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Nutrient supply, including ‘new’ nitrogen (N) added through N2-fixation, nutrient release 

from sediments and freshwater inflow, can be important in increasing and sustaining 

estuarine phytoplankton blooms. In return, dense blooms in shallow water estuaries may 

affect nutrient recycling by elevating the pH and dissolved oxygen (DO) concentrations 

as well as increasing sedimentation of phytoplankton detritus. My dissertation addressed 

the interaction between cyanobacterial blooms and biogeochemical nutrient recycling in 

the tidal-fresh and oligohaline region of the Sassafras River, a tributary of the 

Chesapeake Bay, Maryland, USA. 

When high pH overlying water comes in contact with sediments, the subsequent pH 

penetration causes desorption of exchangeable NH4
+ and converts NH4

+ to NH3 from 

both porewater and absorbed NH4
+ pools. Alkaline pH and the toxicity of NH3 may 

inhibit nitrification in the thin aerobic zone. During massive cyanobacterial blooms in 

summer, high effluxes of SRP and total ammonium from sediments were associated with 



  

reduced nitrification and denitrification rates. Retention of N in the upper estuary and 

increased dissolved inorganic nitrogen (DIN) release into the water column may facilitate 

nitrogen assimilation by cyanobacteria in N-limited water. High pH also resulted in a 

significant increase in soluble reactive phosphate (SRP) flux and lead to relatively high 

SRP compared to DIN flux rates, which may support the high P demand of N2-fixing 

cyanobacteria.  

As N became limiting in summer, the dominant cyanobacterial assemblage changed from 

non-N2 fixers (Microcystis spp.) to N2 fixers (Anabaena spp., Pseudanabaena sp. and 

Synechococcus sp.). Warm temperatures, high P availability and low salinity are 

environmental factors associated with high rates of N2 fixation. Dissolved inorganic 

carbon (DIC) limitation, high pH, and high DO concentrations, mediated by 

cyanobacterial photosynthesis, can cause decreases in photosynthetic efficiency and 

daytime N2 fixation of the cyanobacterial assemblage. Species succession appears to 

enable the cyanobacterial assemblage to adapt to changing environmental conditions 

caused by the bloom, including high pH and DO, and to maintain N2 fixation for 

sustained growth.  
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Chapter 1 Introduction 

Introduction 

1.1.1 Cyanobacterial Blooms 

In freshwater, estuarine and coastal ecosystems, cyanobacteria (blue-green algae) 

can be a major environmental problem and cause negative effects on water quality,  

human health and aquatic resources (Tango and Butler 2008). Cyanobacterial blooms can 

form unsightly and smelly scums, which may discourage recreational use of water, foul 

fishing gear, and directly affect man’s activities (Havens 2008). These blooms can disrupt 

food webs (Dittmann 2005), reduce light penetration in the water column, and 

inhibit/prevent the growth of sea grasses as well as other submerged aquatic vegetation 

that provide valuable habitat for fish and wildlife (Kemp et al. 2005). Some 

cyanobacterial species produce toxins that affect humans and livestock (Huisman and 

Matthijs 2011).  

Cyanobacterial blooms are prevalent in the tidal-fresh and oligohaline zones of 

Chesapeake Bay, with the maximum density of 6.3×106 cyanobacteria cells ml-1 during 

1991-2008 (Chesapeake Bay Program, online data). Blooms usually occur in brackish 

tributaries, such as the Susquehanna River, Potomac River, Choptank River, Nanticoke 

River, Patuxent River, and Sassafras River (Tango and Butler 2008).  The cyanobacterial 

assemblage is usually composed of a mixture of non-N2 fixers (mainly Microcystis spp.) 

and N2-fixers (e.g. Anabaena spp., Pseudanabaena spp., Synechococcus spp.) (Maryland 

Department of Natural Resources).  
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Nutrient supply can strongly influence the occurrence and maintenance of  

harmful cyanobacterial blooms in estuarine ecosystems  (Kemp et al. 2005). In addition 

to nutrient loads from land and atmospheric inputs, nutrients released from sediments into 

the water may support the nutrient demands of phytoplankton blooms (Karl et al. 2002). 

Particularly in well-mixed shallow water estuaries, the strong benthic-pelagic coupling 

can enhance eutrophication. Settlement of dead phytoplankton to the bottom can fuel 

biogeochemical nutrient recycling which can foster blooms in the water column 

(Hopkinson et al. 1999; Kemp et al. 1999). Nutrient regeneration from the sediments is 

estimated to supply approximately 80 % of the nitrogen (N, in the Patuxent River) and 

over 100% of the phosphorus (P, in the Potomac River) demands of primary production 

during blooms (Kemp and Boynton 1984; Seitzinger 1991).  

During the period of low runoff in summer, dissolved N can limit algal growth 

(Fisher et al. 1992). Nitrogen fixation is variable and relatively high within the 

cyanobacterial bloom areas in the Chesapeake Bay (Elliston and O'neil 2005). N2 fixation 

may provide new ‘N’ into aquatic environments under N-limited conditions by breaking 

the triple bound of N2 through an enzymatically mediated process (Capone et al. 2009): 

N2 + 8H+ + 8e- +16 ATP → 2NH3 +H2 +16 ADP + 16 Pi 

N2-fixing cyanobacteria are able to satisfy their N requirements and may release NH4
+ 

and organic N into the water that can be taken up by surrounding bacteria and 

phytoplankton (Mulholland 2007). The diazotrophic cyanobacteria contribute from 20% 

to over 100% of community N demand in coastal and marine ecosystems (Paerl and Zehr 

2000). Although N2 fixation is critical for cyanobacterial growth in N limited surface 

waters, great variation in N2 fixation rates are reported in estuaries; this is likely due to 
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variation in the abundance of diazotrophic cyanobacteria, variation in their morphological 

and physiological attributes, as well as variation in inorganic and organic N input, 

temperature, light and salinity in estuaries (Gardner et al. 2006; Howarth 2006; Lehtimaki 

et al. 1997; Lewis 1984). 

 

1.1.2 Cyanobacterial Blooms in the Sassafras River 

In the upper Sassafras River, a eutrophic, shallow and tidal freshwater tributary of 

the Chesapeake Bay, dissolved nitrogen is more limiting than phosphate in summer 

(Chesapeake Bay Program, online data).  Based on the observations by Maryland Dept. 

of Natural Resources (MD DNR), summer cyanobacterial blooms have been increasing in 

occurrence and biomass in the upper Sassafras River; the maximum density of 

cyanobacteria has increased ~10 fold from 2000 to 2009. The massive cyanobacterial 

blooms in the upper river provide a good opportunity to investigate the synergy between 

cyanobacterial blooms and biogeochemical processes, including nutrient release from 

sediments and N2 fixation.  

The photosynthetic uptake of inorganic carbon (DIC) and O2 production by 

blooms can result in dramatic increases in pH (up to 10.5) and dissolved oxygen (up to 23 

mg L-1, > 300% DO) in the upper Sassafras River (Fig. 1.1, real-time monitoring at 

Budds Landing,  http://www.eyesonthebay.com/). This is partly due to the lower 

inorganic carbon (DIC) (< 1 mM) and the weaker carbonate buffering capacity in 

freshwater than in seawater. The maintenance of high pH may be crucial for 

cyanobacteria dominance in summer. As pH rises, the proportion of CO2 in the inorganic 
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carbon pool (Ci) generally decreases and the carbonate balance shifts from CO2,  HCO3
- 

to CO3
2-(Badger et al. 2006). Cyanobacteria are more competitive in low dissolved 

inorganic carbon (DIC) systems than most eukaryotic phytoplankton because of their 

efficient use of CO2 and HCO3
- by CO2 concentrating mechanisms (CCM) (Price et al. 

2008; Stumm and Morgan 1996).  

However, changes in pH, DO and DIC caused by blooms may also influence 

nutrient regeneration in several ways. High pH increases pore water P solubility and 

facilitates soluble reactive phosphorus (SRP) release from sediments into the water 

column. This can be particularly important to meet the high P demand of diazotrophic 

cyanobacteria (Andersen 1975; Seitzinger et al. 1991; Slomp et al. 1998). Sediments in 

freshwater contain a large pool of NH4
+ that may be influenced by pH elevation. More 

than 2/3 of ammonium (NH4
+) is sorbed onto sediment particles rather than dissolved in 

pore water (Morse and Morin 2005). Part of the sorbed ammonium on the surface 

sediment is exchangeable and can be easily released through ion exchange (Rosenfeld 

1979). Elevated pH leads to the conversion of NH4
+ to ammonia (NH3)  

NH4
+ + OH- → NH3 + H2O                                (K = 9.25 at 25 oC) 

This may consequently increase desorption of bound NH4
+. The concentration of NH4

+ in 

pore water and its migration are critical for NH4
+ efflux and coupled nitrification-

denitrification (Pommerening-Röser and Koops 2005). Meanwhile, super-saturation and 

diel variation in DO may influence oxygen penetration into sediments, where redox 

conditions may influence coupled nitrification - denitrification. Despite the potential 

importance of elevated pH and DO, their effects on N cycling at the sediment-water 

interface are not described in the literature.  
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During dense blooms, photosynthesis alters pH and DO concentration in the water 

column, which may exert control over cyanobacterial physiological processes.  As pH 

rises above 8.5, the proportion of CO2 in the inorganic carbon pool (Ci) dramatically 

decreases and the carbonate balance shifts from CO2 to HCO3
- (Badger et al. 2006). 

Limited DIC has a negative effect on photosynthetic carbon uptake and N2 fixation (Boyd 

et al. 2011; Fu et al. 2008; Tortell et al. 2008). Rising pH also leads to precipitation of 

essential elements (Cu, Fe, Mo) for photosynthesis and N2 fixation (Gallon 1992; Strauss 

et al. 2002). In addition, O2 elevation caused by photosynthesis may potentially inhibit N 

reduction by suppression of nitrogenase activity (Berman-Frank et al. 2001; Fay 1992; 

Staal et al. 2003). 

 

Hypotheses 

This study focused on the roles of internal nutrient inputs from sediments and N2 

fixation in the development and maintenance of cyanobacterial blooms in the Sassafras 

River estuary. Effects of elevated pH and DO on sediment nutrient regeneration and N2 

fixation are emphasized.  The following hypotheses were tested: 

 

1. Driven by cyanobacterial photosynthesis, high pH can facilitate the release 

of N and P from sediments into the water column in shallow water estuaries, 

and can decrease the loss of N from the system through coupled nitrification-

denitrification 
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2. When the availability of N is low relative to P, N2 fixation by cyanobacteria 

can increase and maintain massive blooms in summer. However, during 

dense blooms, carbon limitation and DO elevation in water may negatively 

affect photosynthesis and N2 fixation. 

3. In shallow water estuaries, the positive feedbacks between cyanobacterial 

blooms and sediment N and P recycling may increase nutrient release into 

the water, which may support the nutrient demands of the bloom.  

 

Objectives  

Chapter 2 addresses elevated pH effects on sediment nutrient release. I measured 

flux rates of NH4
+, SRP, oxygen consumption, nitrification and denitrification in pH 

manipulation experiments with sediment cores.  Considering that high pH can penetrate 

into sediments, the conversion of NH4
+ to NH3 was used to calculate the diffusion rates of 

total ammonium by sampling the pore water nutrient concentration; the equilibrium 

between pore water and adsorbed NH4
+ on mineral surfaces was used to estimate the 

exchangeable ammonium desorption with pH elevation. 

In Chapter 3, I present data on seasonal and spatial changes in the dark flux rates 

of dissolved inorganic nutrients (SRP, NH4
+ and NO3

-), respiration and denitrification in 

the non-bloom years (2008 and 2009) and the cyanobacterial bloom year (2010). These 

data were used to analyze the response of biogeochemical processes to environmental 

factors (temperature, DO, pH and nutrient concentrations).  Light-dark experiments were 

conducted to explore how irradiance alters the magnitude of nutrient release and N loss 
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through nitrification-denitrification. In summer 2010, pore-water nutrients and 

exchangeable ammonium were measured in samples taken within and outside of the 

bloom area to investigate high pH and other bloom related impacts on nutrient exchanges 

at the sediment-water interface.  

In Chapter 4, specific attention was given to photosynthesis and N2 fixation as 

well as their responses to changes in pH/DO and other major ecological factors. I 

conducted field and laboratory studies in 2010 in order to follow the effects of seasonal 

changes in temperature, N:P ratio and salinity on bloom development.  To experimentally 

investigate the feedback of elevated pH and DO on C and N fixation in the water column, 

different irradiance levels were used to simulate light changes in the field and to naturally 

create treatments with differences in pH and DO.  

In chapter 5, a preliminary nutrient budget was constructed based on nutrient 

land loading, sedimentary burial rates, and nutrient supply from biogeochemical 

recycling during the bloom. The transportation of nutrient land loads with river flow and 

nutrient sequestration in sediment were analyzed using the output of model generated 

data and the measurement of burial rates in the upper river. The contribution of N from 

sediments and N2 fixation were calculated based on nutrient demand by a cyanobacterial 

bloom in 2010. The key factors for these biogeochemical processes were evaluated to 

better understand nutrient budgets in this shallow water estuary. 
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Figure 

 

Figure 1-1 Changes in pH and dissolved oxygen resulting from the cyanobacterial bloom in 2010. 
Data shown from the real time monitoring station at Budds Landing station, probe located at 1 m 
depth in the upper Sassafras River (Maryland Department of Natural Resource, MD DNR).  
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Chapter 2 Effects of cyanobacterial-driven pH increases on 

sediment nutrient fluxes and coupled nitrification-

denitrification in a shallow fresh water estuary 

Abstract 

 

Summer cyanobacterial blooms caused an elevation in pH (9 to ~ 10.5) that lasted 

for weeks in the shallow and tidal-fresh region of the Sassafras River, a tributary of 

Chesapeake Bay (USA). Elevated pH promoted desorption of sedimentary inorganic 

phosphorus and facilitated conversion of ammonium (NH4
+) to ammonia (NH3). In this 

study, we investigated pH effects on exchangeable NH4
+ desorption, nutrient pore water 

diffusion and flux rates of NH4
+, soluble reactive phosphorus (SRP) , nitrate (NO3

-), 

nitrification, denitrification, and oxygen consumption. pH elevation enhanced the 

desorption of exchangeable NH4
+ because of NH3 formation from both pore water and 

adsorbed NH4
+ pools. Progressive penetration of high pH from the overlying water into 

sediment promoted the release of SRP and total ammonium (NH4
+ and NH3) into pore 

water. At elevated pH, high sediment-water effluxes of SRP and total ammonium were 

associated with reduction in nitrification, denitrification and oxygen consumption rates. 

Alkaline pH and the toxicity of NH3 may inhibit nitrification in the thin aerobic zone, 

simultaneously constraining coupled nitrification-denitrification with limited NO3
- supply 

and high pH penetration into the anaerobic zone. Geochemical feedbacks to pH elevation, 

such as enhancement of dissolved nutrient effluxes and reduction in N2 loss via 
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denitrification, may be responsible for the persistence of cyanobacterial blooms in 

shallow water ecosystems.  

Introduction  

Nutrient releases from sediment to the water column can support a substantial 

fraction of the primary production in shallow coastal and estuarine ecosystems (e.g., 

North Carolina estuaries, Fisher et al. 1982; Potomac River Estuary, Kemp and Boynton 

1984; Baltic Sea, Koop et al. 1990; Chesapeake Bay, Cowan and Boynton 1996). 

Enhanced nitrogen and phosphorus fluxes may promote high levels of phytoplankton 

biomass (Kemp et al. 2005). Such phytoplankton blooms lead to the sustained 

accumulation of phytodetritus in sediment, fueling nutrient recycling through organic 

matter remineralization (Cowan and Boynton 1996; Nixon et al. 1996). The 

consequences, such as decreased water clarity, depletion of bottom-water oxygen and the 

decomposition of phytodetritus,  may enhance  sediment respiration, decrease redox 

potential, limit nutrient uptake by benthic microalgae, and generally increase nutrient 

fluxes (Kemp et al. 2005).  

In the deep, hypoxic region of the Chesapeake Bay and other estuaries, 

phosphorus flux is usually promoted by the dissolution of Fe-oxides and their conversion 

to iron sulfides; the increase in ammonium release from sediments tends to coincide with 

inhibition of nitrification by oxygen depletion and generation of reductants (HS-/H2S) in 

sediment, which consequently reduce denitrification (Cornwell and Kana 1999; Kemp et 

al. 2005). In oxic shallow water ecosystems benthic nutrient releases are generally less 

redox influenced. 
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Persistent high pH in shallow water, driven by rapid utilization rates of inorganic 

carbon for photosynthesis during dense algal blooms (Hansen 2002; Hinga 2002), can 

influence benthic dynamics by progressive pH penetration from the overlying water into 

sediments (Bailey et al. 2006). When pH is above a critical threshold (9 – 9.2), inorganic 

phosphorus desorbs from iron oxides at mineral surfaces (Andersen 1975; Eckert et al. 

1997).  Elevation of pore water pH (~ 9.8 in tidal-fresh region, Eckert et al. 1997) can 

release soluble reactive phosphorus (SRP)  and support photosynthetic P demand during 

cyanobacterial blooms in lakes (Xie and Xie 2003) and tidal fresh and oligohaline 

estuaries (Andersen 1975; Seitzinger 1991).   

