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Recent empirical studies of software have shown a strong correlation between change 

history of files and their fault-proneness.  Statistical data analysis techniques, such as 

regression analysis, have been applied to validate this finding. While these 

regression-based models show a correlation between selected software attributes and 

defect-proneness, in most cases, they are inadequate in terms of demonstrating 

causality.  For this reason, we introduce the Software Development Profile Model 

(SDPM) as a causal model for identifying defect-prone software artifacts based on 

their change history and software development activities.  The SDPM is based on the 

assumption that human error during software development is the sole cause for 

defects leading to software failures.  The SDPM assumes that when a software 

construct is touched, it has a chance to become defective. Software development 

activities such as inspection, testing, and rework further affect the remaining number 

of software defects.  Under this assumption, the SDPM estimates the defect content of 

software artifacts based on software change history and software development 



 

 

activities.  SDPM is an improvement over existing defect estimation models because 

it not only uses evidence from current project to estimate defect content, it also allows 

software managers to manage software projects quantitatively by making risk 

informed decisions early in software development life cycle.  We apply the SDPM in 

several real life software development projects, showing how it is used and analyzing 

its accuracy in predicting defect-prone files and compare the results with the Poisson 

regression model. 
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Chapter 1: Introduction 

1.1 Background  

Despite hundreds of software reliability and defect estimation models developed over 

the past few decades, the software reliability discipline is still struggling to establish a 

reliability estimation and prediction framework [25].  Over the years, many new 

models have been proposed, discussed, modified and generalized, while some have 

suffered much criticism [64].  Even today the field of software reliability engineering 

remains an active area in software engineering.  Historically, software reliability 

engineering has been influenced greatly by hardware reliability theories. This 

influence has helped statisticians to develop numerous new software reliability 

models.  On the other hand, it has connected software reliability too strongly to 

hardware reliability theory.  This connection has had an adverse effect on the 

development of new theories in software reliability engineering.  Since software is 

fundamentally different from hardware, many of the proposed software reliability and 

defect estimation models have limited applicability dictated by their hardware-based 

assumptions.  These assumptions and limitations make many existing software 

reliability models impractical to use and difficult to validate for software.  

Furthermore, many of the existing reliability and defect estimation models, like the 

hardware-based models, rely on observed failure data that is mainly available towards 

the end of the development life cycle, too infrequent in cases of safety critical 

applications.   

There is a great need to develop new theories for software reliability and defect 

estimation which can be used to help manage the reliability of software products 
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while it is still in development.  Unlike reliability estimation models that assess the 

reliability of software systems in production or before release, software reliability 

management models provide a framework for managing the reliability of software 

products.  However, still today, many software reliability models rely on defect data, 

which are not available during early development phases.  Reliability management 

models need to start early in the development process and continue throughout the 

entire development lifecycle.  Software reliability management models provide a 

great value to software managers, practitioners and users. 

In [35], we introduced Software Development Profile Model (SDPM) as a causal 

model for identifying defect-prone software artifacts based on software development 

activities and software change history. Throughout this dissertation, we use the term 

―software construct‖ [9] as the smallest software piece for which data is collected.  

Depending on the software development project, a construct can be a software line of 

code (SLOC), function point (FP), function, class, source statement (SS), or any other 

software unit.  In addition, we use the term software artifact [36] as a product that is 

created during software development containing software constructs.  A software 

artifact can be a source file, a software module, or a software document such as the 

Software Requirements Specifications (SwRS) produced during software 

development.  SDPM assumes that when a software construct is touched, it has a 

chance to become defective.  Other activities such as inspection and testing are defect 

factors that affect detection and removal of software defects.  Under this assumption, 

SDPM estimates the reliability of software constructs based on the software change 

history and development activities.  The reliability of software constructs are then 
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used to estimate the defect content of various software artifacts.  Since SDPM uses 

software change history and software development activities to estimate software 

defect content, managers can use SDPM to make risk informed decisions and adjust 

software development activities early in the development lifecycle to manage 

software defect content.  

1.2 Motivation 

Knowing which files are most likely defective early in the software development life 

cycle can be very valuable for software managers.  Finding these defects while the 

software is still in development can help companies better manage the reliability of 

their software products by making risk informed decisions to use resources more 

effectively and by focusing efforts on mission critical modules, resulting in more 

reliable systems at reduced costs [53]. 

The relationship between fault-prone software modules and other measurable 

software attributes has been studied by many authors.  In the article ―Code Churn: A 

Measure for Estimating the Impact of Code Change‖ [43] Munson used the rate of 

change in relative complexity as the index for the rate of fault injection.  The 

relationship between change history and fault-proneness of software modules has 

been discussed widely in other recent literature as well as  [26], [34], [42], [44], [45].  

Recent empirical studies show a strong correlation between the change history of a 

file and its fault-proneness [29], [40], [45-47], [63].  Researchers have applied 

statistical data analysis techniques such as regression analysis to show the correlation 

between change history and fault-proneness [45], [46], [63].  These models are 

generally based on data fitting techniques and rely on historical data.  While they 
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suggest a relationship between fault proneness and certain aspects of the software 

product, they generally fall short of demonstrating a causal relationship [33].  

Causality is defined as a relationship between an event A (the cause) and an event B 

(the effect), where the second event is understood as a consequence of the first.  

While correlation is a necessary condition for a causal relationship, it is not sufficient 

enough to make a causal inference with reasonable confidence.  Regression models 

can also be used to investigate certain software characteristics, such as file size or file 

age, to show a relationship between these attributes and fault-proneness. Likewise, 

this correlation, however interesting, does not imply causality.  In other words, this 

relationship cannot be used to imply that large file size causes additional defects in 

the file.  It is not surprising to see inexperienced developers write larger files or 

modules; thus both large file sizes and large numbers of defects in such artifacts can 

be caused by lack of experience.   

Bayesian Belief Network (BBN) has been used by numerous authors to build a causal 

model for software defect prediction [23], [24] .  Existing causal models are often 

high level causal relationships as described in [24] and don‘t consider software 

development activities.  They are often based on the broad assumption that poor 

quality of development increases the number of defects, or high quality testing 

increases the proportion of defects found.  While these assumptions are valid, they 

can‘t be used to model day-to-day software development activities.  The motivation 

behind this work is to introduce a ―causal‖ model that can be used to capture software 

development activities.  This is important because it allows software managers to 

manage software development‘s daily activities.  This is also an improvement over 
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existing causal models because incorporating software development activities allows 

more evidence to be taken into account, resulting in more accurate predictions.  This 

information can then be used to understand the cause and effect relationship and take 

proactive steps to reduce production level software defects. 

A review of current literature on software reliability management shows that there is 

a great need for new theories in software reliability management.  Apart from the 

aforementioned impracticality during early stages of development due to a reliance on 

defect data, another shortcoming is that there are simply too few of them available.  

Furthermore, many proposed software reliability management models are less 

quantitative and less statistical-based compared to software reliability models [32].  

Because of this, there is a need for developing new theories that can be used to 

manage the reliability of software products during early stages of software 

development lifecycle. 

This dissertation introduces a new causal model for estimating software defect based 

on software development activities and software change history and presents five case 

studies showing how it is used in real industrial software development projects.  

Unlike software reliability and defect estimation models that assess the software 

product at a given snapshot in time, the proposed model provides a framework for 

estimating the software defect content and defect-prone files throughout the 

development lifecycle.  We will provide a brief history of software reliability in 

section 2.1.  In Section 2.2, we will provide a literature review of related software 

reliability and defect estimation models.  We will discuss the current status of 

software reliability in section 2.4 and provide the objective of this dissertation in 
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Section 2.5.  In Section 3 we will discuss in detail the concept of Software 

Development Profile Model.  We will provide five real life case studies in Section 4 

that the author was directly involved with and SDPM.  In this section we will 

investigate the performance of SDPM and provide the results.  In Section 5 we will 

provide the summary of contributions and future research directions. 
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Chapter 2:  Literature Review 

2.1 Overview 

The development of software reliability theory made its greatest jump during the 

1970s [8].  During this period many new software reliability and defect estimation 

models were introduced and software reliability engineering earned recognition 

among practitioners.  In this section we will provide a literature review to cover 

software reliability and defect estimation models from the 1970‘s to the present.  This 

section is by no means a complete review of all software reliability models.  It is 

intended to list selected historical models that have influenced the current state of 

software reliability models and papers relevant to our research.  In [13], the authors 

provide a more complete list of software reliability models.         

2.2 Software Reliability and Defect Estimation Models 

2.2.1 Jelinski-Moranda Model (1972) 

The Jelinski-Moranda (J-M) Model was one of the earliest models in software 

reliability engineering [64].  It estimated time between failures.  J-M assumes N 

software defects at the beginning of testing, and failures occur randomly, and the 

relationship between defects and faults is constant.  It also assumes the repair time is 

negligible and no new defects are introduced.  Therefore, the software failure rate is 

constant and decreases over time.  The instantaneous hazard function between times 

of two failures is: 

 (  )    ,  (   )- 

 

It is assumed that the number of initial software defects is fixed and annotated by N. 
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2.2.2 Goel-Okumoto Imperfect Debugging Model (1978) 

Unlike the J-M model, which assumed perfect fixes with negligible repair times 

(perfect debugging), Goel-Okumoto proposed a more realistic imperfect debugging 

model.  In practice, when defects are fixed, new ones are introduced.  In this model 

the hazard function between (i-1)-th and i-th failure is:  

 

 (  )   ,   (   )-  

 

Where N is the number of defects at the start of testing, p the probability of imperfect 

debugging, and   is the failure rate per fault. 

2.2.3 Goel-Okumoto Imperfect Nonhomogeneous Poisson Process Model (1979) 

The NHPP (Goel and Okumoto, 1979) was concerned with modeling the number of 

failures observed in given testing intervals.  Goel and Okumoto propose that the 

cumulative number of failures observed at time t, N(t), can be modeled as a 

nonhomogeneous Poisson process, with a time dependent failure rate.   They propose 

that the time-dependent failure rate follows an exponential distribution.  The model 

is: 

 * ( )   +  
, ( )- 

  
   ( )           
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 ( )   (      ) 

 ( )    ( )         
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In this model, m(t) is the number of expected number of failures observed by time t; 

 (t) is the failure density; a is the expected number of failures to be observed 

eventually, a and b are the fault detection rate per fault.  Fitting the model curves 

from actual data and projecting the number of faults remaining in the software is done 

mainly by means of the mean value, or cumulative density function.   The 

fundamental difference between this model and other models is that it treats the total 

number of defects to be detected ‗a‘ as a random variable, which is assumed to 

depend on the test and other environmental factors. 

2.2.4 Littlewood Models (1981) 

The Littlewood model (LW) is similar to the J-M model.  The LW differs in that it 

assumes different defects have different sizes, and therefore contribute differently to 

the software failure.  The larger the defect, the easier it is to be identified.  Therefore, 

over time larger defects are identified and removed and the size of remaining defects 

decreases. Littlewood developed other models based on nonhomogenous Poisson 

process, where the failure rate is assumed not to be constant from one failure to the 

next.   

2.2.5 Goel Generalized Nonhomogeneous Poisson Process Model (1982) 

Goel (1982) proposed a generalization of the Goel-Okumoto NHPP model by adding 

one more parameter to the mean value function and failure density function. 

 

 ( )   (       ) 

 ( )    ( )              
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Where a is the expected number of failures to be eventually detected,  

b and c are constants that reflect the quality of testing.  This mean value function and 

failure density is actually the Weibull distribution. 

2.2.6 Musa-Okumoto Logarithmic Poisson Execution Time Model (1983) 

In the Musa-Okumoto (M-O) model, as in the NHPP model, the observed number of 

failures by a certain time, t, is also assumed to be nonhomogeneous Poisson process.   

However, its mean value function in the M-O model is different.  The basic 

assumption here is that later fixes have a smaller effect on the software‘s reliability 

than earlier ones.  The logarithmic Poisson process is claimed to be superior for 

highly non-uniform operational user profiles, where some functions are executed 

much more frequently than others.   Also, the process models the number of failures 

in a specified execution time instead of calendar time.  The model consists of two 

components, the execution time component and the calendar time component, which 

provides a systematic approach to convert results to calendar time.  The mean value 

function of this model is: 

 ( )  
 

 
   (      ) 

 

Where λ is the initial failure intensity and Ѳ is the rate of reduction in the normalized 

failure intensity per failure. 
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2.2.7 The Delayed S and Inflection S Models (1983) 

With regard to the software defect removal process, Yamada et al. (1983) argue that a 

testing process consists of not only defect reduction process, but also a defect 

isolation process.  Because of the time needed for failure analysis, significant delay 

can be expected between the first failure observation and the time of reporting.  This 

model uses the delayed S-shaped reliability growth model, in which the observed 

growth curve of the cumulative number of detected defects is S-shaped.  The model is 

based on the nonhomogeneous Poisson process but with a different mean value 

function to reflect the delay in failure reporting, 

 ( )   ,  (    )    ] 

Where t is time, λ is the error detection rate, and k is the total number of defects or 

total cumulative defect rate.   

2.2.8 The inflection S model (1984) 

In 1984, Ohba proposed another S-shaped reliability growth model—the inflection S 

model (Ohba, 1984).  The model describes a software failure detection phenomenon 

with a mutual dependence on detected defects.  This means that the more defects we 

detect, the more undetected failures become detectable.  This assumption brings a 

certain realism into software reliability modeling and is a significant improvement 

over other earlier models, namely the independence of faults in a program.  Based on 

the Nonhomogeneous Poisson process, the mean value function is 

 

 ( )   
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Where t is time, λ is the error detection rate, i is the inflection factor, and K is the 

total number of defects or total cumulative defect rate. 

2.2.9 Shigeru Yamada et al. Software Reliability Growth Models with Testing-

Efforts (1986) 

Software Reliability Growth Models are concerned with the relationship between the 

cumulative number of defects detected and the time span of the software reliability.  

This paper assumes that the error detection rate is proportional to the current error 

content.  The test effort is defined by exponential and Rayleigh curves. 

  

Assumptions:  

 

 A software system is subject to failure at random times caused by defects 

remaining in the software 

 Each time an error occurs, it is immediately removed and no errors are re-

introduced 

 The testing effort is described by  exponential or Rayleigh curve 

 The s-expected number of errors detected in the time interval (t,t+1] to the 

current testing-effort expenditures is proportional to the s-expected number of 

remaining errors. 

 The error detection is NHPP 
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2.2.10 Crow, L.H.: Evaluating the reliability of repairable systems (1990) 

The Weibull-Poisson process (WPP) for representing the reliability of complex 

repairable systems is discussed in [20]. The emphasis is on estimation and other 

statistical methods for this model when data have been generated by multiple 

systems. Examples and procedures specifically illustrating these methods are given 

for several real-world situations. In addition to maximum likelihood estimation 

methods, goodness-of-fit tests and confidence interval procedures are discussed and 

illustrated by numerical examples. It is noted that in the case of one system the model 

reduces to a model for reliability growth. Confidence intervals for the WPP shape 

parameter and growth rate are given. 

2.2.11 Crow, L.H. et al.: Principles of successful reliability growth applications 

(1994) 

This paper discusses the successful application of integrated reliability growth testing 

(IRGT) to the development of a large switching system, and demonstrates the results 

obtained using a case study. In usual applications of reliability growth testing, it is 

customary to dedicate development test items for a period of time and implement 

design changes to improve the reliability of a fielded product. In IRGT, reliability 

growth is demonstrated through design changes which occur during development 

testing.  Crow et al. [19] identify the lessons learned from the application of IRGT 

principles. The success of the IRGT program provided the Switching System Pilot 

Project with several benefits, including: timely analysis of failed items; accurate 

problem classification; timely and accurate laboratory failure rates; early 

identification of pattern failures; metrics demonstrating; achieved reliability growth 

during development testing.  While the Switching System Pilot Project IRGT effort 
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was largely successful, a configuration management problem area was identified in 

terms of providing adequate configuration data for reliability analysis. 

2.2.12 Khoshgoftaar, T.M. et al.: Detection of Software Modules with High Debug 

Code Churn in a Very Large Legacy System (1996) 

This study defines fault-prone as exceeding a threshold of debug code churn, defined 

as the number of lines added or changed due to bug fixes. Previous studies have 

characterized reuse history with simple categories. The study presented in [34] 

quantifies new functionality with lines of code. The paper analyzes two consecutive 

releases of a large legacy software system for telecommunications. The authors 

applied discriminant analysis to identify fault prone modules based on 16 static 

software product metrics and the amount of code changed during development. 

Modules from one release were used as a fit data set and modules from the 

subsequent release were used as a test data set. In contrast, comparable prior studies 

of legacy systems split the data to simulate two releases. The authors validated the 

model with a realistic simulation of utilization of the fitted model with the test data 

set. Model results could be used to give extra attention to fault prone modules and 

thus reduce the risk of unexpected problems. 

2.2.13 Malaiya, Y. K & Denton, J. D.: Estimating the Number of Residual Defects 

(1997) 

Malaiya & Denton argue in [38] that estimating the remaining defects in highly 

reliable software is challenging since remaining defects are hard to detect.  Several 

different software defect estimation techniques are discussed, including: sampling 

based methods, fault seeding, estimations based on empirical models and exponential 

Software Reliability Growth Models (SRGM). Malaiya et al. propose a model 
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relating the density of remaining defects with test coverage measures.  Their model 

assumes that, at the beginning of the test, defect coverage starts slowly but improves 

linearly over time.  

2.2.14 Kai-Yuan Cai: On Estimating the Number of Defects Remaining in Software 

(1998) 

In [12] the author presents an analysis of the method of dynamic software reliability 

models, and that of empirical models, particularly of the Halstead model. He develops 

a new static model for estimating the number of remaining defects and uses a set of 

real data to test his model. The new model coincides with the Mills model in a 

particular case and shows its attractiveness in its applicability to a broader scope of 

circumstances. Bayesian versions of the Mills model and the new model are also 

developed. 

2.2.15 Munson, J.C. & Elbaum, S.G.: Code Churn: Measure for Estimating the 

Impact of Code Change (1998)  

The focus of this paper is on the precise measurement of software development 

processes and product outcomes. Tools and processes for the static measurement of 

the source code have been installed and made operational in a large embedded 

software system. Source code measurements have been gathered unobtrusively for 

each build in the software evolution process. The measurements are synthesized to 

obtain the fault surrogate. The complexity of sequential builds is compared and a new 

measure, code churn, is calculated. In a ―Code Churn: Measure for Estimating the 

Impact of Code Change‖ [43], the authors demonstrate the effectiveness of code 

complexity churn by validating it against the testing problem reports. 



 

16 

2.2.16 Chulani, S. & Boehm B.: Constructive Quality Model (COQUALMO) 

(1999) 

The authors claim that cost, schedule, and quality are highly correlated factors in 

software development [18].  COQUALMO is an extension to the existing COCOMO 

II model presented earlier [10].  Constructive Quality Model is based on two sub-

models: defect introduction and defect removal models.  The total number of defects 

introduced is modeled by: 

                          ∑   (    )  

 

   

 ∏(         )  

  

   

 

And the number of remaining defects is modeled by: 

                     ∏(       

 

) 

Where 

DResEst,j=  Estimated number of residual defects for j-th artifact 

Cj=  Calibrated constant for j-th artifact 

DIEst,j=  Estimated number of defects of artifact type j introduced 

i=  1 to 3 for each DR profile 

DRFi,j= Defect Removal Fraction for defect removal profile I and artifact type 

j 

COQUALMO is initially calibrated using expert judgments.  When more data on 

actual completed projects is available the it can be calibrated using Bayesian 

approach.     
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2.2.17 Neufelder, A.M.: How to Predict Software Defect Density during Proposal 

Phase (2000) 

The author developed a method in [48] to predict defect density based on empirical 

data.  The author evaluated the software development practices of 45 software 

organizations.  The resulting polynomial was: 

 

                                                         

 

Where x is the resulting score from a questioner form provided in the model.   

2.2.18 Graves, T.L. et al.: Predicting Fault Incidence Using Software Change 

History (2000) 

In this paper Graves et al. attempt to investigate the process by which software 

changes and the effects of said change on software reliability.  The authors [26] find 

that the change history contains more useful information than a snapshot of the code.  

For example, the number of lines of code in a module is not as helpful in predicting 

the number of future defects once one has taken into account the number of times the 

module has been changed.  The authors use change management data from a very 

large software system to predict the fault distribution over different modules.  They 

argue that the number of times code has been changed is a better indication of how 

many faults it will contain than its size.  

2.2.19 Smidths, C. & Stutzke, M.: A Stochastic Model of Fault Introduction and 

Removal during Software Development (2001) 

A stochastic model is sought that represents the injection and removal of software 

faults during software development. The authors describe in [61] a stochastic model 
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that relates the software failure density function to development and debugging error 

occurrence throughout all phases of software development life-cycle. In this model 

the data from development and debugging errors are used to create an early prediction 

of software reliability. Model parameters are derived based on data reported in open 

literature and other projects.   

Model assumptions: 

 Development errors follow a NHPP intensity function V(t) 

 Software fault count is described by a NMBDWI 

 Software fault detection follows NHPP 

 Software failure is caused by exactly 1 fault 

 

2.2.20 Malaiya, Yashwant K et al.:  Software Reliability Growth with Test 

Coverage Model (2002) 

This paper models the relationships between testing time, code coverage, and 

software reliability. In [39] an LE (logarithmic-exponential) model is presented that 

relates testing effort to test coverage (block, branch, computation-use, or predicate-

use). The model is based on the hypothesis that the enumerable elements (like 

branches or blocks) for any coverage measure have various probabilities of being 

exercised; likewise defects have various probabilities of being encountered. This 

model allows the direct relation of a test-coverage measure with defect-coverage one. 

The model is fitted to 4 data-sets for programs with real defects. In the model, defect 

coverage can predict the time to next failure.  This paper makes the assumption that 
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both defect coverage and code coverage are based on the M-O model following a 

logarithmic model.  

2.2.21 Nikora, A.P. & Munson: Developing Fault Predictors for Evolving Software 

Systems (2003)  

The authors have shown in previous work that there is a significant linear relationship 

between code churn and the rate at which faults are inserted into the system, 

measured in terms of the number of faults per unit change in code churn. In [50] they 

investigate this relationship with a flight software technology development effort at 

the jet propulsion laboratory (JPL) and succeed in resolving the limitations of the 

earlier work in two distinct aspects. First, they have developed a standard for the 

enumeration of faults. Second, they have developed a practical framework for 

automating the measurement of these faults. In this paper, the authors analyze the 

measurements of structural evolution and fault counts obtained from Nikora and 

Munson‘s JPL flight software technology development effort. The results of this 

study indicate that the measures of structural attributes for the evolving software 

system are suitable for forming predictors of the number of faults inserted into 

software modules during their development.  

2.2.22 Bai, Chenggang et al.: On the Trend of Remaining Software Defect 

Estimation (2003) 

Software defect curves describe the behavior of the estimated number of remaining 

software defects as software testing proceeds. They are of two possible patterns: 

single trapezoidal-like curves or multiple trapezoidal-like curves. In [3] the authors 

present some necessary conditions for software defect curves from the Goel-Okumoto 

NHPP model. These conditions can be used to predict the effect of the detection and 
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removal of a software defect on the variations of the estimated number of remaining 

defects. In this paper the authors use a field software reliability dataset to justify the 

trapezoidal shape of software defect curves and the author‘s theoretical analysis. 

2.2.23 Sherriff, M., Nagappan, N. et al.: Early Defect Estimation Model (2005) 

This paper presents a suite of in-process metrics that leverages the software testing 

effort to create a defect density prediction model for use throughout the software 

development process. A case study conducted with Galois Connections, Inc. in a 

Haskell programming environment indicates that the resulting defect density 

prediction is indicative of the actual system defect density [59].  

2.2.24 Nagappan, N. & Ball, T.:  Use of Code Churn to Predict Defect Density 

(2005) 

Software systems evolve over time due to changes in requirements, optimization of 

code, security fixes, reliability bugs, etc. Code churn, which measures the changes 

made to a component over a period of time, quantifies the extent of this change. In 

[45] the authors present a technique for early prediction of system defect density 

using a set of relative code churn measures that relate the amount of churn to other 

variables such as component size and the temporal extent of churn.  Using statistical 

regression models, they show that while absolute measures of code churn are poor 

predictors of defect density, the set of relative measures of code churn is highly 

predictive of defect density. A case study performed on Windows Server 2003 

indicates the validity of the relative code churn measures as early indicators of system 

defect density. Furthermore, the code churn metric suite is able to discriminate 

between fault-prone and non-fault-prone binaries with an accuracy of 89.0 percent.  
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Figure 1: Actual vs. Estimated Defect Density 

 

2.2.25 Nachiappan Nagappan and Thomas Ball: Static Analysis Tools as Early 

Indicators of Pre-Release Defect Density (2005) 

The authors believe that there is a strong positive correlation between the static 

analysis defect density and pre-release defect density determined by testing [44].  

Using the two static analysis tools, PREFix and PREfast, the authors tested their 

hypothesis.  The results show that the static defect density is correlated to the pre-

release defect density determined by various testing-activities. 
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2.2.26 Ching-Pao Chang et al.: Defect Prevention in Software Processes: An 

Action-Based Approach (2006) 

In [15] the authors argue that in order to accurately predict the number of defects in a 

given piece of software, one needs to look at the software development process.  They 

use the Work Breakdown Structure (WBS) to identify all actions that are performed 

during software development.  Factors causing defects vary according to the different 

attributes of a project, including the experience of the developers, the product‘s 

complexity, the development tools and the schedule. The most significant challenge 

for a project manager is to identify actions that may incur defects before the action is 

performed. Actions performed in different projects may yield different results, which 

are difficult to predict in advance. To alleviate this problem, they propose an Action-

Based Defect Prevention (ABDP) approach, which applies the classification and 

Feature Subset Selection (FSS) technologies to project defects during execution. 

Accurately predicting actions that cause many defects by mining records of 

performed actions is a challenging task due to the rarity of such actions. To address 

this problem, the under-sampling is applied to the data set to increase the precision of 

predictions for subsequence actions. To demonstrate the efficiency of this approach, it 

is applied to a business project, revealing that under-sampling with FSS successfully 

predicts the problematic actions during project execution. The main advantage of 

utilizing ABDP is that the actions likely to produce defects can be predicted prior to 

their execution. The detected actions not only provide the information to avoid 

possible defects, but also facilitate the improvement of software development process. 
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2.2.27 Ceylan, Evren et al.: Software Defect Identification Using Machine Learning 

Techniques (2006)  

In [14], different machine learning algorithms are evaluated in terms of their ability to 

identify and locate possible defects in a software project. In the proposed 

methodology the dataset is first normalized and cleaned against correlated and 

irrelevant values, and then machine learning techniques are applied for error 

prediction. The defect prediction can be done in two parts. First, it can be used to 

predict if the code is defective or not. Second, it can be used to predict the magnitude 

of the possible defect such as its severity, priority, etc. This paper is focused on the 

second type of predictions. By doing so, the authors argue that they are providing the 

software quality practitioner with an estimation of ―which modules may contain more 

faults.‖ This information can be used to allocate the scarce testing and validation 

resources on the modules that are predicted to be ―most defective.‖ 

2.2.28 Askari, M. & Holt, R.: Information Theoretic Evaluation of Change 

Prediction Models for Large-Scale Software (2006) 

In [2], the authors analyze the data extracted from several open source software 

repositories and show that the change data follows a Zipf
1
 distribution. Based on the 

extracted data, they develop three probabilistic models to predict which files will 

have changes or bugs.  

The first model is Maximum Likelihood Estimation (MLE), which simply counts the 

number of events, i.e., changes or bugs, that happen to each file and normalizes the 

                                                 

1
 The Zipf distribution, sometimes referred to as the zeta distribution, is a discrete distribution 

commonly used in linguistics, insurance, and the modeling of rare events 
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counts to compute a probability distribution. The second model is Reflexive 

Exponential Decay (RED) in which the authors postulate that the predictive rate of 

modification in a file is incremented by any modification to that file and decays 

exponentially. They also assume that the predictive rate of bugs induced by any event 

decays exponentially.  The third model is called RED-Co-Change.  With each 

modification to a given file, the RED-Co-Change model not only increments its 

predictive rate, but also increments the rate for other files that are related to the given 

file through previous co-changes.  The authors then present a theoretic approach to 

evaluate the performance of different prediction models. 

 In this approach, the closeness of model distribution to the actual unknown 

probability distribution of the system is measured using cross entropy.  They then 

evaluate the prediction models empirically using the proposed theoretical approach 

for six large open source systems.  Based on this evaluation, the authors argue that, of 

the three prediction models, the RED-Co-Change model most accurately predicts the 

distributions of all the studied systems. 

2.2.29 Nagappan, N. et al.: Mining Metrics to Predict Component Failures (2006) 

In [46] the authors present an empirical study of the post-release defect history of five 

Microsoft software systems.  They discovered that failure-prone software entities are 

statistically correlated with code complexity measures. However, they did not observe 

a single set of complexity metrics that could act universally as the best predictor of 

defects. Using principal component analysis on the code metrics, they built regression 

models that accurately predicted the likelihood of post-release defects for new 
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entities. The approach can easily be generalized to arbitrary projects; in particular, 

predictors obtained from one project can also be significant for new, similar projects. 

2.2.30 Bernstein, A. et al.: Improving Defect Prediction Using Temporal Features 

and Non-linear Models (2007) 

In this paper [7] the authors argued that temporal features (or aspects) of the data are 

central to predicting performance. They used non-linear models instead of traditional 

regressions and argued that non-linear models are necessary to uncover some of the 

hidden interrelationships between the features and the defects and maintain the 

accuracy of the prediction in some cases. 

Using data obtained from the CVS and Bugzilla repositories of the Eclipse project, 

the authors extracted a number of temporal features, such as the number of revisions 

and number of reported issues within the last three months. They then used these data 

to predict both the location of defects (i.e., the classes in which defects will occur) as 

well as the number of reported bugs in the next month of the project. They used 

standard tree-based induction algorithms in place of traditional regression models. 

They claimed that using non-linear models uncovers the hidden relationships between 

features and defects, presenting them in easy to understand form. Results also showed 

that, using temporal features, their model could predict both whether a source file will 

have a defect with an accuracy of 99% (area under ROC curve 0.9251) as well as the 

number of defects with a mean absolute error of 0.019 (Spearman's correlation of 

0.96). 
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2.2.31 Norman Fenton : Using Bayesian Nets to Predict Software Defects and 

Reliability (2007) 

In [23], Fenton argued that predicting software defects by complexity and size 

measures alone will not provide a meaningful estimate because the number of defects 

detected is related to the amount of testing that is performed.   Moreover, complex 

systems generally have a lower test effectiveness and therefore lower number of 

discovered defects.  Fenton further argued that modeling the complexities of software 

development using new probabilistic techniques presents a positive way forward.  In 

this paper Fenton suggested using Bayesian Networks (BNs) for predicting software 

defects and software reliability.  This approach allows for the incorporation of causal 

process factors while combining qualitative and quantitative measures, hence, it 

overcomes some of the limitations of traditional software metrics methods.  

2.2.32  Norman Fenton et al.: Predicting Software Defects in Varying Development 

Lifecycles Using Bayesian Nets (2007) 

In [24], the authors extended their earlier work by describing a general method of 

using BNs for defect prediction. The limitation of the earlier work was the need to 

build a different BN for each software development lifecycle to reflect the variation 

in both the number of testing stages in the lifecycle and the available metric data. To 

overcome this limitation, the authors described a BN that models the creation and 

detection of software defects without commitment to a particular development 

lifecycle.  

2.2.33 Oral, A.D. & Bener, A.B. Paper (2007)  

This paper examines defect prediction techniques from an embedded software point 

of view. In [52], the authors presented the results of combining several machine 
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learning techniques for defect prediction. They believed that the results of this study 

will help us to find better predictors and models for this purpose. 

2.2.34 Bergander, Torsten et al.: Software Defects Prediction Using Operating 

Characteristic Curves (2007) 

The authors propose in [6] a software defect prediction technique using Operating 

Characteristic curves in order to predict the cumulative number of failures at any 

given time. The core idea behind their methodology is to use geometric insight in 

helping construct a prediction method to predict the cumulative number of failures at 

specific times. 

 

The assumption was that the software failure data is usually available to the user in 

three basic forms: 

 A sequence of ordered failure times 0 < t1 < t2 < . . . < tn 

 A sequence of inter failure times τi where τi = ti – ti−1 for i = 1, . . . , n 

 Cumulative number of failures. 

The cumulative number of failures N(ti) detected by time ti (i.e., the cumulative 

number of failures over the period [0, ti]) defines a non-homogeneous Poisson process 

(NHPP) with failure intensity or rate function λ(ti) such that the rate function of the 

process is time-dependent. The mean value function m(ti) = E(N(ti)) of the process is 

given by 

 (  )  ∫  ( )  
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At present software reliability modeling is considered a part of software quality and is 

listed as a key quality measure for software quality.  Currently, the software 

reliability engineering discipline is saturated with software reliability models and 

many new models are either generalizations of older models or special cases of 

existing models [64].   

2.2.35 Karim O. Elish & Mahmoud O. Elish: Predicting Defect-Prone Software 

Modules Using Support Vector Machines (2007) 

This paper evaluates the capability of Support Vector Machines (SVM) in predicting 

defect-prone software modules and compares its prediction performance against eight 

statistical and machine learning models in the context of four NASA datasets. The 

results in [22] indicate that the prediction performance of SVM is generally better 

than, or at least competitive with, the compared models.  The authors argue that their 

method can enable software developers to focus quality assurance activities and 

allocate effort and resources more efficiently. 

2.2.36 Y. Hong, et al.: A Value-Added Predictive Defect Type Distribution Model 

based on Project Characteristics (2008) 

In [28], the authors aim to predict the type and distribution of in-process defects.  

They proposed a process which includes several steps: 1) analysis of literature, 2) 

behavior analysis, 3) data gathering, 4) statistical modeling, 5) regression analysis, 6) 

model validation, 7) gathering of more data for refining the model in the future. 

2.2.37  Bai, Cheng-Gang, et al.: On the Trend of Remaining Software Defect 

Estimation (2008) 

In [4], the concept of Remaining Software Defect Estimation (RSDE) curves is 

proposed. An RSDE curve charts the dynamic behavior of RSDE as software testing 

http://www.engineeringvillage2.org.proxy-um.researchport.umd.edu/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bBai%2C+Cheng-Gang%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
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proceeds. Generally, RSDE changes over time and displays two typical patterns: 

single mode and multiple modes. This behavior is due to the different characteristics 

of the testing process, i.e., testing under a single testing profile or under multiple 

testing profiles with various change points. By studying the trend of the estimated 

number of remaining software defects, RSDE curves can provide further insights into 

the software testing process. In particular, in this study [4], the Goel-Okumoto model 

is used to estimate this number on actual software failures and to derive some 

properties of RSDE curves. In addition, the authors discuss some theoretical and 

applicability issues regarding the RSDE curves. 

