor

Professor Ali Mosleh, Co-Chair and Co-Advisor

Professor Peter Sandborn, Regular Member

Professor Aris Christou, Regular Member

Associate Professor Atif Memon, Dean‘s Representative

© Copyright by

Arya Khoshkhou

2011

ii

Dedication

This work is dedicated to my loving wife Azita, my daughter Arianna, and my son

Ervin, who patiently tolerated me for these long years in completing my Doctorate

Degree, and my parents for their support and encouragement.

iii

Acknowledgements

I would like to give special thanks to my advisors Associate Prof. Michel Cukier and

Prof. Ali Mosleh for their time, support and valuable advice over the last four years. I

am deeply grateful to them for being such great mentors.

I would like also to extend my appreciation to the members of my committee for their

time, support and assessment of this research:

 Professor Peter Sandborn

 Professor Aris Christou

 Associate Professor Atif Memon

I also want to give special thanks to my co-worker Brent Olson for his expertise and

help and support in collecting the data used for this research.

iv

Table of Contents

Dedication ... ii
Acknowledgements .. iii
Table of Contents ... iv
List of Tables ... viii
List of Figures .. ix

Chapter 1: Introduction ... 1
1.1 Background ... 1
1.2 Motivation ... 3

Chapter 2: Literature Review.. 7
2.1 Overview ... 7

2.2 Software Reliability and Defect Estimation Models 7
2.2.1 Jelinski-Moranda Model (1972) .. 7

2.2.2 Goel-Okumoto Imperfect Debugging Model (1978) 8
2.2.3 Goel-Okumoto Imperfect Nonhomogeneous Poisson Process Model

(1979) ... 8
2.2.4 Littlewood Models (1981) ... 9
2.2.5 Goel Generalized Nonhomogeneous Poisson Process Model (1982) 9

2.2.6 Musa-Okumoto Logarithmic Poisson Execution Time Model (1983) 10
2.2.7 The Delayed S and Inflection S Models (1983) 11

2.2.8 The inflection S model (1984) ... 11
2.2.9 Shigeru Yamada et al. Software Reliability Growth Models with Testing-

Efforts (1986) ... 12

2.2.10 Crow, L.H.: Evaluating the reliability of repairable systems (1990) 13

2.2.11 Crow, L.H. et al.: Principles of successful reliability growth applications

(1994) ... 13
2.2.12 Khoshgoftaar, T.M. et al.: Detection of Software Modules with High

Debug Code Churn in a Very Large Legacy System (1996) 14
2.2.13 Malaiya, Y. K & Denton, J. D.: Estimating the Number of Residual

Defects (1997) .. 14

2.2.14 Kai-Yuan Cai: On Estimating the Number of Defects Remaining in

Software (1998) .. 15
2.2.15 Munson, J.C. & Elbaum, S.G.: Code Churn: Measure for Estimating the

Impact of Code Change (1998) .. 15
2.2.16 Chulani, S. & Boehm B.: Constructive Quality Model (COQUALMO)

(1999) ... 16

2.2.17 Neufelder, A.M.: How to Predict Software Defect Density during

Proposal Phase (2000) .. 17
2.2.18 Graves, T.L. et al.: Predicting Fault Incidence Using Software Change

History (2000) .. 17
2.2.19 Smidths, C. & Stutzke, M.: A Stochastic Model of Fault Introduction and

Removal during Software Development (2001) .. 17
2.2.20 Malaiya, Yashwant K et al.: Software Reliability Growth with Test

Coverage Model (2002) .. 18

v

2.2.21 Nikora, A.P. & Munson: Developing Fault Predictors for Evolving

Software Systems (2003) .. 19
2.2.22 Bai, Chenggang et al.: On the Trend of Remaining Software Defect

Estimation (2003) ... 19

2.2.23 Sherriff, M., Nagappan, N. et al.: Early Defect Estimation Model (2005)

 20
2.2.24 Nagappan, N. & Ball, T.: Use of Code Churn to Predict Defect Density

(2005) ... 20
2.2.25 Nachiappan Nagappan and Thomas Ball: Static Analysis Tools as Early

Indicators of Pre-Release Defect Density (2005) ... 21
2.2.26 Ching-Pao Chang et al.: Defect Prevention in Software Processes: An

Action-Based Approach (2006) .. 22
2.2.27 Ceylan, Evren et al.: Software Defect Identification Using Machine

Learning Techniques (2006) .. 23
2.2.28 Askari, M. & Holt, R.: Information Theoretic Evaluation of Change

Prediction Models for Large-Scale Software (2006) 23
2.2.29 Nagappan, N. et al.: Mining Metrics to Predict Component Failures

(2006) ... 24
2.2.30 Bernstein, A. et al.: Improving Defect Prediction Using Temporal

Features and Non-linear Models (2007) ... 25

2.2.31 Norman Fenton : Using Bayesian Nets to Predict Software Defects and

Reliability (2007) ... 26

2.2.32 Norman Fenton et al.: Predicting Software Defects in Varying

Development Lifecycles Using Bayesian Nets (2007) 26
2.2.33 Oral, A.D. & Bener, A.B. Paper (2007) .. 26

2.2.34 Bergander, Torsten et al.: Software Defects Prediction Using Operating

Characteristic Curves (2007) .. 27
2.2.35 Karim O. Elish & Mahmoud O. Elish: Predicting Defect-Prone Software

Modules Using Support Vector Machines (2007) .. 28

2.2.36 Y. Hong, et al.: A Value-Added Predictive Defect Type Distribution

Model based on Project Characteristics (2008) .. 28

2.2.37 Bai, Cheng-Gang, et al.: On the Trend of Remaining Software Defect

Estimation (2008) ... 28

2.2.38 Miroslaw Staron & Wilhelm Meding: Predicting Weekly Defect Inflow

in Large Software Projects Based on Project Planning and Test Status (2008) 29
2.2.39 Haider, Syed et al.: Estimation of defects based on defect decay model:

ED3M (2008) ... 29
2.2.40 Jiang, Y. et al.: Comparing design and code metrics for software quality

prediction (2008) .. 30
2.2.41 Scott, H. & Wohlin, C.: Capture-Recapture in Software Unit Testing

(2008) ... 31
2.2.42 Walia, G. S. & Carver, J. C.: Evaluation of Capture-Recapture Models

(2008) ... 31
2.2.43 Cheung, L. el at.: Early Prediction of Software Component Reliability

(2008). .. 32

vi

2.2.44 Moser, R. et al.: A Comparative Analysis of the Efficiency of Change

Metrics and Static Code Attributes for Defect Prediction (2008) 32
2.2.45 Nagappan, N. & Murphy, B. & Basili: The Influence of Organizational

Structure on Software Quality: An Empirical Case Study (2008) 33

2.2.46 Afsharian, S. et al.: A Framework for Software Project Estimation Based

on Cosmic, DSM and Rework Characterization (2008) 34
2.2.47 Illes-Seifert, T. & Paech, B.L.: Exploring the Relationship of History

Characteristics and Defect Count: An Empirical Study (2008) 35
2.2.48 Meneely, A. et al.: Predicting Failures with Developer Networks and

Social Network Analysis (2008) .. 36
2.2.49 Ostrand T.J. and Weyuker E.J.: Progress in Automated Software Defect

Prediction (2009) .. 36
2.2.50 Conclusion ... 37

2.3 Overview of Defect Estimation Models ... 37
2.4 Current State of Software Defect Estimation Models 41

2.5 Our Objective in the Context of the Current State of Research 43
Chapter 3: Software Development Profile Model .. 45

3.1 Proposed Work.. 45
3.2 Methodology ... 45
3.3 Software Development Profile Matrix .. 48

3.4 Estimating Change Set Reliabilities Using a Binary Decision Diagram 50
3.5 Estimating Total Number of Defective Constructs in Change Sets 59

3.5.1 Chao‘s Heterogeneity-Time Model ... 63
3.6 Modeling Dependencies.. 67
3.6.1 Modeling Dependencies among Change Sets ... 69

3.6.2 Updating Model Parameters using Bayesian Belief Network (BBN) 71

3.7 Properties and of Software Development Profile Model 74
3.8 Software Development Profile .. 75

Chapter 4: Case Studies .. 77

4.1 Comparing Test Case Results with Existing Models 79
4.1.1 Poisson Regression Model Setup .. 82

4.2 Software Development Profile Estimation Tool (PET) 83
4.3 Case Study 1: CCD 693- RRACS Interface ... 87

4.3.1 Software Project Background and History .. 87
4.3.2 Case Study Measurements ... 89
4.3.3 Model Parameter Estimation ... 91
4.3.4 Case Study Results .. 98
4.3.5 Poisson Regression Model Results.. 101

4.4 Case Study 2: CCD 762 – IMF (health care) Changes for PY 2011 106
4.4.1 Software Project Background and History .. 106

4.4.2 Case Study Measurements ... 107
4.4.3 Model Parameter Estimation ... 108
4.4.4 Case Study Results .. 110
4.4.5 Poisson Regression Model Results.. 112

4.5 Case Study 3: CCD 770R2- BMF Health Care Changes for PY 2011 116
4.5.1 Software Project Background and History .. 116

vii

4.5.2 Case Study Measurements ... 117

4.5.3 Model Parameter Estimation ... 118
4.5.4 Case Study Results .. 120
4.5.5 Poisson Regression Model Results.. 123

4.6 Case Study 4: CCD 700- More BMF and Help Tag Changes for PY 2010

 128
4.6.1 Software Project Background and History .. 128
4.6.2 Case Study Measurements ... 129
4.6.3 Model Parameter Estimation ... 130

4.6.4 Case Study Results .. 132
4.6.5 Poisson Regression Model Results.. 135

4.7 Case Study 5: CCD 689- IMF Changes for PY 2010 141
4.7.1 Software Project Background and History .. 141

4.7.2 Case Study Measurements ... 142
4.7.3 Model Parameter Estimation ... 143

4.7.4 Case Study Results .. 144
4.7.5 Poisson Regression Model Results.. 146

4.8 Case Study Conclusion ... 152
Chapter 5: Summary of Contributions and Future Research Directions 154

5.1 Summary of Contributions .. 154

5.2 Limitations of this Research ... 155
5.3 Future Research Directions ... 156

Chapter 6: Glossary .. 185
Chapter 7: Bibliography ... 187

viii

List of Tables

Table 1: SDPM Sample Inspection Worksheet .. 62

Table 2: Examples of CS Codes ... 85
Table 3: Number of Constructs Modified during Each Change Set 92
Table 4: SDPM Parameter Estimation .. 92
Table 5: Parameter Updates Based on External Factors ... 95
Table 6: Construct Reliability Estimations ... 98

Table 7: Estimated Number of Defective SLOCs ... 99
Table 8: Coefficient of Correlation – Case Study 1 - (SDPM model) 101
Table 9: Coefficient of Regression – Case Study 1 - (Poisson Regression) 101
Table 10: Estimated Number of Defects (Poisson Model) 102
Table 11: Coefficient of Correlation (Poisson Regression) 104

Table 12: Parameter Estimation for DIS/CS 18.4 ... 108
Table 13: Construct Reliability Estimations – DIS/CS 18.4..................................... 109

Table 14: DIS/CS 18.4 Case Study Results .. 110
Table 15: Correlation Analysis – DIS/CS 18.4 ... 112

Table 16: Coefficient of Regression – Case Study 2 - (Poisson Regression) 112
Table 17: Estimated Number of Defects-Case Study 2 - (Poisson Model) 113
Table 18: Parameter Estimation for DIS/CS 18.5 ... 118

Table 19: Construct Reliability Estimation – DIS/CS 18.5 120
Table 20: Case Study Results – DIS/CS 18.5 ... 121

Table 21: Correlation Analysis – DIS/CS 18.5 ... 123
Table 22: Coefficient of Regression – Case Study 3 - (Poisson Regression) 124
Table 23: Estimated Number of Defects-Case Study 3 - (Poisson Model) 124

Table 24: Model Parameters – DIS/CS 17.4 ... 130

Table 25: Construct Reliability Estimation – DIS/CS 17.4 132
Table 26: Case Study Results – DIS/CS 17.4 ... 133
Table 27: Correlation Analysis DIS/CS 17.4 .. 135

Table 28: Coefficient of Regression – Case Study 4 - (Poisson Regression) 135
Table 29: Estimated Number of Defects-Case Study 4 - (Poisson Model) 136
Table 30: Coefficient of Correlation – Poisson Model ... 139

Table 31: Model Parameters – DIS/CS 17.3 ... 143
Table 32: Case Study Results – DIS/CS 17.3 ... 145
Table 33: Correlation Analysis DIS/CS 17.3 .. 146
Table 34: Coefficient of Correlation – Poisson Regression...................................... 147
Table 35: Estimated Number of Defects-Case Study 5 - (Poisson Model) 148

Table 36: Coefficient of Correlation – Poisson Model ... 150

ix

List of Figures

Figure 1: Actual vs. Estimated Defect Density ... 21

Figure 2: Classification of Software Reliability Models based on SDLC 39
Figure 3: Software Development Stream .. 46
Figure 4: Software Development Binary Decision Diagram 51
Figure 5: Defect Injection Probability of Project 1- Before and After Code Inspection

... 54

Figure 6: Defect Injection Probability of Project 1 Before and After Testing 56
Figure 7: Capture-Recapture Model Assumptions ... 60
Figure 8: SDPM within the Formal Inspection Process ... 63
Figure 9: Modeling Dependencies among Change Sets ... 70
Figure 10: Example of Bayesian Belief Network Used in Conjunction with SDPM . 73

Figure 11: Software Development Profile Model - Scalability 76
Figure 12: Defects are counted only once in the stream they were injected............... 81

Figure 13: PET – SDPM Profile Estimation Tool .. 84
Figure 14: PET - Change Matrix .. 86

Figure 15: PET – Estimated Number of Defective Constructs 87
Figure 16: Software Development Activities ... 89
Figure 17: CCD 693 Binary Decision Diagram .. 97

Figure 18: SDPM - Est. # of Defective SLOC vs. Observed Number of Defective

SLOCs – DIS/CS 17.10 .. 105

Figure 19: CCD 762 Timeline and Development Activities 106
Figure 20: Software Change Matrix – DIC/CS 18.4 release 107
Figure 21: CCD 762 Binary Decision Diagram .. 109

Figure 22: SDPM - Est. # of Defective SLOC vs. Observed Number of Defective

SLOCs – DIS/CS 18.4 .. 115
Figure 23: CCD 770 Timeline and Development Activities 117
Figure 24: Software Change Matrix – DIC/CS 18.5... 118

Figure 25: Binary Decision Diagram – DIS/CS 18.5 ... 119
Figure 26: SDPM - Est. # of Defective SLOC vs. Observed Number of Defective

SLOCs – DIS/CS 18.5 .. 127

Figure 27: CCD 700 Timeline and Development Activities 129
Figure 28: Software Change Matrix – DIS/CS 17.4 ... 130
Figure 29: Binary Decision Diagram – DIS/CS 17.4 ... 131
Figure 30: SDPM - Est. # of Defective SLOC vs. Observed Number of Defective

SLOCs – DIS/CS 17.4 .. 140

Figure 31: CCD 689 Timeline and Development Activities 142

Figure 32: Change Set Matrix – DIS/CS 17.3 .. 143

Figure 33: Binary Decision Diagram – DIS/CS 17.3 ... 144
Figure 34: SDPM – Estimated # of Defective SLOCs vs. Observed # of Defective

SLOCs – DIS/CS 17.3 .. 151

1

Chapter 1: Introduction

1.1 Background

Despite hundreds of software reliability and defect estimation models developed over

the past few decades, the software reliability discipline is still struggling to establish a

reliability estimation and prediction framework [25]. Over the years, many new

models have been proposed, discussed, modified and generalized, while some have

suffered much criticism [64]. Even today the field of software reliability engineering

remains an active area in software engineering. Historically, software reliability

engineering has been influenced greatly by hardware reliability theories. This

influence has helped statisticians to develop numerous new software reliability

models. On the other hand, it has connected software reliability too strongly to

hardware reliability theory. This connection has had an adverse effect on the

development of new theories in software reliability engineering. Since software is

fundamentally different from hardware, many of the proposed software reliability and

defect estimation models have limited applicability dictated by their hardware-based

assumptions. These assumptions and limitations make many existing software

reliability models impractical to use and difficult to validate for software.

Furthermore, many of the existing reliability and defect estimation models, like the

hardware-based models, rely on observed failure data that is mainly available towards

the end of the development life cycle, too infrequent in cases of safety critical

applications.

There is a great need to develop new theories for software reliability and defect

estimation which can be used to help manage the reliability of software products

2

while it is still in development. Unlike reliability estimation models that assess the

reliability of software systems in production or before release, software reliability

management models provide a framework for managing the reliability of software

products. However, still today, many software reliability models rely on defect data,

which are not available during early development phases. Reliability management

models need to start early in the development process and continue throughout the

entire development lifecycle. Software reliability management models provide a

great value to software managers, practitioners and users.

In [35], we introduced Software Development Profile Model (SDPM) as a causal

model for identifying defect-prone software artifacts based on software development

activities and software change history. Throughout this dissertation, we use the term

―software construct‖ [9] as the smallest software piece for which data is collected.

Depending on the software development project, a construct can be a software line of

code (SLOC), function point (FP), function, class, source statement (SS), or any other

software unit. In addition, we use the term software artifact [36] as a product that is

created during software development containing software constructs. A software

artifact can be a source file, a software module, or a software document such as the

Software Requirements Specifications (SwRS) produced during software

development. SDPM assumes that when a software construct is touched, it has a

chance to become defective. Other activities such as inspection and testing are defect

factors that affect detection and removal of software defects. Under this assumption,

SDPM estimates the reliability of software constructs based on the software change

history and development activities. The reliability of software constructs are then

3

used to estimate the defect content of various software artifacts. Since SDPM uses

software change history and software development activities to estimate software

defect content, managers can use SDPM to make risk informed decisions and adjust

software development activities early in the development lifecycle to manage

software defect content.

1.2 Motivation

Knowing which files are most likely defective early in the software development life

cycle can be very valuable for software managers. Finding these defects while the

software is still in development can help companies better manage the reliability of

their software products by making risk informed decisions to use resources more

effectively and by focusing efforts on mission critical modules, resulting in more

reliable systems at reduced costs [53].

The relationship between fault-prone software modules and other measurable

software attributes has been studied by many authors. In the article ―Code Churn: A

Measure for Estimating the Impact of Code Change‖ [43] Munson used the rate of

change in relative complexity as the index for the rate of fault injection. The

relationship between change history and fault-proneness of software modules has

been discussed widely in other recent literature as well as [26], [34], [42], [44], [45].

Recent empirical studies show a strong correlation between the change history of a

file and its fault-proneness [29], [40], [45-47], [63]. Researchers have applied

statistical data analysis techniques such as regression analysis to show the correlation

between change history and fault-proneness [45], [46], [63]. These models are

generally based on data fitting techniques and rely on historical data. While they

4

suggest a relationship between fault proneness and certain aspects of the software

product, they generally fall short of demonstrating a causal relationship [33].

Causality is defined as a relationship between an event A (the cause) and an event B

(the effect), where the second event is understood as a consequence of the first.

While correlation is a necessary condition for a causal relationship, it is not sufficient

enough to make a causal inference with reasonable confidence. Regression models

can also be used to investigate certain software characteristics, such as file size or file

age, to show a relationship between these attributes and fault-proneness. Likewise,

this correlation, however interesting, does not imply causality. In other words, this

relationship cannot be used to imply that large file size causes additional defects in

the file. It is not surprising to see inexperienced developers write larger files or

modules; thus both large file sizes and large numbers of defects in such artifacts can

be caused by lack of experience.

Bayesian Belief Network (BBN) has been used by numerous authors to build a causal

model for software defect prediction [23], [24] . Existing causal models are often

high level causal relationships as described in [24] and don‘t consider software

development activities. They are often based on the broad assumption that poor

quality of development increases the number of defects, or high quality testing

increases the proportion of defects found. While these assumptions are valid, they

can‘t be used to model day-to-day software development activities. The motivation

behind this work is to introduce a ―causal‖ model that can be used to capture software

development activities. This is important because it allows software managers to

manage software development‘s daily activities. This is also an improvement over

5

existing causal models because incorporating software development activities allows

more evidence to be taken into account, resulting in more accurate predictions. This

information can then be used to understand the cause and effect relationship and take

proactive steps to reduce production level software defects.

A review of current literature on software reliability management shows that there is

a great need for new theories in software reliability management. Apart from the

aforementioned impracticality during early stages of development due to a reliance on

defect data, another shortcoming is that there are simply too few of them available.

Furthermore, many proposed software reliability management models are less

quantitative and less statistical-based compared to software reliability models [32].

Because of this, there is a need for developing new theories that can be used to

manage the reliability of software products during early stages of software

development lifecycle.

This dissertation introduces a new causal model for estimating software defect based

on software development activities and software change history and presents five case

studies showing how it is used in real industrial software development projects.

Unlike software reliability and defect estimation models that assess the software

product at a given snapshot in time, the proposed model provides a framework for

estimating the software defect content and defect-prone files throughout the

development lifecycle. We will provide a brief history of software reliability in

section 2.1. In Section 2.2, we will provide a literature review of related software

reliability and defect estimation models. We will discuss the current status of

software reliability in section 2.4 and provide the objective of this dissertation in

6

Section 2.5. In Section 3 we will discuss in detail the concept of Software

Development Profile Model. We will provide five real life case studies in Section 4

that the author was directly involved with and SDPM. In this section we will

investigate the performance of SDPM and provide the results. In Section 5 we will

provide the summary of contributions and future research directions.

7

Chapter 2: Literature Review

2.1 Overview

The development of software reliability theory made its greatest jump during the

1970s [8]. During this period many new software reliability and defect estimation

models were introduced and software reliability engineering earned recognition

among practitioners. In this section we will provide a literature review to cover

software reliability and defect estimation models from the 1970‘s to the present. This

section is by no means a complete review of all software reliability models. It is

intended to list selected historical models that have influenced the current state of

software reliability models and papers relevant to our research. In [13], the authors

provide a more complete list of software reliability models.

2.2 Software Reliability and Defect Estimation Models

2.2.1 Jelinski-Moranda Model (1972)

The Jelinski-Moranda (J-M) Model was one of the earliest models in software

reliability engineering [64]. It estimated time between failures. J-M assumes N

software defects at the beginning of testing, and failures occur randomly, and the

relationship between defects and faults is constant. It also assumes the repair time is

negligible and no new defects are introduced. Therefore, the software failure rate is

constant and decreases over time. The instantaneous hazard function between times

of two failures is:

 () , ()-

It is assumed that the number of initial software defects is fixed and annotated by N.

8

2.2.2 Goel-Okumoto Imperfect Debugging Model (1978)

Unlike the J-M model, which assumed perfect fixes with negligible repair times

(perfect debugging), Goel-Okumoto proposed a more realistic imperfect debugging

model. In practice, when defects are fixed, new ones are introduced. In this model

the hazard function between (i-1)-th and i-th failure is:

 () , ()-

Where N is the number of defects at the start of testing, p the probability of imperfect

debugging, and is the failure rate per fault.

2.2.3 Goel-Okumoto Imperfect Nonhomogeneous Poisson Process Model (1979)

The NHPP (Goel and Okumoto, 1979) was concerned with modeling the number of

failures observed in given testing intervals. Goel and Okumoto propose that the

cumulative number of failures observed at time t, N(t), can be modeled as a

nonhomogeneous Poisson process, with a time dependent failure rate. They propose

that the time-dependent failure rate follows an exponential distribution. The model

is:

 * () +
, ()-

 ()

Where

 () ()

 () ()

9

In this model, m(t) is the number of expected number of failures observed by time t;

 (t) is the failure density; a is the expected number of failures to be observed

eventually, a and b are the fault detection rate per fault. Fitting the model curves

from actual data and projecting the number of faults remaining in the software is done

mainly by means of the mean value, or cumulative density function. The

fundamental difference between this model and other models is that it treats the total

number of defects to be detected ‗a‘ as a random variable, which is assumed to

depend on the test and other environmental factors.

2.2.4 Littlewood Models (1981)

The Littlewood model (LW) is similar to the J-M model. The LW differs in that it

assumes different defects have different sizes, and therefore contribute differently to

the software failure. The larger the defect, the easier it is to be identified. Therefore,

over time larger defects are identified and removed and the size of remaining defects

decreases. Littlewood developed other models based on nonhomogenous Poisson

process, where the failure rate is assumed not to be constant from one failure to the

next.

2.2.5 Goel Generalized Nonhomogeneous Poisson Process Model (1982)

Goel (1982) proposed a generalization of the Goel-Okumoto NHPP model by adding

one more parameter to the mean value function and failure density function.

 () ()

 () ()

10

Where a is the expected number of failures to be eventually detected,

b and c are constants that reflect the quality of testing. This mean value function and

failure density is actually the Weibull distribution.

2.2.6 Musa-Okumoto Logarithmic Poisson Execution Time Model (1983)

In the Musa-Okumoto (M-O) model, as in the NHPP model, the observed number of

failures by a certain time, t, is also assumed to be nonhomogeneous Poisson process.

However, its mean value function in the M-O model is different. The basic

assumption here is that later fixes have a smaller effect on the software‘s reliability

than earlier ones. The logarithmic Poisson process is claimed to be superior for

highly non-uniform operational user profiles, where some functions are executed

much more frequently than others. Also, the process models the number of failures

in a specified execution time instead of calendar time. The model consists of two

components, the execution time component and the calendar time component, which

provides a systematic approach to convert results to calendar time. The mean value

function of this model is:

 ()

 ()

Where λ is the initial failure intensity and Ѳ is the rate of reduction in the normalized

failure intensity per failure.

11

2.2.7 The Delayed S and Inflection S Models (1983)

With regard to the software defect removal process, Yamada et al. (1983) argue that a

testing process consists of not only defect reduction process, but also a defect

isolation process. Because of the time needed for failure analysis, significant delay

can be expected between the first failure observation and the time of reporting. This

model uses the delayed S-shaped reliability growth model, in which the observed

growth curve of the cumulative number of detected defects is S-shaped. The model is

based on the nonhomogeneous Poisson process but with a different mean value

function to reflect the delay in failure reporting,

 () , ()]

Where t is time, λ is the error detection rate, and k is the total number of defects or

total cumulative defect rate.

2.2.8 The inflection S model (1984)

In 1984, Ohba proposed another S-shaped reliability growth model—the inflection S

model (Ohba, 1984). The model describes a software failure detection phenomenon

with a mutual dependence on detected defects. This means that the more defects we

detect, the more undetected failures become detectable. This assumption brings a

certain realism into software reliability modeling and is a significant improvement

over other earlier models, namely the independence of faults in a program. Based on

the Nonhomogeneous Poisson process, the mean value function is

 ()

12

Where t is time, λ is the error detection rate, i is the inflection factor, and K is the

total number of defects or total cumulative defect rate.

2.2.9 Shigeru Yamada et al. Software Reliability Growth Models with Testing-

Efforts (1986)

Software Reliability Growth Models are concerned with the relationship between the

cumulative number of defects detected and the time span of the software reliability.

This paper assumes that the error detection rate is proportional to the current error

content. The test effort is defined by exponential and Rayleigh curves.

Assumptions:

 A software system is subject to failure at random times caused by defects

remaining in the software

 Each time an error occurs, it is immediately removed and no errors are re-

introduced

 The testing effort is described by exponential or Rayleigh curve

 The s-expected number of errors detected in the time interval (t,t+1] to the

current testing-effort expenditures is proportional to the s-expected number of

remaining errors.

 The error detection is NHPP

13

2.2.10 Crow, L.H.: Evaluating the reliability of repairable systems (1990)

The Weibull-Poisson process (WPP) for representing the reliability of complex

repairable systems is discussed in [20]. The emphasis is on estimation and other

statistical methods for this model when data have been generated by multiple

systems. Examples and procedures specifically illustrating these methods are given

for several real-world situations. In addition to maximum likelihood estimation

methods, goodness-of-fit tests and confidence interval procedures are discussed and

illustrated by numerical examples. It is noted that in the case of one system the model

reduces to a model for reliability growth. Confidence intervals for the WPP shape

parameter and growth rate are given.

2.2.11 Crow, L.H. et al.: Principles of successful reliability growth applications

(1994)

This paper discusses the successful application of integrated reliability growth testing

(IRGT) to the development of a large switching system, and demonstrates the results

obtained using a case study. In usual applications of reliability growth testing, it is

customary to dedicate development test items for a period of time and implement

design changes to improve the reliability of a fielded product. In IRGT, reliability

growth is demonstrated through design changes which occur during development

testing. Crow et al. [19] identify the lessons learned from the application of IRGT

principles. The success of the IRGT program provided the Switching System Pilot

Project with several benefits, including: timely analysis of failed items; accurate

problem classification; timely and accurate laboratory failure rates; early

identification of pattern failures; metrics demonstrating; achieved reliability growth

during development testing. While the Switching System Pilot Project IRGT effort

14

was largely successful, a configuration management problem area was identified in

terms of providing adequate configuration data for reliability analysis.

2.2.12 Khoshgoftaar, T.M. et al.: Detection of Software Modules with High Debug

Code Churn in a Very Large Legacy System (1996)

This study defines fault-prone as exceeding a threshold of debug code churn, defined

as the number of lines added or changed due to bug fixes. Previous studies have

characterized reuse history with simple categories. The study presented in [34]

quantifies new functionality with lines of code. The paper analyzes two consecutive

releases of a large legacy software system for telecommunications. The authors

applied discriminant analysis to identify fault prone modules based on 16 static

software product metrics and the amount of code changed during development.

Modules from one release were used as a fit data set and modules from the

subsequent release were used as a test data set. In contrast, comparable prior studies

of legacy systems split the data to simulate two releases. The authors validated the

model with a realistic simulation of utilization of the fitted model with the test data

set. Model results could be used to give extra attention to fault prone modules and

thus reduce the risk of unexpected problems.

2.2.13 Malaiya, Y. K & Denton, J. D.: Estimating the Number of Residual Defects

(1997)

Malaiya & Denton argue in [38] that estimating the remaining defects in highly

reliable software is challenging since remaining defects are hard to detect. Several

different software defect estimation techniques are discussed, including: sampling

based methods, fault seeding, estimations based on empirical models and exponential

Software Reliability Growth Models (SRGM). Malaiya et al. propose a model

15

relating the density of remaining defects with test coverage measures. Their model

assumes that, at the beginning of the test, defect coverage starts slowly but improves

linearly over time.

2.2.14 Kai-Yuan Cai: On Estimating the Number of Defects Remaining in Software

(1998)

In [12] the author presents an analysis of the method of dynamic software reliability

models, and that of empirical models, particularly of the Halstead model. He develops

a new static model for estimating the number of remaining defects and uses a set of

real data to test his model. The new model coincides with the Mills model in a

particular case and shows its attractiveness in its applicability to a broader scope of

circumstances. Bayesian versions of the Mills model and the new model are also

developed.

2.2.15 Munson, J.C. & Elbaum, S.G.: Code Churn: Measure for Estimating the

Impact of Code Change (1998)

The focus of this paper is on the precise measurement of software development

processes and product outcomes. Tools and processes for the static measurement of

the source code have been installed and made operational in a large embedded

software system. Source code measurements have been gathered unobtrusively for

each build in the software evolution process. The measurements are synthesized to

obtain the fault surrogate. The complexity of sequential builds is compared and a new

measure, code churn, is calculated. In a ―Code Churn: Measure for Estimating the

Impact of Code Change‖ [43], the authors demonstrate the effectiveness of code

complexity churn by validating it against the testing problem reports.

16

2.2.16 Chulani, S. & Boehm B.: Constructive Quality Model (COQUALMO)

(1999)

The authors claim that cost, schedule, and quality are highly correlated factors in

software development [18]. COQUALMO is an extension to the existing COCOMO

II model presented earlier [10]. Constructive Quality Model is based on two sub-

models: defect introduction and defect removal models. The total number of defects

introduced is modeled by:

 ∑ ()

 ∏()

And the number of remaining defects is modeled by:

 ∏(

)

Where

DResEst,j= Estimated number of residual defects for j-th artifact

Cj= Calibrated constant for j-th artifact

DIEst,j= Estimated number of defects of artifact type j introduced

i= 1 to 3 for each DR profile

DRFi,j= Defect Removal Fraction for defect removal profile I and artifact type

j

COQUALMO is initially calibrated using expert judgments. When more data on

actual completed projects is available the it can be calibrated using Bayesian

approach.

17

2.2.17 Neufelder, A.M.: How to Predict Software Defect Density during Proposal

Phase (2000)

The author developed a method in [48] to predict defect density based on empirical

data. The author evaluated the software development practices of 45 software

organizations. The resulting polynomial was:

Where x is the resulting score from a questioner form provided in the model.

2.2.18 Graves, T.L. et al.: Predicting Fault Incidence Using Software Change

History (2000)

In this paper Graves et al. attempt to investigate the process by which software

changes and the effects of said change on software reliability. The authors [26] find

that the change history contains more useful information than a snapshot of the code.

For example, the number of lines of code in a module is not as helpful in predicting

the number of future defects once one has taken into account the number of times the

module has been changed. The authors use change management data from a very

large software system to predict the fault distribution over different modules. They

argue that the number of times code has been changed is a better indication of how

many faults it will contain than its size.

2.2.19 Smidths, C. & Stutzke, M.: A Stochastic Model of Fault Introduction and

Removal during Software Development (2001)

A stochastic model is sought that represents the injection and removal of software

faults during software development. The authors describe in [61] a stochastic model

18

that relates the software failure density function to development and debugging error

occurrence throughout all phases of software development life-cycle. In this model

the data from development and debugging errors are used to create an early prediction

of software reliability. Model parameters are derived based on data reported in open

literature and other projects.

Model assumptions:

 Development errors follow a NHPP intensity function V(t)

 Software fault count is described by a NMBDWI

 Software fault detection follows NHPP

 Software failure is caused by exactly 1 fault

2.2.20 Malaiya, Yashwant K et al.: Software Reliability Growth with Test

Coverage Model (2002)

This paper models the relationships between testing time, code coverage, and

software reliability. In [39] an LE (logarithmic-exponential) model is presented that

relates testing effort to test coverage (block, branch, computation-use, or predicate-

use). The model is based on the hypothesis that the enumerable elements (like

branches or blocks) for any coverage measure have various probabilities of being

exercised; likewise defects have various probabilities of being encountered. This

model allows the direct relation of a test-coverage measure with defect-coverage one.