In contrast to pH-driven P cycling, the effects of pH on sediment N 

transformations and release are less well understood (Soetaert et al. 2007). During the 

decomposition of sediment organic matter, remineralized NH4
+ may both adsorb onto 

sediment mineral surfaces and accumulate in pore water. Exchangeable NH4
+ is weakly 

adsorbed at the negatively charged particle surfaces, buffering pore water NH4
+ 

concentrations (Rosenfeld 1979). In estuaries, fine grained sediment generally has a large  

pool of adsorbed NH4
+ (Wang and Alva 2000; Weston et al. 2010), with freshwater 

sediments having considerably more adsorbed ammonium relative to saline sediments 

(Seitzinger 1991).  Once alkaline pH results in the conversion of ammonium (NH4
+) to 

dissolved ammonia (NH3), formation of non-ionized NH3 may decrease NH4
+ cation 

adsorption on sediments and potentially alter the balance between pore water and 

exchangeable NH4
+.   

Remineralized N can be assimilated by plants and bacteria or diffuse/ advect from 

sediment into the overlying water. Part of the NH4
+ can be oxidized sequentially to NO2

- / 
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NO3
- then reduced to N2 through coupled nitrification-denitrification (Cornwell and Kana 

1999). However, shifts in the NH4
+‐NH3

 equilibrium associated with high pH events may 

change rates of pore water diffusion, nitrification and denitrification. In the tidal-fresh 

and oligohaline parts of the Potomac River (Chesapeake Bay, USA), Seitzinger (1987) 

observed both increased SRP and NH4
+ fluxes with pH elevation. Experimental NH4

+ 

flux rates increased from < 10 to over 100 µmol m-2 h-1 when pH was raised from 8 to 10 

in laboratory incubations (Seitzinger 1987a).  During a algal bloom in the Potomac 

estuary, Bailey et al. (2006) observed a three-fold increase of NH4
+ efflux when the 

bottom water pH rose from neutral to above 9. In soil studies, the combined influence of 

alkaline pH (> 8) and NH3 production can decrease the NH4
+ soil inventory by NH3 

volatilization, and change the efficiency of nitrification and denitrification by inhibiting 

bacterial activity (Cuhel et al. 2010; Simek et al. 2002).  

We hypothesize that increased sediment pH facilitates not only P desorption but 

also the conversion of NH4
+ to NH3

 with consequent changes in sediment N cycling. In 

this study we examined the pH effects on exchangeable NH4
+ desorption using the 

surface sediments. Impacts of high pH conditions on the sediment-water nutrient 

exchange were estimated with changes in flux rates of SRP, NH4
+, NO3

-, O2, and coupled 

nitrification-denitrification using intact sediment cores. We also calculated the diffusive 

flux rates of pore water NH4
+, NH3 and SRP to confirm direct flux measurements. Due to 

the tightly coupled nitrification-denitrification, we independently measured nitrification 

rates using an inhibitor (Caffrey and Miller 1995) and potential nitrification rates using 

slurries (Henriksen et al. 1981). 
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We experimentally addressed these questions using sediment cores in the 

Sassafras River, a shallow, tidal freshwater tributary of the Chesapeake Bay (USA).  As 

in other parts of the Chesapeake Bay (Tango and Butler 2008), summer cyanobacterial 

blooms have been observed frequently in the Sassafras River in recent decades. Relative 

to sea water, tidal fresh and oligohaline water have low pH buffering (Price et al. 2008), 

facilitating high pH from cyanobacterial photosynthetic carbon uptake. In the Sassafras 

River, high pH persisted in the range of 9 to 10.5 for several weeks during dense 

cyanobacterial blooms in the summers of 2007 and 2010. When such high pH is in 

contact with bottom sediment, pH penetration into sediment can impact nutrient 

biogeochemical processes c(Bailey et al. 2006). 

 

Materials and Methods 

2.1.1 Study site and collection of cores 

We collected sediments with 7 cm inner diameter, 30 cm long acrylic cores at two 

sites in the upper Sassafras River.  The Powerline site (75°49.712', 39°22.646') was 

sampled on June 18, 2008 and Budds Landing (75°50.380', 39°22.310') was sampled on 

July 14, 2009 (Table 1). Dissolved oxygen (DO), salinity, pH and temperature were 

measured with a YSI 600XLM multiparameter sensor. Vertical irradiance profiles were 

recorded by a 2 π Li-Cor underwater PAR light sensor.  Bottom water collected for 

sediment incubations was filtered to minimize water column autotrophic and microbial 

respiration and nutrient recycling. Samples were transported to Horn Point Laboratory 

within 4 hours. Sediment cores were gently bubbled overnight to equilibrate temperature, 
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O2, and N2-N in the overlying and near surface pore waters (Kana et al. 2006). The 

surface sediments from Budds Landing were homogenized for potential nitrification 

measurements. 

2.1.2 Experimental design  

We incubated experimental cores (at least triplicates) at several pH levels to 

investigate pH effects on nutrient exchange at the sediment-water interface. Sediment-

free blank cores were incubated identically at each pH level to correct for water column 

metabolism. Consistent with an absence of photosynthetically active radiation at the 

sediment surface at the time of collection, a dark temperature-controlled environmental 

chamber was used to maintain the sediments and replacement-water reservoir at in situ 

water temperatures of 25 °C for Powerline and 27 °C for Budds Landing, respectively.  

The filtered water was bubbled with air to maintain oxygen saturation, adjusted to 

experimental pH with 0.1 mol L-1 NaOH, and continuously pumped through the sediment 

overlying water (~ 500 ml) at 10 ml min-1.  

For the Powerline experiments, the overlying water pH of 4 replicate sediment 

cores was increased stepwise from 7.8 ± 0.5 (control) to 9.2 ± 0.05 (pH 1), and 9.6 ± 0.03 

(pH 2), with a 5 day equilibration at each elevated pH.  An alternative approach was used 

with sediments from Budds Landing (Table 2). Nine cores were incubated at ambient pH 

for the initial fluxes, and then triplicate cores were subjected to pH manipulation for each 

treatment. After 7 days of exposure to higher pH levels, the pH in the overlying water 

was 7.4 ± 0.3 (control), 9.2 ± 0.05 (pH 1) and 9.5 ± 0.2 (pH 2). Within each sealed core, 
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suspended magnetic stir bars circulated water gently to keep it mixed below the threshold 

of sediment resuspension. 

For both sites, nutrients fluxes (SRP, NH4
+, and NO3

-), oxygen consumption (O2) 

and coupled nitrification-denitrification (net N2 flux) were measured on the 1st day of 

incubation of sediments and after the pH reached the target values. After the termination 

of flux incubations, the top 11 cm sediments at each pH treatment were sectioned to 

collect pore water nutrients and to measure sediment pH. Duplicate sediment cores from 

Budds landing were used to measure nitrification rates, and Br- was added to control 

cores as tracer to estimate diffusion/advection coefficients (Martin and Banta 1992). The 

remaining sediment cores were used to estimate the percent water. 

2.1.3 Flux rates cross the sediment-water interface  

Flux rates were measured on the first day of the incubation and after each 

equilibration period. The pumping of treatment water was interrupted during flux 

incubations and briefly restarted to collect samples every 1−2 hours with a total of 4 

time-points. Solute samples were filtered through a 0.45µm cellulose acetate syringe 

filter and frozen at -4 °C. Dissolved O2 and N2 subsamples were preserved in 7 ml glass 

tubes by adding 10 µl of 50% saturated HgCl2 solution (Kana et al. 2006), and then 

stored under water at near-ambient temperature until analysis. To preserve total dissolved 

ammonium (∑NHx = NH4
+ + NH3) at higher pH levels, 2.5 µl of 0.1 mol L-1 sulfuric acid 

was added into the sample vials. Flux rates were calculated from a regression of the time-

concentration data in sediment and water column blank cores. 
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2.1.4 Sediment pore-water chemistry  

Samples for pH and pore water analysis were sectioned over the top ~10 cm into 

50 ml centrifuge tubes in a nitrogen-filled glove bag to minimize oxidation artifacts (Bray 

et al. 1973). Vertical changes of pH were measured immediately with a flat surface pH 

electrode. Pore water was separated from the solid phase by centrifugation at 2000 G for 

10 min. Supernatant solutions were filtered through a 0.45 µm 25 mm diameter cellulose 

acetate syringe filter and appropriately diluted for analysis of Br-, Fe, SRP, NH4
+, and 

∑NHx.. The total iron, mostly Fe2+, was acidified for preservation (Gibb 1979).   

2.1.5 Nitrification potential and nitrification rates 

The effect of pH on nitrification was estimated using sediments from Budds 

Landing. Measurements included slurry incubation for potential nitrification (Henriksen 

et al. 1981) and CH3F inhibition of intact sediments (Caffrey and Miller 1995). In O2-

saturated Sassafras River water, pH was pre-adjusted to values ranging from 7 to 11 

using NaOH. The NH4Cl concentration was set to 1.0 mM, with triplicates at each pH 

level. For potential nitrification, the top 2 cm of sediment were homogenized with 1 ml 

added separately into centrifuge tubes with different pH’s.  The suspension was gently 

shaken in darkness at 27 °C and subsamples for NO3
- were taken at 0, 12, and 24 h to 

calculate rates of potential nitrification. Changes of NO3
- in a sediment-free control were 

used as a background correction. Although this method homogenizes the redox profile 

and the NH4
+ gradient of the sediment and disrupts the aggregation of aerobic/ anaerobic 

microbiota (Garcia-Ruiz et al. 1998; Killham 1994), it makes testing pH effects over a 

large pH gradient relatively simple. c  
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An alternative to slurries was direct flux measurements using CH3F to inhibit 

nitrification (Caffrey and Miller 1995). The CH3F method was carried out immediately 

after the end of flux measurements. Saturated solutions of CH4F were injected into the 

overlying water of each intact core to a final concentration of ~100 mg L-1. After 24 

hours of aerobic dark pre-incubation, ammonium flux rates were measured using our 

standard flux procedure. Increased flux rates of ammonium after CH3F treatment were 

interpreted as the nitrification rate. Shortcomings in the CH3F-inhibition method may 

include increased accumulation of pore water ammonium and non-specific inhibition of 

other N transformations such as ammonification (Capone et al. 2009).  

2.1.6 Molecular diffusive flux rates  

Diffusion coefficients in sediment were estimated from Br- penetration profile 

(Martin and Banta, 1992). Bromide (NaBr) was added as a tracer into the overlying water 

to a concentration of ~6 mM. Pore water Br- was sampled after 24 h to estimate a 

diffusion coefficient (DBr), which was corrected for temperature and sediment porosity; 

the measure DBr was compared to the theoretical coefficient (DBr
*) for to aid in correction 

of diffusion coefficients for other species (Martin and Banta 1992; Rao and Jahnke 2004; 

Schulz et al. 2006).  

Using the pH-dependent equilibrium (Eq. 1), we calculated pore water NH3 and 

NH4
+c concentrations: 

ସܪܰ              
ା ൅ ିܪܱ     ௄್    ሯልልሰ ଷܪܰ ൅                                                                 ଶܱܪ

where the equilibrium constant (pKb) is 9.25 at 25 °C; we corrected our pore water 

constants for  ionic strength and temperature (Mulholland 2008). 
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The dissolved NH3 concentration, [NH3], can be calculated (Van Nest and Duce 

1987): 

ଷܪܰ  ൌ ሾ∑ ேுೣሿሾைுషሿ
௄್ାሾைுషሿ

                                                                                                

where [∑NHx] is for the sum of dissolved NH3 and NH4
+. 

The diffusion coefficients (Di) of NH3, NH4
+ and SRP were corrected using the Br- 

diffusion estimates in pore water and the theoretical coefficient (DBr
*) Applying Fick’s 

first law, the NH3, NH4
+ and SRP fluxes were calculated by:  

௜ܨ  ൌ െ׎ · ௜ܦ ൈ డ஼೔
డ௫

                                                                                                (3) 

where Fi is the flux of different species (µmol cm-2 s-1). The diffusion coefficient 

(Di) is influenced by tortuosity (θ),  temperature and sediment properties. డ஼೔
డ௫

 is the 

gradient of nutrient concentration (Ci) and depth (ݔ). The diffusion coefficients of NH3, 

NH4
+ and SRP in sediments were corrected using the DBr estimates, and the diffusion 

coefficients in a particle free solution at in situ temperature (Martin and Banta, 1992; Rao 

and Jahnke, 2004; Schulz et al., 2006). Percent water and the dry sediment density (ρ ~ 

2.5 g cm-3) were used to calculate porosity (∅) and porosity (φ) (Boudreau 1997):  

׎   ൌ ௪௔௧௘௥%

ሺ௪௔௧௘௥%ାሺభషೢೌ೟೐ೝ%ሻ
ഐ ሻ

                                                                                        (4)  

ଶߠ   ൌ 1 െ ln ሺ׎ଶሻ                                                                                                  

2.1.7 Desorption isotherm of adsorbed ammonium (NH4
+-N) 

In order to estimate pH effects on ammonium desorption from sediment, surface 

sediments were collected from Budds Landing in November 2008. Adsorbed NH4
+ was 

measured using KCl extraction (Morin and Morse, 1999). Triplicate 1 ml wet samples of 
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the top 2 cm sediment were extracted twice with 39 ml of 2 mol L-1 KCl; samples were 

shaken for 2 hours at the field temperature (10 °C). After centrifugation and filtration, the 

increase in NH4
+ concentration relative to the blank was used to quantify adsorbed 

ammonium. Adsorption coefficients (K) were used to describe this ion exchange 

following Rosenfeld (1979), Mackin and Aller (1984):  

K ൌ ߩ · ଵି׎
׎

· C෡N
CN

                                                                                                     (6) 

where ܥመே  is exchangeable NH4
+

 on a dry mass basis (μmol g-1) and CN is the pore 

water ammonium concentration (μmol L-1). Porosity was measured for the top 2 cm of 

sediment. 

To simulate response of adsorbed ammonium to pH elevation, the homogenized 

sediment (0-2 cm) was suspended in site water with different pH values. We added 1 ml 

of wet sediment to 39 ml of pH-adjusted water. To inhibit dissimilatory NO3
- reduction to 

NH4
+, we used the oxygen-saturated water and left 5 ml headspace in the centrifuge tube. 

∑NHx was measured after shaking, centrifugation and filtration. Assuming a NH3 

equilibrium between the aquatic and atmospheric phase, the total release of ammonium is 

estimated as the sum of total dissolved ammonium in the water column ሺΣNܪ௫_௟) and 

NH3 gas within the head space (NHଷ_୥):   

NHxds=∆ΣNܪ௫_௟+ΔNHଷ_୥                                                                                     (7) 

The headspace NH3 was estimated from 1) the pH at the beginning and end of 

incubation, 2) ionic strength corrections for NH3 ( ߛேுଷ) and NH4
ேுସߛ ) +

ା) , and 3) the 

temperature-corrected Henry’s law coefficient (KH) (Larsen et al., 2001):  
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ሾNHଷሿ  ൌ ሾஊNH౮ሿ 

RTKHቆ భ
ಋNHయ

ା భబష౦H

K౗ಋNHర
శቇ

                                                                                (8) 

2.1.8 Chemical analysis  

Concentrations of NH4
+, SRP and Fe were analyzed using colorimetric methods 

(Gibb 1979; Parsons et al. 1984). Concentrations of NO3
-, NO2

- and pore water Br- were 

determined using ion chromatography (Kopp and Mckee 1983). NO2
- concentrations 

were generally very low. Dissolved N2 and O2 were measured by the ratios of N2: Ar and 

O2: Ar using membrane inlet mass spectrometry (Kana et al. 1994; Kana and Weiss 

2004). Percent water was determined as the weight loss of wet sediment after drying at 65 

°C. After pre-treatment with sodium hypochlorite overnight to remove carbonates and 

organic matter, grain size was analyzed by wet sieving and followed by pipet analysis of 

the remaining silt and clay (Folk 1974).  

 

 Results and Discussion  

2.1.9 Physical conditions  

The Powerline and Budds Landing sites had an aerobic water column, low salinity 

(<1), and fine grain-sized sediment (Table 1). Water depths were 0.8 m at Powerline and 

1.3 m at Budds Landing. At the time of collection, bottom water pH was 9.4 at Powerline 

and 7.3 at Budds Landing. The temperature at Powerline (24.7 °C) was similar to Budds 

Landing (26.9 °C). Light attenuation coefficients were 4.8 m-1 at Powerline and 4.2 m-1 at 

Budds Landing, resulting in dim to dark conditions at the sediment surface. Both sites 
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often have experienced cyanobacterial blooms associated with high pH in summer 

(Maryland Department of Natural Resources, unpublished data). 

2.1.10 Effect of pH on the pore water iron profile 

Vertical profiles of pore water pH and iron in the Powerline cores rapidly 

responded to the diffusion of alkaline overlying pH into the pore water (Fig. 1A, B). The 

pH profile under ambient condition was nearly constant with depth and generally < 7 

below 1 cm; the elevated water column pH treatments resulted in pH > 9.0 in the top 2 

cm of sediment, decreasing downward until the pH was similar to the control.  Although 

pH may be buffered by cation exchange (e. g. Ca2+, Mg 2+), sulfate reduction, and 

anaerobic generation of acid (Cai et al. 2010), such high pore water pH’s (pH > 9.5) have 

been observed during algal blooms in tidal-freshwater estuaries (Magalhaes et al. 2002). 

Our elevated pH profiles in sediments were similar to a time-series study of pH 

penetration by Bailey et al. (2006). When Potomac River sediments are incubated at pH 

(~10) in summer, high pH moves downward with time and maintains pH > 9 at  4 to  8 

cm depth in a week incubation (Bailey et al. 2006). In our aerobic incubations, pore water 

Fe2+ was undetectable at the surface and peaked in the upper anoxic sediment horizon. 

Increased pH lead to a reduction in Fe2+ through hydroxide precipitation (Hutchins et al. 