2.2.38 Miroslaw Staron & Wilhelm Meding: Predicting Weekly Defect Inflow in 

Large Software Projects Based on Project Planning and Test Status (2008) 

In this paper the authors present a new method for predicting the number of defects 

reported into the defect database on a weekly basis. The method proposed in [60] is 

based on using project progress data, in particular information about the test progress, 

to predict defect inflow for the next three weeks. The results show that the prediction 

accuracy of the models is up to 72% (mean magnitude of relative error for predictions 

of 1 week in advance is 28%) when used in ongoing large software projects. The 

method is intended to help project managers more accurately adjust resources in their 

projects, since they would be notified in advance about any potentially large effort 

needed to correct defects. 

2.2.39 Haider, Syed et al.: Estimation of defects based on defect decay model: 

ED3M (2008) 

In this paper a new approach called ED3M is presented that estimates the total 

number of defects in an ongoing testing process. ED3M is based on estimation 
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theory. Unlike other existing approaches the technique presented here does not 

depend on historical data from previous projects or any assumptions about 

requirements and/or testers' productivity.  It is an automated approach that relies only 

on the data collected during an ongoing testing process. In [27], the ED3M approach 

was evaluated using five data sets from large industrial projects and two data sets 

from the literature. In addition, a performance analysis was conducted using 

simulated data sets to explore the model‘s behavior using different models for the 

input data. The authors argue that the ED3M approach provides accurate estimates 

with as fast or faster convergence times compared to well-known alternative 

techniques, all while only using defect data as the input. 

2.2.40 Jiang, Y. et al.: Comparing design and code metrics for software quality 

prediction (2008)  

In this paper the authors compare the performance of predictive models which use 

design-level metrics with those that use code-level metrics and those that use both. In 

[31], they analyze thirteen datasets from NASA‘s Metrics Data Program which offers 

design as well as code metrics. Using a range of modeling techniques and statistical 

significance tests, they confirm that models built from code metrics typically 

outperform design metrics based models. However, both types of models prove to be 

useful as they can be constructed in different project phases. Code-based models can 

be used to increase the performance of design-level models and thus increase the 

efficiency of assigning verification and validation activities late in the development 

lifecycle. They also conclude that models that utilize a combination of design and 

code level metrics outperform models which use either one or the other metric set. 
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2.2.41 Scott, H. & Wohlin, C.: Capture-Recapture in Software Unit Testing (2008) 

This paper presents a method for estimating the total amount of software failures 

using a/the capture-recapture method.   The method presented in [58] combines the 

results from having several developers test the same unit with capture-recapture 

models to create an estimate of ―remaining‖ number of failures. The evaluation of the 

approach consists of two steps: first a pre-study where the tools and methods are 

tested in a large open source project, followed by an add-on to a project at a medium-

sized software company. The evaluation was a success. An estimate was created, and 

it can be used both as a quality gatekeeper for units and an input to functional and 

system testing. 

2.2.42 Walia, G. S. & Carver, J. C.: Evaluation of Capture-Recapture Models (2008)  

This paper argues that previous research on evaluated capture-recapture models were 

mostly done on artifacts with a known number of defects.  Therefore, before applying 

capture-recapture models in real development, an evaluation of those models on 

naturally-occurring defects is imperative.  

The study in [62] is based on the data drawn from two inspections of real 

requirements documents created as part of a capstone course. The results show that 

estimators change from being negatively biased after one inspection to being 

positively biased after two. 

The findings contradict the earlier results which suggested that a model which 

includes two sources of variation is a significant improvement over models with only 

one source of variation. The study also suggests that estimates are useful in 

determining the need for artifact re-inspection. 
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2.2.43 Cheung, L. el at.: Early Prediction of Software Component Reliability 

(2008). 

Authors in [17] argue that the ability to predict the reliability of a software early in 

the development (e.g., during architectural design) can help to improve the system's 

quality and save on cost.  Existing architecture-level reliability prediction approaches 

focus on system-level reliability and assume that the reliabilities of individual 

components are known. In general, this assumption is unreasonable, making 

component reliability prediction an important missing ingredient in the current 

literature. Early prediction of component reliability is a challenging problem because 

of the uncertainties associated with components under development. The authors 

address these challenges in developing a software component reliability prediction 

framework. They do this by exploiting architectural models and associated analysis 

techniques, stochastic modeling approaches, and information sources available early 

in the development lifecycle. They evaluate their framework to illustrate its utility as 

an early reliability prediction approach. 

2.2.44 Moser, R. et al.: A Comparative Analysis of the Efficiency of Change 

Metrics and Static Code Attributes for Defect Prediction (2008) 

In this paper the authors analyze two different defect prediction metrics. The authors 

in [42] choose one set of product-related and one set of process-related software 

metrics and use them for classifying Java files from the Eclipse project as defective or 

defect-free.  They built classification models using three common machine learners: 

logistic regression, Naive Bayes, and decision trees. To allow different costs for 

prediction errors, the authors performed cost-sensitive classification, which proved to 

be successful. The authors claimed having over 75 percentage of files correctly 



 

33 

classified with less than 30 percentage false positive.  Results indicated that for the 

Eclipse data, process metrics were more efficient defect predictors than code metrics.  

In general, the authors aim to answer one or several of the following questions in 

[42]: 

 Which metrics that are easy to collect during the early phase of software 

development are good defect predictors? 

 Which models, quantitative, qualitative, hybrid, etc., should be used for defect 

prediction? 

 How accurate are those models? 

 How much does it cost a software organization to utilize defect prediction 

models and what are the benefits? 

2.2.45 Nagappan, N. & Murphy, B. & Basili: The Influence of Organizational 

Structure on Software Quality: An Empirical Case Study (2008) 

In this paper the authors presented a metric scheme to quantify organizational 

complexity in relation to the product development process.  They also used the 

proposed metrics to identify defect-prone files.  In the case study presented in [47] , 

the organizational metrics, when applied to data from Windows Vista, were 

statistically significant predictors of failure-proneness. The precision and recall 

measures for identifying failure-prone binaries, using the organizational metrics, were 

significantly higher than those derived from traditional metrics (churn, complexity, 

coverage, dependencies, and pre-release bug measures).  The authors concluded that 

the results provide empirical evidence that the organizational metrics are related to, 

and can effectively predict, defect-proneness.   
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One of the organizational metrics used in this paper is Edit Frequency (EF).  This 

measures the total number of times the source code that makes up the binary is edited. 

An edit is an instance when an engineer checks code out of the VCS, alters it and 

checks it back in again. This is independent of the number of lines of code altered 

during the edit. This measure serves two purposes. One being that, if a binary had too 

many edits it could be an indicator of the lack of stability/control in the code from the 

different perspectives of reliability, performance etc., this is even if a small number of 

engineers were making the majority of the edits. Secondly, it provides a more 

complete view of the distribution of the edits: did a single engineer make the majority 

of the edits, or were they evenly distributed amongst the engineers? The EF cross 

balances with NOE and NOEE to make sure that a few engineers making all the edits 

do not inflate our measurements and ultimately affect our predictive model. Also, if 

the engineers who made most of the edits have left the company (NOEE) then it can 

lead to the above discussed issues of knowledge transfer.  

2.2.46 Afsharian, S. et al.: A Framework for Software Project Estimation Based on 

Cosmic, DSM and Rework Characterization (2008) 

In this paper the authors propose a framework, developed by Ericsson R&D Italy, for 

project time and cost estimation for software development projects in the 

telecommunications domain. The customization of Design Structure Matrix (DSM), 

the application of COSMIC and the study of defect complexity curves are the 

components of their estimation framework presented in [1].  The authors argue that 

rework is the main cause of software deviations.  
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2.2.47 Illes-Seifert, T. & Paech, B.L.: Exploring the Relationship of History 

Characteristics and Defect Count: An Empirical Study (2008) 

In this paper, the authors present the results of an empirical study, exploring the 

relationship between history characteristics and defects in software entities. In [29], 

they analyze and present nine open source Java projects. The results show that there 

are some history characteristics that highly correlate with defects in software, e.g., the 

number of changes and the number of distinct authors performing changes to a file. 

The number of co-changed files does not correlate with the defect count. The 

following three hypotheses were tested in the study: 

 

H1: The more distinct authors changing a file, the higher the file’s defect count will 

be. The rationale behind this hypothesis is that “too many cooks spoil the broth.”  

CONFIRMED! 

H2: The more changes made to a file, the higher the defect count will be. The 

rationale behind this hypothesis is that a high amount of changes indicates that 

particular parts of the problem are not well understood and often need rework 

resulting in fault-prone files. CONFIRMED! 

H3: The higher the number of co-changed files, the higher the defect count. The 

rationale behind this hypothesis is that a local change, affecting just one file, will 

cause fewer defects than changes affecting more files. REJECTED! 
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2.2.48 Meneely, A. et al.: Predicting Failures with Developer Networks and Social 

Network Analysis (2008) 

In [40], the authors examine developer collaboration and combine this information 

with code churn in an effort to predict failures at the file level. They conducted a case 

study involving a mature Nortel networking product of over three million lines of 

code. Failure prediction models were developed using test and post-release failure 

data from two releases, then validated against a subsequent release. One model's 

prioritization revealed 58% of the failures in 20% of the files compared with the 

optimal prioritization that would have found 61% in 20% of the files, indicating that a 

significant correlation exists between file-based developer network metrics and 

software failures. 

2.2.49 Ostrand T.J. and Weyuker E.J.: Progress in Automated Software Defect 

Prediction (2009) 

The authors developed a tool to predict which files are most likely to have defects in 

future releases.  The tool proposed in [63] is based on a regression model and uses the 

system‘s defect history to produce a list of possible fault-prone files.  The proposed 

method extracts data from configuration management to predict fault-prone files in 

the current release.  The model is based on each file‘s change history, fault history, 

size, and the programming language.  The file history used by the tool is based on the 

number of previous releases that contained a specific file.  For change history the tool 

uses the number of submitted MRs.  The tool uses an automated Configuration 

Management device to gather information needed to predict fault-prone files with 

limited user interaction.  Development of such automated tools and the shift in focus 

toward change history is a clear indication that new theories in software reliability are 
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being developed.  There are however some shortcoming with the proposed tool.  

Since software has no aging property, mere presence of a file in the solution should 

not affect its fault-proneness.  The tool also uses the number of Modification 

Requests (MR) in order to track changes made to the file‘s configuration 

management.  While the number of submitted MRs is a good indication of the 

number of changes, it ignores the size and impact of the change.  MRs vary greatly in 

size.  Some MRs impact a large portion of the code, replacing almost the entire file, 

while others might simply change a single character.  Using the number of MRs to 

track changes is a convenient method that captures the number of changes made to a 

file, but it is not a true indicator of the file‘s change history.    

2.2.50 Conclusion 

This section has provided a synopsis of some of the most significant and relevant 

software reliability models that have been published in the field of software 

reliability.  The literature review has addressed some of the issues related to software 

reliability. Numerous additional papers were reviewed during the research but are not 

presented above.  Not all papers reviewed are presented here due to their relative 

importance and the sheer volume of available literature   

2.3 Overview of Defect Estimation Models 

In section 2.2 we provided a literature review of many existing software reliability 

and defect estimation models. In order to categorize these models, a suitable 

classification is needed.  Due to the large number of models available, it is difficult to 

find one method of classification; thus different classifications have been suggested.  

One method of classification can be based on the probabilistic assumptions made in 
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the model.  Classification based on these assumptions is helpful because it provides 

insight for development of new models based on more realistic assumptions than 

existing categories.  Some software reliability models incorporate a stochastic process 

in their description of the failure phenomenon, such as the Markov process 

assumption, or the non-homogeneous Poisson process.  Other models are based on the 

subjective knowledge of the failure data or the Bayesian inference.  Some do not 

consider the dynamic aspects of failure process, such as input-domain based models, 

fault seeding and tagging models.  In [13], Cai provides the following classification 

based on the model assumptions: 

 

Markov Models 

 Jelinski-Moranda (J-M) Model 

 Schick-Wolverton Model 

 Shanthikumar Model 

 Littlewood Semi-Markov Model 

Nonhomogeneous Poisson Process Models 

 Goel-Okumoto (GO) model 

 S-Shaped NHPP Model 

 Musa Time Execution Model 

Bayesian Models 

 Littlewood-Verrall (LV) Model 

 Langberg-Singpurwalla Model 

Statistical Data Analysis Methods 
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 Crow and Singpurwalla Model  

Input-Domain-Based Models 

 Nelson Model 

Seeding and Tagging Models 

 Mills Model 

 Peterson Model 

 Lipow Model 

 Software Metrics Models 

Ramamoorthy and Bastani [57] provide a categorization of existing software 

reliability models according to the phase of the software development where the 

model is most appropriate (figure 2). 

 

Figure 2: Classification of Software Reliability Models based on SDLC 
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In general, existing software reliability and software defect estimation models can be 

grouped into two broad categories: static models, and dynamic models [32].  Static 

models use different attributes from current or similar projects to estimate the 

technical reliability measures of the current project.  These models also use some 

characteristics of the current project as the input parameters.  Static models are called 

static because the coefficients of their parameters are static and are estimated based 

on a number of selected factors from previous projects.  Dynamic models, on the 

other hand, are based on statistical distributions and use observations from the current 

project to estimate defect content and a software product‘s reliability.  Dynamic 

models use the observed defects during the software development phase to estimate 

an end-product‘s reliability or defect content at release time.  By using data obtained 

from the current project, dynamic models can provide a more accurate prediction 

specific to the project.  Dynamic software reliability and defect estimation models can 

be divided into two classes: those that use data obtained during the entire software 

development life cycle to estimate model parameters, and those that focus on the data 

obtained during the back-end of the project, specifically the testing phase.  Since 

more defect data is typically available during the testing of the final software product 

at the end of the project, most of the existing dynamic models belong to this group.  

Models that are based on exponential distribution and other reliability growth models 

usually belong to the back-end testing phase category as well.  The Rayleigh model is 

an example of a dynamic model that can be used thought the software development 

lifecycle.  Rayleigh distribution is a special case of Weibull distribution; Its PDF 

increases to a peak and then decreases at a decelerating rate.  The Rayleigh model is 
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based on the assumption that the software defect removal pattern follows the 

Rayleigh distribution.  Under this assumption, the defect data obtained from each 

software development phase can be used to obtain a Rayleigh model that fits the 

defect pattern to estimate the expected number of remaining defects after the software 

is released. 

2.4 Current State of Software Defect Estimation Models 

In the previous section we categorized software reliability and defect estimation 

models into two categories: static and dynamic models.  We claimed that the 

parameters of static models are estimated based on a number of factors that may 

relate to software defects. The correlation between code churn and defect-proneness 

has been studied by a number of research teams. In [49], Munson et al. studied the 

change in relative software complexity in over 18 software builds and estimated the 

fault surrogate in the software product.  The authors used a set of complexity 

measures that are known to be highly correlated to software faults for estimating the 

software fault surrogate.  They discovered a strong relationship between software 

faults and certain aspects of software complexity.  The authors used the rate of 

change in relative complexity as the index of the rate of fault injection.  They 

developed a regression model relating complexity measures of the code to code 

faults.  In [53], Ostrand et al. used a negative binomial regression model utilizing four 

years of data from previous releases to show a correlation between selected predictor 

variables and the numbers of faults observed in files. 

The list of software defect factors seems inexhaustible, especially when we consider 

that multiple measures can apply to a single factor.  The complexity among various 
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factors and measures has led to many arguments and controversies [13].  After 

studying a number of software defect factors over seven case studies in [37], the 

authors have noted that the differences in the number of defects could not be 

explained by any combination of software structural metrics.  This implies that there 

is a need for models that incorporate software process.   The main limitation is that 

regression models can only show a correlation between variables and do not prove 

causality.  Since factors that affect defect content are different and vary from project 

to project, the assumption that the same correlation always exists between selected 

predictor variables in any software development project is unfounded.  

Fenton et al. in [24], review various approaches for software defect prediction and 

concludes that traditional regression modeling alone is inadequate.  In [24] the 

authors claim that causal models are needed for more accurate prediction.  

Khoshgoftar and Goel [34] explored the relationship between debug code churn and 

fault-prone modules.  The authors analyzed two consecutive releases of a large 

communication software to identify fault-prone modules based on the number of 

debug code changes during development. They labeled fault-prone modules as those 

that exceeded a threshold of debug code churn. Their model can be used to focus 

extra attention on fault-prone modules and thus reduce the risk of unexpected 

problems.  In [26], T.L. Graves et al. analyzed the effect of code change on software 

complexity and argued that the change in code has an impact on the fault surrogate. 

Moser et al. in [42] showed that program quality metrics are closely related to 

software complexity metrics and code churn.  Other researchers have also examined 

code churn and its relationship to defect density. The authors in [59] present a suite of 
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in-process metrics that leverage the software testing effort to create a defect density 

prediction model for use throughout the software development process. A case study 

conducted with Galois Connections, Inc. in a Haskell programming environment 

indicated that the resulting defect density prediction is indicative of the actual system 

defect density. In [44], Nagappan and Ball find a significant linear relationship 

between code churn and the rate at which faults are inserted into the system in terms 

of number of faults per unit change in code churn.  In [45], Nagappan and Ball 

present a technique for early prediction of system defect density using a set of relative 

code churn measures that relate the amount of churn to other variables like 

component size and the temporal extent of churn.  Results from [45] also show that 

there are some change history characteristics that highly correlate with defects in 

software, e.g., the number of changes and the number of distinct authors performing 

changes to a file.  While the relationship between code churn and software defect 

density has been discussed by many researchers, to our knowledge no causal model 

has been proposed that captures the change history of products and the software 

development activities. 

2.5 Our Objective in the Context of the Current State of Research 

While the relationship between code churn and software defect density has been 

discussed by many researchers, to our knowledge no causal model has been proposed 

that can be used to identify defect-prone artifacts based on software development 

activities and change history.  Thus, our objective is to introduce a causal model that 

uses software development activities and change history to identify defect-prone 

software artifacts early in the development lifecycle.  A model that draws from 
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current software development activities to estimate the defect content in a software 

product is very useful to the software engineering community.  Using observations 

from an ongoing software development project not only provides more accurate 

defect prediction, it also supplies the  framework software managers need to make 

risk informed decisions early in the software development lifecycle.  Rather than 

relying on defect data which is mostly available toward the end of the software 

development lifecycle, the SDPM can be used throughout a project‘s development to 

produce a more reliable product.  Our objective is also to investigate the accuracy of 

the estimate provided by the SDPM in five real life software development projects. 
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Chapter 3: Software Development Profile Model 

3.1 Proposed Work 

Most large software systems are developed in phases over a long period of time and 

follow a specific software development lifecycle model.  During software 

development, due to human error, defects are injected into the software. Some are 

identified and removed, while others go undetected.  These ―latent defects‖ are passed 

into the next software development phase and can be observed and reworked in the 

subsequent change sets.  Before the software is released into production, it undergoes 

a period of final system testing and acceptance testing to ensure it meets all the 

customer requirements before it is released for production.  Any defects that are not 

identified during Software Acceptance Testing (SAT) will be released into production 

and can cause software failure.  We define the Software Development Profile (SDP) 

as all internal and external factors that affect the software product while it is being 

developed.  While most software development projects follow a specific development 

model (Waterfall, Prototype, Agile, etc.) they nevertheless experience a unique 

software development profile during development.  Software Development Profile 

should be considered to obtain more accurate defect count estimation.  

 

3.2 Methodology 

Software development processes rely heavily on human judgment and therefore 

cannot be completely automated.  While the use of different Computer Aided 

Software Engineering (CASE) tools during software development has improved 

control and productivity in recent years, software development remains a very hands-
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on activity.  Since causes leading to software failures are all due to human error 

during implementation of software requirements overtime, software change history 

contains useful information about software defect content.  Configuration 

Management (CM) tools are used to manage software changes in large scale software 

development projects.  Therefore, the CM tool can be used to obtain information 

about software‘s change history.  Software engineers are required to check out 

desired artifacts from the development stream before making any changes.  A 

development stream is a database containing the chronology of all development 

activities [36].  After software changes are made and inspected, the artifacts are 

delivered back to the stream in the form of a change set. Fig. 1 shows an example of a 

software development stream.  Since the content of a software development stream 

only changes when change sets are delivered, it is logical to divide the software 

development process into a number of successive intervals and model software 

development activities in each individual change set. 

     

1/2/2010 7/1/2010

2/24/2010

Change Set #3

Development 

Stream

5/26/2010

Delivery to 

Customer

3/16/2010

Change Set #4

2/17/2010

Change Set #1

4/2/2010 - 4/26/2010

Final System Testing

22/2

Change Set #2

3/24/2010

Change Set #5

 

Figure 3: Software Development Stream 
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When a software construct (SLOC, module, function point, requirement statement, 

etc.) is created or modified during software development, there is a chance it is can be 

injected with a defect.  Let‘s define:  

   {
                                         
                                 

 (1) 

If we could identify all defective constructs, we could simply rework the defects and 

produce the perfect software.  However, since we don‘t know which constructs were 

injected with a defect, Z
c
 is a random variable.  We define r

c
 as the probability of {z

c
 

=1}.  This means r
c
 is the probability that a given construct touched in the change set 

c did not become defective.  The probability r
c 

would depend on the effectiveness of 

software development activities such as defect detection and removal and therefore 

may not be the same across all change sets.  Other internal and external factors such 

as the developer‘s skill level, schedule pressure, size of the change, etc. can influence 

this probability as well.  Let‘s formally define 

 

      *    +                    *    +      
 (2) 

 

as the reliability of change set c.  In the remainder of this paper we use the term 

―change set reliability‖ as the probability that a given construct touched in a change 

set is defect free.  Estimating the r
c
 based on software development activities is 

desirable and is discussed in the following section. Modeling change set reliabilities 

based on software development activities would allow software managers to make 
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risk-informed decisions and adjust software development activities to improve the 

reliability of their product.      

3.3 Software Development Profile Matrix 

Since change sets have different reliabilities and a given construct can be touched in 

different change sets, change set reliabilities need to be maintained.  This data can be 

captured in the Software Development Profile Matrix   (    ) where: 

 

     {
                                                
           

 (3) 

 

The size of the Software Development Profile Matrix is (    ) where n is the 

number of constructs present in the software stream when the c-th change set is 

delivered.  As an example, the following matrix captures the software development 

profile of a software development stream containing nine constructs modified over 

nine change sets. 
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In the matrix above, columns represent change sets and rows correspond to specific 

constructs.  Based on our assumption, when a construct is touched in a change set, it 

has a change to become defective.  Since the probability of a given construct 

becoming defective is different in each change set, the value r
c
 is stored in the change 

matrix.  If the construct is not modified in the change set, its reliability remains 

unchanged and its value is marked with a 1.  Using the information stored in the 

Software Development Profile Matrix, we can then estimate the reliability of a given 

construct changing over multiple change sets.  In this section we provide an 

approximation by assuming the change sets are independent.  In section 3.6 we will 

improve this approximation by incorporating the dependencies between the change 

sets.  If we assume that the change sets are independent (an assumption that will be 

removed in section 3.6), then the probability of a construct being defect free can be 

estimated by the following approximation: 

 

  
  ∏     

 
        (5) 

 

We define ―construct reliability” as the probability of a given construct being defect 

free represented hereafter by   
 
.  Estimator (5) simply means that for a construct ―i‖ 

to be defect free, it can‘t be injected with a defect in any change set during which it 

was modified. 
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3.4 Estimating Change Set Reliabilities Using a Binary Decision Diagram 

Previously, we discussed the notion that software development activities such as 

defect detection or removal activities can influence change set reliabilities.  Software 

inspections or tests are examples of defect detection activities.  In this section we will 

show how the effectiveness of such activities can be used to estimate the change set 

reliabilities.  Software development activities during each change set can be modeled 

using a Binary Decision Diagram (BDD).  BDD is a data structure that is used to 

represent Boolean functions and the relationship between them.  Each decision node 

represents an activity that occurs in the change set.   Example activities in a change 

set include software constructs being modified, inspected, integration tested, or 

reworked before delivery to the development stream.  Figure 4 illustrates how these 

activities are modeled using a Binary Decision Diagram.  In this example the node C 

represents the coding activity in the change set, the node I represents the code 

inspection activity, and node T represents testing.  In this example, the rework 

activity, shown here as the node R, occurs after the inspection and testing is complete.  

The edges of the BDD represent the probability of success for each node. For 

instance, p in this example is the probability that a given construct that was modified 

did not become defective, while q is the probability that a defective construct is 

observed during the inspection process and w represents the probability that a 

defective construct, unnoticed during the inspection process, is observed during the 

testing phase. 
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Figure 4: Software Development Binary Decision Diagram 

 

Based on the BDD representation of software development activities, the probability 

that a given construct does not become defective in change set c can be estimated by: 

 

      (    )        (    )  (    )            

Where: 

 ̅  (    ) = defect injection probability  

   = probability of observing a defective construct during inspection 

(detection probability during inspection) 

   = probability of observing a defective construct during I & T 

(detection probability during testing) 
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We further assume that the defect injection probability during initial coding is the 

same as the defect injection probability during rework.  This is not an unreasonable 

assumption, since the defects found during inspection or testing are generally 

corrected by the original author.  To estimate   , we first need to calculate model 

parameters                Let‘s define 

   as the number of constructs that become defective in change set c,  

   as the number of constructs touched in change set c,  

 ̅  (     ) as the injection probability.   

If we assume that the constructs become defective independently, then the probability 

of     constructs becoming defective given    and   ̅  can be described using the 

binomial distribution: 

 

  (  |    ̅ )  (  

  )( ̅
 )  

 (   ̅ )     
   (6) 

 

The current state of knowledge about  ̅  is unknown prior to inspection and testing 

activities.  Bayesian theorem can be used to obtain an ―updated‖ state of knowledge 

based on the number of defective constructs observed during inspection or testing.  

Let‘s use the Beta distribution to describe   ̅ .  Using Beta distribution to describe 

probabilities is a reasonable assumption because it has a flexible distribution between 

0 and 1.  The functional form of the Beta family of distributions is: 

 

 (  |     )  
⌈(     )

⌈(  ) ⌈(  )
 (  )     (    )    

  (7) 
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Where          , both non-negative, are parameters of the distribution and 

determine its shape.  More specifically, parameters a=1 and b=1 describe no prior 

knowledge about  ̅    The binomial distribution in Eq. (6) and the evidence obtained 

from inspection activities can be used to update the state of our knowledge about   ̅ .  

Using the Beta distribution shown in Eq. (8) with the conjugate likelihood given by 

Eq. (6) provide updates for the parameters a‘ = a + N and b‘ = b + (S - N) and the 

state of knowledge about   ̅ . 

 

  ( ̅ |     )  
⌈(    )

⌈(    ) ⌈(       )
 ( ̅ )  

 (   ̅ )     
 (8) 

 

Figure 5 shows the defect injection probability of project 1 with no prior knowledge 

(a=1, b=1) and after the evidence was obtained during the inspection process.   
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Figure 5: Defect Injection Probability of Project 1- Before and After Code Inspection 

 

The posterior mean value for   ̅  is 

 

   ̅  
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For N >> a, and S >> b the posterior mean value for  ̅  is simply: 
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 ̂̅    
  

  
     (9) 

 

Bayesian theorem states that as more evidence becomes available, uncertainty 

decreases.  The spread of the Beta distribution can be used to reflect our uncertainty 

about the value of the unknown  ̅ .  The coefficient of variation (CV) of the Beta 

distribution shown in Eq. (10) can be used to express our uncertainty of the state of 

knowledge. 

 

   √
 

 (     )
     (10) 

 

In this case, with a=1 and b=1, the coefficient of variation is 0.5774, whereas in 

Figure 5 (S=495 and N=95), the coefficient of variation is reduced to 0.0916. The 

coefficient of variation will further be reduced if additional information becomes 

available through further testing of the changes (Figure 6). 
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Figure 6: Defect Injection Probability of Project 1 Before and After Testing 

 

In this case shown in Figure 6 (S=495, i=65, t=12) the coefficient of variation is 

further reduced from 0.0916 to 0.0676 after the evidence from testing is available.  

Similarly, the detection probabilities          can be estimated using Bayesian 

inference.  Let‘s define 

    Number of defective constructs identified by the inspection of change set c   

   = Number of defective constructs identified during testing of change set c  
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If we assume that defective constructs are observed independently, then the 

probabilities of    and   can be described by the following binomial distributions: 

 

  (  |     )  (  

  
)(  )   (    )     

   (11) 

  (  |(   )    )  ((   ) 

  
)(  )
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 (    )   (     )
 (12) 

Our state of knowledge on    and    can be described by Bayesian theorem using the 

Beta distribution as the posterior distribution.  As more evidence becomes available 

through inspection and testing, our degree of knowledge increases and the uncertainty 

decreases.  If we assume no prior knowledge (a=1 and b=1), using              as 

the evidence, the updated degree of knowledge about the probability of observing a 

defect during inspection and testing can be written as: 

 

  (  |     )  
⌈(    )

⌈(    ) ⌈((   )   )
 (  )   (    )       (13) 
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where D is the number of defective constructs observed during inspection and 

testing (       ).  The posterior mean values and coefficient of variation of q 

and w are given below by Eq. (15) and eq. (16).  
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Using posterior mean values of the parameters provided in Eq. (9), Eq. (15) and Eq. 

(16), we can estimate the reliability of change set c as: 

 

 ̂    ,           -  .  
  

  / .  
     

  /  (17) 

 

If we define    (     ) as the number of defective constructs observed during 

testing and inspection, then the reliability of change set c can be rewritten as: 

 

 ̂    ,           -  .  
  

  / .  
  

  /  (18) 

The above equation (18) describes the relationship between the reliability of the 

change set c, size of the change set, and software development activities during 

change set c.  Based on Eq. (18), in case of perfect coding where no defects are 

injected (N=i=t=0), the change set reliability is 1. However, in case of imperfect 

coding, even if all defective constructs are observed during testing and inspection 

(N=D=i+t), the reliability of the change set will be   .
  

  /
 

, which is less than 1, 

due to the defect injection probability during rework. 
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In this section we used the size of change set c (  ) and the number of defective 

constructs observed during defect detection activities to estimate model parameters 

                While             are values that can be directly obtained from the 

configuration management tool and the inspection and testing process, the total 

number of constructs that become defective in each change set, (  ), needs to be 

estimated.  Section 3.5 describes how to estimate this number during change set c 

using Capture-Recapture method. 

3.5 Estimating Total Number of Defective Constructs in Change Sets 

In this chapter we discuss how the capture-recapture method can be used to estimate 

the number of defective constructs in a change set.  Several studies in software 

engineering have considered the use of capture-recapture models for estimating the 

number of defects in an inspection package. Originally proposed by biologists to 

estimate animal populations, different variations of capture-recapture have been 

employed to estimate the defect content in an inspection package.  Inspection is a 

formal, rigorous and in-depth technical review designed to identify problems as close 

to their point of origin as possible [56].  Inspection was first described by Fagan in 

1976, and since then inspections have been established as state of the practice and 

have evolved to become a mature empirical research area [55][5].  A number of 

authors have studied the robustness of various capture-recapture techniques have been 

researched [11], [41], [54], [58], [62].  Capture-recapture uses the overlap between 

the findings observed among different inspectors to estimate the total fault content in 

an inspection package.  If the overlap between the findings observed by inspectors is 
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large, it is assumed that few defects remain, and if the overlap is small, then many 

more defects are assumed undetected.   

Different variations of the capture-recapture method have been proposed in the 

literature.  The simplest version assumes that all defects have the same probability of 

being observed and all inspectors have the same skill level.  This assumption is not 

very realistic for the software inspection process, since inspectors generally have 

different skill levels, and defects have different probability of being defected.  The 

most realistic version of the capture-recapture model takes this into account, 

assuming defects have different probabilities of being found and inspectors‘ different 

skill levels.  Four different capture-recapture assumptions are graphically illustrated 

in Figure 7 [11].  To estimate the total number of defective constructs in a change set, 

we use the capture-recapture method proposed by Chao [16].     

 

 

Figure 7: Capture-Recapture Model Assumptions 
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To implement capture-recapture in the inspection process several requirements have 

to be met.  These necessary assumptions are as follows: 

 The defect population must be closed.  This means that while the inspection is 

ongoing, no further defects are injected into the artifacts.  This requirement is 

easily met because no modification is made to the artifact while the inspection 

is in progress. 

 Each inspector will receive the same material.  This assumption is also 

realistic, because the moderator prepares the inspection material and submits 

the same material to all inspectors for review. 

 Each inspector reviews the material independently.  This, too is realistic, 

because each inspector is given sufficient time to review the material prior to 

the formal inspection meeting.  

 Inspectors do not discuss or share their findings until everyone has submitted 

his findings.  It is very critical to the successful capture-recapture model that 

this requirement is met.  As described above, CR uses the overlap between 

defects found by different inspectors.  Sharing defect information will 

increase the overlap and therefore result in an underestimation of defect data. 

 Inspectors must keep accurate data of their findings. 

 The moderator needs to use the independent findings and estimate the number 

of constructs that remain defective.  

 Due to the nature of the software and dependencies among artifacts, constructs 

can become defective as the result of a change in a related artifact.  To capture 

such defects, it is assumed that the inspection package includes not only 
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artifacts that were modified, but also all related artifacts.  While there are 

various methods for modeling internal dependencies among modules, we 

found it sufficient to capture this dependency by inspecting related artifacts 

during the inspection process. 

Table 1 shows a sample inspection worksheet that can be used to estimate the number 

of defective constructs in an inspection package.  Columns e1-e4 represent the 

inspection findings for each inspector. 