The model is fitted to 4 data-sets for programs with real defects. In the model, defect

coverage can predict the time to next failure. This paper makes the assumption that

19

both defect coverage and code coverage are based on the M-O model following a

logarithmic model.

2.2.21 Nikora, A.P. & Munson: Developing Fault Predictors for Evolving Software

Systems (2003)

The authors have shown in previous work that there is a significant linear relationship

between code churn and the rate at which faults are inserted into the system,

measured in terms of the number of faults per unit change in code churn. In [50] they

investigate this relationship with a flight software technology development effort at

the jet propulsion laboratory (JPL) and succeed in resolving the limitations of the

earlier work in two distinct aspects. First, they have developed a standard for the

enumeration of faults. Second, they have developed a practical framework for

automating the measurement of these faults. In this paper, the authors analyze the

measurements of structural evolution and fault counts obtained from Nikora and

Munson‘s JPL flight software technology development effort. The results of this

study indicate that the measures of structural attributes for the evolving software

system are suitable for forming predictors of the number of faults inserted into

software modules during their development.

2.2.22 Bai, Chenggang et al.: On the Trend of Remaining Software Defect

Estimation (2003)

Software defect curves describe the behavior of the estimated number of remaining

software defects as software testing proceeds. They are of two possible patterns:

single trapezoidal-like curves or multiple trapezoidal-like curves. In [3] the authors

present some necessary conditions for software defect curves from the Goel-Okumoto

NHPP model. These conditions can be used to predict the effect of the detection and

20

removal of a software defect on the variations of the estimated number of remaining

defects. In this paper the authors use a field software reliability dataset to justify the

trapezoidal shape of software defect curves and the author‘s theoretical analysis.

2.2.23 Sherriff, M., Nagappan, N. et al.: Early Defect Estimation Model (2005)

This paper presents a suite of in-process metrics that leverages the software testing

effort to create a defect density prediction model for use throughout the software

development process. A case study conducted with Galois Connections, Inc. in a

Haskell programming environment indicates that the resulting defect density

prediction is indicative of the actual system defect density [59].

2.2.24 Nagappan, N. & Ball, T.: Use of Code Churn to Predict Defect Density

(2005)

Software systems evolve over time due to changes in requirements, optimization of

code, security fixes, reliability bugs, etc. Code churn, which measures the changes

made to a component over a period of time, quantifies the extent of this change. In

[45] the authors present a technique for early prediction of system defect density

using a set of relative code churn measures that relate the amount of churn to other

variables such as component size and the temporal extent of churn. Using statistical

regression models, they show that while absolute measures of code churn are poor

predictors of defect density, the set of relative measures of code churn is highly

predictive of defect density. A case study performed on Windows Server 2003

indicates the validity of the relative code churn measures as early indicators of system

defect density. Furthermore, the code churn metric suite is able to discriminate

between fault-prone and non-fault-prone binaries with an accuracy of 89.0 percent.

21

Figure 1: Actual vs. Estimated Defect Density

2.2.25 Nachiappan Nagappan and Thomas Ball: Static Analysis Tools as Early

Indicators of Pre-Release Defect Density (2005)

The authors believe that there is a strong positive correlation between the static

analysis defect density and pre-release defect density determined by testing [44].

Using the two static analysis tools, PREFix and PREfast, the authors tested their

hypothesis. The results show that the static defect density is correlated to the pre-

release defect density determined by various testing-activities.

22

2.2.26 Ching-Pao Chang et al.: Defect Prevention in Software Processes: An

Action-Based Approach (2006)

In [15] the authors argue that in order to accurately predict the number of defects in a

given piece of software, one needs to look at the software development process. They

use the Work Breakdown Structure (WBS) to identify all actions that are performed

during software development. Factors causing defects vary according to the different

attributes of a project, including the experience of the developers, the product‘s

complexity, the development tools and the schedule. The most significant challenge

for a project manager is to identify actions that may incur defects before the action is

performed. Actions performed in different projects may yield different results, which

are difficult to predict in advance. To alleviate this problem, they propose an Action-

Based Defect Prevention (ABDP) approach, which applies the classification and

Feature Subset Selection (FSS) technologies to project defects during execution.

Accurately predicting actions that cause many defects by mining records of

performed actions is a challenging task due to the rarity of such actions. To address

this problem, the under-sampling is applied to the data set to increase the precision of

predictions for subsequence actions. To demonstrate the efficiency of this approach, it

is applied to a business project, revealing that under-sampling with FSS successfully

predicts the problematic actions during project execution. The main advantage of

utilizing ABDP is that the actions likely to produce defects can be predicted prior to

their execution. The detected actions not only provide the information to avoid

possible defects, but also facilitate the improvement of software development process.

23

2.2.27 Ceylan, Evren et al.: Software Defect Identification Using Machine Learning

Techniques (2006)

In [14], different machine learning algorithms are evaluated in terms of their ability to

identify and locate possible defects in a software project. In the proposed

methodology the dataset is first normalized and cleaned against correlated and

irrelevant values, and then machine learning techniques are applied for error

prediction. The defect prediction can be done in two parts. First, it can be used to

predict if the code is defective or not. Second, it can be used to predict the magnitude

of the possible defect such as its severity, priority, etc. This paper is focused on the

second type of predictions. By doing so, the authors argue that they are providing the

software quality practitioner with an estimation of ―which modules may contain more

faults.‖ This information can be used to allocate the scarce testing and validation

resources on the modules that are predicted to be ―most defective.‖

2.2.28 Askari, M. & Holt, R.: Information Theoretic Evaluation of Change

Prediction Models for Large-Scale Software (2006)

In [2], the authors analyze the data extracted from several open source software

repositories and show that the change data follows a Zipf
1
 distribution. Based on the

extracted data, they develop three probabilistic models to predict which files will

have changes or bugs.

The first model is Maximum Likelihood Estimation (MLE), which simply counts the

number of events, i.e., changes or bugs, that happen to each file and normalizes the

1
 The Zipf distribution, sometimes referred to as the zeta distribution, is a discrete distribution

commonly used in linguistics, insurance, and the modeling of rare events

24

counts to compute a probability distribution. The second model is Reflexive

Exponential Decay (RED) in which the authors postulate that the predictive rate of

modification in a file is incremented by any modification to that file and decays

exponentially. They also assume that the predictive rate of bugs induced by any event

decays exponentially. The third model is called RED-Co-Change. With each

modification to a given file, the RED-Co-Change model not only increments its

predictive rate, but also increments the rate for other files that are related to the given

file through previous co-changes. The authors then present a theoretic approach to

evaluate the performance of different prediction models.

 In this approach, the closeness of model distribution to the actual unknown

probability distribution of the system is measured using cross entropy. They then

evaluate the prediction models empirically using the proposed theoretical approach

for six large open source systems. Based on this evaluation, the authors argue that, of

the three prediction models, the RED-Co-Change model most accurately predicts the

distributions of all the studied systems.

2.2.29 Nagappan, N. et al.: Mining Metrics to Predict Component Failures (2006)

In [46] the authors present an empirical study of the post-release defect history of five

Microsoft software systems. They discovered that failure-prone software entities are

statistically correlated with code complexity measures. However, they did not observe

a single set of complexity metrics that could act universally as the best predictor of

defects. Using principal component analysis on the code metrics, they built regression

models that accurately predicted the likelihood of post-release defects for new

25

entities. The approach can easily be generalized to arbitrary projects; in particular,

predictors obtained from one project can also be significant for new, similar projects.

2.2.30 Bernstein, A. et al.: Improving Defect Prediction Using Temporal Features

and Non-linear Models (2007)

In this paper [7] the authors argued that temporal features (or aspects) of the data are

central to predicting performance. They used non-linear models instead of traditional

regressions and argued that non-linear models are necessary to uncover some of the

hidden interrelationships between the features and the defects and maintain the

accuracy of the prediction in some cases.

Using data obtained from the CVS and Bugzilla repositories of the Eclipse project,

the authors extracted a number of temporal features, such as the number of revisions

and number of reported issues within the last three months. They then used these data

to predict both the location of defects (i.e., the classes in which defects will occur) as

well as the number of reported bugs in the next month of the project. They used

standard tree-based induction algorithms in place of traditional regression models.

They claimed that using non-linear models uncovers the hidden relationships between

features and defects, presenting them in easy to understand form. Results also showed

that, using temporal features, their model could predict both whether a source file will

have a defect with an accuracy of 99% (area under ROC curve 0.9251) as well as the

number of defects with a mean absolute error of 0.019 (Spearman's correlation of

0.96).

26

2.2.31 Norman Fenton : Using Bayesian Nets to Predict Software Defects and

Reliability (2007)

In [23], Fenton argued that predicting software defects by complexity and size

measures alone will not provide a meaningful estimate because the number of defects

detected is related to the amount of testing that is performed. Moreover, complex

systems generally have a lower test effectiveness and therefore lower number of

discovered defects. Fenton further argued that modeling the complexities of software

development using new probabilistic techniques presents a positive way forward. In

this paper Fenton suggested using Bayesian Networks (BNs) for predicting software

defects and software reliability. This approach allows for the incorporation of causal

process factors while combining qualitative and quantitative measures, hence, it

overcomes some of the limitations of traditional software metrics methods.

2.2.32 Norman Fenton et al.: Predicting Software Defects in Varying Development

Lifecycles Using Bayesian Nets (2007)

In [24], the authors extended their earlier work by describing a general method of

using BNs for defect prediction. The limitation of the earlier work was the need to

build a different BN for each software development lifecycle to reflect the variation

in both the number of testing stages in the lifecycle and the available metric data. To

overcome this limitation, the authors described a BN that models the creation and

detection of software defects without commitment to a particular development

lifecycle.

2.2.33 Oral, A.D. & Bener, A.B. Paper (2007)

This paper examines defect prediction techniques from an embedded software point

of view. In [52], the authors presented the results of combining several machine

27

learning techniques for defect prediction. They believed that the results of this study

will help us to find better predictors and models for this purpose.

2.2.34 Bergander, Torsten et al.: Software Defects Prediction Using Operating

Characteristic Curves (2007)

The authors propose in [6] a software defect prediction technique using Operating

Characteristic curves in order to predict the cumulative number of failures at any

given time. The core idea behind their methodology is to use geometric insight in

helping construct a prediction method to predict the cumulative number of failures at

specific times.

The assumption was that the software failure data is usually available to the user in

three basic forms:

 A sequence of ordered failure times 0 < t1 < t2 < . . . < tn

 A sequence of inter failure times τi where τi = ti – ti−1 for i = 1, . . . , n

 Cumulative number of failures.

The cumulative number of failures N(ti) detected by time ti (i.e., the cumulative

number of failures over the period [0, ti]) defines a non-homogeneous Poisson process

(NHPP) with failure intensity or rate function λ(ti) such that the rate function of the

process is time-dependent. The mean value function m(ti) = E(N(ti)) of the process is

given by

 () ∫ ()

28

At present software reliability modeling is considered a part of software quality and is

listed as a key quality measure for software quality. Currently, the software

reliability engineering discipline is saturated with software reliability models and

many new models are either generalizations of older models or special cases of

existing models [64].

2.2.35 Karim O. Elish & Mahmoud O. Elish: Predicting Defect-Prone Software

Modules Using Support Vector Machines (2007)

This paper evaluates the capability of Support Vector Machines (SVM) in predicting

defect-prone software modules and compares its prediction performance against eight

statistical and machine learning models in the context of four NASA datasets. The

results in [22] indicate that the prediction performance of SVM is generally better

than, or at least competitive with, the compared models. The authors argue that their

method can enable software developers to focus quality assurance activities and

allocate effort and resources more efficiently.

2.2.36 Y. Hong, et al.: A Value-Added Predictive Defect Type Distribution Model

based on Project Characteristics (2008)

In [28], the authors aim to predict the type and distribution of in-process defects.

They proposed a process which includes several steps: 1) analysis of literature, 2)

behavior analysis, 3) data gathering, 4) statistical modeling, 5) regression analysis, 6)

model validation, 7) gathering of more data for refining the model in the future.

2.2.37 Bai, Cheng-Gang, et al.: On the Trend of Remaining Software Defect

Estimation (2008)

In [4], the concept of Remaining Software Defect Estimation (RSDE) curves is

proposed. An RSDE curve charts the dynamic behavior of RSDE as software testing

http://www.engineeringvillage2.org.proxy-um.researchport.umd.edu/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bBai%2C+Cheng-Gang%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr

29

proceeds. Generally, RSDE changes over time and displays two typical patterns:

single mode and multiple modes. This behavior is due to the different characteristics

of the testing process, i.e., testing under a single testing profile or under multiple

testing profiles with various change points. By studying the trend of the estimated

number of remaining software defects, RSDE curves can provide further insights into

the software testing process. In particular, in this study [4], the Goel-Okumoto model

is used to estimate this number on actual software failures and to derive some

properties of RSDE curves. In addition, the authors discuss some theoretical and

applicability issues regarding the RSDE curves.

2.2.38 Miroslaw Staron & Wilhelm Meding: Predicting Weekly Defect Inflow in

Large Software Projects Based on Project Planning and Test Status (2008)

In this paper the authors present a new method for predicting the number of defects

reported into the defect database on a weekly basis. The method proposed in [60] is

based on using project progress data, in particular information about the test progress,

to predict defect inflow for the next three weeks. The results show that the prediction

accuracy of the models is up to 72% (mean magnitude of relative error for predictions

of 1 week in advance is 28%) when used in ongoing large software projects. The

method is intended to help project managers more accurately adjust resources in their

projects, since they would be notified in advance about any potentially large effort

needed to correct defects.

2.2.39 Haider, Syed et al.: Estimation of defects based on defect decay model:

ED3M (2008)

In this paper a new approach called ED3M is presented that estimates the total

number of defects in an ongoing testing process. ED3M is based on estimation

30

theory. Unlike other existing approaches the technique presented here does not

depend on historical data from previous projects or any assumptions about

requirements and/or testers' productivity. It is an automated approach that relies only

on the data collected during an ongoing testing process. In [27], the ED3M approach

was evaluated using five data sets from large industrial projects and two data sets

from the literature. In addition, a performance analysis was conducted using

simulated data sets to explore the model‘s behavior using different models for the

input data. The authors argue that the ED3M approach provides accurate estimates

with as fast or faster convergence times compared to well-known alternative

techniques, all while only using defect data as the input.

2.2.40 Jiang, Y. et al.: Comparing design and code metrics for software quality

prediction (2008)

In this paper the authors compare the performance of predictive models which use

design-level metrics with those that use code-level metrics and those that use both. In

[31], they analyze thirteen datasets from NASA‘s Metrics Data Program which offers

design as well as code metrics. Using a range of modeling techniques and statistical

significance tests, they confirm that models built from code metrics typically

outperform design metrics based models. However, both types of models prove to be

useful as they can be constructed in different project phases. Code-based models can

be used to increase the performance of design-level models and thus increase the

efficiency of assigning verification and validation activities late in the development

lifecycle. They also conclude that models that utilize a combination of design and

code level metrics outperform models which use either one or the other metric set.

31

2.2.41 Scott, H. & Wohlin, C.: Capture-Recapture in Software Unit Testing (2008)

This paper presents a method for estimating the total amount of software failures

using a/the capture-recapture method. The method presented in [58] combines the

results from having several developers test the same unit with capture-recapture

models to create an estimate of ―remaining‖ number of failures. The evaluation of the

approach consists of two steps: first a pre-study where the tools and methods are

tested in a large open source project, followed by an add-on to a project at a medium-

sized software company. The evaluation was a success. An estimate was created, and

it can be used both as a quality gatekeeper for units and an input to functional and

system testing.

2.2.42 Walia, G. S. & Carver, J. C.: Evaluation of Capture-Recapture Models (2008)

This paper argues that previous research on evaluated capture-recapture models were

mostly done on artifacts with a known number of defects. Therefore, before applying

capture-recapture models in real development, an evaluation of those models on

naturally-occurring defects is imperative.

The study in [62] is based on the data drawn from two inspections of real

requirements documents created as part of a capstone course. The results show that

estimators change from being negatively biased after one inspection to being

positively biased after two.

The findings contradict the earlier results which suggested that a model which

includes two sources of variation is a significant improvement over models with only

one source of variation. The study also suggests that estimates are useful in

determining the need for artifact re-inspection.

32

2.2.43 Cheung, L. el at.: Early Prediction of Software Component Reliability

(2008).

Authors in [17] argue that the ability to predict the reliability of a software early in

the development (e.g., during architectural design) can help to improve the system's

quality and save on cost. Existing architecture-level reliability prediction approaches

focus on system-level reliability and assume that the reliabilities of individual

components are known. In general, this assumption is unreasonable, making

component reliability prediction an important missing ingredient in the current

literature. Early prediction of component reliability is a challenging problem because

of the uncertainties associated with components under development. The authors

address these challenges in developing a software component reliability prediction

framework. They do this by exploiting architectural models and associated analysis

techniques, stochastic modeling approaches, and information sources available early

in the development lifecycle. They evaluate their framework to illustrate its utility as

an early reliability prediction approach.

2.2.44 Moser, R. et al.: A Comparative Analysis of the Efficiency of Change

Metrics and Static Code Attributes for Defect Prediction (2008)

In this paper the authors analyze two different defect prediction metrics. The authors

in [42] choose one set of product-related and one set of process-related software

metrics and use them for classifying Java files from the Eclipse project as defective or

defect-free. They built classification models using three common machine learners:

logistic regression, Naive Bayes, and decision trees. To allow different costs for

prediction errors, the authors performed cost-sensitive classification, which proved to

be successful. The authors claimed having over 75 percentage of files correctly

33

classified with less than 30 percentage false positive. Results indicated that for the

Eclipse data, process metrics were more efficient defect predictors than code metrics.

In general, the authors aim to answer one or several of the following questions in

[42]:

 Which metrics that are easy to collect during the early phase of software

development are good defect predictors?

 Which models, quantitative, qualitative, hybrid, etc., should be used for defect

prediction?

 How accurate are those models?

 How much does it cost a software organization to utilize defect prediction

models and what are the benefits?

2.2.45 Nagappan, N. & Murphy, B. & Basili: The Influence of Organizational

Structure on Software Quality: An Empirical Case Study (2008)

In this paper the authors presented a metric scheme to quantify organizational

complexity in relation to the product development process. They also used the

proposed metrics to identify defect-prone files. In the case study presented in [47] ,

the organizational metrics, when applied to data from Windows Vista, were

statistically significant predictors of failure-proneness. The precision and recall

measures for identifying failure-prone binaries, using the organizational metrics, were

significantly higher than those derived from traditional metrics (churn, complexity,

coverage, dependencies, and pre-release bug measures). The authors concluded that

the results provide empirical evidence that the organizational metrics are related to,

and can effectively predict, defect-proneness.

34

One of the organizational metrics used in this paper is Edit Frequency (EF). This

measures the total number of times the source code that makes up the binary is edited.

An edit is an instance when an engineer checks code out of the VCS, alters it and

checks it back in again. This is independent of the number of lines of code altered

during the edit. This measure serves two purposes. One being that, if a binary had too

many edits it could be an indicator of the lack of stability/control in the code from the

different perspectives of reliability, performance etc., this is even if a small number of

engineers were making the majority of the edits. Secondly, it provides a more

complete view of the distribution of the edits: did a single engineer make the majority

of the edits, or were they evenly distributed amongst the engineers? The EF cross

balances with NOE and NOEE to make sure that a few engineers making all the edits

do not inflate our measurements and ultimately affect our predictive model. Also, if

the engineers who made most of the edits have left the company (NOEE) then it can

lead to the above discussed issues of knowledge transfer.

2.2.46 Afsharian, S. et al.: A Framework for Software Project Estimation Based on

Cosmic, DSM and Rework Characterization (2008)

In this paper the authors propose a framework, developed by Ericsson R&D Italy, for

project time and cost estimation for software development projects in the

telecommunications domain. The customization of Design Structure Matrix (DSM),

the application of COSMIC and the study of defect complexity curves are the

components of their estimation framework presented in [1]. The authors argue that

rework is the main cause of software deviations.

35

2.2.47 Illes-Seifert, T. & Paech, B.L.: Exploring the Relationship of History

Characteristics and Defect Count: An Empirical Study (2008)

In this paper, the authors present the results of an empirical study, exploring the

relationship between history characteristics and defects in software entities. In [29],

they analyze and present nine open source Java projects. The results show that there

are some history characteristics that highly correlate with defects in software, e.g., the

number of changes and the number of distinct authors performing changes to a file.

The number of co-changed files does not correlate with the defect count. The

following three hypotheses were tested in the study:

H1: The more distinct authors changing a file, the higher the file’s defect count will

be. The rationale behind this hypothesis is that “too many cooks spoil the broth.”

CONFIRMED!

H2: The more changes made to a file, the higher the defect count will be. The

rationale behind this hypothesis is that a high amount of changes indicates that

particular parts of the problem are not well understood and often need rework

resulting in fault-prone files. CONFIRMED!

H3: The higher the number of co-changed files, the higher the defect count. The

rationale behind this hypothesis is that a local change, affecting just one file, will

cause fewer defects than changes affecting more files. REJECTED!

36

2.2.48 Meneely, A. et al.: Predicting Failures with Developer Networks and Social

Network Analysis (2008)

In [40], the authors examine developer collaboration and combine this information

with code churn in an effort to predict failures at the file level. They conducted a case

study involving a mature Nortel networking product of over three million lines of

code. Failure prediction models were developed using test and post-release failure

data from two releases, then validated against a subsequent release. One model's

prioritization revealed 58% of the failures in 20% of the files compared with the

optimal prioritization that would have found 61% in 20% of the files, indicating that a

significant correlation exists between file-based developer network metrics and

software failures.

2.2.49 Ostrand T.J. and Weyuker E.J.: Progress in Automated Software Defect

Prediction (2009)

The authors developed a tool to predict which files are most likely to have defects in

future releases. The tool proposed in [63] is based on a regression model and uses the

system‘s defect history to produce a list of possible fault-prone files. The proposed

method extracts data from configuration management to predict fault-prone files in

the current release. The model is based on each file‘s change history, fault history,

size, and the programming language. The file history used by the tool is based on the

number of previous releases that contained a specific file. For change history the tool

uses the number of submitted MRs. The tool uses an automated Configuration

Management device to gather information needed to predict fault-prone files with

limited user interaction. Development of such automated tools and the shift in focus

toward change history is a clear indication that new theories in software reliability are

37

being developed. There are however some shortcoming with the proposed tool.

Since software has no aging property, mere presence of a file in the solution should

not affect its fault-proneness. The tool also uses the number of Modification

Requests (MR) in order to track changes made to the file‘s configuration

management. While the number of submitted MRs is a good indication of the

number of changes, it ignores the size and impact of the change. MRs vary greatly in

size. Some MRs impact a large portion of the code, replacing almost the entire file,

while others might simply change a single character. Using the number of MRs to

track changes is a convenient method that captures the number of changes made to a

file, but it is not a true indicator of the file‘s change history.

2.2.50 Conclusion

This section has provided a synopsis of some of the most significant and relevant

software reliability models that have been published in the field of software

reliability. The literature review has addressed some of the issues related to software

reliability. Numerous additional papers were reviewed during the research but are not

presented above. Not all papers reviewed are presented here due to their relative

importance and the sheer volume of available literature

2.3 Overview of Defect Estimation Models

In section 2.2 we provided a literature review of many existing software reliability

and defect estimation models. In order to categorize these models, a suitable

classification is needed. Due to the large number of models available, it is difficult to

find one method of classification; thus different classifications have been suggested.

One method of classification can be based on the probabilistic assumptions made in

38

the model. Classification based on these assumptions is helpful because it provides

insight for development of new models based on more realistic assumptions than

existing categories. Some software reliability models incorporate a stochastic process

in their description of the failure phenomenon, such as the Markov process

assumption, or the non-homogeneous Poisson process. Other models are based on the

subjective knowledge of the failure data or the Bayesian inference. Some do not

consider the dynamic aspects of failure process, such as input-domain based models,

fault seeding and tagging models. In [13], Cai provides the following classification

based on the model assumptions:

Markov Models

 Jelinski-Moranda (J-M) Model

 Schick-Wolverton Model

 Shanthikumar Model

 Littlewood Semi-Markov Model

Nonhomogeneous Poisson Process Models

 Goel-Okumoto (GO) model

 S-Shaped NHPP Model

 Musa Time Execution Model

Bayesian Models

 Littlewood-Verrall (LV) Model

 Langberg-Singpurwalla Model

Statistical Data Analysis Methods

39

 Crow and Singpurwalla Model

Input-Domain-Based Models

 Nelson Model

Seeding and Tagging Models

 Mills Model

 Peterson Model

 Lipow Model

 Software Metrics Models

Ramamoorthy and Bastani [57] provide a categorization of existing software

reliability models according to the phase of the software development where the

model is most appropriate (figure 2).

Figure 2: Classification of Software Reliability Models based on SDLC

40

In general, existing software reliability and software defect estimation models can be

grouped into two broad categories: static models, and dynamic models [32]. Static

models use different attributes from current or similar projects to estimate the

technical reliability measures of the current project. These models also use some

characteristics of the current project as the input parameters. Static models are called

static because the coefficients of their parameters are static and are estimated based

on a number of selected factors from previous projects. Dynamic models, on the

other hand, are based on statistical distributions and use observations from the current

project to estimate defect content and a software product‘s reliability. Dynamic

models use the observed defects during the software development phase to estimate

an end-product‘s reliability or defect content at release time. By using data obtained

from the current project, dynamic models can provide a more accurate prediction

specific to the project. Dynamic software reliability and defect estimation models can

be divided into two classes: those that use data obtained during the entire software

development life cycle to estimate model parameters, and those that focus on the data

obtained during the back-end of the project, specifically the testing phase. Since

more defect data is typically available during the testing of the final software product

at the end of the project, most of the existing dynamic models belong to this group.

Models that are based on exponential distribution and other reliability growth models

usually belong to the back-end testing phase category as well. The Rayleigh model is

an example of a dynamic model that can be used thought the software development

lifecycle. Rayleigh distribution is a special case of Weibull distribution; Its PDF

increases to a peak and then decreases at a decelerating rate. The Rayleigh model is

41

based on the assumption that the software defect removal pattern follows the

Rayleigh distribution. Under this assumption, the defect data obtained from each

software development phase can be used to obtain a Rayleigh model that fits the

defect pattern to estimate the expected number of remaining defects after the software

is released.

2.4 Current State of Software Defect Estimation Models

In the previous section we categorized software reliability and defect estimation

models into two categories: static and dynamic models. We claimed that the

parameters of static models are estimated based on a number of factors that may

relate to software defects. The correlation between code churn and defect-proneness

has been studied by a number of research teams. In [49], Munson et al. studied the

change in relative software complexity in over 18 software builds and estimated the

fault surrogate in the software product. The authors used a set of complexity

measures that are known to be highly correlated to software faults for estimating the

software fault surrogate. They discovered a strong relationship between software

faults and certain aspects of software complexity. The authors used the rate of

change in relative complexity as the index of the rate of fault injection. They

developed a regression model relating complexity measures of the code to code

faults. In [53], Ostrand et al. used a negative binomial regression model utilizing four

years of data from previous releases to show a correlation between selected predictor

variables and the numbers of faults observed in files.

The list of software defect factors seems inexhaustible, especially when we consider

that multiple measures can apply to a single factor. The complexity among various

42

factors and measures has led to many arguments and controversies [13]. After

studying a number of software defect factors over seven case studies in [37], the

authors have noted that the differences in the number of defects could not be

explained by any combination of software structural metrics. This implies that there

is a need for models that incorporate software process. The main limitation is that

regression models can only show a correlation between variables and do not prove

causality. Since factors that affect defect content are different and vary from project

to project, the assumption that the same correlation always exists between selected

predictor variables in any software development project is unfounded.

Fenton et al. in [24], review various approaches for software defect prediction and

concludes that traditional regression modeling alone is inadequate. In [24] the

authors claim that causal models are needed for more accurate prediction.

Khoshgoftar and Goel [34] explored the relationship between debug code churn and

fault-prone modules. The authors analyzed two consecutive releases of a large

communication software to identify fault-prone modules based on the number of

debug code changes during development. They labeled fault-prone modules as those

that exceeded a threshold of debug code churn. Their model can be used to focus

extra attention on fault-prone modules and thus reduce the risk of unexpected

problems. In [26], T.L. Graves et al. analyzed the effect of code change on software

complexity and argued that the change in code has an impact on the fault surrogate.

Moser et al. in [42] showed that program quality metrics are closely related to

software complexity metrics and code churn. Other researchers have also examined

code churn and its relationship to defect density. The authors in [59] present a suite of

43

in-process metrics that leverage the software testing effort to create a defect density

prediction model for use throughout the software development process. A case study

conducted with Galois Connections, Inc. in a Haskell programming environment

indicated that the resulting defect density prediction is indicative of the actual system

defect density. In [44], Nagappan and Ball find a significant linear relationship

between code churn and the rate at which faults are inserted into the system in terms

of number of faults per unit change in code churn. In [45], Nagappan and Ball

present a technique for early prediction of system defect density using a set of relative

code churn measures that relate the amount of churn to other variables like

component size and the temporal extent of churn. Results from [45] also show that

there are some change history characteristics that highly correlate with defects in

software, e.g., the number of changes and the number of distinct authors performing

changes to a file. While the relationship between code churn and software defect

density has been discussed by many researchers, to our knowledge no causal model

has been proposed that captures the change history of products and the software

development activities.

2.5 Our Objective in the Context of the Current State of Research

While the relationship between code churn and software defect density has been

discussed by many researchers, to our knowledge no causal model has been proposed

that can be used to identify defect-prone artifacts based on software development

activities and change history. Thus, our objective is to introduce a causal model that

uses software development activities and change history to identify defect-prone

software artifacts early in the development lifecycle. A model that draws from

44

current software development activities to estimate the defect content in a software

product is very useful to the software engineering community. Using observations

from an ongoing software development project not only provides more accurate

defect prediction, it also supplies the framework software managers need to make

risk informed decisions early in the software development lifecycle. Rather than

relying on defect data which is mostly available toward the end of the software

development lifecycle, the SDPM can be used throughout a project‘s development to

produce a more reliable product. Our objective is also to investigate the accuracy of

the estimate provided by the SDPM in five real life software development projects.

45

Chapter 3: Software Development Profile Model

3.1 Proposed Work

Most large software systems are developed in phases over a long period of time and

follow a specific software development lifecycle model. During software

development, due to human error, defects are injected into the software. Some are

identified and removed, while others go undetected. These ―latent defects‖ are passed

into the next software development phase and can be observed and reworked in the

subsequent change sets. Before the software is released into production, it undergoes

a period of final system testing and acceptance testing to ensure it meets all the

customer requirements before it is released for production. Any defects that are not

identified during Software Acceptance Testing (SAT) will be released into production

and can cause software failure. We define the Software Development Profile (SDP)

as all internal and external factors that affect the software product while it is being

developed. While most software development projects follow a specific development

model (Waterfall, Prototype, Agile, etc.) they nevertheless experience a unique

software development profile during development. Software Development Profile

should be considered to obtain more accurate defect count estimation.

3.2 Methodology

Software development processes rely heavily on human judgment and therefore

cannot be completely automated. While the use of different Computer Aided

Software Engineering (CASE) tools during software development has improved

control and productivity in recent years, software development remains a very hands-

46

on activity. Since causes leading to software failures are all due to human error

during implementation of software requirements overtime, software change history

contains useful information about software defect content. Configuration

Management (CM) tools are used to manage software changes in large scale software

development projects. Therefore, the CM tool can be used to obtain information

about software‘s change history. Software engineers are required to check out

desired artifacts from the development stream before making any changes. A

development stream is a database containing the chronology of all development

activities [36]. After software changes are made and inspected, the artifacts are

delivered back to the stream in the form of a change set. Fig. 1 shows an example of a

software development stream. Since the content of a software development stream

only changes when change sets are delivered, it is logical to divide the software

development process into a number of successive intervals and model software

development activities in each individual change set.

1/2/2010 7/1/2010

2/24/2010

Change Set #3

Development

Stream

5/26/2010

Delivery to

Customer

3/16/2010

Change Set #4

2/17/2010

Change Set #1

4/2/2010 - 4/26/2010

Final System Testing

22/2

Change Set #2

3/24/2010

Change Set #5

Figure 3: Software Development Stream

47

When a software construct (SLOC, module, function point, requirement statement,

etc.) is created or modified during software development, there is a chance it is can be

injected with a defect. Let‘s define:

 {

 (1)

If we could identify all defective constructs, we could simply rework the defects and

produce the perfect software. However, since we don‘t know which constructs were

injected with a defect, Z
c
 is a random variable. We define r

c
 as the probability of {z

c

=1}. This means r
c
 is the probability that a given construct touched in the change set

c did not become defective. The probability r
c

would depend on the effectiveness of

software development activities such as defect detection and removal and therefore

may not be the same across all change sets. Other internal and external factors such

as the developer‘s skill level, schedule pressure, size of the change, etc. can influence

this probability as well. Let‘s formally define

 * + * +
 (2)

as the reliability of change set c. In the remainder of this paper we use the term

―change set reliability‖ as the probability that a given construct touched in a change

set is defect free. Estimating the r
c
 based on software development activities is

desirable and is discussed in the following section. Modeling change set reliabilities

based on software development activities would allow software managers to make

48

risk-informed decisions and adjust software development activities to improve the

reliability of their product.

3.3 Software Development Profile Matrix

Since change sets have different reliabilities and a given construct can be touched in

different change sets, change set reliabilities need to be maintained. This data can be

captured in the Software Development Profile Matrix () where:

 {

 (3)

The size of the Software Development Profile Matrix is () where n is the

number of constructs present in the software stream when the c-th change set is

delivered. As an example, the following matrix captures the software development

profile of a software development stream containing nine constructs modified over

nine change sets.

(

)

 (4)

49

In the matrix above, columns represent change sets and rows correspond to specific

constructs. Based on our assumption, when a construct is touched in a change set, it

has a change to become defective. Since the probability of a given construct

becoming defective is different in each change set, the value r
c
 is stored in the change

matrix. If the construct is not modified in the change set, its reliability remains

unchanged and its value is marked with a 1. Using the information stored in the

Software Development Profile Matrix, we can then estimate the reliability of a given

construct changing over multiple change sets. In this section we provide an

approximation by assuming the change sets are independent. In section 3.6 we will

improve this approximation by incorporating the dependencies between the change

sets. If we assume that the change sets are independent (an assumption that will be

removed in section 3.6), then the probability of a construct being defect free can be

estimated by the following approximation:

 ∏

 (5)

We define ―construct reliability” as the probability of a given construct being defect

free represented hereafter by

. Estimator (5) simply means that for a construct ―i‖

to be defect free, it can‘t be injected with a defect in any change set during which it

was modified.