2007). As pH increased to 9.6 in the overlying water, the peak concentration of Fe2+ 

simultaneously decreased from 120 µmol L-1 to 68 µmol L-1 with its peak position 

shifting from 1.75 cm downward to 2.5 cm.  
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2.1.11 Effect of pH on the pore water SRP profile  

Elevation of pH below the sediment-water interface resulted in SRP release into 

the pore water, with the peak concentrations increasing from < 40 µmol L-1 to 102 µmol 

L-1 (Fig.1D, F). Increased SRP concentrations were consistent with pH related P releases 

from surface metal hydroxide complexes (Seitzinger 1991) due to the increased negative 

charge of mineral surfaces (Boers 1991). Elevated pH increased upward SRP diffusion 

from 5 µmol m-2 h-1 under neutral pH to 39 µmol m-2 h-1 under alkaline pH treatments 

(Fig. 1E,1F and Table 4).  Under aerobic pH-neutral conditions, iron oxyhydroxides 

usually adsorb or co-precipitate P,  hindering the flux of SRP across the sediment-water 

interface (Slomp et al. 1998). In contrast to neutral pH conditions, highly alkaline pH’s 

enhanced pore water SRP gradients and increased the diffusion rate (Fig. 1 and 3) by 

breaking surficial Fe-P bonds. 

2.1.12 Effect of pH on the pore water ammonium profile  

Under ambient pH conditions, NH4
+ linearly increased downcore to 720 µmol L-1 

with negligible NH3 present (Fig. 1C). The diffusive flux rate, primarily as NH4
+, was 

149 µmol m-2 h-1 (Table 4).  In contrast, the ∑NHx concentration in high pH cores 

increased to 975 µmol L-1 at ~ 4 cm depth (Fig. 1E). Conversion of NH4
+ to NH3 in 

surface horizons resulted in a steeper concentration gradient of NH4
+, increasing NH4

+ 

diffusive fluxes (Table 4). Dissolved NH3 exhibited a very sharp peak at 2 – 3 cm in the 

pH 9.6 treatment, yielding a rapid upward flux. Diffusive flux rates were the sum of 243 

µmol m-2 h-1 for NH4
+  and 234 µmol m-2 h-1 for NH3 (Table 4).  Without consideration of 

∑NHx speciation at the overlying water pH 9.6, the diffusive rate calculated from the 
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concentration gradient and diffusion coefficient of NH4
+ was only 271 µmol m-2 h-1, less 

than half of the observed ∑NHx diffusive rate (Fig. 1E).  

2.1.13 Adsorbed NH4
+  

Both pore water and adsorbed ammonium are hypothesized to be available for 

nitrification (Seitzinger et al. 1991). Adsorbed NH4
+ is reversibly attracted to negatively 

charged binding sites on the surface of sediment particles (Rosenfeld, 1979), and can 

influence pore water NH4
+ concentration as well as migration of in sediment (Morse and 

Morin, 2005). Without pH manipulation, the pH decreased from 7.2 to 6.5 during KCl-

extraction, and adsorbed NH4
+ in our samples averaged 3.4 ± 0.4 µmol g-1. It is 

reasonable to expect higher adsorbed NH4
+ in summer due to spring/summer algal 

deposition and the temperature-related increases in ammonification (Laima 1992; Laima 

et al. 1999; Vouve et al. 2000). Our adsorption coefficient (K = 2.6 ± 0.4) were similar to 

the observations of 2.1 – 7.1 in Potomac River sediments (Simon and Kennedy 1987) and 

in the upper Chesapeake Bay (Cornwell and Owens 2011). The K value in this freshwater 

estuary is higher than other coastal (1.0 – 1.7, Mackin and Aller, 1984) and marine 

sediments (1.1 – 1.3, Rosenfeld, 1979). This result is consistent with salinity influences 

on NH4
+ adsorption (Seitzinger et al. 1991b; Weston et al. 2010). 

2.1.14 Effect of pH on desorption of sediment NH4
+  

Increased pH stimulated adsorbed ammonium release into pore water by 

converting NH4
+ to NH3. The peak of dissolved NH4

+ was 132 µmol L-1 at pH 9.3 (Fig. 

2A). The increase of dissolved NH4
+ at pH‘s 6.5-13 likely resulted from exchangeable 

NH4
+ desorption. When pH approached or exceeded the Pka (i.e. pH ≥ 9.25), NH4

+ 
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concentrations decreased via conversion to NH3.  This resulted in a large decrease of 

dissolved NH4
+ when pH rose from 9.3 to 13 (Fig. 2A). 

High pH increased the release of NH3 and NH4
+, mainly from the exchangeable 

ammonium pool. As pH increased from 6.5 to 13 (Fig. 2B), the amount of NH4
+ desorbed 

increased from 646 to 2647 nmol g-1. The elevation of pH above 9.2 resulted in more than 

50% of ammonium (∑NHx) converting to NH3 (Eq. 2). Although mineral surface charges 

become more and more negative as pH increases, un-ionized NH3 does not substantially 

adsorb to the solid phase. Moreover, drawdown of NH4
+ concentration with pH 

enhancement in the aquatic phase may promote desorption until approximately 80% of 

KCl-extractable ammonium was desorbed (Fig. 2b).  

2.1.15 Effect of pH on SRP flux  

Flux rates of SRP increased with pH elevation at both stations (P < 0.05, 

student’s-t test).  SRP efflux rates increased from < 5 µmol m-2 h-1 in the control, to 15 – 

25 µmol m-2 h-1 at pH 9.2, and to 35 – 55 µmol m-2 h-1 at pH 9.6 (Fig. 3). Increased SRP 

flux rates with pH increases were consistent with the molecular diffusive rates of SRP 

estimated from pore water profiles (Table 4). In the oligohaline region of the Potomac 

River, SRP release from sediment increased from <10 µmol-P m-2 h-1 in controls to ~ 40 

µmol m-2 h-1   at pH 9.5 and ~ 110 µmol m-2 h-1 at pH 10 (Seitzinger, 1991). Similar large 

increases in SRP flux rates have been observed at pH’s of 9.5 in freshwater sediments 

(Boers 1991). 
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2.1.16 Effect of pH on DIN flux  

For both Powerline and Budds Landing experimental cores (Fig. 4A), flux rates of 

∑NHx increased significantly in the high pH treatments (especially pH > 9.5) relative to 

the control (p < 0.05, student’s - t test), but differences between pH 9.2 and 9.5 were not 

significant. Compared to the control group, high pH (9.5 – 9.6) increased ∑NHx flux rates 

by about 6-fold at Powerline and by 2-fold at Budds Landing. Increase in ∑NHx flux rates 

were consistent with the pH-induced ammonium desorption at surface sediments and the 

observed changes in the pore water profile. Similar to observations of salinity-enhanced 

ammonium desorption (Gardner et al. 1991), ammonium desorption with alkaline pH 

penetration increased both the ∑NHx concentration and the proportion of NH3 in pore-

water (Fig. 1E).  The conversion of NH4
+ to NH3 and the steeper concentration gradients 

of these two components all resulted in elevated ∑NHx fluxes. At Budds Landing, the 

flux measurements in the control were similar to the upward diffusion rate of ammonium, 

primarily as NH4
+. The measured efflux rates of ∑NHx at pH 9.6 were equivalent to the 

sum of the diffusive flux rate of NH4
+ and NH3 (Table 4). Lack of consideration of NH3 

production would result in underestimation of ammonium flux rates by 25-35% for the 

flux measurement and by 50% for the diffusive flux estimation.   

Ammonium remineralization, calculated either by stoichiometric oxygen-based N 

remineralization or measured total inorganic nitrogen flux ( i.e. NH4
+ + NH3 + N2-N + 

NO3
-), suggests elevated pH dramatically promoted N efflux. If we assume that aerobic N 

remineralization stoichiometry from phytoplanktonic organic matter is 138:16 O2: N and 

denitrification is partly fuelled by the diffusion of water column NO3
- into sediment 

(Cornwell et al. 1999), ∑NHx flux accounted for 20 – 40% of oxygen-based N 
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remineralization in the control and for 68 – 153 % of N remineralization in the high pH 

treatments. Alternatively, if nitrogen remineralization rates were evaluated from the sum 

of ∑NHx, NO3
- and N2 flux rates, pH elevation increased ammonium flux as a proportion 

of total N remineralization from 22% to 105% for sediment at Powerline and 44% to 87% 

at Budds Landing. Both estimates reveal that increased pH enhanced the proportion of 

ammonium release relative to the total remineralized N. However, the difference of NH4
+ 

remineralization between two estimates may result from the use of O2 consumption rates 

instead of CO2 fluxes. The calculation of oxygen-based ammonium remineralization is 

affected by the production/ reoxidation of reduced inorganic compounds (e.g. Fe2+, S2- 

and Mn2+),  potential methanogenesis in organic-matter rich estuaries  (Carini and Joye 

2008; Martens and Klamp 1980), and variable C:N ratios of organic matter.  

No significant difference was found for NO3
- flux rates among pH treatments (p > 

0.05, student-t test).  Fluxes of NO3
- ranged from -70 to 10 µmol-N m-2 h-1, with most 

fluxes directed into the sediment (Fig.4B). Concentrations of NO3
- were low in the 

overlying water and undetectable in pore water.  

2.1.17 Effect of pH on potential nitrification  

The response of potential nitrification to pH suggests high pH (> 9) inhibited 

nitrification (Fig. 5A). The potential nitrification rate in the control was 84 ± 24 nmol-N 

g-1 h-1 , similar to rates in other  fresh water sediments of 90- 470 nmol-N g-1 h-1 (Cooper 

1983). With pH increasing from 9 to 11, potential nitrification rates decreased sharply 

from 70-110 nmol-N g-1 h-1 to below 10 µmol-N g-1 h-1 (Fig. 5A).  



31 

 

Bacterially mediated nitrification is first order or zero-order kinetics with respect 

to NH4
+ / NH3 concentrations as nitrifying substrates (Park et al. 2010). However, 

increases in pH can enhance ∑NHx desorption and the total inventories of exchangeable 

and pore water ammonium may be equal or less than controls because of NH3 

volatilization.  Furthermore, pH-driven NH3
 accumulation can be toxic or inhibit the 

growth and enzyme efficiency of nitrifying bacteria (Anthonisen et al. 1976; Kim et al. 

2006).  In laboratory observations and modeling, both high pH and NH3 have negative 

effects on nitrifying bacteria, ammonium-oxidizing bacteria (AOB, Nitrosomonas) and 

nitrite-oxidizing bacteria (NOB, Nitrobacter) (Van Hulle et al. 2007). Elevation of pH 

above 9 could inhibit enzyme activity of AOB and NOB since the optimal pH range is 6 

– 8.5 for AOB and 5.5 – 8 for NOB (Park et al. 2010; Van Hulle et al. 2007). Even 

though nitrifying bacteria might survive out of the optimal pH range, they would pay an 

energy cost to maintain their cytoplasmic pH (Wood 1988).   

Although few field studies have been conducted on the effect of pH on sediment 

nitrification relative to water column and soil environments (Carini and Joye 2008; Simek 

et al. 2002), sediment potential nitrification rates appear to be limited by high pH (> 8) in 

freshwater and were positively related to exchangeable NH4
+ in 36 stream surveys 

(Strauss et al. 2002). Elevated pH inhibition of nitrification, with decreases of 80% at pH 

9 relative to peak nitrification, have been observed in fine-grained sediment in the Arika 

Sea (Isnansetyo et al. 2011). 



32 

 

2.1.18 Effect of pH on nitrification rates  

Elevated pH negatively impacted the intact-core nitrification as measured by the 

changes in ∑NH4
+ or NH4

+ flux rates after adding CH3F, a inhibitor of ammonium 

oxidiation (Fig. 5B). Under neutral conditions, no significant difference of nitrification 

rates existed between the evaluation from ∑NH4
+ flux (182 ± 49 µmol m-2 h-1)  and from 

NH4
+  flux (210 ± 35 µmol m-2 h-1). Sediments in the upper Sassafras River show 

considerably higher nitrification rates than  the  < 40 µmol m-2 h-1 typical of the 

mesohaline region of the Chesapeake Bay in summer (Kemp et al. 1990), reflecting the 

aerobic overlying water conditions.  

Similar to nitrification potentials (Fig. 5A), increasing pH from neutral to 9.5 

exerted a remarkable depression on nitrification, as evidenced by the > 50% reduction in 

nitrification under alkaline water (Fig. 5B).  If both dissolved NH4
+ and adsorbed NH4

+ in 

sediments are assumed to be the main substrates for nitrification (Seitzinger et al. 1991), 

high pH related decreases in N availability could functionally suppress nitrification. The 

reduction of NH4
+ concentration in pore water as well as its proportion to ∑NHx may 

reduce the ammonium availability for nitrification. As a negative function of pH (Fig. 2), 

adsorbed NH4
+ may be reduced, possibly decreasing nitrification (Fig.5). Following pH 

penetration into the aerobic sediment surface (typically ~ 2 mm), NH3 toxicity could 

suppress nitrification (Isnansetyo et al. 2011).  In addition, nitrifying bacteria are obligate 

chemoautotrophs and grow with inorganic carbon in the form of CO2 as their sole carbon 

source (Staner 1970); a reduction in CO2  with pH elevation may therefore potentially 

inhibit nitrifying metabolism.   
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2.1.19 Effect of pH on denitrification  

In aerobic Chesapeake Bay sediments, alternative N2 production via annamox 

appears inconsequential (Rich et al. 2008), with coupled nitrification-denitrification being 

the key pathway to transform the rematerialized nitrogen to N2 -N (Cornwell et al. 1999). 

Coupled nitrification - denitrification decreased from 180 - 280 µmol-N m-2 h-1 to less 

than 85 µmol –N m-2 h-1 as the overlying water pH increased to 9.6 (Fig.6). 

Denitrification efficiency, the percentage of inorganic nitrogen released from the 

sediment as N2 -N (Heggie et al. 2008), decreased from 84% to 35% at Powerline and 

64% to 17% at Budds Landing.  

Reduction in denitrification with pH elevation may be a consequence of limited 

NO3
- supply and alkaline pH constraint on denitrifying bacterial activity. The NO3

- 

supply for denitrification may come from ammonium oxidation and diffusion from the 

overlying water. In this study, the NO3
- supply from the overlying water (Table 1) was 

low relative to denitrification rates, an observation consisted with undetectable pore water 

NO2
- and NO3

- concentrations. Hence, consistent with pH suppression of nitrification 

(Fig. 5), denitrification at high pH is likely limited by the NO3
- supply (Fig. 6). Moreover, 

the optimal pH range for denitrification is 7 – 8 in soil and anaerobic sediments (Simek et 

al. 2002); higher pH may directly inhibit the activity of denitrifying bacteria. Nitrate 

reducing bacteria, such as Thioalkalivibrio nitratireducen, can survive in alkaline 

sediment and cultivation media at pH 10. However, the nitrite reductase activity of T. 

nitratireducens was maximal when pH ranged from 6.7 – 7.5, and  80% of the activity 

was inhibited at high pH (9 – 10) (Filimonenkov et al. 2010).  
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Although dissimilatory nitrate reduction to ammonium (DNRA) in freshwater 

sediments appears to be minor relative to denitrification (Scott et al. 2008), DNRA 

usually occurs when NO3 − inputs exceed the availability of carbon substrate for 

denitrification (Tiedje et al. 1989). As a consequence of pH elevation, limited NO3
- 

consumption through anaerobic denitrification may provide the potential chances for 

DNRA and enhance ammonium production.  However, DNRA may play a minor role in 

explaining the enhanced ammonium fluxes. We did not expect high DNRA occurs in the 

Sassafras River sediment with undetectable free sulfide concentrations.  

2.1.20 Effect of pH on oxygen consumption  

Oxygen consumption rates in the controls were higher in July at Budds Landing 

than in June at Powerline, partly a result of the promoted bacteria efficiency of organic 

matter decomposition with rising temperatures. However, oxygen consumption decreased 

as pH increased at both sites (Fig. 6). This is likely related to the alkaline pH effects on 

bacteria production and respiration (Tank et al. 2009). Assuming pH has no effect on 

organic matter remineralization to ammonium at each sampling site, we postulate that 

inhibition of nitrification by increased pH resulted in the reduction of oxygen 

consumption.  

ସܪܰ
ା ൅ 2ܱଶ ՜  ܱܰଷ

ି  ൅ ଶܱܪ ൅  ା                                                                    (9)ܪ2

The molar ratio of O2 to ∑NH4
+ is 2 for nitrification. The measured slopes of 

Δ∑NH4
+ and - ΔO2 fluxes were consistent with nitrifying stoichiometry (Fig.7), which 

suggests high pH increased sediment ∑NH4
+ diffusion into overlying water rather than 

enhancing coupled nitrification-denitrification. Deviation of the -ΔO2 : Δ∑NH4
+ flux rates 
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from the theoretical 2 : 1 ratio may result from variation in sediment cores, such as 

oxidation of Mn (II) and Fe (II), and sediment buffering effects on OH- penetration in 

depth and magnitude.  

 

Conclusion and Ecological Implications 

Harmful algal blooms, including cyanobacterial blooms, present a clear challenge 

to the functioning of shallow water coastal ecosystems. Like other blooms, 

cyanobacterial blooms are increasing in frequency and magnitude over time due to 

eutrophication.  Cyanobacterial blooms can be locally persistent and extensive. However, 

determining the cause of such blooms can be elusive. Elevated temperature, a long water 

residence time, and availability and proportions of inorganic and organic nutrients are 

often cited as 'triggers' (Glibert 2011). Mitigation efforts for eutrophication have not 

always had success in hindering the development of harmful algal blooms (Glibert 2011). 

Indeed, cyanobacterial blooms are common in the Potomac River (Chesapeake Bay) 

despite considerable progress removing P from point sources (Krogmann et al. 1986; 

Ruhl 2010)(Krogmann et al. 1986; Ruhl and Rybicki 2010).  The occurrence of blooms 

during drought periods with low external nutrient inputs suggests that internal nutrient 

recycling is a key to the initiation and sustainability of cyanobacterial blooms. 