 

Table 1: SDPM Sample Inspection Worksheet 

Defect  
Description 

Detection 
Probability 

Inspectors 
fi 

e1 e2 e3 e4 

Module1 line 243 p1 1 1 1 1 4 

Module1 line 622 p2 1 1 0 1 3 

Module2 line 41 p3 1 1 0 1 3 

Module13 line 24 p4 0 1 0 0 1 

Module 21 line 2 p5 1 1 0 1 3 

Module 34 line 1233 p6 0 1 0 0 1 

  nj= 4 6 1 4 15 

 

The format inspection process is illustrated in Figure 8.  SDPM is used after the 

formal inspection meeting to estimate the build reliability.  This worksheet is used 

during the inspection of the case studies provided in Chapter 4. 
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Figure 8: SDPM within the Formal Inspection Process 

 

3.5.1 Chao‘s Heterogeneity-Time Model  

In this section we will describe how Chao‘s Heterogeneity-Time model is used to 

estimate the number of defective constructs    in a change set [16].  Chao‘s model 

makes the following assumptions: 

  :  True but unknown number of defective constructs in a change set c 

  :  Number of inspectors inspecting change set c 

  
    Unknown detection probability of i-th defective constructs in change set c 

   (  
    

     
 )                  ̃  

∑   
   

   

  
 

  
    Unknown skill level of the j-th participating inspector 
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 :  The detection probability of the i-th defective construct by the j-th inspector 

reviewing change set c 

  :  Inspection coverage of change set c 

  
    Number of defective constructs observed by the j-th inspector inspecting 

change set c 

  
    Number of defective constructs identified exactly by k inspectors in change 

set c 

  :  The number of distinct defective constructs observed during the inspection of 

change set c 

Chao [16] formulated an estimator that allows the probability to vary with 

heterogeneity and time.  Let us assume that the number of constructs that become 

defective in change set c is   , and there are t inspectors participating in the 

inspection process.  Let‘s also assume that defects are indexed 1,2,..,   and    
  is the 

detection probability of the i-th defective construct observed by the j-th inspector.  

Chao in [16] assumes that    
    

   
          

   
                         

        .  Unlike previous authors that assume (  
    

       
 ) and (  

    
       

 )  are 

random samples from an unknown distribution, Chao [16] treats them as fixed 

parameters.   

In previous section we developed a worksheet to capture the inspection findings per 

inspector during each inspection.  Table 1  captures this information in the form of an 

N x t matrix X=(Xi,j) where: 

     ,                                                 - 
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Where I[A] is 1 if event A occurs and 0 otherwise.  If we assume that there is no 

interaction between the inspectors and each inspector reviews the materials 

independently, then the number of distinct defects observed during the inspection can 

be written as: 

 

   ∑  [∑    
    

   ] 
       (19) 

 

And the number of defective constructs observed exactly by k inspectors can be 

written as: 

  
  ∑  [∑    

    
   ] 

                 (20) 

It is obvious that only    defective constructs are detected and   
  represents the 

number of defective constructs that are not observed.  The total number of defective 

constructs in change set c is        
      .  The sample coverage    is defined as 

the proportion of detection probabilities of the observed constructs over all defect 

detection probabilities: 

 

   
∑   

   ,                                        - 
   

∑   
  

   

 

 

If all   
  are equal, then    

  

  .  In that case the estimator for the number of 

defective constructs in change set c would be 

 ̂  
  

  
       (21) 
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Chao [16] provides the following three estimators for sample coverage    when 

  
  are unequal: 
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 ̂       ̂  are bias-corrected versions of defect coverage  ̂ .  Based on the coverage 

factors, the estimated number of defective constructs in change set c can be estimated 

by  
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Where  

  
     {

  

 ̂ 
 ∑  (   )  

  
   

 ∑ ∑     
   
   

 
   

    }    (23) 

  
  is the coefficient of variation.  When   

  is relatively small, then the number of 

defective constructs,  ̂ 
   can be estimated by  
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 ̂ 
  

  

 ̂ 
      (24) 

3.6 Modeling Dependencies 

Dependency among components is an important factor when it comes to quantifying 

risk, reliability and safety models.  Generally, there are two approaches to 

incorporating dependencies in a probabilistic model.  The first approach is the explicit 

modeling approach, where we define the sources of dependencies, such as internal, 

external, design, human interaction, environmental, etc. and include them in the 

overall physical model of the system.   The second approach is the implicit modeling 

approach.  In an implicit dependency modeling approach we try to cover the 

probabilistic impact of dependencies on the overall risk or reliability of the system 

without modeling the detailed mechanism of the interdependencies.   

In the SDPM, we recognize two types of dependencies:  intrinsic and extrinsic 

dependencies.  Intrinsic dependencies are those in which functional status of one 

construct affects the functional status of another.  Such dependencies generally stem 

from the way the software is designed.  This type of dependency is important because 

the modification of one construct can cause related constructs to become defective.  

Intrinsic dependencies primarily exist between software constructs in related artifacts 

and numerous models have been proposed to capture such dependencies [21], [51].  

Modeling dependencies among constructs can improve the estimation of defect 

injection probability ( ) by including the probability of constructs that can become 

defective even if they are not modified in a change set.  In the SDPM, we estimate 

this probability based on the total number of defective constructs obtained by capture-
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recapture method.  Since such dependencies mostly exist among constructs within 

related software artifacts, we were able to estimate them indirectly by including 

related artifacts in the inspection process.     

Another type of dependency is the dependency between change sets.  Since software 

constructs can be modified in multiple change sets, internal dependencies exist among 

change sets.  In Section 3.4, we assumed that change sets are independent and, based 

on this assumption, we provided an approximation for estimating the reliability of 

constructs that were touched in more than one change set.  We assumed change sets 

were independent such that defects injected in one change set could only be observed 

and reworked during the same change set.  By making this assumption, we estimated 

the reliability of the constructs as the product of change set reliabilities during which 

they were modified.  In reality, however, defective constructs can be observed during 

the inspection or testing of any subsequent change sets.   In Section 3.6.1 we improve 

upon the approximation by including the future detection probabilities in the 

estimation.     

Extrinsic dependencies, on the other hand, are those in which the coupling 

mechanism is not inherent in the design of the software.  Such dependencies are often 

external to the software product.  Dependencies due to common environmental 

factors, such as overall schedule pressure, maturity level of the organization, skill 

level of the development team, or lack of management oversight belong to this 

category.  In Section 3.6.2 we discuss how Bayesian Belief Networks (BBNs) can be 

used to capture external dependencies and incorporate the state of our knowledge to 

update and improve SDPM parameter estimates. 
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3.6.1 Modeling Dependencies among Change Sets 

In Section 3.4, we assumed that software development activities were independent 

from each other, and software constructs that become defective in one change set can 

only be detected only during the next inspection or testing activity.  This is an 

unrealistic assumption, as defective constructs can be observed and repaired during 

the inspection or testing of future change sets.  In this chapter we improve our 

approximation by removing the independency assumption.  However, to remove the 

independency assumption we need to add two new assumptions.  The first assumption 

is that a defective construct must be observed before it is reworked. The second 

assumption is that when a defective construct is observed, it is reworked in the 

immediately next change set.  Both these assumptions are in general reasonable, 

because latent defects are more likely to be observed during testing or inspection than 

unit testing.  Furthermore, latent defects are generally reworked as soon as they are 

discovered.  The exceptions are fixes that are either too complex or require input from 

a customer or third party.  In any case, these assumptions are more reasonable than 

our initial independency assumption.  Figure 9 shows a Binary Decision Diagram 

(BBD) used to model the probability of constructs that are touched in multiple change 

sets.        
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Figure 9: Modeling Dependencies among Change Sets 

 

In this BDD, the nodes marked with C represent the coding activity and those marked 

with D represent defect discovery activities such as inspection or testing.  Based on 

the BDD shown in Figure 9, a construct can be modified in multiple change sets 

either by the implementation of a new functionality, or as the result of the rework of 

an observed defect.  Based on the BDD above, the probability of a given construct 

that is modified in two change sets i and j can be estimated by: 

 

           (    )                   (25) 

  

This means that the probability of a construct modified in two change sets being 

correct, is the probability of the construct being correct in both change sets, 
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represented by      .  Otherwise, if it became defective in the first change set, it 

must be observed during the defect discovery activity of the (j-1)th change set and be 

correctly modified in change set j, (    )         .  This process can be written 

recursively as: 

 

  
  {

                                                    

  
    (      )                            

      (26) 

   

3.6.2 Updating Model Parameters using Bayesian Belief Network (BBN) 

As discussed earlier, causal models can provide more accurate predictions by 

allowing evidence and expert judgment to be taken into account when estimating 

model parameters.  Rather than relying only on structural software measurements and 

historical data, the Software Development Profile Model can be used in conjunction 

with Bayesian Belief Networks to make inferences about the uncertain states of 

model parameters when limited information is available.  BBNs can also be used to 

incorporate specification of probabilistic dependencies between variables and factors 

that have widespread influences.  In general, there are two types of dependencies 

among change sets that need to be considered when updating model parameters. The 

first type of dependency is the dependency on factors that affect the overall software 

development project, such as process quality, overall staff quality, requirements and 

specification quality or test process quality.  These factors, for example, impact all 

change sets and their affect should be captured to improve model parameter 

estimation when such information becomes available.  On the other hand, there are 
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factors that do not affect the entire project, only individual change sets, such as the 

level of testing effort during one specific change set, resource availability, or current 

schedule pressure.  While these factors do not affect the entire software development 

project, when available they can be used to update model parameters.  Unlike existing 

regression models that are inadequate at capturing such dependencies, the SDPM can 

be used in conjunction with Bayesian Belief Networks to capture this information and 

provide a more accurate prediction. 

A Bayesian Belief Network (BBN) is a directed acyclic graph (DAG) with nodes 

representing random variables, each with associated probability tables.  An arrow 

from one node to another represents probabilistic influence.  Figure 10 shows how a 

Bayesian Belief Network can be used in conjunction with SDPM to update model 

parameters.  In this example we selected factors that affect all change sets (shown in 

blue), as well as factors that affect only individual change sets (shown in orange).  In 

this model, the variables Test Process Quality (TPQ), Development Process Quality 

(DPQ), Staff Quality (SQ), and Requirements & Specification Quality (RSQ) are 

factors that are common to all change sets.  As the names of the variables indicate, 

these are generally process, organizational or program level qualities that affect the 

entire project.   
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Figure 10: Example of Bayesian Belief Network Used in Conjunction with SDPM 
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Consider the example shown in Figure 10.  In the example above, overall test process 

quality depends on test staff experience, quality of test cases, and how well the test 

process is defined.  The influence level of the process quality indicators are judged by 

experts and are assigned numerical values between 0 and 1. Similarly the testing 

process quality and the testing effort influence the effectiveness of the process.    

Again, the relative level of influence of these two factors can be assessed by an 

expert.  Once the relationships between the variables are defined, the BBN can be 

used to update Software Development Profile Model parameters (p, q, and w).  In the 

example above we show how the probability of observing a defect in test can be 

updated.  This is especially useful when objective evidence is lacking.  

3.7 Properties and of Software Development Profile Model 

Modeling software development using the Software Development Profile Model 

provides some unique advantages 

1. Flexibility 

The proposed Software Development Profile Model is not dependent on a 

particular type of software artifact or unit of measurement.  Software systems 

consist of executable and non-executable files but models based on observed 

defects fail to identify defects in non-executable files.  Since the SDPM uses 

capture-recapture during inspection to estimate the number of defective 

constructs, it can be used successfully on executable and non-executable files 

alike, including configuration files, system documentation, user 

documentation, and other artifacts.  

2. Scalability 
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The proposed Software Development Profile Model can be applied to the 

entire software solution or any subset of the system that might be of interest.  

It is often necessary to make a statement only about the defect content of a 

subset of the system.  This becomes important with reuse-based software 

development, COTS integration, and partial exclusions such as auto-generated 

code.   

3. Measurability 

The proposed Software Development Profile Model provides a method for 

estimating the number of defective constructs in a software artifact.   The 

estimator provided in (9) can be used to estimate the number of defective 

constructs in a given module.  

 

  ( )  ∑ ,    
 - 

       (27) 

 

Where n is the total number of constructs in the module M during change set 

c.   

3.8 Software Development Profile  

We formally define Software Development profile (SDP) as the listing of all software 

constructs in the software development stream after the change set c is delivered, 

together with their reliabilities   
 . 

 

     *(    
 )            +    (28) 
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Figure 11: Software Development Profile Model - Scalability 
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Chapter 4: Case Studies 
 

In this chapter we present five case studies of software development projects that the 

author was personally involved in from 2007 – 2011.  These are real projects with 

real customers and deliveries.  We used these case studies to showcase how effective 

SDPM can be in relevant software development projects and how well it predicts 

software defect content.  The purpose of presenting these case studies is not only to 

assess the accuracy of the SDPM‘s predictions, but also to investigate the usability of 

the SDPM in real life industrial projects.  This chapter is divided into five sections, 

each detailing one case study.  We will also discuss regression based defect 

estimation methods and compare the case study results with the negative binomial 

regression model.   

We will first provide a brief background for each software development project and 

then describe step-by-step how measurements are taken and model parameters are 

estimated. Using the model parameters, we will then estimate the defect content of 

the files and identify those files that are most likely defect-prone.  Finally, we will 

compare the predicted results with the actual defects observed during the final system 

and acceptance testing. We will use the coefficient of correlation to compare the 

SPDM results with the existing regression based defect estimation methods. To 

reduce the placebo effect and to prevent files from being treated differently, the 

development and test team members were not informed of the intent or the prediction 

results of the case studies until the end of all five projects.  The predicted results were 

kept unpublished during final system and acceptance testing to allow the test team to 

perform their final system testing without bias or special attention to any identified 
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defect-prone modules.  The test cases for the final system testing were developed 

based on the overall system requirements covering not only the software changes but 

also overall system functionality.  On the other Software Integration (SWIT) test 

cases and System Integration (I&T) test cases were developed based on the 

requirements targeting only modified software functionalities. 

In response to usability analysis, we noticed that the measurements needed for 

estimating SPDM model parameters were already being collected by the program 

with the exception of the number of constructs that remain defective after each 

inspection.  To capture this information we used Chao‘s estimator to estimate the 

number of defective constructs in each change set as described in Section 3.5. The 

inspectors were asked to review the inspection artifacts independently and document 

their findings prior to the formal inspection meeting. While proper inspection 

processes requires inspectors to review the inspection package independently prior to 

the formal inspection meeting, the inspectors were not required to document findings 

at the construct level.  To reduce the impact of this extra effort on the development 

team, the inspectors were asked to submit their findings to the moderator via email 

prior to the meeting, and the moderator himself performed Chao‘s estimation [16]; 

thus the SDPM had no significant impact on the development team. The time that the 

moderator needed to perform the analysis and perform the estimation was between 

one  to three hours per inspection, depending on the number of issues observed during 

the inspection.  This number was an increase of less than 10% in the total inspection 

time. 
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To make measurements consistent across all projects, we developed the Software 

Development Profile Estimation Tool (PET) and several Perl scripts that we used on 

all projects.  We also used COTS products such as Microsoft Excel to perform 

calculations related to the reliability estimation  

. 

4.1 Comparing Test Case Results with Existing Models 

We are also interested in comparing the SDPM estimates with existing defect 

estimation models.  Due to the large number of defect estimation models that have 

been proposed over the years, a comparison among all models is unrealistic and 

outside the scope of our current research. However, since we had access to extensive 

software defect data, going back over 40 releases, it made sense to compare SDPM 

with a regression based model.  The main idea behind this comparison is to illustrate 

that, even with long historical software defect data, software development activities 

from current project can provide a better future software defect estimate.    It is 

important to mention, that because of differences between the two models, a direct 

comparison between the SDPM and other models is not possible.  First, there is a 

difference between the units of measurement among the two models.  While the 

SDPM provides an estimate for the number of defective constructs, existing models 

are based on the number of defects per file.  Second, regression based models are 

based on the defects observed during testing and operation and are unable to identify 

defects in non-executable files.  But perhaps the main difference between the two 

models is that the SDPM is a causal model for estimating the number of defective 

constructs based on the development activities and the software changes in a specific 



 

80 

project.  When evidence on software development activities or change history is 

unavailable, the SDPM assumes no defects have been introduced. 

We selected five independent software development projects from the same software 

system to evaluate the results of the SDPM and the regression based model.  Since all 

five projects shared the same history, files and operational profile, the structural 

software measurements used in the regression models will be similar among all five 

projects.  File age, file size, change history, and the number of previously observed 

defects are some examples of variables used for the regression models.  The idea 

behind this selection is that given a common history, it is expected that regression 

models would estimate similar defect prediction for a given file across all five 

projects.   

Selecting five projects within the same product presented its own challenges.  While 

all software development projects were developed by different teams, we had to 

excluding unrelated code changes during the analysis of each project.  There were 

two main reasons for excluding unrelated code changes.  First, when defects were 

observed in one project they were resolved in all active software development 

streams.  Since these defects were included in the analysis of each case study, 

counting them more than once would make the analysis invalid.  Also, when defects 

were identified during final system testing, they were assigned to the project to which 

the defect belonged.  Once a fix was identified, it was fixed in the software stream 

that it was introduced to and then delivered to all parallel streams.  Next, 

implementation of new functionalities had to be delivered to all streams with future 

release dates.  This is a common practice to ensure future software releases have all 
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the functionalities that previous releases had already implemented.  However, to keep 

the projects independent we did not count the changes due to implementation of new 

functionality in parallel development stream.   Figure 12 shows examples of defects 

and new functionality changes that were counted once in various projects.   

 

1/28/2011 - 4/5/2011

Project 1

7/6/2011

Defect Found in Project 2

6/10/2011

Project 1 Defect Found in Project 3

1/28/2011 - 4/8/2011

Project 2

3/21/2011

Implementation 
of new functionality

2/7/2011

Implementation of new functionality 
from project 1 is checked into 
project 2 but excluded 
from Project 2 Analysis

1/28/2011 - 4/10/2011

Project 3

4/18/2011

Defects Found in Project 2

3/26/2011

Defect Found in Project 2
Fixed in Project 3 But Excluded

From the Project 3 Analysis

5/10/2011

During testing of Project 3, a defect 
is found related to Project 1.   It is 
Reworked in  all active projects but
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Figure 12: Defects are counted only once in the stream they were injected 

 

To exclude unrelated code changes and defects, the script developed (shown in 

Appendix A) to capture software change history was modified to count any change 

set with multiple deliveries only once.  The logic behind the script was simple.  Any 

change set with multiple deliveries was excluded from the analysis if it had been 

delivered to a previous stream.  
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4.1.1 Poisson Regression Model Setup 

In addition to the data that we collected for our case studies, we also collected data 

for a sequence of 40 previous releases in order to compare our case study results with 

the Poisson regression model.  Poisson regression model extends linear regression in 

order to handle positive outcomes such as the number of defects.  For outcomes such 

as the number of defects per file, which is a non-negative number, it is unrealistic to 

assume that the expected value is an additive function of the explanatory variables 

[53]. The explanatory variables were selected similar to the negative binomial 

regression model proposed by Robert Bell et al. [53].  The main advantage of 

negative binomial regression is that fits data that is over-dispersed, which is normally 

observed with software defects.  SAS provides a feature to correct for over-dispersion 

called the Pearson adjustment. In SAS JMP, we enabled the Over-dispersion Test and 

Intervals feature to fit the data using Poisson distribution.  We used SAS JMP version 

8.0.1 in our case study. We used data from over 40 previous to predict which files are 

most likely to be defective in the next release. 

Suppose that we want to make predictions for release 40.  In that case, we build our 

model using data from releases 1 to 39 based on observations in the regression for 

each combination of file and release in which the file existed.  To give an example, 

suppose that File A was added to the system at release 3 and remained in the system 

beyond release 40.  File A would contribute thirty-eight observations to the 

regression, one for each release from 3 to 40.  Some predictor variables would remain 

constant across these observations (notably, Programming Language), while others 

might change (e.g., SLOC or PriorFaults).  Additional predictor variables are New, 
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Changed, Unchanged, and Age.  In this example, for Release 3, File A would have 

New=1, Age = 0, and PriorFaults=0, Changed=1, Unchanged=0.  For later releases, 

we would have New=0, but Age and PriorFaults greater or equal 0.  We define the 

Age of a file as the number of previous releases the file featured in, so Age=0 is the 

same as New=1.  Similar to the Negative Binomial Regression Model proposed by 

Bell et al. [53], we take square roots of prior defects and logarithm of SLOC to reduce 

skewness of those predictors and improve the fit. 

For the regression model, we assume that the number of observed defects in each file 

has a Poisson distribution and that its mean    , is related to the factors used as 

predictor variables.  A log linear relationship between the mean and the factors is 

specified by the log link function.  The log link function ensures that the mean 

number of observed defects predicted from the fitted model is positive.  

Mathematically we write this relationship as:   

   (  )                      

The    are the regression coefficients, and the    are the predictor variables. Given 

this setup, we estimate the mean value of the number of defects by: 

   (   )(     )(     )  (     ) 

 

4.2 Software Development Profile Estimation Tool (PET) 

In order to perform the estimation consistently across all projects, we developed the 

Software Development Profile Estimation Tool (PET) shown in Figure 13. 
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Figure 13: PET – SDPM Profile Estimation Tool 

 

Using the PET tool, we are able to analyze software change history, generate software 

change matrices, assign reliability factors to software constructs, and ultimately 

estimate the number of defective constructs consistently across all projects.  The 

process has two steps.  We first run the script described in Appendix A on each 

development stream to generate a directory structure that contains software activities 

unique to each project.  The Perl script extracts software activities automatically from 

the CM tool.  The output of the script is used by the PET tool for further analysis. 

In the PET tool we first select the location containing the directory structure created 

by the Perl script. The tool compares the content of each change set and assigns a 
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change set ‗CS‘ code to each construct, based on the change set during which it is 

modified.  Since constructs can be modified in more than one change set, we use the 

following binary convention to capture this information: 

 

   ∑  ( )     
        (29) 

Where   is the change set number and I(i) is the usual indicator function defined as: 

 

 ( )  {
                                              
           

 

 

Table 2: Examples of CS Codes 

Binary Encoding CS Code Touched in Change sets 

0×27+0×26+0×25+0×24+0×23+0×22+1×21 2 1 

0×27+0×26+0×25+0×24+0×23+1×22+0×21 4 2 

0×27+0×26+0×25+0×24+0×23+1×22+1×21 6 1 and 2 

0×27+0×26+0×25+0×24+1×23+1×22+1×21 14 1, 2 and 3 

0×27+0×26+0×25+1×24+1×23+1×22+1×21 30 1 through 4 

0×27+0×26+1×25+1×24+1×23+1×22+1×21 62 1 through 5 

1×27+1×26+1×25+1×24+1×23+1×22+1×21 254 1 through 7 

 

Table 2 shows some examples of the change set ‗CS‘ codes.  PET tool uses the CS-

code to generate the Change Matrix shown below. 
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Figure 14: PET - Change Matrix 

The information from the Change History Matrix is used to estimate the model 

parameters.  While model parameter and construct reliabilities are calculated using 

Microsoft Excel, the PET tool is used to assign the probabilities to the software 

constructs.  Once construct reliabilities are captured, the PET tool is used to display 

construct reliabilities and estimate the defect content of each file.    Figure 15 shows 

how this information is represented. The x-axis of the graph represents the index of 

the constructs, while the y-axis represents the probability that the construct is defect-

prone.  Files corresponding to the constructs that are displayed in the graph are shown 

on the right side sorted by estimated number of defects in descending order.  The user 

is able to zoom in by selecting a specific area of the graph to view the corresponding 

files.    
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Figure 15: PET – Estimated Number of Defective Constructs 

 

The PET tool was also used to capture the changes during final system testing.  This 

information was used to validate the SDPM estimation.  We made the assumption that 

any change made to a file during the final system and acceptance testing phase was 

due to defect resolution.  This is generally a realistic assumption, since no related 

development activities occur in the software stream during final system and 

acceptance testing.  By selecting the ―Actual‖ option under the Measurement Type, 

the PET tool recursively counts the constructs modified in each file during the final 

system testing phase and generates a report.   

4.3 Case Study 1: CCD 693- RRACS Interface 

4.3.1 Software Project Background and History 

For this case study, we selected a software development project from a maintenance 

contract.  The duration of the project was 12 months, from July 2009 to August 2010.  

The purpose of this case study is to validate the Software Development Profile Model 

by demonstrating its use as a causal model for showing the causal relationship 
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between change history, the software development activities, and the defect-

proneness of files. The project started with the Authorization to Proceed (ATP) July 

31, 2009, followed by analysis and planning.  The coding phase started on January 

14, 2010 and finished as scheduled on March 16, 2010.  The activities during the 

development phase directly related to this project consisted of the initial coding 

(including unit testing), inspection of the change sets, inspection defects rework, and 

software integration testing (SWIT) activities.  After the development phase, software 

changes were handed to an independent integration and testing (I&T) team for 

validation. The handoff occurred on time on March 16, 2010.  After fourteen days, 

the I&T phase was completed on March 30, 2010.  During the I&T phase, 

independent test engineers performed in-depth tests of the software based on the test 

plan developed from the new software requirements provided by the customer. 

Four I&T defects were identified during the formal I&T phase, documented and 

assigned to the development team for resolution.  After all I&T defects were 

reworked and code changes were complete, the changes were inspected, and 

delivered to the development stream for a final build.  The final build was conducted 

and the final version of the software was ready for complete final system testing on 

April 1
st
 final system testing was performed to ensure that no additional defects were 

introduced during the repair process. The regression was conducted systematically 

based on the plan developed by the test team to validate common software functions. 

The duration of the final system testing lasted from April 2, 2010 until April 26, 

2010.  
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Figure 16 shows the three software development phases and major activities during 

each of the three development phases. 

 

17.10 Development Stream
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Figure 16: Software Development Activities 

4.3.2 Case Study Measurements 

The development stream was created on February 16 to allow developers to begin 

development activities and check-in their software updates in the configuration 

management (CM) tool.  On February 17, 2010 the first set of changes was made and 

delivered to the stream.  A formal inspection meeting was scheduled for February 22, 

2010.  The inspection package contained 1152 SLOC changes. Once the inspection 
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package was created, it was sent to the inspectors three days prior to the formal 

meeting on Feb 22, 2010.  Each inspector was asked to follow the modified 

inspection process by reviewing the changes independently and submitting any 

findings prior to formal inspection by the moderator. During the inspection meeting 

defective constructs were reviewed, invalid findings were eliminated, and finally 

twenty-four constructs (SLOCs) were identified as defective (i=24).  Using the 

overlap between inspectors, we estimate the number of remaining constructs using the 

capture-recapture model proposed by Chao [16].  Based on the independent review of 

the code changes by four independent inspectors, a total of eighty-five defective 

SLOCs were estimated (N=85).  

After the formal inspection, the findings were handed to the development team for 

rework.  While analyzing the software development activities, we noticed that 

developers occasionally combined unrelated code changes under the same activity to 

save time.  While this is not recommended and uncommon, we were able to identify 

such deliveries and exclude them from the analysis. 

The code updates addressing inspection defects were delivered to the stream on 

February 22, 2010.  After the inspection process and rework, software integration 

testing (SWIT) started.  During SWIT testing, additional defects were identified 

resulting in code changes which were delivered to the development stream on 

February 24, March 3 and March 16, 2010.  After the SWIT phase, the software build 

was handed to I&T for system integration testing.  The I&T team found two 

additional defects which were both resolved on March 24, 2010.  The I&T phase 
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concluded on March 30, 2010 without any additional findings.  After the I&T phase 

the final software build was conducted and ready for final system testing. 

In the next section we discuss how the above measurements of the software changes 

history obtained from the CM tool and the sequence of software development 

activities can be used as an input to the Software Development Profile Model for 

estimating the defect content of software artifacts. 

4.3.3 Model Parameter Estimation 

In this section we discuss how model parameters can be calculated based on the 

measurements taken for each change set.  Table 3 shows the size of the software 

changes made in the development stream.  There are eight columns and rows 

representing the size of change in eight change sets.  Each column represents the 

number of constructs that are touched in each change set.  In each column, the first 

entry represents the number of constructs that were modified or created during this 

project, followed by the number of constructs that were touched again in subsequent 

change sets.  Column 1, for example, shows the change history of constructs that 

were initially created or modified during change set 1.  All constructs that were 

implemented in change set 1 are divided into 1093 SLOCs that were only changed in 

change set 1, twenty-nine modified in change sets 1 and 2; two changed in change 

sets 1 and 3; five modified in change sets 1, 2 and 3; four modified again in change 

set 6; eleven modified in change sets 1 and 7; and finally eight SLOCs modified in 

change sets 1, 2 and 7.  Therefore, the total number of constructs that were modified 

in change set 1 is 1152.  Columns 2 through 8 show the change history for constructs 

that were implemented during each change sets respectively.   
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Table 3: Number of Constructs Modified during Each Change Set 

 

 

Using the data obtained from the software change history, we now estimate the model 

parameters for each change set based on the SDPM described in Section 3.  Table 4 

shows the parameter estimations for all change sets. Each change set has only two 

parameters p and q, because testing activities occurred in separate change sets.   

 

Table 4: SDPM Parameter Estimation 

Change 
Set 

Type Size 
C 
/ 
R 

Est. 
Defects 

SLOC 

Observed 
SLOCs 

q(i) p(i) r(i) 

48746 Dev 1152 Y 85.00 24 0.2824 0.9262 0.9471 

48746 Inspection 197 N 14.54 2 0.0265 0.9262 0.9282 

48782 SWIT 51 N 3.76 0 0.0000 0.9262 0.9262 

48891 SWIT 33 N 2.43 0 0.0000 0.9262 0.9262 

49008 SWIT 1 N 0.07 4 0.0501 0.9262 0.9299 

49010 SWIT 48 N 3.54 15 0.1890 0.9262 0.9402 

49038 I&T 41 N 3.03 2 0.0297 0.9262 0.9284 

49039 I&T 143 N 10.55 0 0.0000 0.9262 0.9262 

 

In Table 4 the first column represents the activity number.  The second column shows 

the type of change and the third shows the size of change set.  Column 4 is used to 
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indicate if capture-recapture method was used to estimate the defect content of the 

change set.  While it is required to inspect every software change, it is unrealistic to 

conduct a formal inspection for small code changes.  During this software 

development project, the inspection process allowed small changes to be reviewed by 

the inspectors without holding a formal inspection meeting.  For change sets in which 

no capture-recapture was performed, we used the defect injection probability ―p” 

estimate from change set 1. Column 5 shows the estimated SLOCs that became 

defective in each change set.  Column 6 shows the number of defective SLOCs that 

were observed during inspection or testing of each change set.  It is further assumed 

that all defective SLOCs observed are reworked in the next change set.  Based on 

these estimates change set reliabilities are estimated which are shown in Column 9. 

Since defective constructs can be observed and reworked in the subsequent change 

sets, we need to use the software development process to estimate the probability of 

each construct being defect free.  As discussed by the authors [37], the software 

development process should not be ignored when modeling software defect content.  

Modeling the development process is important to software organizations because it 

allows software managers to adjust development activities and improve the outcome 

of the project.   

In this case study each change set consists of a coding followed by a defect discovery 

activity.  After the first change set, the initial implementation of the new functionality 

is followed by the inspection process.  The next change, which consists of coding 

activity due to inspection rework and possible additional changes, is followed by the 

SWIT testing activity.  The software development activities in project 1 are modeled 
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using the BDD shown in Figure 17.  Each coding activity is followed by a defect 

discovery activity.  Activities Coding1 through Coding8 represent the coding 

activities.  The edges             represent the probability that a given construct 

that is modified has not been injected with a defect.  Similarly,        

          are the defect injection probabilities, which are the probabilities that a 

given modified construct is injected with a defect.  The defect discovery activities 

which follow coding are labeled Insp, SWIT and I&T.  Edges             represent 

the probability that a defective construct from previous coding activities is observed 

during the defect discovery.  Based on the Binary Decision Diagram, we can estimate 

the probability of a given construct being defective according to Equation 20.  

Construct reliabilities are shown in Table 6.  Column 1 represents the change set 

codes according to Equation 22.  Column 2 shows the number of SLOCs modified in 

various change sets.  Construct reliabilities are estimated based on the change sets 

during which constructs are modified, as described in Equation 20. According to 

Table 6, the probability of a given construct implemented only in change set 1 to be 

defective is estimated as   
         .  In change set 2, twenty-nine SLOCs 

originally modified in change set 1 were reworked.  Equation 20 states that for these 

constructs to be correct, they have to be implemented correctly in change sets 1 and 2, 

or, if they became defective in change set 1, they must have been observed during 

inspection and correctly reworked in change set 2.  Under this assumption, the 

probability of these constructs being correct is   
            .  All other construct 

reliabilities are estimated similarly. 
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As described in Section 3.6.2, the SDPM allows for our state of knowledge to be used 

to improve the model estimates by updating model parameters when new information 

becomes available.  The new information can either come based on expert judgment 

or additional information obtained outside the project. Once model parameters are 

estimated, they can be updated using Bayesian inference.  We asked the Technical 

Project Manager (TPM) to provide us with his judgment on the quality of the changes 

that were made during the coding phase.  Based on the requirements volatility and the 

skill level of the developer that worked on specific change sets, we updated the values 

of       which also resulted in new estimates for         We used the updated 

parameters and calculated new construct reliability estimates which are shown in 

Table 5. 

 

Table 5: Parameter Updates Based on External Factors 

Change 
Set 

Type Size 
C 
/ 
R 

Est. 
Defective 

SLOC 

Observed 
Defective 

SLOCs 
q’(i) p’(i) r’(i) 

48746 Coding 1152 Y 85.00 24 0.2824 0.9262 0.9471 

48746 Inspection 197 N 14.54 2 0.0265 0.9262 0.9282 

48782 SWIT 51 N 3.76 0 0.0000 0.9262 0.9262 

48891 SWIT 33 N 2.43 0 0.0000 0.9262 0.9262 

49008 SWIT 1 N 0.07 4 0.0501 0.9262 0.9299 

49010 SWIT 48 N 3.54 15 0.1890 0.9262 0.9402 

49038 I&T 41 N 20.5 2 0.0236 0.5000 0.5118 

49039 I&T 143 N 1.43 0 0.0000 0.9900 0.9900 

 

   

After estimating the reliability of all software constructs, we used the defect content 

estimator described in Section 3.3 to estimate the number of defective constructs in 
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files modified in the development stream.  The list was then sorted in descending 

order based on the estimated number of defective constructs in each file.  Table 7 

shows the defect-prone files in descending order.  The first column shows the file 

names, the second shows the magnitude of change in each file in SLOCs.  The third 

column represents the estimated number of defective SLOCs based on the SDPM 

estimator.  In the next section we will compare the SDPM estimation with files that 

were modified during final system testing in order to assess the accuracy of the 

findings. 
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Figure 17: CCD 693 Binary Decision Diagram 
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Table 6: Construct Reliability Estimations 

CS Size SDPM Model R(i) R’(i) 

0002 1093 r(1) r(1) 0.9470 0.9471 

0004 155 r(2) r(2) 0.9281 0.9282 

0006 29 r(1,2) r1*p2+(1-r1)*q1*p2 0.8910 0.8910 

0008 44 r(3) r(3) 0.9262 0.9262 

0010 2 r(1,3) r1*p3+(1-r1)*q2*p3 0.8784 0.8785 

0014 5 r(1,2,3) r(1,2)*p3+(1-r(1,2))*q2*p3 0.8279 0.8280 

0016 33 r(4) r(4) 0.9262 0.9262 

0032 1 r(5) r(5) 0.9299 0.9299 

0064 44 r(6) r(6) 0.9401 0.9402 

0066 4 r(1,6) r1*p6+(1-r1)*q5*p6 0.8796 0.8796 

0128 22 r(7) r(7) 0.9284 0.5118 

0130 11 r(1,7) r1*p7+(1-r1)*q6*p7 0.8864 0.4785 

0134 8 r(1,2,7) r(1,2)*p7+(1-r(1,2))*q6*p7 0.8444 0.4558 

0256 143 r(8) r(8) 0.9262 0.9900 

 

 

4.3.4 Case Study Results 

In the previous section we used a real life software development project and 

described how SDPM was used as a causal model to predict the number of defective 

constructs in files modified during the software development process. 