50

3.4 Estimating Change Set Reliabilities Using a Binary Decision Diagram

Previously, we discussed the notion that software development activities such as

defect detection or removal activities can influence change set reliabilities. Software

inspections or tests are examples of defect detection activities. In this section we will

show how the effectiveness of such activities can be used to estimate the change set

reliabilities. Software development activities during each change set can be modeled

using a Binary Decision Diagram (BDD). BDD is a data structure that is used to

represent Boolean functions and the relationship between them. Each decision node

represents an activity that occurs in the change set. Example activities in a change

set include software constructs being modified, inspected, integration tested, or

reworked before delivery to the development stream. Figure 4 illustrates how these

activities are modeled using a Binary Decision Diagram. In this example the node C

represents the coding activity in the change set, the node I represents the code

inspection activity, and node T represents testing. In this example, the rework

activity, shown here as the node R, occurs after the inspection and testing is complete.

The edges of the BDD represent the probability of success for each node. For

instance, p in this example is the probability that a given construct that was modified

did not become defective, while q is the probability that a defective construct is

observed during the inspection process and w represents the probability that a

defective construct, unnoticed during the inspection process, is observed during the

testing phase.

51

Figure 4: Software Development Binary Decision Diagram

Based on the BDD representation of software development activities, the probability

that a given construct does not become defective in change set c can be estimated by:

 () () ()

Where:

 ̅ () = defect injection probability

 = probability of observing a defective construct during inspection

(detection probability during inspection)

 = probability of observing a defective construct during I & T

(detection probability during testing)

52

We further assume that the defect injection probability during initial coding is the

same as the defect injection probability during rework. This is not an unreasonable

assumption, since the defects found during inspection or testing are generally

corrected by the original author. To estimate , we first need to calculate model

parameters Let‘s define

 as the number of constructs that become defective in change set c,

 as the number of constructs touched in change set c,

 ̅ () as the injection probability.

If we assume that the constructs become defective independently, then the probability

of constructs becoming defective given and ̅ can be described using the

binomial distribution:

 (| ̅) (

)(̅
)

 (̅)
 (6)

The current state of knowledge about ̅ is unknown prior to inspection and testing

activities. Bayesian theorem can be used to obtain an ―updated‖ state of knowledge

based on the number of defective constructs observed during inspection or testing.

Let‘s use the Beta distribution to describe ̅ . Using Beta distribution to describe

probabilities is a reasonable assumption because it has a flexible distribution between

0 and 1. The functional form of the Beta family of distributions is:

 (|)
⌈()

⌈() ⌈()
 () ()

 (7)

53

Where , both non-negative, are parameters of the distribution and

determine its shape. More specifically, parameters a=1 and b=1 describe no prior

knowledge about ̅ The binomial distribution in Eq. (6) and the evidence obtained

from inspection activities can be used to update the state of our knowledge about ̅ .

Using the Beta distribution shown in Eq. (8) with the conjugate likelihood given by

Eq. (6) provide updates for the parameters a‘ = a + N and b‘ = b + (S - N) and the

state of knowledge about ̅ .

 (̅ |)
⌈()

⌈() ⌈()
 (̅)

 (̅)
 (8)

Figure 5 shows the defect injection probability of project 1 with no prior knowledge

(a=1, b=1) and after the evidence was obtained during the inspection process.

54

Figure 5: Defect Injection Probability of Project 1- Before and After Code Inspection

The posterior mean value for ̅ is

 ̅

()

()

()

For N >> a, and S >> b the posterior mean value for ̅ is simply:

1
0

5

10

15

20

25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Defect Injection Probability

Prior state of Knowledge

Beta(1-p|S=495,i=65)

55

 ̂̅

 (9)

Bayesian theorem states that as more evidence becomes available, uncertainty

decreases. The spread of the Beta distribution can be used to reflect our uncertainty

about the value of the unknown ̅ . The coefficient of variation (CV) of the Beta

distribution shown in Eq. (10) can be used to express our uncertainty of the state of

knowledge.

 √

 ()
 (10)

In this case, with a=1 and b=1, the coefficient of variation is 0.5774, whereas in

Figure 5 (S=495 and N=95), the coefficient of variation is reduced to 0.0916. The

coefficient of variation will further be reduced if additional information becomes

available through further testing of the changes (Figure 6).

56

Figure 6: Defect Injection Probability of Project 1 Before and After Testing

In this case shown in Figure 6 (S=495, i=65, t=12) the coefficient of variation is

further reduced from 0.0916 to 0.0676 after the evidence from testing is available.

Similarly, the detection probabilities can be estimated using Bayesian

inference. Let‘s define

 Number of defective constructs identified by the inspection of change set c

 = Number of defective constructs identified during testing of change set c

1
0

5

10

15

20

25

30

35

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Defect Injection Probability

Prior state of Knowledge

Beta(1-p|S=495,i=65)

Beta(1-p|S=495,i=65 & t=12)

57

If we assume that defective constructs are observed independently, then the

probabilities of and can be described by the following binomial distributions:

 (|) (

)() ()

 (11)

 (|()) (()

)()

()

 () ()
 (12)

Our state of knowledge on and can be described by Bayesian theorem using the

Beta distribution as the posterior distribution. As more evidence becomes available

through inspection and testing, our degree of knowledge increases and the uncertainty

decreases. If we assume no prior knowledge (a=1 and b=1), using as

the evidence, the updated degree of knowledge about the probability of observing a

defect during inspection and testing can be written as:

 (|)
⌈()

⌈() ⌈(())
 () () (13)

 (|())
⌈(())

⌈() ⌈(())
 () ()() (14)

where D is the number of defective constructs observed during inspection and

testing (). The posterior mean values and coefficient of variation of q

and w are given below by Eq. (15) and eq. (16).

58

 ̂

 √

,() -

()()
 (15)

 ̂

()
 √

[()]

()(())
 (16)

Using posterior mean values of the parameters provided in Eq. (9), Eq. (15) and Eq.

(16), we can estimate the reliability of change set c as:

 ̂ , - .

 / .

 / (17)

If we define () as the number of defective constructs observed during

testing and inspection, then the reliability of change set c can be rewritten as:

 ̂ , - .

 / .

 / (18)

The above equation (18) describes the relationship between the reliability of the

change set c, size of the change set, and software development activities during

change set c. Based on Eq. (18), in case of perfect coding where no defects are

injected (N=i=t=0), the change set reliability is 1. However, in case of imperfect

coding, even if all defective constructs are observed during testing and inspection

(N=D=i+t), the reliability of the change set will be .

 /

, which is less than 1,

due to the defect injection probability during rework.

59

In this section we used the size of change set c () and the number of defective

constructs observed during defect detection activities to estimate model parameters

 While are values that can be directly obtained from the

configuration management tool and the inspection and testing process, the total

number of constructs that become defective in each change set, (), needs to be

estimated. Section 3.5 describes how to estimate this number during change set c

using Capture-Recapture method.

3.5 Estimating Total Number of Defective Constructs in Change Sets

In this chapter we discuss how the capture-recapture method can be used to estimate

the number of defective constructs in a change set. Several studies in software

engineering have considered the use of capture-recapture models for estimating the

number of defects in an inspection package. Originally proposed by biologists to

estimate animal populations, different variations of capture-recapture have been

employed to estimate the defect content in an inspection package. Inspection is a

formal, rigorous and in-depth technical review designed to identify problems as close

to their point of origin as possible [56]. Inspection was first described by Fagan in

1976, and since then inspections have been established as state of the practice and

have evolved to become a mature empirical research area [55][5]. A number of

authors have studied the robustness of various capture-recapture techniques have been

researched [11], [41], [54], [58], [62]. Capture-recapture uses the overlap between

the findings observed among different inspectors to estimate the total fault content in

an inspection package. If the overlap between the findings observed by inspectors is

60

large, it is assumed that few defects remain, and if the overlap is small, then many

more defects are assumed undetected.

Different variations of the capture-recapture method have been proposed in the

literature. The simplest version assumes that all defects have the same probability of

being observed and all inspectors have the same skill level. This assumption is not

very realistic for the software inspection process, since inspectors generally have

different skill levels, and defects have different probability of being defected. The

most realistic version of the capture-recapture model takes this into account,

assuming defects have different probabilities of being found and inspectors‘ different

skill levels. Four different capture-recapture assumptions are graphically illustrated

in Figure 7 [11]. To estimate the total number of defective constructs in a change set,

we use the capture-recapture method proposed by Chao [16].

Figure 7: Capture-Recapture Model Assumptions

61

To implement capture-recapture in the inspection process several requirements have

to be met. These necessary assumptions are as follows:

 The defect population must be closed. This means that while the inspection is

ongoing, no further defects are injected into the artifacts. This requirement is

easily met because no modification is made to the artifact while the inspection

is in progress.

 Each inspector will receive the same material. This assumption is also

realistic, because the moderator prepares the inspection material and submits

the same material to all inspectors for review.

 Each inspector reviews the material independently. This, too is realistic,

because each inspector is given sufficient time to review the material prior to

the formal inspection meeting.

 Inspectors do not discuss or share their findings until everyone has submitted

his findings. It is very critical to the successful capture-recapture model that

this requirement is met. As described above, CR uses the overlap between

defects found by different inspectors. Sharing defect information will

increase the overlap and therefore result in an underestimation of defect data.

 Inspectors must keep accurate data of their findings.

 The moderator needs to use the independent findings and estimate the number

of constructs that remain defective.

 Due to the nature of the software and dependencies among artifacts, constructs

can become defective as the result of a change in a related artifact. To capture

such defects, it is assumed that the inspection package includes not only

62

artifacts that were modified, but also all related artifacts. While there are

various methods for modeling internal dependencies among modules, we

found it sufficient to capture this dependency by inspecting related artifacts

during the inspection process.

Table 1 shows a sample inspection worksheet that can be used to estimate the number

of defective constructs in an inspection package. Columns e1-e4 represent the

inspection findings for each inspector.

Table 1: SDPM Sample Inspection Worksheet

Defect
Description

Detection
Probability

Inspectors
fi

e1 e2 e3 e4

Module1 line 243 p1 1 1 1 1 4

Module1 line 622 p2 1 1 0 1 3

Module2 line 41 p3 1 1 0 1 3

Module13 line 24 p4 0 1 0 0 1

Module 21 line 2 p5 1 1 0 1 3

Module 34 line 1233 p6 0 1 0 0 1

 nj= 4 6 1 4 15

The format inspection process is illustrated in Figure 8. SDPM is used after the

formal inspection meeting to estimate the build reliability. This worksheet is used

during the inspection of the case studies provided in Chapter 4.

63

Figure 8: SDPM within the Formal Inspection Process

3.5.1 Chao‘s Heterogeneity-Time Model

In this section we will describe how Chao‘s Heterogeneity-Time model is used to

estimate the number of defective constructs in a change set [16]. Chao‘s model

makes the following assumptions:

 : True but unknown number of defective constructs in a change set c

 : Number of inspectors inspecting change set c

 Unknown detection probability of i-th defective constructs in change set c

 (

) ̃

∑

 Unknown skill level of the j-th participating inspector

64

 : The detection probability of the i-th defective construct by the j-th inspector

reviewing change set c

 : Inspection coverage of change set c

 Number of defective constructs observed by the j-th inspector inspecting

change set c

 Number of defective constructs identified exactly by k inspectors in change

set c

 : The number of distinct defective constructs observed during the inspection of

change set c

Chao [16] formulated an estimator that allows the probability to vary with

heterogeneity and time. Let us assume that the number of constructs that become

defective in change set c is , and there are t inspectors participating in the

inspection process. Let‘s also assume that defects are indexed 1,2,.., and
 is the

detection probability of the i-th defective construct observed by the j-th inspector.

Chao in [16] assumes that

 . Unlike previous authors that assume (

) and (

) are

random samples from an unknown distribution, Chao [16] treats them as fixed

parameters.

In previous section we developed a worksheet to capture the inspection findings per

inspector during each inspection. Table 1 captures this information in the form of an

N x t matrix X=(Xi,j) where:

 , -

65

Where I[A] is 1 if event A occurs and 0 otherwise. If we assume that there is no

interaction between the inspectors and each inspector reviews the materials

independently, then the number of distinct defects observed during the inspection can

be written as:

 ∑ [∑

]
 (19)

And the number of defective constructs observed exactly by k inspectors can be

written as:

 ∑ [∑

]

 (20)

It is obvious that only defective constructs are detected and
 represents the

number of defective constructs that are not observed. The total number of defective

constructs in change set c is
 . The sample coverage is defined as

the proportion of detection probabilities of the observed constructs over all defect

detection probabilities:

∑

 , -

∑

If all
 are equal, then

 . In that case the estimator for the number of

defective constructs in change set c would be

 ̂

 (21)

66

Chao [16] provides the following three estimators for sample coverage when

 are unequal:

 ̂

∑

 ̂

()

∑

 ̂

()

()()

∑

 ̂ ̂ are bias-corrected versions of defect coverage ̂ . Based on the coverage

factors, the estimated number of defective constructs in change set c can be estimated

by

 ̂

 ̂

 ̂

 (22)

Where

 {

 ̂
 ∑ ()

 ∑ ∑

 } (23)

 is the coefficient of variation. When

 is relatively small, then the number of

defective constructs, ̂
 can be estimated by

67

 ̂

 ̂
 (24)

3.6 Modeling Dependencies

Dependency among components is an important factor when it comes to quantifying

risk, reliability and safety models. Generally, there are two approaches to

incorporating dependencies in a probabilistic model. The first approach is the explicit

modeling approach, where we define the sources of dependencies, such as internal,

external, design, human interaction, environmental, etc. and include them in the

overall physical model of the system. The second approach is the implicit modeling

approach. In an implicit dependency modeling approach we try to cover the

probabilistic impact of dependencies on the overall risk or reliability of the system

without modeling the detailed mechanism of the interdependencies.

In the SDPM, we recognize two types of dependencies: intrinsic and extrinsic

dependencies. Intrinsic dependencies are those in which functional status of one

construct affects the functional status of another. Such dependencies generally stem

from the way the software is designed. This type of dependency is important because

the modification of one construct can cause related constructs to become defective.

Intrinsic dependencies primarily exist between software constructs in related artifacts

and numerous models have been proposed to capture such dependencies [21], [51].

Modeling dependencies among constructs can improve the estimation of defect

injection probability () by including the probability of constructs that can become

defective even if they are not modified in a change set. In the SDPM, we estimate

this probability based on the total number of defective constructs obtained by capture-

68

recapture method. Since such dependencies mostly exist among constructs within

related software artifacts, we were able to estimate them indirectly by including

related artifacts in the inspection process.

Another type of dependency is the dependency between change sets. Since software

constructs can be modified in multiple change sets, internal dependencies exist among

change sets. In Section 3.4, we assumed that change sets are independent and, based

on this assumption, we provided an approximation for estimating the reliability of

constructs that were touched in more than one change set. We assumed change sets

were independent such that defects injected in one change set could only be observed

and reworked during the same change set. By making this assumption, we estimated

the reliability of the constructs as the product of change set reliabilities during which

they were modified. In reality, however, defective constructs can be observed during

the inspection or testing of any subsequent change sets. In Section 3.6.1 we improve

upon the approximation by including the future detection probabilities in the

estimation.

Extrinsic dependencies, on the other hand, are those in which the coupling

mechanism is not inherent in the design of the software. Such dependencies are often

external to the software product. Dependencies due to common environmental

factors, such as overall schedule pressure, maturity level of the organization, skill

level of the development team, or lack of management oversight belong to this

category. In Section 3.6.2 we discuss how Bayesian Belief Networks (BBNs) can be

used to capture external dependencies and incorporate the state of our knowledge to

update and improve SDPM parameter estimates.

69

3.6.1 Modeling Dependencies among Change Sets

In Section 3.4, we assumed that software development activities were independent

from each other, and software constructs that become defective in one change set can

only be detected only during the next inspection or testing activity. This is an

unrealistic assumption, as defective constructs can be observed and repaired during

the inspection or testing of future change sets. In this chapter we improve our

approximation by removing the independency assumption. However, to remove the

independency assumption we need to add two new assumptions. The first assumption

is that a defective construct must be observed before it is reworked. The second

assumption is that when a defective construct is observed, it is reworked in the

immediately next change set. Both these assumptions are in general reasonable,

because latent defects are more likely to be observed during testing or inspection than

unit testing. Furthermore, latent defects are generally reworked as soon as they are

discovered. The exceptions are fixes that are either too complex or require input from

a customer or third party. In any case, these assumptions are more reasonable than

our initial independency assumption. Figure 9 shows a Binary Decision Diagram

(BBD) used to model the probability of constructs that are touched in multiple change

sets.

70

C1

D1

q1

p1

1-p1

0

1-q1

1

D2

.

.

.
.

.

.

C2

1-p2

p2

C3

.
.

.

q2

Figure 9: Modeling Dependencies among Change Sets

In this BDD, the nodes marked with C represent the coding activity and those marked

with D represent defect discovery activities such as inspection or testing. Based on

the BDD shown in Figure 9, a construct can be modified in multiple change sets

either by the implementation of a new functionality, or as the result of the rework of

an observed defect. Based on the BDD above, the probability of a given construct

that is modified in two change sets i and j can be estimated by:

 () (25)

This means that the probability of a construct modified in two change sets being

correct, is the probability of the construct being correct in both change sets,

71

represented by . Otherwise, if it became defective in the first change set, it

must be observed during the defect discovery activity of the (j-1)th change set and be

correctly modified in change set j, () . This process can be written

recursively as:

 {

 ()

 (26)

3.6.2 Updating Model Parameters using Bayesian Belief Network (BBN)

As discussed earlier, causal models can provide more accurate predictions by

allowing evidence and expert judgment to be taken into account when estimating

model parameters. Rather than relying only on structural software measurements and

historical data, the Software Development Profile Model can be used in conjunction

with Bayesian Belief Networks to make inferences about the uncertain states of

model parameters when limited information is available. BBNs can also be used to

incorporate specification of probabilistic dependencies between variables and factors

that have widespread influences. In general, there are two types of dependencies

among change sets that need to be considered when updating model parameters. The

first type of dependency is the dependency on factors that affect the overall software

development project, such as process quality, overall staff quality, requirements and

specification quality or test process quality. These factors, for example, impact all

change sets and their affect should be captured to improve model parameter

estimation when such information becomes available. On the other hand, there are

72

factors that do not affect the entire project, only individual change sets, such as the

level of testing effort during one specific change set, resource availability, or current

schedule pressure. While these factors do not affect the entire software development

project, when available they can be used to update model parameters. Unlike existing

regression models that are inadequate at capturing such dependencies, the SDPM can

be used in conjunction with Bayesian Belief Networks to capture this information and

provide a more accurate prediction.

A Bayesian Belief Network (BBN) is a directed acyclic graph (DAG) with nodes

representing random variables, each with associated probability tables. An arrow

from one node to another represents probabilistic influence. Figure 10 shows how a

Bayesian Belief Network can be used in conjunction with SDPM to update model

parameters. In this example we selected factors that affect all change sets (shown in

blue), as well as factors that affect only individual change sets (shown in orange). In

this model, the variables Test Process Quality (TPQ), Development Process Quality

(DPQ), Staff Quality (SQ), and Requirements & Specification Quality (RSQ) are

factors that are common to all change sets. As the names of the variables indicate,

these are generally process, organizational or program level qualities that affect the

entire project.

73

Figure 10: Example of Bayesian Belief Network Used in Conjunction with SDPM

74

Consider the example shown in Figure 10. In the example above, overall test process

quality depends on test staff experience, quality of test cases, and how well the test

process is defined. The influence level of the process quality indicators are judged by

experts and are assigned numerical values between 0 and 1. Similarly the testing

process quality and the testing effort influence the effectiveness of the process.

Again, the relative level of influence of these two factors can be assessed by an

expert. Once the relationships between the variables are defined, the BBN can be

used to update Software Development Profile Model parameters (p, q, and w). In the

example above we show how the probability of observing a defect in test can be

updated. This is especially useful when objective evidence is lacking.

3.7 Properties and of Software Development Profile Model

Modeling software development using the Software Development Profile Model

provides some unique advantages

1. Flexibility

The proposed Software Development Profile Model is not dependent on a

particular type of software artifact or unit of measurement. Software systems

consist of executable and non-executable files but models based on observed

defects fail to identify defects in non-executable files. Since the SDPM uses

capture-recapture during inspection to estimate the number of defective

constructs, it can be used successfully on executable and non-executable files

alike, including configuration files, system documentation, user

documentation, and other artifacts.

2. Scalability

75

The proposed Software Development Profile Model can be applied to the

entire software solution or any subset of the system that might be of interest.

It is often necessary to make a statement only about the defect content of a

subset of the system. This becomes important with reuse-based software

development, COTS integration, and partial exclusions such as auto-generated

code.

3. Measurability

The proposed Software Development Profile Model provides a method for

estimating the number of defective constructs in a software artifact. The

estimator provided in (9) can be used to estimate the number of defective

constructs in a given module.

 () ∑ ,
 -

 (27)

Where n is the total number of constructs in the module M during change set

c.

3.8 Software Development Profile

We formally define Software Development profile (SDP) as the listing of all software

constructs in the software development stream after the change set c is delivered,

together with their reliabilities
 .

 *(
) + (28)

76

Figure 11: Software Development Profile Model - Scalability

77

Chapter 4: Case Studies

In this chapter we present five case studies of software development projects that the

author was personally involved in from 2007 – 2011. These are real projects with

real customers and deliveries. We used these case studies to showcase how effective

SDPM can be in relevant software development projects and how well it predicts

software defect content. The purpose of presenting these case studies is not only to

assess the accuracy of the SDPM‘s predictions, but also to investigate the usability of

the SDPM in real life industrial projects. This chapter is divided into five sections,

each detailing one case study. We will also discuss regression based defect

estimation methods and compare the case study results with the negative binomial

regression model.

We will first provide a brief background for each software development project and

then describe step-by-step how measurements are taken and model parameters are

estimated. Using the model parameters, we will then estimate the defect content of

the files and identify those files that are most likely defect-prone. Finally, we will

compare the predicted results with the actual defects observed during the final system

and acceptance testing. We will use the coefficient of correlation to compare the

SPDM results with the existing regression based defect estimation methods. To

reduce the placebo effect and to prevent files from being treated differently, the

development and test team members were not informed of the intent or the prediction

results of the case studies until the end of all five projects. The predicted results were

kept unpublished during final system and acceptance testing to allow the test team to

perform their final system testing without bias or special attention to any identified

78

defect-prone modules. The test cases for the final system testing were developed

based on the overall system requirements covering not only the software changes but

also overall system functionality. On the other Software Integration (SWIT) test

cases and System Integration (I&T) test cases were developed based on the

requirements targeting only modified software functionalities.

In response to usability analysis, we noticed that the measurements needed for

estimating SPDM model parameters were already being collected by the program

with the exception of the number of constructs that remain defective after each

inspection. To capture this information we used Chao‘s estimator to estimate the

number of defective constructs in each change set as described in Section 3.5. The

inspectors were asked to review the inspection artifacts independently and document

their findings prior to the formal inspection meeting. While proper inspection

processes requires inspectors to review the inspection package independently prior to

the formal inspection meeting, the inspectors were not required to document findings

at the construct level. To reduce the impact of this extra effort on the development

team, the inspectors were asked to submit their findings to the moderator via email

prior to the meeting, and the moderator himself performed Chao‘s estimation [16];

thus the SDPM had no significant impact on the development team. The time that the

moderator needed to perform the analysis and perform the estimation was between

one to three hours per inspection, depending on the number of issues observed during

the inspection. This number was an increase of less than 10% in the total inspection

time.

79

To make measurements consistent across all projects, we developed the Software

Development Profile Estimation Tool (PET) and several Perl scripts that we used on

all projects. We also used COTS products such as Microsoft Excel to perform

calculations related to the reliability estimation

.

4.1 Comparing Test Case Results with Existing Models

We are also interested in comparing the SDPM estimates with existing defect

estimation models. Due to the large number of defect estimation models that have

been proposed over the years, a comparison among all models is unrealistic and

outside the scope of our current research. However, since we had access to extensive

software defect data, going back over 40 releases, it made sense to compare SDPM

with a regression based model. The main idea behind this comparison is to illustrate

that, even with long historical software defect data, software development activities

from current project can provide a better future software defect estimate. It is

important to mention, that because of differences between the two models, a direct

comparison between the SDPM and other models is not possible. First, there is a

difference between the units of measurement among the two models. While the

SDPM provides an estimate for the number of defective constructs, existing models

are based on the number of defects per file. Second, regression based models are

based on the defects observed during testing and operation and are unable to identify

defects in non-executable files. But perhaps the main difference between the two

models is that the SDPM is a causal model for estimating the number of defective

constructs based on the development activities and the software changes in a specific

80

project. When evidence on software development activities or change history is

unavailable, the SDPM assumes no defects have been introduced.

We selected five independent software development projects from the same software

system to evaluate the results of the SDPM and the regression based model. Since all

five projects shared the same history, files and operational profile, the structural

software measurements used in the regression models will be similar among all five

projects. File age, file size, change history, and the number of previously observed

defects are some examples of variables used for the regression models. The idea

behind this selection is that given a common history, it is expected that regression

models would estimate similar defect prediction for a given file across all five

projects.

Selecting five projects within the same product presented its own challenges. While

all software development projects were developed by different teams, we had to

excluding unrelated code changes during the analysis of each project. There were

two main reasons for excluding unrelated code changes. First, when defects were

observed in one project they were resolved in all active software development

streams. Since these defects were included in the analysis of each case study,

counting them more than once would make the analysis invalid. Also, when defects

were identified during final system testing, they were assigned to the project to which

the defect belonged. Once a fix was identified, it was fixed in the software stream

that it was introduced to and then delivered to all parallel streams. Next,

implementation of new functionalities had to be delivered to all streams with future

release dates. This is a common practice to ensure future software releases have all

81

the functionalities that previous releases had already implemented. However, to keep

the projects independent we did not count the changes due to implementation of new

functionality in parallel development stream. Figure 12 shows examples of defects

and new functionality changes that were counted once in various projects.

1/28/2011 - 4/5/2011

Project 1

7/6/2011

Defect Found in Project 2

6/10/2011

Project 1 Defect Found in Project 3

1/28/2011 - 4/8/2011

Project 2

3/21/2011

Implementation
of new functionality

2/7/2011

Implementation of new functionality
from project 1 is checked into
project 2 but excluded
from Project 2 Analysis

1/28/2011 - 4/10/2011

Project 3

4/18/2011

Defects Found in Project 2

3/26/2011

Defect Found in Project 2
Fixed in Project 3 But Excluded

From the Project 3 Analysis

5/10/2011

During testing of Project 3, a defect
is found related to Project 1. It is
Reworked in all active projects but
only counted once under Project 1

6/29/2011

Project 1 Defects are
Analyzed under Project 1

Figure 12: Defects are counted only once in the stream they were injected

To exclude unrelated code changes and defects, the script developed (shown in

Appendix A) to capture software change history was modified to count any change

set with multiple deliveries only once. The logic behind the script was simple. Any

change set with multiple deliveries was excluded from the analysis if it had been

delivered to a previous stream.

82

4.1.1 Poisson Regression Model Setup

In addition to the data that we collected for our case studies, we also collected data

for a sequence of 40 previous releases in order to compare our case study results with

the Poisson regression model. Poisson regression model extends linear regression in

order to handle positive outcomes such as the number of defects. For outcomes such

as the number of defects per file, which is a non-negative number, it is unrealistic to

assume that the expected value is an additive function of the explanatory variables

[53]. The explanatory variables were selected similar to the negative binomial

regression model proposed by Robert Bell et al. [53]. The main advantage of

negative binomial regression is that fits data that is over-dispersed, which is normally

observed with software defects. SAS provides a feature to correct for over-dispersion

called the Pearson adjustment. In SAS JMP, we enabled the Over-dispersion Test and

Intervals feature to fit the data using Poisson distribution. We used SAS JMP version

8.0.1 in our case study. We used data from over 40 previous to predict which files are

most likely to be defective in the next release.

Suppose that we want to make predictions for release 40. In that case, we build our

model using data from releases 1 to 39 based on observations in the regression for

each combination of file and release in which the file existed. To give an example,

suppose that File A was added to the system at release 3 and remained in the system

beyond release 40. File A would contribute thirty-eight observations to the

regression, one for each release from 3 to 40. Some predictor variables would remain

constant across these observations (notably, Programming Language), while others

might change (e.g., SLOC or PriorFaults). Additional predictor variables are New,

83

Changed, Unchanged, and Age. In this example, for Release 3, File A would have

New=1, Age = 0, and PriorFaults=0, Changed=1, Unchanged=0. For later releases,

we would have New=0, but Age and PriorFaults greater or equal 0. We define the

Age of a file as the number of previous releases the file featured in, so Age=0 is the

same as New=1. Similar to the Negative Binomial Regression Model proposed by

Bell et al. [53], we take square roots of prior defects and logarithm of SLOC to reduce

skewness of those predictors and improve the fit.

For the regression model, we assume that the number of observed defects in each file

has a Poisson distribution and that its mean , is related to the factors used as

predictor variables. A log linear relationship between the mean and the factors is

specified by the log link function. The log link function ensures that the mean

number of observed defects predicted from the fitted model is positive.

Mathematically we write this relationship as:

 ()

The are the regression coefficients, and the are the predictor variables. Given

this setup, we estimate the mean value of the number of defects by:

 ()()() ()

4.2 Software Development Profile Estimation Tool (PET)

In order to perform the estimation consistently across all projects, we developed the

Software Development Profile Estimation Tool (PET) shown in Figure 13.

84

Figure 13: PET – SDPM Profile Estimation Tool

Using the PET tool, we are able to analyze software change history, generate software

change matrices, assign reliability factors to software constructs, and ultimately

estimate the number of defective constructs consistently across all projects. The

process has two steps. We first run the script described in Appendix A on each

development stream to generate a directory structure that contains software activities

unique to each project. The Perl script extracts software activities automatically from

the CM tool. The output of the script is used by the PET tool for further analysis.

In the PET tool we first select the location containing the directory structure created

by the Perl script. The tool compares the content of each change set and assigns a

85

change set ‗CS‘ code to each construct, based on the change set during which it is

modified. Since constructs can be modified in more than one change set, we use the

following binary convention to capture this information:

 ∑ ()
 (29)

Where is the change set number and I(i) is the usual indicator function defined as:

 () {

Table 2: Examples of CS Codes

Binary Encoding CS Code Touched in Change sets

0×27+0×26+0×25+0×24+0×23+0×22+1×21 2 1

0×27+0×26+0×25+0×24+0×23+1×22+0×21 4 2

0×27+0×26+0×25+0×24+0×23+1×22+1×21 6 1 and 2

0×27+0×26+0×25+0×24+1×23+1×22+1×21 14 1, 2 and 3

0×27+0×26+0×25+1×24+1×23+1×22+1×21 30 1 through 4

0×27+0×26+1×25+1×24+1×23+1×22+1×21 62 1 through 5

1×27+1×26+1×25+1×24+1×23+1×22+1×21 254 1 through 7

Table 2 shows some examples of the change set ‗CS‘ codes. PET tool uses the CS-

code to generate the Change Matrix shown below.

86

Figure 14: PET - Change Matrix

The information from the Change History Matrix is used to estimate the model

parameters. While model parameter and construct reliabilities are calculated using

Microsoft Excel, the PET tool is used to assign the probabilities to the software

constructs. Once construct reliabilities are captured, the PET tool is used to display

construct reliabilities and estimate the defect content of each file. Figure 15 shows

how this information is represented. The x-axis of the graph represents the index of

the constructs, while the y-axis represents the probability that the construct is defect-

prone. Files corresponding to the constructs that are displayed in the graph are shown

on the right side sorted by estimated number of defects in descending order. The user

is able to zoom in by selecting a specific area of the graph to view the corresponding

files.

87

Figure 15: PET – Estimated Number of Defective Constructs

The PET tool was also used to capture the changes during final system testing. This

information was used to validate the SDPM estimation. We made the assumption that

any change made to a file during the final system and acceptance testing phase was

due to defect resolution. This is generally a realistic assumption, since no related

development activities occur in the software stream during final system and

acceptance testing. By selecting the ―Actual‖ option under the Measurement Type,

the PET tool recursively counts the constructs modified in each file during the final

system testing phase and generates a report.

4.3 Case Study 1: CCD 693- RRACS Interface

4.3.1 Software Project Background and History

For this case study, we selected a software development project from a maintenance

contract. The duration of the project was 12 months, from July 2009 to August 2010.

The purpose of this case study is to validate the Software Development Profile Model

by demonstrating its use as a causal model for showing the causal relationship

88

between change history, the software development activities, and the defect-

proneness of files. The project started with the Authorization to Proceed (ATP) July

31, 2009, followed by analysis and planning. The coding phase started on January

14, 2010 and finished as scheduled on March 16, 2010. The activities during the

development phase directly related to this project consisted of the initial coding

(including unit testing), inspection of the change sets, inspection defects rework, and

software integration testing (SWIT) activities. After the development phase, software

changes were handed to an independent integration and testing (I&T) team for

validation. The handoff occurred on time on March 16, 2010. After fourteen days,

the I&T phase was completed on March 30, 2010. During the I&T phase,

independent test engineers performed in-depth tests of the software based on the test

plan developed from the new software requirements provided by the customer.

Four I&T defects were identified during the formal I&T phase, documented and

assigned to the development team for resolution. After all I&T defects were

reworked and code changes were complete, the changes were inspected, and

delivered to the development stream for a final build. The final build was conducted

and the final version of the software was ready for complete final system testing on

April 1
st
 final system testing was performed to ensure that no additional defects were

introduced during the repair process. The regression was conducted systematically

based on the plan developed by the test team to validate common software functions.

The duration of the final system testing lasted from April 2, 2010 until April 26,

2010.

89

Figure 16 shows the three software development phases and major activities during

each of the three development phases.