Nutrient release from bottom sediments can be a substantial source in shallow 

water ecosystems, potentially satisfying nutrient demand of algal growth and enhancing 

eutrophic conditions. High rates of photosynthesis during dense blooms promote a large 
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water column pH increase, especially in the low pH buffering water such as lake and 

freshwater estuaries.  

Nutrients, especially N, are limiting to primary production during the extensive 

summer blooms in Chesapeake Bay (Kemp et al. 2005). In summer, bloom forming 

cyanobacteria are dominant by diazotrophs, resulting in high pH persistence in the tidal 

fresh Sassafras River (O’Neil and Maryland DNR, unpublished data). Our study suggests 

pH elevation can increase inorganic N supply from the sediment into the water column. 

As pH increased above 9, the N flux from sediments was more than doubled by 

promoting NH4
+ and NH3 flux and inhibiting N2 loss. Even though N2-fixing 

cyanobacteria can survive during N deficiency, they prefer to take up dissolved inorganic 

N rather than consuming energy for N2 fixation (Paerl 2008).  The pH-induced release of 

ammonium from sediments may thereby be an important N source for primary 

productivity during dense blooms in shallow estuaries or lakes. The molar ratio of DIN: 

SRP sediment efflux decreased from > 70 to 9 – 12 when experimental pH rose from 

neutral to above 9, which may reinforce N limitation and selectively support N2-fixing 

cyanobacterial blooms. Given higher P demand for diazotrophs, the augmentation of P 

flux with pH may boost the growth and persistence of algal blooms (Xie and Xie, 2003; 

Paerl, 2008).   
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Tables 

Table 2-1 Sediment grain sizes, ambient dissolved nutrients in water column and the flux rates 
before pH mediation, sampling at the Powerline in June 18, 2008 and Budds Landing in July 14, 
2009. Grain size was calculated from the intact core; other measurements are average nutrient ± 
SE (n= 3) and average flux rates ± SE (n= 4- 9). Negative rates indicate uptake by the sediment. 

 

Variables Powerline Budds landing 

Grain size (%)   

sand 3.2 6.7 
silt 59.9 58.8 
clay 36.9 34.4 

Bottom water characterization  

SRP (µmol L-1) 0.7 ± 0.04 0.23 ± 0.07 
NH4

+-N (µmol L-1) 2.1 ± 0.05 0.6 ± 0.1 
NO3

--N (µmol L-1) 7.5 ± 0.02 0.82 ± 0.02 
Salinity 0.05 0.2 
Temperature (°C) 24.7 26.9 
pH  9.4 7.3 
DO (mg L-1) 10.3 12.48 
DO (%) 127.4 158.2 
Chl a  (mg L-1) 78 46.5 

Core fluxes 

NO3
- -N flux (µmol N m-2 hr-1) -41 ± 0.2 10 ± 18 

NH4
+-N flux (µmol  N m-2 hr-1) 62 ± 8.5 310 ± 32 

SRP flux (µmol P m-2 hr-1) -0.2 ± 1.2 5.0 ± 3.7 
N2 flux rate (µmol N m-2 hr-1) 259 ± 38 176 ± 21 
O2 flux rate (µmol O2 m-2 hr-1) -1614 ± 62 -2240 ± 293 
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Table 2-2  Experimental overlying water pH’s for experimental incubations of cores from the 
Powerline (n= 4) and Budds Landing sites. The Powerline incubations had a sequential change of 
pH while the Budds Landing incubations had 3 replicate cores at 3 different pH’s.  For Budds 
Landing, n= 3 at each pH level except for the control on the first day when n = 9.  pH data is the 
mean value ( ± SE). 

 
 Powerline Budds Landing 

Treatment Time (day) pH Time (day) pH 

control 1st 7.8 ± 0.01 
1st and 

7th 
7. 4 ± 0.3 

pH1 6th 9.2 ± 0.02 7th 9.2 ± 0.05 

pH2 11th 9.6 ± 0.03 7th 9.5 ± 0.2 
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Table 2-3   The kinetic parameters used in calculation of diffusion rates and in calculation of 
ammonium adsorption-desorption in Budds Landing sediments. 

 
Parameter   Value Comments Ref. 

pKb 9.25   
Temperature 27⁰C   

 
For calculation of the molecular diffusive rates Stumm and Morgan (1996) 

water % 74% 10 cm  
　ρ 2.50 g cm-3  
　φ 0.88   
　θ 2 1.26   
D*-Br- 20.10 

The diffusion coefficient in 
free solution (D*: 10-6 cm2 s-

1) 

Li and Gregory (1974) 
D*-PO4

3- 5.77  
D*-NH4

+ 19.80  
D*-NH3 24.52  
D-KBr- 1.09 

The corrected diffusion 
coefficient  (D: 10-6 cm s-1) 

 
D-SRP 0.30  
D-NH4

+ 1.02  
D-NH3 1.29  

 
For adsorption coefficient of ammonium at top 2 cm sediment 
water % 89% top 2 cm  
φ 0.95 top 2 cm  

C෠N 1.5 ± 0.2 µmol  g　 -1 wet sediment 
CN 0.07 µmol mL-1  

 
For ammonium desorption   

R 8.21× 10-5 atom m3 mol-1 K-1 
Larsen et al. (2001) 
Capone et al.(2009) 

 

H-NH3 7.05×10-2 mol  atm-1  m-3 
H's-NH3 1.72×10-3 mol  atm-1  m-3 
I 1.47×10-3  
γ NH3 1.00  
γ NH4+ 0.88  

 

  



48 

 

Table 2-4  Efflux rates of SRP and ∑NHx in control and in high pH treatments in sediment cores 
from Budds Landing. Net flux rates were compared to rates estimated from molecular diffusion 
of pore water. 

 

pH levels 
SRP flux rates 

(µmol-P m2 h-1) 
Ammonium flux rates 

(µmol-N m2 h-1) 

Diffusive rate Flux rate Diffusive rate Flux rate 
 H4

+ H3 NH4
+ + NH3 ∑NHx 

control 4.6 3 ± 3.2 49.5 0.2 149.
7 61.7± 8.5 

pH= 9.6 39.2 43.5 ± 7.4 43.1 34.2 477.
3 440.9 ± 19.1
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Figures  

 
 
Figure 2-1 Budds Landing porewater profiles in the upper 10 cm of sediment under high pH (9.6) 
and normal pH (7.4) treatments, including vertical changes of pH (A), porewater Fe (B), SRP 
(D,F), and ∑NHx (C,E). Changes in ammonium speciation, resulted from surface pH elevation, 
were calculated by the equilibrium of NH3 and NH4

+. 
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Figure 2-2 Experimental pH effects on NH4
+ concentration in solution (A) and desorption of 

exchangeable NH4
+ (B), using the 0-2 cm homogenized sediments from Budds Landing collected 

in November 2008. Dissolved NH4
+ concentration was estimated from the ∑NHx concentrations 

and pH in the aquatic phase. Desorbed NH4
+ was the sum of ∑NHx in water and the volatilized 

NH3 in the headspace of the sealed centrifuge tubes.  The dashed line represents ‘total’ adsorbed 
NH4

+, estimated by KCl extraction of pH-neutral sediment.  
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Figure 2-3Figure 2.3 Experimental pH effects on SRP flux rates from sediments at Powerline 
(black bars) and Budds Landing (gray bars). Error bars are the standard deviation. 

 

 

Figure 2-4 Experimental pH effects on flux rates of total ammonium and nitrate. Sediment cores 
were taken from Powerline (black bars) and Budds Landing (grey bars). Data are presented as the 
mean of flux rate ± standard deviation.  
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Figure 2-5  Experimental pH effects on potential nitrification (A) and intact core nitrification 
rates (B) from Budds Landing in July 2009. The potential nitrification rates (A) are calculated 
from nitrate production in NH4

+-amended slurries from surficial sediments (0− 2 cm). 
Nitrification rates (B) are estimated by inhibition of nitrification using CH3F. Bars show the 
average flux rates of ∑NH4

+ (black bars) and NH4
+ (gray bars) as well as the standard error for 

triplicate samples. 
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Figure 2-6  Experimental pH effects on denitrification rates (A) and oxygen consumption rates 
(B) of sediments from the Powerline (black bar) and Budds Landing (grey bar) sites. ‘*’ indicates 
where measurements were not taken. Bars show the mean of triplicate cores, error bars are the 
standard error. 

 
 

Figure 2-7 The relationship between the increased ∑NHx fluxes and the reduced oxygen 
consumption rates after pH elevation. Data from Powerline are the changes of ∑NH4

+ and O2 flux 
rates in the same core after pH was elevated from 7.8 to 9.5. Data from Budds’ Landing are the 
changes of flux rates between control cores and cores at a pH of 9.2 and 9.5 after 6 days 
incubation. The slope (K) of solid line is 2:1, which is equal to the molar ratio of ammonium to 
oxygen for nitrification (Eq. 8). 
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Chapter 3 Seasonal and spatial changes in sediment-water 

nutrient exchange: regulating factors in the 

overlying water 

Abstract 

In the upper Sassafras River, a tidal fresh and shallow tributary of the Chesapeake 

Bay, sediment cores were collected for nutrient flux measurements before, during and 

after cyanobacterial blooms and from locations within and downstream of the bloom 

region.  Dense cyanobacterial bloom in summer 2010, but not in 2008 or 2009, resulted 

in elevated pH (9 – 10.5) and O2 (10 – 24 mg L-1) persisting in the water column for 

weeks. Standard incubations were conducted in the dark for flux measurements of 

ammonium (NH4
+), nitrate (NO3

-), soluble reactive phosphate (SRP), denitrification (N2) 

and sediment oxygen demand (SOD).  Flux rates of NH4
+, SRP and high SOD were 

positively associated with temperature increase from spring to summer. In the 

cyanobacterial bloom zone, spring sedimentation of phytoplankton debris added organic 

matter to sediments where it could be rapidly remineralized in summer. Because of pH-

driven NH4
+ conversion to NH3 and desorption of exchangeable ammonium on 

the ratios of pore water: exchangeable NH4
+ in sediments increased with bloom 

development from June to September in 2010.  Release of NH4
+ with pH elevation 

coupled with the persistent organic matter input from algae in the bloom area. High pH/ 

DO penetration into sediments may inhibit nitrification-denitrification by enhancing the 

oxic layer thickness and perhaps also due to high NH3 concentrations and high pH which 
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may suppress bacterial activity.  Relative to non-bloom summers, high pH (> 9) resulted 

in an increase of 2 – 5 folds in SRP efflux, 19 – 30 % in NH4
+ efflux and a reduction of 

28 - 41% in the loss of N as N2 in the bloom region. With approximately 62% of 

observations of DIN : SRP flux rates below the Redfield ratio during high pH (> 9) 

conditions, the released nutrients can increase water column N limitation in summer. To 

determine how light penetration to the bottom affects nutrient recycling, light-dark 

experiments were conducted with cores obtained during periods when irradiance at the 

sediment water interface was ~ 50 µmol photons m-2 s-1.  Compared with light-

incubations, flux rates of NH4
+ and SRP in the dark were higher by 17% -70% and by 

- 88%, respectively; oxygen consumption and denitrification rates were enhanced 

significantly due to sediment respiration in darkness. Water column turbidity and algal 

blooms in the upper Sassafras River reduce irradiance reaching the sediment surface and 

thus may promote DIN and SRP release from sediments into the water column. The 

positive feedbacks between cyanobacterial blooms and  biogeochemical nutrient cycles, 

including pH-driven higher effluxes of NH4
+ and SRP, lower denitrification efficiency 

and decrease DIN: SRP flux ratios < 16,  and may partially sustain N2 fixing 

cyanobacterial blooms in summer.  

 

Introduction 

With the increased nutrient loads into the Chesapeake Bay region over the last 

century, deposition of particulate nutrients and organic debris has made sediments a large 

sink for phosphorus (P) and nitrogen (N) in the estuary (Boynton et al. 1995; Kemp et al. 



56 

 

2005). Higher nutrient burial rates are generally found in tidal freshwater and oligohaline 

environments relative to the lower parts of estuaries such as the Potomac River, Patuxent 

River and Maryland Mainstem Bay (Boynton et al. 1995). In the shallow and oligohaline 

regions of Chesapeake Bay tributaries, particulate P has a high accumulation rate in 

sediments due to the proximity to P inputs (Hartzell et al. 2010). Burial rates of N are 12-

fold higher in the oligohaline region than that in the mesohaline region of the estuary 

(Okeefe 2007).  Sediment nutrient release can strongly support primarily production in 

the water column (Seitzinger 1987b; Sharp et al. 2009) and reinforce eutrophication 

(Gardner and Mccarthy 2009).  Therefore, it is critical to quantify nutrient fluxes at the 

sediment-water interface and to evaluate factors regulating nutrient regeneration. 

The efficiency of P regeneration in the upper Chesapeake Bay is much lower than 

in the anoxic regions (Cornwell et al. 1996). In freshwater estuaries, sediments with an 

oxidized surface layer can effectively retain soluble P by re-adsorption/precipitation onto 

iron oxide minerals (Boers et al. 1998). In contrast, remobilization of P in anoxic 

sediments is rapid through reductive dissolution of Fe-oxides (Anschutz et al. 1998). For 

instance, sulfide-rich sediments in mid-Chesapeake Bay do not show increased P 

accumulation in recent (< 80 ) years, indicating P remobilization to counteract the 

accelerated P input from lands and atmosphere (Cornwell et al. 1996). Previous studies 

suggest high pH (> 9 – 9.2) can increase the solubility of Fe-bound P compounds and 

thus facilitate P release from sediments (Eckert et al. 1997). Photosynthesis during dense 

algal blooms causes the dramatic increases in pH, partly due to photosynthetic carbon 

removal in the low carbonate buffering in freshwater estuaries. Once high pH waters 



57 

 

comes in contact with the sediments, it may trigger release of sequestered P from 

sediments (Bailey et al. 2006). 

Dissolved inorganic nitrogen (DIN, i.e., NH4
+, NO2

- and NO3
-) derived from 

sediments and released into the water column may partially support algal blooms in 

coastal ecosystems (Cowan and Boynton 1996; Fisher et al. 1988).  Sediment NH4
+ 

recycling represents about 60-80% of plankton assimilative N demand in Chesapeake 

Bay tributaries (e.g.  Patuxent River) (Kemp and Boynton 1984). In particular, sediment 

DIN supply is critical in estuaries when biologically available N demand is high during 

blooms and the ratio of DIN: SRP concentration is low in summer (Fisher et al. 1988; 

Paerl 2008).  Moreover, in aerobic and freshwater systems a substantial proportion of 

remineralized ammonium (NH4
+) may be nitrified to NO2

- and NO3
- and then denitrified 

to N2, representing a loss of N from the system (Seitzinger et al. 1991). Coupling between 

nitrification and denitrification, as the main pathway for N2 formation, results from 

nitrate transport across the oxic/anoxic boundary (Rysgaard et al. 1994). Nitrogen 

remineralization rates can be influenced by a variety of environmental parameters, 

including temperature, organic matter input, substrate availability, redox condition, the 

presence of inhibitors (e.g., H2S , S2-), pH and salinity (An 2001; Mayer et al. 1990; 

Seitzinger et al. 1991).  

Algal blooms are a symptom of chronic eutrophication (Kemp et al. 2005) and are 

responsible for alteration of  biogeochemical cycles in  shallow water estuaries. 

Accumulation of massive phytoplankton blooms at the water surface can reduce 

irradiance reaching the bottom, and thus decrease benthic photosynthesis, oxygen 

production and nutrient assimilation. Decomposition of phytoplanktonic debris can 
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increase benthic oxygen consumption and reduce the redox potential in surface 

Deposits of phytoplankton can also be grazed, supporting a benthic community that can 

cause bioturbation and bioirrigation of sediments (Magni and Montani 2006). In shallow 

water, increased pH and dissolved oxygen (DO) concentrations related to phytoplankton 

photosynthesis may influence chemical and redox conditions at the surface sediment. 

High pH can cause the formation of NH3, which is toxic to most organisms in sediments,  

resulting in a reduction in macrofaunal metabolism and can even cause the death of 

macrofauna such as amphipods (Kater and Dubbeldam 2006). All these changes should 

directly or indirectly effect N and P recycling, but the responses of biogeochemical 

processes are expected to vary seasonally, spatially and with sediment properties.  

Seasonal and spatial investigations of sediment flux rates of soluble reactive 

phosphate (SRP), NH4
+ and nitrate (NO3

-) and measurements of sediment oxygen 

demand (SOD), respiration (CO2), and denitrification (N2) were conducted in the tidal-

freshwater region of the upper Sassafras River. Light-dark incubations were carried out to 

investigate the effects of episodic changes in bottom irradiance due to turbidity or algal 

blooms on sediment biogeochemical processes. Pore water nutrients, surface sediment 

exchangeable ammonium and other sediment properties were measured in cores from 

inside and outside the bloom area in summer 2010.  Sediment nutrient recycling was 

evaluated before, during and after the bloom.  
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Material and Methods 

3.1.1 Study Sites 

In the Sassafras River, six sites are categorized into three zones starting at the 

upper freshwater regions of the river and going downstream: Zone I (1A and 1B), Zone II 

(2A and 2B), and Zone (III) (3A and 3B) (Table 1 and Fig. 1).  Biomass of algal blooms 

tended to decrease from upstream (Zone I) to downstream (Zone III). Zone I has often 

experienced cyanobacterial blooms in recent years, with higher biomass than in  

downstream stations (Sassafras River Association 2010). Zone II is the transitional region 

for bloom dispersion and nutrient transport between the tidal-fresh water and oligohaline 

waters. Summer blooms were either low in density or short lived in Zone III, which was 

close to a marina and the Galena Wastewater Treatment Plant (WWTP). Sampling sites 

in each zone were on both sides of main river channel, which were similar in overlying 

water depth and presence of blooms. 