In order to determine the accuracy of the SDPM estimation, we examined files 

modified during the final system testing phase.  We made the assumption that any 

change made to files during the final system testing phase is due to a defect 

resolution.  This is generally a fair assumption since no development activities occur 

in the software stream during final system testing.  The only exceptions are software 

updates due to changes in parallel software streams, which as described previously, 

were not included in this analysis. 
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Nine files were modified during final system testing as the result of defects found 

related to the current software development project. By comparing the files that were 

modified during final system testing with files identified as defect-prone by the 

SDPM, we observed that all nine modified files were on the list of defect-prone files.  

In addition, we used the SLOCCO tool to further investigate the number of SLOCs 

that were modified during final system testing with the number of defective SLOC 

estimated by the SDPM.   SLOCCO is a custom tool that is used to compare two 

source files, and calculating the SLOC volatility between the two versions. Column 6 

in Table 7 shows the number of SLOCs that were modified during final system 

testing for each file.  Column 5 shows the number of defective SLOCs estimated by 

SDPM.  We noticed that seven out of nine files modified during final system testing 

were on top of the list of defect-prone files estimated by the SDPM.     

 

Table 7: Estimated Number of Defective SLOCs 

File Name 
Size 

(SLOC) 
 Churn 
(SLOC) 

Est. # of 
Defective 
SLOCs per 

File (Updated 
Parameters) 

Est. # of 
Defective 
SLOCs per 
File (Initial 

Parameters) 

Observed 
SLOC changes 
in Files during 
final system 

testing 

\rp\RRACS\RRACS\RRACS_Generator.cs 270 270 12.6373 16.2737 15 

\rp\RRACS\RRACS\Deposit.cs 136 136 17.8235 8.8629 20 

\rp\RRACS\RRACS\InputRecords\RemittanceTra
nsactionRecord.cs 144 144 6.2928 8.5536 5 

\rp\RRACS\RRACS\InventoryDB.cs 144 144 6.2928 8.5536 6 

\rp\RRACS\RRACS\TaxClassMap.cs 143 143 1.4014 8.4942 1 

\rp\RRACS\RRACS\OutputRecords\DepositTicke
tRecord.cs 124 124 5.4188 7.3656 3 

\rp\RRACS\RRACS\DepositList.cs 98 98 4.2826 5.8212 5 

\rp\RRACS\RRACS\InputRecords\BlockHeaderR
ecord.cs 78 78 3.4086 4.6332 #N/A 

\cs\cs_Create_Interchange_Data\cs_Create_Int
erchange_Data.cpp 693 72 3.3157 4.3327 #N/A 

\rp\RRACS\RRACS\OutputRecords\JournalSum
maryRecord.cs 62 62 2.7094 3.6828 1 

\rp\RRACS\RRACS\OutputRecords\FileIDJournal
Record.cs 55 55 2.4035 3.267 #N/A 
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\rp\RRACS\RRACS\DLNRecord.cs 50 50 2.185 2.97 #N/A 

\rp\rp_perform_EOD_export\rp_EOD_tapes.cp
p 1531 47 2.0539 2.7918 #N/A 

\rp\RRACS\RRACS\InputRecords\CheckRecord.c
s 46 46 2.0102 2.7324 #N/A 

\rp\RRACS\RRACS\OutputRecords\OutputRecor
d.cs 39 39 1.7043 2.3166 1 

\rp\RRACS\RRACS\InputRecords\BlockTrailerRe
cord.cs 35 35 1.5295 2.079 #N/A 

\rp\RRACS\RRACS\InputRecords\InputRecord.c
s 33 33 1.4421 1.9602 #N/A 

\gen\include\cs_ftp_common.h 339 30 1.782 1.782 #N/A 

\rp\RRACS\RRACS\Properties\AssemblyInfo.cs 15 15 0.6555 0.891 #N/A 

\gen\include\cs_types_pvals.h 216 14 0.6118 0.8316 #N/A 

\rp\RRACS\RRACS\Properties\Settings.Designer
.cs 12 12 0.5244 0.7128 #N/A 

\rp\RRACS\RRACS\Settings.cs 10 10 0.437 0.594 #N/A 

\cs\cs_store_ops\cs_store_ops.cpp 1041 6 0.2622 0.3564 #N/A 

\gen\include\cs_export.h 131 4 0.1748 0.2376 #N/A 

\cs\cs_reexport_inventory\cs_reexport_invent
ory.cpp 689 3 0.1625 0.1782 #N/A 

\cs\cs_Tape_Tools\cs_determine_export_medi
a.cpp 244 3 0.1311 0.1782 #N/A 

\gen\include\rp_create_EOD_volume_set.h 80 3 0.1311 0.1782 #N/A 

\gen\include\cs_types_common.h 335 2 0.0874 0.1188 #N/A 

\rp\rp_perform_EOD_export\rp_perform_EOD
_export.cpp 429 2 0.0874 0.1188 #N/A 

\rp\rp_perform_EOD_export\rp_transport_file.
h 160 2 0.0874 0.1188 #N/A 

\cm\isrp_build_gui.pl 1446 1 0.0594 0.0594 #N/A 

\gen\include\cs_common.h 37 1 0.0594 0.0594 #N/A 

\rp\rp_perform_EOD_export\rp_EOD_tapes_pr
ivate.h 113 1 0.0437 0.0594 #N/A 

 

We used the coefficient of correlation to evaluate the performance of the SDPM 

which is shown in Table 8. 
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Table 8: Coefficient of Correlation – Case Study 1 - (SDPM model) 

  

Est. # of 
Defective 

SLOCs 
(Initial 

Estimate) 

Est. # of 
Defective 

SLOCs 
(Updated 

Parameters) 

Observed 
SLOC 

changes 
during 
final 

system 
testing 

Est. # of Defective SLOCs (Initial 
Estimate) 1 

  Est. # of Defective SLOCs (Updated 
Parameters) 0.82828 1 

 Observed SLOC changes during final 
system testing 0.64840 0.98597 1 

 

While the initial estimates suggest a correlation between the estimated number of 

defective constructs and the observed SLOC changes, the updated parameters shows a 

stronger correlation.    

4.3.5 Poisson Regression Model Results 

We used defect data from releases 10.4 to 17.9 to estimate the number of defects in 

Release 17.10 files.  To fit the data, we used the Poisson regression model as 

described in Section 4.1.1.  The predictor variables used in this case study were 

logarithm of the SLOCs, square root of prior defects, age, and file status (New, 

Changed, and Unchanged).  Table 9 shows the regression coefficients.    

Table 9: Coefficient of Regression – Case Study 1 - (Poisson Regression) 

Coefficient Estimate 
Std 

Error 
L-R 

ChiSquare 
Prob>ChiSq 

Lower 
CL 

Upper 
CL 

Intercept -0.690 0.071 98.174 3.83E-23 -0.878 -0.551 

Log(SLOC) 0.181 0.015 148.714 3.31E-34 0.152 0.210 

Sqrt(PriorDef) -0.442 0.027 276.596 4.14E-62 -0.495 -0.388 

Age -0.106 0.005 696.348 1.86E-153 -0.116 -0.096 

New[0] -1.758 0.038 2863.009 0.00E+00 -1.834 -1.684 

Changed[0] -1.970 0.034 4486.093 0.00E+00 -2.038 -1.904 

Unchanged[0] 0 . . . . . 
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Using the coefficient of regression we estimated the number of defects in Release 

17.10 and sorted them in descending order to identify the defect prone files.  Table 10 

below shows the files in descending order based on Poisson model estimates.  

Column two shows the actual number of defects observed during software final 

system testing.  By comparing the number of observed defects with the raking 

assigned by Poisson model, we can see that the model performs well in identifying 

defect prone files.   

 

Table 10: Estimated Number of Defects (Poisson Model) 

File Name Defects 

Status 
Changed, 

Unchanged 
New 

Age 
Log 

(SLOC) 

Sqrt 
(Prior 

Defects) 

Poisson 
Model 

\RRACS_Generator.cs 2 0 0 1 0 2.111 0.000 0.126653 

\RemittanceTransactionRecord.cs 1 0 0 1 0 2.037 0.000 0.124987 

\DepositTicketRecord.cs 3 0 0 1 0 1.978 0.000 0.123644 

\InventoryDB.cs 1 0 0 1 0 1.672 0.000 0.116993 

\Deposit.cs 3 0 0 1 0 1.633 0.000 0.116178 

\DepositList.cs 2 0 0 1 0 1.447 0.000 0.112327 

. \JournalSummaryRecord.cs 1 0 0 1 0 1.431 0.000 0.112006 

\de_DEDatastoreBuild.sql NA 0 0 1 0 1.322 0.000 0.109816 

\OutputRecord.cs 1 0 0 1 0 0.845 0.000 0.100734 

\de_Programs.bat NA 1 0 0 1 2.083 0.000 0.091729 

\drop_unauthorized_dbas.sql 
NA 

0 0 1 0 0.000 0.000 0.08645 

\de_mod13212fn.vb 
NA 

0 0 1 0 1.949 1.000 0.079104 

\BlockHeaderRecord.cs 
NA 

0 0 1 0 1.716 1.000 0.075833 

\FileIDJournalRecord.cs 
NA 

0 0 1 0 1.380 1.000 0.071363 

\DLNRecord.cs 
NA 

0 0 1 0 1.362 1.000 0.071124 

\CheckRecord.cs 
NA 

0 0 1 0 1.301 1.000 0.070347 

\BlockTrailerRecord.cs 
NA 

0 0 1 0 0.903 1.000 0.06546 

\InputRecord.cs 
NA 

0 0 1 0 0.845 1.000 0.064777 

\AssemblyInfo.cs 
NA 

0 0 1 0 0.477 1.000 0.060605 

\Settings.Designer.cs 
NA 

0 0 1 0 0.301 1.000 0.058704 

\de_mod13200fn.vb 
NA 

1 0 0 8 2.647 1.000 0.031146 

\de_mod11214fn.vb 
NA 

1 0 0 8 1.708 1.000 0.026276 
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\de_mod11204fn.vb 
NA 

1 0 0 8 1.708 1.000 0.026276 

\de_clssection03.vb 
NA 

1 0 0 8 1.591 1.000 0.025728 

\de_clssection03.vb 
NA 

1 0 0 8 1.580 1.000 0.025675 

\de_extractZipCodeCityStateDB.bat 
NA 

1 0 0 14 2.444 0.000 0.024742 

\de_DEDatastoreBuild.sql 
NA 

1 0 0 14 1.322 0.000 0.020196 

\de_mod11212fn.vb 
NA 

1 0 0 9 1.708 1.414 0.019687 

\de_clssection03.vb 
NA 

1 0 0 9 1.568 1.414 0.019196 

\de_checkZipCodeCityStateDB.bat 
NA 

1 0 0 14 1.869 1.000 0.014339 

\de_mod11200fn.vb 
NA 

1 0 0 14 1.708 1.000 0.013925 

\de.bat 
NA 

1 0 0 14 1.944 1.414 0.012106 

\de_CreateMessageLoader.bat 
NA 

1 0 0 14 1.875 1.414 0.011955 

\cs_format_block_analyze.cpp 
NA 

1 0 0 23 2.356 0.000 0.009395 

\sp_eop_global.h 1 1 0 0 23 2.057 0.000 0.0089 

\cs_captured_data_store.h 
NA 

1 0 0 23 1.833 0.000 0.008546 

\de_clssection03.vb 
NA 

1 0 0 14 1.556 2.449 0.007145 

\cs_read_completed_key_entry_da
ta.cpp 

NA 
1 0 0 23 2.093 1.000 0.005761 

\rp_EOD_tapes_private.h 
NA 

1 0 0 23 1.556 1.000 0.005227 

\rp_create_EOD_volume_set.h 
NA 

1 0 0 23 1.415 1.000 0.005095 

\sp_view_ke_data.cpp 1 1 0 0 24 2.427 1.414 0.004584 

\sp_eop_ke3_processing.cpp 1 1 0 0 23 2.794 2.000 0.004205 

\de_clsbsblockdata.vb NA 1 0 0 14 3.113 4.359 0.004076 

\sp_eopinit.cpp 1 1 0 0 31 2.301 0.000 0.003989 

\cs_format_block.cpp 
NA 

1 0 0 25 2.576 2.000 0.003272 

\cs_types_common.h 
NA 

1 0 0 32 2.413 1.000 0.002355 

\cs_types_pvals.h 
NA 

1 0 0 32 2.248 1.000 0.002286 

.\cm\isrp_build_gui.pl 1 1 0 0 23 2.818 3.464 0.002213 

\cs_SA_Dialog.rc 
NA 

1 0 0 32 3.028 1.414 0.002192 

\rp_transport_file.h 
NA 

1 0 0 33 2.021 1.000 0.001973 

\ReportAPI.cpp 
NA 

1 0 0 31 2.938 2.000 0.001851 

\cs_common.h 
NA 

1 0 0 32 1.176 1.414 0.001568 

\cs_determine_export_media.cpp 
NA 

1 0 0 31 1.886 2.000 0.00153 

\cs_export.h 
NA 

1 0 0 35 1.531 1.000 0.001462 

\cs_store_ops.cpp 
NA 

1 0 0 32 2.612 2.236 0.001414 

\rp_EOD_tapes.cpp 
NA 

1 0 0 33 2.623 2.236 0.001275 

\cs_ftp_common.h 
NA 

1 0 0 31 2.230 2.646 0.001225 

\rp_perform_EOD_export.cpp 
NA 

1 0 0 32 2.072 2.449 0.001167 

\cs_reexport_inventory.cpp 
NA 

1 0 0 32 2.465 2.646 0.00115 

\sp_release_block.cpp 
NA 

1 0 0 33 3.018 2.828 0.001054 

\cs_Create_Interchange_Data.cpp 
NA 

1 0 0 32 2.436 3.000 0.000978 
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Similar to the SPDM results, we used the coefficient of correlation to evaluate the 

performance of the Poisson regression.  By comparing the coefficient of correlation 

between the SDPM and Poisson model, we noticed that the estimate provided by the 

SDPM is more correlated with the defects observed during final system testing than 

the Poisson model.  

  

Table 11: Coefficient of Correlation (Poisson Regression) 

  

Estimated 
Number 

of Defects 
Observed 
Defects 

Estimated Number of Defects 1 
 Observed Defects 0.520645 1 
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Figure 18: SDPM - Est. # of Defective SLOC vs. Observed Number of Defective SLOCs – DIS/CS 17.10 
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4.4 Case Study 2: CCD 762 – IMF (health care) Changes for PY 2011 

4.4.1 Software Project Background and History 

For this case study we selected a software development project that was intended to 

deliver three new functionalities as part of the DIS/CS 18.4 release.    Figure 19 

shows the timeline of software development activities for this project.  The 

development phase started on August 26, 2010 and ended on September 20, 2010.  

During the development phase code changes were delivered in three change sets.  The 

three change sets were also used to deliver rework needed to address observed 

inspection and SWIT issues.  The three major enhancements delivered with this 

release were:  

 CCD 762 – IMF (health care) Changes for PY 2011  

o Changes to PRP‟s 15 and 31  

 CCD 764 – OLG Changes for PY 2011  

o Update program numbers referenced for two OLG programs including PRP 4 

and 5  

 CCD 773 – PY 2011 HIRE Changes II  

o Legislative 2011 tax year changes including PRP 45 and 54  

 

18.4 Development Stream

10/4

Prod00050368: 
Prod00050357: 
Add Hyphens 
Back Into EIN Fields

9/9

Prod00050233: 
Prod00050232: 
CCD 764 – 
OLG Changes for PY 2011

10/6

Prod00050414: 
Prod00050283: 
Program 38620, sec. 01

8/26 - 9/20

Development & SWIT Phase

9/20 - 10/1

I&T

9/15

Prod00050274: 
Prod00050272: 
CCD762 Drop 1

9/6

Prod00050215: 
Prod00050214: 
CCD 773 – 
PY 2011 HIRE Changes II

9/28

Prod00050326: 
Prod00050325:
CCD 762 - Program 47110
and clone programs are 
not included in 
build 18.4.0903

9/30

Prod00050355: 
Prod00050353: 
CCD 762 - Pgm 44400,
sect 01 - new filling field 
is in the wrong location 
in the output file

10/7

Delivery to
SAT

10/1 - 10/6

Final System Testing

 
Figure 19: CCD 762 Timeline and Development Activities 
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4.4.2 Case Study Measurements 

In the previous section, we provided a timeline of the software development activities 

related to the DIS/CS 18.4 software release.  On September 6, 2010 the first set of 

changes were implemented and delivered to the stream.  A formal inspection was held 

and inspection findings, along with the implementation of the second set of 

enhancements, were delivered on September 9, 2010.  Out of 268 SLOC changes 

delivered in the first change set, twenty-nine had to be reworked due to issues 

observed during inspection. The largest code churn was delivered with the 

implementation of CCD 762 Drop1 under change set 3, with 2574 SLOC changes.  

Code changes were inspected but no major issues were observed during the 

inspection.  After development was complete and code changes were delivered to the 

stream, the software build was handed to I&T for integration and testing.  The I&T 

team identified two issues which were reworked and delivered in change sets 4 and 5.  

Figure 20 shows the software change matrix for the DIS/CS 18.4 release. 

 

 
Figure 20: Software Change Matrix – DIC/CS 18.4 release 



 

108 

4.4.3 Model Parameter Estimation 

In this section, we discuss how model parameters are calculated based on the 

measurements taken in each change set. Table 12 shows the summary of the 

measurements taken for each change set along with the estimates of the model 

parameters. Once model parameters           are estimated, we calculate the change 

set reliabilities, shown in Column 8 of Table 12. Since software constructs can be 

modified in more than one change set, we use the Binary Decision Diagram shown in 

Figure 21 to estimate construct reliabilities.   

 

 

 

 

 

Table 12: Parameter Estimation for DIS/CS 18.4 

Change 
Set 

Size 
Cap-

Recap 

(2) Est. 
New 

Defects 

(1)Observed 
(Modified/ 

Fixed) 
p(i) q(i) r(i) 

50215 268 Y 48 29 0.8209 0.6042 0.90972 

50233 71 N 13 3 0.8209 0.0813 0.83285 

50274 2655 N 476 39 0.8209 0.0762 0.83210 

50326 94 N 17 23 0.8209 0.0461 0.82768 

50355 17 N 3 1 0.8209 0.0020 0.82119 

 



 

109 

Coding

1

Insp

q1

p1

1-p1

0

1-q1

Coding

2

p2

1

1-p2

Prod00050215: 

Prod00050214: CCD 773 - 

PY 2011 HIRE Changes II

Prod00050233: 
Prod00050232: CCD 764 - 
OLG Changes for PY 2011

Insp

Coding

3

q2

1-q2

p3

1-p3

Prod00050274: 

Prod00050272: CCD762 
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Coding

4

Coding

5

I&T

I&T

1-q3

q3

1-p4

q4

p4

p5

1-q4

Prod00050326: Prod00050325:CCD 

762 - Program 47110 and clone 

programs are not included in build 

18.4.0903

Prod00050355: Prod00050353: CCD 762 

- Pgm 44400, sect 01 - new filling field is 

in the wrong location in the output file

268 SLOC 

Changes

71 New 

SLOCs 

2574 New 

SLOCs

1 New 

SLOCs 

2 New 

SLOCs

1-p5

 

Figure 21: CCD 762 Binary Decision Diagram 

Table 13: Construct Reliability Estimations – DIS/CS 18.4 

Change 
Sets 

Churn Probability Probability 

0002 268 r(1) r(1) 0.9097 

0004 71 r(2) r(2) 0.8328 

0008 2547 r(3) r(3) 0.8320 

0016 1 r(4) r(4) 0.8276 

0024 93 r(3,4) r3*p4+(1-r3)*q3*p4 0.6934 

0032 2 r(5) r(5) 0.8212 

0040 15 r(3,5) r3*p5+(1-r3)*q4*p5 0.6893 
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After estimating the reliability of all software constructs, we used the defect content 

estimator described in Section 3.3 to estimate the number of defective constructs in 

files modified in the development stream.  The list was then sorted in descending 

order based on the estimated number of defective constructs in each file.  In the next 

section we discuss the results of the case study by comparing the SDPM estimates 

with the actual SLOC changes during the final system testing. 

4.4.4 Case Study Results 

In this section, we compare the number of defective constructs estimated by SDPM 

with the number of constructs modified in each file during final system testing of the 

DIS/CS 18.4 release. Table 14 shows the defect-prone files in descending order.  The 

first column shows the file names, the second shows the file size, and the third gives 

the magnitude of change in each file in SLOCs.  The fourth and fifth columns 

represent the estimated number of defective SLOCs based on the SDPM estimator 

and the observed SLOC changes during final system testing respectively.  We use the 

coefficient of correlation to assess the performance of the SDPM with the observed 

number of defective SLOCs in each file.  We also use the coefficient of correlation to 

show that the SDPM provides a better estimate than change alone. 

 

Table 14: DIS/CS 18.4 Case Study Results 

File Name SLOC  Churn 
Est. # of 
Defects 
Per File 

Observed 
Defects 

de_100000.PCF 8793 964 174.4283 93 

de_46125.PCF 936 475 79.61 #N/A 

de_46121.PCF 1582 391 65.5316 #N/A 

de_43110.PCF 1848 391 65.5316 #N/A 

de_44400.PCF 430 127 23.1377 13 
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de_11502.PCF 438 201 18.1503 #N/A 

de_47110.PCF 450 75 12.57 #N/A 

de_11640.PCF 512 54 9.0288 2 

de_enumcommonsectionfieldnumbers.vb 1608 52 8.7152 #N/A 

de_mod46120fn.vb 248 41 6.8716 #N/A 

de_mod43110fn.vb 291 39 6.5364 #N/A 

de_11300.PCF 412 64 5.7792 2 

de_11650.pcf 232 17 2.8424 2 

de_mod46125fn.vb 197 16 2.6816 #N/A 

de_clsform8919.vb 15 13 2.1788 #N/A 

de_clsform8888.vb 114 11 1.8436 #N/A 

de_clssection04.vb 42 9 1.6733 3 

de_clssection04.vb 49 9 1.6509 2 

de_mod44400fn.vb 95 9 1.5084 #N/A 

de_clssection05.vb 38 7 1.1732 #N/A 

de_clssection05.vb 42 7 1.1732 #N/A 

de_mod47110fn.vb 76 6 1.0056 #N/A 

de_cls46120.vb 169 4 0.6704 #N/A 

de_cls43110.vb 274 3 0.5028 #N/A 

de_clsForm8941.vb 3 3 0.5028 #N/A 

de_mod11300fn.vb 73 2 0.1806 #N/A 

de_clssection03.vb 30 1 0.1721 1 

de_clstaxpr15.vb 80 1 0.1676 #N/A 

de_clstaxpr31.vb 54 1 0.1676 #N/A 

de_clssection01.vb 160 1 0.1676 #N/A 

de_clssection03.vb 35 1 0.1676 #N/A 

de_clssection03.vb 38 1 0.1676 #N/A 

de_mod11502fn.vb 78 1 0.0903 #N/A 

 

Table 15 shows the coefficient of correlation between size of change (churn), SDPM 

estimate and the number of defective SLOCs.  Based on the table, the SDPM provides 

a good estimate for the number of defective SLOCs.  From the coefficient of 

correlation in Table 15, the SDPM provides a better estimate than the churn alone. 

Figure 22 shows the estimated number of defective constructs in each file and the 

number of observed SLOCs modified during final system testing. 
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Table 15: Correlation Analysis – DIS/CS 18.4 

   Churn 
Est. # of 

Defective 
SLOCs 

Observed SLOC 
Changes During 

Final System 
Testing 

 Churn 1 
  Est. # of Defective SLOCs 0.9954 1 

 Observed SLOC Changes 
During Final System 
Testing 0.9975 0.9988 1 

 

 

4.4.5  Poisson Regression Model Results 

We used defect data from releases 10.4 to 18.3 to estimate the number of defects in 

Release 18.4 files.  To fit the data, we used the Poisson regression model as described 

in Section 4.1.1.  Similar to case study 1, the predictor variables used in this case 

study were logarithm of the SLOCs, square root of prior defects, age, and file status 

(New, Changed, and Unchanged).  Table 16 shows the regression coefficients.   As 

expected, the values of the coefficients of regression are similar to the coefficients 

estimated in case study 1 because the files share the same structural measures. 

   

Table 16: Coefficient of Regression – Case Study 2 - (Poisson Regression) 

Coefficient Estimate 
Std  

Error 
L-R 

ChiSquare 
Prob>ChiSq Lower CL Upper CL 

Intercept -0.74818 0.071982 112.5288 2.74E-26 -0.94849 -0.60762 

Log(SLOC) 0.190285 0.015085 159.9289 1.17E-36 0.160728 0.219859 

Sqrt(PriorDef) -0.43636 0.027608 262.5228 4.84E-59 -0.49063 -0.38241 

Age -0.10177 0.004673 750.9367 2.51E-165 -0.1111 -0.09278 

New[0] -1.79809 0.038935 2903.793 0 -1.87512 -1.72246 

Changed[0] -1.99454 0.034621 4446.066 0 -2.06316 -1.92741 

Unchanged[0] 0 . . . . . 
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We used the coefficient of regression to estimate the expected number of defects per 

file in Release 18.4 and identify files that will most likely be defective.  The results 

are shown in Table 17 below.   As this table indicates, the Poisson model did not 

perform well to identify defect-prone files, based on the defects observed during the 

testing on Release 18.4.  In fact, the results were so poor that we were unable to 

calculate the coefficient of correlation between the actual number of defects and the 

Poisson regression estimates.  After reviewing the defects, we noticed that the 

majority of defects in Release 18.4 were in non-executable .PCF files.  Since 

regression models are built based on defects observed during testing and operation, 

the model does not perform well for non-executable files.  This is a known 

disadvantage with Regression based models and the non-executable files are 

generally excluded from such models [53].    

 

Table 17: Estimated Number of Defects-Case Study 2 - (Poisson Model) 

File Name Defects 

Status 
Changed, 

Unchanged, 
New 

Age 
Log 

(SLOC) 

Sqrt 
(Prior 

Defects) 

Poisson 
Model 

\de_mod46120fn.vb NA 1 0 0 22 2.39 1.00 0.0070 

\de_mod46125fn.vb 
NA 

1 0 0 22 2.29 1.00 0.0069 

\de_mod43110fn.vb 
NA 

1 0 0 22 2.46 1.41 0.0059 

. \de_mod44400fn.vb 
NA 

1 0 0 22 1.98 1.41 0.0054 

\de_clssection03.vb 
NA 

1 0 0 22 1.58 1.41 0.0050 

\de_clssection05.vb 
NA 

1 0 0 22 1.58 1.41 0.0050 

\de_clssection03.vb 
NA 

1 0 0 22 1.54 1.41 0.0050 

\de_cls46120.vb 
NA 

1 0 0 22 2.23 1.73 0.0049 

\de_mod11502fn.vb 
NA 

1 0 0 23 1.89 1.41 0.0048 

\de_mod11300fn.vb 
NA 

1 0 0 23 1.86 1.41 0.0048 

\de_clssection07.vb 
NA 

1 0 0 22 1.28 1.41 0.0047 

\de_cls43110.vb 
NA 

1 0 0 22 2.44 2.00 0.0046 

\de_clssection04.vb 1 1 0 0 22 1.69 1.73 0.0044 

\de_clssection05.vb NA 1 0 0 22 1.62 1.73 0.0044 

\de_clssection04.vb 1 1 0 0 22 1.62 1.73 0.0044 
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\de_clssection01.vb 
NA 

1 0 0 22 2.20 2.00 0.0044 

\de_mod47110fn.vb 
NA 

1 0 0 25 1.88 2.00 0.0030 

de_enumcommonsectionfield
numbers.vb 

NA 
1 0 0 28 3.21 2.00 0.0029 

de_clssection02.vb 
NA 

1 0 0 25 0.90 1.73 0.0028 

de_enummessages.vb 
NA 

1 0 0 28 2.27 2.00 0.0024 

de_clsform8888.vb 
NA 

1 0 0 28 2.06 2.00 0.0023 

de_clssection03.vb 1 1 0 0 25 1.48 2.45 0.0023 

de_clspipelinebh.vb 
NA 

1 0 0 28 2.36 2.24 0.0022 

 de_clsirpbh.vb 
NA 

1 0 0 28 2.30 2.24 0.0022 

de_clstaxpr31.vb 
NA 

1 0 0 28 1.73 2.00 0.0022 

de_clstaxpr15.vb 
NA 

1 0 0 28 1.90 2.24 0.0020 

de_clsform1040xs02.vb 
NA 

1 0 0 28 1.20 2.00 0.0020 

de_clsform8919.vb 
NA 

1 0 0 28 1.18 2.00 0.0019 

de_clsfield.vb 
NA 

1 0 0 28 2.59 3.00 0.0016 

de_clsimfeeiflookup.vb 
NA 

1 0 0 28 2.57 3.87 0.0011 

ReportAPI.h 
NA 

1 0 0 39 1.86 1.00 0.0011 

de_ctlfield.vb 
NA 

1 0 0 28 3.14 4.58 0.0009 

de_clsstatemachine.vb 
NA 

1 0 0 28 3.45 6.00 0.0005 

ReportAPI.cpp 
NA 

1 0 0 45 2.95 2.00 0.0005 
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Figure 22: SDPM - Est. # of Defective SLOC vs. Observed Number of Defective SLOCs – DIS/CS 18.4 



 

116 

4.5 Case Study 3: CCD 770R2- BMF Health Care Changes for PY 2011 

4.5.1 Software Project Background and History 

For this case study we selected a software development project that was intended to 

deliver six functionalities as part of the DIS/CS 18.5 release.  Figure 23  shows the 

timeline of software development activities for this project.  The development phase 

started on September 21, 2010 and ended on October 10, 2010.  During the 

development phase, code changes were delivered in four change sets.  The four 

change sets were also used to deliver code changes needed to address observed 

inspection and SWIT issues.  The major enhancements delivered with this release 

were:  

 

 CCD 762 – IMF (health care) Changes for PY 2011  

o Changes to PRP‟s 33 and 36  

 CCD 770 – BMF (Health Care) Changes for PY 2011  

o Changes to PRP‟s 01, 27, 32, 39, 47, 48, 50, 51 and 54  

 CCD 780 – RP Changes PY 2011, PY 2010  

o Update EOD code  

 CCD 781 – IMF (Health Care) Changes II for PY 2011  

o Changes to PRP 31  

 CCD 783 – PRP 31 Corrections for PY 2011  

o Correct PRP 31  

 CCD 784- BMF – Corrections for PY 2011  

o Correct PRP‟s 43, 84 and 90  
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18.5 Development Stream

9/27

Prod00050350: 
Prod00050318: 
CCD 770R2 BMF 
Health Care Changes 
for PY 2011

10/28

Delivery to
SAT

10/21 - 10/27

Final System

Testing

10/8 - 10/18

I&T

9/21 - 10/8

Development & SWIT Phase9/30

Prod00050362: 
Prod00050361: 
CCD 780 DIS/CS changes

10/4

Prod00050376: 
Prod00050373: 
CCD 762 - Drop 2 & CCD 781

Prod00050382: 

Prod00050380: 

CCD 762 Drop 2.2

10/6

Prod00050419: 
Prod00050418: 
IPDE FPPView

Prod00050429: 

Prod00050427: 

CCD 784 - BMF – 

PRP Corrections for PY 2011

10/13

Prod00050470: 
Prod00050463: 
CCD 770 - Pgm 13141 – 
Section 21 should be
required for kv when 
data has been entered 
during OE

10/14

Prod00050479: 
Prod00050358: 
OLG Failing to 
Generate Report 
When Truth File 
Contains Overflow

10/26

Prod00050595: 
Prod00050591: 
Add New Field From 
CCD 781 to 46125 ZB

10/27

Prod00050628: 
Defects: 50553, 50546, 50486

Prod00050616: 
Prod00050571: 
CCD 783 - "PTIN" allows 
character 'V" 
for the 1st position for 43110

11/3

Prod00050706: 
Prod00050683: 
For pgm 46125 and clones, 
the 18B field is not 
grayed out for the 
RMT condition

11/8

Prod00050754: 
Prod00050711: 
'SSSN' in section 01
is not must enter under 
certain circumstances.

 
Figure 23: CCD 770 Timeline and Development Activities 

 

4.5.2 Case Study Measurements 

In the previous section we provided a timeline of the software development activities 

related to the DIS/CS 18.5 software release.  On September 27, 2010, the first set of 

changes were implemented and delivered to the stream.  A formal inspection was held 

and inspection findings, along with the implementation of the second set of 

enhancements, were delivered on September 30, 2010.  Out of 2864 SLOC changes 

delivered in the first change set, ninety-three were reworked in change set 2, and three 

were modified again in change set 7.  Figure 24 shows the software change matrix for 

the DIS/CS 18.5 release.  This release was different from the other case studies in that 

it consisted of six independent enhancements within the same release. 
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Figure 24: Software Change Matrix – DIC/CS 18.5 

4.5.3 Model Parameter Estimation 

In this section we discuss how model parameters are calculated based on the 

measurements taken in each change set. Table 18 shows the summary of the 

measurements taken for each change set along with the estimates of the model 

parameters. Once model parameters           are estimated, we calculate the change 

set reliabilities, which are shown in Column 8 of Table 18. 