17.10 Development Stream

2/17

Prod00048746:
Prod00048745:
CCD 693 RRACS updates

5/26

Delivery to
SAT

3/16 - 3/30

Integration & Testing

2/24

Prod00048782:
Prod00048781:
CCD 693 RRACS
SWIT issues

3/2

Prod00048891:
Prod00048890:
Re-export still uses
computer name in path

1/14 - 2/23

Development

3/16

Prod00049008:
Prod00049000:
CCD 693 –
The unzipped data
 file for RRACS
does not show data

Prod00049010:
Prod00048999:
CCD 693 - Item <log-count-1>
in RRACS Work Order
 file incorrect

3/24

Prod00049038:
Prod00049030:
CCD 693 –
Incorrect amounts in
Deposit Ticket Record
with "Split" EV batches

Prod00049039:
Prod00049031:
CCD 693 - Incorrect amounts
in the Deposit Ticket records
for "Multiple" EV batches

6/2

Prod00049546:ISR0526
shows 2 detail records
when only one pocket
cut was done

Prod00049547:RRACS (ISR0526) –
Negative amount
showing as 'Total-Amount'
for deposit

4/6

Prod00049115:
Prod00049107:
CCD 693 RRACS
filler fields need
the leading + sign

4/9

Prod00049144:
Prod00049139:
CCD 693 - RRACS caused
EOD Export to fail

Prod00049146:
Prod00049132:
CCD 693 - Incorrect BMF
amount in the generated
rracs data file

4/22

Prod00049242:
Prod00049234:
CCD 693- Secondary and
Tertiary amounts in
the EXT files should
not be included

4/19

Prod00049213:
Prod00049194:
CCD 693 - The RRACA
XML file should be
replaced after Re-export

Prod00049212:
Prod00049182:
CCD 693 - Erroneous Class 4
(20-0152) amount for the
RRACS output

4/2 - 4/26

Final System Testing

2/23 - 3/16

SWIT

2/22

Prod00048746:
Prod00048745:
CCD 693 Inspection
rework

Figure 16: Software Development Activities

4.3.2 Case Study Measurements

The development stream was created on February 16 to allow developers to begin

development activities and check-in their software updates in the configuration

management (CM) tool. On February 17, 2010 the first set of changes was made and

delivered to the stream. A formal inspection meeting was scheduled for February 22,

2010. The inspection package contained 1152 SLOC changes. Once the inspection

90

package was created, it was sent to the inspectors three days prior to the formal

meeting on Feb 22, 2010. Each inspector was asked to follow the modified

inspection process by reviewing the changes independently and submitting any

findings prior to formal inspection by the moderator. During the inspection meeting

defective constructs were reviewed, invalid findings were eliminated, and finally

twenty-four constructs (SLOCs) were identified as defective (i=24). Using the

overlap between inspectors, we estimate the number of remaining constructs using the

capture-recapture model proposed by Chao [16]. Based on the independent review of

the code changes by four independent inspectors, a total of eighty-five defective

SLOCs were estimated (N=85).

After the formal inspection, the findings were handed to the development team for

rework. While analyzing the software development activities, we noticed that

developers occasionally combined unrelated code changes under the same activity to

save time. While this is not recommended and uncommon, we were able to identify

such deliveries and exclude them from the analysis.

The code updates addressing inspection defects were delivered to the stream on

February 22, 2010. After the inspection process and rework, software integration

testing (SWIT) started. During SWIT testing, additional defects were identified

resulting in code changes which were delivered to the development stream on

February 24, March 3 and March 16, 2010. After the SWIT phase, the software build

was handed to I&T for system integration testing. The I&T team found two

additional defects which were both resolved on March 24, 2010. The I&T phase

91

concluded on March 30, 2010 without any additional findings. After the I&T phase

the final software build was conducted and ready for final system testing.

In the next section we discuss how the above measurements of the software changes

history obtained from the CM tool and the sequence of software development

activities can be used as an input to the Software Development Profile Model for

estimating the defect content of software artifacts.

4.3.3 Model Parameter Estimation

In this section we discuss how model parameters can be calculated based on the

measurements taken for each change set. Table 3 shows the size of the software

changes made in the development stream. There are eight columns and rows

representing the size of change in eight change sets. Each column represents the

number of constructs that are touched in each change set. In each column, the first

entry represents the number of constructs that were modified or created during this

project, followed by the number of constructs that were touched again in subsequent

change sets. Column 1, for example, shows the change history of constructs that

were initially created or modified during change set 1. All constructs that were

implemented in change set 1 are divided into 1093 SLOCs that were only changed in

change set 1, twenty-nine modified in change sets 1 and 2; two changed in change

sets 1 and 3; five modified in change sets 1, 2 and 3; four modified again in change

set 6; eleven modified in change sets 1 and 7; and finally eight SLOCs modified in

change sets 1, 2 and 7. Therefore, the total number of constructs that were modified

in change set 1 is 1152. Columns 2 through 8 show the change history for constructs

that were implemented during each change sets respectively.

92

Table 3: Number of Constructs Modified during Each Change Set

Using the data obtained from the software change history, we now estimate the model

parameters for each change set based on the SDPM described in Section 3. Table 4

shows the parameter estimations for all change sets. Each change set has only two

parameters p and q, because testing activities occurred in separate change sets.

Table 4: SDPM Parameter Estimation

Change
Set

Type Size
C
/
R

Est.
Defects

SLOC

Observed
SLOCs

q(i) p(i) r(i)

48746 Dev 1152 Y 85.00 24 0.2824 0.9262 0.9471

48746 Inspection 197 N 14.54 2 0.0265 0.9262 0.9282

48782 SWIT 51 N 3.76 0 0.0000 0.9262 0.9262

48891 SWIT 33 N 2.43 0 0.0000 0.9262 0.9262

49008 SWIT 1 N 0.07 4 0.0501 0.9262 0.9299

49010 SWIT 48 N 3.54 15 0.1890 0.9262 0.9402

49038 I&T 41 N 3.03 2 0.0297 0.9262 0.9284

49039 I&T 143 N 10.55 0 0.0000 0.9262 0.9262

In Table 4 the first column represents the activity number. The second column shows

the type of change and the third shows the size of change set. Column 4 is used to

93

indicate if capture-recapture method was used to estimate the defect content of the

change set. While it is required to inspect every software change, it is unrealistic to

conduct a formal inspection for small code changes. During this software

development project, the inspection process allowed small changes to be reviewed by

the inspectors without holding a formal inspection meeting. For change sets in which

no capture-recapture was performed, we used the defect injection probability ―p”

estimate from change set 1. Column 5 shows the estimated SLOCs that became

defective in each change set. Column 6 shows the number of defective SLOCs that

were observed during inspection or testing of each change set. It is further assumed

that all defective SLOCs observed are reworked in the next change set. Based on

these estimates change set reliabilities are estimated which are shown in Column 9.

Since defective constructs can be observed and reworked in the subsequent change

sets, we need to use the software development process to estimate the probability of

each construct being defect free. As discussed by the authors [37], the software

development process should not be ignored when modeling software defect content.

Modeling the development process is important to software organizations because it

allows software managers to adjust development activities and improve the outcome

of the project.

In this case study each change set consists of a coding followed by a defect discovery

activity. After the first change set, the initial implementation of the new functionality

is followed by the inspection process. The next change, which consists of coding

activity due to inspection rework and possible additional changes, is followed by the

SWIT testing activity. The software development activities in project 1 are modeled

94

using the BDD shown in Figure 17. Each coding activity is followed by a defect

discovery activity. Activities Coding1 through Coding8 represent the coding

activities. The edges represent the probability that a given construct

that is modified has not been injected with a defect. Similarly,

 are the defect injection probabilities, which are the probabilities that a

given modified construct is injected with a defect. The defect discovery activities

which follow coding are labeled Insp, SWIT and I&T. Edges represent

the probability that a defective construct from previous coding activities is observed

during the defect discovery. Based on the Binary Decision Diagram, we can estimate

the probability of a given construct being defective according to Equation 20.

Construct reliabilities are shown in Table 6. Column 1 represents the change set

codes according to Equation 22. Column 2 shows the number of SLOCs modified in

various change sets. Construct reliabilities are estimated based on the change sets

during which constructs are modified, as described in Equation 20. According to

Table 6, the probability of a given construct implemented only in change set 1 to be

defective is estimated as
 . In change set 2, twenty-nine SLOCs

originally modified in change set 1 were reworked. Equation 20 states that for these

constructs to be correct, they have to be implemented correctly in change sets 1 and 2,

or, if they became defective in change set 1, they must have been observed during

inspection and correctly reworked in change set 2. Under this assumption, the

probability of these constructs being correct is
 . All other construct

reliabilities are estimated similarly.

95

As described in Section 3.6.2, the SDPM allows for our state of knowledge to be used

to improve the model estimates by updating model parameters when new information

becomes available. The new information can either come based on expert judgment

or additional information obtained outside the project. Once model parameters are

estimated, they can be updated using Bayesian inference. We asked the Technical

Project Manager (TPM) to provide us with his judgment on the quality of the changes

that were made during the coding phase. Based on the requirements volatility and the

skill level of the developer that worked on specific change sets, we updated the values

of which also resulted in new estimates for We used the updated

parameters and calculated new construct reliability estimates which are shown in

Table 5.

Table 5: Parameter Updates Based on External Factors

Change
Set

Type Size
C
/
R

Est.
Defective

SLOC

Observed
Defective

SLOCs
q’(i) p’(i) r’(i)

48746 Coding 1152 Y 85.00 24 0.2824 0.9262 0.9471

48746 Inspection 197 N 14.54 2 0.0265 0.9262 0.9282

48782 SWIT 51 N 3.76 0 0.0000 0.9262 0.9262

48891 SWIT 33 N 2.43 0 0.0000 0.9262 0.9262

49008 SWIT 1 N 0.07 4 0.0501 0.9262 0.9299

49010 SWIT 48 N 3.54 15 0.1890 0.9262 0.9402

49038 I&T 41 N 20.5 2 0.0236 0.5000 0.5118

49039 I&T 143 N 1.43 0 0.0000 0.9900 0.9900

After estimating the reliability of all software constructs, we used the defect content

estimator described in Section 3.3 to estimate the number of defective constructs in

96

files modified in the development stream. The list was then sorted in descending

order based on the estimated number of defective constructs in each file. Table 7

shows the defect-prone files in descending order. The first column shows the file

names, the second shows the magnitude of change in each file in SLOCs. The third

column represents the estimated number of defective SLOCs based on the SDPM

estimator. In the next section we will compare the SDPM estimation with files that

were modified during final system testing in order to assess the accuracy of the

findings.

97

Coding

1

Insp

q1

p1

1-p1

0

1-q1

Coding

2

p2

1

1-p2

Prod00048746:

Prod00048745: CCD 693

RRACS updates

Prod00048782:
Prod00048781: CCD 693

RRACS SWIT issues

SWIT

Coding

3

q2

1-q2

p3

1-p3 Prod00048891:

Prod00048890: Re-export

still uses computer name in

path

Coding

4

Coding

5

I&T

I&T

1-q3

q3

1-p4

q4

p4

p5

1-q4

Prod00049008: Prod00049000: CCD

693 - The unzipped data file for

RRACS does not show data

Prod00049010: Prod00048999: CCD 693

- Item <log-count-1> in RRACS Work

Order file incorrect

1152 SLOC

Changes

155 New

SLOCs

44 New

SLOCs

33 New

SLOCs

1 New

SLOCs

Coding

6

I&T

q5

p6

1-p5

1-p6

Coding

7

I&T

1-q5

q6

44 New

SLOCs

22 New

SLOCs

p8

1-q6

1-p7

Prod00049038: Prod00049030:CCD 693 -

Incorrect amounts in Deposit Ticket

Record with "Split" EV batches

Prod00049039: Prod00049031:CCD 693 -

Incorrect amounts in the Deposit Ticket

records for "Multiple" EV batches

Coding

8

I&T
p7

1-q7

1-p8

q7

143 New

SLOCs

Prod00048746:

Prod00048745: CCD 693

RRACS Inspection Rework

Figure 17: CCD 693 Binary Decision Diagram

98

Table 6: Construct Reliability Estimations

CS Size SDPM Model R(i) R’(i)

0002 1093 r(1) r(1) 0.9470 0.9471

0004 155 r(2) r(2) 0.9281 0.9282

0006 29 r(1,2) r1*p2+(1-r1)*q1*p2 0.8910 0.8910

0008 44 r(3) r(3) 0.9262 0.9262

0010 2 r(1,3) r1*p3+(1-r1)*q2*p3 0.8784 0.8785

0014 5 r(1,2,3) r(1,2)*p3+(1-r(1,2))*q2*p3 0.8279 0.8280

0016 33 r(4) r(4) 0.9262 0.9262

0032 1 r(5) r(5) 0.9299 0.9299

0064 44 r(6) r(6) 0.9401 0.9402

0066 4 r(1,6) r1*p6+(1-r1)*q5*p6 0.8796 0.8796

0128 22 r(7) r(7) 0.9284 0.5118

0130 11 r(1,7) r1*p7+(1-r1)*q6*p7 0.8864 0.4785

0134 8 r(1,2,7) r(1,2)*p7+(1-r(1,2))*q6*p7 0.8444 0.4558

0256 143 r(8) r(8) 0.9262 0.9900

4.3.4 Case Study Results

In the previous section we used a real life software development project and

described how SDPM was used as a causal model to predict the number of defective

constructs in files modified during the software development process.

In order to determine the accuracy of the SDPM estimation, we examined files

modified during the final system testing phase. We made the assumption that any

change made to files during the final system testing phase is due to a defect

resolution. This is generally a fair assumption since no development activities occur

in the software stream during final system testing. The only exceptions are software

updates due to changes in parallel software streams, which as described previously,

were not included in this analysis.

99

Nine files were modified during final system testing as the result of defects found

related to the current software development project. By comparing the files that were

modified during final system testing with files identified as defect-prone by the

SDPM, we observed that all nine modified files were on the list of defect-prone files.

In addition, we used the SLOCCO tool to further investigate the number of SLOCs

that were modified during final system testing with the number of defective SLOC

estimated by the SDPM. SLOCCO is a custom tool that is used to compare two

source files, and calculating the SLOC volatility between the two versions. Column 6

in Table 7 shows the number of SLOCs that were modified during final system

testing for each file. Column 5 shows the number of defective SLOCs estimated by

SDPM. We noticed that seven out of nine files modified during final system testing

were on top of the list of defect-prone files estimated by the SDPM.

Table 7: Estimated Number of Defective SLOCs

File Name
Size

(SLOC)
 Churn
(SLOC)

Est. # of
Defective
SLOCs per

File (Updated
Parameters)

Est. # of
Defective
SLOCs per
File (Initial

Parameters)

Observed
SLOC changes
in Files during
final system

testing

\rp\RRACS\RRACS\RRACS_Generator.cs 270 270 12.6373 16.2737 15

\rp\RRACS\RRACS\Deposit.cs 136 136 17.8235 8.8629 20

\rp\RRACS\RRACS\InputRecords\RemittanceTra
nsactionRecord.cs 144 144 6.2928 8.5536 5

\rp\RRACS\RRACS\InventoryDB.cs 144 144 6.2928 8.5536 6

\rp\RRACS\RRACS\TaxClassMap.cs 143 143 1.4014 8.4942 1

\rp\RRACS\RRACS\OutputRecords\DepositTicke
tRecord.cs 124 124 5.4188 7.3656 3

\rp\RRACS\RRACS\DepositList.cs 98 98 4.2826 5.8212 5

\rp\RRACS\RRACS\InputRecords\BlockHeaderR
ecord.cs 78 78 3.4086 4.6332 #N/A

\cs\cs_Create_Interchange_Data\cs_Create_Int
erchange_Data.cpp 693 72 3.3157 4.3327 #N/A

\rp\RRACS\RRACS\OutputRecords\JournalSum
maryRecord.cs 62 62 2.7094 3.6828 1

\rp\RRACS\RRACS\OutputRecords\FileIDJournal
Record.cs 55 55 2.4035 3.267 #N/A

100

\rp\RRACS\RRACS\DLNRecord.cs 50 50 2.185 2.97 #N/A

\rp\rp_perform_EOD_export\rp_EOD_tapes.cp
p 1531 47 2.0539 2.7918 #N/A

\rp\RRACS\RRACS\InputRecords\CheckRecord.c
s 46 46 2.0102 2.7324 #N/A

\rp\RRACS\RRACS\OutputRecords\OutputRecor
d.cs 39 39 1.7043 2.3166 1

\rp\RRACS\RRACS\InputRecords\BlockTrailerRe
cord.cs 35 35 1.5295 2.079 #N/A

\rp\RRACS\RRACS\InputRecords\InputRecord.c
s 33 33 1.4421 1.9602 #N/A

\gen\include\cs_ftp_common.h 339 30 1.782 1.782 #N/A

\rp\RRACS\RRACS\Properties\AssemblyInfo.cs 15 15 0.6555 0.891 #N/A

\gen\include\cs_types_pvals.h 216 14 0.6118 0.8316 #N/A

\rp\RRACS\RRACS\Properties\Settings.Designer
.cs 12 12 0.5244 0.7128 #N/A

\rp\RRACS\RRACS\Settings.cs 10 10 0.437 0.594 #N/A

\cs\cs_store_ops\cs_store_ops.cpp 1041 6 0.2622 0.3564 #N/A

\gen\include\cs_export.h 131 4 0.1748 0.2376 #N/A

\cs\cs_reexport_inventory\cs_reexport_invent
ory.cpp 689 3 0.1625 0.1782 #N/A

\cs\cs_Tape_Tools\cs_determine_export_medi
a.cpp 244 3 0.1311 0.1782 #N/A

\gen\include\rp_create_EOD_volume_set.h 80 3 0.1311 0.1782 #N/A

\gen\include\cs_types_common.h 335 2 0.0874 0.1188 #N/A

\rp\rp_perform_EOD_export\rp_perform_EOD
_export.cpp 429 2 0.0874 0.1188 #N/A

\rp\rp_perform_EOD_export\rp_transport_file.
h 160 2 0.0874 0.1188 #N/A

\cm\isrp_build_gui.pl 1446 1 0.0594 0.0594 #N/A

\gen\include\cs_common.h 37 1 0.0594 0.0594 #N/A

\rp\rp_perform_EOD_export\rp_EOD_tapes_pr
ivate.h 113 1 0.0437 0.0594 #N/A

We used the coefficient of correlation to evaluate the performance of the SDPM

which is shown in Table 8.

101

Table 8: Coefficient of Correlation – Case Study 1 - (SDPM model)

Est. # of
Defective

SLOCs
(Initial

Estimate)

Est. # of
Defective

SLOCs
(Updated

Parameters)

Observed
SLOC

changes
during
final

system
testing

Est. # of Defective SLOCs (Initial
Estimate) 1

 Est. # of Defective SLOCs (Updated
Parameters) 0.82828 1

 Observed SLOC changes during final
system testing 0.64840 0.98597 1

While the initial estimates suggest a correlation between the estimated number of

defective constructs and the observed SLOC changes, the updated parameters shows a

stronger correlation.

4.3.5 Poisson Regression Model Results

We used defect data from releases 10.4 to 17.9 to estimate the number of defects in

Release 17.10 files. To fit the data, we used the Poisson regression model as

described in Section 4.1.1. The predictor variables used in this case study were

logarithm of the SLOCs, square root of prior defects, age, and file status (New,

Changed, and Unchanged). Table 9 shows the regression coefficients.

Table 9: Coefficient of Regression – Case Study 1 - (Poisson Regression)

Coefficient Estimate
Std

Error
L-R

ChiSquare
Prob>ChiSq

Lower
CL

Upper
CL

Intercept -0.690 0.071 98.174 3.83E-23 -0.878 -0.551

Log(SLOC) 0.181 0.015 148.714 3.31E-34 0.152 0.210

Sqrt(PriorDef) -0.442 0.027 276.596 4.14E-62 -0.495 -0.388

Age -0.106 0.005 696.348 1.86E-153 -0.116 -0.096

New[0] -1.758 0.038 2863.009 0.00E+00 -1.834 -1.684

Changed[0] -1.970 0.034 4486.093 0.00E+00 -2.038 -1.904

Unchanged[0] 0

102

Using the coefficient of regression we estimated the number of defects in Release

17.10 and sorted them in descending order to identify the defect prone files. Table 10

below shows the files in descending order based on Poisson model estimates.

Column two shows the actual number of defects observed during software final

system testing. By comparing the number of observed defects with the raking

assigned by Poisson model, we can see that the model performs well in identifying

defect prone files.

Table 10: Estimated Number of Defects (Poisson Model)

File Name Defects

Status
Changed,

Unchanged
New

Age
Log

(SLOC)

Sqrt
(Prior

Defects)

Poisson
Model

\RRACS_Generator.cs 2 0 0 1 0 2.111 0.000 0.126653

\RemittanceTransactionRecord.cs 1 0 0 1 0 2.037 0.000 0.124987

\DepositTicketRecord.cs 3 0 0 1 0 1.978 0.000 0.123644

\InventoryDB.cs 1 0 0 1 0 1.672 0.000 0.116993

\Deposit.cs 3 0 0 1 0 1.633 0.000 0.116178

\DepositList.cs 2 0 0 1 0 1.447 0.000 0.112327

. \JournalSummaryRecord.cs 1 0 0 1 0 1.431 0.000 0.112006

\de_DEDatastoreBuild.sql NA 0 0 1 0 1.322 0.000 0.109816

\OutputRecord.cs 1 0 0 1 0 0.845 0.000 0.100734

\de_Programs.bat NA 1 0 0 1 2.083 0.000 0.091729

\drop_unauthorized_dbas.sql
NA

0 0 1 0 0.000 0.000 0.08645

\de_mod13212fn.vb
NA

0 0 1 0 1.949 1.000 0.079104

\BlockHeaderRecord.cs
NA

0 0 1 0 1.716 1.000 0.075833

\FileIDJournalRecord.cs
NA

0 0 1 0 1.380 1.000 0.071363

\DLNRecord.cs
NA

0 0 1 0 1.362 1.000 0.071124

\CheckRecord.cs
NA

0 0 1 0 1.301 1.000 0.070347

\BlockTrailerRecord.cs
NA

0 0 1 0 0.903 1.000 0.06546

\InputRecord.cs
NA

0 0 1 0 0.845 1.000 0.064777

\AssemblyInfo.cs
NA

0 0 1 0 0.477 1.000 0.060605

\Settings.Designer.cs
NA

0 0 1 0 0.301 1.000 0.058704

\de_mod13200fn.vb
NA

1 0 0 8 2.647 1.000 0.031146

\de_mod11214fn.vb
NA

1 0 0 8 1.708 1.000 0.026276

103

\de_mod11204fn.vb
NA

1 0 0 8 1.708 1.000 0.026276

\de_clssection03.vb
NA

1 0 0 8 1.591 1.000 0.025728

\de_clssection03.vb
NA

1 0 0 8 1.580 1.000 0.025675

\de_extractZipCodeCityStateDB.bat
NA

1 0 0 14 2.444 0.000 0.024742

\de_DEDatastoreBuild.sql
NA

1 0 0 14 1.322 0.000 0.020196

\de_mod11212fn.vb
NA

1 0 0 9 1.708 1.414 0.019687

\de_clssection03.vb
NA

1 0 0 9 1.568 1.414 0.019196

\de_checkZipCodeCityStateDB.bat
NA

1 0 0 14 1.869 1.000 0.014339

\de_mod11200fn.vb
NA

1 0 0 14 1.708 1.000 0.013925

\de.bat
NA

1 0 0 14 1.944 1.414 0.012106

\de_CreateMessageLoader.bat
NA

1 0 0 14 1.875 1.414 0.011955

\cs_format_block_analyze.cpp
NA

1 0 0 23 2.356 0.000 0.009395

\sp_eop_global.h 1 1 0 0 23 2.057 0.000 0.0089

\cs_captured_data_store.h
NA

1 0 0 23 1.833 0.000 0.008546

\de_clssection03.vb
NA

1 0 0 14 1.556 2.449 0.007145

\cs_read_completed_key_entry_da
ta.cpp

NA
1 0 0 23 2.093 1.000 0.005761

\rp_EOD_tapes_private.h
NA

1 0 0 23 1.556 1.000 0.005227

\rp_create_EOD_volume_set.h
NA

1 0 0 23 1.415 1.000 0.005095

\sp_view_ke_data.cpp 1 1 0 0 24 2.427 1.414 0.004584

\sp_eop_ke3_processing.cpp 1 1 0 0 23 2.794 2.000 0.004205

\de_clsbsblockdata.vb NA 1 0 0 14 3.113 4.359 0.004076

\sp_eopinit.cpp 1 1 0 0 31 2.301 0.000 0.003989

\cs_format_block.cpp
NA

1 0 0 25 2.576 2.000 0.003272

\cs_types_common.h
NA

1 0 0 32 2.413 1.000 0.002355

\cs_types_pvals.h
NA

1 0 0 32 2.248 1.000 0.002286

.\cm\isrp_build_gui.pl 1 1 0 0 23 2.818 3.464 0.002213

\cs_SA_Dialog.rc
NA

1 0 0 32 3.028 1.414 0.002192

\rp_transport_file.h
NA

1 0 0 33 2.021 1.000 0.001973

\ReportAPI.cpp
NA

1 0 0 31 2.938 2.000 0.001851

\cs_common.h
NA

1 0 0 32 1.176 1.414 0.001568

\cs_determine_export_media.cpp
NA

1 0 0 31 1.886 2.000 0.00153

\cs_export.h
NA

1 0 0 35 1.531 1.000 0.001462

\cs_store_ops.cpp
NA

1 0 0 32 2.612 2.236 0.001414

\rp_EOD_tapes.cpp
NA

1 0 0 33 2.623 2.236 0.001275

\cs_ftp_common.h
NA

1 0 0 31 2.230 2.646 0.001225

\rp_perform_EOD_export.cpp
NA

1 0 0 32 2.072 2.449 0.001167

\cs_reexport_inventory.cpp
NA

1 0 0 32 2.465 2.646 0.00115

\sp_release_block.cpp
NA

1 0 0 33 3.018 2.828 0.001054

\cs_Create_Interchange_Data.cpp
NA

1 0 0 32 2.436 3.000 0.000978

104

Similar to the SPDM results, we used the coefficient of correlation to evaluate the

performance of the Poisson regression. By comparing the coefficient of correlation

between the SDPM and Poisson model, we noticed that the estimate provided by the

SDPM is more correlated with the defects observed during final system testing than

the Poisson model.

Table 11: Coefficient of Correlation (Poisson Regression)

Estimated
Number

of Defects
Observed
Defects

Estimated Number of Defects 1
 Observed Defects 0.520645 1

105

Figure 18: SDPM - Est. # of Defective SLOC vs. Observed Number of Defective SLOCs – DIS/CS 17.10

106

4.4 Case Study 2: CCD 762 – IMF (health care) Changes for PY 2011

4.4.1 Software Project Background and History

For this case study we selected a software development project that was intended to

deliver three new functionalities as part of the DIS/CS 18.4 release. Figure 19

shows the timeline of software development activities for this project. The

development phase started on August 26, 2010 and ended on September 20, 2010.

During the development phase code changes were delivered in three change sets. The

three change sets were also used to deliver rework needed to address observed

inspection and SWIT issues. The three major enhancements delivered with this

release were:

 CCD 762 – IMF (health care) Changes for PY 2011

o Changes to PRP‟s 15 and 31

 CCD 764 – OLG Changes for PY 2011

o Update program numbers referenced for two OLG programs including PRP 4

and 5

 CCD 773 – PY 2011 HIRE Changes II

o Legislative 2011 tax year changes including PRP 45 and 54

18.4 Development Stream

10/4

Prod00050368:
Prod00050357:
Add Hyphens
Back Into EIN Fields

9/9

Prod00050233:
Prod00050232:
CCD 764 –
OLG Changes for PY 2011

10/6

Prod00050414:
Prod00050283:
Program 38620, sec. 01

8/26 - 9/20

Development & SWIT Phase

9/20 - 10/1

I&T

9/15

Prod00050274:
Prod00050272:
CCD762 Drop 1

9/6

Prod00050215:
Prod00050214:
CCD 773 –
PY 2011 HIRE Changes II

9/28

Prod00050326:
Prod00050325:
CCD 762 - Program 47110
and clone programs are
not included in
build 18.4.0903

9/30

Prod00050355:
Prod00050353:
CCD 762 - Pgm 44400,
sect 01 - new filling field
is in the wrong location
in the output file

10/7

Delivery to
SAT

10/1 - 10/6

Final System Testing

Figure 19: CCD 762 Timeline and Development Activities

107

4.4.2 Case Study Measurements

In the previous section, we provided a timeline of the software development activities

related to the DIS/CS 18.4 software release. On September 6, 2010 the first set of

changes were implemented and delivered to the stream. A formal inspection was held

and inspection findings, along with the implementation of the second set of

enhancements, were delivered on September 9, 2010. Out of 268 SLOC changes

delivered in the first change set, twenty-nine had to be reworked due to issues

observed during inspection. The largest code churn was delivered with the

implementation of CCD 762 Drop1 under change set 3, with 2574 SLOC changes.

Code changes were inspected but no major issues were observed during the

inspection. After development was complete and code changes were delivered to the

stream, the software build was handed to I&T for integration and testing. The I&T

team identified two issues which were reworked and delivered in change sets 4 and 5.

Figure 20 shows the software change matrix for the DIS/CS 18.4 release.

Figure 20: Software Change Matrix – DIC/CS 18.4 release

108

4.4.3 Model Parameter Estimation

In this section, we discuss how model parameters are calculated based on the

measurements taken in each change set. Table 12 shows the summary of the

measurements taken for each change set along with the estimates of the model

parameters. Once model parameters are estimated, we calculate the change

set reliabilities, shown in Column 8 of Table 12. Since software constructs can be

modified in more than one change set, we use the Binary Decision Diagram shown in

Figure 21 to estimate construct reliabilities.

Table 12: Parameter Estimation for DIS/CS 18.4

Change
Set

Size
Cap-

Recap

(2) Est.
New

Defects

(1)Observed
(Modified/

Fixed)
p(i) q(i) r(i)

50215 268 Y 48 29 0.8209 0.6042 0.90972

50233 71 N 13 3 0.8209 0.0813 0.83285

50274 2655 N 476 39 0.8209 0.0762 0.83210

50326 94 N 17 23 0.8209 0.0461 0.82768

50355 17 N 3 1 0.8209 0.0020 0.82119

109

Coding

1

Insp

q1

p1

1-p1

0

1-q1

Coding

2

p2

1

1-p2

Prod00050215:

Prod00050214: CCD 773 -

PY 2011 HIRE Changes II

Prod00050233:
Prod00050232: CCD 764 -
OLG Changes for PY 2011

Insp

Coding

3

q2

1-q2

p3

1-p3

Prod00050274:

Prod00050272: CCD762

Drop 1

Coding

4

Coding

5

I&T

I&T

1-q3

q3

1-p4

q4

p4

p5

1-q4

Prod00050326: Prod00050325:CCD

762 - Program 47110 and clone

programs are not included in build

18.4.0903

Prod00050355: Prod00050353: CCD 762

- Pgm 44400, sect 01 - new filling field is

in the wrong location in the output file

268 SLOC

Changes

71 New

SLOCs

2574 New

SLOCs

1 New

SLOCs

2 New

SLOCs

1-p5

Figure 21: CCD 762 Binary Decision Diagram

Table 13: Construct Reliability Estimations – DIS/CS 18.4

Change
Sets

Churn Probability Probability

0002 268 r(1) r(1) 0.9097

0004 71 r(2) r(2) 0.8328

0008 2547 r(3) r(3) 0.8320

0016 1 r(4) r(4) 0.8276

0024 93 r(3,4) r3*p4+(1-r3)*q3*p4 0.6934

0032 2 r(5) r(5) 0.8212

0040 15 r(3,5) r3*p5+(1-r3)*q4*p5 0.6893

110

After estimating the reliability of all software constructs, we used the defect content

estimator described in Section 3.3 to estimate the number of defective constructs in

files modified in the development stream. The list was then sorted in descending

order based on the estimated number of defective constructs in each file. In the next

section we discuss the results of the case study by comparing the SDPM estimates

with the actual SLOC changes during the final system testing.

4.4.4 Case Study Results

In this section, we compare the number of defective constructs estimated by SDPM

with the number of constructs modified in each file during final system testing of the

DIS/CS 18.4 release. Table 14 shows the defect-prone files in descending order. The

first column shows the file names, the second shows the file size, and the third gives

the magnitude of change in each file in SLOCs. The fourth and fifth columns

represent the estimated number of defective SLOCs based on the SDPM estimator

and the observed SLOC changes during final system testing respectively. We use the

coefficient of correlation to assess the performance of the SDPM with the observed

number of defective SLOCs in each file. We also use the coefficient of correlation to

show that the SDPM provides a better estimate than change alone.

Table 14: DIS/CS 18.4 Case Study Results

File Name SLOC Churn
Est. # of
Defects
Per File

Observed
Defects

de_100000.PCF 8793 964 174.4283 93

de_46125.PCF 936 475 79.61 #N/A

de_46121.PCF 1582 391 65.5316 #N/A

de_43110.PCF 1848 391 65.5316 #N/A

de_44400.PCF 430 127 23.1377 13

111

de_11502.PCF 438 201 18.1503 #N/A

de_47110.PCF 450 75 12.57 #N/A

de_11640.PCF 512 54 9.0288 2

de_enumcommonsectionfieldnumbers.vb 1608 52 8.7152 #N/A

de_mod46120fn.vb 248 41 6.8716 #N/A

de_mod43110fn.vb 291 39 6.5364 #N/A

de_11300.PCF 412 64 5.7792 2

de_11650.pcf 232 17 2.8424 2

de_mod46125fn.vb 197 16 2.6816 #N/A

de_clsform8919.vb 15 13 2.1788 #N/A

de_clsform8888.vb 114 11 1.8436 #N/A

de_clssection04.vb 42 9 1.6733 3

de_clssection04.vb 49 9 1.6509 2

de_mod44400fn.vb 95 9 1.5084 #N/A

de_clssection05.vb 38 7 1.1732 #N/A

de_clssection05.vb 42 7 1.1732 #N/A

de_mod47110fn.vb 76 6 1.0056 #N/A

de_cls46120.vb 169 4 0.6704 #N/A

de_cls43110.vb 274 3 0.5028 #N/A

de_clsForm8941.vb 3 3 0.5028 #N/A

de_mod11300fn.vb 73 2 0.1806 #N/A

de_clssection03.vb 30 1 0.1721 1

de_clstaxpr15.vb 80 1 0.1676 #N/A

de_clstaxpr31.vb 54 1 0.1676 #N/A

de_clssection01.vb 160 1 0.1676 #N/A

de_clssection03.vb 35 1 0.1676 #N/A

de_clssection03.vb 38 1 0.1676 #N/A

de_mod11502fn.vb 78 1 0.0903 #N/A

Table 15 shows the coefficient of correlation between size of change (churn), SDPM

estimate and the number of defective SLOCs. Based on the table, the SDPM provides

a good estimate for the number of defective SLOCs. From the coefficient of

correlation in Table 15, the SDPM provides a better estimate than the churn alone.