3.1.2 Sediment collection 

Field investigations were conducted in the upper Sassafras River estuary during 

2007, 2008, 2009 and 2010 (Table 1). We collected sediment cores for sediment flux 

measurements 3 times between winter 2007 and autumn 2008 and 6 times in 2009; at 

least one sampling were conducted in spring, summer, and winter during each period.  In 

2010, in which the highest biomass bloom occurred within our study, sampling was 

monthly from March to October (excluding April).   

To qualify the nutrient release from sediment, we took intact 10- 15 cm sediment 

cores (> 2) at each site using a pole corer, equipped with 7 cm diameter, 30 cm long 
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acrylic cylinders. In situ profiles of salinity, DO, pH, and water temperature were 

measured using a YSI XLM 600 sonde. Light attenuation coefficients were calculated 

from the vertical changes of irradiance measured by a Li Cor 2π photosynthetically active 

radiation (PAR) sensor. Approximately 30 L of bottom water from each zone was 

pumped through an inline water filter (equivalent to 0.8 µM filter) for use in the core 

incubations. The water was filtered to reduce nutrient assimilation and N2 fixation by 

algae. Samples were transported to Horn Point Laboratory within 4 hours after collection. 

Sediment cores were submersed in filtered water in a temperature-controlled 

environmental chamber. 

3.1.3 Sediment incubation and flux measurement 

We quantified nutrient fluxes of NO3
-, NH4

+,SRP, sediment oxygen demand 

(SOD) and denitrification (N2), following methods of  Kana et al. (2006). We routinely 

incubated the sediment cores in the dark at ambient water temperatures to simulate in situ 

conditions at the bottom of the river. Usually the irradiance at the bottom was very low 

due to turbidity from both algae and suspended inorganic particulates. After gently 

bubbling overnight on the day of collection, the cores were sealed with a gas tight stirring 

top. To deduct the rates of microbial processes in the water column (e.g., respiration, 

nutrient uptake, N2 fixation), the blank cores without sediment were incubated identically 

to sediments cores. Net flux measurements were generally conducted 4-6 times during 

the ~ 6 hours of incubations; ~ 24 hours incubation were performed at temperatures < 10° 

C. Dissolved inorganic nutrients (NO3
-, NH4

+ and SRP) were collected with 20 ml 

syringes, filtered with 0.45 µm cellulose acetate syringe filters, and frozen at ~20 °C until 
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analysis. When the measured pH was above 9, extra samples were preserved for total 

ammonium by adding 0.025 ml 1 M H2SO4 to minimize NH3 volatilization.  HgCl2 was 

immediately added in subsamples for dissolved gases (N2 / O2 and CO2) to a final 

concentration of 10 mg L-1 as an inhibitor of microbial activity. The sample glass tubes 

were stopped with top sealer and stored under water at the incubation temperature; 

samples were analyzed within 3 days.  

3.1.4 Comparison of light and dark core incubation 

Sediment cores from site 3A in September 2009 and from all stations in June 

2010 were used for the light and dark incubations. Usually irradiance at the sediment 

surface was very low, but during these sampling times irradiance in the bottom waters 

reached around 50 µmol photons m-2 s-1. After the flux measurements in the dark, surface 

sediment irradiances of ~ 100 µmol photons m-2 s-1 were maintained for sediment 

incubations. Subsamples were taken at 1-1.5 hour intervals, following same procedure as 

dark measurements. The incubation temperatures were 28 °C in September 2009 and 26 

°C in June 2010, close to in situ bottom water temperatures. 

3.1.5 Solid phase and pore water processes 

After the nutrient flux incubations, the overlying water from each core was 

siphoned off prior to sediment sectioning to avoid disturbance of the surface layer. Using 

a  N2-filled glove bag  to minimize oxidation effects (Bray et al. 1973), sediment cores 

were sectioned into 0-0.5 cm, 0.5-1 cm, 1-1.5 cm, 1.5-2 cm, 2-3 cm, 3-4 cm, 5-7 cm, and 

9-11 cm segments. Pore water was separated from sediment by centrifuging at 2000 G for 

10 min, and filtered through a 0.45 µm 25 mm diameter cellulose acetate syringe filter. 
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Subsamples for SO4
2-, Fe, PO4

3+, NH4
+, and ∑NHx were appropriately diluted according 

to instrument detection limits. Total iron, primarily from dissolved Fe2+ in pore water, 

was acidified with 0.2 ml of HCl in 5 ml diluted samples. After they were dried at 60 °C, 

sediments were ground with a mortar and pestle and analyzed for total C, N and P 

One core was occasionally used for sediment porosity and Chl a measurements. 

Surface wet sediments (1 ml) were collected for Chl a using a cut-off syringe barrel and 

stored at -20 °C in 15 ml centrifuge tubes wrapped in aluminum foil. Sediments for water 

content and solid phase analysis were placed in aluminum pans. Water content was 

calculated from the dry and wet weights of sediments after being dried at 60 °C. Organic 

content were determined by weight loss upon combustion (550 °C) in a muffle furnace. 

In addition, exchangeable NH4
+ samples were taken from sections of cores from stations 

1B and 3A in summer of 2010.  Wet sediments (0.5 ml) from each segment was added 

into centrifuge tubes, and extracted with KCl to measure adsorbed NH4
+ on sediment 

particles. 

3.1.6 Sample analyses 

Concentration of NH4
+ and SRP were analyzed by the phenol hypochlorite method ( 

( Parsons et al. 1984) and by the molybdate-ascorbic acid reduction method (Murphy and 

Riley 1962), respectively. Pore water Fe was analyzed colorimetrically (Gibb 1979).  

Concentrations of Cl-, SO4
2- and NO3

- were determined with ion chromatography (US 

EPA 1983). Dissolved N2 and O2 concentrations were analyzed from O2 : Ar and N2: Ar 

ratios using membrane inlet mass spectrometry (Kana et al. 1994). DIC samples were 
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acidified and analyzed using gas chromatography (Shimadzu GC-14) in 2009 (Stainton 

1973) and a IR-based DIC analyzer  in 2010 (Apollo SciTech, Inc. ModelAS-C3) in 

3.1.7 Data Analysis 

Net flux rates of nutrients, SOD, respiration and denitrification were calculated from the 

linear regression of changes in concentration with time for each sediment core, with slope 

adjusted for water column metabolism in control cores. Calculations were performed 

separately for dark and light incubations. Fluxes of N2-N represented the net exchange of 

N2-N at the sediment-water interface since no specific identification can be made among 

the reactions of denitrification, anammox, and N2 fixation (Kana et al. 1998; Kana and 

Weiss 2004).  

All statistical analysis was performed using SAS (version 9.1, SAS Institute, 

Cary, NC). Significance for all of the reported data was determined at α = 0.05. The 

Pearson correlation coefficient was calculated to determine the significance of nutrient-

time relationships. Linear regression and stepwise multiple linear regression analyses 

were used to examine flux rates and environmental variables in the overlying water, 

presented as the linear regression coefficient (k). The correlation of fluxes in fine-clay 

sediments with environmental factors were normalized and determined by multiple linear 

regression analysis. Station SR_6 was excluded from this analysis because of coarse 

grain size. The effects of changes in pH on NH4
+ and N2 flux rates were analyzed using 

linear regressions of data from each station.  Differences in the flux rates between high 

pH conditions and the relatively lower pH conditions in summer were compared by one-

way ANOVA. 
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 We examined flux data with respect to water temperature to determine the 

temperature coefficient (Q10), which is the factor by which the rate increases when the 

temperature is raised by 10 degrees. 

ܳଵ଴ ൌ ቀிଶ
ிଵ

ቁ  
భబ

ሺ೅మష೅భሻ; ଵ଴ ൌ݈ܳ݊ ݎ݋     L୬ ሺFଶሻି୪୬ሺFଵሻ
ሺ்ଶି்ଵሻ

ൈ 10                        (Eq. 1) 

Assuming nutrients are regenerated by respiration from a Redfield composition of 

sediment organic matter with the minimal influence of other decomposition processes, 

the stoichiometric analysis for N recycling was based on the relationship of oxygen 

consumption and nutrient release from algae in aerobic decomposition:  

(CH2O)106(NH3)16(H3PO4) +138 O2 →106 CO2 + 16 HNO3 +H3PO4 + 122 H2O  

                                                                                                                            (Eq.2) 

Here we assume that the sum of DIN flux rates (DIN= NH4
+, NO3

-,  N2-N flux) is 

equal to the remineralized N in this equation;  the negative NO3
- flux, which presents a 

possible contribution to denitrification from the overlying water rather than organic 

matter decomposition, is deducted from total DIN flux.  The presumed ratio of 138 O2 : 

106 CO2 : 16 DIN : 1 SRP flux was used to predict flux rates for regenerated nutrients in 

sediment. 

Oxygen penetration depth is defined as the thickness of the oxic zone in 

sediments, which is regulated by organic matter decomposition and the transportation of 

bottom water oxygen into sediment (Cai and Sayles 1996). Although bioirrigation and 

bioturbation may affect this process, oxygen penetration depth (L) can be estimated from 

benthic oxygen flux (FO2), and bottom water oxygen concentration ([O2]BW) (Cai and 

Sayles 1996):  
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L= 2Φ Ds [O2]BW/(FO2)    (Eq. 3) 

where Φ is the porosity of 0.88; Ds is the diffusion coefficient of O2 in sediment. Ds is a 

temperature related coefficient (Ds = 0.0453×Temp (oC) + 1.0043) (Schulz and Zabel 

2000), and corrected using Br- diffusivity in the fine-grain sediment of the upper 

Sassafras River (Chapter 2). We assume SOD rates in the day were the same as in night 

due to light limitation in the bottom layer. Dissolved oxygen in the bottom water ([O2]BW) 

and temperature  either come from ambient DO measurements during sampling or from 

the continuous real time records at Budds Landing (in 2010, www.eyesonthebay.com). 

 

Results 

3.1.8 General environment 

The average depth of sampling stations in the upper Sassafras River ranged from 

0.68 to 3.4 m, becoming deeper along the salinity gradient from Zone I to Zone III. 

According to the tidal records at Drawbridge, tidal range can be 0.3 m and even higher 

due to meteorologic changes. In this turbid water, the average light attenuation coefficient 

was 4.5 m-1. During our sampling, 89% of the time bottom water irradiances were below 

15 µmol photons m-2 s-1.  

Salinity, temperature and dissolved nutrients exhibited pronounced seasonal 

changes (Table 3).  Temperature ranged from 4.2 ± 3.5 °C in winter to 27.2 ± 3.2 °C in 

summer. Salinity, increasing from the river head (Zone I) to further downstream (Zone 

III), was relatively lower in summer (< 1.5) than in other seasons. Concentrations of NO3
-

the main fraction of DIN in Sassafras River inputs, substantially decreased from > 50 
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µmol L-1 in spring to < 1 µmol L-1 in summer; the average NH4
+ and SRP decreased from 

8.4 to 0.5 µmol L-1 and from 1.0 to 0.3 µmol L-1 during summer blooms, respectively. 

Meanwhile, dissolved N: P ratios in the water column declined from spring to summer, 

resulting in nitrogen limitation in most cases during the summer.  As bloom developed, 

dissolved nutrient concentrations (NH4
+, NO3

- and SRP) decreased from spring to 

summer, which reflected on the negative relations between nutrient concentrations and 

water column changes, such as Chl a, DO and pH elevation (Table 4).   

3.1.9 Sediment characteristics 

Our study region was covered with fine-grained clays except for sandy sediment 

at site 3B (Table 2). All of the fine-clay sediment cores had a distinctly oxidized surficial 

layer and no smell of H2S. In 2011, the year with the biggest algal blooms, organic matter 

in fine sediments was 1.4 – 2.6 times higher for C and up to 2.7 times higher for N than at 

the sandy site (3B). The carbon content in the top 1 cm fine-grained sediments increased 

20% to 47% from June to September. Meanwhile, the molecular ratio of C: N decreased 

from 9.3 – 17.2 to 8.6 – 13.3 in the bloom area (Zone I) and adjacent region (Zone II), 

respectively (Table 2).   

3.1.10 In situ pH and DO status   

In the water column, pH varied from 6.4 to 10.2. Elevated pH (> 9) was observed 

during spring 2010 and most of summer when the cyanobacterial blooms occurred (Table 

3).  Dissolved oxygen (DO) ranged from 4.7 to 20.3 mg L-1, with a higher average of 15.6 

mg L-1 during bloom conditions in the summer (Table 3). Dissolved oxygen 

concentrations were affected by oxygen release due to photosynthesis during summer 
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blooms and the higher solubility of oxygen at low temperature in winter (Table 4). In 

general, the temporal and spatial patterns of pH were more similar to the percent DO 

saturation rather than DO concentrations (Figure 2). pH and  percent DO show a 

downstream decrease as cyanobacterial biomass decreased. Fewer blooms were found in 

2008 and 2009 than in 2010.  In 2009, high pH values (9-9.5) were only observed in a 

short period of time in early September within Zone I and II. In 2010, pH and DO rose 

dramatically to > 9.2 and over 200%, respectively, during the short-period spring bloom 

in May and during the summer blooms from June to the early September. In Zone I 

especially, the daily average pH and DO% were maintained in the range of 9.2 to 10.2 

and 200 – 300%, respective, for several weeks (eyesonthebay.com; Chapter 3). pH values 

were positively related to Chl a , DO % and O2  in the overlying water (Table 3).  

3.1.11 Fluxes rates in the light-dark incubations  

Sediments for light and dark treatments were incubated at field temperatures (25-

27 °C) and pH (7.5 – 8.4) in September 2009 and June 2010.  Benthic microalgae, as 

evaluated by Chl a concentration in the top 1 cm sediment, varied temporally (Fig. 3F). 

Sediment Chl a showed a gradual downstream decrease from ~210 ± 28 mg m-3 at 1B to 

17± 6.9 mg m-3 at the sandy site 3B.  

In response to dark respiration and light photosynthesis in sediment,  production 

of O2 in the light decreased net oxygen consumption by 58~86%  in Zone I and  led to net 

O2 evolution of up to 1208 µmol m-2 h-1 in Zone II and III (Fig 3E). The net increase of 

O2 between light and dark incubations was positively related to sediment Chl a (Fig. 4).  
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Flux rates of dissolved inorganic nitrogen under light-dark incubations (Fig. 3 A-

C) had negative rates, indicating uptake by sediments.  DIN was primarily released as 

NH4
+ from sediment into the water column. Fluxes of NO3

- were generally low, but with 

great variation; while NO2
- flux was negligible at all stations. NH4

+ fluxes (Fig. 3A) 

varied from 46 to 174 µmol m-2 h-1 in the dark and from -88 to 44 µmol N m-2 h-1 in the 

light, with significantly higher effluxes in the dark than in the light (P < 0.05, Student’s -t 

test). Illumination turned 71% of net NH4
+ release into negative flux rates, indicating 

ammonium uptake with photosynthesis. Compared with the recycled N from organic 

matter decomposition at a ratio of 138 O2 : 16 N (Fig. 5), NH4
+ fluxes in our study were 

close to the predicted N remineralization value.  

Illumination resulted in a general increase of NO3
- flux, enhanced on average by 

24.3 µmol m-2 h-1 at all stations (Table 5). Dark-incubated NO3
- flux rates ranged from -

120 to 16 µmol N m-2 h-1, with 71% of observations showing NO3
- diffusion from the 

overlying water into sediments despite negative NO3
- fluxes in some cases. There was 

general higher NO3
- fluxes exhibited in the light than in the dark, which was consistent 

with oxygen production by sediment photosynthesis and potentially increase in 

nitrification (Fig. 3B).  

SRP flux rates (Fig. 3C) varied from -10 to 12 µmol m-2 h-1 in the dark and from -

28 to 7 µmol m-2 h-1 in the light, respectively. SRP flux rates significantly decreased from 

an average uptake of -0.2 µmol m-2 h-1 in the dark to -7µmol P m-2 h-1 in the light at all 

stations (P < 0.01, Student’s- t test).  For SRP flux, the light and dark incubated fluxes 

were close to or below the P remineralization calculated from SOD fluxes (Fig 5).  
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Denitrification rates were relatively lower in sandy sediments than fine-grained 

sediments, ranging from 150 to 320 µmol m-2 h-1 (Fig. 3C). In muddy sites, N2 flux in the 

light decreased by 48 to 72% compared to dark rates. In sandy sediments, dark 

denitrification rates were low (< 100 µmol N m-2 h-1) and did not show significant 

decreases in the light. Denitrification efficiency (DE) was estimated from the fraction of 

N2 in the total DIN flux.  Dark-incubated DE indicated 46 – 76% of the remineralized N 

was denitrified, while DE in the light treatments showed a greater variation of 34 – 92 %. 

The slope of N2 versus DIN flux (Fig. 6) indicated a slightly higher DE in the dark (K = 

0.64) than in the light incubations (K = 0.56).      

3.1.12 Flux rates  

Nutrient exchange at the sediment-water interface was measured in the dark 

because most of time PAR was low at the sediment surface due to light attenuation by 

phytoplankton and suspended particles. SRP flux rates were generally low with an 

average of 0.3 µmol m-2 h-1 (n = 74) and ranged from - 20 to 43 µmol m-2 h-1 (Fig. 7).  

Multiple regression analysis (Table 7) suggested SRP flux rates were positively related to 

pH, temperature and Chl a (SRP = 5.2× ln (Temp) +5.3 pH + 8.52 ln (Chl a); P = 0.03, n 

= 74). Water temperature accounted for ~ 60% of the seasonal variation in SRP release. 