 

Table 18: Parameter Estimation for DIS/CS 18.5 

Change 
Set 

Size 
Cap-

Recap 

(2) Est. 
New 

Defects 

(1)Observed 
(Modified/ 

Fixed) 
p(i) q(i) r(i) 

50350 2768 Y 150 140 0.9458 0.9333 0.9937 

50362 29 N 2 1 0.9458 0.0522 0.9485 

50376 481 Y 42 35 0.9127 0.5730 0.9584 

50382 1 N 0 0 0.9458 0.0000 0.9458 

50419 248 N 13 23 0.9458 0.4372 0.9682 

50429 2 N 0 1 0.9458 0.0212 0.9469 

50470 16 N 1 3 0.9458 0.0625 0.9490 

50479 2 N 0 2 0.9458 0.0416 0.9479 
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Table 18 shows the probability of constructs being defect-free based on the Binary 

Decision Diagram shown in Figure 25. 
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Figure 25: Binary Decision Diagram – DIS/CS 18.5 
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Table 19: Construct Reliability Estimation – DIS/CS 18.5 

Change 
Sets 

Churn Probability Probability 

0002 2768 r(1) r(1) 0.99365 

0004 29 r(2) r(2) 0.94849 

0008 388 r(3) r(3) 0.95835 

0010 93 r(1,3) r1*p3+(1-r1)*q2*p3 0.90719 

0016 1 r(4) r(4) 0.94581 

0032 248 r(5) r(5) 0.96822 

0064 2 r(6) r(6) 0.94690 

0128 13 r(7) r(7) 0.94901 

0130 3 r(1,7) r1*p7+(1-r1)*q6*p7 0.93993 

0256 2 r(8) r(8) 0.94794 

 

After estimating the reliability of all software constructs, we use the defect content 

estimator described in Section 3.3 to estimate the number of defective constructs in 

files modified in the development stream.  The list was then sorted in descending 

order based on the estimated number of defective constructs in each file.  In the next 

section we discuss the results of the case study by comparing the SDPM estimates 

with the actual SLOC changes during final system testing. 

4.5.4 Case Study Results 

In this section we compare the number of defective constructs estimated by the 

SDPM with the number of constructs modified in each file during final system testing 

of the DIS/CS 18.5 release.  Table 20 shows the defect-prone files in descending 

order.  The first column shows the file names, the second file size, the third gives the 

magnitude of change in each file in SLOCs.  The fourth and fifth columns represent 

the number of defective SLOCs based on the SDPM estimator and the observed 

SLOC changes during final system testing respectively.  We use the coefficient of 

correlation to assess the performance of the SDPM with the observed number of 
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defective SLOCs in each file.  We also use the coefficient of correlation to show that 

the SDPM provides a better estimate than size of change alone. 

 

Table 20: Case Study Results – DIS/CS 18.5 

File Name SLOC  Churn 

 Est. # of 
Defective 
SLOCs per 

file 

Observed # 
of Defective 

SLOC per 
File 

de_100000.PCF 8781 92 8.5376 12 

de_44110.PCF 1100 150 6.255 #N/A 

de_ctlFPPView.vb 163 163 5.1834 #N/A 

de_46122.PCF 684 121 5.0457 4 

de_11500.PCF 866 411 2.6304 #N/A 

de_13141.PCF 732 387 2.4768 #N/A 

de_11509.PCF 742 348 2.2272 #N/A 

de_11508.PCF 738 346 2.2144 #N/A 

de_13420.pcf 662 332 2.1248 #N/A 

de_ctlFPPView.Designer.vb 66 66 2.0988 #N/A 

de_11540.PCF 648 304 1.9456 #N/A 

de_46125.PCF 934 41 1.7097 2 

de_13170.PCF 472 214 1.3696 #N/A 

de_11501.PCF 456 206 1.3184 #N/A 

rp_write_assembled_transport_data.cpp 1039 17 0.8755 #N/A 

de_cls13141.vb 72 20 0.8689 #N/A 

de_46121.PCF 1578 18 0.7506 #N/A 

de_43110.PCF 1844 16 0.6672 1 

de_44400.PCF 430 13 0.5421 #N/A 

de_mod44110fn.vb 185 10 0.417 #N/A 

de_11900.PCF 946 60 0.384 #N/A 

de_frmipde.designer.vb 244 12 0.3816 #N/A 

rp_EOD_tapes.cpp 1532 5 0.2575 #N/A 

de_mod46127fn.vb 122 6 0.2502 #N/A 

de_frmipde.vb 557 7 0.2226 #N/A 

de_clssection03.vb 100 5 0.2085 1 

de_11910.PCF 512 31 0.1984 #N/A 

rp_write_assembled_transport_data.h 72 3 0.1545 #N/A 

de_mod13141fn.vb 130 22 0.1408 #N/A 

de_clssection04.vb 42 3 0.1251 #N/A 
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de_mod13420fn.vb 119 19 0.1216 #N/A 

sp_format_on_line_grader_report.cpp 1415 2 0.1042 #N/A 

TaxClassMap.cs 143 2 0.103 #N/A 

de_clsprogram45500.vb 530 2 0.103 #N/A 

de_enumcommonsectionfieldnumbers.vb 1606 1 0.0928 #N/A 

de_mod46125fn.vb 196 2 0.0834 #N/A 

de_11511.PCF 368 10 0.064 #N/A 

de_clssection05.vb 33 1 0.0542 1 

de_clssection01.vb 36 1 0.0531 #N/A 

de_35713.PCF 416 1 0.0531 #N/A 

de_clstaxpr33.vb 79 1 0.0417 #N/A 

de_clssection05.vb 32 1 0.0417 1 

de_clssection04.vb 49 1 0.0417 #N/A 

de_12220.PCF 878 5 0.032 #N/A 

de_cls13420.vb 52 4 0.0256 #N/A 

de_clssection13.vb 4 4 0.0256 #N/A 

de_cls13170.vb 92 3 0.0192 #N/A 

de_clssection21.vb 3 3 0.0192 #N/A 

de_cls12220.vb 57 3 0.0192 #N/A 

de_cls12200.vb 57 3 0.0192 #N/A 

de_cls12100.vb 54 3 0.0192 #N/A 

de_cls11900.vb 55 3 0.0192 #N/A 

de_mod11900fn.vb 164 3 0.0192 #N/A 

de_cls11540.vb 55 3 0.0192 #N/A 

de_cls11511.vb 54 3 0.0192 #N/A 

de_cls11509.vb 53 3 0.0192 #N/A 

de_cls11508.vb 51 3 0.0192 #N/A 

de_cls11503.vb 55 3 0.0192 #N/A 

de_cls11502.vb 52 3 0.0192 #N/A 

de_cls11501.vb 92 3 0.0192 #N/A 

de_cls11500.vb 52 3 0.0192 #N/A 

de_clsForm8941v2.vb 3 3 0.0192 #N/A 

de_12200.PCF 596 3 0.0192 #N/A 

de_12100.PCF 694 3 0.0192 #N/A 

de_11503.PCF 354 3 0.0192 #N/A 

de_11502.PCF 440 3 0.0192 #N/A 

de_mod11511fn.vb 66 1 0.0064 #N/A 

 

Table 21 shows the coefficient of correlation between size of change (churn), SDPM 

estimate and number of defective SLOCs.  Based on Table 21, the SDPM provides a 
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good estimate of the number of defective SLOCs.  Judging by the coefficient of 

correlation in the table, the SDPM provides a better estimate than the churn alone. 

Figure 26 shows the estimated number of defective constructs in each file and the 

number of observed SLOCs modified during final system testing. 

 

Table 21: Correlation Analysis – DIS/CS 18.5 

 
Churn 

Est. # of 
Defective 

SLOCs 
per file 

Observed 
SLOC 

Changes 
During 
Final 

System 
Testing 

 Churn 1 
   Est. # of Defective SLOCs per file 0.54716 1 

 Observed SLOC Changes During 
Final System Testing 0.69641 0.95450 1 

 

4.5.5 Poisson Regression Model Results 

We used defect data from releases 10.4 to 18.4 to estimate the number of defects in 

Release 18.5 files.  To fit the data, we used the Poisson regression model as described 

in Section 4.1.1.  Similar to case study 1 and 2, the predictor variables used in this 

case study were logarithm of the SLOCs, square root of prior defects, age, and file 

status (New, Changed, and Unchanged).  Table 24 shows the regression coefficients.   

As expected, the values of the coefficients of regression are similar to the coefficients 

estimated in case study 1 and 2 because the files share the same structural measures. 
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Table 22: Coefficient of Regression – Case Study 3 - (Poisson Regression) 

Coefficient Estimate 
Std. 

Error 
L-R 

ChiSquare 
Prob> 
ChiSq 

Lower CL Upper CL 

Intercept -0.7475 0.0712 114.7925 0.0000 -0.9415 -0.6084 

logSLOC 0.1902 0.0149 163.3089 0.0000 0.1610 0.2194 

SqrtPriorD -0.4359 0.0273 267.7662 0.0000 -0.4896 -0.3826 

Age -0.1020 0.0046 786.4533 0.0000 -0.1111 -0.0932 

New[0] -1.8001 0.0385 2975.5713 0.0000 -1.8763 -1.7253 

Changed[0] -1.9973 0.0343 4554.6000 0.0000 -2.0652 -1.9308 

Unchanged[0] 0.0000 . . . . . 
 

We used the coefficients of regression to estimate the expected number of defects per 

file in Release 18.5 and identify files that will most likely be defective.  The results 

are shown in Table 23 below.   As this table indicates, the Poisson model did not 

perform well to identify defect-prone files, based on the defects observed during the 

final system testing.  Once again, by reviewing the results from the SDPM, the defect 

prone files in this case study were non-executable files that can‘t be detected by 

Regression models.  In fact, the estimate was so poor that no coefficient of correlation 

could be calculated. 

 

Table 23: Estimated Number of Defects-Case Study 3 - (Poisson Model) 

File Name Defects 

Status 
(Changed, 

Unchanged, 
New) 

Age 
Log 

(SLOC) 

Sqrt 
(Prior 

Defects) 

Poisson 
Model 

\de_ctlFPPView.vb 
NA 

0 0 1 0 5.09 1.00 0.1334 

\de_ctlFPPView.Designer.vb 
NA 

0 0 1 0 4.19 1.00 0.1123 

\de_clssection13.vb 
NA 

0 0 1 0 1.39 1.00 0.0659 

\de_clssection21.vb 
NA 

0 0 1 0 1.10 1.00 0.0624 

\de_clsForm8941v2.vb 
NA 

0 0 1 0 1.10 1.00 0.0624 

\TaxClassMap.cs 
NA 

1 0 0 14 3.89 1.41 0.0174 

\de_mod46120fn.vb 
NA 

1 0 0 23 5.51 1.00 0.0114 

\de_mod46125fn.vb 
NA 

1 0 0 23 5.28 1.00 0.0109 
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\de_mod46127fn.vb 
NA 

1 0 0 23 4.80 1.00 0.0099 

\de_mod13420fn.vb 
NA 

1 0 0 23 4.78 1.00 0.0099 

\de_mod43110fn.vb 
NA 

1 0 0 23 5.67 1.41 0.0098 

\de_clssection01.vb 
NA 

1 0 0 23 5.78 1.73 0.0087 

\de_cls44110.vb 
NA 

1 0 0 23 4.89 1.41 0.0084 

\de_clssection03.vb 1 1 0 0 23 4.62 1.41 0.0080 

\de_mod11900fn.vb 
NA 

1 0 0 24 5.10 1.41 0.0079 

\de_clssection01.vb 
NA 

1 0 0 23 3.58 1.00 0.0079 

\de_clssection01.vb 
NA 

1 0 0 23 5.69 2.00 0.0076 

\de_mod13141fn.vb 
NA 

1 0 0 24 4.87 1.41 0.0076 

\de_cls13420.vb 
NA 

1 0 0 23 3.95 1.41 0.0070 

\de_mod44110fn.vb 
NA 

1 0 0 23 5.22 2.00 0.0069 

\de_clssection01.vb 
NA 

1 0 0 23 5.59 2.24 0.0067 

\de_clssection05.vb 1 1 0 0 23 3.50 1.41 0.0065 

\de_cls11503.vb 
NA 

1 0 0 24 4.01 1.41 0.0064 

\de_cls11900.vb 
NA 

1 0 0 24 4.01 1.41 0.0064 

\de_cls11500.vb 
NA 

1 0 0 24 3.95 1.41 0.0064 

\de_cls11502.vb 
NA 

1 0 0 24 3.95 1.41 0.0064 

\de_cls11501.vb 
NA 

1 0 0 24 4.52 1.73 0.0062 

\de_clssection04.vb 
NA 

1 0 0 23 3.89 1.73 0.0061 

\de_cls13141.vb 
NA 

1 0 0 24 4.28 1.73 0.0059 

\de_clssection04.vb 
NA 

1 0 0 23 3.74 1.73 0.0059 

\de_clsprogram45500.vb 
NA 

1 0 0 24 6.27 2.65 0.0058 

de_enumcommonsectionfieldnumbers.vb 
NA 

1 0 0 29 7.39 2.00 0.0057 

\de_clssection05.vb 1 1 0 0 23 3.47 1.73 0.0056 

\de_mod11511fn.vb 
NA 

1 0 0 26 4.19 1.41 0.0054 

\de_cls13170.vb 
NA 

1 0 0 26 4.52 1.73 0.0050 

\de_clssection02.vb 
NA 

1 0 0 23 2.08 1.41 0.0049 

\de_clssection02.vb 
NA 

1 0 0 23 2.08 1.41 0.0049 

\de_cls12220.vb 
NA 

1 0 0 26 4.04 1.73 0.0046 

\de_cls11540.vb 
NA 

1 0 0 26 4.01 1.73 0.0046 

\de_cls11511.vb 
NA 

1 0 0 26 3.99 1.73 0.0045 

\de_cls12100.vb 
NA 

1 0 0 26 3.99 1.73 0.0045 

\de_cls11509.vb 
NA 

1 0 0 26 3.97 1.73 0.0045 

\de_cls11508.vb 
NA 

1 0 0 26 3.93 1.73 0.0045 

\de_enummessages.vb 
NA 

1 0 0 29 5.23 2.00 0.0038 

\de_cls12200.vb 
NA 

1 0 0 26 4.04 2.24 0.0037 

\de_clssection01.vb 
NA 

1 0 0 26 5.37 3.00 0.0034 
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\rp_cddb_tape.h 
NA 

1 0 0 32 3.78 1.00 0.0033 

\de_frmipde.designer.vb 
NA 

1 0 0 29 5.50 2.65 0.0030 

cs_write_formatted_key_entry_data.cpp 
NA 

1 0 0 38 6.54 1.00 0.0030 

\de_clssection03.vb 1 1 0 0 26 3.40 2.45 0.0030 

\de_clssection01.vb 
NA 

1 0 0 26 4.63 3.00 0.0030 

\de_clstaxpr33.vb 
NA 

1 0 0 29 4.37 2.24 0.0029 

\de_clsform1065xs01.vb 
NA 

1 0 0 29 4.86 2.65 0.0027 

\de_frmipde.vb 
NA 

1 0 0 29 6.32 3.32 0.0026 

\de_clsimfeeiflookup.vb 
NA 

1 0 0 29 5.95 3.87 0.0019 

\rp_write_assembled_transport_data.h 
NA 

1 0 0 48 3.04 0.00 0.0009 

\rp_write_assembled_transport_data.cpp 
NA 

1 0 0 48 6.06 2.00 0.0006 

\rp_EOD_tapes.cpp 
NA 

1 0 0 48 6.04 2.45 0.0005 

\cs_export.h 
NA 

1 0 0 50 3.53 1.00 0.0005 

sp_format_on_line_grader_report.cpp 
NA 

1 0 0 48 6.45 3.32 0.0004 
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Figure 26: SDPM - Est. # of Defective SLOC vs. Observed Number of Defective SLOCs – DIS/CS 18.5 
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4.6 Case Study 4: CCD 700- More BMF and Help Tag Changes for PY 2010 

4.6.1 Software Project Background and History 

For this case study we selected a small software development project intended to only 

deliver one new function as part of the DIS/CS 17.4 release.  Figure 27  shows the 

timeline of software development activities for this project.  The development phase 

started on August 17, 2009 and ended on September 3, 2009.  During the 

development phase, code changes were delivered in three change sets.  The same 

change sets were also used to deliver code changes needed to address observed 

inspection and SWIT issues.  What makes this case study different from other case 

studies is that a large number of files are modified to deliver only one enhancement 

which is shown below: 

 CCD 700- More BMF and Help Tag Changes for PY 2010 

o Modify PRPs 11, 20, 21, 26, 39, 40, 41, 43, 44, 46, 49, 51, 52, 53, 55, 56, 57, 

58, 80, 81, 82,87, 88, 89 

o Modify 24 BMF programs and create 2 new BMF programs and Help Tag 

changes 
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17.4 Development Stream

8/17 - 9/3

Development & SWIT Phase

9/3 - 9/8

I&T

8/25

Prod00047091: 
Prod00046913: 
CCD 700 More BMF 
and Help Tag Changes 
for PY 2010

Prod00047097: 
Prod00047096: 
CCD 700 BMF changes

9/1

Prod00047235: 
Prod00047207: 
Prg 11340 
Sec 03 "This section is 
not coming up"

9/9 - 9/16

Final System 

Testing 9/17

Delivery to
SAT

9/8

Prod00047299: 
Prod00047298: 
CCD 700 Defect fixes for sw_17.4

Prod00047310: 
Prod00047297:
CCD 700- City and Zip popup 
box not working correctly,
programs 13211, 13212

9/22

Prod00047474: 
Prod00047388:
No zip code look-up 
for sections 02 & 03 
of 72840, 5500EZ.

10/13

Prod00047831: 
Prod00047744:
For 17.4.1.1, PRP 80, 
program 13211, 
section 10, prompts 
'P4L3' and 'P4L4' are

9/8

Prod00047311: 
Prod00047293:
CCD 700 – Incorrect prompt "RPT#" in 
Sec 01, program 13211

Prod00047313: 
Prod00047259: CCD 700 Prg 19000 
Sec 01 "KV under print is only partial 
visible at the bottom of the screen"

 
Figure 27: CCD 700 Timeline and Development Activities 

4.6.2 Case Study Measurements 

In the previous section, we provided a timeline of the software development activities 

related to the DIS/CS 17.4 software release.  On August 25, 2009 the enhancements 

were delivered to the stream in two change sets 47091 and 47097.  The change set 

47097 also addressed 23 SLOCs that were identified as defective during the 

inspection of 47091.  Change set 47235 was used to resolve an issue identified during 

the SWIT testing.  Figure 28 shows the software change matrix for DIS/CS 17.4 

release. 

 



 

130 

 
Figure 28: Software Change Matrix – DIS/CS 17.4 

4.6.3 Model Parameter Estimation 

In this section we discuss how model parameters are calculated based on the 

measurements taken in each change set. Table 24 shows the summary of the 

measurements taken for each change set, along with the estimates of the model 

parameters. Once model parameters           are estimated, we calculate the change 

set reliabilities, which are shown in Column 8 of Table 24. 

 

Table 24: Model Parameters – DIS/CS 17.4 

Change 
Set 

Size 
Cap-

Recap 

(2) Est. 
New 

Defects 

(1)Observed 
(Modified/Fixed) 

p(i) q(i) r(i) 

47091 679 Y 207 23 0.6951 0.1111 0.71869 

47097 2204 N 110 3 0.9500 0.0100 0.95047 

47235 3 N 0 39 0.9500 0.1299 0.95617 

47299 302 N 15 23 0.9500 0.0729 0.95346 

47310 66 N 3 1 0.9500 0.0031 0.95015 

47311 1 N 0 2 0.9500 0.0063 0.95030 

47313 2 N 0 0 0.9500 0.0000 0.95000 
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Table 25 shows the probability of constructs being defect-free based on the Binary 

Decision Diagram shown in Figure 29. 
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Figure 29: Binary Decision Diagram – DIS/CS 17.4 
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Table 25: Construct Reliability Estimation – DIS/CS 17.4 

Change 
Sets 

Churn SDPM Model Probability 

0002 671 r(1) r(1) 0.7187 

0004 2178 r(2) r(2) 0.9505 

0008 3 r(3) r(3) 0.9562 

0016 294 r(4) r(4) 0.9535 

0018 8 r(1,4) r1*p4+(1-r1)*q3*p4 0.7175 

0032 43 r(5) r(5) 0.9501 

0036 23 r(1,5) r1*p5+(1-r1)*q4*p5 0.7022 

0068 1 r(1,6) r1*p6+(1-r1)*q5*p6 0.6836 

0132 2 r(1,7) r1*p7+(1-r1)*q6*p7 0.6844 

 

After estimating the reliability of all software constructs, we use the defect content 

estimator described in Section 3.3 to estimate the number of defective constructs in 

files modified in the development stream.  The list is then sorted in descending order 

based on the estimated number of defective constructs in each file.  In the next 

section, we discuss the results of the case study by comparing the SDPM estimates 

with the actual SLOC changes during final system testing. 

4.6.4 Case Study Results 

In this section we compare the number of defective constructs estimated by the 

SDPM with the number of constructs modified in each file during final system testing 

of the DIS/CS 17.4 release.  Table 26 shows the defect-prone files in descending 

order.  The first column shows the file names, the second shows the file size, and the 

third gives the magnitude of change in each file in SLOCs.  The fourth and fifth 

columns represent the number of defective SLOCs based on the SDPM estimator and 

the observed SLOC changes during final system testing respectively.  We use the 

coefficient of correlation to assess the performance of the SDPM with the observed 
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number of defective SLOCs in each file.  We also use the coefficient of correlation to 

show that the SDPM provides a better estimate than change alone. 

 

Table 26: Case Study Results – DIS/CS 17.4 

File name SLOC  Churn 
Est. # of 
Defects 
Per File 

Observed 
Defects 

de_13410.pcf 1654 250 68.625 13 

de_13212.pcf 492 492 24.354 #N/A 

de_13211.pcf 390 390 19.305 2 

de_12100.PCF 686 64 17.568 #N/A 

de_12300.PCF 646 303 16.1241 #N/A 

de_12500.PCF 676 315 15.5925 #N/A 

de_15540.pcf 174 44 12.078 #N/A 

de_cls45blank.vb 41 41 11.2545 #N/A 

de_15560.PCF 172 38 10.431 #N/A 

de_12402.PCF 374 38 10.431 #N/A 

de_11330.pcf 286 35 9.6075 #N/A 

de_11340.pcf 400 186 9.1896 #N/A 

de_enumcommonsectionfieldnumbers.vb 1522 73 9.1855 #N/A 

de_19000.PCF 248 112 6.0632 #N/A 

de_11507.PCF 372 22 6.039 #N/A 

de_16010.PCF 210 20 5.49 #N/A 

de_clsform8038xs01.vb 103 103 5.3589 2 

de_59600.PCF 172 18 4.941 #N/A 

de_12404.PCF 220 90 4.455 #N/A 

de_12403.PCF 212 86 4.257 #N/A 

de_mod13212fn.vb 84 84 4.158 #N/A 

de_12410.PCF 464 12 3.294 #N/A 

de_mod13211fn.vb 66 66 3.267 #N/A 

de_13200.PCF 2544 66 3.267 #N/A 

de_11800.PCF 1300 10 2.745 #N/A 

de_cls13211.vb 50 50 2.475 #N/A 

de_11100.PCF 752 9 2.4705 #N/A 

de_cls13212.vb 48 48 2.376 #N/A 

de_12701.PCF 190 7 1.9215 #N/A 

de_12201.PCF 270 6 1.647 #N/A 

de_mod12701fn.vb 32 5 1.3725 #N/A 

de_mod12402fn.vb 67 5 1.3725 #N/A 



 

134 

de_mod12300fn.vb 110 5 1.3725 #N/A 

de_12702.PCF 204 4 1.098 #N/A 

de_12310.PCF 2234 4 1.098 #N/A 

de_mod15560fn.vb 31 3 0.8235 #N/A 

de_mod15540fn.vb 31 3 0.8235 #N/A 

de_mod13410fn.vb 287 3 0.8235 #N/A 

de_mod11800fn.vb 223 3 0.8235 #N/A 

de_12400.PCF 408 3 0.8235 #N/A 

de_12320.PCF 592 3 0.8235 #N/A 

de_mod12702fn.vb 32 2 0.549 #N/A 

de_mod12410fn.vb 81 2 0.549 #N/A 

de_mod12400fn.vb 70 2 0.549 #N/A 

de_mod12201fn.vb 48 2 0.549 #N/A 

de_mod12100fn.vb 114 2 0.549 #N/A 

de_mod11330fn.vb 47 2 0.549 #N/A 

de_mod11100fn.vb 124 2 0.549 #N/A 

assemblyinfo.vb 11 11 0.5445 #N/A 

assemblyinfo.vb 11 11 0.5445 #N/A 

de_mod12404fn.vb 43 11 0.5445 #N/A 

de_mod12403fn.vb 39 8 0.396 #N/A 

de_71700.PCF 190 8 0.396 #N/A 

de_mod71700fn.vb 32 7 0.3465 #N/A 

de_mod12320fn.vb 103 1 0.2745 #N/A 

de_mod19000fn.vb 43 4 0.198 1 

de_clssection02.vb 4 4 0.198 1 

de_clssection03.vb 4 4 0.198 1 

de_clssection04.vb 4 4 0.198 #N/A 

de_clssection10.vb 4 4 0.198 #N/A 

de_clssection11.vb 4 4 0.198 #N/A 

de_mod11340fn.vb 71 4 0.198 #N/A 

de_mod13200fn.vb 438 3 0.1485 #N/A 

de_mod12500fn.vb 112 2 0.099 #N/A 

 

Table 27 shows the coefficient of correlation between size of change (churn), SDPM 

estimate and the number of defective SLOCs.  Based on Table 27, the SDPM 

provides a good estimate for the number of defective SLOCs.  Based on the 

coefficient of correlation in shown below, the SDPM provides a better estimate than 
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the churn alone. Figure 30 shows the estimated number of defective constructs in 

each file and the number of observed SLOCs modified during final system testing. 

 

 
Table 27: Correlation Analysis DIS/CS 17.4 

 
Churn 

Est. # of 
Defective SLOCs 

Observed # of 
Defective 

SLOCs During 
Final System 

Testing 

 Churn 1 
  Est. # of Defective SLOCs 0.61643 1 

 Observed # of Defective SLOCs 
During Final System Testing 0.45062 0.97922 1 

 

4.6.5 Poisson Regression Model Results 

We used defect data from releases 10.4 to 17.3 to estimate the number of defects in 

Release 17.4 files.  To fit the data, we used the Poisson regression model as described 

in Section 4.1.1.  Similar to case study 1, 2 and 3, the predictor variables used in this 

case study were logarithm of the SLOCs, square root of prior defects, age, and file 

status (New, Changed, and Unchanged). Table 28 shows the regression coefficients.   

As expected, the values of the coefficients of regression are similar or close to the 

coefficients estimated in previous case studies because the files share the same 

structural measures. 

   

 

Table 28: Coefficient of Regression – Case Study 4 - (Poisson Regression) 

Coefficient Estimate 
Std. 

Error 
L-R 

ChiSquare 
Prob> 
ChiSq 

Lower 
CL 

Upper 
CL 

Intercept -0.5403 0.0574 91.3337 0.0000 -0.6531 -0.4282 

Log(SLOC) 0.1623 0.0121 180.4330 0.0000 0.1386 0.1861 
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Sqrt(PriorDef) -0.4873 0.0222 504.1644 0.0000 -0.5310 -0.4438 

Age -0.1195 0.0050 901.7879 0.0000 -0.1294 -0.1099 

New[0] -1.8633 0.0350 4270.4099 0.0000 -1.9327 -1.7953 

Changed[0] -2.1260 0.0314 7229.3271 0.0000 -2.1883 -2.0652 

Unchanged[0] 0.0000 . . . . . 
 

We used the coefficients of regression to estimate the expected number of defects per 

file in Release 17.4 and identify files that will most likely be defective.  The results 

are shown in Table 23 below.   As this table indicates, the Poisson regression model 

was able to identify executable files that were likely to be defect prone, leaving out 

non-executable files.     

 

Table 29: Estimated Number of Defects-Case Study 4 - (Poisson Model)  

File Name Defects 

Changed 
Unchanged 

New Age 
Log 

(SLOC) 

Sqrt 
(Prior 

Defects) M 

de_clsform8038xs01.vb 2 0 0 1 0 4.63 0.00 0.1918 

de_mod13211fn.vb 0 0 0 1 0 4.19 1.00 0.1096 

de_cls13211.vb 0 0 0 1 0 3.91 1.00 0.1048 

de_cls13212.vb 0 0 0 1 0 3.87 1.00 0.1041 

de_clssection03.vb 0 1 0 0 2 3.81 0.00 0.1015 

de_clssection03.vb 0 1 0 0 2 3.81 0.00 0.1015 

de_cls45blank.vb 0 0 0 1 0 3.71 1.00 0.1015 

assemblyinfo.vb 0 0 0 1 0 2.94 1.00 0.0895 

assemblyinfo.vb 0 0 0 1 0 2.94 1.00 0.0895 

de_cls44318.vb 0 1 0 0 1 4.14 1.00 0.0742 

de_cls44317.vb 0 1 0 0 1 4.14 1.00 0.0742 

de_clssection10.vb 0 0 0 1 0 1.39 1.00 0.0695 

de_clssection11.vb 0 0 0 1 0 1.39 1.00 0.0695 

de_clssection02.vb 0 0 0 1 0 1.39 1.00 0.0695 

de_clssection03.vb 0 0 0 1 0 1.39 1.00 0.0695 

de_clssection04.vb 0 0 0 1 0 1.39 1.00 0.0695 

assemblyinfo.vb 0 1 0 0 1 2.94 1.00 0.0611 

assemblyinfo.vb 0 1 0 0 1 2.94 1.00 0.0611 
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de_mod44318FN.vb 0 1 0 0 1 2.89 1.00 0.0606 

de_mod44317fn.vb 0 1 0 0 1 2.77 1.00 0.0594 

de_mod13212fn.vb 0 1 0 0 5 4.43 1.00 0.0482 

de_clssection06fc1048.vb 0 1 0 0 1 1.39 1.00 0.0474 

de_clssection06fc1049.vb 0 1 0 0 1 1.39 1.00 0.0474 

de_clssection58.vb 0 1 0 0 1 1.10 1.00 0.0453 

de_clssection57.vb 0 1 0 0 1 1.10 1.00 0.0453 

de_clsSection57.vb 0 1 0 0 1 1.39 1.41 0.0388 

de_clssection03.vb 0 1 0 0 6 2.94 1.00 0.0336 

de_clssection02.vb 0 1 0 0 6 2.94 1.41 0.0275 

de_mod13200fn.vb 0 1 0 0 13 6.08 1.00 0.0242 

de_mod13410fn.vb 0 1 0 0 13 5.66 1.00 0.0226 

de_mod46125fn.vb 0 1 0 0 13 5.21 1.00 0.0210 

de_mod12320fn.vb 0 1 0 0 13 4.63 1.00 0.0192 

de_mod44400fn.vb 1 1 0 0 13 4.45 1.00 0.0186 

de_mod12410fn.vb 0 1 0 0 13 4.39 1.00 0.0184 

de_mod43110fn.vb 0 1 0 0 13 5.58 1.41 0.0183 

healthchecks.xml 0 1 0 0 15 5.46 1.00 0.0172 

de_mod12500fn.vb 0 1 0 0 14 4.72 1.00 0.0172 

de_mod12300fn.vb 0 1 0 0 14 4.70 1.00 0.0172 

de_mod11330fn.vb 0 1 0 0 13 3.85 1.00 0.0169 

de_cls44110.vb 0 1 0 0 13 4.96 1.41 0.0165 

de_mod12400fn.vb 0 1 0 0 14 4.25 1.00 0.0160 

de_mod12402fn.vb 0 1 0 0 14 4.20 1.00 0.0159 

de_clssection03.vb 0 1 0 0 13 4.67 1.41 0.0158 

de_clssection01.vb 1 1 0 0 13 4.49 1.41 0.0153 

de_mod12201fn.vb 0 1 0 0 14 3.87 1.00 0.0150 

FileVersionHealthCheck.cs 0 1 0 0 15 4.38 1.00 0.0145 

de_mod11100fn.vb 0 1 0 0 14 4.82 1.41 0.0143 

DatabaseBackupHealthCheck.cs 0 1 0 0 15 4.25 1.00 0.0142 

DiskSpaceHealthCheck.cs 0 1 0 0 15 4.20 1.00 0.0141 

de_mod71700fn.vb 0 1 0 0 14 3.47 1.00 0.0141 

de_mod12702fn.vb 0 1 0 0 14 3.47 1.00 0.0141 

DatabaseRowCountHealthCheck.cs 0 1 0 0 15 4.16 1.00 0.0140 

EnvironmentVariableHealthCheck.cs 0 1 0 0 15 4.14 1.00 0.0139 

de_cls43110.vb 0 1 0 0 13 5.65 2.00 0.0139 
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DatabaseScalarQueryHealthCheck.cs 0 1 0 0 15 4.09 1.00 0.0138 

de_clssection04.vb 0 1 0 0 13 3.81 1.41 0.0137 

ServiceStateHealthCheck.cs 0 1 0 0 15 4.03 1.00 0.0137 

VerifyAutoPurgeHealthCheck.cs 0 1 0 0 15 3.97 1.00 0.0135 

EventLogHealthCheck.cs 0 1 0 0 15 3.85 1.00 0.0133 

de_mod11340fn.vb 0 1 0 0 14 4.26 1.41 0.0131 

de_clssection05.vb 0 1 0 0 13 3.50 1.41 0.0130 

de_mod44110fn.vb 0 1 0 0 13 5.20 2.00 0.0129 

FolderReplicationHealthCheck.cs 0 1 0 0 15 4.63 1.41 0.0123 

de_enumcommonsectionfieldnumbers.vb 2 1 0 0 19 7.33 1.41 0.0118 

de_cls46125.vb 0 1 0 0 13 4.63 2.00 0.0118 

de_clssection05.vb 0 1 0 0 13 3.66 1.73 0.0115 

de_mod15560fn.vb 0 1 0 0 14 3.43 1.41 0.0114 

de_mod12100fn.vb 0 1 0 0 16 4.74 1.41 0.0111 

de_mod15540fn.vb 0 1 0 0 16 3.43 1.41 0.0090 

de_mod47110fn.vb 1 1 0 0 16 4.28 1.73 0.0088 

de_mod12404fn.vb 0 1 0 0 19 3.76 1.00 0.0081 

de_mod12701fn.vb 0 1 0 0 19 3.47 1.00 0.0077 

de_mod11800fn.vb 0 1 0 0 19 5.41 1.73 0.0074 

de_cls47110.vb 0 1 0 0 16 4.19 2.24 0.0068 

de_mod19000fn.vb 0 1 0 0 19 3.76 1.41 0.0066 

de_enummessages.vb 0 1 0 0 19 5.23 2.00 0.0063 

de_clssection03.vb 0 1 0 0 16 3.40 2.24 0.0060 

de_ctlprpview.vb 0 1 0 0 19 5.45 2.24 0.0058 

de_clssections.vb 0 1 0 0 19 5.45 2.24 0.0058 

setupworkstationdatastores.bat 1 1 0 0 28 4.65 0.00 0.0052 

de_clstaxpr31.vb 0 1 0 0 19 3.99 2.00 0.0052 

de_clstaxpr15.vb 0 1 0 0 19 4.38 2.24 0.0049 

de_mod12403fn.vb 0 1 0 0 19 3.66 2.00 0.0049 

de_clstaxpr33.vb 0 1 0 0 19 4.37 2.24 0.0049 

de_clsschedulec.vb 0 1 0 0 19 3.50 2.00 0.0048 

cs_create_cddb.cpp 0 1 0 0 22 5.84 2.83 0.0033 

EEIFDatabase.cs 0 1 0 0 26 6.73 2.24 0.0031 

MainForm.cs 0 1 0 0 26 5.88 2.00 0.0030 

rp_EOD_tapes_private.h 0 1 0 0 28 3.56 1.00 0.0027 

cs_sql_eeif_initialize.cpp 0 1 0 0 29 5.35 1.41 0.0026 
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Install_ISRP.bat 0 1 0 0 25 3.95 2.65 0.0018 

de_clsstatemachine.vb 2 1 0 0 19 7.93 5.74 0.0016 

cs_ftp_export.cpp 0 1 0 0 36 4.53 1.73 0.0008 

cs_store_ops.cpp 0 1 0 0 37 6.01 2.24 0.0007 

cs_end_of_shift.cpp 1 1 0 0 37 6.02 2.83 0.0006 

rp_perform_EOD_export.cpp 0 1 0 0 37 4.77 2.45 0.0005 

 

We used the coefficient of correlation to compare the results of the SDPM with the 

Poisson regression model.  As Table 30 indicates, the SDPM performed better than 

the Poisson regression model in identifying defect prone files. 