Figure 22 shows the estimated number of defective constructs in each file and the

number of observed SLOCs modified during final system testing.

112

Table 15: Correlation Analysis – DIS/CS 18.4

 Churn
Est. # of

Defective
SLOCs

Observed SLOC
Changes During

Final System
Testing

 Churn 1
 Est. # of Defective SLOCs 0.9954 1

 Observed SLOC Changes
During Final System
Testing 0.9975 0.9988 1

4.4.5 Poisson Regression Model Results

We used defect data from releases 10.4 to 18.3 to estimate the number of defects in

Release 18.4 files. To fit the data, we used the Poisson regression model as described

in Section 4.1.1. Similar to case study 1, the predictor variables used in this case

study were logarithm of the SLOCs, square root of prior defects, age, and file status

(New, Changed, and Unchanged). Table 16 shows the regression coefficients. As

expected, the values of the coefficients of regression are similar to the coefficients

estimated in case study 1 because the files share the same structural measures.

Table 16: Coefficient of Regression – Case Study 2 - (Poisson Regression)

Coefficient Estimate
Std

Error
L-R

ChiSquare
Prob>ChiSq Lower CL Upper CL

Intercept -0.74818 0.071982 112.5288 2.74E-26 -0.94849 -0.60762

Log(SLOC) 0.190285 0.015085 159.9289 1.17E-36 0.160728 0.219859

Sqrt(PriorDef) -0.43636 0.027608 262.5228 4.84E-59 -0.49063 -0.38241

Age -0.10177 0.004673 750.9367 2.51E-165 -0.1111 -0.09278

New[0] -1.79809 0.038935 2903.793 0 -1.87512 -1.72246

Changed[0] -1.99454 0.034621 4446.066 0 -2.06316 -1.92741

Unchanged[0] 0

113

We used the coefficient of regression to estimate the expected number of defects per

file in Release 18.4 and identify files that will most likely be defective. The results

are shown in Table 17 below. As this table indicates, the Poisson model did not

perform well to identify defect-prone files, based on the defects observed during the

testing on Release 18.4. In fact, the results were so poor that we were unable to

calculate the coefficient of correlation between the actual number of defects and the

Poisson regression estimates. After reviewing the defects, we noticed that the

majority of defects in Release 18.4 were in non-executable .PCF files. Since

regression models are built based on defects observed during testing and operation,

the model does not perform well for non-executable files. This is a known

disadvantage with Regression based models and the non-executable files are

generally excluded from such models [53].

Table 17: Estimated Number of Defects-Case Study 2 - (Poisson Model)

File Name Defects

Status
Changed,

Unchanged,
New

Age
Log

(SLOC)

Sqrt
(Prior

Defects)

Poisson
Model

\de_mod46120fn.vb NA 1 0 0 22 2.39 1.00 0.0070

\de_mod46125fn.vb
NA

1 0 0 22 2.29 1.00 0.0069

\de_mod43110fn.vb
NA

1 0 0 22 2.46 1.41 0.0059

. \de_mod44400fn.vb
NA

1 0 0 22 1.98 1.41 0.0054

\de_clssection03.vb
NA

1 0 0 22 1.58 1.41 0.0050

\de_clssection05.vb
NA

1 0 0 22 1.58 1.41 0.0050

\de_clssection03.vb
NA

1 0 0 22 1.54 1.41 0.0050

\de_cls46120.vb
NA

1 0 0 22 2.23 1.73 0.0049

\de_mod11502fn.vb
NA

1 0 0 23 1.89 1.41 0.0048

\de_mod11300fn.vb
NA

1 0 0 23 1.86 1.41 0.0048

\de_clssection07.vb
NA

1 0 0 22 1.28 1.41 0.0047

\de_cls43110.vb
NA

1 0 0 22 2.44 2.00 0.0046

\de_clssection04.vb 1 1 0 0 22 1.69 1.73 0.0044

\de_clssection05.vb NA 1 0 0 22 1.62 1.73 0.0044

\de_clssection04.vb 1 1 0 0 22 1.62 1.73 0.0044

114

\de_clssection01.vb
NA

1 0 0 22 2.20 2.00 0.0044

\de_mod47110fn.vb
NA

1 0 0 25 1.88 2.00 0.0030

de_enumcommonsectionfield
numbers.vb

NA
1 0 0 28 3.21 2.00 0.0029

de_clssection02.vb
NA

1 0 0 25 0.90 1.73 0.0028

de_enummessages.vb
NA

1 0 0 28 2.27 2.00 0.0024

de_clsform8888.vb
NA

1 0 0 28 2.06 2.00 0.0023

de_clssection03.vb 1 1 0 0 25 1.48 2.45 0.0023

de_clspipelinebh.vb
NA

1 0 0 28 2.36 2.24 0.0022

 de_clsirpbh.vb
NA

1 0 0 28 2.30 2.24 0.0022

de_clstaxpr31.vb
NA

1 0 0 28 1.73 2.00 0.0022

de_clstaxpr15.vb
NA

1 0 0 28 1.90 2.24 0.0020

de_clsform1040xs02.vb
NA

1 0 0 28 1.20 2.00 0.0020

de_clsform8919.vb
NA

1 0 0 28 1.18 2.00 0.0019

de_clsfield.vb
NA

1 0 0 28 2.59 3.00 0.0016

de_clsimfeeiflookup.vb
NA

1 0 0 28 2.57 3.87 0.0011

ReportAPI.h
NA

1 0 0 39 1.86 1.00 0.0011

de_ctlfield.vb
NA

1 0 0 28 3.14 4.58 0.0009

de_clsstatemachine.vb
NA

1 0 0 28 3.45 6.00 0.0005

ReportAPI.cpp
NA

1 0 0 45 2.95 2.00 0.0005

115

Figure 22: SDPM - Est. # of Defective SLOC vs. Observed Number of Defective SLOCs – DIS/CS 18.4

116

4.5 Case Study 3: CCD 770R2- BMF Health Care Changes for PY 2011

4.5.1 Software Project Background and History

For this case study we selected a software development project that was intended to

deliver six functionalities as part of the DIS/CS 18.5 release. Figure 23 shows the

timeline of software development activities for this project. The development phase

started on September 21, 2010 and ended on October 10, 2010. During the

development phase, code changes were delivered in four change sets. The four

change sets were also used to deliver code changes needed to address observed

inspection and SWIT issues. The major enhancements delivered with this release

were:

 CCD 762 – IMF (health care) Changes for PY 2011

o Changes to PRP‟s 33 and 36

 CCD 770 – BMF (Health Care) Changes for PY 2011

o Changes to PRP‟s 01, 27, 32, 39, 47, 48, 50, 51 and 54

 CCD 780 – RP Changes PY 2011, PY 2010

o Update EOD code

 CCD 781 – IMF (Health Care) Changes II for PY 2011

o Changes to PRP 31

 CCD 783 – PRP 31 Corrections for PY 2011

o Correct PRP 31

 CCD 784- BMF – Corrections for PY 2011

o Correct PRP‟s 43, 84 and 90

117

18.5 Development Stream

9/27

Prod00050350:
Prod00050318:
CCD 770R2 BMF
Health Care Changes
for PY 2011

10/28

Delivery to
SAT

10/21 - 10/27

Final System

Testing

10/8 - 10/18

I&T

9/21 - 10/8

Development & SWIT Phase9/30

Prod00050362:
Prod00050361:
CCD 780 DIS/CS changes

10/4

Prod00050376:
Prod00050373:
CCD 762 - Drop 2 & CCD 781

Prod00050382:

Prod00050380:

CCD 762 Drop 2.2

10/6

Prod00050419:
Prod00050418:
IPDE FPPView

Prod00050429:

Prod00050427:

CCD 784 - BMF –

PRP Corrections for PY 2011

10/13

Prod00050470:
Prod00050463:
CCD 770 - Pgm 13141 –
Section 21 should be
required for kv when
data has been entered
during OE

10/14

Prod00050479:
Prod00050358:
OLG Failing to
Generate Report
When Truth File
Contains Overflow

10/26

Prod00050595:
Prod00050591:
Add New Field From
CCD 781 to 46125 ZB

10/27

Prod00050628:
Defects: 50553, 50546, 50486

Prod00050616:
Prod00050571:
CCD 783 - "PTIN" allows
character 'V"
for the 1st position for 43110

11/3

Prod00050706:
Prod00050683:
For pgm 46125 and clones,
the 18B field is not
grayed out for the
RMT condition

11/8

Prod00050754:
Prod00050711:
'SSSN' in section 01
is not must enter under
certain circumstances.

Figure 23: CCD 770 Timeline and Development Activities

4.5.2 Case Study Measurements

In the previous section we provided a timeline of the software development activities

related to the DIS/CS 18.5 software release. On September 27, 2010, the first set of

changes were implemented and delivered to the stream. A formal inspection was held

and inspection findings, along with the implementation of the second set of

enhancements, were delivered on September 30, 2010. Out of 2864 SLOC changes

delivered in the first change set, ninety-three were reworked in change set 2, and three

were modified again in change set 7. Figure 24 shows the software change matrix for

the DIS/CS 18.5 release. This release was different from the other case studies in that

it consisted of six independent enhancements within the same release.

118

Figure 24: Software Change Matrix – DIC/CS 18.5

4.5.3 Model Parameter Estimation

In this section we discuss how model parameters are calculated based on the

measurements taken in each change set. Table 18 shows the summary of the

measurements taken for each change set along with the estimates of the model

parameters. Once model parameters are estimated, we calculate the change

set reliabilities, which are shown in Column 8 of Table 18.

Table 18: Parameter Estimation for DIS/CS 18.5

Change
Set

Size
Cap-

Recap

(2) Est.
New

Defects

(1)Observed
(Modified/

Fixed)
p(i) q(i) r(i)

50350 2768 Y 150 140 0.9458 0.9333 0.9937

50362 29 N 2 1 0.9458 0.0522 0.9485

50376 481 Y 42 35 0.9127 0.5730 0.9584

50382 1 N 0 0 0.9458 0.0000 0.9458

50419 248 N 13 23 0.9458 0.4372 0.9682

50429 2 N 0 1 0.9458 0.0212 0.9469

50470 16 N 1 3 0.9458 0.0625 0.9490

50479 2 N 0 2 0.9458 0.0416 0.9479

119

Table 18 shows the probability of constructs being defect-free based on the Binary

Decision Diagram shown in Figure 25.

Coding

1

Insp

q1

p1

1-p1

0

1-q1

Coding

2

p2

1

1-p2

Prod00050350:

Prod00050318: CCD

770R2 BMF Health Care

Changes for PY 2011

Prod00050362:
Prod00050361: CCD 780 DIS/

CS changes

Insp

Coding

3

q2

1-q2

p3

1-p3

Prod00050376:

Prod00050373: CCD 762 -

Drop 2 & CCD 781

Coding

4

Coding

5

SWIT

I&T

1-q5

q3

1-p4

q4

p4

p8

1-q7

Prod00050382: Prod00050380: CCD

762 Drop 2.2

Prod00050419: Prod00050418: IPDE

FPPView

2864 SLOC

Changes

29 New

SLOCs

481 New

SLOCs

1 New

SLOCs

248 New

SLOCs

1-p8

Coding

8

I&T

Coding

6

Coding

7

I&T

I&T

q5

q6

q7

1-q4

1-q3

1-q6

p5

p6

p7

1-p5

1-p6

1-p7

2 New

SLOCs

16 New

SLOCs

2 New

SLOCs

Prod00050429: Prod00050427: CCD 784

- BMF – PRP Corrections for PY 2011

Prod00050470: Prod00050463: CCD 770

- Pgm 13141 - Section 21 should be

required for kv when data has been

entered during OE

Prod00050479: Prod00050358: OLG

Failing to Generate Report When Truth

File Contains Overflow

Figure 25: Binary Decision Diagram – DIS/CS 18.5

120

Table 19: Construct Reliability Estimation – DIS/CS 18.5

Change
Sets

Churn Probability Probability

0002 2768 r(1) r(1) 0.99365

0004 29 r(2) r(2) 0.94849

0008 388 r(3) r(3) 0.95835

0010 93 r(1,3) r1*p3+(1-r1)*q2*p3 0.90719

0016 1 r(4) r(4) 0.94581

0032 248 r(5) r(5) 0.96822

0064 2 r(6) r(6) 0.94690

0128 13 r(7) r(7) 0.94901

0130 3 r(1,7) r1*p7+(1-r1)*q6*p7 0.93993

0256 2 r(8) r(8) 0.94794

After estimating the reliability of all software constructs, we use the defect content

estimator described in Section 3.3 to estimate the number of defective constructs in

files modified in the development stream. The list was then sorted in descending

order based on the estimated number of defective constructs in each file. In the next

section we discuss the results of the case study by comparing the SDPM estimates

with the actual SLOC changes during final system testing.

4.5.4 Case Study Results

In this section we compare the number of defective constructs estimated by the

SDPM with the number of constructs modified in each file during final system testing

of the DIS/CS 18.5 release. Table 20 shows the defect-prone files in descending

order. The first column shows the file names, the second file size, the third gives the

magnitude of change in each file in SLOCs. The fourth and fifth columns represent

the number of defective SLOCs based on the SDPM estimator and the observed

SLOC changes during final system testing respectively. We use the coefficient of

correlation to assess the performance of the SDPM with the observed number of

121

defective SLOCs in each file. We also use the coefficient of correlation to show that

the SDPM provides a better estimate than size of change alone.

Table 20: Case Study Results – DIS/CS 18.5

File Name SLOC Churn

 Est. # of
Defective
SLOCs per

file

Observed #
of Defective

SLOC per
File

de_100000.PCF 8781 92 8.5376 12

de_44110.PCF 1100 150 6.255 #N/A

de_ctlFPPView.vb 163 163 5.1834 #N/A

de_46122.PCF 684 121 5.0457 4

de_11500.PCF 866 411 2.6304 #N/A

de_13141.PCF 732 387 2.4768 #N/A

de_11509.PCF 742 348 2.2272 #N/A

de_11508.PCF 738 346 2.2144 #N/A

de_13420.pcf 662 332 2.1248 #N/A

de_ctlFPPView.Designer.vb 66 66 2.0988 #N/A

de_11540.PCF 648 304 1.9456 #N/A

de_46125.PCF 934 41 1.7097 2

de_13170.PCF 472 214 1.3696 #N/A

de_11501.PCF 456 206 1.3184 #N/A

rp_write_assembled_transport_data.cpp 1039 17 0.8755 #N/A

de_cls13141.vb 72 20 0.8689 #N/A

de_46121.PCF 1578 18 0.7506 #N/A

de_43110.PCF 1844 16 0.6672 1

de_44400.PCF 430 13 0.5421 #N/A

de_mod44110fn.vb 185 10 0.417 #N/A

de_11900.PCF 946 60 0.384 #N/A

de_frmipde.designer.vb 244 12 0.3816 #N/A

rp_EOD_tapes.cpp 1532 5 0.2575 #N/A

de_mod46127fn.vb 122 6 0.2502 #N/A

de_frmipde.vb 557 7 0.2226 #N/A

de_clssection03.vb 100 5 0.2085 1

de_11910.PCF 512 31 0.1984 #N/A

rp_write_assembled_transport_data.h 72 3 0.1545 #N/A

de_mod13141fn.vb 130 22 0.1408 #N/A

de_clssection04.vb 42 3 0.1251 #N/A

122

de_mod13420fn.vb 119 19 0.1216 #N/A

sp_format_on_line_grader_report.cpp 1415 2 0.1042 #N/A

TaxClassMap.cs 143 2 0.103 #N/A

de_clsprogram45500.vb 530 2 0.103 #N/A

de_enumcommonsectionfieldnumbers.vb 1606 1 0.0928 #N/A

de_mod46125fn.vb 196 2 0.0834 #N/A

de_11511.PCF 368 10 0.064 #N/A

de_clssection05.vb 33 1 0.0542 1

de_clssection01.vb 36 1 0.0531 #N/A

de_35713.PCF 416 1 0.0531 #N/A

de_clstaxpr33.vb 79 1 0.0417 #N/A

de_clssection05.vb 32 1 0.0417 1

de_clssection04.vb 49 1 0.0417 #N/A

de_12220.PCF 878 5 0.032 #N/A

de_cls13420.vb 52 4 0.0256 #N/A

de_clssection13.vb 4 4 0.0256 #N/A

de_cls13170.vb 92 3 0.0192 #N/A

de_clssection21.vb 3 3 0.0192 #N/A

de_cls12220.vb 57 3 0.0192 #N/A

de_cls12200.vb 57 3 0.0192 #N/A

de_cls12100.vb 54 3 0.0192 #N/A

de_cls11900.vb 55 3 0.0192 #N/A

de_mod11900fn.vb 164 3 0.0192 #N/A

de_cls11540.vb 55 3 0.0192 #N/A

de_cls11511.vb 54 3 0.0192 #N/A

de_cls11509.vb 53 3 0.0192 #N/A

de_cls11508.vb 51 3 0.0192 #N/A

de_cls11503.vb 55 3 0.0192 #N/A

de_cls11502.vb 52 3 0.0192 #N/A

de_cls11501.vb 92 3 0.0192 #N/A

de_cls11500.vb 52 3 0.0192 #N/A

de_clsForm8941v2.vb 3 3 0.0192 #N/A

de_12200.PCF 596 3 0.0192 #N/A

de_12100.PCF 694 3 0.0192 #N/A

de_11503.PCF 354 3 0.0192 #N/A

de_11502.PCF 440 3 0.0192 #N/A

de_mod11511fn.vb 66 1 0.0064 #N/A

Table 21 shows the coefficient of correlation between size of change (churn), SDPM

estimate and number of defective SLOCs. Based on Table 21, the SDPM provides a

123

good estimate of the number of defective SLOCs. Judging by the coefficient of

correlation in the table, the SDPM provides a better estimate than the churn alone.

Figure 26 shows the estimated number of defective constructs in each file and the

number of observed SLOCs modified during final system testing.

Table 21: Correlation Analysis – DIS/CS 18.5

Churn

Est. # of
Defective

SLOCs
per file

Observed
SLOC

Changes
During
Final

System
Testing

 Churn 1
 Est. # of Defective SLOCs per file 0.54716 1

 Observed SLOC Changes During
Final System Testing 0.69641 0.95450 1

4.5.5 Poisson Regression Model Results

We used defect data from releases 10.4 to 18.4 to estimate the number of defects in

Release 18.5 files. To fit the data, we used the Poisson regression model as described

in Section 4.1.1. Similar to case study 1 and 2, the predictor variables used in this

case study were logarithm of the SLOCs, square root of prior defects, age, and file

status (New, Changed, and Unchanged). Table 24 shows the regression coefficients.

As expected, the values of the coefficients of regression are similar to the coefficients

estimated in case study 1 and 2 because the files share the same structural measures.

124

Table 22: Coefficient of Regression – Case Study 3 - (Poisson Regression)

Coefficient Estimate
Std.

Error
L-R

ChiSquare
Prob>
ChiSq

Lower CL Upper CL

Intercept -0.7475 0.0712 114.7925 0.0000 -0.9415 -0.6084

logSLOC 0.1902 0.0149 163.3089 0.0000 0.1610 0.2194

SqrtPriorD -0.4359 0.0273 267.7662 0.0000 -0.4896 -0.3826

Age -0.1020 0.0046 786.4533 0.0000 -0.1111 -0.0932

New[0] -1.8001 0.0385 2975.5713 0.0000 -1.8763 -1.7253

Changed[0] -1.9973 0.0343 4554.6000 0.0000 -2.0652 -1.9308

Unchanged[0] 0.0000

We used the coefficients of regression to estimate the expected number of defects per

file in Release 18.5 and identify files that will most likely be defective. The results

are shown in Table 23 below. As this table indicates, the Poisson model did not

perform well to identify defect-prone files, based on the defects observed during the

final system testing. Once again, by reviewing the results from the SDPM, the defect

prone files in this case study were non-executable files that can‘t be detected by

Regression models. In fact, the estimate was so poor that no coefficient of correlation

could be calculated.

Table 23: Estimated Number of Defects-Case Study 3 - (Poisson Model)

File Name Defects

Status
(Changed,

Unchanged,
New)

Age
Log

(SLOC)

Sqrt
(Prior

Defects)

Poisson
Model

\de_ctlFPPView.vb
NA

0 0 1 0 5.09 1.00 0.1334

\de_ctlFPPView.Designer.vb
NA

0 0 1 0 4.19 1.00 0.1123

\de_clssection13.vb
NA

0 0 1 0 1.39 1.00 0.0659

\de_clssection21.vb
NA

0 0 1 0 1.10 1.00 0.0624

\de_clsForm8941v2.vb
NA

0 0 1 0 1.10 1.00 0.0624

\TaxClassMap.cs
NA

1 0 0 14 3.89 1.41 0.0174

\de_mod46120fn.vb
NA

1 0 0 23 5.51 1.00 0.0114

\de_mod46125fn.vb
NA

1 0 0 23 5.28 1.00 0.0109

125

\de_mod46127fn.vb
NA

1 0 0 23 4.80 1.00 0.0099

\de_mod13420fn.vb
NA

1 0 0 23 4.78 1.00 0.0099

\de_mod43110fn.vb
NA

1 0 0 23 5.67 1.41 0.0098

\de_clssection01.vb
NA

1 0 0 23 5.78 1.73 0.0087

\de_cls44110.vb
NA

1 0 0 23 4.89 1.41 0.0084

\de_clssection03.vb 1 1 0 0 23 4.62 1.41 0.0080

\de_mod11900fn.vb
NA

1 0 0 24 5.10 1.41 0.0079

\de_clssection01.vb
NA

1 0 0 23 3.58 1.00 0.0079

\de_clssection01.vb
NA

1 0 0 23 5.69 2.00 0.0076

\de_mod13141fn.vb
NA

1 0 0 24 4.87 1.41 0.0076

\de_cls13420.vb
NA

1 0 0 23 3.95 1.41 0.0070

\de_mod44110fn.vb
NA

1 0 0 23 5.22 2.00 0.0069

\de_clssection01.vb
NA

1 0 0 23 5.59 2.24 0.0067

\de_clssection05.vb 1 1 0 0 23 3.50 1.41 0.0065

\de_cls11503.vb
NA

1 0 0 24 4.01 1.41 0.0064

\de_cls11900.vb
NA

1 0 0 24 4.01 1.41 0.0064

\de_cls11500.vb
NA

1 0 0 24 3.95 1.41 0.0064

\de_cls11502.vb
NA

1 0 0 24 3.95 1.41 0.0064

\de_cls11501.vb
NA

1 0 0 24 4.52 1.73 0.0062

\de_clssection04.vb
NA

1 0 0 23 3.89 1.73 0.0061

\de_cls13141.vb
NA

1 0 0 24 4.28 1.73 0.0059

\de_clssection04.vb
NA

1 0 0 23 3.74 1.73 0.0059

\de_clsprogram45500.vb
NA

1 0 0 24 6.27 2.65 0.0058

de_enumcommonsectionfieldnumbers.vb
NA

1 0 0 29 7.39 2.00 0.0057

\de_clssection05.vb 1 1 0 0 23 3.47 1.73 0.0056

\de_mod11511fn.vb
NA

1 0 0 26 4.19 1.41 0.0054

\de_cls13170.vb
NA

1 0 0 26 4.52 1.73 0.0050

\de_clssection02.vb
NA

1 0 0 23 2.08 1.41 0.0049

\de_clssection02.vb
NA

1 0 0 23 2.08 1.41 0.0049

\de_cls12220.vb
NA

1 0 0 26 4.04 1.73 0.0046

\de_cls11540.vb
NA

1 0 0 26 4.01 1.73 0.0046

\de_cls11511.vb
NA

1 0 0 26 3.99 1.73 0.0045

\de_cls12100.vb
NA

1 0 0 26 3.99 1.73 0.0045

\de_cls11509.vb
NA

1 0 0 26 3.97 1.73 0.0045

\de_cls11508.vb
NA

1 0 0 26 3.93 1.73 0.0045

\de_enummessages.vb
NA

1 0 0 29 5.23 2.00 0.0038

\de_cls12200.vb
NA

1 0 0 26 4.04 2.24 0.0037

\de_clssection01.vb
NA

1 0 0 26 5.37 3.00 0.0034

126

\rp_cddb_tape.h
NA

1 0 0 32 3.78 1.00 0.0033

\de_frmipde.designer.vb
NA

1 0 0 29 5.50 2.65 0.0030

cs_write_formatted_key_entry_data.cpp
NA

1 0 0 38 6.54 1.00 0.0030

\de_clssection03.vb 1 1 0 0 26 3.40 2.45 0.0030

\de_clssection01.vb
NA

1 0 0 26 4.63 3.00 0.0030

\de_clstaxpr33.vb
NA

1 0 0 29 4.37 2.24 0.0029

\de_clsform1065xs01.vb
NA

1 0 0 29 4.86 2.65 0.0027

\de_frmipde.vb
NA

1 0 0 29 6.32 3.32 0.0026

\de_clsimfeeiflookup.vb
NA

1 0 0 29 5.95 3.87 0.0019

\rp_write_assembled_transport_data.h
NA

1 0 0 48 3.04 0.00 0.0009

\rp_write_assembled_transport_data.cpp
NA

1 0 0 48 6.06 2.00 0.0006

\rp_EOD_tapes.cpp
NA

1 0 0 48 6.04 2.45 0.0005

\cs_export.h
NA

1 0 0 50 3.53 1.00 0.0005

sp_format_on_line_grader_report.cpp
NA

1 0 0 48 6.45 3.32 0.0004

127

Figure 26: SDPM - Est. # of Defective SLOC vs. Observed Number of Defective SLOCs – DIS/CS 18.5

128

4.6 Case Study 4: CCD 700- More BMF and Help Tag Changes for PY 2010

4.6.1 Software Project Background and History

For this case study we selected a small software development project intended to only

deliver one new function as part of the DIS/CS 17.4 release. Figure 27 shows the

timeline of software development activities for this project. The development phase

started on August 17, 2009 and ended on September 3, 2009. During the

development phase, code changes were delivered in three change sets. The same

change sets were also used to deliver code changes needed to address observed

inspection and SWIT issues. What makes this case study different from other case

studies is that a large number of files are modified to deliver only one enhancement

which is shown below:

 CCD 700- More BMF and Help Tag Changes for PY 2010

o Modify PRPs 11, 20, 21, 26, 39, 40, 41, 43, 44, 46, 49, 51, 52, 53, 55, 56, 57,

58, 80, 81, 82,87, 88, 89

o Modify 24 BMF programs and create 2 new BMF programs and Help Tag

changes

129

17.4 Development Stream

8/17 - 9/3

Development & SWIT Phase

9/3 - 9/8

I&T

8/25

Prod00047091:
Prod00046913:
CCD 700 More BMF
and Help Tag Changes
for PY 2010

Prod00047097:
Prod00047096:
CCD 700 BMF changes

9/1

Prod00047235:
Prod00047207:
Prg 11340
Sec 03 "This section is
not coming up"

9/9 - 9/16

Final System

Testing 9/17

Delivery to
SAT

9/8

Prod00047299:
Prod00047298:
CCD 700 Defect fixes for sw_17.4

Prod00047310:
Prod00047297:
CCD 700- City and Zip popup
box not working correctly,
programs 13211, 13212

9/22

Prod00047474:
Prod00047388:
No zip code look-up
for sections 02 & 03
of 72840, 5500EZ.

10/13

Prod00047831:
Prod00047744:
For 17.4.1.1, PRP 80,
program 13211,
section 10, prompts
'P4L3' and 'P4L4' are

9/8

Prod00047311:
Prod00047293:
CCD 700 – Incorrect prompt "RPT#" in
Sec 01, program 13211

Prod00047313:
Prod00047259: CCD 700 Prg 19000
Sec 01 "KV under print is only partial
visible at the bottom of the screen"

Figure 27: CCD 700 Timeline and Development Activities

4.6.2 Case Study Measurements

In the previous section, we provided a timeline of the software development activities

related to the DIS/CS 17.4 software release. On August 25, 2009 the enhancements

were delivered to the stream in two change sets 47091 and 47097. The change set

47097 also addressed 23 SLOCs that were identified as defective during the

inspection of 47091. Change set 47235 was used to resolve an issue identified during

the SWIT testing. Figure 28 shows the software change matrix for DIS/CS 17.4

release.

130

Figure 28: Software Change Matrix – DIS/CS 17.4

4.6.3 Model Parameter Estimation

In this section we discuss how model parameters are calculated based on the

measurements taken in each change set. Table 24 shows the summary of the

measurements taken for each change set, along with the estimates of the model

parameters. Once model parameters are estimated, we calculate the change

set reliabilities, which are shown in Column 8 of Table 24.

Table 24: Model Parameters – DIS/CS 17.4

Change
Set

Size
Cap-

Recap

(2) Est.
New

Defects

(1)Observed
(Modified/Fixed)

p(i) q(i) r(i)

47091 679 Y 207 23 0.6951 0.1111 0.71869

47097 2204 N 110 3 0.9500 0.0100 0.95047

47235 3 N 0 39 0.9500 0.1299 0.95617

47299 302 N 15 23 0.9500 0.0729 0.95346

47310 66 N 3 1 0.9500 0.0031 0.95015

47311 1 N 0 2 0.9500 0.0063 0.95030

47313 2 N 0 0 0.9500 0.0000 0.95000

131

Table 25 shows the probability of constructs being defect-free based on the Binary

Decision Diagram shown in Figure 29.

Coding

1

Insp

q1

p1

1-p1

0

1-q1

Coding

2

p2

1

1-p2

Prod00047091:

Prod00046913: CCD 700

More BMF and Help Tag

Changes for PY 2010

Prod00047097:
Prod00047096: CCD 700 BMF

changes

Insp

Coding

3

q2

1-q2

p3

1-p3

Prod00047235:

Prod00047207: Prg 11340

Sec 03 "This section is not

coming up"

Coding

4

Coding

5

SWIT

I&T

1-q5

q3

1-p4

q4

p4

Prod00047299: Prod00047298: CCD

700 Defect fixes for sw_17.4

Prod00047310: Prod00047297:CCD 700-

City and Zip popup box not working

correctly, programs 13211, 13212

679 SLOC

Changes

2178 New

SLOCs

3 New

SLOCs

294 New

SLOCs

43 New

SLOCs

I&T

Coding

6

Coding

7

I&T

q5

q6

1-q4

1-q3

1-q6

p5

p6

p7

1-p5

1-p6

1-p7

0 New

SLOCs

0 New

SLOCs

Prod00047311: Prod00047293:CCD 700 -

Incorrect prompt "RPT#" in Sec 01,

program 13211

Prod00047313: Prod00047259: CCD 700

Prg 19000 Sec 01 "KV under print is only

partial visible at the bottom of the screen"

Figure 29: Binary Decision Diagram – DIS/CS 17.4

132

Table 25: Construct Reliability Estimation – DIS/CS 17.4

Change
Sets

Churn SDPM Model Probability

0002 671 r(1) r(1) 0.7187

0004 2178 r(2) r(2) 0.9505

0008 3 r(3) r(3) 0.9562

0016 294 r(4) r(4) 0.9535

0018 8 r(1,4) r1*p4+(1-r1)*q3*p4 0.7175

0032 43 r(5) r(5) 0.9501

0036 23 r(1,5) r1*p5+(1-r1)*q4*p5 0.7022

0068 1 r(1,6) r1*p6+(1-r1)*q5*p6 0.6836

0132 2 r(1,7) r1*p7+(1-r1)*q6*p7 0.6844

After estimating the reliability of all software constructs, we use the defect content

estimator described in Section 3.3 to estimate the number of defective constructs in

files modified in the development stream. The list is then sorted in descending order

based on the estimated number of defective constructs in each file. In the next

section, we discuss the results of the case study by comparing the SDPM estimates

with the actual SLOC changes during final system testing.

4.6.4 Case Study Results

In this section we compare the number of defective constructs estimated by the

SDPM with the number of constructs modified in each file during final system testing

of the DIS/CS 17.4 release. Table 26 shows the defect-prone files in descending

order. The first column shows the file names, the second shows the file size, and the

third gives the magnitude of change in each file in SLOCs. The fourth and fifth

columns represent the number of defective SLOCs based on the SDPM estimator and

the observed SLOC changes during final system testing respectively. We use the

coefficient of correlation to assess the performance of the SDPM with the observed

133

number of defective SLOCs in each file. We also use the coefficient of correlation to

show that the SDPM provides a better estimate than change alone.