The estimated Q10 was 2.3 in the temperature range of 10 - 30 °C (Fig .10A). In summer, 

SRP fluxes were below 10 µmol m-2 h-1 at pH < 9, but dramatically rose to 42 µmol m-2 h-

1 when pH of the water was > 9 (Fig.10A).   

Flux rates of NH4 + changed with sediment properties and temperature. 

Ammonium flux in the fine-grained sediments ranged from an uptake of -42 µmol N m-2 
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h-1 to an efflux of 720 µmol N m-2 h-1 (Fig 7); while NH4
+ flux rates in sand were less 

than 200 µmol N m-2 h-1 (Fig. 7A and 9). Sediment types, changing from fine-grained 

sediment to sand, caused significant reduction in NH4
+ release (p < 0.001, t-student). 

Moreover, the NH4 + flux rates increased from winter-spring to summer, with maximum 

release in August and September (Fig. 8). A positive relationship existed between NH4
+ 

flux rates and temperature (Q10 = 1.6, P < 0.05, n =1 73, Fig. 10). Fine-clay sediments 

showed a higher Q10 value of 1.59 than in sandy sediments (Q10 = 0.92).   

The pH effects on the variation of NH4
+ fluxes differed in spring and in summer. 

Although high pH ( > 9) was observed during spring blooms in 2010, no significant 

enhancement of NH4
+ flux rates happened in the bloom zone (zone I) in 2010 relative to 

the measurements in non-bloom years. However, the release of NH4
+ in summer was 

temporally and spatially related to the bloom–driven changes in pH and organic matter 

deposition. The NH4
+ fluxes in summer generally declined from Zone I to Zone III, partly 

correlated to the decreasing cyanobacterial biomass in the water and Chl a concentrations 

in sediments.  Compared with the pH changes in the overlying water in the summer 

bloom season, NH4
+ fluxes tended to have a positive response to pH elevation within or 

close to the bloom zone (Fig. 11), in which high pH had lasted for weeks. In the linear 

regression of pH and NH4
+ flux rates of sediments from 6 locations, the positive linear 

coefficients were 144.2 in 1A (R2 = 0.65, P < 0.05, n = 6 ), 345.2 in 1B (R2 = 0.68, P < 

0.01, n = 5 ); 100.7 in 1C (R2 = 0.65, P < 0.05, n = 5) , but no significant pH influence 

existed outside the bloom region (Fig.11).  

Nitrate flux rates varied greatly, ranging from an uptake of -328 µmol N m-2 h-1 to 

a release of 212 µmol N m-2 h-1 (Fig. 7).  NO2
- fluxes were undetectable in this aerobic 
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ecosystem. In the seasonal pattern, NO3
- flux into sediments occurred in early spring with 

high NO3
- concentrations in the overlying water, and became close to zero or positive in 

summer (Fig. 8).  

3.1.13 Nitrification efficiency 

We used the measured rates of coupled nitrification-denitrification (N2 loss) and 

the NO3
- fluxes to determine the rates of nitrification. To examine nitrification response 

to pH and DO changes, we used NO3
- release into water and denitrification as an 

indication of N2-N flux minus NO3
- flux into sediment. Nitrification efficiency was 

estimated as the sum of N2 flux and NO3
- flux and then divided by the CO2 based N 

remineralization rates.   

To elucidate bloom effects on nitrification, we used nitrification efficiency under 

low NO3
- concentrations (< 20 µmol L-1) in the overlying water to minimize the substrate 

influence from the water rather than sediment N ammonification. When pH values were 

less than 8.5 in the bottom water, a weak  positive relationship existed between 

nitrification efficiency and the estimated oxic layer depth (0 ‐ 3mm) (Fig. 20); however, 

photosynthesis of cyanobacterial blooms can lead to simultaneous oxygen and pH 

increases. Thus, alkaline pH penetration into the thin oxic layer may have co-occurred 

with the increased oxic layer thickness. Even though the depth of the aerobic zone 

increased in sediments, nitrification efficiency linearly declined with the increased oxic 

zone under bottom water pH (> 9), an pattern opposite of that observed during non-bloom 

periods (Fig. 20). 
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3.1.14 Denitrification rates  

Denitrification rates were generally 2~3 times higher in fine-grained sediments 

than sandy sediments (Fig. 7). Net N2-N flux rates in the fine sediment sites showed a 

clear seasonal pattern, with low rates (< 100 µmol m-2 h-1 ) in winter and rate up to 370 

µmol m-2 h-1 in early summer; rates tended to be depressed in the bloom season from 

summer to autumn (Fig. 9). In summer, denitrification rates (Fig. 15) and DE (Fig. 16) 

were negatively related to pH elevation in the bloom area and transition zone (P < 0.05). 

Coupled nitrification and denitrification may have been inhibited by the deepened oxic 

zone (Fig. 21).   

3.1.15 Sediment oxygen consumption rates 

Both SOD and net CO2 flux rates (Fig. 8) showed similar seasonal patterns, with 

maximum SOD during the summer and minimum rates during the cold season. In the 

fine-grained sediments, oxygen uptake rates ranged from 300 µmol m-2 h-1 at 5 °C to 

2,000-2,960 µmol m-2 h-1 at ~30 °C in summer. Net CO2 flux rates varied from 456 to 

4900 µmol m-2 h-1, being highest in summer. At the sandy sites (3B), we observed low 

SOD and CO2 production of less than 1000 and 1700 µmol m-2 h-1, respectively (Fig. 5). 

Temperature was positively related to SOD (Q10 =1.3) and CO2 fluxes (Q10= 1.5) at 15-

32 °C. Assuming CO2 and O2 were regenerated by respiration from a Redfield 

composition of algal matter source, the linear coefficient of CO2 fluxes versus SOD was 

1.24, which exceeded the predicted ratio of 106 CO2 to 138 SOD (Fig.15).   
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3.1.16 Vertical profiles of SRP, Fe2+, Cl-, SO4
2- and NO3

- concentrations in sediments 

Pore water SRP concentrations increased with depth in sediments to generate an 

upward flux at both stations 1B and 3B (Fig.14A). The time series of pore water profiles 

showed that the slope of SRP concentrations with depth increased from May to August, 

with larger gradients in sediments within blooms (1B) than outside of the blooms (3B). 

Pore water Fe 2+ profiles (Fig.14B) exhibited a peak of 100 - 184 µmol L-1 at the 

surface and declined in the deeper anaerobic sediments. The upward diffusion of Fe2+ 

along the pore water gradient and the sharp decrease of Fe2+ at the surface indicated the 

precipitation of Fe oxides when passing through the aerobic layer in sediments (Fig. 14). 

In addition, the time changes in concentration gradient and peak of Fe2+ showed a reverse 

pattern with SRP: a decrease of Fe2+ from May to August at 1B, corresponding with iron 

oxidation and precipitation with the increase of DO and pH in the overlying water. 

Meanwhile, pore water gradients of Fe2+ were enhanced under non-bloom conditions.   

Pore water SO4
2- in the sediment surface of the upper river was 500 – 1000 µmol 

L-1, lower than at the more saline downstream site (3A). The vertical profile of SO4
2- 

showed a rapid decrease across the oxic layer to a low and constant level in deeper 

sediments. Using Cl- penetration into sediment to minimize the effects of changes 

salinity, the SO4
2-/ Cl- gradient varied little in sediments at both stations.  

Pore water profiles of NO3
- in spring showed a response to NO3

- concentrations in 

the overlying water with a penetration gradient from surface sediment at 10 – 30 µmol L-1 

to zero (Fig. 12 F). In summer, pore water NO3
- and NO2

-, as intermediate products of 

nitrification at oxic layer, did not accumulate in sediments at 1B and 3B and 

corresponded to negligible molecular diffusive mobility of NO3
-. 
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3.1.17 Pools of pore water and exchangeable NH4
+  

The vertical profiles of pore water NH4
+ indicated higher diffusion rates during 

blooms (1B, August), compared with the non-bloom times in 1B (May and October) and 

profiles out of the bloom region (3B) (Fig. 14).  In order to estimate bloom effects on N 

regeneration, pore water and exchangeable NH4
+ were compiled (Table 5). The 

exchangeable NH4
+ of sediments in the bloom zone was higher than in the sediments out 

of blooms. Pore water and exchangeable NH4
+were considered as supply in the N balance 

between flux and nitrification-denitrification (both calculated per sediment volume using 

sediment porosity and density). The percent of exchangeable pool increased by 25% in 

the bloom zone from May to June, and decreased from 78% to 52% with pH elevation 

due to massive blooms. This absence is consistent with experimental cores (Chapter 2). 

The ratios between pore water and exchangeable NH4
+ were almost constant in sediments 

outside of the bloom area (Fig. 13).  

 

Discussion 

3.1.18 Total carbon and total nitrogen in sediments 

Sediment TC and TN contents increased from spring to autumn and changed with 

bloom distribution in summer. Sediment TC : TN ratios in fine-grained stations were 

intermediate between molar elemental composition of phytoplankton (6.62) and 

terrestrial organic matter (e. g., 17-27 after litter decomposition in sediments)  (Baldock 

et al. 2004), which suggests the organic matter sources included phytoplankton 

deposition and terrestrial runoff. Sediment TC: TN ratios decreased from spring and 
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became closer to the Redfield ratio in Zone I (1A and 1B), where cyanobacterial blooms 

lasted for the whole summer in 2010.  Due to low river flow and low terrestrial inputs in 

summer, sediments within the bloom region might have more opportunity to receive 

sedimented phytoplanktonic matter (Table 2).  Relatively higher sediment C: N ratios 

further downstream were consistent with the potential influence of bloom distribution and 

a sewage treatment plant in the lower estuary. 

In shallow estuaries, high rates organic matter decomposition and the associated 

nutrient regeneration can influence nutrient concentrations and support primary 

production in the water column. The seasonal decrease in C: N from spring to autumn 

also suggested more efficient benthic recycling of N compared to C, similar to the trends 

in the main channel of Chesapeake Bay and other coastal environments (Boynton et al. 

1985). 

3.1.19 Nutrient status in water column 

In winter/spring DIN and SRP are higher than other seasons due to freshwater 

runoff and low nutrient consumption in the water during this period. With lowest 

dissolved nutrient concentrations in summer, the upper Sassafras River appeared to be N 

limited during over 60% of observations, based on the Redfield N: P ratio. Nutrient 

release from sediments may be important in mediating nutrient supply for phytoplankton 

production during cyanobacterial blooms.  In the oxygen-saturated water, low SO4
2- and 

small variations in salinity are not likely to have accounted for the N and P recycling (e.g. 

inhibition of nitrification by sulfide; sulfate reduction and salinity related P desorption). 

pH elevation was usually associated with increased particulate organic matter content in 
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the water (Fig. 11), which can be sedimented and rapidly remineralized during the warm 

season. 

3.1.20 Light regulation on nutrient exchange  

If relatively high light irradiances reach the bottom, microphytobenthos (MPB) 

can limit nutrient fluxes from the sediment to the water column by assimilating nutrients, 

changing pH and oxygen concentrations by photosynthesis,  and consequently influence 

biogeochemical cycles at the sediment-water interface (Risgaard-Petersen 2003; 

Rysgaard et al. 1995). The light incubations conducted in September 2010 and June 2009 

indicated that MPB in the surface layer could greatly reduce N and P release rates due to 

their own nutrient demand (Newell et al. 2002). Illumination can increase nutrient 

assimilation of benthic microalgae, which can reduce sediment nutrients which would 

otherwise be available for the water column and pelagic communities (Krausejensen et al. 

1996; Sundback and Miles 2000). The light treatments can reduce NH4
+ and SRP flux out 

of the sediments or, in some cases, reverse the direction of flux by taking up nutrients 

from the water column (Fig. 3).  

Benthic microalgae also can change redox conditions through photosynthesis and 

in the dark by respiration, with SOD consistently higher in the dark than in the light (Fig. 

3). Moreover, oxygen production in the light was positively related to sediment 

chlorophyll a (Fig. 4).  Oxygen production at the surface sediment may broaden  the oxic 

zone, which would favor nitrification as well as the release of NO3
- (An 2001). With 

relatively higher Chl a  in the sediments within or close to the bloom zone than that 

observed at downstream stations,  the slight increase of NO3
- in the light was consistent 
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with previous studies that showed light incubations increased nitrification in sediments 

(Rysgaard et al. 1994). In spite of the increased NO3
- fluxes in the light, the negative 

NO3
- fluxes in some cases may have resulted from increased NO3

- assimilation by 

microalgae in the light; this also may be related to tightly coupled nitrification-

denitrification, quickly reducing the produced NO3
- in the aerobic layer. 

Consistent with previous observations (Rysgaard et al. 1994; Seitzinger 1988; 

Tomaszek and Czerwieniec 2003), dark N2 flux rates and denitrification efficiency in 

fine-grained sediments were generally higher than that in the light (Fig. 3 and Fig. 6). 

Although sediment photosynthesis in the light may increase nitrification, however the 

expansion of the oxic zone may have inhibited anaerobic denitrification (Henriksen et al. 

1981).  

3.1.21 Ecological implications of Light/dark experiment 

Sassafras River has experienced cyanobacterial blooms and seagrass loss within 

the past decades (Sassafras River Action Plan 2010). The observations from this study of 

low bottom water irradiance (< 15 µmol photons m-2 s-1) were generally coincident with 

the Secchi depth measurement ~ 0.2 m reported in monthly investigations during 1985-

2010 (Maryland DNR). Irradiance is a limiting factor for microphytobenthic biomass and 

their photosynthetic activities. Especially in summer, the high biomass and buoyancy of 

cyanobacteria during blooms creates dim to dark conditions in the bottom water and at 

the sediment surface; this can result in a decreased nutrient uptake by benthic microalgae, 

cause dark respiration and favor anaerobic denitrification. In the dark incubations, the 

average NH4
+ release from sediments into the overlying water was 70% higher in the 



78 

 

fine-grained sediments and 17% higher in sand compared to incubations in the light. Flux 

rates of SRP in the dark incubations increased by 60% to 88% compared to the light 

(Table 3). Compared with oxygen-based nutrient remineralization, only part of the 

remineralized N is released as NH4
+ (Fig. 5A) in the dark (Fig. 5A). This result is 

consistent with the observed high denitrification rates in the dark.  Although in oxygen 

saturated water, SRP may be adsorbed onto iron rich mineral surfaces, the dark SRP flux 

rates (Fig. 3) and predicted SRP release (Fig. 5B) exceeded the P release in the light. 

Therefore, the dark bottom water may be one of factors that facilitate N release into the 

water.  

3.1.22 Comparison of dark-incubated flux rates with previous measurements 

Considering the low irradiance status at the bottom of the Sassafras River, dark-

incubated flux rates may reflect the average in situ conditions. Dissolved inorganic 

nutrient release (NH4
+, NO3

- and SRP) from sediments were comparable to those 

measured in the tidal-fresh zone of Chesapeake Bay (Table 6). In summer, a decreasing 

pattern of NH4
+ and SRP flux (Fig. 7) from Zone I to III in the upper Sassafras River are 

in agreement with the much lower flux observation in the lower estuary (Table 6), which 

suggest a general decrease in NH4
+ fluxes from river head to further downstream. The 

seasonal pattern of nutrient release and SOD in the upper Sassafras River (Fig. 7) was 

consistent with data from the upper Chesapeake Bay (Boynton 1996; Kemp et al. 1990; 

Mayer et al. 1990). Denitrification rates (12 ~ 370 µmol N m-2 h-1) in the upper river 

(Zone I) were somewhat higher than those observed in sediments in most tidal-fresh areas 
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of Chesapeake Bay (Table 6), but were  in the range of the observations (0 - 345 µmol N 

m-2 h-1) in freshwater streams (Seitzinger 1988).  

3.1.23 Temperature effect on N and P exchange at the sediment-water interface 

Increased water temperature is usually associated with increased microbial 

activity, which can lead to rapid remineralization of nutrients, accelerate NH4
+ and SRP 

release and respiration in sediments. Significantly increased remineralization rates of N 

were found in Chesapeake Bay when the water temperature was higher than 10 °C 

(Cowan and Boynton 1996). 

 Flux rates in this study were positively related to temperature.  Q10 values of SRP 

flux  (Fig. 10) were close to the estimated Q10  of 3.0  in the Potomac River (Bailey et al. 

2006) and 1.9 in a eutrophic lake (Liikanen et al. 2002). The responses of NH4
+ flux and 

SOD to temperature were similar to Bailey’s estimation of NH4
+ flux (Q10 = 2.9) and 

SOD (Q10 = 1.8) in the Potomac River (2006).  

Coincident with high NO3
- availability in the overlying water during spring to 

early summer, denitrification rates were positively enhanced by increased temperature. 

The Q10 for N2 flux was 2.4 at temperatures below 22 °C based on a linear relationship 

between temperature and N2 flux (P < 0.05, R2 = 0.42). No significant relationship 

between N2 flux and temperature was found during summer - autumn at temperatures of 

22-31°C. Hence, changes in nitrification efficiency, overlying water NO3
- concentration 

and oxygen concentration, taking place as temperature enhancement, made it difficult to 

isolate the effect of temperature on the denitrification (Seitzinger 1988). 
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3.1.24 Bloom effects on SRP fluxes 

During cyanobacterial blooms in the upper river, high pH can be maintained over 

weeks during dense blooms, which is attributable to photosynthetic carbon uptake and 

low carbonate buffering in fresh water estuaries. In particular, when high pH is associated 

with settlement of detritus (POC and PON) from dense blooms (Fig. 11), increased SRP 

fluxes were found when the overlying water pH exceeded 9 (Fig. 12).  