 

 

Table 30: Coefficient of Correlation – Poisson Model 

  
Estimated 
number of 

Defects 

Observed 
Number 

of 
Defects 

Estimated number of Defects 1 
 Observed Number of Defects 0.46747 1 
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Figure 30: SDPM - Est. # of Defective SLOC vs. Observed Number of Defective SLOCs – DIS/CS 17.4 
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4.7 Case Study 5: CCD 689- IMF Changes for PY 2010 

4.7.1 Software Project Background and History 

For this case study we selected a software development project that is intended to 

deliver one enhancement as part of the DIS/CS 17.3 release.  Figure 31  shows the 

timeline of software development activities for this project.  The development phase 

started on July 15, 2009 and concluded on August 20, 2009.  During the development 

phase, code changes were delivered in 2 change sets.  The two change sets were also 

used to deliver code changes needed to address inspection defects.  The first part of 

the code changes was delivered on July 29, 2009 modifying 1287 SLOCs.  The 

second set of changes were delivered on August 5, 2009 modifying 577 SLOCs.  

From 577 SLOCs modified in change set 2, 200 overlapped with SLOCs modified in 

change set 1, 67 of which addressed defective SLOCs identified during the inspection 

process.  In this case study no defects were identified during SWIT and I&T testing.  

CCD 689 was a relatively small project implementing one major enhancement.  The 

major functions being delivered with DIS/CS 17.3 are listed below: 

 

 CCD 689- IMF Changes for PY 2010 

o IMF changes for 2010; PRP 15, 31, 22 and 36 changes; 7 IMF programs 

impacted. 
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Figure 31: CCD 689 Timeline and Development Activities 

 

 

4.7.2 Case Study Measurements 

In previous section, we provided a timeline of the software development activities 

related to DIS/CS 17.3 software release.  On July 29, 2009 the first set of 

enhancements was delivered to the stream.  A formal inspection was held and 

inspection findings along with the implementation of the second set of enhancements 

were delivered on August 5, 2009.  Out of 1287 SLOC changes delivered in the first 

change set 377 were reworked in change set 2.  Figure 32 shows the software change 

matrix for DIS/CS 17.3 release.  In change set 2, 200 additional SLOCs were updated 

to implement the second set of changes needed for this release. 

 

 



 

143 

 
Figure 32: Change Set Matrix – DIS/CS 17.3 

 

4.7.3 Model Parameter Estimation 

In this section we will discuss how model parameters are calculated based on the 

measurements taken in each change set. Table 31 shows the summary of the 

measurements taken for each change set along with the estimates of the model 

parameters. Once model parameters       are estimated, we calculate the change set 

reliabilities, which is shown in column 8 of Table 31. 

 

 

Table 31: Model Parameters – DIS/CS 17.3 

Change 
Set 

Size 
Cap-

Recap 
(2) Est. New 

Defects 

(1) 
Observed 

(to be 
reworked) 

q(i) p(i) r(i) 

46891 1287 Y 132 67 0.50758 0.89744 0.94949 

46928 200 N 21 0 0.00000 0.89744 0.89744 

 

Table 31 shows the probability of constructs being defect free based on the Binary 

Decision Diagram shown in Figure 33. 
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Figure 33: Binary Decision Diagram – DIS/CS 17.3 

 

4.7.4 Case Study Results  

In this section we will compare the estimated number of defective constructs 

estimated by SDPM with the number of constructs modified in each file during final 

system testing of DIS/CS 17.3 release.  Table 32 shows the defect-prone files in 

descending order.  The first column shows the file names, the second column shows 

the file size, the third column gives the magnitude of change in each file in SLOCs.  

The third and fourth columns represent the estimated number of defective SLOCs 

based on the SDPM estimator and the observed SLOC changes during final system 

testing respectively.  We use the coefficient of correlation to assess the performance 

of SDPM with the observed number of defective SLOCs in each file.  We also use the 

coefficient of correlation to show that SDPM provides a better estimate than the 

churn alone. 
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Table 32: Case Study Results – DIS/CS 17.3 

File Name SLOC Churn 
Est. # of 

Defective 
SLOCs 

Observed 
SLOC changes 

during final 
system testing 

de_100000.PCF 8297 628 59.867 522 

de_43110.PCF 1710 273 13.7865 1 

de_44110.PCF 1090 119 12.2094 1 

de_46121.PCF 1440 148 7.474   

de_46125.PCF 874 98 4.949   

de_46122.PCF 676 40 4.104   

de_mod43110fn.vb 266 31 1.5655   

de_clsschedulec.vb 33 30 1.515   

de_47110.PCF 430 14 1.4364   

de_mod44110fn.vb 182 12 1.2312 1 

de_mod46121fn.vb 226 23 1.1615   

de_44400.PCF 402 22 1.111   

de_cls44110.vb 142 3 0.3078   

de_cls46121.vb 179 5 0.2525   

de_clssection05.vb 36 5 0.2525   

de_cls43110.vb 283 5 0.2525   

de_cls47110.vb 66 2 0.2052   

de_mod46122fn.vb 120 2 0.2052   

de_mod46125fn.vb 184 4 0.202   

de_clsSection57.vb 4 4 0.202   

de_clssection57.vb 3 3 0.1515   

de_clssection58.vb 3 3 0.1515   

de_clstaxpr15.vb 80 1 0.1026   

de_clstaxpr31.vb 54 1 0.1026   

de_clstaxpr33.vb 75 1 0.1026   

de_clssection03.vb 30 1 0.1026   

de_mod47110fn.vb 72 1 0.1026   

de_clssection03.vb 107 1 0.1026   

de_clssection04.vb 45 2 0.101   

de_clssection05.vb 39 2 0.101   

de_cls46125.vb 103 1 0.0505   

de_clssection05.vb 33 1 0.0505   

de_mod44400fn.vb 86 1 0.0505   

de_cls46125.vb 103 1 0.0266   

de_clssection05.vb 33 1 0.0266   

de_mod44400fn.vb 86 1 0.0266   
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Table 33 shows the coefficient of correlation between size of change (churn), SDPM 

estimate and the number of defective SLOCs.  Based on Table 33 SDPM provides a 

good estimate for the number of defective SLOCs.  Based on the coefficient of 

correlation in Table 33, SDPM provides a better estimate than the churn alone. Figure 

34 shows the estimated number of defective constructs in each file and the number of 

observed SLOCs modified during final system testing. 

 

Table 33: Correlation Analysis DIS/CS 17.3 

   Churn 

Est. # of 
Defective 

SLOCs 

Observed 
SLOC 

changes 
during 
final 

system 
testing 

 Churn 1 
  Est. # of Defective SLOCs 0.976673 1 

 Observed SLOC changes during 
final system testing 0.917232 0.9766679 1 

 

4.7.5 Poisson Regression Model Results 

We used defect data from releases 10.4 to 17.2 to estimate the number of defects in 

Release 17.3 files.  To fit the data, we used the Poisson regression model as described 

in Section 4.1.1.  Similar to previous case studies the predictor variables used in this 

case study were logarithm of the SLOCs, square root of prior defects, age, and file 

status (New, Changed, and Unchanged). Table 34 shows the regression coefficients.   

As expected, the values of the coefficients of regression are similar or close to the 
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coefficients estimated in previous case studies because the files share the same 

structural measures. 

 

Table 34: Coefficient of Correlation – Poisson Regression 

Coefficient Estimate 
Std. 

Error 
L-R  

ChiSquare 
Prob> 
ChiSq 

Lower CL Upper CL 

Intercept -0.53660 0.05814 87.76055 0.00000 -0.65091 -0.42299 

Log(SLOC) 0.16125 0.01227 173.43862 0.00000 0.13721 0.18531 

Sqrt(Prior Def) -0.48666 0.02250 490.90084 0.00000 -0.53086 -0.44264 

Age -0.11875 0.00509 843.19031 0.00000 -0.12888 -0.10893 

New[0] -1.86038 0.03550 4137.83521 0.00000 -1.93065 -1.79148 

Changed[0] -2.12136 0.03180 7011.85550 0.00000 -2.18446 -2.05978 

Unchanged[0] 0.00000 . . . . . 

 

 

We used the coefficients of regression to estimate the expected number of defects per 

file in Release 17.3 and identify files that will most likely be defective.  The results 

are shown in Table 35 below.   As this table and the SDPM analysis indicate, the 

SDPM performed well in identifying defect prone files based on the software 

development activities from the current project, but failed to identify latent defects 

that already existed in the software product.   On the other hand, while the Poisson 

regression model was able to identify one a newly created file as defective, it failed to 

identify most defect-prone files. 
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Table 35: Estimated Number of Defects-Case Study 5 - (Poisson Model) 

File Name Defects 
Changed 

Unchanged 
New 

Age 
Log 

(SLOC) 

Sqrt 
(Prior 

Defects) 

Poisson 
Model 

de_clsSection57.vb 2 0 0 1 0 1.39 0.00 0.11379 

de_cls44318.vb 0 0 0 1 0 4.14 1.00 0.10909 

de_cls44317.vb 0 0 0 1 0 4.14 1.00 0.10909 

assemblyinfo.vb 0 0 0 1 0 2.94 1.00 0.08992 

assemblyinfo.vb 0 0 0 1 0 2.94 1.00 0.08992 

de_mod44318FN.vb 0 0 0 1 0 2.89 1.00 0.08914 

de_mod44317fn.vb 0 0 0 1 0 2.77 1.00 0.08746 

de_clssection06fc1049.vb 0 0 0 1 0 1.39 1.00 0.06994 

de_clssection06fc1048.vb 0 0 0 1 0 1.39 1.00 0.06994 

de_clssection58.vb 0 0 0 1 0 1.10 1.00 0.06677 

de_clssection57.vb 0 0 0 1 0 1.10 1.00 0.06677 

de_mod46125fn.vb 0 1 0 0 12 5.21 1.00 0.02402 

de_mod44312fn.vb 0 1 0 0 11 4.13 1.00 0.02270 

mod_registerlist.vb 0 1 0 0 11 5.06 1.41 0.02156 

de_mod44303fn.vb 0 1 0 0 11 3.76 1.00 0.02140 

de_mod44400fn.vb 0 1 0 0 12 4.45 1.00 0.02125 

de_mod43110fn.vb 0 1 0 0 12 5.58 1.41 0.02084 

mod_createlist.vb 0 1 0 0 11 4.84 1.41 0.02080 

de_mod44313fn.vb 0 1 0 0 11 3.30 1.00 0.01985 

de_cls44110.vb 0 1 0 0 12 4.96 1.41 0.01883 

de_mod13131fn.vb 0 1 0 0 13 5.61 1.41 0.01858 

de_clssection01.vb 0 1 0 0 12 3.61 1.00 0.01855 

assemblyinfo.vb 0 1 0 0 11 2.71 1.00 0.01806 

assemblyinfo.vb 0 1 0 0 11 2.71 1.00 0.01806 

de_clssection03.vb 0 1 0 0 12 4.67 1.41 0.01799 

de_clssection01.vb 0 1 0 0 12 3.18 1.00 0.01730 

de_clssection01.vb 0 1 0 0 12 3.18 1.00 0.01730 

de_mod11900fn.vb 0 1 0 0 13 5.12 1.41 0.01717 

de_mod44110fn.vb 1 1 0 0 12 5.20 1.73 0.01679 

de_cls43110.vb 0 1 0 0 12 5.65 2.00 0.01583 

de_clssection04.vb 0 1 0 0 12 3.81 1.41 0.01565 

de_mod35713fn.vb 0 1 0 0 13 4.29 1.41 0.01502 

de_clssection05.vb 0 1 0 0 12 3.50 1.41 0.01489 

de_enumcommonsectionfieldnumbers.vb 0 1 0 0 18 7.33 1.41 0.01354 

de_cls46125.vb 0 1 0 0 12 4.63 2.00 0.01345 

de_cls11680.vb 0 1 0 0 13 4.48 1.73 0.01326 

de_clssection05.vb 0 1 0 0 12 3.66 1.73 0.01310 

de_mod11509fn.vb 0 1 0 0 15 4.81 1.41 0.01289 
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de_mod11508fn.vb 0 1 0 0 15 4.81 1.41 0.01289 

de_mod11540fn.vb 0 1 0 0 15 4.75 1.41 0.01277 

de_ctlfielddisplayorder.designer.vb 0 1 0 0 18 5.93 1.41 0.01081 

de_mod47110fn.vb 0 1 0 0 15 4.28 1.73 0.01013 

de_ctlzerobalance.designer.vb 0 1 0 0 18 5.49 1.41 0.01007 

de_ctlfields.designer.vb 0 1 0 0 18 6.26 1.73 0.00977 

de_enummessages.vb 2 1 0 0 18 5.23 1.41 0.00965 

de_POMDatastoreBuild.sql 0 1 0 0 18 4.64 1.41 0.00878 

de_ctlfieldoutputorder.designer.vb 0 1 0 0 18 4.57 1.41 0.00869 

de_CreateMessageLoader.bat 0 1 0 0 18 4.32 1.41 0.00833 

de_cls47110.vb 0 1 0 0 15 4.19 2.24 0.00781 

de_ctlenumerations.designer.vb 0 1 0 0 18 3.83 1.41 0.00770 

de_ctlprpview.vb 1 1 0 0 18 5.45 2.00 0.00752 

de_clssections.vb 1 1 0 0 18 5.45 2.00 0.00752 

de_ctlsections.designer.vb 0 1 0 0 18 4.57 1.73 0.00744 

de_clssection03.vb 0 1 0 0 15 3.40 2.24 0.00688 

de_ctlfields.vb 0 1 0 0 18 6.78 2.65 0.00681 

de_clstaxpr33.vb 1 1 0 0 18 4.37 2.00 0.00632 

de_clstaxpr31.vb 0 1 0 0 18 3.99 2.00 0.00594 

de_ctlsections.vb 0 1 0 0 18 5.89 2.65 0.00589 

de_clstaxpr15.vb 0 1 0 0 18 4.38 2.24 0.00564 

de_clsschedulec.vb 0 1 0 0 18 3.50 2.00 0.00549 

de_frmipde.vb 0 1 0 0 18 6.30 3.16 0.00490 

cs_dis_epmf_lookup.cpp 0 1 0 0 27 4.93 1.00 0.00386 

EEIFDatabase.cs 0 1 0 0 25 6.73 2.24 0.00359 

MainForm.cs 0 1 0 0 25 5.88 2.00 0.00351 

isrp_build.bat 0 1 0 0 27 3.47 1.00 0.00305 

sp_eop_ke3_processing.cpp 0 1 0 0 27 7.15 2.24 0.00303 

cs_entity_check.cpp 0 1 0 0 28 5.30 1.41 0.00298 

cs_eeif_lookup_private.h 0 1 0 0 28 4.67 1.41 0.00269 

sp_remove_ghostblock.cpp 0 1 0 0 27 5.30 2.00 0.00252 

sp_eop_ke3_processing_training_block.cpp 0 1 0 0 34 6.44 1.00 0.00215 

sp_release_block.cpp 0 1 0 0 37 7.54 3.00 0.00068 

 

We used the coefficient of correlation to compare the results of the SDPM with the 

Poisson regression model.  By comparing the coefficient of correlation from Table 36 

with the coefficient of correlation from SDPM provided in Table 33, we observe that 
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the SDPM performed better than the Poisson regression model in identifying defect 

prone files. 

 

 
Table 36: Coefficient of Correlation – Poisson Model 

  
Estimated #  
of Defects  

Observed  
# of Defects 

Estimated # of Defects  1 
 Observed # of Defects 0.63078 1 
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Figure 34: SDPM – Estimated # of Defective SLOCs vs. Observed # of Defective SLOCs – DIS/CS 17.3  
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4.8 Case Study Conclusion 

In this chapter, we presented five industrial software development projects and 

studied how the Software Development Profile Model is used in real life projects.  In 

each case study, we used the SDPM to estimate the number of defective constructs 

per file.  We then compared the results with the number of SLOCs that were modified 

in each file during final system testing.  To make this comparison valid, we excluded 

any code changes during the final system testing phase that were not related to the 

current development.  We then analyzed the results using the coefficient of 

correlation between our estimate and the actual code changes and by comparing the 

ranking of files.  In all five case studies the number of defective constructs estimated 

by SDPM was strongly correlated with the actual number of SLOCs modified during 

final system testing.  Further, in all five case studies the number of SLOC changes 

during final system testing had a stronger correlation with the SDPM estimate than 

size of code change during development alone.  This implies that software 

development process attributes should be considered in defect estimation.  We sorted 

the files that were modified in each software development project in descending order 

and plotted them against the number of SLOCs modified in each file during final 

system testing.  Again, the SDPM performed well by identifying defect prone files 

listed on top of the list. 

Although we noticed a strong correlation between the SDPM estimates and the actual 

modified SLOCs during regression, its absolute predictive accuracy varied from 

project to project.  Our investigation into this error shows the need to ensure the 

model closely matches the project.  For example, the error can either be due to 
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inaccuracies in the estimation of total inspection defects or by failure to incorporate 

all evidence.  In general, the SDPM performed best in Case Studies 1 through 4, 

where the requirement volatility was comparatively low. These four projects followed 

the waterfall model, where the requirements were finalized before development 

started.  In Case Study 5, requirements were changed by the customer later in the 

development lifecycle, causing an unexpectedly large number of code changes to 

appear during final system testing.   

We also used the Poisson regression model to evaluate the SDPM in comparison with 

an existing defect estimation model.  As discussed in Section 4.1, a direct comparison 

was not possible, due of the differences in each model‘s measurement units and 

assumptions.  In general, we observed that the SDPM performed better than the 

regression based model in identifying defect prone files in all five projects.   The 

advantage of the SDPM is that it can estimate defect content of both executable and 

non-executable files.  Since regression based models are based on defect data 

observed during the previous releases, they are unable to identify defects in non-

executable files. The regression based model performed well in identifying latent 

defects that the SDPM was unable to identify due to lack change history and software 

development activities data from previous releases.   
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Chapter 5: Summary of Contributions and Future Research 

Directions 
 

5.1 Summary of Contributions 

In Chapter 3, we introduced the Software Development Profile Model as a causal 

model for identifying defect prone software artifacts based on change history and 

software development activities.  Rather than relying on defect data from previous 

projects or static software attributes to predict defect content, the SDPM assumes that 

human error during software development is the sole cause of software defects, and 

software development activities such as inspection, testing, and rework, further affect 

the total number of remaining software defects.  Based on these assumptions, we 

proposed the SDPM as a causal model for estimating the number of defective 

constructs in software artifacts.  Understanding the relationship between software 

development activities, change history and defect content can be crucial to the 

development of more reliable software products.  It provides software managers with 

a framework for managing and adjusting software development activities more 

effectively.  Rather than using defect data which is mostly available toward the end of 

the software development lifecycle, the SDPM can be used throughout the 

development process to measure defect content based on software development 

activities.  Furthermore, using observations from an ongoing software development 

project provides more accurate defect prediction.   

In Chapter 4, we investigated the relationship between the number of defective 

constructs estimated by the SDPM, and the number of defective constructs observed 

during final system testing using five real life software development projects.  In all 
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five case studies we showed that the number of defective constructs estimated by the 

SDPM was strongly correlated to the actual number of SLOCs modified during final 

system testing.  We also showed that the SDPM can be used to identify defect-prone 

software artifacts early in the development process without relying on defect data. 

In Case Study 1, we show how additional evidence can be taken into account as it 

becomes available to update model parameters.  We used the Bayesian Belief 

Network (BBN) to capture external factors and expert judgment to update the model 

parameters and provide a more accurate estimation.  

5.2 Limitations of this Research  

In this section we discuss the limitations of the SDPM based on the model‘s 

assumptions and discuss future research directions.  First, it is important to note that 

the number of remaining defects is not usually a direct measure of software 

reliability.  A software program may contain many defects, each with a very low rate 

of occurrence, and such product can be more reliable than another software product 

which contains fewer defects each with a high rate of occurrence.  Hence, the total 

rate of failure, that is the failure intensity of a software artifact, is a better measure 

that needs to be considered in the context of software reliability analysis.  Similarly, 

we use the number of defective constructs in files as the measure of defect-proneness.  

We assume that files containing more defective constructs are more likely to be 

defective in production.  While there is a correlation between the number of defective 

constructs in a file and its defect-proneness, considering the logical file structure and 

inter-modular coupling among constructs might provide a better measure of defect-

proneness.   
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We also discussed dependencies among related software artifacts. We recognized that 

modifying one artifact can cause others to become defective.  We captured this 

dependency by assuming that all related artifacts are known, included and reviewed 

during the inspection process.  By including all related artifacts in the inspection, we 

assumed that we are able to estimate the number of defective constructs in related 

artifacts.  Several models have been proposed to quantify the dependencies among 

related artifacts [21][51]. Modeling dependencies among software artifacts 

qualitatively rather than subjectively can improve the estimation, especially for larger 

software development projects or when file dependencies are unknown.    

5.3 Future Research Directions 

Most existing software reliability models contain a parameter which represents the 

number of faults in the software.  If the number of faults is assumed to be finite, then 

there is a need to estimate the number of remaining defects [64].  The SDPM can be 

used in conjunction with different software reliability models to estimate the 

reliability of the software product early in its lifecycle.  

Further, the SDPM has not yet been used in software development project following 

agile methods.  Agile methods break software development activities into small 

increments with minimal planning.  Each increment allows a team to work through a 

full software development lifecycle, including requirements analysis, design, coding 

and testing.  Since iterations are small, multiple iterations may be needed to deliver 

functionality.  Because agile involves minimal planning, the SDPM can be used to 

identify defect-prone artifacts based on development activities and the size of each 
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change so that resources can be more effectively focused on defect-prone software 

artifacts. 

In chapter 4 we recognized three types of dependencies, the dependency among 

constructs, the dependency among change sets and the external dependencies.  In a 

software program there is also an additional dependency between artifacts.  In 

software engineering, the term coupling is used to describe the degree to which 

software artifacts rely on each other.  Low coupling is usually a sign of well-

structured software program.  Since coupling among artifacts can have ripple effect 

on other less defect-prone artifacts, modeling coupling as a dependency is a 

recommended future research topic.   

In Chapter 4, we used Bayesian Belief Network (BBN) to capture the extrinsic 

dependencies.  An example was provided to show how common environmental 

factors and local factors are used to update the model parameters and to provide a 

more accurate estimation.  We did not discuss however, the importance measure of 

the external factor.  Since not all factors affect the number of remaining defects 

equally, we recommend further sensitivity analysis of the external factors as future 

research area.  Such sensitivity analysis can provide software managers with the tool 

needed to understand which factors can provide a better return on investment.   
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Appendix A: Script Developed to Generate Change Sets  

 

The script below was developed to examine the software stream to identify all 

activities in the change set and create a directory structure that can be used by the 

PET tool for SDPM analysis.    

 

################################################################## 

# 

#      Author: Brent Olson 

#      Purpose: 

#   Provided a baseline, examine that baseline to determine 

#   its contents.   

# 

#   for each of the activities unique to that stream (meaning 

#   that we exclude activities with equivalent check-ins  

#   in earlier streams), create a directory structure that looks  

#   like this: 

# 

#   compare_dirs 

#    baseline 

#     latest 

#     previous 

#    activity1 

#     latest  

#     previous 

#    activity2 

#     latest  

#     previous 

#    activity3 

#     latest  

#     previous 

#     . 

#     . 

#     . 

#     . 

#     . 

# 

#   "latest" contains the latest versions of files touched by  

#   that activity.  "previous" contains versions of the files 

#   touched by the activity, but contains the version of the file 

#   that existed before it was modified by that activity 

# 

################################################################### 

 

 

use CQPerlExt; 

#use Win32::ODBC; 

use Env "USERNAME"; 

 

 

#-------------------------------------- 

#  set some base variables 

#-------------------------------------- 

 

my $pvob = "\\isrp_pvob"; 

my $temp_dir; 

my $baseline; 
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if ( defined $ENV{"TMP"} ) { 

 $temp_dir = $ENV{"TMP"}; 

 

 print "\n\n#############################\n#   Copying files to: " . 

$ENV{"TMP"} . "\\baseline_compare\n#############################\n"; 

 

} 

else { 

 $temp_dir = "C:\\TEMP"; 

} 

 

my $out_file = "$temp_dir\\baseline_compare\\copy_baseline_output.txt"; 

my $compare_directory = "baseline_compare"; 

 

if (! -d "$temp_dir\\baseline_compare") { 

 mkdir ("$temp_dir\\baseline_compare") or die "\nERROR: cannot mkdir 

\"$temp_dir\\baseline_compare\" because $!"; 

} 

 

 

 

 

 

#-------------------------------------- 

#  verify input 

#-------------------------------------- 

 

if (! $ARGV[0]){ 

 usage("You must provide a baseline."); 

 

} 

else { 

 $baseline = $ARGV[0]; 

 

 # if the baseline has an @, then it includes a pvob qualifier 

 if ($baseline =~ /\@/) { 

  ($baseline, $pvob) = split /\@/, $baseline; 

 } 

 

 print `cleartool lsbl $baseline\@$pvob 2>&1`; 

 usage("Not a valid baseline") if ($?);  

 

} 

 

# --------------------------------------------------- 

# remove the comparison directory and the output file  

# --------------------------------------------------- 

 

clean_up(); 

 

 

 

 

 

# ----------------------------------------------------------------------------- 

# copy out the entire baseline so that SLOCCO can look at it and give us 

# details on how many total SLOC exist.  We do this by using SLOCCO to compare 

# the baseline against itself. 

# ----------------------------------------------------------------------------- 

#$whole_baseline_file_hash = run_file_comparison_for_all_files($baseline); 

#clean_up(); 

 

 

# ----------------------------------------------------------------------------- 

# now use the baseline to get a list of the activities included, exclude those  

# from previous releases, and then copy out the relevant files and SLOCCO it 

# we define activities of this release to include those things checked in for this 

baseline,  

# but excluding those activities with corresponding checkins in earlier streams 

# ----------------------------------------------------------------------------- 

my @all_activities = get_all_activities($baseline); 
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print "\nall activities means @{all_activities}"; 

 

my @release_activities = 

activities_from_baseline_excluding_earlier_releases($baseline); 

print "\njust the release activities means @{release_activities}"; 

 

# update the compare dir for the first copy 

$compare_directory = "baseline_compare\\$baseline"; 

 

copy_files_for_these_activities(@release_activities); 

 

 

print "\nDone copying everything, now I'm going to make copies for each of the 

activities included"; 

 

foreach $act (@release_activities) { 

 

 print "\n\nRunning for $act:"; 

 

 $compare_directory = "baseline_compare\\$act"; 

 

 my @one_act = ($act); 

 copy_files_for_these_activities(@one_act); 

 

 print "\n\tDone copying for $act ...."; 

} 

 

 

$compare_directory = "baseline_compare\\$baseline"; 

 

 

print "\n\n#################################################################\n#"; 

print "    Copying Complete!!  Please check $temp_dir\\baseline_compare for your 

files..."; 

print "\n#################################################################"; 

 

exit 0; 

 

 

 

 

 

 

#--------------------------------------------------------------------- 

#--------------------------------------------------------------------- 

#  SUBROUTINES 

#--------------------------------------------------------------------- 

#--------------------------------------------------------------------- 

 

 

 

 

#-------------------------------------- 

# sub clean_up 

# 

# remove the output file and the  

# comparison directories if they  

# exist (from the last time they  

# were run) 

#-------------------------------------- 

 

sub clean_up { 

 

 # remove the output file if it exists already 

 if (-f $out_file) { 

  #print "\nRemoving the output file from the last time this was run... 