Table 26: Case Study Results – DIS/CS 17.4

File name SLOC Churn
Est. # of
Defects
Per File

Observed
Defects

de_13410.pcf 1654 250 68.625 13

de_13212.pcf 492 492 24.354 #N/A

de_13211.pcf 390 390 19.305 2

de_12100.PCF 686 64 17.568 #N/A

de_12300.PCF 646 303 16.1241 #N/A

de_12500.PCF 676 315 15.5925 #N/A

de_15540.pcf 174 44 12.078 #N/A

de_cls45blank.vb 41 41 11.2545 #N/A

de_15560.PCF 172 38 10.431 #N/A

de_12402.PCF 374 38 10.431 #N/A

de_11330.pcf 286 35 9.6075 #N/A

de_11340.pcf 400 186 9.1896 #N/A

de_enumcommonsectionfieldnumbers.vb 1522 73 9.1855 #N/A

de_19000.PCF 248 112 6.0632 #N/A

de_11507.PCF 372 22 6.039 #N/A

de_16010.PCF 210 20 5.49 #N/A

de_clsform8038xs01.vb 103 103 5.3589 2

de_59600.PCF 172 18 4.941 #N/A

de_12404.PCF 220 90 4.455 #N/A

de_12403.PCF 212 86 4.257 #N/A

de_mod13212fn.vb 84 84 4.158 #N/A

de_12410.PCF 464 12 3.294 #N/A

de_mod13211fn.vb 66 66 3.267 #N/A

de_13200.PCF 2544 66 3.267 #N/A

de_11800.PCF 1300 10 2.745 #N/A

de_cls13211.vb 50 50 2.475 #N/A

de_11100.PCF 752 9 2.4705 #N/A

de_cls13212.vb 48 48 2.376 #N/A

de_12701.PCF 190 7 1.9215 #N/A

de_12201.PCF 270 6 1.647 #N/A

de_mod12701fn.vb 32 5 1.3725 #N/A

de_mod12402fn.vb 67 5 1.3725 #N/A

134

de_mod12300fn.vb 110 5 1.3725 #N/A

de_12702.PCF 204 4 1.098 #N/A

de_12310.PCF 2234 4 1.098 #N/A

de_mod15560fn.vb 31 3 0.8235 #N/A

de_mod15540fn.vb 31 3 0.8235 #N/A

de_mod13410fn.vb 287 3 0.8235 #N/A

de_mod11800fn.vb 223 3 0.8235 #N/A

de_12400.PCF 408 3 0.8235 #N/A

de_12320.PCF 592 3 0.8235 #N/A

de_mod12702fn.vb 32 2 0.549 #N/A

de_mod12410fn.vb 81 2 0.549 #N/A

de_mod12400fn.vb 70 2 0.549 #N/A

de_mod12201fn.vb 48 2 0.549 #N/A

de_mod12100fn.vb 114 2 0.549 #N/A

de_mod11330fn.vb 47 2 0.549 #N/A

de_mod11100fn.vb 124 2 0.549 #N/A

assemblyinfo.vb 11 11 0.5445 #N/A

assemblyinfo.vb 11 11 0.5445 #N/A

de_mod12404fn.vb 43 11 0.5445 #N/A

de_mod12403fn.vb 39 8 0.396 #N/A

de_71700.PCF 190 8 0.396 #N/A

de_mod71700fn.vb 32 7 0.3465 #N/A

de_mod12320fn.vb 103 1 0.2745 #N/A

de_mod19000fn.vb 43 4 0.198 1

de_clssection02.vb 4 4 0.198 1

de_clssection03.vb 4 4 0.198 1

de_clssection04.vb 4 4 0.198 #N/A

de_clssection10.vb 4 4 0.198 #N/A

de_clssection11.vb 4 4 0.198 #N/A

de_mod11340fn.vb 71 4 0.198 #N/A

de_mod13200fn.vb 438 3 0.1485 #N/A

de_mod12500fn.vb 112 2 0.099 #N/A

Table 27 shows the coefficient of correlation between size of change (churn), SDPM

estimate and the number of defective SLOCs. Based on Table 27, the SDPM

provides a good estimate for the number of defective SLOCs. Based on the

coefficient of correlation in shown below, the SDPM provides a better estimate than

135

the churn alone. Figure 30 shows the estimated number of defective constructs in

each file and the number of observed SLOCs modified during final system testing.

Table 27: Correlation Analysis DIS/CS 17.4

Churn

Est. # of
Defective SLOCs

Observed # of
Defective

SLOCs During
Final System

Testing

 Churn 1
 Est. # of Defective SLOCs 0.61643 1

 Observed # of Defective SLOCs
During Final System Testing 0.45062 0.97922 1

4.6.5 Poisson Regression Model Results

We used defect data from releases 10.4 to 17.3 to estimate the number of defects in

Release 17.4 files. To fit the data, we used the Poisson regression model as described

in Section 4.1.1. Similar to case study 1, 2 and 3, the predictor variables used in this

case study were logarithm of the SLOCs, square root of prior defects, age, and file

status (New, Changed, and Unchanged). Table 28 shows the regression coefficients.

As expected, the values of the coefficients of regression are similar or close to the

coefficients estimated in previous case studies because the files share the same

structural measures.

Table 28: Coefficient of Regression – Case Study 4 - (Poisson Regression)

Coefficient Estimate
Std.

Error
L-R

ChiSquare
Prob>
ChiSq

Lower
CL

Upper
CL

Intercept -0.5403 0.0574 91.3337 0.0000 -0.6531 -0.4282

Log(SLOC) 0.1623 0.0121 180.4330 0.0000 0.1386 0.1861

136

Sqrt(PriorDef) -0.4873 0.0222 504.1644 0.0000 -0.5310 -0.4438

Age -0.1195 0.0050 901.7879 0.0000 -0.1294 -0.1099

New[0] -1.8633 0.0350 4270.4099 0.0000 -1.9327 -1.7953

Changed[0] -2.1260 0.0314 7229.3271 0.0000 -2.1883 -2.0652

Unchanged[0] 0.0000

We used the coefficients of regression to estimate the expected number of defects per

file in Release 17.4 and identify files that will most likely be defective. The results

are shown in Table 23 below. As this table indicates, the Poisson regression model

was able to identify executable files that were likely to be defect prone, leaving out

non-executable files.

Table 29: Estimated Number of Defects-Case Study 4 - (Poisson Model)

File Name Defects

Changed
Unchanged

New Age
Log

(SLOC)

Sqrt
(Prior

Defects) M

de_clsform8038xs01.vb 2 0 0 1 0 4.63 0.00 0.1918

de_mod13211fn.vb 0 0 0 1 0 4.19 1.00 0.1096

de_cls13211.vb 0 0 0 1 0 3.91 1.00 0.1048

de_cls13212.vb 0 0 0 1 0 3.87 1.00 0.1041

de_clssection03.vb 0 1 0 0 2 3.81 0.00 0.1015

de_clssection03.vb 0 1 0 0 2 3.81 0.00 0.1015

de_cls45blank.vb 0 0 0 1 0 3.71 1.00 0.1015

assemblyinfo.vb 0 0 0 1 0 2.94 1.00 0.0895

assemblyinfo.vb 0 0 0 1 0 2.94 1.00 0.0895

de_cls44318.vb 0 1 0 0 1 4.14 1.00 0.0742

de_cls44317.vb 0 1 0 0 1 4.14 1.00 0.0742

de_clssection10.vb 0 0 0 1 0 1.39 1.00 0.0695

de_clssection11.vb 0 0 0 1 0 1.39 1.00 0.0695

de_clssection02.vb 0 0 0 1 0 1.39 1.00 0.0695

de_clssection03.vb 0 0 0 1 0 1.39 1.00 0.0695

de_clssection04.vb 0 0 0 1 0 1.39 1.00 0.0695

assemblyinfo.vb 0 1 0 0 1 2.94 1.00 0.0611

assemblyinfo.vb 0 1 0 0 1 2.94 1.00 0.0611

137

de_mod44318FN.vb 0 1 0 0 1 2.89 1.00 0.0606

de_mod44317fn.vb 0 1 0 0 1 2.77 1.00 0.0594

de_mod13212fn.vb 0 1 0 0 5 4.43 1.00 0.0482

de_clssection06fc1048.vb 0 1 0 0 1 1.39 1.00 0.0474

de_clssection06fc1049.vb 0 1 0 0 1 1.39 1.00 0.0474

de_clssection58.vb 0 1 0 0 1 1.10 1.00 0.0453

de_clssection57.vb 0 1 0 0 1 1.10 1.00 0.0453

de_clsSection57.vb 0 1 0 0 1 1.39 1.41 0.0388

de_clssection03.vb 0 1 0 0 6 2.94 1.00 0.0336

de_clssection02.vb 0 1 0 0 6 2.94 1.41 0.0275

de_mod13200fn.vb 0 1 0 0 13 6.08 1.00 0.0242

de_mod13410fn.vb 0 1 0 0 13 5.66 1.00 0.0226

de_mod46125fn.vb 0 1 0 0 13 5.21 1.00 0.0210

de_mod12320fn.vb 0 1 0 0 13 4.63 1.00 0.0192

de_mod44400fn.vb 1 1 0 0 13 4.45 1.00 0.0186

de_mod12410fn.vb 0 1 0 0 13 4.39 1.00 0.0184

de_mod43110fn.vb 0 1 0 0 13 5.58 1.41 0.0183

healthchecks.xml 0 1 0 0 15 5.46 1.00 0.0172

de_mod12500fn.vb 0 1 0 0 14 4.72 1.00 0.0172

de_mod12300fn.vb 0 1 0 0 14 4.70 1.00 0.0172

de_mod11330fn.vb 0 1 0 0 13 3.85 1.00 0.0169

de_cls44110.vb 0 1 0 0 13 4.96 1.41 0.0165

de_mod12400fn.vb 0 1 0 0 14 4.25 1.00 0.0160

de_mod12402fn.vb 0 1 0 0 14 4.20 1.00 0.0159

de_clssection03.vb 0 1 0 0 13 4.67 1.41 0.0158

de_clssection01.vb 1 1 0 0 13 4.49 1.41 0.0153

de_mod12201fn.vb 0 1 0 0 14 3.87 1.00 0.0150

FileVersionHealthCheck.cs 0 1 0 0 15 4.38 1.00 0.0145

de_mod11100fn.vb 0 1 0 0 14 4.82 1.41 0.0143

DatabaseBackupHealthCheck.cs 0 1 0 0 15 4.25 1.00 0.0142

DiskSpaceHealthCheck.cs 0 1 0 0 15 4.20 1.00 0.0141

de_mod71700fn.vb 0 1 0 0 14 3.47 1.00 0.0141

de_mod12702fn.vb 0 1 0 0 14 3.47 1.00 0.0141

DatabaseRowCountHealthCheck.cs 0 1 0 0 15 4.16 1.00 0.0140

EnvironmentVariableHealthCheck.cs 0 1 0 0 15 4.14 1.00 0.0139

de_cls43110.vb 0 1 0 0 13 5.65 2.00 0.0139

138

DatabaseScalarQueryHealthCheck.cs 0 1 0 0 15 4.09 1.00 0.0138

de_clssection04.vb 0 1 0 0 13 3.81 1.41 0.0137

ServiceStateHealthCheck.cs 0 1 0 0 15 4.03 1.00 0.0137

VerifyAutoPurgeHealthCheck.cs 0 1 0 0 15 3.97 1.00 0.0135

EventLogHealthCheck.cs 0 1 0 0 15 3.85 1.00 0.0133

de_mod11340fn.vb 0 1 0 0 14 4.26 1.41 0.0131

de_clssection05.vb 0 1 0 0 13 3.50 1.41 0.0130

de_mod44110fn.vb 0 1 0 0 13 5.20 2.00 0.0129

FolderReplicationHealthCheck.cs 0 1 0 0 15 4.63 1.41 0.0123

de_enumcommonsectionfieldnumbers.vb 2 1 0 0 19 7.33 1.41 0.0118

de_cls46125.vb 0 1 0 0 13 4.63 2.00 0.0118

de_clssection05.vb 0 1 0 0 13 3.66 1.73 0.0115

de_mod15560fn.vb 0 1 0 0 14 3.43 1.41 0.0114

de_mod12100fn.vb 0 1 0 0 16 4.74 1.41 0.0111

de_mod15540fn.vb 0 1 0 0 16 3.43 1.41 0.0090

de_mod47110fn.vb 1 1 0 0 16 4.28 1.73 0.0088

de_mod12404fn.vb 0 1 0 0 19 3.76 1.00 0.0081

de_mod12701fn.vb 0 1 0 0 19 3.47 1.00 0.0077

de_mod11800fn.vb 0 1 0 0 19 5.41 1.73 0.0074

de_cls47110.vb 0 1 0 0 16 4.19 2.24 0.0068

de_mod19000fn.vb 0 1 0 0 19 3.76 1.41 0.0066

de_enummessages.vb 0 1 0 0 19 5.23 2.00 0.0063

de_clssection03.vb 0 1 0 0 16 3.40 2.24 0.0060

de_ctlprpview.vb 0 1 0 0 19 5.45 2.24 0.0058

de_clssections.vb 0 1 0 0 19 5.45 2.24 0.0058

setupworkstationdatastores.bat 1 1 0 0 28 4.65 0.00 0.0052

de_clstaxpr31.vb 0 1 0 0 19 3.99 2.00 0.0052

de_clstaxpr15.vb 0 1 0 0 19 4.38 2.24 0.0049

de_mod12403fn.vb 0 1 0 0 19 3.66 2.00 0.0049

de_clstaxpr33.vb 0 1 0 0 19 4.37 2.24 0.0049

de_clsschedulec.vb 0 1 0 0 19 3.50 2.00 0.0048

cs_create_cddb.cpp 0 1 0 0 22 5.84 2.83 0.0033

EEIFDatabase.cs 0 1 0 0 26 6.73 2.24 0.0031

MainForm.cs 0 1 0 0 26 5.88 2.00 0.0030

rp_EOD_tapes_private.h 0 1 0 0 28 3.56 1.00 0.0027

cs_sql_eeif_initialize.cpp 0 1 0 0 29 5.35 1.41 0.0026

139

Install_ISRP.bat 0 1 0 0 25 3.95 2.65 0.0018

de_clsstatemachine.vb 2 1 0 0 19 7.93 5.74 0.0016

cs_ftp_export.cpp 0 1 0 0 36 4.53 1.73 0.0008

cs_store_ops.cpp 0 1 0 0 37 6.01 2.24 0.0007

cs_end_of_shift.cpp 1 1 0 0 37 6.02 2.83 0.0006

rp_perform_EOD_export.cpp 0 1 0 0 37 4.77 2.45 0.0005

We used the coefficient of correlation to compare the results of the SDPM with the

Poisson regression model. As Table 30 indicates, the SDPM performed better than

the Poisson regression model in identifying defect prone files.

Table 30: Coefficient of Correlation – Poisson Model

Estimated
number of

Defects

Observed
Number

of
Defects

Estimated number of Defects 1
 Observed Number of Defects 0.46747 1

140

Figure 30: SDPM - Est. # of Defective SLOC vs. Observed Number of Defective SLOCs – DIS/CS 17.4

141

4.7 Case Study 5: CCD 689- IMF Changes for PY 2010

4.7.1 Software Project Background and History

For this case study we selected a software development project that is intended to

deliver one enhancement as part of the DIS/CS 17.3 release. Figure 31 shows the

timeline of software development activities for this project. The development phase

started on July 15, 2009 and concluded on August 20, 2009. During the development

phase, code changes were delivered in 2 change sets. The two change sets were also

used to deliver code changes needed to address inspection defects. The first part of

the code changes was delivered on July 29, 2009 modifying 1287 SLOCs. The

second set of changes were delivered on August 5, 2009 modifying 577 SLOCs.

From 577 SLOCs modified in change set 2, 200 overlapped with SLOCs modified in

change set 1, 67 of which addressed defective SLOCs identified during the inspection

process. In this case study no defects were identified during SWIT and I&T testing.

CCD 689 was a relatively small project implementing one major enhancement. The

major functions being delivered with DIS/CS 17.3 are listed below:

 CCD 689- IMF Changes for PY 2010

o IMF changes for 2010; PRP 15, 31, 22 and 36 changes; 7 IMF programs

impacted.

142

17.3 Development Stream

7/15 - 8/20

Development & SWIT Phase

8/20 - 8/26

I&T

8/27 - 9/2

Final System

Testing 9/17

Delivery to
SAT

7/29

Prod00046891:
Prod00046890:
CCD 689 Changes.
(PRP 31).

8/5

Prod00046928:
Prod00046923:
CCD 689 - PY 2010
Changes for 1040X
Forms PRP: 15,33,36

8/31

Prod00047206:
Prod00047139:
CCD 689: 44110 –
TAXPR accepts future
date and error msg is
incorrect

8/28

Prod00047182:
Prod00047140:
CCD 689: 44110 –
section 57 - cursor will
not exit SECT field

9/2

Prod00047254:
Prod00047253:
Incorrect 100000.PCF file in 17.3

Figure 31: CCD 689 Timeline and Development Activities

4.7.2 Case Study Measurements

In previous section, we provided a timeline of the software development activities

related to DIS/CS 17.3 software release. On July 29, 2009 the first set of

enhancements was delivered to the stream. A formal inspection was held and

inspection findings along with the implementation of the second set of enhancements

were delivered on August 5, 2009. Out of 1287 SLOC changes delivered in the first

change set 377 were reworked in change set 2. Figure 32 shows the software change

matrix for DIS/CS 17.3 release. In change set 2, 200 additional SLOCs were updated

to implement the second set of changes needed for this release.

143

Figure 32: Change Set Matrix – DIS/CS 17.3

4.7.3 Model Parameter Estimation

In this section we will discuss how model parameters are calculated based on the

measurements taken in each change set. Table 31 shows the summary of the

measurements taken for each change set along with the estimates of the model

parameters. Once model parameters are estimated, we calculate the change set

reliabilities, which is shown in column 8 of Table 31.

Table 31: Model Parameters – DIS/CS 17.3

Change
Set

Size
Cap-

Recap
(2) Est. New

Defects

(1)
Observed

(to be
reworked)

q(i) p(i) r(i)

46891 1287 Y 132 67 0.50758 0.89744 0.94949

46928 200 N 21 0 0.00000 0.89744 0.89744

Table 31 shows the probability of constructs being defect free based on the Binary

Decision Diagram shown in Figure 33.

144

Coding

1

Insp

q1

p1

1-p1

0

1-q1

Coding

2

p2

1

1-p2

Prod00046891:

Prod00046890: CCD 689

Changes. (PRP 31).

Prod00046928:
Prod00046923: CCD 689 - PY

2010 Changes for 1040X
Forms PRP: 15,33,36

1287 SLOC

Changes

200 New

SLOCs

Figure 33: Binary Decision Diagram – DIS/CS 17.3

4.7.4 Case Study Results

In this section we will compare the estimated number of defective constructs

estimated by SDPM with the number of constructs modified in each file during final

system testing of DIS/CS 17.3 release. Table 32 shows the defect-prone files in

descending order. The first column shows the file names, the second column shows

the file size, the third column gives the magnitude of change in each file in SLOCs.

The third and fourth columns represent the estimated number of defective SLOCs

based on the SDPM estimator and the observed SLOC changes during final system

testing respectively. We use the coefficient of correlation to assess the performance

of SDPM with the observed number of defective SLOCs in each file. We also use the

coefficient of correlation to show that SDPM provides a better estimate than the

churn alone.

145

Table 32: Case Study Results – DIS/CS 17.3

File Name SLOC Churn
Est. # of

Defective
SLOCs

Observed
SLOC changes

during final
system testing

de_100000.PCF 8297 628 59.867 522

de_43110.PCF 1710 273 13.7865 1

de_44110.PCF 1090 119 12.2094 1

de_46121.PCF 1440 148 7.474

de_46125.PCF 874 98 4.949

de_46122.PCF 676 40 4.104

de_mod43110fn.vb 266 31 1.5655

de_clsschedulec.vb 33 30 1.515

de_47110.PCF 430 14 1.4364

de_mod44110fn.vb 182 12 1.2312 1

de_mod46121fn.vb 226 23 1.1615

de_44400.PCF 402 22 1.111

de_cls44110.vb 142 3 0.3078

de_cls46121.vb 179 5 0.2525

de_clssection05.vb 36 5 0.2525

de_cls43110.vb 283 5 0.2525

de_cls47110.vb 66 2 0.2052

de_mod46122fn.vb 120 2 0.2052

de_mod46125fn.vb 184 4 0.202

de_clsSection57.vb 4 4 0.202

de_clssection57.vb 3 3 0.1515

de_clssection58.vb 3 3 0.1515

de_clstaxpr15.vb 80 1 0.1026

de_clstaxpr31.vb 54 1 0.1026

de_clstaxpr33.vb 75 1 0.1026

de_clssection03.vb 30 1 0.1026

de_mod47110fn.vb 72 1 0.1026

de_clssection03.vb 107 1 0.1026

de_clssection04.vb 45 2 0.101

de_clssection05.vb 39 2 0.101

de_cls46125.vb 103 1 0.0505

de_clssection05.vb 33 1 0.0505

de_mod44400fn.vb 86 1 0.0505

de_cls46125.vb 103 1 0.0266

de_clssection05.vb 33 1 0.0266

de_mod44400fn.vb 86 1 0.0266

146

Table 33 shows the coefficient of correlation between size of change (churn), SDPM

estimate and the number of defective SLOCs. Based on Table 33 SDPM provides a

good estimate for the number of defective SLOCs. Based on the coefficient of

correlation in Table 33, SDPM provides a better estimate than the churn alone. Figure

34 shows the estimated number of defective constructs in each file and the number of

observed SLOCs modified during final system testing.

Table 33: Correlation Analysis DIS/CS 17.3

 Churn

Est. # of
Defective

SLOCs

Observed
SLOC

changes
during
final

system
testing

 Churn 1
 Est. # of Defective SLOCs 0.976673 1

 Observed SLOC changes during
final system testing 0.917232 0.9766679 1

4.7.5 Poisson Regression Model Results

We used defect data from releases 10.4 to 17.2 to estimate the number of defects in

Release 17.3 files. To fit the data, we used the Poisson regression model as described

in Section 4.1.1. Similar to previous case studies the predictor variables used in this

case study were logarithm of the SLOCs, square root of prior defects, age, and file

status (New, Changed, and Unchanged). Table 34 shows the regression coefficients.

As expected, the values of the coefficients of regression are similar or close to the

147

coefficients estimated in previous case studies because the files share the same

structural measures.

Table 34: Coefficient of Correlation – Poisson Regression

Coefficient Estimate
Std.

Error
L-R

ChiSquare
Prob>
ChiSq

Lower CL Upper CL

Intercept -0.53660 0.05814 87.76055 0.00000 -0.65091 -0.42299

Log(SLOC) 0.16125 0.01227 173.43862 0.00000 0.13721 0.18531

Sqrt(Prior Def) -0.48666 0.02250 490.90084 0.00000 -0.53086 -0.44264

Age -0.11875 0.00509 843.19031 0.00000 -0.12888 -0.10893

New[0] -1.86038 0.03550 4137.83521 0.00000 -1.93065 -1.79148

Changed[0] -2.12136 0.03180 7011.85550 0.00000 -2.18446 -2.05978

Unchanged[0] 0.00000

We used the coefficients of regression to estimate the expected number of defects per

file in Release 17.3 and identify files that will most likely be defective. The results

are shown in Table 35 below. As this table and the SDPM analysis indicate, the

SDPM performed well in identifying defect prone files based on the software

development activities from the current project, but failed to identify latent defects

that already existed in the software product. On the other hand, while the Poisson

regression model was able to identify one a newly created file as defective, it failed to

identify most defect-prone files.

148

Table 35: Estimated Number of Defects-Case Study 5 - (Poisson Model)

File Name Defects
Changed

Unchanged
New

Age
Log

(SLOC)

Sqrt
(Prior

Defects)

Poisson
Model

de_clsSection57.vb 2 0 0 1 0 1.39 0.00 0.11379

de_cls44318.vb 0 0 0 1 0 4.14 1.00 0.10909

de_cls44317.vb 0 0 0 1 0 4.14 1.00 0.10909

assemblyinfo.vb 0 0 0 1 0 2.94 1.00 0.08992

assemblyinfo.vb 0 0 0 1 0 2.94 1.00 0.08992

de_mod44318FN.vb 0 0 0 1 0 2.89 1.00 0.08914

de_mod44317fn.vb 0 0 0 1 0 2.77 1.00 0.08746

de_clssection06fc1049.vb 0 0 0 1 0 1.39 1.00 0.06994

de_clssection06fc1048.vb 0 0 0 1 0 1.39 1.00 0.06994

de_clssection58.vb 0 0 0 1 0 1.10 1.00 0.06677

de_clssection57.vb 0 0 0 1 0 1.10 1.00 0.06677

de_mod46125fn.vb 0 1 0 0 12 5.21 1.00 0.02402

de_mod44312fn.vb 0 1 0 0 11 4.13 1.00 0.02270

mod_registerlist.vb 0 1 0 0 11 5.06 1.41 0.02156

de_mod44303fn.vb 0 1 0 0 11 3.76 1.00 0.02140

de_mod44400fn.vb 0 1 0 0 12 4.45 1.00 0.02125

de_mod43110fn.vb 0 1 0 0 12 5.58 1.41 0.02084

mod_createlist.vb 0 1 0 0 11 4.84 1.41 0.02080

de_mod44313fn.vb 0 1 0 0 11 3.30 1.00 0.01985

de_cls44110.vb 0 1 0 0 12 4.96 1.41 0.01883

de_mod13131fn.vb 0 1 0 0 13 5.61 1.41 0.01858

de_clssection01.vb 0 1 0 0 12 3.61 1.00 0.01855

assemblyinfo.vb 0 1 0 0 11 2.71 1.00 0.01806

assemblyinfo.vb 0 1 0 0 11 2.71 1.00 0.01806

de_clssection03.vb 0 1 0 0 12 4.67 1.41 0.01799

de_clssection01.vb 0 1 0 0 12 3.18 1.00 0.01730

de_clssection01.vb 0 1 0 0 12 3.18 1.00 0.01730

de_mod11900fn.vb 0 1 0 0 13 5.12 1.41 0.01717

de_mod44110fn.vb 1 1 0 0 12 5.20 1.73 0.01679

de_cls43110.vb 0 1 0 0 12 5.65 2.00 0.01583

de_clssection04.vb 0 1 0 0 12 3.81 1.41 0.01565

de_mod35713fn.vb 0 1 0 0 13 4.29 1.41 0.01502

de_clssection05.vb 0 1 0 0 12 3.50 1.41 0.01489

de_enumcommonsectionfieldnumbers.vb 0 1 0 0 18 7.33 1.41 0.01354

de_cls46125.vb 0 1 0 0 12 4.63 2.00 0.01345

de_cls11680.vb 0 1 0 0 13 4.48 1.73 0.01326

de_clssection05.vb 0 1 0 0 12 3.66 1.73 0.01310

de_mod11509fn.vb 0 1 0 0 15 4.81 1.41 0.01289

149

de_mod11508fn.vb 0 1 0 0 15 4.81 1.41 0.01289

de_mod11540fn.vb 0 1 0 0 15 4.75 1.41 0.01277

de_ctlfielddisplayorder.designer.vb 0 1 0 0 18 5.93 1.41 0.01081

de_mod47110fn.vb 0 1 0 0 15 4.28 1.73 0.01013

de_ctlzerobalance.designer.vb 0 1 0 0 18 5.49 1.41 0.01007

de_ctlfields.designer.vb 0 1 0 0 18 6.26 1.73 0.00977

de_enummessages.vb 2 1 0 0 18 5.23 1.41 0.00965

de_POMDatastoreBuild.sql 0 1 0 0 18 4.64 1.41 0.00878

de_ctlfieldoutputorder.designer.vb 0 1 0 0 18 4.57 1.41 0.00869

de_CreateMessageLoader.bat 0 1 0 0 18 4.32 1.41 0.00833

de_cls47110.vb 0 1 0 0 15 4.19 2.24 0.00781

de_ctlenumerations.designer.vb 0 1 0 0 18 3.83 1.41 0.00770

de_ctlprpview.vb 1 1 0 0 18 5.45 2.00 0.00752

de_clssections.vb 1 1 0 0 18 5.45 2.00 0.00752

de_ctlsections.designer.vb 0 1 0 0 18 4.57 1.73 0.00744

de_clssection03.vb 0 1 0 0 15 3.40 2.24 0.00688

de_ctlfields.vb 0 1 0 0 18 6.78 2.65 0.00681

de_clstaxpr33.vb 1 1 0 0 18 4.37 2.00 0.00632

de_clstaxpr31.vb 0 1 0 0 18 3.99 2.00 0.00594

de_ctlsections.vb 0 1 0 0 18 5.89 2.65 0.00589

de_clstaxpr15.vb 0 1 0 0 18 4.38 2.24 0.00564

de_clsschedulec.vb 0 1 0 0 18 3.50 2.00 0.00549

de_frmipde.vb 0 1 0 0 18 6.30 3.16 0.00490

cs_dis_epmf_lookup.cpp 0 1 0 0 27 4.93 1.00 0.00386

EEIFDatabase.cs 0 1 0 0 25 6.73 2.24 0.00359

MainForm.cs 0 1 0 0 25 5.88 2.00 0.00351

isrp_build.bat 0 1 0 0 27 3.47 1.00 0.00305

sp_eop_ke3_processing.cpp 0 1 0 0 27 7.15 2.24 0.00303

cs_entity_check.cpp 0 1 0 0 28 5.30 1.41 0.00298

cs_eeif_lookup_private.h 0 1 0 0 28 4.67 1.41 0.00269

sp_remove_ghostblock.cpp 0 1 0 0 27 5.30 2.00 0.00252

sp_eop_ke3_processing_training_block.cpp 0 1 0 0 34 6.44 1.00 0.00215

sp_release_block.cpp 0 1 0 0 37 7.54 3.00 0.00068

We used the coefficient of correlation to compare the results of the SDPM with the

Poisson regression model. By comparing the coefficient of correlation from Table 36

with the coefficient of correlation from SDPM provided in Table 33, we observe that

150

the SDPM performed better than the Poisson regression model in identifying defect

prone files.

Table 36: Coefficient of Correlation – Poisson Model

Estimated #
of Defects

Observed
of Defects

Estimated # of Defects 1
 Observed # of Defects 0.63078 1

151

Figure 34: SDPM – Estimated # of Defective SLOCs vs. Observed # of Defective SLOCs – DIS/CS 17.3

152

4.8 Case Study Conclusion

In this chapter, we presented five industrial software development projects and

studied how the Software Development Profile Model is used in real life projects. In

each case study, we used the SDPM to estimate the number of defective constructs

per file. We then compared the results with the number of SLOCs that were modified

in each file during final system testing. To make this comparison valid, we excluded

any code changes during the final system testing phase that were not related to the

current development. We then analyzed the results using the coefficient of

correlation between our estimate and the actual code changes and by comparing the

ranking of files. In all five case studies the number of defective constructs estimated

by SDPM was strongly correlated with the actual number of SLOCs modified during

final system testing. Further, in all five case studies the number of SLOC changes

during final system testing had a stronger correlation with the SDPM estimate than

size of code change during development alone. This implies that software

development process attributes should be considered in defect estimation. We sorted

the files that were modified in each software development project in descending order

and plotted them against the number of SLOCs modified in each file during final

system testing. Again, the SDPM performed well by identifying defect prone files

listed on top of the list.

Although we noticed a strong correlation between the SDPM estimates and the actual

modified SLOCs during regression, its absolute predictive accuracy varied from

project to project. Our investigation into this error shows the need to ensure the

model closely matches the project. For example, the error can either be due to

153

inaccuracies in the estimation of total inspection defects or by failure to incorporate

all evidence. In general, the SDPM performed best in Case Studies 1 through 4,

where the requirement volatility was comparatively low. These four projects followed

the waterfall model, where the requirements were finalized before development

started. In Case Study 5, requirements were changed by the customer later in the

development lifecycle, causing an unexpectedly large number of code changes to

appear during final system testing.

We also used the Poisson regression model to evaluate the SDPM in comparison with

an existing defect estimation model. As discussed in Section 4.1, a direct comparison

was not possible, due of the differences in each model‘s measurement units and

assumptions. In general, we observed that the SDPM performed better than the

regression based model in identifying defect prone files in all five projects. The

advantage of the SDPM is that it can estimate defect content of both executable and

non-executable files. Since regression based models are based on defect data

observed during the previous releases, they are unable to identify defects in non-

executable files. The regression based model performed well in identifying latent

defects that the SDPM was unable to identify due to lack change history and software

development activities data from previous releases.

154

Chapter 5: Summary of Contributions and Future Research

Directions

5.1 Summary of Contributions

In Chapter 3, we introduced the Software Development Profile Model as a causal

model for identifying defect prone software artifacts based on change history and

software development activities. Rather than relying on defect data from previous

projects or static software attributes to predict defect content, the SDPM assumes that

human error during software development is the sole cause of software defects, and

software development activities such as inspection, testing, and rework, further affect

the total number of remaining software defects. Based on these assumptions, we

proposed the SDPM as a causal model for estimating the number of defective

constructs in software artifacts. Understanding the relationship between software

development activities, change history and defect content can be crucial to the

development of more reliable software products. It provides software managers with

a framework for managing and adjusting software development activities more

effectively. Rather than using defect data which is mostly available toward the end of

the software development lifecycle, the SDPM can be used throughout the

development process to measure defect content based on software development

activities. Furthermore, using observations from an ongoing software development

project provides more accurate defect prediction.

In Chapter 4, we investigated the relationship between the number of defective

constructs estimated by the SDPM, and the number of defective constructs observed

during final system testing using five real life software development projects. In all

155

five case studies we showed that the number of defective constructs estimated by the

SDPM was strongly correlated to the actual number of SLOCs modified during final

system testing. We also showed that the SDPM can be used to identify defect-prone

software artifacts early in the development process without relying on defect data.

In Case Study 1, we show how additional evidence can be taken into account as it

becomes available to update model parameters. We used the Bayesian Belief

Network (BBN) to capture external factors and expert judgment to update the model

parameters and provide a more accurate estimation.

5.2 Limitations of this Research

In this section we discuss the limitations of the SDPM based on the model‘s

assumptions and discuss future research directions. First, it is important to note that

the number of remaining defects is not usually a direct measure of software

reliability. A software program may contain many defects, each with a very low rate

of occurrence, and such product can be more reliable than another software product

which contains fewer defects each with a high rate of occurrence. Hence, the total

rate of failure, that is the failure intensity of a software artifact, is a better measure

that needs to be considered in the context of software reliability analysis. Similarly,

we use the number of defective constructs in files as the measure of defect-proneness.

We assume that files containing more defective constructs are more likely to be

defective in production. While there is a correlation between the number of defective

constructs in a file and its defect-proneness, considering the logical file structure and

inter-modular coupling among constructs might provide a better measure of defect-

proneness.

156

We also discussed dependencies among related software artifacts. We recognized that

modifying one artifact can cause others to become defective. We captured this

dependency by assuming that all related artifacts are known, included and reviewed

during the inspection process. By including all related artifacts in the inspection, we

assumed that we are able to estimate the number of defective constructs in related

artifacts. Several models have been proposed to quantify the dependencies among

related artifacts [21][51]. Modeling dependencies among software artifacts

qualitatively rather than subjectively can improve the estimation, especially for larger

software development projects or when file dependencies are unknown.

5.3 Future Research Directions

Most existing software reliability models contain a parameter which represents the

number of faults in the software. If the number of faults is assumed to be finite, then

there is a need to estimate the number of remaining defects [64]. The SDPM can be

used in conjunction with different software reliability models to estimate the

reliability of the software product early in its lifecycle.

Further, the SDPM has not yet been used in software development project following

agile methods. Agile methods break software development activities into small

increments with minimal planning. Each increment allows a team to work through a

full software development lifecycle, including requirements analysis, design, coding

and testing. Since iterations are small, multiple iterations may be needed to deliver

functionality. Because agile involves minimal planning, the SDPM can be used to

identify defect-prone artifacts based on development activities and the size of each

157

change so that resources can be more effectively focused on defect-prone software

artifacts.