Pore water profiles showed increased SRP concentrations and a sharper SRP 

gradient with bloom development, which is consistent with the observed pH-driven flux 

rates. Relative to sediments sampled at sites outside of bloom area, the concentration 

gradients of SRP in pore water in the bloom area were significantly higher in August 

when the water column pH was 9 – 10.3 due to cyanobacterial blooms (Fig. 2 and 12). 

Iron-bound P is the largest fraction of particulate phosphorus in Chesapeake Bay 

sediments and accounts for 20% – 50% of the pool of total inorganic P in sediments 

(Hartzell et al. 2010). High pH (> 9 – 9.2) facilitates P desorption from sediments  and 

accelerated SRP molecular diffusion (Seitzinger 1991; Wang and Alva 2000).  

The magnitude and duration of blooms may be a key for pH persistence, which is 

critical in controlling the penetration depth and duration of high pH, and consequently the 

amount of P desorption and efflux.  In generally, pH effect may be restricted to the 

surface layer due to high pH buffering capacity of sediments.  As a consequence of 

increasing cyanobacterial abundance in the overlying water, pH increased dramatically 

and showed diel changes of increases with high carbon consumption in daytime and 

decreases with CO2 production in night. So penetration of high pHs were progressive into 

sediment with a diel fluctuation. However, phosphorus desorption can initially have a fast 
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reaction time (2 – 4 h), followed by a slow release that continues up to 20 h (Cabrera et 

1981). The closer to the surficial sediment layer, the more labile P may have been 

removed by the rapid desorption with high pH movement in sediment. Meanwhile, high 

pH in the water column is likely to extract P from suspended particulate P before 

sedimentation. Thus, the inventory of labile P in sediments during blooms may not be as 

high as in sediment cores sampled during a non-bloom year. 

These data showed that field SRP fluxes during bloom events are lower than the 

flux measurement in experimental pH manipulations (Chapter 2), suggesting P depletion 

by high pH.  The maximum SRP flux rates during high pH events in 2009 and 2010 were 

23 ± 4 and 42 ± 5 µmol m-2 h-1, respectively, in Zone I (Fig. 8), which is 20% ~ 40% of 

the estimated SRP flux using sediments from same location sampled pre-summer blooms 

for high pH (~ 9.5) incubations in 2008 and 2009 (Chapter 2).  In the tidal fresh zone of 

the Potomac River, a similar mismatch was found between the 20 µmol m-2 h-1 in situ 

measurement during a Microcystis bloom (Bailey et al. 2006) and the > 100 µmol m-2 h-1 

SRP flux measured in a high pH flux stimulation experiment  (Seitzinger 1991).   

In spring there was no significant difference in SRP fluxes between sediment 

cores collected in May 2010 (bloom year) and during the same period in 2008-2009 

(when there wasn’t a pronounced spring bloom) (Fig. 7). The influence of short-term pH 

(> 9) elevation in the water column on sediments may be limited and not strong enough 

to maximize the P desorption.   
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3.1.25 Organic matter effects on seasonal and spatial changes in NH4
+ flux 

In spring, nutrient effluxes are likely limited by the amount of labile organic 

matter available for remineralization and the temperature dependence of decomposition 

rates of phytoplanktonic debris. Those combined effects may result in low flux rates of 

NH4
+ (Fig .7).  Similar to SRP flux, high pH (> 9) in the spring bloom did not 

significantly enhance NH4
+ release in 2010 (Fig. 2 and 7).    

However, sediments may act as a reservoir for spring phytodetritus to fuel 

summer N fluxes. By comparing the total Chl a in surface sediment (an indicator of 

organic matter availability during day 80 to 220 in the year ) and the average warm 

season flux rates of NH4
+ and SRP (day 120 and 220), the estimated time lag was about 

one month between the deposition of organic matter into sediment and the large increases 

of NH4
+ and SRP fluxes (Cowan and Boynton 1996; Cowan et al. 1996).  In spring, low 

water temperatures may hinder  the response time of OM decomposition (Boynton et al. 

2008). The warmer the temperature, the higher the bacterial activity which may 

accelerate the remineralization of stored organic matter. This may explain the coherence 

between phytoplankton blooms in spring and increased nutrient release from sediments in 

summer (Rauch and Denis 2008).  

The quantity and quality of organic matter may be responsible for the temporal 

and spatial distribution of NH4
+ fluxes in summer, with decreasing rates along the salinity 

gradient of 0 to 2 (Fig. 7A). With bloom development during the warm summer, 

settlement of PON and POC from the water column into sediments may coincidently 

increase with water column pH elevation in the river head (Fig. 11). Enhanced NH4
+ flux 

is expected with organic matter remineralization and pH elevation in the bloom area 
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(Zone I) (Fig. 13). Even though part of the cyanobacteria detritus may be advected 

downstream, land runoff from agricultural land and sewage plant discharge in the 

downstream area may continue to provide organic inputs, which may be responsible for 

the decreased NH4
+ flux out of bloom region (Zone III).   

Similar to the seasonal pattern observed by Smith and Kemp (2001), NH4
+ fluxes 

decline in the early fall despite temperature remaining high. Boynton (1986) explained 

the reduction in NH4
+ release from Chesapeake Bay sediments after mid-summer by the 

exhaustion of organic matter available for remineralization.  

3.1.26 pH effects on NH4
+ flux 

Highly significant positive relationships (Fig.13) exist between pH and NH4
+ 

efflux in the bloom area (zone I). This relationship tends to weaken with lower 

cyanobacterial density downstream.  Pore water NH4
+ concentrations were consistent 

with bloom development from May to August at site 1B and with differences in pore 

water NH4
+ between sediments within and outside of the bloom area (Fig. 14).     

Elevation of pH in sediments can have a profound effect on N desorption in 

sediments (Chap. 2). As pH in sediments progressively increased with bloom 

development, the NH3 proportion of total ammonium (NH4
+ + NH3) increased in pore 

water. Once dissolved, un-ionized NH3 is formed in pore water at high pH and does not 

readily adsorb onto negatively charged sediment surfaces.  Meanwhile, decreased NH4
+ 

concentrations accelerated the release of NH4
+ loosely bound to clay particles (Morin and 

Morse 1999). Accordingly, the ratios of adsorbed-NH4
+ to pore water NH4

+ decreased in 

sediments (site 1B) within the bloom region, a consequence of the exposure of sediments 
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to high pH during July to September in 2010 (Fig. 15). In high pH events, the accelerated 

ammonium desorption thus accounts for flux increase from the sediments in the bloom 

zone.   

3.1.27 CO2 and O2 

The ratio of benthic respiration to SOD is 1.22 in late spring to summer (Fig. 18), 

similar to 138 O2 : 106 CO2 of aerobic algal decomposition. Storage of solid phase Fe 

(II), Mn (II) and S (II) may account for delayed oxygen consumption and result in a 

relatively high CO2 to SOD flux rate. In general, flux rates of CO2 are a better parameter 

than SOD for the calculation of N and P regeneration from organic matter 

remineralization.  
3.1.28 NO3

- flux and denitrification from winter-spring to early summer 

The rising water temperatures from spring to early summer were weakly 

correlated with NO3
- flux rates (P > 0.05) and N2 flux rates (P < 0.05, R2  = 0.42), partly 

because temperature stimulated increases in ammonium oxidation and denitrifying 

bacterial activity  (Martin et al. 2001; Pfenning and Mcmahon 1997). Similar to the 

seasonal changes in terrestrial NO3
- flux in the upper Chesapeake Bay (Kemp et al. 1990), 

the high concentration of NO3
- in spring may account for the negative NO3

- flux rates 

(Fig. 9), which consequently support increased N2 loss through coupled nitrification-

denitrification (Fig. 9). In addition, heterotrophic respiration increased with temperature 

at all stations, which, decreased the depth interval of aerobic conditions in the sediments 

and facilitated NO3
- reaching the zone of denitrification (Risgaardpedersen et al. 1994). 

At the fine-grained sediment sampling sites (1A to 3A), denitrification accounted for 66 

% to 94% of N remineralization based on the oxygen consumption rates.  
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3.1.29 Summer bloom driven pH and DO effects on oxygen penetration depth 

The coupling of nitrification-denitrification, which coexists with ammonium 

oxidation in the oxic zone and nitrate reduction in the deeper anaerobic zone, often 

removes a substantial proportion of sediment N (Seitzinger 1988). Changing depths of 

the oxic-anoxic boundary layer depends on the sediment oxygen consumption and water 

column oxygen changes (Rysgaard et al. 1994).  

During dense cyanobacterial blooms in summer, water column DO concentrations 

were enhanced and showed great diel fluctuations, partly as a result of high light 

photosynthesis and dark respiration (Fig. 19). This consequently influenced the aerobic 

zone thickness; the aerobic zone moved on average from 1 – 2 mm to 4 – 5 mm down 

between bloom initiation and the peak of the bloom (Fig. 19). For example, with diel 

changes of DO from 8 to 22 mg/L in early July (Budds Landing, eyesonthebay.net),  

assuming no difference of sediment respiration in this turbid river, the redox boundary 

moved upward at night (1 – 2 mm) and downward during the  day (3 – 4 mm). In some 

cases, the oxic layer may even move deeper during the day due to light-stimulated 

photosynthesis at the sediment surface.  As DO changed in the overlying water, alteration 

of the redox regime may therefore minimize the habitat for nitrification and 

denitrification in sediments, disrupting coupled nitrification-denitrification 

(Risgaardpedersen et al. 1994) .  

3.1.30 Bloom effects on nitrification 

With an increase in the nitrifying bacteria activity with rising temperatures and 

increases in the concentration of the substrate (NH4
+) through organic matter degradation, 

nitrification may be consequently enhanced (Stief et al. 2002).  However, coupled 
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nitrification-denitrification may hinder NO3
- efflux in the summer. At all stations, efflux 

of NO3
- from sediments (Fig. 7) was rarely observed, indicating a large fraction of NO3

- 

produced from nitrification in the sediments was simultaneously reduced through 

denitrification (e.g. >99% of  NO3
- produced during spring in the Patuxent River is 

denitrified) (Jenkins and Kemp 1984). 

Henriksen and Kemp (1988) suggested nitrification was influenced by the 

combination of ammonium limitation, oxygen production and high pH in the upper few 

millimeters of sediment. Here we divided the data that was collected at temperature > 

22°C and when the overlying water NO3
- concentrations was below 20 µmol L-1 into two 

group: pH > 9 and pH < 8.5, to compare the responses in nitrification. The relationship of 

nitrification efficiency to the calculated oxic depth was negative during the bloom 

(indicated by pH > 9 in the overlying water), but it was weakly positive at lower pH 

during the non-bloom season (pH < 8.5) (Fig.19). Slight changes of pH (when the pH is 

below 8.5) in the overlying water may cause minimal changes in sediment pH and may 

not exert effects on N recycling.  Oxygen increases in pore water during the day may 

theoretically enhance nitrification, and result in increased nitrification efficiency (Fig. 

19).  However, expansion of oxic layer usually occurred with high pH in the aerobic 

zone (Fig. 19), which may reduce the chance for NH4
+ and NH3 oxidation (nitrification). 

Relative to non-bloom periods, long-term high pH (> 9) maintenance during blooms 

tends to decrease both dissolved and exchangeable ammonium, which are assumed to be 

the substrates for nitrification (Seitzinger 1991). Nitrification rates may decrease with 

decreases in ammonium availability, following Michaelis-Menten kinetics (Henriksen 

and Kemp 1988). Formation of un-ionized NH3 reduces the sorption of ammonium in 
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solids, which is evidenced by the percent contribution of exchangeable-NH4
+ in 

sediments (Fig.15). Meanwhile, conversion of NH4
+ to NH3 at high pH, along with low 

NH4
+ in the overlying water, may create a sharp gradient in the anoxic layer of sediments 

and thereby favor the rapid release of soluble ammonium over nitrification (Strauss et al. 

2002). In addition, most studies  showed that pH outside of an optimum range of 7 – 8.5 

inhibited the enzyme activity of both ammonia oxidizing bacteria and nitrifying oxidizing 

bacteria, which are involved in the oxidation of NH3 and NO2
- to NO3

- (Pommerening-

Röser and Koops 2005).  

3.1.31 Bloom influences on N2 flux 

During summer, there was a spatial pattern in denitrification rates caused by pH 

and DO elevation. In this study, N2 fluxes linearly decreased with pH elevation in the 

bloom regions (Fig. 14), an observation consistent with high pH incubations in the 

laboratory (Chapter 2). The massive bloom related changes may be responsible for 

reduction in coupled nitrification-denitrification.   

In general, a decrease in denitrification in fine-grained sediments during blooms 

(Fig. 9D) may be attributable to a limited NO3
- supply.  Increases in organic matter are 

not directly linked to denitrification rates in field observations (Kemp et al. 1990). 

Experimental addition of organic matter: 1) showed no significant response of 

denitrification (Lamontagne et al. 2002); 2) exhibited a negative response to amount of 

organic matter added (moderate and high) and incubation time (2 day and 27 days) 

(Oakes Jm Oakes et al. 2011; Sloth et al. 1995). However, nitrate concentrations during 

blooms were generally low in the overlying water (Fig. 16 and Table. 3). Similar to the 
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NO3
- distribution described in other estuaries (Kemp et al. 1990; Trimmer et al. 1998), 

NO3
- and NO2

-concentrations were negligible in pore-water below the surface of the 

sediments (Fig. 14). Moreover, the main NO3
- supply for denitrification comes from 

NH4
+/NH3 oxidation in sediments, with may be directly inhibited with pH elevation in 

sediments.  

In summer, the temperature effect on N2 flux was weakened by the penetration of 

alkaline pH, which may mediate nitrifying bacterial activity. A similar optimum pH range 

of 7 ~ 8.5 was found for denitrifying bacteria (Liu et al. 2010; Park et al. 2010). Even 

though pore water and exchangeable ammonium increased in the thin oxic layer, high pH 

may have restricted NO3
- supply due to the limited growth and activity of nitrifying 

bacteria. Along with the high pH, the toxicity of dissolved NH3 may decrease nitrification 

(Cuhel et al. 2010).  

Denitrification in sediments may be inhibited by increasing the oxic layer 

thickness (Fig. 19 and 21). Denitrifying bacteria are anaerobes and usually congregate at 

the interface of oxic-anoxic layers to intercept NO3
- (Kemp and Dodds 2001) . 

Denitrification is inhibited by O2 concentrations above a critical threshold (~10 µM) 

(Tiedje et al. 1989). Moreover, diel DO changes may disturb the living conditions for 

bacteria for denitrification and consequently reduce N2 flux during bloom. In response to 

diel oxygen changes, fluctuation of oxic zone caused sediments to experience the switch 

between aerobic-anaerobic conditions below ~ 2 mm depths (Eq. 3). Previous studies 

suggest denitrification declines during the switches between  aerobic and anaerobic 

aerobic conditions in response to reduction in the population of denitrifying bacteria, 

which experience disappearance of denitrifying activity and substrate for denitrification 
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(e. g. NO2
-, N2O) in the presence of oxygen, as well as time delays of the nitrite reductase 

under anaerobic conditions (Baumann et al. 1996; Davies et al. 1989).  

In addition, benthic nitrogen fixation during N limited conditions may account for 

the reduction in N2 fluxes, a processes difficult to identify from flux data (Kana et al. 

1998; Kana and Weiss 2004). In the lower Sassafras River, N2 fixation was found in both 

sediments and associated with the sea grasses  Vallisnaria americana and Myriophyllum 

sp. (Elliston and O'neil 2005). 

Ecological impacts 

In spring, settlement of particulate and organic compounds from land runoff and 

spring blooms may increase the sediment nutrient inventory in the upper Sassafras River. 

Due to high adsorption of phosphate by oxic sediments (Slomp et al. 1998) and a P burial 

rate of 1.8 g m-2 yr-1 in the upper river (Cornwell, unpublished), sediments act as a large 

sink for P in this tidal-fresh water estuary. Low DIN and SRP flux rates at the sediment-

water interface suggest temperature limitation of nutrient remineralization (Fig. 22).  

In the non-bloom region, SRP released from the sediment under normal pH 

conditions was 2 to 5 times lower than at high pH, while NH4
+ release rates at normal pH 

were almost half that at high pH (Fig.22) and denitrification efficiency did not change 

significantly (Fig. 16). Moreover, the concentrations of dissolved inorganic N and P 

become low or even undetectable during the summer (Table 3 and 4).  Limited nutrient 

diffusion from the overlying water makes the benthic microbiota act as an efficient filter, 

consuming NH4
+ and SRP in pore water and hindering their release across the sediment-

water interface. 
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During N-limited periods in the Sassafras River, an increase in NH4
+ efflux 

coupled with a decrease in denitrification rate could increase DIN concentrations in the 

system, which may lead to more cyanobacterial biomass. Comparison between high and 

normal pH groups showed NH4
+ fluxes in the bloom region (Zone I) were significantly 

enhanced by pH elevation during blooms than in non-bloom periods, with average values 

increasing from 176 to 285 µmol m-2 h-1 . At the same time, average N2-N losses through 

denitrification were reduced from 172 to 110 µmol m-2 h-1 during blooms in zone (I) and 

from 103 to 51 µmol m-2 h-1 in the transition zone (II) (Fig. 16).  Based on the estimation 

of CO2 and SOD based N remineralization, high pH during the bloom resulted in an 

increase of 19 - 30 % in NH4
+ and reduction of 28 - 41% in loss of N as N2 in the bloom 

region.  