(file: $out_file)"; 

  print `del /q /f \"$out_file\" 2>&1`; 

  print "\nWarning: $out_file not removed!" if (-f $out_file); 

 } 
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 # remove the comparison directories if they already exist 

 if (-d "$temp_dir\\$compare_directory"  ){ 

  #print "\nRemoving the comparison directory from the last time this was 

run... (dir: $temp_dir\\$compare_directory)"; 

  print `rmdir /s/q \"$temp_dir\\$compare_directory\" 2>&1`; 

 

  print "\nWarning: $temp_dir\\$compare_directory not completely removed" 

if (-d "$temp_dir\\$compare_directory" ) ; 

 } 

 

 # now, recreate the base that you've just removed, since we'll be runing this 

thing multiple times and at different directory depths 

 mkdir ("$temp_dir\\$compare_directory") or die "Can't makedir on 

$temp_dir\\$compare_directory because $!"; 

 

} 

 

 

 

 

#------------------------------------ 

#  sub get_cq_info_for 

# 

#------------------------------------ 

 

sub get_cq_info_for { 

 

 

 my @activities = @_; 

 

 #print "\n\nInside get_cq_info_for I have @{activities}"; 

 

 

 my %act_info; 

 #my @INSPECTS = ("$inspection"); 

  

 my $CQsession = CQSession::Build(); 

 $CQsession->UserLogon("xxxxxxx", "xxxxxxx", "xxxxx", ""); 

 

 my $query_def_obj = $CQsession->BuildQuery("BaseCMActivity"); 

 my $filterOp = $query_def_obj-

>BuildFilterOperator($CQPerlExt::CQ_BOOL_OP_AND); 

 #$filterOp->BuildFilter("Inspection_ID", $CQPerlExt::CQ_COMP_OP_LIKE, 

\@INSPECTS); 

 $filterOp->BuildFilter("id", $CQPerlExt::CQ_COMP_OP_IN, \@activities); 

 

 $query_def_obj->BuildField("id"); 

 $query_def_obj->BuildField("Inspection_ID"); 

 $query_def_obj->BuildField("Parent_Defect_Record"); 

 $query_def_obj->BuildField("Parent_Enhancement_Record"); 

 $query_def_obj->BuildField("Parent_Defect_Record.Resolution_new"); 

 $query_def_obj->BuildField("Parent_Defect_Record.Swit_Test_Status"); 

 $query_def_obj->BuildField("Parent_Defect_Record.Unit_Test_Status"); 

 $query_def_obj->BuildField("Parent_Enhancement_Record.Resolution_New"); 

 $query_def_obj->BuildField("Parent_Enhancement_Record.Swit_Test_Status"); 

 $query_def_obj->BuildField("Parent_Enhancement_Record.Unit_Test_Status"); 

 $query_def_obj->BuildField("Headline"); 

 $query_def_obj->BuildField("State"); 

 $query_def_obj->BuildField("Owner"); 

 $query_def_obj->BuildField("ucm_stream"); 

 

 # unfortunately, querying on the State fields below causes the  

 # query to return an empty results set ... not sure why... 

 # but I think it has to do with the fact that the baseCMActivity also has a 

State 

 # $query_def_obj->BuildField("Parent_Defect_Record.State"); 

 # $query_def_obj->BuildField("Parent_Enhancement_Record.State"); 

 

 # now that I think about this more, I've seen this before, and it is the case 
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that queries against 

 # child record fields whose names also appear in the parent record fail to 

behave as would be expected 

 

 # create a results object and run the query 

 my $result_set_obj = $CQsession->BuildResultSet($query_def_obj); 

 print $result_set_obj->Execute(); 

 

 

 while ( $result_set_obj->MoveNext() == $CQPerlExt::CQ_SUCCESS ) { 

 

  my $id = $result_set_obj->GetColumnValue(1); 

  my $stream = $result_set_obj->GetColumnValue(14); 

 

  # don't bother adding an activity that isn't associated with a stream 

  # since our activity list comes from a baseline comparison, it's very 

unlikely that this  

  # will be empty 

  if (! $stream) { 

   print "\n\nWarning: $id appears to not be associated with a 

stream: excluding from this list"; 

   next; 

  } 

   

  $act_info{$id}{'inspection'} = $result_set_obj->GetColumnValue(2);  

 

  #  print "\n" . $result_set_obj->GetColumnValue(1) . $result_set_obj-

>GetColumnValue(2) . $result_set_obj->GetColumnValue(3) . $result_set_obj-

>GetColumnValue(4) . $result_set_obj->GetColumnValue(5) . $result_set_obj-

>GetColumnValue(6) . $result_set_obj->GetColumnValue(7) . $result_set_obj-

>GetColumnValue(8) . $result_set_obj->GetColumnValue(9) . $result_set_obj-

>GetColumnValue(10); 

 

  $act_info{$id}{'defect'} =  $result_set_obj->GetColumnValue(3); 

  $act_info{$id}{'enhancement'} = $result_set_obj->GetColumnValue(4); 

  $act_info{$id}{'defect_resolution'} = $result_set_obj-

>GetColumnValue(5); 

  $act_info{$id}{'defect_swit'} = $result_set_obj->GetColumnValue(6); 

  $act_info{$id}{'defect_unit'} = $result_set_obj->GetColumnValue(7); 

  $act_info{$id}{'enhancement_resolution'} = $result_set_obj-

>GetColumnValue(8); 

  $act_info{$id}{'enhancement_swit'} = $result_set_obj-

>GetColumnValue(9); 

  $act_info{$id}{'ehancement_unit'} = $result_set_obj-

>GetColumnValue(10); 

  $act_info{$id}{'headline'} = $result_set_obj->GetColumnValue(11); 

  $act_info{$id}{'state'} = $result_set_obj->GetColumnValue(12); 

  $act_info{$id}{'owner'} = $result_set_obj->GetColumnValue(13); 

  $act_info{$id}{'stream'} = $result_set_obj->GetColumnValue(14); 

 

  #if ($act_info{$id}{'stream'} eq "") { 

  #print "\n\n#########SOME_MESSAGE###########"; 

  #} 

 

  #print "\n\t$act_info{$id}{'owner'}"; 

 

  # since we can't use these, we may have to look up this information  

  # separately later 

  # 

  # $act_info{$id}{'defect_state'} = $result_set_obj->GetColumnValue(11); 

  # $act_info{$id}{'enhancement_state'} = $result_set_obj-

>GetColumnValue(12); 

 

 } 

 

 CQSession::Unbuild($CQsession); 

 

 

 return \%act_info; 

 

} 
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#------------------------------------------------------------------ 

# 

# sub check_CC_for_file_versions 

# 

#    calls get_a_view_for_this_stream 

#    calls  first_version_is_smaller 

# 

#     

# 

#------------------------------------------------------------------ 

 

sub check_CC_for_file_versions { 

 

 

 my %hash = %{$_[0]}; 

 

 foreach $key (keys %hash) { 

 

  #print "\n   *  $key  $hash{$key}{'stream'}"; 

 

  #print "a view for this would be: " . 

get_a_view_for_this_stream($hash{$key}{'stream'}); 

 

  $hash{$key}{'view'} = get_a_view_for_this_stream(  

$hash{$key}{'stream'}  ); 

 

  my $view = $hash{$key}{'view'}; 

 

  my $view_drive = get_view_drive(); 

  chdir ("$view_drive\\$view"); 

 

  #print `cleartool lsactivity -long $key\@$pvob 2>&1`; 

  @output = `cleartool lsactivity -long $key\@$pvob 2>&1`; 

 

  # initialize a place on the hash for file information 

  #%hash{$key}{'files'} ; 

 

  foreach $line (@output) { 

 

   next if $line !~ /\Q$view\E/; 

   #print "$line"; 

   $line =~ s/^\s+//; 

   $line =~ s/\s+$//; 

   #$line =~ s/Q:\\\Q$view\E\\//; 

   $line =~ s/\Q$view_drive\E\\\Q$view\E\\//; 

    

 

   # we're taking the output of the lsactivity and putting it into  

   # a file and the version specific information (or version tree 

address) 

   my $file, my $version; 

   ($file, $version) = split /\@\@/, $line; 

 

 

   #print "\n\tThat's $file and version extension $version"; 

   #print "\#n\t $file           and     $version"; 

 

   # set the current version that we're working on 

   $hash{$key}{'files'}{$file}{'cur_version'} = $version; 

   # set some temp vars to the already record earliest and latest 

   # (if they don't exist, then we'll set them... see below...) 

   my $early = $hash{$key}{'files'}{$file}{'earliest_version'} ; 

   my $late = $hash{$key}{'files'}{$file}{'latest_version'} ; 

    

   #print "\n\tfor $file, Comparing $early and $late against 

$version"; 

    

   # if the version is ealier than what we've already recorded, 

update 

   if ( first_version_is_smaller( $version, $early )) { 
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    $hash{$key}{'files'}{$file}{'earliest_version'} = 

$version ; 

   } 

 

   # likewise, if we see that this version is the latest, select 

that 

   if (first_version_is_smaller($late, $version)) { 

    $hash{$key}{'files'}{$file}{'latest_version'} = $version 

; 

   } 

 

   #print "\n\t -" .  $hash{$key}{'files'}{$file}{'cur_version'}; 

 

  } 

 

 } 

 

 

 return \%hash; 

 

} 

 

#------------------------------------------------------------------- 

# 

# 

#    sub first_version_is_smaller 

# 

#       compares two strings.  the strings look like this: 

# 

#       \main\se_7.2_Dev\se_7.3_CDev\1    \main\se_7.2_Dev\se_7.3_CDev\7 

#       \main\se_7.2_CDev\2     \main\se_7.2_CDev\3A 

# 

#       The sub must look at the last whole integer and compare those 

#       We do not have to confirm that both versions are on the same  

#       branch because clearcase activities are tied to streams 

# 

#       thus it's highly unlikely that the versions being compared  

#       will not be on the same branch 

# 

# 

#------------------------------------------------------------------- 

 

sub first_version_is_smaller  { 

 

 return 1 if (! $_[0] ); 

 return 1 if (! $_[1] ); 

 

 my @first_array = split /\\/, $_[0]; 

 my @second_array = split /\\/, $_[1]; 

 

 if ( $first_array[$#first_array] < $second_array[$#second_array] ) { 

  return 1; 

 } 

 else { 

  return 0; 

 } 

 

} 

 

 

 

#------------------------------------------------------------------ 

# 

# sub get_a_view_for_this_stream 

# 

#  call this, pass a stream name in a string,  

#  and get back a view.  the view is either located 

#  or created. 

# 

# calls start_or_make_a_view 

# expects that $pvob is a global variable populated with  
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# the relevant pvob from clearcase (we only have one pvob in ISRP) 

# 

#------------------------------------------------------------------ 

 

sub get_a_view_for_this_stream { 

 

 # create a private instance of stream based on the input 

 my $stream = $_[0]; 

 

 # do a little error checking -- if we don't have a stream at this point se 

should just stop 

 die "ERROR: get_a_view_for_this_stream was passed an empty \$stream" if 

($stream eq "");  

 

 

 # look for a view that has the stream name in it 

 my $view_drive = get_view_drive(); 

 my $cmd_output = `dir $view_drive\\`; 

 die "ERROR: some problem checking view dir using \"dir $view_drive\\\": $!  -  

$cmd_output" if ($?); 

 

 # note: you can't redirect stderr to stdout as it changes the output 

 # and I don't feel like addressing it now 

 # my $cmd_output = `dir q:\\ 2>&1`; 

 

 # do a minimal amount of error handling 

 # these msgs should come through stderr 

 if ( $cmd_output =~ /The device is not ready/   

   or    

  $cmd_output =~ /is not a recognized device/ 

   or 

  $cmd_output =~ /is not a recognized device/ 

 ) {   #then 

  die "Some problem when looking at $view_drive\\ :  $cmd_output"; 

 } 

 

 # the output is separated by some kind of whitespace 

 my @views = split /\s+/, $cmd_output; 

 

 # get those views whose names contain the stream  

 # note that perl searches on variables require encapsulation in \Q and \E  

 my @matching_views = grep (/\Q$stream\E/, @views); 

 

 #print "\n\n Here are the views that I found matching stream $stream:"; 

 #foreach $guy (@matching_views){ 

 # print "\n\t$guy"; 

 #} 

  

 

 #if ($#matching_views < 0) { 

  # print "\n\tNo (already running) views found for this stream"; 

  #} 

 

 

 if ($#matching_views < 0) { 

 

  print "\n\n\nNo matching views found... I'll try making one...\n"; 

 

  @matching_views = ( start_or_make_a_view($stream) ); 

 

 } 

 

 # return the view at the top of the list; 

 return $matching_views[0]; 

 

 

 

} 
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#------------------------------------------------------------------ 

# 

# sub start_or_make_a_view 

#     returns the name of a view that is currently running 

#     based on the stream name provided 

# 

#     first, check to see if a view already exists (based  

#     off of our expected viewname.  if it does, ensure it's  

#     started and return that 

#  

#     if it doesn't already exist, create a new view and return  

#     the view name 

# 

#     expects that global variable $pvob is populated  

#------------------------------------------------------------------ 

 

sub start_or_make_a_view { 

 

 # grab the input as string 

 my $stream = $_[0]; 

 

 # first check to see if the view already exists 

 # $USERNAME is populated from the use Env "USERNAME" statement above 

 my $output = `cleartool lsview ${USERNAME}_XX_${stream} 2>&1`; 

 

 # if it's not there, make a view,  

 # otherwise, ensure that the view is started and return that 

 

 if ($output =~ /cleartool: Error/) { 

 

  # make a view 

  #print "\n\tview ${USERNAME}_XX_${stream} does not exist.  

Creating..."; 

  #print "\n\tRunning: \"cleartool mkview -tag ${USERNAME}_XX_${stream}  

-stream ${stream}\@${pvob} -stgloc -auto 2>&1\" "; 

  # cleartool mkview -tag cmbuild2_XX_se_7.1_Dev -stream 

se_7.1_Dev@\isrp_pvob -stgloc -auto 

  # 

  my $output = `cleartool mkview -tag ${USERNAME}_XX_${stream}  -stream 

${stream}\@${pvob} -stgloc -auto 2>&1 `; 

 

  if ( $output =~ /Created view/ ) { 

   #print "\n\t${USERNAME}_XX_${stream} created"; 

   return  "${USERNAME}_XX_${stream}"; 

  } 

  else { 

   die "ERROR: I can't seem to make this view:  

${USERNAME}_XX_${stream} \n\n\tHere's my output: \n$output"; 

  } 

 

 

 } 

 else { 

 

  #use the view that already exists, if you can 

   

   

  if (substr($output,1,1) eq "*") { 

 

   #print "\n\tView already started"; 

   return "${USERNAME}_XX_${stream}"; 

 

  } 

  else { 

   #print "\n\tView ${USERNAME}_XX_${stream} exists but isn't 

started.  Starting..."; 

 

   if ( `cleartool startview ${USERNAME}_XX_${stream}` eq "" ) { 

    #print "\n\tView started"; 

    return "${USERNAME}_XX_${stream}"; 

   } 
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   else { 

    die "The view $view exists, but I can't start it..."; 

   } 

  } 

 } 

} 

 

 

 

#-------------------------------------- 

# sub create_compare_dir 

#        

#       use the activities hash you created to get lists of  

#       old files vs new files.  use these lists to create 

#       directories in your temp folder.  later we'll compare 

#       these two folders against eachother 

# 

#-------------------------------------- 

 

 

sub create_compare_dir { 

 

 %hash = %{$_[0]}; 

 

 #print "\njust for reference, our hash was " . \%hash; 

 

 #print "\n\tCopying Files: "; 

 

 setup_base_dirs(); 

 

 

 #----------------------------------------------------------------------------- 

 #    now we go through the activities, and for each, look at each of the files 

 #    associated and create a directory tree under latest and previous that  

 #    corresponds to the directory tree for the file 

 #----------------------------------------------------------------------------- 

 foreach $key ( keys (%hash) ) { 

 

  #print "\n\t\t$key:"; 

  #foreach $inner_key (keys %{$hash{$key}} ) { 

  # print "\n$key : $inner_key : $hash{$key}{$inner_key}"; 

  #} 

 

  if ( ! -d "$temp_dir\\$compare_directory"){ 

   mkdir( "$temp_dir\\$compare_directory") or die "ERROR: cannot 

make $temp_dir\\$compare_directory because of $!"; 

  }  

 

  # foreach of the files, create the empty directory structure  

  # that you need in order to do the comparison 

  foreach $file ( keys %{$hash{$key}{"files"}} ) { 

 

   ##print "\n$file:\n\t" . $hash{$key}{"files"}{$file}; 

 

   #foreach $other_key (keys %{$hash{$key}{"files"}{$file}} ) { 

   #print "\n$other_key"; 

   #} 

 

   #print "\n$file: " . 

$hash{$key}{"files"}{$file}{"latest_version"}; 

   #print "\n$file: " . 

$hash{$key}{"files"}{$file}{"earliest_version"}; 

 

   # split up the file string to get an array of  

   # dirrectories 

   my @dirs = split /\\/, $file; 

   # pop off the last one -- that's the filename! 

   pop @dirs;  

 

   my $already_created_dir = ""; 

   my $this_dir = ""; 
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   my $that_dir = ""; 

 

   foreach $dir (@dirs) { 

 

    $this_dir = $temp_dir . "\\$compare_directory\\latest\\" 

. $already_created_dir . $dir ; 

    $that_dir = $temp_dir . 

"\\$compare_directory\\previous\\" . $already_created_dir . $dir ; 

 

    # if you create a directory, you may print to the screen 

that you've done so 

 

    if (! -d $this_dir) { 

     die "ERROR: cannot make $this_dir: $!" if (! 

mkdir ($this_dir)); 

     #print "ERROR: cannot make $this_dir: $!" if (! 

mkdir ($this_dir)); 

    } 

 

    if (! -d $that_dir) { 

     die "ERROR: cannot make $that_dir: $!" if (! 

mkdir ($that_dir)); 

     #print "ERROR: cannot make $that_dir: $!" if (! 

mkdir ($that_dir)); 

    } 

    #print "\nCreated dir $this_dir" if (mkdir ($this_dir)); 

    #print "\nCreated dir $that_dir" if (mkdir ($that_dir)); 

     

    if ($already_created_dir eq "") { 

     #print "\n\t(Setting \$already_created_dir to 

$dir\\)"; 

     $already_created_dir = "$dir\\"; 

    } 

    else { 

     #print "\n\t(Setting \$already_created_dir to 

$already_created_dir" . "$dir\\)"; 

     $already_created_dir = $already_created_dir . 

"$dir\\"; 

    } 

   } 

 

 

 

   #----------------------------------------------- 

   #  now perform the copy 

   #----------------------------------------------- 

 

   # get the earliest version associated with the activity 

   my @array = split /\\/, 

$hash{$key}{"files"}{$file}{"earliest_version"}; 

    

   #  we need to compare the latest version with the version just 

previous to the  

   #  earliest version, so take the last element off the array,  

    

   $array[$#array]--; 

   #my $orig_ver_number = pop @array; 

   #$orig_ver_number--; 

   #push @array, $orig_ver_number; 

 

   # put the array back together to get a string 

   my $prev_version = join '\\', @array;  

    

 

   my $orig_file = $file . "\@\@" . $prev_version; 

   my $latest_file = $file . "\@\@" . 

$hash{$key}{"files"}{$file}{"latest_version"}; 

   # print "\nI'm going to copy out $orig_file and $latest_file"; 

 

   # just skip to the next entry if this is a directory: no need 

to copy those 
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   #print "\nChecking to see if $orig_file is a directory"; 

   next if (-d $orig_file); 

 

   ## 

   #   uncomment here if you want to see what files are being 

copied 

   ## 

 

   #print "."; 

   #print "\nCopying $file...";  

   #print "\t" . `copy \"$latest_file\" 

\"$temp_dir\\$compare_directory\\latest\\$file\" 2>&1`;  

   #print "\t" . `copy \"$orig_file\" 

\"$temp_dir\\$compare_directory\\previous\\$file\" 2>&1`;  

 

 

   if ( length($latest_file) > 255 or length($orig_file) > 255 ) { 

 

    # grab the current directory and store it so that we can 

change back to where we were 

    my $current_directory = `cd`; 

    chomp $current_directory; 

 

    my @split_dirs_for_latest = split /\\/, $latest_file; 

    my @split_dirs_for_orig = split /\\/, $orig_file; 

 

    # we take the $latest_file and the $orig_file and split 

them up by directories / branches 

    # then we take the first half and change directory to 

that half, before running the copy command  

    # on the second half 

    # (scalar flattens the array and returns the number of 

elements) 

    my $halfway_latest = int ( scalar @split_dirs_for_latest 

/ 2 ); 

    my $subs_path_latest = join "\\", 

@split_dirs_for_latest[0 .. $halfway_latest]; 

    my $copy_path_latest = join "\\", 

@split_dirs_for_latest[ ($halfway_latest + 1) .. $#split_dirs_for_latest]; 

     

    my $halfway_orig = int ( scalar @split_dirs_for_orig / 2 

); 

    my $subs_path_orig = join "\\", @split_dirs_for_orig[0 

.. $halfway_orig]; 

    my $copy_path_orig = join "\\", @split_dirs_for_orig[ 

($halfway_orig + 1) .. $#split_dirs_for_orig]; 

 

 

    my $drive = "G"; 

 

    # change to a directory that's somewhere close to half 

way down the path  

    # note that this might be a real directory, or might be 

a branch off of the file you're copying 

    chdir "$current_directory\\$subs_path_latest" or die 

"\nERROR: I can't change directory to $subs_path_latest because $!"; 

    print `subst $drive: . 2>&1`; 

    die "\nERROR in subst command to copy: $latest_file: cmd 

is 'subst $drive: . 2>&1' error msg is $!" if ($?); 

 

    # now copy the file 

    `copy \"$drive:\\$copy_path_latest\" 

\"$temp_dir\\$compare_directory\\latest\\$file\" `;  

    print "\nWarning: error copying 

$drive:\\$copy_path_latest to $temp_dir\\$compare_directory\\latest\\$file: $!" if 

($?); 

 

    print `subst $drive: /d 2>&1`; 

    die "\nERROR in un-substing $drive using command 'subst 

$drive: . 2>&1' error msg is $!" if ($?); 
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    # change to a directory that's somewhere close to half 

way down the path  

    # note that this might be a real directory, or might be 

a branch off of the file you're copying 

    chdir "$current_directory\\$subs_path_orig" or die 

"\nERROR: I can't change directory to $subs_path_orig because $!"; 

    print `subst $drive: . 2>&1`; 

    die "\nERROR in subst command to copy: $orig_file: cmd 

is 'subst $drive: . 2>&1' error msg is $!" if ($?); 

 

    #print "\nnow trying to copy from: " . `cd`; 

    # now copy the file 

    `copy \"$drive:\\$copy_path_orig\" 

\"$temp_dir\\$compare_directory\\previous\\$file\" `;  

    print "\nWarning: error copying $drive:\\$copy_path_orig 

to $temp_dir\\$compare_directory\\previous\\$file: $!" if ($?); 

 

    print `subst $drive: /d 2>&1`; 

    die "\nERROR in un-substing $drive using command 'subst 

$drive: . 2>&1' error msg is $!" if ($?); 

 

    # change back to where you started 

    chdir $current_directory or die "\nERROR: I can't change 

back to directory $current_directory because $!"; 

 

 

   } 

   else { 

    `copy \"$latest_file\" 

\"$temp_dir\\$compare_directory\\latest\\$file\" `;  

    print "\nWarning: error copying $latest_file to 

$temp_dir\\$compare_directory\\latest\\$file: $!" if ($?); 

    `copy \"$orig_file\" 

\"$temp_dir\\$compare_directory\\previous\\$file\" `;  

    print "\nWarning: error copying $orig_file to 

$temp_dir\\$compare_directory\\previous\\$file: $!" if ($?); 

   } 

 

  } 

 

 } 

 

} 

 

 

#-------------------------------------------------- 

#  sub compare_directories 

# 

#   use the SLOCCO tool to compare the two 

#   directories and generate an output file 

# 

#-------------------------------------------------- 

 

 

sub compare_directories { 

 

 # note: the jar file referenced below needs to (apparently) be in the current 

 # working directory in order for things to work.   

 #print "\nChanging directory to \"c:\\CM\\scripts\\inspection check\".  MAKE 

SURE THIS IS UPDATED BEFORE RELEASING THIS SCRIPT!!"; 

 my $analysis_dir = "z:\\CM\\scripts\\baseline_analysis"; 

 print "\nChanging directory to $analysis_dir. "; 

 #chdir("c:\\CM\\scripts\\inspection check"); 

 chdir($analysis_dir) or die "ERROR: cannot change to directory $analysis_dir: 

$!"; 

 

 my $latest = "$temp_dir\\$compare_directory\\latest"; 

 my $previous = "$temp_dir\\$compare_directory\\previous"; 

 #my $slocco_jar = "c:\\cm\\SLOCCO\\slocco.jar"; 

 my $slocco_jar = "slocco.jar"; 

 #my $slocco_settings = "c:\\cm\\SLOCCO\\isrp_slocco.xml"; 
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 my $slocco_settings = "isrp_slocco.xml"; 

 

 print "\n\nRunning SLOCCO tool to analyze $temp_dir\\$compare_directory\n\n"; 

 

 #print "\nRunning `java -jar $slocco_jar -cs -p $slocco_settings -o $out_file 

-f $previous $latest 2>&1`";  

 #print `java -jar $slocco_jar -cs -p $slocco_settings -o $out_file -f 

$previous $latest 2>&1`;  

 # should I run and grab the output, or just process the  

 print "\nRunning `java -jar $slocco_jar -cs -p $slocco_settings -o $out_file -

f $previous $latest 2>&1`";  

 `java -jar $slocco_jar -cs -p $slocco_settings -o $out_file -f $previous 

$latest 2>&1`;  

 die "\n\nERROR: java does not return success!! returns: $? with msg: $!" if 

($?); 

 

 #java -jar slocco.jar -cs -p isrp_slocco.xml -o sloc_report.txt -f $args[0] 

$args[1] 

 

 return; 

 

} 

 

 

#-------------------------------------------------- 

#  sub extract_data_from_slocco_output 

#-------------------------------------------------- 

 

sub extract_data_from_slocco_output { 

 

 my %file_data_from_slocco=(); 

 

 # the $out_file has the slocco output that we  

 # need to examine 

  

 open (FH, "<$out_file"); 

 my @slocco_output = <FH>; 

 close(FH); 

 

 # trim out all the lines that do not appear to be files 

 #@slocco_output = grep 

/(.*\\(.+\.\w+))\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+).*/, 

@slocco_output; 

 #@slocco_output = grep /^\Q$temp_dir\\$compare_directory\E/, @slocco_output; 

 

 # print out what we have 

 foreach $line (@slocco_output) { 

  #print "$line"; 

 } 

 

 

 foreach $line (@slocco_output) { 

  # @details = split /\s+/, $line; 

  #print "\nname: $details[0], Lines: $details[1], Comments: $details[2], 

SLOC: $details[3],"; 

  #print " Added: $details[4], Modified: $details[5], Deleted: 

$details[6], Unchanged: $details[7]"; 

 

  # who the hell came up with this beast?  me? 

  # maybe I poached it from the SLOCCO people....  I hope so.  Yuck. 

  if ($line =~ 

/(.*\\(.+\.\w+))\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+).*/) { 

   #print "\n$1 $2 $3 $4 $5 $6 $7 $8 $9."; 

   # Files  Lines  Comments  SLOC  Added  Modified  Deleted  

Unchanged 

 

   # assign variables to what we've pulled out 

   # this is "inefficient" in the sense that we're creating 

needless variable instances 

   # but I'm leaving it like this for the sake of readability 

   my $long_file = $1; 
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   my $file_name = $2; 

   my $total_lines = $3; 

   my $comments = $4; 

   my $sloc = $5; 

   my $added = $6; 

   my $modified = $7; 

   my $deleted = $8; 

   my $unchanged = $9; 

 

   # fill up our %file_data_from_slocco hash 

   $file_data_from_slocco{$long_file}{'file_name'} = $file_name; 

   $file_data_from_slocco{$long_file}{'total_lines'} = 

$total_lines; 

   $file_data_from_slocco{$long_file}{'comments'} = $comments; 

   $file_data_from_slocco{$long_file}{'sloc'} = $sloc; 

   $file_data_from_slocco{$long_file}{'added'} = $added; 

   $file_data_from_slocco{$long_file}{'modified'} = $modified; 

   $file_data_from_slocco{$long_file}{'deleted'} = $deleted; 

   $file_data_from_slocco{$long_file}{'unchanged'} = $unchanged; 

 

    

   

  } 

 

 

 

 } 

 

 

 #foreach $file ( keys %file_data_from_slocco ) { 

 #print "\n"; 

 #print $file_data_from_slocco{$file}{'file_name'} ; 

 #print " "; 

 #print $file_data_from_slocco{$file}{'total_lines'} ; 

 #print " "; 

 #print $file_data_from_slocco{$file}{'comments'} ; 

 #print " "; 

 #print $file_data_from_slocco{$file}{'sloc'} ; 

 #print " "; 

 #print $file_data_from_slocco{$file}{'added'} ; 

 #print " "; 

 #print $file_data_from_slocco{$file}{'modified'} ; 

 #print " "; 

 #print $file_data_from_slocco{$file}{'deleted'} ; 

 #print " "; 

 #print $file_data_from_slocco{$file}{'unchanged'} ; 

 #} 

 

 

 

 return \%file_data_from_slocco; 

 

 

} 

 

 

#--------------------------------------------------------- 

#  sub get_latest_activities 

# 

#   run a cleartool diffbl command to get the activities 

#   added to this baseline (as compared to it's immediate 

#   predecessor) 

#--------------------------------------------------------- 

 

 

 

sub get_latest_activities { 

 

 my $baseline = $_[0]; 

 my @activities; 
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 my @output = `cleartool diffbl -pred $baseline\@$pvob 2>&1`; 

 # complain if the previous system call does not return success 

 die "some error in output; @{output}" if ($?); 

  

 #print "\n\ndiffbl returns @{output}"; 

 

 @output = grep (! /Prod\d{10}\@$pvob "deliver /,  @output); 

 

 foreach $line (@output) { 

 

  my $act = substr($line,3,12); 

  #print "\nadding $act to list of activities"; 

  push @activities, $act; 

 

 } 

 

 # should probably take out the grep for deliveries and instead 

 # simply write a function to only include basecms 

 #@activities = return_only_baseCMs(@activities); 

 

 

 return @activities; 

 

 

} 

 

 

 

#--------------------------------------------------------- 

#  sub get_all_activities 

# 

#   purpose is to take a baseline and return all the  

#   baseCMactivities that went into the baseline 

#   (since the foundation baseline) 

#--------------------------------------------------------- 

 

sub get_all_activities { 

 

 my $baseline = $_[0]; 

 

 my $stream = `cleartool desc -fmt "%[bl_stream]p" baseline:$baseline\@$pvob`; 

 chomp $stream; 

 die "ERROR: description of baseline $baseline failed: $!" if ($?); 

 

 my $prev_bl = `cleartool desc -fmt "%[found_bls]p" stream:$stream\@$pvob`; 

 chomp $prev_bl; 

 die "ERROR: descibing the stream $stream failed: $!" if ($?); 

 

 my @output = `cleartool diffbl $baseline\@$pvob $prev_bl\@$pvob 2>&1`; 

 #print "\n `cleartool diffbl $baseline\@$pvob $prev_bl\@$pvob 2>&1`"; 

 die "some error in calling diffbl: @{output}" if ($?); 

  

 #print "\n\ndiffbl returns @{output}"; 

 

 # note that when you have a variable in a regular expression block,  

 # it needs to be enclosed in \Q and \E to get perl to interpret it properly 

 @output = grep (!/Prod[0-9]{8}\@\Q$pvob\E "deliver/,  @output); 

 

  

 foreach $line (@output) { 

 

  my $act = substr($line,3,12); 

  #print "\nadding $act to list of activities"; 

  push @activities, $act; 

 

 } 

 

 # should probably take out the grep for deliveries and instead 

 # simply write a function to only include basecms 

 #@activities = return_only_baseCMs(@activities); 
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 return @activities; 

} 

 

 

 

 

#---------------------------------------------------------------- 

#   sub copy_files_for_these_activities 

# 

# accepts a list of baseCMactivities 

# 

# from that list, get data on all files associated with that 

# activity, including the latest version in clearcase, and the  

# earliest version 

# 

# then copy it out 

#---------------------------------------------------------------- 

 

sub copy_files_for_these_activities { 

 

 my @activities = @_; 

  

 #print "\n\nInside of copy_files_for_these_activities: @{activities}"; 

 

 my $hash_of_activity_data = get_cq_info_for(@activities); 

  

 #print "\n\nhere are the latest activities: @{latest_activities}"; 

 #print "\n\nhere are the full list of activities for this baseline, since the 

foundation: @{all_activities}"; 

  

 #-------------------------------------------------------------- 

 #  just verify that you got something back from CQ 

 #-------------------------------------------------------------- 

 

 my @acts = keys %{$hash_of_activity_data}; 

 $number = $#acts + 1; 

 #print "\nThere are $number of activities."; 

 if ( $number < 1 ) { 

  print "\n\nSorry: there are $number activities found in \$hash_of-

activity_data\n\n"; 

   return; 

 } 

  

  

 #---------------------------------------- 

 #  now we check clearcase to see what 

 #  the activity has as far as files are  

 #  concerned  -- load into the data hash 

 #---------------------------------------- 

  

 $hash_of_activity_data = check_CC_for_file_versions($hash_of_activity_data); 

  

 

 #--------------------------------------------- 

 #  copy out the files into two directories 

 #  (one for the previous versions, another 

 #  for those checked in against our activities 

 #--------------------------------------------- 

  

 create_compare_dir($hash_of_activity_data); 

  

  

 print "\nDone creating directories: $temp_dir\\$compare_dir"; 

 

 return ($insp_results, $hash_of_activity_data); 

} 

 

 

 

##---------------------------------------------------------------- 
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##   sub run_comparison_for_activity_list 

## 

## accepts a list of baseCMactivities 

## 

## from that list, get data on all files associated with that 

## activity, including the latest version in clearcase, and the  

## earliest version 

## 

## then  

##---------------------------------------------------------------- 

# 

#sub run_comparison_for_activity_list { 

# 

#my @activities = @_; 

# 

#my $hash_of_activity_data = get_cq_info_for(@activities); 

# 

##print "\n\nhere are the latest activities: @{latest_activities}"; 

##print "\n\nhere are the full list of activities for this baseline, since the 

foundation: @{all_activities}"; 

# 

##-------------------------------------------------------------- 

##  just verify that you got something back from CQ 

##-------------------------------------------------------------- 

# 

#my @acts = keys %{$hash_of_activity_data}; 

#$number = $#acts + 1; 

##print "\nThere are $number of activities."; 

#if ( $number < 1 ) { 

#print "\n\nSorry: there are $number activities found in \$hash_of-activity_data\n\n"; 

#return; 

#} 

# 

# 

##------------------------------------------------- 

##  don't need anymore since I added a check in the get_cq_info_for  

##  subroutine 

##------------------------------------------------- 

##$hashref = remove_activities_with_empty_streams(\%hash); 

##$hash_of_activity_data = 

remove_activities_with_empty_streams($hash_of_activity_data); 

# 

# 

##---------------------------------------- 

##  now we check clearcase to see what 

##  the activity has as far as files are  

##  concerned  -- load into the data hash 

##---------------------------------------- 

# 

#$hash_of_activity_data = check_CC_for_file_versions($hash_of_activity_data); 

# 

##just some checking to verify hash contents -- delete as needed 

##my %h =  %{$hash_of_activity_data}; 

##foreach $x (keys %h) { 

## print "\n$x and $h{$x}"; 

##  

## my %g = %{$h{$x}}; 

##  

## foreach $y (keys %g){ 

##  if ($y ne "files") {  

##   print "\n\t$y $g{$y}"; 

##  } 

##  else { 

##   my %z = %{$g{$y}}; 

## 

##   print "\n\thas files:"; 

##   foreach my $file (keys %z) { 

##    print "\n\t\t$file: $z{$file}"; 

##   } 

##  } 

## } 
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##} 

# 

###--------------------------------------------- 

##  copy out the files into two directories 

##  (one for the previous versions, another 

##  for those checked in against our activities 

##--------------------------------------------- 

# 

#create_compare_dir($hash_of_activity_data); 

# 

##----------------------------------------- 

##  compare the two directories using the  

##  SLOCCO tool provided by LMCO   

##----------------------------------------- 

# 

#compare_directories(); 

# 

##----------------------------------------- 

##  now grab the slocco output and process 

##  it 

##----------------------------------------- 

# 

#$insp_results = extract_data_from_slocco_output(); 

# 

#return ($insp_results, $hash_of_activity_data); 

#} 

  

  

#------------------------------------------------------------------------ 

# sub activities_from_baseline_excluding_earlier_releases  

# 

# accept a clearcase baseline 

# 

# first call get_all_activities to get a list of all the activities 

# get an ordered list of all streams and determine what streams happened 

# before the stream belonging to the baseline, through the foundation baseline 

# for the stream in question 

# strip out all the activities from previous releases (if a defect appears 

# in an earlier stream, then remove it from the list) 

#------------------------------------------------------------------------ 

  

sub activities_from_baseline_excluding_earlier_releases { 

 

 my $baseline = $_[0]; 

 my @all_activities = get_all_activities($baseline); 

 

 #my $stream = get_stream_from_baseline($baseline); 

 #my @previous_projects = get_sorted_projects_for($stream); 

 # now get a list of activities included in those projects 

 #my @excluded_activities = 

get_activities_for_these_projects(@previous_projects); 

 

 my @excluded_activities = get_excluded_activities(@all_activities); 

 

 my @only_activities_for_this_release = reconcile_activity_lists( 

\@all_activities, \@excluded_activities ); 

 

 return @only_activities_for_this_release; 

 

} 

 

 

 

#---------------------------------------------------------------------------- 

# sub get_excluded_activities 

#---------------------------------------------------------------------------- 

 

sub get_excluded_activities { 

 

 my @activities = @_; 
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 my @excluded_acts = (); 

 

 # foreach activities, look up it's parent, grab all associated child activies,  

 # and check each of them for the project they belong to 

  

 my $CQsession = CQSession::Build(); 

 $CQsession->UserLogon("xxxxx", "xxxxx", "xxxxx", ""); 

 

 foreach $act (@activities) { 

 

  my @associated_records; 

  my $has_earlier_content = 0; 

 

 

         my $activity_object = $CQsession->GetEntity("BaseCMActivity", "$act"); 

 

         #  get the parent record, whether defect or enhancement 

         my $field_info_obj = $activity_object-

>GetFieldValue("Parent_Defect_Record"); 

         my $defect_parent = $field_info_obj->GetValue(); 

         $field_info_obj = $activity_object-

>GetFieldValue("Parent_Enhancement_Record"); 

         my $enhancement_parent = $field_info_obj->GetValue(); 

 

  # get the project that this activity is a part of  

  my $project = $activity_object->GetFieldValue("ucm_project")-

>GetValue(); 

 

 

  if ($defect_parent ne "") { 

   my $parent_object = $CQsession->GetEntity("Defect", 

"$defect_parent"); 

          @associated_records = split /\n/, $parent_object-

>GetFieldValue("Child_Defect_Record")->GetValue; 