In chapter 4 we recognized three types of dependencies, the dependency among

constructs, the dependency among change sets and the external dependencies. In a

software program there is also an additional dependency between artifacts. In

software engineering, the term coupling is used to describe the degree to which

software artifacts rely on each other. Low coupling is usually a sign of well-

structured software program. Since coupling among artifacts can have ripple effect

on other less defect-prone artifacts, modeling coupling as a dependency is a

recommended future research topic.

In Chapter 4, we used Bayesian Belief Network (BBN) to capture the extrinsic

dependencies. An example was provided to show how common environmental

factors and local factors are used to update the model parameters and to provide a

more accurate estimation. We did not discuss however, the importance measure of

the external factor. Since not all factors affect the number of remaining defects

equally, we recommend further sensitivity analysis of the external factors as future

research area. Such sensitivity analysis can provide software managers with the tool

needed to understand which factors can provide a better return on investment.

158

Appendix A: Script Developed to Generate Change Sets

The script below was developed to examine the software stream to identify all

activities in the change set and create a directory structure that can be used by the

PET tool for SDPM analysis.

Author: Brent Olson

Purpose:

Provided a baseline, examine that baseline to determine

its contents.

for each of the activities unique to that stream (meaning

that we exclude activities with equivalent check-ins

in earlier streams), create a directory structure that looks

like this:

compare_dirs

baseline

latest

previous

activity1

latest

previous

activity2

latest

previous

activity3

latest

previous

.

.

.

.

.

"latest" contains the latest versions of files touched by

that activity. "previous" contains versions of the files

touched by the activity, but contains the version of the file

that existed before it was modified by that activity

use CQPerlExt;

#use Win32::ODBC;

use Env "USERNAME";

#--------------------------------------

set some base variables

#--------------------------------------

my $pvob = "\\isrp_pvob";

my $temp_dir;

my $baseline;

159

if (defined $ENV{"TMP"}) {

 $temp_dir = $ENV{"TMP"};

 print "\n\n#############################\n# Copying files to: " .

$ENV{"TMP"} . "\\baseline_compare\n#############################\n";

}

else {

 $temp_dir = "C:\\TEMP";

}

my $out_file = "$temp_dir\\baseline_compare\\copy_baseline_output.txt";

my $compare_directory = "baseline_compare";

if (! -d "$temp_dir\\baseline_compare") {

 mkdir ("$temp_dir\\baseline_compare") or die "\nERROR: cannot mkdir

\"$temp_dir\\baseline_compare\" because $!";

}

#--------------------------------------

verify input

#--------------------------------------

if (! $ARGV[0]){

 usage("You must provide a baseline.");

}

else {

 $baseline = $ARGV[0];

 # if the baseline has an @, then it includes a pvob qualifier

 if ($baseline =~ /\@/) {

 ($baseline, $pvob) = split /\@/, $baseline;

 }

 print `cleartool lsbl $baseline\@$pvob 2>&1`;

 usage("Not a valid baseline") if ($?);

}

remove the comparison directory and the output file

clean_up();

copy out the entire baseline so that SLOCCO can look at it and give us

details on how many total SLOC exist. We do this by using SLOCCO to compare

the baseline against itself.

#$whole_baseline_file_hash = run_file_comparison_for_all_files($baseline);

#clean_up();

now use the baseline to get a list of the activities included, exclude those

from previous releases, and then copy out the relevant files and SLOCCO it

we define activities of this release to include those things checked in for this

baseline,

but excluding those activities with corresponding checkins in earlier streams

my @all_activities = get_all_activities($baseline);

160

print "\nall activities means @{all_activities}";

my @release_activities =

activities_from_baseline_excluding_earlier_releases($baseline);

print "\njust the release activities means @{release_activities}";

update the compare dir for the first copy

$compare_directory = "baseline_compare\\$baseline";

copy_files_for_these_activities(@release_activities);

print "\nDone copying everything, now I'm going to make copies for each of the

activities included";

foreach $act (@release_activities) {

 print "\n\nRunning for $act:";

 $compare_directory = "baseline_compare\\$act";

 my @one_act = ($act);

 copy_files_for_these_activities(@one_act);

 print "\n\tDone copying for $act";

}

$compare_directory = "baseline_compare\\$baseline";

print "\n\n###\n#";

print " Copying Complete!! Please check $temp_dir\\baseline_compare for your

files...";

print "\n###";

exit 0;

#---

#---

SUBROUTINES

#---

#---

#--------------------------------------

sub clean_up

remove the output file and the

comparison directories if they

exist (from the last time they

were run)

#--------------------------------------

sub clean_up {

 # remove the output file if it exists already

 if (-f $out_file) {

 #print "\nRemoving the output file from the last time this was run...

(file: $out_file)";

 print `del /q /f \"$out_file\" 2>&1`;

 print "\nWarning: $out_file not removed!" if (-f $out_file);

 }

161

 # remove the comparison directories if they already exist

 if (-d "$temp_dir\\$compare_directory"){

 #print "\nRemoving the comparison directory from the last time this was

run... (dir: $temp_dir\\$compare_directory)";

 print `rmdir /s/q \"$temp_dir\\$compare_directory\" 2>&1`;

 print "\nWarning: $temp_dir\\$compare_directory not completely removed"

if (-d "$temp_dir\\$compare_directory") ;

 }

 # now, recreate the base that you've just removed, since we'll be runing this

thing multiple times and at different directory depths

 mkdir ("$temp_dir\\$compare_directory") or die "Can't makedir on

$temp_dir\\$compare_directory because $!";

}

#------------------------------------

sub get_cq_info_for

#------------------------------------

sub get_cq_info_for {

 my @activities = @_;

 #print "\n\nInside get_cq_info_for I have @{activities}";

 my %act_info;

 #my @INSPECTS = ("$inspection");

 my $CQsession = CQSession::Build();

 $CQsession->UserLogon("xxxxxxx", "xxxxxxx", "xxxxx", "");

 my $query_def_obj = $CQsession->BuildQuery("BaseCMActivity");

 my $filterOp = $query_def_obj-

>BuildFilterOperator($CQPerlExt::CQ_BOOL_OP_AND);

 #$filterOp->BuildFilter("Inspection_ID", $CQPerlExt::CQ_COMP_OP_LIKE,

\@INSPECTS);

 $filterOp->BuildFilter("id", $CQPerlExt::CQ_COMP_OP_IN, \@activities);

 $query_def_obj->BuildField("id");

 $query_def_obj->BuildField("Inspection_ID");

 $query_def_obj->BuildField("Parent_Defect_Record");

 $query_def_obj->BuildField("Parent_Enhancement_Record");

 $query_def_obj->BuildField("Parent_Defect_Record.Resolution_new");

 $query_def_obj->BuildField("Parent_Defect_Record.Swit_Test_Status");

 $query_def_obj->BuildField("Parent_Defect_Record.Unit_Test_Status");

 $query_def_obj->BuildField("Parent_Enhancement_Record.Resolution_New");

 $query_def_obj->BuildField("Parent_Enhancement_Record.Swit_Test_Status");

 $query_def_obj->BuildField("Parent_Enhancement_Record.Unit_Test_Status");

 $query_def_obj->BuildField("Headline");

 $query_def_obj->BuildField("State");

 $query_def_obj->BuildField("Owner");

 $query_def_obj->BuildField("ucm_stream");

 # unfortunately, querying on the State fields below causes the

 # query to return an empty results set ... not sure why...

 # but I think it has to do with the fact that the baseCMActivity also has a

State

 # $query_def_obj->BuildField("Parent_Defect_Record.State");

 # $query_def_obj->BuildField("Parent_Enhancement_Record.State");

 # now that I think about this more, I've seen this before, and it is the case

162

that queries against

 # child record fields whose names also appear in the parent record fail to

behave as would be expected

 # create a results object and run the query

 my $result_set_obj = $CQsession->BuildResultSet($query_def_obj);

 print $result_set_obj->Execute();

 while ($result_set_obj->MoveNext() == $CQPerlExt::CQ_SUCCESS) {

 my $id = $result_set_obj->GetColumnValue(1);

 my $stream = $result_set_obj->GetColumnValue(14);

 # don't bother adding an activity that isn't associated with a stream

 # since our activity list comes from a baseline comparison, it's very

unlikely that this

 # will be empty

 if (! $stream) {

 print "\n\nWarning: $id appears to not be associated with a

stream: excluding from this list";

 next;

 }

 $act_info{$id}{'inspection'} = $result_set_obj->GetColumnValue(2);

 # print "\n" . $result_set_obj->GetColumnValue(1) . $result_set_obj-

>GetColumnValue(2) . $result_set_obj->GetColumnValue(3) . $result_set_obj-

>GetColumnValue(4) . $result_set_obj->GetColumnValue(5) . $result_set_obj-

>GetColumnValue(6) . $result_set_obj->GetColumnValue(7) . $result_set_obj-

>GetColumnValue(8) . $result_set_obj->GetColumnValue(9) . $result_set_obj-

>GetColumnValue(10);

 $act_info{$id}{'defect'} = $result_set_obj->GetColumnValue(3);

 $act_info{$id}{'enhancement'} = $result_set_obj->GetColumnValue(4);

 $act_info{$id}{'defect_resolution'} = $result_set_obj-

>GetColumnValue(5);

 $act_info{$id}{'defect_swit'} = $result_set_obj->GetColumnValue(6);

 $act_info{$id}{'defect_unit'} = $result_set_obj->GetColumnValue(7);

 $act_info{$id}{'enhancement_resolution'} = $result_set_obj-

>GetColumnValue(8);

 $act_info{$id}{'enhancement_swit'} = $result_set_obj-

>GetColumnValue(9);

 $act_info{$id}{'ehancement_unit'} = $result_set_obj-

>GetColumnValue(10);

 $act_info{$id}{'headline'} = $result_set_obj->GetColumnValue(11);

 $act_info{$id}{'state'} = $result_set_obj->GetColumnValue(12);

 $act_info{$id}{'owner'} = $result_set_obj->GetColumnValue(13);

 $act_info{$id}{'stream'} = $result_set_obj->GetColumnValue(14);

 #if ($act_info{$id}{'stream'} eq "") {

 #print "\n\n#########SOME_MESSAGE###########";

 #}

 #print "\n\t$act_info{$id}{'owner'}";

 # since we can't use these, we may have to look up this information

 # separately later

 #

 # $act_info{$id}{'defect_state'} = $result_set_obj->GetColumnValue(11);

 # $act_info{$id}{'enhancement_state'} = $result_set_obj-

>GetColumnValue(12);

 }

 CQSession::Unbuild($CQsession);

 return \%act_info;

}

163

#--

sub check_CC_for_file_versions

calls get_a_view_for_this_stream

calls first_version_is_smaller

#--

sub check_CC_for_file_versions {

 my %hash = %{$_[0]};

 foreach $key (keys %hash) {

 #print "\n * $key $hash{$key}{'stream'}";

 #print "a view for this would be: " .

get_a_view_for_this_stream($hash{$key}{'stream'});

 $hash{$key}{'view'} = get_a_view_for_this_stream(

$hash{$key}{'stream'});

 my $view = $hash{$key}{'view'};

 my $view_drive = get_view_drive();

 chdir ("$view_drive\\$view");

 #print `cleartool lsactivity -long $key\@$pvob 2>&1`;

 @output = `cleartool lsactivity -long $key\@$pvob 2>&1`;

 # initialize a place on the hash for file information

 #%hash{$key}{'files'} ;

 foreach $line (@output) {

 next if $line !~ /\Q$view\E/;

 #print "$line";

 $line =~ s/^\s+//;

 $line =~ s/\s+$//;

 #$line =~ s/Q:\\\Q$view\E\\//;

 $line =~ s/\Q$view_drive\E\\\Q$view\E\\//;

 # we're taking the output of the lsactivity and putting it into

 # a file and the version specific information (or version tree

address)

 my $file, my $version;

 ($file, $version) = split /\@\@/, $line;

 #print "\n\tThat's $file and version extension $version";

 #print "\#n\t $file and $version";

 # set the current version that we're working on

 $hash{$key}{'files'}{$file}{'cur_version'} = $version;

 # set some temp vars to the already record earliest and latest

 # (if they don't exist, then we'll set them... see below...)

 my $early = $hash{$key}{'files'}{$file}{'earliest_version'} ;

 my $late = $hash{$key}{'files'}{$file}{'latest_version'} ;

 #print "\n\tfor $file, Comparing $early and $late against

$version";

 # if the version is ealier than what we've already recorded,

update

 if (first_version_is_smaller($version, $early)) {

164

 $hash{$key}{'files'}{$file}{'earliest_version'} =

$version ;

 }

 # likewise, if we see that this version is the latest, select

that

 if (first_version_is_smaller($late, $version)) {

 $hash{$key}{'files'}{$file}{'latest_version'} = $version

;

 }

 #print "\n\t -" . $hash{$key}{'files'}{$file}{'cur_version'};

 }

 }

 return \%hash;

}

#---

sub first_version_is_smaller

compares two strings. the strings look like this:

\main\se_7.2_Dev\se_7.3_CDev\1 \main\se_7.2_Dev\se_7.3_CDev\7

\main\se_7.2_CDev\2 \main\se_7.2_CDev\3A

The sub must look at the last whole integer and compare those

We do not have to confirm that both versions are on the same

branch because clearcase activities are tied to streams

thus it's highly unlikely that the versions being compared

will not be on the same branch

#---

sub first_version_is_smaller {

 return 1 if (! $_[0]);

 return 1 if (! $_[1]);

 my @first_array = split /\\/, $_[0];

 my @second_array = split /\\/, $_[1];

 if ($first_array[$#first_array] < $second_array[$#second_array]) {

 return 1;

 }

 else {

 return 0;

 }

}

#--

sub get_a_view_for_this_stream

call this, pass a stream name in a string,

and get back a view. the view is either located

or created.

calls start_or_make_a_view

expects that $pvob is a global variable populated with

165

the relevant pvob from clearcase (we only have one pvob in ISRP)

#--

sub get_a_view_for_this_stream {

 # create a private instance of stream based on the input

 my $stream = $_[0];

 # do a little error checking -- if we don't have a stream at this point se

should just stop

 die "ERROR: get_a_view_for_this_stream was passed an empty \$stream" if

($stream eq "");

 # look for a view that has the stream name in it

 my $view_drive = get_view_drive();

 my $cmd_output = `dir $view_drive\\`;

 die "ERROR: some problem checking view dir using \"dir $view_drive\\\": $! -

$cmd_output" if ($?);

 # note: you can't redirect stderr to stdout as it changes the output

 # and I don't feel like addressing it now

 # my $cmd_output = `dir q:\\ 2>&1`;

 # do a minimal amount of error handling

 # these msgs should come through stderr

 if ($cmd_output =~ /The device is not ready/

 or

 $cmd_output =~ /is not a recognized device/

 or

 $cmd_output =~ /is not a recognized device/

) { #then

 die "Some problem when looking at $view_drive\\ : $cmd_output";

 }

 # the output is separated by some kind of whitespace

 my @views = split /\s+/, $cmd_output;

 # get those views whose names contain the stream

 # note that perl searches on variables require encapsulation in \Q and \E

 my @matching_views = grep (/\Q$stream\E/, @views);

 #print "\n\n Here are the views that I found matching stream $stream:";

 #foreach $guy (@matching_views){

 # print "\n\t$guy";

 #}

 #if ($#matching_views < 0) {

 # print "\n\tNo (already running) views found for this stream";

 #}

 if ($#matching_views < 0) {

 print "\n\n\nNo matching views found... I'll try making one...\n";

 @matching_views = (start_or_make_a_view($stream));

 }

 # return the view at the top of the list;

 return $matching_views[0];

}

166

#--

sub start_or_make_a_view

returns the name of a view that is currently running

based on the stream name provided

first, check to see if a view already exists (based

off of our expected viewname. if it does, ensure it's

started and return that

if it doesn't already exist, create a new view and return

the view name

expects that global variable $pvob is populated

#--

sub start_or_make_a_view {

 # grab the input as string

 my $stream = $_[0];

 # first check to see if the view already exists

 # $USERNAME is populated from the use Env "USERNAME" statement above

 my $output = `cleartool lsview ${USERNAME}_XX_${stream} 2>&1`;

 # if it's not there, make a view,

 # otherwise, ensure that the view is started and return that

 if ($output =~ /cleartool: Error/) {

 # make a view

 #print "\n\tview ${USERNAME}_XX_${stream} does not exist.

Creating...";

 #print "\n\tRunning: \"cleartool mkview -tag ${USERNAME}_XX_${stream}

-stream ${stream}\@${pvob} -stgloc -auto 2>&1\" ";

 # cleartool mkview -tag cmbuild2_XX_se_7.1_Dev -stream

se_7.1_Dev@\isrp_pvob -stgloc -auto

 #

 my $output = `cleartool mkview -tag ${USERNAME}_XX_${stream} -stream

${stream}\@${pvob} -stgloc -auto 2>&1 `;

 if ($output =~ /Created view/) {

 #print "\n\t${USERNAME}_XX_${stream} created";

 return "${USERNAME}_XX_${stream}";

 }

 else {

 die "ERROR: I can't seem to make this view:

${USERNAME}_XX_${stream} \n\n\tHere's my output: \n$output";

 }

 }

 else {

 #use the view that already exists, if you can

 if (substr($output,1,1) eq "*") {

 #print "\n\tView already started";

 return "${USERNAME}_XX_${stream}";

 }

 else {

 #print "\n\tView ${USERNAME}_XX_${stream} exists but isn't

started. Starting...";

 if (`cleartool startview ${USERNAME}_XX_${stream}` eq "") {

 #print "\n\tView started";

 return "${USERNAME}_XX_${stream}";

 }

167

 else {

 die "The view $view exists, but I can't start it...";

 }

 }

 }

}

#--------------------------------------

sub create_compare_dir

use the activities hash you created to get lists of

old files vs new files. use these lists to create

directories in your temp folder. later we'll compare

these two folders against eachother

#--------------------------------------

sub create_compare_dir {

 %hash = %{$_[0]};

 #print "\njust for reference, our hash was " . \%hash;

 #print "\n\tCopying Files: ";

 setup_base_dirs();

 #---

 # now we go through the activities, and for each, look at each of the files

 # associated and create a directory tree under latest and previous that

 # corresponds to the directory tree for the file

 #---

 foreach $key (keys (%hash)) {

 #print "\n\t\t$key:";

 #foreach $inner_key (keys %{$hash{$key}}) {

 # print "\n$key : $inner_key : $hash{$key}{$inner_key}";

 #}

 if (! -d "$temp_dir\\$compare_directory"){

 mkdir("$temp_dir\\$compare_directory") or die "ERROR: cannot

make $temp_dir\\$compare_directory because of $!";

 }

 # foreach of the files, create the empty directory structure

 # that you need in order to do the comparison

 foreach $file (keys %{$hash{$key}{"files"}}) {

 ##print "\n$file:\n\t" . $hash{$key}{"files"}{$file};

 #foreach $other_key (keys %{$hash{$key}{"files"}{$file}}) {

 #print "\n$other_key";

 #}

 #print "\n$file: " .

$hash{$key}{"files"}{$file}{"latest_version"};

 #print "\n$file: " .

$hash{$key}{"files"}{$file}{"earliest_version"};

 # split up the file string to get an array of

 # dirrectories

 my @dirs = split /\\/, $file;

 # pop off the last one -- that's the filename!

 pop @dirs;

 my $already_created_dir = "";

 my $this_dir = "";

168

 my $that_dir = "";

 foreach $dir (@dirs) {

 $this_dir = $temp_dir . "\\$compare_directory\\latest\\"

. $already_created_dir . $dir ;

 $that_dir = $temp_dir .

"\\$compare_directory\\previous\\" . $already_created_dir . $dir ;

 # if you create a directory, you may print to the screen

that you've done so

 if (! -d $this_dir) {

 die "ERROR: cannot make $this_dir: $!" if (!

mkdir ($this_dir));

 #print "ERROR: cannot make $this_dir: $!" if (!

mkdir ($this_dir));

 }

 if (! -d $that_dir) {

 die "ERROR: cannot make $that_dir: $!" if (!

mkdir ($that_dir));

 #print "ERROR: cannot make $that_dir: $!" if (!

mkdir ($that_dir));

 }

 #print "\nCreated dir $this_dir" if (mkdir ($this_dir));

 #print "\nCreated dir $that_dir" if (mkdir ($that_dir));

 if ($already_created_dir eq "") {

 #print "\n\t(Setting \$already_created_dir to

$dir\\)";

 $already_created_dir = "$dir\\";

 }

 else {

 #print "\n\t(Setting \$already_created_dir to

$already_created_dir" . "$dir\\)";

 $already_created_dir = $already_created_dir .

"$dir\\";

 }

 }

 #---

 # now perform the copy

 #---

 # get the earliest version associated with the activity

 my @array = split /\\/,

$hash{$key}{"files"}{$file}{"earliest_version"};

 # we need to compare the latest version with the version just

previous to the

 # earliest version, so take the last element off the array,

 $array[$#array]--;

 #my $orig_ver_number = pop @array;

 #$orig_ver_number--;

 #push @array, $orig_ver_number;

 # put the array back together to get a string

 my $prev_version = join '\\', @array;

 my $orig_file = $file . "\@\@" . $prev_version;

 my $latest_file = $file . "\@\@" .

$hash{$key}{"files"}{$file}{"latest_version"};

 # print "\nI'm going to copy out $orig_file and $latest_file";

 # just skip to the next entry if this is a directory: no need

to copy those

169

 #print "\nChecking to see if $orig_file is a directory";

 next if (-d $orig_file);

 ##

 # uncomment here if you want to see what files are being

copied

 ##

 #print ".";

 #print "\nCopying $file...";

 #print "\t" . `copy \"$latest_file\"

\"$temp_dir\\$compare_directory\\latest\\$file\" 2>&1`;

 #print "\t" . `copy \"$orig_file\"

\"$temp_dir\\$compare_directory\\previous\\$file\" 2>&1`;

 if (length($latest_file) > 255 or length($orig_file) > 255) {

 # grab the current directory and store it so that we can

change back to where we were

 my $current_directory = `cd`;

 chomp $current_directory;

 my @split_dirs_for_latest = split /\\/, $latest_file;

 my @split_dirs_for_orig = split /\\/, $orig_file;

 # we take the $latest_file and the $orig_file and split

them up by directories / branches

 # then we take the first half and change directory to

that half, before running the copy command

 # on the second half

 # (scalar flattens the array and returns the number of

elements)

 my $halfway_latest = int (scalar @split_dirs_for_latest

/ 2);

 my $subs_path_latest = join "\\",

@split_dirs_for_latest[0 .. $halfway_latest];

 my $copy_path_latest = join "\\",

@split_dirs_for_latest[($halfway_latest + 1) .. $#split_dirs_for_latest];

 my $halfway_orig = int (scalar @split_dirs_for_orig / 2

);

 my $subs_path_orig = join "\\", @split_dirs_for_orig[0

.. $halfway_orig];

 my $copy_path_orig = join "\\", @split_dirs_for_orig[

($halfway_orig + 1) .. $#split_dirs_for_orig];

 my $drive = "G";

 # change to a directory that's somewhere close to half

way down the path

 # note that this might be a real directory, or might be

a branch off of the file you're copying

 chdir "$current_directory\\$subs_path_latest" or die

"\nERROR: I can't change directory to $subs_path_latest because $!";

 print `subst $drive: . 2>&1`;

 die "\nERROR in subst command to copy: $latest_file: cmd

is 'subst $drive: . 2>&1' error msg is $!" if ($?);

 # now copy the file

 `copy \"$drive:\\$copy_path_latest\"

\"$temp_dir\\$compare_directory\\latest\\$file\" `;

 print "\nWarning: error copying

$drive:\\$copy_path_latest to $temp_dir\\$compare_directory\\latest\\$file: $!" if

($?);

 print `subst $drive: /d 2>&1`;

 die "\nERROR in un-substing $drive using command 'subst

$drive: . 2>&1' error msg is $!" if ($?);

170

 # change to a directory that's somewhere close to half

way down the path

 # note that this might be a real directory, or might be

a branch off of the file you're copying

 chdir "$current_directory\\$subs_path_orig" or die

"\nERROR: I can't change directory to $subs_path_orig because $!";

 print `subst $drive: . 2>&1`;

 die "\nERROR in subst command to copy: $orig_file: cmd

is 'subst $drive: . 2>&1' error msg is $!" if ($?);

 #print "\nnow trying to copy from: " . `cd`;

 # now copy the file

 `copy \"$drive:\\$copy_path_orig\"

\"$temp_dir\\$compare_directory\\previous\\$file\" `;

 print "\nWarning: error copying $drive:\\$copy_path_orig

to $temp_dir\\$compare_directory\\previous\\$file: $!" if ($?);

 print `subst $drive: /d 2>&1`;

 die "\nERROR in un-substing $drive using command 'subst

$drive: . 2>&1' error msg is $!" if ($?);

 # change back to where you started

 chdir $current_directory or die "\nERROR: I can't change

back to directory $current_directory because $!";

 }

 else {

 `copy \"$latest_file\"

\"$temp_dir\\$compare_directory\\latest\\$file\" `;

 print "\nWarning: error copying $latest_file to

$temp_dir\\$compare_directory\\latest\\$file: $!" if ($?);

 `copy \"$orig_file\"

\"$temp_dir\\$compare_directory\\previous\\$file\" `;

 print "\nWarning: error copying $orig_file to

$temp_dir\\$compare_directory\\previous\\$file: $!" if ($?);

 }

 }

 }

}

#--

sub compare_directories

use the SLOCCO tool to compare the two

directories and generate an output file

#--

sub compare_directories {

 # note: the jar file referenced below needs to (apparently) be in the current

 # working directory in order for things to work.

 #print "\nChanging directory to \"c:\\CM\\scripts\\inspection check\". MAKE

SURE THIS IS UPDATED BEFORE RELEASING THIS SCRIPT!!";

 my $analysis_dir = "z:\\CM\\scripts\\baseline_analysis";

 print "\nChanging directory to $analysis_dir. ";

 #chdir("c:\\CM\\scripts\\inspection check");

 chdir($analysis_dir) or die "ERROR: cannot change to directory $analysis_dir:

$!";

 my $latest = "$temp_dir\\$compare_directory\\latest";

 my $previous = "$temp_dir\\$compare_directory\\previous";

 #my $slocco_jar = "c:\\cm\\SLOCCO\\slocco.jar";

 my $slocco_jar = "slocco.jar";

 #my $slocco_settings = "c:\\cm\\SLOCCO\\isrp_slocco.xml";

171

 my $slocco_settings = "isrp_slocco.xml";

 print "\n\nRunning SLOCCO tool to analyze $temp_dir\\$compare_directory\n\n";

 #print "\nRunning `java -jar $slocco_jar -cs -p $slocco_settings -o $out_file

-f $previous $latest 2>&1`";

 #print `java -jar $slocco_jar -cs -p $slocco_settings -o $out_file -f

$previous $latest 2>&1`;

 # should I run and grab the output, or just process the

 print "\nRunning `java -jar $slocco_jar -cs -p $slocco_settings -o $out_file -

f $previous $latest 2>&1`";

 `java -jar $slocco_jar -cs -p $slocco_settings -o $out_file -f $previous

$latest 2>&1`;

 die "\n\nERROR: java does not return success!! returns: $? with msg: $!" if

($?);

 #java -jar slocco.jar -cs -p isrp_slocco.xml -o sloc_report.txt -f $args[0]

$args[1]

 return;

}

#--

sub extract_data_from_slocco_output

#--

sub extract_data_from_slocco_output {

 my %file_data_from_slocco=();

 # the $out_file has the slocco output that we

 # need to examine

 open (FH, "<$out_file");

 my @slocco_output = <FH>;

 close(FH);

 # trim out all the lines that do not appear to be files

 #@slocco_output = grep

/(.*\\(.+\.\w+))\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+).*/,

@slocco_output;

 #@slocco_output = grep /^\Q$temp_dir\\$compare_directory\E/, @slocco_output;

 # print out what we have

 foreach $line (@slocco_output) {

 #print "$line";

 }

 foreach $line (@slocco_output) {

 # @details = split /\s+/, $line;

 #print "\nname: $details[0], Lines: $details[1], Comments: $details[2],

SLOC: $details[3],";

 #print " Added: $details[4], Modified: $details[5], Deleted:

$details[6], Unchanged: $details[7]";

 # who the hell came up with this beast? me?

 # maybe I poached it from the SLOCCO people.... I hope so. Yuck.

 if ($line =~

/(.*\\(.+\.\w+))\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+).*/) {

 #print "\n$1 $2 $3 $4 $5 $6 $7 $8 $9.";

 # Files Lines Comments SLOC Added Modified Deleted

Unchanged

 # assign variables to what we've pulled out

 # this is "inefficient" in the sense that we're creating

needless variable instances

 # but I'm leaving it like this for the sake of readability

 my $long_file = $1;

172

 my $file_name = $2;

 my $total_lines = $3;

 my $comments = $4;

 my $sloc = $5;

 my $added = $6;

 my $modified = $7;

 my $deleted = $8;

 my $unchanged = $9;

 # fill up our %file_data_from_slocco hash

 $file_data_from_slocco{$long_file}{'file_name'} = $file_name;

 $file_data_from_slocco{$long_file}{'total_lines'} =

$total_lines;

 $file_data_from_slocco{$long_file}{'comments'} = $comments;

 $file_data_from_slocco{$long_file}{'sloc'} = $sloc;

 $file_data_from_slocco{$long_file}{'added'} = $added;

 $file_data_from_slocco{$long_file}{'modified'} = $modified;

 $file_data_from_slocco{$long_file}{'deleted'} = $deleted;

 $file_data_from_slocco{$long_file}{'unchanged'} = $unchanged;

 }

 }

 #foreach $file (keys %file_data_from_slocco) {

 #print "\n";

 #print $file_data_from_slocco{$file}{'file_name'} ;

 #print " ";

 #print $file_data_from_slocco{$file}{'total_lines'} ;

 #print " ";

 #print $file_data_from_slocco{$file}{'comments'} ;

 #print " ";

 #print $file_data_from_slocco{$file}{'sloc'} ;

 #print " ";

 #print $file_data_from_slocco{$file}{'added'} ;

 #print " ";

 #print $file_data_from_slocco{$file}{'modified'} ;

 #print " ";

 #print $file_data_from_slocco{$file}{'deleted'} ;

 #print " ";

 #print $file_data_from_slocco{$file}{'unchanged'} ;

 #}

 return \%file_data_from_slocco;

}

#---

sub get_latest_activities

run a cleartool diffbl command to get the activities

added to this baseline (as compared to it's immediate

predecessor)

#---

sub get_latest_activities {

 my $baseline = $_[0];

 my @activities;

173

 my @output = `cleartool diffbl -pred $baseline\@$pvob 2>&1`;

 # complain if the previous system call does not return success

 die "some error in output; @{output}" if ($?);

 #print "\n\ndiffbl returns @{output}";

 @output = grep (! /Prod\d{10}\@$pvob "deliver /, @output);

 foreach $line (@output) {

 my $act = substr($line,3,12);

 #print "\nadding $act to list of activities";

 push @activities, $act;

 }

 # should probably take out the grep for deliveries and instead

 # simply write a function to only include basecms

 #@activities = return_only_baseCMs(@activities);

 return @activities;

}

#---

sub get_all_activities

purpose is to take a baseline and return all the

baseCMactivities that went into the baseline

(since the foundation baseline)

#---

sub get_all_activities {

 my $baseline = $_[0];

 my $stream = `cleartool desc -fmt "%[bl_stream]p" baseline:$baseline\@$pvob`;

 chomp $stream;

 die "ERROR: description of baseline $baseline failed: $!" if ($?);

 my $prev_bl = `cleartool desc -fmt "%[found_bls]p" stream:$stream\@$pvob`;

 chomp $prev_bl;

 die "ERROR: descibing the stream $stream failed: $!" if ($?);

 my @output = `cleartool diffbl $baseline\@$pvob $prev_bl\@$pvob 2>&1`;

 #print "\n `cleartool diffbl $baseline\@$pvob $prev_bl\@$pvob 2>&1`";

 die "some error in calling diffbl: @{output}" if ($?);

 #print "\n\ndiffbl returns @{output}";

 # note that when you have a variable in a regular expression block,

 # it needs to be enclosed in \Q and \E to get perl to interpret it properly

 @output = grep (!/Prod[0-9]{8}\@\Q$pvob\E "deliver/, @output);

 foreach $line (@output) {

 my $act = substr($line,3,12);

 #print "\nadding $act to list of activities";

 push @activities, $act;

 }

 # should probably take out the grep for deliveries and instead

 # simply write a function to only include basecms

 #@activities = return_only_baseCMs(@activities);

174

 return @activities;

}

#--

sub copy_files_for_these_activities

accepts a list of baseCMactivities

from that list, get data on all files associated with that

activity, including the latest version in clearcase, and the

earliest version

then copy it out

#--

sub copy_files_for_these_activities {

 my @activities = @_;

 #print "\n\nInside of copy_files_for_these_activities: @{activities}";

 my $hash_of_activity_data = get_cq_info_for(@activities);

 #print "\n\nhere are the latest activities: @{latest_activities}";

 #print "\n\nhere are the full list of activities for this baseline, since the

foundation: @{all_activities}";

 #--

 # just verify that you got something back from CQ

 #--

 my @acts = keys %{$hash_of_activity_data};

 $number = $#acts + 1;

 #print "\nThere are $number of activities.";

 if ($number < 1) {

 print "\n\nSorry: there are $number activities found in \$hash_of-

activity_data\n\n";

 return;

 }

 #--

 # now we check clearcase to see what

 # the activity has as far as files are

 # concerned -- load into the data hash

 #--

 $hash_of_activity_data = check_CC_for_file_versions($hash_of_activity_data);

 #---

 # copy out the files into two directories

 # (one for the previous versions, another

 # for those checked in against our activities

 #---

 create_compare_dir($hash_of_activity_data);

 print "\nDone creating directories: $temp_dir\\$compare_dir";

 return ($insp_results, $hash_of_activity_data);

}

##--

175

sub run_comparison_for_activity_list

accepts a list of baseCMactivities

from that list, get data on all files associated with that

activity, including the latest version in clearcase, and the

earliest version

then

##--

#sub run_comparison_for_activity_list {

#my @activities = @_;

#my $hash_of_activity_data = get_cq_info_for(@activities);

##print "\n\nhere are the latest activities: @{latest_activities}";

##print "\n\nhere are the full list of activities for this baseline, since the

foundation: @{all_activities}";

##--

just verify that you got something back from CQ

##--

#my @acts = keys %{$hash_of_activity_data};

#$number = $#acts + 1;