   #print "\n\nfor $act: we have other records associated with the 

parent defect $defect_parent: @{associated_records}"; 

  } 

  elsif ($enhancement_parent ne "") { 

   my $parent_object = $CQsession->GetEntity("EnhancementRequest", 

"$enhancement_parent"); 

          @associated_records = split /\n/, $parent_object-

>GetFieldValue("Child_Enhancement_Record")->GetValue; 

   #print "\n\nfor $act: we have other records associated with the 

parent enhancement $enhancement_parent: @{associated_records}"; 

  } 

  else { 

   die "\n\nI can't find a parent for this baseCMactivity: $act"; 

  } 

 

  # foreach of the baseCMs that share a parent with the activity in 

question, pull out the project 

  # that they're a part of and compare to see if it appears to be an 

earlier release 

  # if it is, then record the activity in question as an excluded 

activity 

 

  foreach $baseCM (@associated_records) { 

 

          $activity_object = $CQsession->GetEntity("BaseCMActivity", 

"$baseCM"); 

 

   my $other_project = $activity_object-

>GetFieldValue("ucm_project")->GetValue(); 

 

   # if the prefixs of the project do not match, then just ignore 

it 

   # for example, we don't want to compare se_ with sw_ 

   next if ( substr($project, 0, 3) ne substr($other_project, 0, 

3) ); 

 

   # convert the project from, for example, sw_17.12 to two 
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numbers, 17 and 12 

   (my $prj_1, my $prj_2) = split /\./, substr($project, 3); 

   (my $o_prj_1, my $o_prj_2) = split /\./, substr($other_project, 

3); 

 

   # use the values extracted to compare and find whether the $act 

in question 

   # has checkins in an earlier release, if it does, set your flag 

   $has_earlier_content = 1 if ($prj_1 > $o_prj_1);  

   $has_earlier_content = 1 if ( ($prj_1 == $o_prj_1) and ($prj_2 

> $o_prj_2) );  

 

   # if so, stop further checking 

   last if ($has_earlier_content); 

 

  } 

 

 

  push (@excluded_acts, $act) if ($has_earlier_content);  

    

 

 

 } 

 

 CQSession::Unbuild($CQsession); 

 

 return @excluded_acts; 

 

} 

 

 

 

 

 

#---------------------------------------------------------------------------- 

# sub get_stream_from_baseline 

#---------------------------------------------------------------------------- 

 

sub get_stream_from_baseline { 

 

 my $baseline = $_[0]; 

 

 my $stream = `cleartool lsbl -fmt \%[bl_stream]p $baseline\@$pvob 2>&1`; 

 die "ERROR: unable to check baseline to find foundation stream in 

get_stream_from_baseline: $!\noutput is $stream\n" if ($?); 

 

 #print "\n$baseline is from $stream"; 

 return $stream; 

 

} 

 

 

 

 

#---------------------------------------------------------------------------- 

# sub get_foundation_stream 

#---------------------------------------------------------------------------- 

 

sub get_foundation_stream { 

 

 my $stream = $_[0]; 

 

 my $found_baselines = `cleartool lsstream -fmt \%[found_bls]p $stream\@$pvob 

2>&1`; 

 die "\nERROR: unable to check stream to look for foundation baselines in 

get_foundation_stream: $!\noutput is $found_baselines\n" if ($?); 

 

 # 

 # error out if multiple foundation baselines are found 

 # 

 if ( $found_baselines =~ /\s/ ) { 
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  # for now, we need to just complain that multiple baselines were found 

and then die 

  # this shouldn't occure, and if it does then we'll just have to rework 

the logic to handle multiple components 

  die "\nERROR: multiple components found associated with $stream: 

multiple foundation baselines: $found_baselines. \n\tYou will need to retool this 

script before you can run this against $ARGV[0]."; 

  #my @multiple_streams = split /\s/, $found_baselines; 

 

 } 

 

 my $found_stream = get_stream_from_baseline($found_baselines); 

 

 print "\nstream $stream is based on $found_stream"; 

 

 return $found_stream; 

 

  

} 

 

 

#---------------------------------------------------------------------------- 

# 

#---------------------------------------------------------------------------- 

 

 

#-------------------------------------------------------------------------------- 

#  sort_projects 

#   for a given list of clearcase projects, sort the list from earliest to  

#   latest.  List looks something like this: 

# 

#  sw_16.9 

#  sw_17.1 

#  sw_17.2 

#  sw_17.3 

#  sw_17.4 

#  sw_16.10 

#  sw_17.5 

#  sw_17.6 

#  sw_17.8 

#  sw_17.7 

#  sw_17.9 

#  sw_17.10 

#  sw_17.11 

#     

#   Notice the prefix_XX.YY format.  We sort by XX first, and then by YY. 

# 

#-------------------------------------------------------------------------------- 

 

sub sort_projects { 

 

 

 print "\n I've been asked to sort @{_}"; 

 

 my @projs = @_; 

 my @sorted_list; 

 

 my $prefix = substr $projs[0], 0, 3;  

 

 

 # load up @sorted_list with all the projects, but with the three 

 # char prefix stripped out 

 foreach $x (@projs) { 

  push ( @sorted_list, substr ($x, 3) ); 

 } 

 

 

 print "\nWith the prefixs stripped off, the list looks like this: 

@{sorted_list}"; 
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 for ($i=0; $i <= $#sorted_list; $i++) { 

 

  # first we convert all the numbers to XXX.YYY format, adding zeros 

where appropriate 

 

  print "\n\tFor $sorted_list[$i], we split it into "; 

 

  my @thing = split /\./, $sorted_list[$i]; 

 

  print "$thing[0] and $thing[1]"; 

 

  for ($j = 0; $j < 2; $j++){ 

 

   if ($thing[$j] =~ /^[0-9]$/ ) { 

    $thing[$j] = "00" . $thing[$j]; 

   } 

 

   if ($thing[$j] =~ /^[0-9][0-9]$/ ) { 

    $thing[$j] = "0" . $thing[$j]; 

 

   } 

  } 

 

  $sorted_list[$i] = "$thing[0].$thing[1]"; 

 

 } 

 

 print "\n\nRefactoring to deal with the zeros, and it looks like this: 

@{sorted_list}"; 

 

 

 @sorted_list = sort (@sorted_list); 

 

 

 # now we need to strip out the extra zeros that we added in order to do the 

sort 

 # there must be an elegant way to do this.  I'm open to suggestions... 

 

 

  

 for ($i=0; $i <= $#sorted_list; $i++) { 

 

  print "\n\tlooking at $sorted_list[$i]"; 

 

  if ($sorted_list[$i] =~ /\.000$/ ) { 

   $sorted_list[$i] =~ s/\.000/\.0/; 

  } 

 

  if ($sorted_list[$i] =~ /^00/ ) { 

   $sorted_list[$i] =~ s/^00//; 

  } 

 

  if ($sorted_list[$i] =~ /\.00\d/ ) { 

   $sorted_list[$i] =~ s/\.00/\./g; 

  } 

 

  if ($sorted_list[$i] =~ /^0/ ) { 

   $sorted_list[$i] =~ s/^0//; 

  } 

 

  if ($sorted_list[$i] =~ /\.0\d\d/ ) { 

   $sorted_list[$i] =~ s/\.0/\./; 

  } 

 

  if ($sorted_list[$i] =~ /\.0\d/ ) { 

   $sorted_list[$i] =~ s/\.0/\./; 

  } 

 

  print "    changed to $sorted_list[$i]"; 

 

  # now put the prefixes back on, and return the list 
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  $sorted_list[$i] = $prefix .  $sorted_list[$i];   

 

  print "    changed to $sorted_list[$i]"; 

 

 } 

 

 

  

 #foreach $x (@sorted_list) { 

 #print "\n\t\t\t$x"; 

 #} 

 

 return @sorted_list; 

 

  

 

 

} 

 

 

 

 

 

#------------------------------------------------------------------------ 

# sub reconcile_activity_lists  

# 

# accepts two references to lists containing activities 

# 

# activity could be any type, but we're only concerned with baseCMactivities 

# (other activities are probably ucmutilityactivites, used by deliveries) 

# 

# the listed activities should not have any duplicates,  

# 

# @a = reconcile_activity_lists( \@all_activities, \@excluded_activities ); 

#------------------------------------------------------------------------ 

 

sub reconcile_activity_lists { 

 

 my @stream_activities = @{$_[0]}; 

 my @excluded_activities = @{$_[1]}; 

 

 ## we don't have to attempt to reconcile should the "exculded_activities" be 

empty 

 #return @stream_activities if ( $#excluded_activities == -1 ); 

 

 my %parent_records = (); 

 my %parents_of_excluded_ones = (); 

 

 my $CQsession = CQSession::Build(); 

 $CQsession->UserLogon("xxxxx", "xxxxx", "xxxxx", ""); 

 

 my $query_def_obj = $CQsession->BuildQuery("BaseCMActivity"); 

 my $filterOp = $query_def_obj-

>BuildFilterOperator($CQPerlExt::CQ_BOOL_OP_AND); 

 $filterOp->BuildFilter("id", $CQPerlExt::CQ_COMP_OP_IN, \@stream_activities); 

 

 $query_def_obj->BuildField("id"); 

 $query_def_obj->BuildField("Parent_Defect_Record"); 

 $query_def_obj->BuildField("Parent_Enhancement_Record"); 

 

 # create a results object and run the query 

 my $result_set_obj = $CQsession->BuildResultSet($query_def_obj); 

 print $result_set_obj->Execute(); 

 

 while ( $result_set_obj->MoveNext() == $CQPerlExt::CQ_SUCCESS ) { 

 

  my $id = $result_set_obj->GetColumnValue(1); 

  my $defect = $result_set_obj->GetColumnValue(2); 

  my $enhance = $result_set_obj->GetColumnValue(3); 
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  if ( $defect && $enhance ) { 

   die "\nERROR! $id unexpectedly linked to defect $defect and 

enhancement $enhance "; 

  } 

  elsif ( $defect ) { 

   push @{$parent_records{$defect}}, $id; 

   print "\nrecord $id has parent $defect (d)"; 

  } 

  elsif ( $enhance ) { 

   push @{$parent_records{$enhance}}, $id; 

   print "\nrecord $id has parent $enhance (e)"; 

  } 

  else { 

   print "\n\nWARNING: id $id has no parrent!  Please 

investigate!\n\n"; 

  } 

 

 } 

 

 # don't attempt to build up an exclusion list unless we actually provided some  

 # activities in the first place.   

 if ( $#excluded_activities != -1 ) { 

 

  print "\n\nTo be excluded:"; 

 

  # now do the same for the exclusion list 

  

  $query_def_obj = $CQsession->BuildQuery("BaseCMActivity"); 

  $filterOp = $query_def_obj-

>BuildFilterOperator($CQPerlExt::CQ_BOOL_OP_AND); 

  $filterOp->BuildFilter("id", $CQPerlExt::CQ_COMP_OP_IN, 

\@excluded_activities); 

 

  $query_def_obj->BuildField("id"); 

  $query_def_obj->BuildField("Parent_Defect_Record"); 

  $query_def_obj->BuildField("Parent_Enhancement_Record"); 

 

  # create a results object and run the query 

  $result_set_obj = $CQsession->BuildResultSet($query_def_obj); 

  print $result_set_obj->Execute(); 

 

  while ( $result_set_obj->MoveNext() == $CQPerlExt::CQ_SUCCESS ) { 

 

   my $id = $result_set_obj->GetColumnValue(1); 

   my $defect = $result_set_obj->GetColumnValue(2); 

   my $enhance = $result_set_obj->GetColumnValue(3); 

  

   if ( $defect && $enhance ) { 

    die "\nERROR! $id unexpectedly linked to defect $defect 

and enhancement $enhance "; 

   } 

   elsif ( $defect ) { 

    $parents_of_excluded_ones{$defect} = $id; 

    print "\nrecord $id has parent $defect (d)"; 

   } 

   elsif ( $enhance ) { 

    $parents_of_excluded_ones{$enhance} = $id; 

    print "\nrecord $id has parent $enhance (e)"; 

   } 

   else { 

    print "\n\nWARNING: id $id has no parrent!  Please 

investigate!\n\n"; 

   } 

  

  } 

  

 } 

  

 

 CQSession::Unbuild($CQsession); 
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 # remove any keys that appear in the list of excluded activities and also 

exist in the  

 # list of activities from the stream being analysed 

 foreach $excluded_parent (keys %parents_of_excluded_ones) { 

  print "\nLooking to exclude $excluded_parent"; 

  delete $parent_records{$excluded_parent} if ( 

$parent_records{$excluded_parent} ); 

 } 

 

 

 my @abreviated_list = (); 

 

 #print "\n\nGot to this point and we now have the following:"; 

 # 

 foreach $key (keys %parent_records) { 

  

  my @list = @{$parent_records{$key}}; 

  

  foreach $id (@list) { 

   #print "\n$id has parent $key"; 

   push @abreviated_list, $id; 

  } 

 

 } 

 

 return @abreviated_list; 

 

} 

 

 

#-------------------------------------- 

# sub get_view_drive 

#-------------------------------------- 

 

sub get_view_drive { 

 

 my @use_output = `net use 2>&1`; 

 die "ERROR: \"net use\" call failed: $!  -  @{use_output}" if ($?); 

 

 my $line; 

 my $drive; 

 my $junk; 

 

 ($line) = grep ( /\\\\view                    ClearCase Dynamic Views/, 

@use_output); 

 ($junk, $drive, $junk) = split /\s+/, $line; 

 

 #print "\nMy grep found this drive: $drive.  \$line is $line"; 

 

 return $drive; 

 

} 

 

 

#---------------------------------------------------------------------------- 

#  sub setup_base_dirs 

# 

#   create the base directories for comparison 

#   there are three:  

#     $compare_directory\ 

#       latest\ 

#       previous\ 

# 

#---------------------------------------------------------------------------- 

 

sub setup_base_dirs { 

 

 if (! -d "$temp_dir\\$compare_directory") { 

  #print "\n$temp_dir\\$compare_directory doesn't already exist... 

making..."; 

  mkdir ($temp_dir . "\\$compare_directory\\")   
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 } 

 

 if (! -d "$temp_dir\\$compare_directory\\latest") { 

  #print "\n$temp_dir\\$compare_directory\\latest doesn't already 

exist... making..."; 

  mkdir ($temp_dir . "\\$compare_directory\\latest")   

 } 

 

 if (! -d "$temp_dir\\$compare_directory\\previous") { 

  #print "\n$temp_dir\\$compare_directory\\previous doesn't already 

exist... making..."; 

  mkdir ($temp_dir . "\\$compare_directory\\previous")   

 } 

 

} 

 

#---------------------------------------------------------------------------- 

#  sub  get_component_from_baseline 

#   

#  given a baseline, determine which component the baseline is 

#  associated with 

# 

#  for now, assume a single component, error out if there are  

#  multiple 

# 

#---------------------------------------------------------------------------- 

 

sub get_component_from_baseline { 

 

 my $baseline = $_[0]; 

 

 my $comp = `cleartool desc -fmt %[component]p baseline:$baseline\@$pvob 2>&1`; 

 die "ERROR: trouble describing baseline $baseline for $pvob: $comp: $!" if 

($?); 

 chomp $comp; 

 

 #print "\n\nComponent is: $comp"; 

 

 # let's keep in mind that we have single components in our projects in this 

environment 

 # if this changes 

 die "ERROR: \$comp contains multiple components: $comp.\n\nI wasn't made to 

handle this case.  Please refactor." if ($comp =~ /\s+/); 

 

 return $comp; 

 

} 

 

 

#-------------------------------------- 

# sub usage 

#-------------------------------------- 

 

sub usage { 

 

 my $msg = $_[0]; 

 

 if ($msg) { 

  print "Error: $msg"; 

 } 

 

 print "\n\n"; 

 

 print "\n\n\tUsage: ratlperl $0 <baseline>"; 

 print "\n\n\tExample: ratlperl $0 sw_17.11.1006.4"; 

 print "\n\tExample: ratlperl $0 se_7.9.0.4@\\isrp_pvob\n\n\n"; 

 exit 1; 

 

} 
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Chapter 6: Glossary 
 

Artifact: A software artifact is a product that is created during software 

development containing software constructs.  Software artifacts can be 

source files, software modules, or software documents such as the 

Software Requirements Specifications (SwRS) produced during 

software development [36]. 

Construct: The smallest software piece for which data is collected.  Depending on 

the software development project, a construct can be a software line of 

code (SLOC), function point (FP), function, class, source statement 

(SS), or any other software unit [9].  

Error:  Human action that results in software containing a fault. Examples 

include omission or misinterpretation of user requirements in a 

software specification, and incorrect translation or omission of a 

requirement in the design specification [30]. 

Failure: (1) The termination of the ability of a functional unit to perform its 

required function [30]. 

(2) An event in which a system or system component does not perform 

a required function within specified limits. A failure may be produced 

when a fault is encountered [30]. 

Fault: (1) An accidental condition that causes a functional unit to fail to 

perform its required function [30]. 

(2) A manifestation of an error in software. A fault, if encountered, 

may cause a failure.  Synonymous with bug [30]. 

Inspection: A static analysis technique that relies on visual examination of 

development products to detect errors, violations of development 

standards, and other problems.  Types include code inspection; design 

inspection [30]. 

Measure:  A quantitative assessment of the degree to which a software product or 

process possesses a given attribute. 

Metric: A quantitative measure of the degree to which a system, component, or 

process possesses a given attribute. 

Module:  (1) A program unit that is discrete and identifiable with respect to 

compiling, combining with other units, and loading; for example, the 

input to, or output from, an assembler, compiler, linkage editor, or 

executive routine [30].  

(2) A logically separable part of a program. Note: The terms 

―module,‖ ―component,‖ and ―unit‖ are often used interchangeably or 

defined to be sub-elements of one another in different ways depending 

upon the context. The relationship of these terms is not yet 

standardized [30].     

Software 

Reliability:  The probability that software will not cause the failure of a system for 

a specified time under specified conditions. The probability is a 

function of the inputs to, and use of, the system as well as a function of 
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the existence of faults in the software. The inputs to the system 

determine whether existing faults, if any, are encountered [30]. 

 

Software  

Reliability  

Management:  The process of optimizing the reliability of software through a 

program that emphasizes software error prevention, fault detection and 

removal, and the use of measurements to maximize reliability in light 

of project constraints such as resources (cost), schedule, and 

performance [30]. 

 

 

 

 



 

187 

Chapter 7: Bibliography 
 

[1]  S. Afsharian, M. Giacomobono, and P. Inverardi, ―A framework for software 

project estimation based on COSMIC, DSM and rework characterization,‖ in 

30th International Conference on Software Engineering, ICSE 2008 - 1st 

Business Impact of Process Improvements, BIPI-2008, May 13, 2008 - May 13, 

2008, Leipzig, Germany, 2008, pp. 15-23. 

[2]  M. Askari and R. Holt, ―Information theoretic evaluation of change prediction 

models for large-scale software,‖ in 2006 International Workshop on Mining 

Software Repositories, MSR  ’06, Co-located with the 28th International 

Conference on Software Engineering, ICSE 2006, May 20, 2006 - May 28, 2006, 

Shanghai, China, 2006, pp. 126-132. 

[3]  C. Bai, K.-Y. Cai, and T. Y. Chen, ―An Efficient Defect Estimation Method for 

Software Defect Curves,‖ in Proceedings: 27th Annual International Computer 

Software and Applications Conference, COMPSAC 2003, November 3, 2003 - 

November 6, 2003, Dallas, TX, United states, 2003, pp. 534-539. 

[4]  C.-G. Bai, K.-Y. Cai, Q.-P. Hu, and S.-H. Ng, ―On the trend of remaining 

software defect estimation,‖ IEEE Transactions on Systems, Man, and 

Cybernetics Part A:Systems and Humans, vol. 38, no. 5, pp. 1129-1142, 2008. 

[5]  V. R. Basili et al., ―Empirical investigation of perspective-based reading,‖ 

Empirical Software Engineering, vol. 1, no. 2, pp. 133-164, 1996. 

[6]  T. Bergander, Y. Luo, and A. B. Hamza, ―Software defects prediction using 

operating characteristic curves,‖ in 2007 IEEE International Conference on 

Information Reuse and Integration, IEEE IRI-2007, August 13, 2007 - August 15, 

2007, Las Vegas, NV, United states, 2007, pp. 713-718. 

[7]  A. Bernstein, J. Ekanayake, and M. Pinzger, ―Improving defect prediction using 

temporal features and non linear models,‖ in IWPSE’07: Ninth International 

Workshop on Principles of Software Evolution - In conjunction with the 6th 

ESEC(European Software Engineering Conference)/FSE(Foundations of 

Software Engineering) Joint Meeting, September 3, 2007 - September 4, 2007, 

Dubrovnik, Croatia, 2007, pp. 11-18. 

[8]  W. Blischke, Reliability : modeling, prediction, and optimization. New York: 

Wiley, 2000. 

[9]  W. Blischke, Case studies in reliability and maintenance. Hoboken  NJ: John 

Wiley, 2003. 

[10]  C. B. Boehm et al., ―Cost models for future software life cycle processes,‖ 

presented at the Annals of Software Engineering, 1995. 

[11]  L. C. Briand, K. E. Emam, B. G. Freimut, and O. Laitenberger, 

―Comprehensive evaluation of capture-recapture models for estimating software 

defect content,‖ IEEE Transactions on Software Engineering, vol. 26, no. 6, pp. 

518-540, 2000. 

[12]  K.-Y. Cai, ―On estimating the number of defects remaining in software,‖ 

Journal of Systems and Software, vol. 40, no. 2, pp. 93-114, 1998. 

[13]  K.-Y. Cai, Software defect and operational profile modeling. Boston: Kluwer 

Academic Publishers, 1998. 



 

188 

[14]  E. Ceylan, F. O. Kutlubay, and A. B. Bener, ―Software defect identification 

using machine learning techniques,‖ in 32nd Euromicro Conference on Software 

Engineering and Advanced Applications, SEAA, August 29, 2006 - September 1, 

2006, Cavtat/Dubrovnik, Croatia, 2006, pp. 240-246. 

[15]  C.-P. Chang and C.-P. Chu, ―Defect prevention in software processes: An 

action-based approach,‖ Journal of Systems and Software, vol. 80, no. 4, pp. 559-

570, 2007. 

[16]  A. Chao, S.-M. Lee, and S.-L. Jeng, ―Estimating Population Size for Capture-

Recapture Data When Capture Probabilities Vary by Time and Individual 

Animal,‖ Biometrics, vol. 48, no. 1, pp. 201-216, Mar. 1992. 

[17]  L. Cheung, R. Roshandel, N. Medvidovic, and L. Golubchik, ―Early 

prediction of software component reliability,‖ in 30th International Conference 

on Software Engineering 2008, ICSE’08, May 10, 2008 - May 18, 2008, Leipzig, 

Germany, 2008, pp. 111-120. 

[18]  S. Chulani and B. Boehm, ―Modeling software defect introduction and 

removal: COQUALMO (COnstructive QUALity MOdel),‖ USC-CSE Technical 

Report, pp. 99-510, 1999. 

[19]  L. H. Crow, P. H. Franklin, and N. B. Robbins, ―Principles of successful 

reliability growth applications,‖ in Reliability and Maintainability Symposium, 

1994. Proceedings., Annual, 1994, pp. 157-159. 

[20]  L. H. Crow, ―Evaluating the reliability of repairable systems,‖ in 1990 

Proceedings - Annual Reliability and Maintainability Symposium, January 23, 

1990 - January 25, 1990, Los Angeles, CA, USA, 1990, pp. 275-279. 

[21]  E. L. Droguett, A. Mosleh, and C. Smidts, ―Identification and Quantification 

of Software Dependencies in Reliability Models,‖ Probabilistic Safety Analysis 

and Management–PSAM, vol. 4. 

[22]  K. O. Elish and M. O. Elish, ―Predicting defect-prone software modules using 

support vector machines,‖ Journal of Systems and Software, vol. 81, no. 5, pp. 

649-660, 2008. 

[23]  N. Fenton, M. Neil, and D. Marquez, ―Using Bayesian networks to predict 

software defects and reliability,‖ Proceedings of the Institution of Mechanical 

Engineers, Part O: Journal of Risk and Reliability, vol. 222, no. 4, pp. 701-712, 

2008. 

[24]  N. Fenton et al., ―Predicting software defects in varying development 

lifecycles using Bayesian nets,‖ Information and Software Technology, vol. 49, 

no. 1, pp. 32-43, 2007. 

[25]  S. Ghose, ―ANALYSIS OF ERRORS IN SOFTWARERELIABILITY 

PREDICTION SYSTEMSAND APPLICATION OF MODELUNCERTAINTY 

THEORY TO PROVIDEBETTER PREDICTIONS,‖ University of Maryland, 

2006. 

[26]  T. L. Graves, A. F. Karr, U. S. Marron, and H. Siy, ―Predicting fault 

incidence using software change history,‖ IEEE Transactions on Software 

Engineering, vol. 26, no. 7, pp. 653-661, 2000. 

[27]  S. W. Haider, J. W. Cangussu, K. M. L. Cooper, and R. Dantu, ―Estimation 

of defects based on defect decay model: ED3M,‖ IEEE Transactions on Software 

Engineering, vol. 34, no. 3, pp. 336-356, 2008. 



 

189 

[28]  Y. Hong, J. Baik, I.-Y. Ko, and H.-J. Choi, ―A value-added predictive defect 

type distribution model based on project characteristics,‖ in 7th IEEE/ACIS 

International Conference on Computer and Information Science, IEEE/ACIS ICIS 

2008, May 14, 2008 - May 16, 2008, Portland, OR, United states, 2008, pp. 469-

474. 

[29]  T. Illes-Seifert and B. Paech, ―Exploring the relationship of history 

characteristics and defect count: An empirical study,‖ in 2008 Workshop on 

Defects in Large Software Systems 2008, DEFECTS’08, July 20, 2008 - July 20, 

2008, Seattle, WA, United states, 2008, pp. 11-15. 

[30]  Institute of Electrical and Electronics Engineers, IEEE software engineering 

standards collection. Institute of Electrical and Electronics Engineers, 1991. 

[31]  Y. Jiang, B. Cukic, T. Menzies, and N. Bartlow, ―Comparing design and code 

metrics for software quality prediction,‖ in 30th International Conference on 

Software Engineering, ICSE 2008 - 4th International Workshop on Predictor 

Models in Software Engineering, PROMISE 2008, May 12, 2008 - May 13, 2008, 

Leipzig, Germany, 2008, pp. 11-18. 

[32]  S. Kan, Metrics and models in software quality engineering, 2nd ed. Boston: 

Addison-Wesley, 2003. 

[33]  A. Kaw, Numerical methods with applications, 2nd ed. [Morrisville  N.C.: 

Lulu Enterprises, 2009. 

[34]  T. M. Khoshgoftaar, E. B. Allen, N. Goel, A. Nandi, and J. McMullan, 

―Detection of software modules with high debug code churn in a very large 

legacy system,‖ in Proceedings of the 1996 7th International Symposium on 

Software Reliability Engineering, ISSRE’96, October 30, 1996 - November 2, 

1996, White Plains, NY, USA, 1996, pp. 364-371. 

[35]  A. khoshkhou, M. Cukier, and A. Mosleh, ―A Framework for Software 

Reliability Management Based on Software Development Profile Model,‖ 

presented at the 10th International Probabilistic Safety Assessment and 

Management Conference, Seattle, 2010. 

[36]  H. Kou, studying micro-processes in software development stream - Google 

Search. Citeseer. 

[37]  B. Lennselius and L. Rydstrom, ―Software fault content and reliability 

estimations for telecommunication systems,‖ Selected Areas in Communications, 

IEEE Journal on, vol. 8, no. 2, pp. 262-272, 2002. 

[38]  Y. K. Malaiya and J. Denton, ―Estimating the number of residual defects,‖ 

presented at the hase, vol. 98, pp. 13-14. 

[39]  Y. K. Malaiya, M. N. Li, J. M. Bieman, and R. Karcich, ―Software reliability 

growth with test coverage,‖ IEEE Transactions on Reliability, vol. 51, no. 4, pp. 

420-426, 2002. 

[40]  A. Meneely, L. Williams, W. Snipes, and J. Osborne, ―Predicting failures 

with developer networks and social network analysis,‖ in 16th ACM SIGSOFT 

International Symposium on the Foundations of Software Engineering, SIGSOFT 

2008/FSE-16, November 9, 2008 - November 14, 2008, Atlanta, GA, United 

states, 2008, pp. 13-23. 

[41]  J. Miller, ―Estimating the number of remaining defects after inspection,‖ 

Software Testing Verification and Reliability, vol. 9, no. 3, pp. 167-189, 1999. 



 

190 

[42]  R. Moser, W. Pedrycz, and G. Succi, ―A comparative analysis of the 

efficiency of change metrics and static code attributes for defect prediction,‖ in 

2008 ACM/IEEE 30th International Conference on Software Engineering, ICSE 

2008, May 10, 2008 - May 18, 2008, Leipzig, Germany, 2008, pp. 181-190. 

[43]  J. C. Munson and S. G. Elbaum, ―Code churn: a measure for estimating the 

impact of code change,‖ in Proceedings of the 1998 IEEE International 

Conference on Software Maintenance, ICSM, November 16, 1998 - November 20, 

1998, Bethesda, MD, USA, 1998, pp. 24-31. 

[44]  N. Nagappan and T. Ball, ―Static analysis tools as early indicators of pre-

release defect density,‖ in 27th International Conference on Software 

Engineering, ICSE 2005, May 15, 2005 - May 21, 2005, Saint Louis, MO, United 

states, 2005, vol. 2005, pp. 580-586. 

[45]  N. Nagappan and T. Ball, ―Use of relative code churn measures to predict 

system defect density,‖ in 27th International Conference on Software 

Engineering, ICSE 2005, May 15, 2005 - May 21, 2005, Saint Louis, MO, United 

states, 2005, vol. 2005, pp. 284-292. 

[46]  N. Nagappan, T. Ball, and A. Zeller, ―Mining metrics to predict component 

failures,‖ in 28th International Conference on Software Engineering 2006, ICSE  

’06, May 20, 2006 - May 28, 2006, Shanghai, China, 2006, vol. 2006, pp. 452-

461. 

[47]  N. Nagappan, B. Murphy, and V. R. Basili, ―The influence of organizational 

structure on software quality: An empirical case study,‖ in 30th International 

Conference on Software Engineering 2008, ICSE’08, May 10, 2008 - May 18, 

2008, Leipzig, Germany, 2008, pp. 521-530. 

[48]  A. M. Neufelder, ―How to predict software defect density during proposal 

phase,‖ presented at the National Aerospace and Electronics Conference, 2000. 

NAECON 2000. Proceedings of the IEEE 2000, 2000, pp. 71-76. 

[49]  A. P. Nikora and J. C. Munson, ―Determining fault insertion rates for 

evolving software systems,‖ presented at the Software Reliability Engineering, 

1998. Proceedings. The Ninth International Symposium on, 1998, pp. 306-315. 

[50]  A. P. Nikora and J. C. Munson, ―Developing fault predictors for evolving 

software systems,‖ 2003. 

[51]  A. J. Offutt, M. J. Harrold, and P. Kolte, ―Software metric system for module 

coupling,‖ Journal of Systems and Software, vol. 20, no. 3, pp. 295-308, 1993. 

[52]  A. D. Oral and A. B. Bener, ―Defect prediction for embedded software,‖ in 

22nd International Symposium on Computer and Information Sciences, ISCIS 

2007, November 7, 2007 - November 9, 2007, Ankara, Turkey, 2007, pp. 346-

351. 

[53]  T. J. Ostrand, E. J. Weyuker, and R. M. Bell, ―Where the bugs are,‖ presented 

at the Proceedings of the 2004 ACM SIGSOFT international symposium on 

Software testing and analysis, 2004, p. 96. 

[54]  H. Petersson, T. Thelin, P. Runeson, and C. Wohlin, ―Capture-recapture in 

software inspections after 10 years research - Theory, evaluation and 

application,‖ Journal of Systems and Software, vol. 72, no. 2, pp. 249-264, 2004. 



 

191 

[55]  A. A. Porter, L. G. Votta Jr., and V. R. Basili, ―Comparing detection methods 

for software requirements inspections: a replicated experiment,‖ IEEE 

Transactions on Software Engineering, vol. 21, no. 6, pp. 563-575, 1995. 

[56]  S. Rakitin, Software verification and validation for practitioners and 

managers, 2nd ed. Boston: Artech House, 2001. 

[57]  C. V. Ramamoorthy and F. B. Bastani, ―SOFTWARE RELIABILITY - 

STATUS AND PERSPECTIVES.,‖ IEEE Transactions on Software Engineering, 

vol. 8, no. 4, pp. 354-371, 1982. 

[58]  H. Scott and C. Wohlin, ―Capture-recapture in software unit testing - A case 

study,‖ in 2nd International Symposium on Empirical Software Engineering and 

Measurement, ESEM 2008, October 9, 2008 - October 10, 2008, Kaiserslautern, 

Germany, 2008, pp. 32-40. 

[59]  M. Sherriff, N. Nagappan, L. Williams, and M. Vouk, ―Early estimation of 

defect density using an in-process Haskell metrics model,‖ in 1st International 

Workshop on Advances in Model-Based Testing, A-MOST  ’05, May 15, 2005 - 

May 21, 2005, St. Louis, MO, United states, 2005. 

[60]  M. Staron and W. Meding, ―Predicting weekly defect inflow in large software 

projects based on project planning and test status,‖ Information and Software 

Technology, vol. 50, no. 7-8, pp. 782-796, 2008. 

[61]  M. A. Stutzke and C. S. Smidts, ―A stochastic model of fault introduction 

removal during software development,‖ IEEE Transactions on Reliability, vol. 

50, no. 2, pp. 184-193, 2001. 

[62]  G. S. Walia and J. C. Carver, ―Evaluation of capture-recapture models for 

estimating the abundance of naturally-occurring defects,‖ in 2nd International 

Symposium on Empirical Software Engineering and Measurement, ESEM 2008, 

October 9, 2008 - October 10, 2008, Kaiserslautern, Germany, 2008, pp. 158-

167. 

[63]  T. J. O. E. J. Weyuker, ―Progress in Automated Software Defect Prediction,‖ 

presented at the Hardware and Software: Verification and Testing: 4th 

International Haifa Verification Conference, HVC 2008, Haifa, Israel, October 

27-30, 2008, Revised Selected Papers, 2009, p. 200. 

[64]  M. Xie, Software reliability modelling. World Scientific, 1991. 

 

 

 