##print "\nThere are $number of activities.";

#if ($number < 1) {

#print "\n\nSorry: there are $number activities found in \$hash_of-activity_data\n\n";

#return;

#}

##---

don't need anymore since I added a check in the get_cq_info_for

subroutine

##---

##$hashref = remove_activities_with_empty_streams(\%hash);

##$hash_of_activity_data =

remove_activities_with_empty_streams($hash_of_activity_data);

##--

now we check clearcase to see what

the activity has as far as files are

concerned -- load into the data hash

##--

#$hash_of_activity_data = check_CC_for_file_versions($hash_of_activity_data);

##just some checking to verify hash contents -- delete as needed

##my %h = %{$hash_of_activity_data};

##foreach $x (keys %h) {

print "\n$x and $h{$x}";

my %g = %{$h{$x}};

foreach $y (keys %g){

if ($y ne "files") {

print "\n\t$y $g{$y}";

}

else {

my %z = %{$g{$y}};

print "\n\thas files:";

foreach my $file (keys %z) {

print "\n\t\t$file: $z{$file}";

}

}

}

176

##}

###---

copy out the files into two directories

(one for the previous versions, another

for those checked in against our activities

##---

#create_compare_dir($hash_of_activity_data);

##---

compare the two directories using the

SLOCCO tool provided by LMCO

##---

#compare_directories();

##---

now grab the slocco output and process

it

##---

#$insp_results = extract_data_from_slocco_output();

#return ($insp_results, $hash_of_activity_data);

#}

#--

sub activities_from_baseline_excluding_earlier_releases

accept a clearcase baseline

first call get_all_activities to get a list of all the activities

get an ordered list of all streams and determine what streams happened

before the stream belonging to the baseline, through the foundation baseline

for the stream in question

strip out all the activities from previous releases (if a defect appears

in an earlier stream, then remove it from the list)

#--

sub activities_from_baseline_excluding_earlier_releases {

 my $baseline = $_[0];

 my @all_activities = get_all_activities($baseline);

 #my $stream = get_stream_from_baseline($baseline);

 #my @previous_projects = get_sorted_projects_for($stream);

 # now get a list of activities included in those projects

 #my @excluded_activities =

get_activities_for_these_projects(@previous_projects);

 my @excluded_activities = get_excluded_activities(@all_activities);

 my @only_activities_for_this_release = reconcile_activity_lists(

\@all_activities, \@excluded_activities);

 return @only_activities_for_this_release;

}

#--

sub get_excluded_activities

#--

sub get_excluded_activities {

 my @activities = @_;

177

 my @excluded_acts = ();

 # foreach activities, look up it's parent, grab all associated child activies,

 # and check each of them for the project they belong to

 my $CQsession = CQSession::Build();

 $CQsession->UserLogon("xxxxx", "xxxxx", "xxxxx", "");

 foreach $act (@activities) {

 my @associated_records;

 my $has_earlier_content = 0;

 my $activity_object = $CQsession->GetEntity("BaseCMActivity", "$act");

 # get the parent record, whether defect or enhancement

 my $field_info_obj = $activity_object-

>GetFieldValue("Parent_Defect_Record");

 my $defect_parent = $field_info_obj->GetValue();

 $field_info_obj = $activity_object-

>GetFieldValue("Parent_Enhancement_Record");

 my $enhancement_parent = $field_info_obj->GetValue();

 # get the project that this activity is a part of

 my $project = $activity_object->GetFieldValue("ucm_project")-

>GetValue();

 if ($defect_parent ne "") {

 my $parent_object = $CQsession->GetEntity("Defect",

"$defect_parent");

 @associated_records = split /\n/, $parent_object-

>GetFieldValue("Child_Defect_Record")->GetValue;

 #print "\n\nfor $act: we have other records associated with the

parent defect $defect_parent: @{associated_records}";

 }

 elsif ($enhancement_parent ne "") {

 my $parent_object = $CQsession->GetEntity("EnhancementRequest",

"$enhancement_parent");

 @associated_records = split /\n/, $parent_object-

>GetFieldValue("Child_Enhancement_Record")->GetValue;

 #print "\n\nfor $act: we have other records associated with the

parent enhancement $enhancement_parent: @{associated_records}";

 }

 else {

 die "\n\nI can't find a parent for this baseCMactivity: $act";

 }

 # foreach of the baseCMs that share a parent with the activity in

question, pull out the project

 # that they're a part of and compare to see if it appears to be an

earlier release

 # if it is, then record the activity in question as an excluded

activity

 foreach $baseCM (@associated_records) {

 $activity_object = $CQsession->GetEntity("BaseCMActivity",

"$baseCM");

 my $other_project = $activity_object-

>GetFieldValue("ucm_project")->GetValue();

 # if the prefixs of the project do not match, then just ignore

it

 # for example, we don't want to compare se_ with sw_

 next if (substr($project, 0, 3) ne substr($other_project, 0,

3));

 # convert the project from, for example, sw_17.12 to two

178

numbers, 17 and 12

 (my $prj_1, my $prj_2) = split /\./, substr($project, 3);

 (my $o_prj_1, my $o_prj_2) = split /\./, substr($other_project,

3);

 # use the values extracted to compare and find whether the $act

in question

 # has checkins in an earlier release, if it does, set your flag

 $has_earlier_content = 1 if ($prj_1 > $o_prj_1);

 $has_earlier_content = 1 if (($prj_1 == $o_prj_1) and ($prj_2

> $o_prj_2));

 # if so, stop further checking

 last if ($has_earlier_content);

 }

 push (@excluded_acts, $act) if ($has_earlier_content);

 }

 CQSession::Unbuild($CQsession);

 return @excluded_acts;

}

#--

sub get_stream_from_baseline

#--

sub get_stream_from_baseline {

 my $baseline = $_[0];

 my $stream = `cleartool lsbl -fmt \%[bl_stream]p $baseline\@$pvob 2>&1`;

 die "ERROR: unable to check baseline to find foundation stream in

get_stream_from_baseline: $!\noutput is $stream\n" if ($?);

 #print "\n$baseline is from $stream";

 return $stream;

}

#--

sub get_foundation_stream

#--

sub get_foundation_stream {

 my $stream = $_[0];

 my $found_baselines = `cleartool lsstream -fmt \%[found_bls]p $stream\@$pvob

2>&1`;

 die "\nERROR: unable to check stream to look for foundation baselines in

get_foundation_stream: $!\noutput is $found_baselines\n" if ($?);

 #

 # error out if multiple foundation baselines are found

 #

 if ($found_baselines =~ /\s/) {

179

 # for now, we need to just complain that multiple baselines were found

and then die

 # this shouldn't occure, and if it does then we'll just have to rework

the logic to handle multiple components

 die "\nERROR: multiple components found associated with $stream:

multiple foundation baselines: $found_baselines. \n\tYou will need to retool this

script before you can run this against $ARGV[0].";

 #my @multiple_streams = split /\s/, $found_baselines;

 }

 my $found_stream = get_stream_from_baseline($found_baselines);

 print "\nstream $stream is based on $found_stream";

 return $found_stream;

}

#--

#--

#--

sort_projects

for a given list of clearcase projects, sort the list from earliest to

latest. List looks something like this:

sw_16.9

sw_17.1

sw_17.2

sw_17.3

sw_17.4

sw_16.10

sw_17.5

sw_17.6

sw_17.8

sw_17.7

sw_17.9

sw_17.10

sw_17.11

Notice the prefix_XX.YY format. We sort by XX first, and then by YY.

#--

sub sort_projects {

 print "\n I've been asked to sort @{_}";

 my @projs = @_;

 my @sorted_list;

 my $prefix = substr $projs[0], 0, 3;

 # load up @sorted_list with all the projects, but with the three

 # char prefix stripped out

 foreach $x (@projs) {

 push (@sorted_list, substr ($x, 3));

 }

 print "\nWith the prefixs stripped off, the list looks like this:

@{sorted_list}";

180

 for ($i=0; $i <= $#sorted_list; $i++) {

 # first we convert all the numbers to XXX.YYY format, adding zeros

where appropriate

 print "\n\tFor $sorted_list[$i], we split it into ";

 my @thing = split /\./, $sorted_list[$i];

 print "$thing[0] and $thing[1]";

 for ($j = 0; $j < 2; $j++){

 if ($thing[$j] =~ /^[0-9]$/) {

 $thing[$j] = "00" . $thing[$j];

 }

 if ($thing[$j] =~ /^[0-9][0-9]$/) {

 $thing[$j] = "0" . $thing[$j];

 }

 }

 $sorted_list[$i] = "$thing[0].$thing[1]";

 }

 print "\n\nRefactoring to deal with the zeros, and it looks like this:

@{sorted_list}";

 @sorted_list = sort (@sorted_list);

 # now we need to strip out the extra zeros that we added in order to do the

sort

 # there must be an elegant way to do this. I'm open to suggestions...

 for ($i=0; $i <= $#sorted_list; $i++) {

 print "\n\tlooking at $sorted_list[$i]";

 if ($sorted_list[$i] =~ /\.000$/) {

 $sorted_list[$i] =~ s/\.000/\.0/;

 }

 if ($sorted_list[$i] =~ /^00/) {

 $sorted_list[$i] =~ s/^00//;

 }

 if ($sorted_list[$i] =~ /\.00\d/) {

 $sorted_list[$i] =~ s/\.00/\./g;

 }

 if ($sorted_list[$i] =~ /^0/) {

 $sorted_list[$i] =~ s/^0//;

 }

 if ($sorted_list[$i] =~ /\.0\d\d/) {

 $sorted_list[$i] =~ s/\.0/\./;

 }

 if ($sorted_list[$i] =~ /\.0\d/) {

 $sorted_list[$i] =~ s/\.0/\./;

 }

 print " changed to $sorted_list[$i]";

 # now put the prefixes back on, and return the list

181

 $sorted_list[$i] = $prefix . $sorted_list[$i];

 print " changed to $sorted_list[$i]";

 }

 #foreach $x (@sorted_list) {

 #print "\n\t\t\t$x";

 #}

 return @sorted_list;

}

#--

sub reconcile_activity_lists

accepts two references to lists containing activities

activity could be any type, but we're only concerned with baseCMactivities

(other activities are probably ucmutilityactivites, used by deliveries)

the listed activities should not have any duplicates,

@a = reconcile_activity_lists(\@all_activities, \@excluded_activities);

#--

sub reconcile_activity_lists {

 my @stream_activities = @{$_[0]};

 my @excluded_activities = @{$_[1]};

 ## we don't have to attempt to reconcile should the "exculded_activities" be

empty

 #return @stream_activities if ($#excluded_activities == -1);

 my %parent_records = ();

 my %parents_of_excluded_ones = ();

 my $CQsession = CQSession::Build();

 $CQsession->UserLogon("xxxxx", "xxxxx", "xxxxx", "");

 my $query_def_obj = $CQsession->BuildQuery("BaseCMActivity");

 my $filterOp = $query_def_obj-

>BuildFilterOperator($CQPerlExt::CQ_BOOL_OP_AND);

 $filterOp->BuildFilter("id", $CQPerlExt::CQ_COMP_OP_IN, \@stream_activities);

 $query_def_obj->BuildField("id");

 $query_def_obj->BuildField("Parent_Defect_Record");

 $query_def_obj->BuildField("Parent_Enhancement_Record");

 # create a results object and run the query

 my $result_set_obj = $CQsession->BuildResultSet($query_def_obj);

 print $result_set_obj->Execute();

 while ($result_set_obj->MoveNext() == $CQPerlExt::CQ_SUCCESS) {

 my $id = $result_set_obj->GetColumnValue(1);

 my $defect = $result_set_obj->GetColumnValue(2);

 my $enhance = $result_set_obj->GetColumnValue(3);

182

 if ($defect && $enhance) {

 die "\nERROR! $id unexpectedly linked to defect $defect and

enhancement $enhance ";

 }

 elsif ($defect) {

 push @{$parent_records{$defect}}, $id;

 print "\nrecord $id has parent $defect (d)";

 }

 elsif ($enhance) {

 push @{$parent_records{$enhance}}, $id;

 print "\nrecord $id has parent $enhance (e)";

 }

 else {

 print "\n\nWARNING: id $id has no parrent! Please

investigate!\n\n";

 }

 }

 # don't attempt to build up an exclusion list unless we actually provided some

 # activities in the first place.

 if ($#excluded_activities != -1) {

 print "\n\nTo be excluded:";

 # now do the same for the exclusion list

 $query_def_obj = $CQsession->BuildQuery("BaseCMActivity");

 $filterOp = $query_def_obj-

>BuildFilterOperator($CQPerlExt::CQ_BOOL_OP_AND);

 $filterOp->BuildFilter("id", $CQPerlExt::CQ_COMP_OP_IN,

\@excluded_activities);

 $query_def_obj->BuildField("id");

 $query_def_obj->BuildField("Parent_Defect_Record");

 $query_def_obj->BuildField("Parent_Enhancement_Record");

 # create a results object and run the query

 $result_set_obj = $CQsession->BuildResultSet($query_def_obj);

 print $result_set_obj->Execute();

 while ($result_set_obj->MoveNext() == $CQPerlExt::CQ_SUCCESS) {

 my $id = $result_set_obj->GetColumnValue(1);

 my $defect = $result_set_obj->GetColumnValue(2);

 my $enhance = $result_set_obj->GetColumnValue(3);

 if ($defect && $enhance) {

 die "\nERROR! $id unexpectedly linked to defect $defect

and enhancement $enhance ";

 }

 elsif ($defect) {

 $parents_of_excluded_ones{$defect} = $id;

 print "\nrecord $id has parent $defect (d)";

 }

 elsif ($enhance) {

 $parents_of_excluded_ones{$enhance} = $id;

 print "\nrecord $id has parent $enhance (e)";

 }

 else {

 print "\n\nWARNING: id $id has no parrent! Please

investigate!\n\n";

 }

 }

 }

 CQSession::Unbuild($CQsession);

183

 # remove any keys that appear in the list of excluded activities and also

exist in the

 # list of activities from the stream being analysed

 foreach $excluded_parent (keys %parents_of_excluded_ones) {

 print "\nLooking to exclude $excluded_parent";

 delete $parent_records{$excluded_parent} if (

$parent_records{$excluded_parent});

 }

 my @abreviated_list = ();

 #print "\n\nGot to this point and we now have the following:";

 #

 foreach $key (keys %parent_records) {

 my @list = @{$parent_records{$key}};

 foreach $id (@list) {

 #print "\n$id has parent $key";

 push @abreviated_list, $id;

 }

 }

 return @abreviated_list;

}

#--------------------------------------

sub get_view_drive

#--------------------------------------

sub get_view_drive {

 my @use_output = `net use 2>&1`;

 die "ERROR: \"net use\" call failed: $! - @{use_output}" if ($?);

 my $line;

 my $drive;

 my $junk;

 ($line) = grep (/\\\\view ClearCase Dynamic Views/,

@use_output);

 ($junk, $drive, $junk) = split /\s+/, $line;

 #print "\nMy grep found this drive: $drive. \$line is $line";

 return $drive;

}

#--

sub setup_base_dirs

create the base directories for comparison

there are three:

$compare_directory\

latest\

previous\

#--

sub setup_base_dirs {

 if (! -d "$temp_dir\\$compare_directory") {

 #print "\n$temp_dir\\$compare_directory doesn't already exist...

making...";

 mkdir ($temp_dir . "\\$compare_directory\\")

184

 }

 if (! -d "$temp_dir\\$compare_directory\\latest") {

 #print "\n$temp_dir\\$compare_directory\\latest doesn't already

exist... making...";

 mkdir ($temp_dir . "\\$compare_directory\\latest")

 }

 if (! -d "$temp_dir\\$compare_directory\\previous") {

 #print "\n$temp_dir\\$compare_directory\\previous doesn't already

exist... making...";

 mkdir ($temp_dir . "\\$compare_directory\\previous")

 }

}

#--

sub get_component_from_baseline

given a baseline, determine which component the baseline is

associated with

for now, assume a single component, error out if there are

multiple

#--

sub get_component_from_baseline {

 my $baseline = $_[0];

 my $comp = `cleartool desc -fmt %[component]p baseline:$baseline\@$pvob 2>&1`;

 die "ERROR: trouble describing baseline $baseline for $pvob: $comp: $!" if

($?);

 chomp $comp;

 #print "\n\nComponent is: $comp";

 # let's keep in mind that we have single components in our projects in this

environment

 # if this changes

 die "ERROR: \$comp contains multiple components: $comp.\n\nI wasn't made to

handle this case. Please refactor." if ($comp =~ /\s+/);

 return $comp;

}

#--------------------------------------

sub usage

#--------------------------------------

sub usage {

 my $msg = $_[0];

 if ($msg) {

 print "Error: $msg";

 }

 print "\n\n";

 print "\n\n\tUsage: ratlperl $0 <baseline>";

 print "\n\n\tExample: ratlperl $0 sw_17.11.1006.4";

 print "\n\tExample: ratlperl $0 se_7.9.0.4@\\isrp_pvob\n\n\n";

 exit 1;

}

185

Chapter 6: Glossary

Artifact: A software artifact is a product that is created during software

development containing software constructs. Software artifacts can be

source files, software modules, or software documents such as the

Software Requirements Specifications (SwRS) produced during

software development [36].

Construct: The smallest software piece for which data is collected. Depending on

the software development project, a construct can be a software line of

code (SLOC), function point (FP), function, class, source statement

(SS), or any other software unit [9].

Error: Human action that results in software containing a fault. Examples

include omission or misinterpretation of user requirements in a

software specification, and incorrect translation or omission of a

requirement in the design specification [30].

Failure: (1) The termination of the ability of a functional unit to perform its

required function [30].

(2) An event in which a system or system component does not perform

a required function within specified limits. A failure may be produced

when a fault is encountered [30].

Fault: (1) An accidental condition that causes a functional unit to fail to

perform its required function [30].

(2) A manifestation of an error in software. A fault, if encountered,

may cause a failure. Synonymous with bug [30].

Inspection: A static analysis technique that relies on visual examination of

development products to detect errors, violations of development

standards, and other problems. Types include code inspection; design

inspection [30].

Measure: A quantitative assessment of the degree to which a software product or

process possesses a given attribute.

Metric: A quantitative measure of the degree to which a system, component, or

process possesses a given attribute.

Module: (1) A program unit that is discrete and identifiable with respect to

compiling, combining with other units, and loading; for example, the

input to, or output from, an assembler, compiler, linkage editor, or

executive routine [30].

(2) A logically separable part of a program. Note: The terms

―module,‖ ―component,‖ and ―unit‖ are often used interchangeably or

defined to be sub-elements of one another in different ways depending

upon the context. The relationship of these terms is not yet

standardized [30].

Software

Reliability: The probability that software will not cause the failure of a system for

a specified time under specified conditions. The probability is a

function of the inputs to, and use of, the system as well as a function of

186

the existence of faults in the software. The inputs to the system

determine whether existing faults, if any, are encountered [30].

Software

Reliability

Management: The process of optimizing the reliability of software through a

program that emphasizes software error prevention, fault detection and

removal, and the use of measurements to maximize reliability in light

of project constraints such as resources (cost), schedule, and

performance [30].

187

Chapter 7: Bibliography

[1] S. Afsharian, M. Giacomobono, and P. Inverardi, ―A framework for software

project estimation based on COSMIC, DSM and rework characterization,‖ in

30th International Conference on Software Engineering, ICSE 2008 - 1st

Business Impact of Process Improvements, BIPI-2008, May 13, 2008 - May 13,

2008, Leipzig, Germany, 2008, pp. 15-23.

[2] M. Askari and R. Holt, ―Information theoretic evaluation of change prediction

models for large-scale software,‖ in 2006 International Workshop on Mining

Software Repositories, MSR ’06, Co-located with the 28th International

Conference on Software Engineering, ICSE 2006, May 20, 2006 - May 28, 2006,

Shanghai, China, 2006, pp. 126-132.

[3] C. Bai, K.-Y. Cai, and T. Y. Chen, ―An Efficient Defect Estimation Method for

Software Defect Curves,‖ in Proceedings: 27th Annual International Computer

Software and Applications Conference, COMPSAC 2003, November 3, 2003 -

November 6, 2003, Dallas, TX, United states, 2003, pp. 534-539.

[4] C.-G. Bai, K.-Y. Cai, Q.-P. Hu, and S.-H. Ng, ―On the trend of remaining

software defect estimation,‖ IEEE Transactions on Systems, Man, and

Cybernetics Part A:Systems and Humans, vol. 38, no. 5, pp. 1129-1142, 2008.

[5] V. R. Basili et al., ―Empirical investigation of perspective-based reading,‖

Empirical Software Engineering, vol. 1, no. 2, pp. 133-164, 1996.

[6] T. Bergander, Y. Luo, and A. B. Hamza, ―Software defects prediction using

operating characteristic curves,‖ in 2007 IEEE International Conference on

Information Reuse and Integration, IEEE IRI-2007, August 13, 2007 - August 15,

2007, Las Vegas, NV, United states, 2007, pp. 713-718.

[7] A. Bernstein, J. Ekanayake, and M. Pinzger, ―Improving defect prediction using

temporal features and non linear models,‖ in IWPSE’07: Ninth International

Workshop on Principles of Software Evolution - In conjunction with the 6th

ESEC(European Software Engineering Conference)/FSE(Foundations of

Software Engineering) Joint Meeting, September 3, 2007 - September 4, 2007,

Dubrovnik, Croatia, 2007, pp. 11-18.

[8] W. Blischke, Reliability : modeling, prediction, and optimization. New York:

Wiley, 2000.

[9] W. Blischke, Case studies in reliability and maintenance. Hoboken NJ: John

Wiley, 2003.

[10] C. B. Boehm et al., ―Cost models for future software life cycle processes,‖

presented at the Annals of Software Engineering, 1995.

[11] L. C. Briand, K. E. Emam, B. G. Freimut, and O. Laitenberger,

―Comprehensive evaluation of capture-recapture models for estimating software

defect content,‖ IEEE Transactions on Software Engineering, vol. 26, no. 6, pp.

518-540, 2000.

[12] K.-Y. Cai, ―On estimating the number of defects remaining in software,‖

Journal of Systems and Software, vol. 40, no. 2, pp. 93-114, 1998.

[13] K.-Y. Cai, Software defect and operational profile modeling. Boston: Kluwer

Academic Publishers, 1998.

188

[14] E. Ceylan, F. O. Kutlubay, and A. B. Bener, ―Software defect identification

using machine learning techniques,‖ in 32nd Euromicro Conference on Software

Engineering and Advanced Applications, SEAA, August 29, 2006 - September 1,

2006, Cavtat/Dubrovnik, Croatia, 2006, pp. 240-246.

[15] C.-P. Chang and C.-P. Chu, ―Defect prevention in software processes: An

action-based approach,‖ Journal of Systems and Software, vol. 80, no. 4, pp. 559-

570, 2007.

[16] A. Chao, S.-M. Lee, and S.-L. Jeng, ―Estimating Population Size for Capture-

Recapture Data When Capture Probabilities Vary by Time and Individual

Animal,‖ Biometrics, vol. 48, no. 1, pp. 201-216, Mar. 1992.

[17] L. Cheung, R. Roshandel, N. Medvidovic, and L. Golubchik, ―Early

prediction of software component reliability,‖ in 30th International Conference

on Software Engineering 2008, ICSE’08, May 10, 2008 - May 18, 2008, Leipzig,

Germany, 2008, pp. 111-120.

[18] S. Chulani and B. Boehm, ―Modeling software defect introduction and

removal: COQUALMO (COnstructive QUALity MOdel),‖ USC-CSE Technical

Report, pp. 99-510, 1999.

[19] L. H. Crow, P. H. Franklin, and N. B. Robbins, ―Principles of successful

reliability growth applications,‖ in Reliability and Maintainability Symposium,

1994. Proceedings., Annual, 1994, pp. 157-159.

[20] L. H. Crow, ―Evaluating the reliability of repairable systems,‖ in 1990

Proceedings - Annual Reliability and Maintainability Symposium, January 23,

1990 - January 25, 1990, Los Angeles, CA, USA, 1990, pp. 275-279.

[21] E. L. Droguett, A. Mosleh, and C. Smidts, ―Identification and Quantification

of Software Dependencies in Reliability Models,‖ Probabilistic Safety Analysis

and Management–PSAM, vol. 4.

[22] K. O. Elish and M. O. Elish, ―Predicting defect-prone software modules using

support vector machines,‖ Journal of Systems and Software, vol. 81, no. 5, pp.

649-660, 2008.

[23] N. Fenton, M. Neil, and D. Marquez, ―Using Bayesian networks to predict

software defects and reliability,‖ Proceedings of the Institution of Mechanical

Engineers, Part O: Journal of Risk and Reliability, vol. 222, no. 4, pp. 701-712,

2008.

[24] N. Fenton et al., ―Predicting software defects in varying development

lifecycles using Bayesian nets,‖ Information and Software Technology, vol. 49,

no. 1, pp. 32-43, 2007.

[25] S. Ghose, ―ANALYSIS OF ERRORS IN SOFTWARERELIABILITY

PREDICTION SYSTEMSAND APPLICATION OF MODELUNCERTAINTY

THEORY TO PROVIDEBETTER PREDICTIONS,‖ University of Maryland,

2006.

[26] T. L. Graves, A. F. Karr, U. S. Marron, and H. Siy, ―Predicting fault

incidence using software change history,‖ IEEE Transactions on Software

Engineering, vol. 26, no. 7, pp. 653-661, 2000.

[27] S. W. Haider, J. W. Cangussu, K. M. L. Cooper, and R. Dantu, ―Estimation

of defects based on defect decay model: ED3M,‖ IEEE Transactions on Software

Engineering, vol. 34, no. 3, pp. 336-356, 2008.

189

[28] Y. Hong, J. Baik, I.-Y. Ko, and H.-J. Choi, ―A value-added predictive defect

type distribution model based on project characteristics,‖ in 7th IEEE/ACIS

International Conference on Computer and Information Science, IEEE/ACIS ICIS

2008, May 14, 2008 - May 16, 2008, Portland, OR, United states, 2008, pp. 469-

474.

[29] T. Illes-Seifert and B. Paech, ―Exploring the relationship of history

characteristics and defect count: An empirical study,‖ in 2008 Workshop on

Defects in Large Software Systems 2008, DEFECTS’08, July 20, 2008 - July 20,

2008, Seattle, WA, United states, 2008, pp. 11-15.

[30] Institute of Electrical and Electronics Engineers, IEEE software engineering

standards collection. Institute of Electrical and Electronics Engineers, 1991.

[31] Y. Jiang, B. Cukic, T. Menzies, and N. Bartlow, ―Comparing design and code

metrics for software quality prediction,‖ in 30th International Conference on

Software Engineering, ICSE 2008 - 4th International Workshop on Predictor

Models in Software Engineering, PROMISE 2008, May 12, 2008 - May 13, 2008,

Leipzig, Germany, 2008, pp. 11-18.

[32] S. Kan, Metrics and models in software quality engineering, 2nd ed. Boston:

Addison-Wesley, 2003.

[33] A. Kaw, Numerical methods with applications, 2nd ed. [Morrisville N.C.:

Lulu Enterprises, 2009.

[34] T. M. Khoshgoftaar, E. B. Allen, N. Goel, A. Nandi, and J. McMullan,

―Detection of software modules with high debug code churn in a very large

legacy system,‖ in Proceedings of the 1996 7th International Symposium on

Software Reliability Engineering, ISSRE’96, October 30, 1996 - November 2,

1996, White Plains, NY, USA, 1996, pp. 364-371.

[35] A. khoshkhou, M. Cukier, and A. Mosleh, ―A Framework for Software

Reliability Management Based on Software Development Profile Model,‖

presented at the 10th International Probabilistic Safety Assessment and

Management Conference, Seattle, 2010.

[36] H. Kou, studying micro-processes in software development stream - Google

Search. Citeseer.

[37] B. Lennselius and L. Rydstrom, ―Software fault content and reliability

estimations for telecommunication systems,‖ Selected Areas in Communications,

IEEE Journal on, vol. 8, no. 2, pp. 262-272, 2002.

[38] Y. K. Malaiya and J. Denton, ―Estimating the number of residual defects,‖

presented at the hase, vol. 98, pp. 13-14.

[39] Y. K. Malaiya, M. N. Li, J. M. Bieman, and R. Karcich, ―Software reliability

growth with test coverage,‖ IEEE Transactions on Reliability, vol. 51, no. 4, pp.

420-426, 2002.

[40] A. Meneely, L. Williams, W. Snipes, and J. Osborne, ―Predicting failures

with developer networks and social network analysis,‖ in 16th ACM SIGSOFT

International Symposium on the Foundations of Software Engineering, SIGSOFT

2008/FSE-16, November 9, 2008 - November 14, 2008, Atlanta, GA, United

states, 2008, pp. 13-23.

[41] J. Miller, ―Estimating the number of remaining defects after inspection,‖

Software Testing Verification and Reliability, vol. 9, no. 3, pp. 167-189, 1999.

190

[42] R. Moser, W. Pedrycz, and G. Succi, ―A comparative analysis of the

efficiency of change metrics and static code attributes for defect prediction,‖ in

2008 ACM/IEEE 30th International Conference on Software Engineering, ICSE

2008, May 10, 2008 - May 18, 2008, Leipzig, Germany, 2008, pp. 181-190.

[43] J. C. Munson and S. G. Elbaum, ―Code churn: a measure for estimating the

impact of code change,‖ in Proceedings of the 1998 IEEE International

Conference on Software Maintenance, ICSM, November 16, 1998 - November 20,

1998, Bethesda, MD, USA, 1998, pp. 24-31.

[44] N. Nagappan and T. Ball, ―Static analysis tools as early indicators of pre-

release defect density,‖ in 27th International Conference on Software

Engineering, ICSE 2005, May 15, 2005 - May 21, 2005, Saint Louis, MO, United

states, 2005, vol. 2005, pp. 580-586.

[45] N. Nagappan and T. Ball, ―Use of relative code churn measures to predict

system defect density,‖ in 27th International Conference on Software

Engineering, ICSE 2005, May 15, 2005 - May 21, 2005, Saint Louis, MO, United

states, 2005, vol. 2005, pp. 284-292.

[46] N. Nagappan, T. Ball, and A. Zeller, ―Mining metrics to predict component

failures,‖ in 28th International Conference on Software Engineering 2006, ICSE

’06, May 20, 2006 - May 28, 2006, Shanghai, China, 2006, vol. 2006, pp. 452-

461.

[47] N. Nagappan, B. Murphy, and V. R. Basili, ―The influence of organizational

structure on software quality: An empirical case study,‖ in 30th International

Conference on Software Engineering 2008, ICSE’08, May 10, 2008 - May 18,

2008, Leipzig, Germany, 2008, pp. 521-530.

[48] A. M. Neufelder, ―How to predict software defect density during proposal

phase,‖ presented at the National Aerospace and Electronics Conference, 2000.

NAECON 2000. Proceedings of the IEEE 2000, 2000, pp. 71-76.

[49] A. P. Nikora and J. C. Munson, ―Determining fault insertion rates for

evolving software systems,‖ presented at the Software Reliability Engineering,

1998. Proceedings. The Ninth International Symposium on, 1998, pp. 306-315.

[50] A. P. Nikora and J. C. Munson, ―Developing fault predictors for evolving

software systems,‖ 2003.

[51] A. J. Offutt, M. J. Harrold, and P. Kolte, ―Software metric system for module

coupling,‖ Journal of Systems and Software, vol. 20, no. 3, pp. 295-308, 1993.

[52] A. D. Oral and A. B. Bener, ―Defect prediction for embedded software,‖ in

22nd International Symposium on Computer and Information Sciences, ISCIS

2007, November 7, 2007 - November 9, 2007, Ankara, Turkey, 2007, pp. 346-

351.

[53] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, ―Where the bugs are,‖ presented

at the Proceedings of the 2004 ACM SIGSOFT international symposium on

Software testing and analysis, 2004, p. 96.

[54] H. Petersson, T. Thelin, P. Runeson, and C. Wohlin, ―Capture-recapture in

software inspections after 10 years research - Theory, evaluation and

application,‖ Journal of Systems and Software, vol. 72, no. 2, pp. 249-264, 2004.

191

[55] A. A. Porter, L. G. Votta Jr., and V. R. Basili, ―Comparing detection methods

for software requirements inspections: a replicated experiment,‖ IEEE

Transactions on Software Engineering, vol. 21, no. 6, pp. 563-575, 1995.

[56] S. Rakitin, Software verification and validation for practitioners and

managers, 2nd ed. Boston: Artech House, 2001.

[57] C. V. Ramamoorthy and F. B. Bastani, ―SOFTWARE RELIABILITY -

STATUS AND PERSPECTIVES.,‖ IEEE Transactions on Software Engineering,

vol. 8, no. 4, pp. 354-371, 1982.

[58] H. Scott and C. Wohlin, ―Capture-recapture in software unit testing - A case

study,‖ in 2nd International Symposium on Empirical Software Engineering and

Measurement, ESEM 2008, October 9, 2008 - October 10, 2008, Kaiserslautern,

Germany, 2008, pp. 32-40.

[59] M. Sherriff, N. Nagappan, L. Williams, and M. Vouk, ―Early estimation of

defect density using an in-process Haskell metrics model,‖ in 1st International

Workshop on Advances in Model-Based Testing, A-MOST ’05, May 15, 2005 -

May 21, 2005, St. Louis, MO, United states, 2005.

[60] M. Staron and W. Meding, ―Predicting weekly defect inflow in large software

projects based on project planning and test status,‖ Information and Software

Technology, vol. 50, no. 7-8, pp. 782-796, 2008.

[61] M. A. Stutzke and C. S. Smidts, ―A stochastic model of fault introduction

removal during software development,‖ IEEE Transactions on Reliability, vol.

50, no. 2, pp. 184-193, 2001.

[62] G. S. Walia and J. C. Carver, ―Evaluation of capture-recapture models for

estimating the abundance of naturally-occurring defects,‖ in 2nd International

Symposium on Empirical Software Engineering and Measurement, ESEM 2008,

October 9, 2008 - October 10, 2008, Kaiserslautern, Germany, 2008, pp. 158-

167.

[63] T. J. O. E. J. Weyuker, ―Progress in Automated Software Defect Prediction,‖

presented at the Hardware and Software: Verification and Testing: 4th

International Haifa Verification Conference, HVC 2008, Haifa, Israel, October

27-30, 2008, Revised Selected Papers, 2009, p. 200.

[64] M. Xie, Software reliability modelling. World Scientific, 1991.