Benthic fluxes of NH4
+, NO3

- and SRP changed the amount and the N: P ratio of 

nutrients in the water column, creating a positive feedback mechanism for maintenance 

of the N2-fixing cyanobacterial blooms. High pH in the bloom region resulted in an 

increase of 2-5 times in P fluxes, and appeared to play an important role in meeting 

phytoplankton P demand during dense blooms. Relative to observations under normal pH 

(< 9) in the overlying water, DIN: SRP flux rates under high pH (> 9) conditions were 

significantly lower, and approximately  62% of the observations were below the Redfield 

ratio (Fig. 23). This may facilitate the persistence of N-fixing cyanobacterial blooms. 
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Tables 

Table 3-1   Sampling information in the upper Sassafras River from 2007 to 2010, including dates and number of sediment cores used the 
nutrient flux measurement. 

 

Time  No. of cores in each station  
year Date 1A 1B 2A 2B 3A 3B Total cores
2007 12/20/2007     6  6 
2008 5/7/2008 3 4   3  10 

 6/18/2008  4   3  7 
 9/4/2008 6 3   3  12 

2009 3/27/2009 3 3     6 
 4/9/2009 3 3     6 
 5/21/2009 2 2 2 2 2 2 12 
 7/9/2009  7     7 
 9/20/2009 2 2 2 2 2 2 12 
 11/18/2009 2 2 2 2 2 2 12 

2010 3/25/2010 2 2 2 2 2 2 12 
 5/11/2010 2 2 2 2 2 2 12 
 6/4/2010 2 2 2 2 2 2 12 
 7/1/2010 2 2 2 2 2 2 12 
 8/4/2010 2 2 2 2 2 2 12 
 9/2/2010 2 2 2 2 2 2 12 
 10/5/2010 2 2 2 2 2 2 12 

Total 35 44 20 20 35 20 174 
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Table 3-2  Water column depth and sediment characteristics of the sampling stations in the upper Sassafras River. Depth represents the 
average value for each station over the 2 years study. Grain sizes were measured in Sept. 2009. The content and molar ratios of C N P 
were presented as the average value of surface sediments (0-1 cm) taken during June to September in 2010. 

 

Location 
 depth Grain Size June August 
mean 
(m) 

Sand
% 

Silt 
% 

Clay
% 

TC 
 (µg C g-1)

TN 
(µg N g-1) C:N

TC 
(µg C g-1)

TN 
(µg N g-1) C:N

1A 0.78 6% 58% 36% 32.4 2.2 17.2 38.8 3.4 13.3
1B 1.35 7% 59% 34% 29.8 2.8 12.4 44.1 6.0 8.6 
2A 2.4 3% 59% 37% 40.2 4.6 10.2 41.3 5.5 8.8 
2B 2.8 9% 58% 33% 39.8 5 9.3 59.4 7.9 8.8 
3A 1.9 12% 26% 62% 39.8 3.8 12.2 45.9 4.5 11.9
3B 3.4 75% 13% 12% 24.4 2.7 10.5 26.4 2.1 14.7
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Table 3-3  Mean (± std) of salinity, temperature and dissolved inorganic nutrient concentrations in the bottom water before, during and 
after bloom seasons. Data shown from all stations during 2007-2010 (n = sample size). 

 

Parameters   Before Bloom  (Mar-May, n = 25) Bloom (Jun.-Sept., n = 36) After Bloom (Oct. -Dec., n = 13) 

Salinity Mean ± Std 0.54 ± 0.38 0.38 ± 0.34 0.98 ± 0.79 
Range 0.12 ― 1.37 0.00 ― 1.44 0.12 ― 2.91 

Temp (⁰C)  
Mean ± Std 15.72 ± 4.26 27.64 ± 1.88 10.32 ± 5.52 
Range 9.40 ― 22.65 24.30 ― 31.30 4.76 ― 17.18 

DO (mg L-1) 
Mean ± Std 10.72 ± 4.26 15.64 ± 3.88 10.32 ± 5.52 
Range 5.40 ― 14.65 10.30 ― 20.30 4.76 ― 17.18 

NO3
- (µmol L-1) 

Mean ± Std 75.11 ± 35.06 4.47 ± 15.36 56.76 ± 41.81 
Range 31.80 ― 142.99 0.32 ― 52.50 17.60 ― 151.40 

NH4
+ (µmol L-1)  

Mean ± Std 8.39 ± 9.85 0.47 ± 0.62 4.92 ± 3.23 
Range 0.26 ― 38.50 0.26 ― 2.17 10.86 ― 10.86 

SRP (µmol L-1) 
Mean ± Std 0.94 ± 0.69 0.27 ± 0.79 0.47 ± 0.25 
Range 0.12 ― 2.74 0.01 ― 1.67 0.08 ― 0.89 

DIN : SRP    Mean ± Std 79.22 ± 22.12 37.52 ± 24.72 104.73 ± 47.12 
Range 34.13 ― 112.44 0.99 ― 50.99 50.36 ― 350.36 
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Table 3-4  Pearson correlation coefficients for the average values of selected bottom-water variables. Corr is the correlation 
coefficient; N is the sample size and P is the significant level (Note * P < 0.05, ** P < 0.01 and *** P < 0.001). 

Variables   pH 
  Temp  

(°C) 
  

Salinity   
DO    

(mg L-1)
  

Chl a    
(µg L-

1) 
  DO     

(%) 
  

[NH4
+] 

(µmol L-

1) 
  [NO3

-] 
(µmol L-1) 

  
SRP     

(µmol L-

1) 
pH Corr 1                                
  P                  
  N 73                 
Temp Corr 0.495  1               
  P <.0001 ***                
  N 73  74               
Salinity Corr -0.093  -0.259 1        
  P 0.432  0.026 *              
  N 73  74  74             
DO Corr -0.019  -0.307 0.114 1       
  P 0.871  0.008 ** 0.332             
  N 73  74  74  74           
Chl a Corr 0.648  0.662 -0.259 0.146 1      
  P <.0001 *** <.0001 *** 0.052  0.279           
  N 57  57  57  57  57         
DO (%) Corr 0.543  0.411 -0.199 -0.387 0.552  1    
  P <.0001 *** 0.0003 *** 0.0888  0.0007 *** <.0001 ***        
  N 73  74  74  74  57  74       
[NH4

+] Corr -0.369  -0.263 -0.049 0.026 -0.146  -0.218 1   
  P 0.0014 ** 0.0246 * 0.679  0.827  0.284  0.064       
  N 72  73  73  73  56  73  73     
[NO3

-] Corr -0.526  -0.648 -0.040 0.151 -0.510  -0.426 0.554 1  
  P <.0001 *** <.0001 *** 0.7332  0.1999  <.0001 *** 0.0002 *** <.0001 ***    
  N 73  74  74  74  57  74  73  74   
SRP Corr -0.245  -0.076 -0.133 -0.089 -0.316  -0.156 0.030 0.337 1 
  P 0.0383 * 0.523  0.261  0.452  0.0176 * 0.188  0.799  0.0036 **  
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  N 72   73   73  73   56   73   73   73   73 
 

 

Table 3-5  Mean light and dark  fluxes in sandy and muddy sediments( ± SE), including fluxes of SRP, NH4
+, NO3

-, N2-N, O2 and net 
inorganic nitrogen (DIN), the molar ratio of O2: DIN flux rates, denitrification efficiency (DE%) and the calculated nitrogen 
remineralization. Net DIN flux presents the sum of positive fluxes of NH4

+, NO3
- and N2-N; denitrification efficiency (DE%) is the N2-N 

flux  as a fraction of DIN; N remineralization is calculated based on the consumption of  oxygen consumption rates the Red field ratio in 
dark.   

Sediment property   Sandy station Muddy station 

Parameters Treatment Mean ± SE Daily rates Mean ± SE Daily rates 
 µmol m-2 h-1 mmol m-2 d-1  µmol m-2 h-1 mmol m-2 h-1 

SRP Flux Dark -2.2 ±  16.0 -0.3 3.6 ± 13.2 0.0 
Light -19.5 ±  10.4  -5.6 ± 17.8  

NH4
+ Flux Dark 46.7 ±  24.6 1.0 114.3 ±  53.5 1.6 

Light 38.0 ±  123.8  34.7 ±  61.9  

NO3- Flux Dark -25.9 ±  57.0 -0.3 -39.7 ±  79.4 0.1 
Light -1.6 ±  41.4  32.4 ±  83.1  

N2-N Flux Dark 14.3 ±  3.7 0.6 188.3 ±  121.9 2.7 
Light 29.7 ±  16.3  61.5 ±  52.0  

O2 Flux Dark 1475.9 ±  533.9 -7.5 1625.9 ±  680.0 -14.2 
Light 515.3 ±  358.8  146.1 ±  956.3  

Net DIN Flux Dark 147.8 ±  63.5 3.4 294.5 ±  138.0 5.7 
Light 136.0 ±  101.9  193.3 ±  134.1  

 O2/DIN Dark 10.1 ±  0.8   6.4 ±  2.9  
Light -6.6 ±  7.6   0.6 ±  14.0  

DE% Dark 16.3 ±  10.4   66.2 ±  21.4   
Light 20.2 ±  10.1   43.2 ±  11.5   

N Remineralization Dark 222.8 ±  80.6   245.4 ±  102.6   
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Table 3-6  Summary of sediment-water flux rates in the oligohaline and tidal-fresh of the Chesapeake Bay. Flux rates include nutrient 
release of SRP, NH4

+ and NO3
-, denitrification (N2) and sediment oxygen demand (SOD).  Note: The unit difference between nutrient flux 

rates and SOD.  

Flux Rate  Chesapeake Bay1 Corsica River2 Lower Sassafras River3 
 n=241 n=41 n=12 

SOD 
(mmol m-2 d-1) 

average -60 -24 -39 
std 30 19 18 
max -9 -7 -26 
min -209 -73 -89 

NH4
+flux  

(µmol m-2 h-1) 

average 295 51 105 
std 297 174 116 
max 1616 808 359 
min -86 -105 -28 

SRP  
(µmol m-2 h-1) 

average 10 4 3 
std 21 13 4 
max 171 35 12 
min -38 -20 0 

NO3 
-
 and NO2

- 
( µmol m-2 h-1) 

average -62 6 5 
std 105 17 16 
max 288 69 33 
min -607 -23 -27 

N2 flux4  
(µmol m-2 h-1) 

average 70 61  
std 213 31  
max 21 145  
min 62 10  

 
Flux rates of the low salinity (< 5) and shallow water (< 5 m) sites in Chesapeake Bay in 1980 - 2006 (Boynton, Chesapeake Bay sediment 
water flux database http://www.gonzo.cbl.umces.edu/data.htm) ; 2. Flux rates in the Corsica river estimated in summer 2007 (Cornwell, 
unpublished data) 3. June-August in 2000 (Boynton, unpublished data); 4. Denitrification rates in the Chesapeake Bay (Boynton, 2008). 
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Table 3-7  Multiple regression models used to predict nutrient flux rates in sediments as a function of temperature, pH, salinity, nutrients 
and Chl a in the water column. All independent variables, the normalized environmental factors, left in each model are significant at the 
0.15 level. RMSE:  root mean square deviation; n is the number of statistically related independent factors; df: Estimated degree freedom; 
Cp is the Mallows' Cp criterion.   

 

Dependent 
variable 

RMS
E 

Intercep
t pH 

ln 
(Temp) 

Ln 
(Salinity)  

Ln (NO3
-

) 
Ln 
(N:P) 

Ln 
(Chl 
a) n df R2 C(p) 

NH4-Nflux 104.5 -81.6
30.

8  -23.9 -24.9 . 32.3 4
6
3 0.39 3.16

N2-Nflux 58.9 -126.6 . 50.5 -31.0 . 14.9 . 4
6
3 0.32 0.54

SRP flux 11.6 -58.4 5.3 5.2 . . . 8.52 3
6
4 0.22 -0.87

SOD 515.6 -1258.5 . . 404.0 120.8 . 

-
265.7

4 3
6
4 0.38 3.99
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Appendix. Adsorbed-NH4
+, pore-water NH4 + and sediment characteristics of sediment taken from stations within bloom (A) and out of 

bloom (B) from May to September 2010. Adsorbed NH4 +, pore-water NH4 + concentration (PW), sediment percent water (% water) and 
porosity (φ) were measured in each section. K* is the adsorption coefficients; Abs (%) is the adsorbed-NH4 + fraction in both adsorbed and 
pore-water phase. Average values of K* and Abs% were integrated with the depth in top 3 cm sediments. 

A) Time Sections 

NH4 + % 
water φ K* K*      NH4 + Abs% Abs % 

Adsorbed    
µM/g wet 

PW        
µmol L-1    (0-

3cm) 
Adsorbed          
mM L-1 

PW      
mM L-

1 
 (0-3cm) 

Within 
bloom  
(1B) 

May 0-0.5 1513.96 84.68 0.78 0.90 1.99 1.19 151.76 76.19 0.67 0.53 
 0.5-1.0 1086.42 132.65 0.75 0.88 1.09   127.22 117.12 0.52  
 1.0-2.0 1370.94 208.20 0.71 0.86 1.06   189.96 179.35 0.51  
 2.0-3.0 1926.04 381.39 0.68 0.84 0.96   308.25 320.35 0.49  
Jul. 0-0.5 1240.23 150.29 0.86 0.94 0.55 2.89 77.60 140.89 0.36 0.70 
 0.5-1.0 6095.72 267.86 0.81 0.91 2.14   523.95 244.84 0.68  
 1.0-2.0 12199.77 477.62 0.75 0.88 3.34   1411.68 422.36 0.77  
 2.0-3.0 16777.80 595.10 0.74 0.88 3.97   2071.16 521.64 0.80  
Aug. 0-0.5 1832.60 357.97 0.72 0.87 0.78 2.06 243.18 310.47 0.44 0.59 
 0.5-1.0 2653.87 611.55 0.59 0.78 1.23   584.57 476.84 0.55  
 1.0-2.0 4481.39 848.46 0.66 0.83 1.10   773.38 702.03 0.52  
 2.0-3.0 6598.84 1686.16 0.35 0.58 4.09   2794.05 972.21 0.74  
Sept. 0-0.5 2077.06 209.50 0.86 0.94 0.67 3.13 131.15 196.27 0.40 0.59 
 0.5-1.0 4184.47 249.00 0.80 0.91 1.66   376.51 226.60 0.62  
 1.0-2.0 6375.24 194.31 0.76 0.89 4.25   731.69 172.01 0.81  
  2.0-3.0 3018.04 666.55 0.68 0.84 0.85   475.42 561.55 0.46   
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B) Time Sections 

NH4 + % 
water φ K* K*      NH4 + Abs% Abs % 

Adsorbed    
µM/g wet 

PW        
µmol L-1    (0-

3cm) 
Adsorbed          
mM L-1 

PW      
mM L-

1 
 (0-3cm) 

Out of 
bloom  
(3B) 

May 0-0.5 2018.87 84.68 0.85 0.93 1.68 1.52 132.72 79.11 0.63 0.60 
 0.5-1.0 956.23 132.65 0.67 0.84 1.40   155.46 111.09 0.58  
 1.0-2.0 1651.70 208.20 0.69 0.85 1.44   253.04 176.31 0.59  
 2.0-3.0 1964.53 381.39 0.57 0.76 1.58   462.11 291.67 0.61  
Jul. 0-0.5 921.16 142.82 0.85 0.93 0.47 1.50 62.22 133.17 0.32 0.57 
 0.5-1.0 2017.11 211.91 0.81 0.92 0.87   168.74 194.18 0.46  
 1.0-2.0 7052.95 448.58 0.79 0.90 1.69   684.02 405.07 0.63  
 2.0-3.0 12421.73 699.52 0.77 0.89 2.14   1338.34 624.15 0.68  
Aug. 0-0.5 1649.48 242.29 0.83 0.92 0.57 1.18 127.37 223.58 0.36 0.53 
 0.5-1.0 2099.65 312.82 0.76 0.89 0.86   239.18 277.18 0.46  
 1.0-2.0 3790.98 604.91 0.64 0.81 1.44   708.48 491.86 0.59  
 2.0-3.0 4505.43 810.58 0.62 0.80 1.39   899.48 648.76 0.58  
Sept. 0-0.5 1580.83 141.71 0.81 0.91 1.08 1.25 139.07 129.24 0.52 0.45 
 0.5-1.0 2788.95 193.73 0.87 0.94 0.88   161.28 182.53 0.47  
 1.0-2.0 3239.58 371.08 0.82 0.92 0.77   263.17 340.93 0.44  
  2.0-3.0 4906.11 701.85 0.79 0.90 0.75   474.10 634.02 0.43   
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Figures 

 

 

Figure 3-1 Sampling locations for sediment flux rate measurements in the upper Sassafras River, 
MD. Budds Landing, the continuous monitoring water quality station of Maryland Department of 
Natural Recourse, is less than 20 m from station 1B.  
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Figure 3-2 The temporal and spatial changes of pH and dissolved oxygen percentage (DO %) of 
bottom water during 2008 to 2010. Stations shown are from the riverhead to downstream. 
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Figure 3-3 Flux rates (a-e) and sediment Chl a concentration (n= 3, upper 1cm). Flux rates of 
NH4+, NO3-, SRP, N2 and O2 were measured under light (white bar) and dark (black bar) 
incubation for sediments obtained in June 2010 and for sediment 3A’ from the same location as 
3A but in September 2009. The bars are mean ± SE. 
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Figure 3-4  Relationship of sediment Chl a and the changes in O2 flux rates, calculated from the 
difference in O2 fluxes between light and dark treatments. Data shown from the light-dark 
incubation in September 2009 and June 2010 (Figure 3).  
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Figure 3-5  Light and dark effects on NH4
+ flux versus SOD (A) and SRP flux versus SOD of the 

fine-grained sediments. Mean (± SE) flux rates of NH4
+ and SRP shown from measurements in 

September 2009 and June 2010 in Figure 3. Solid lines present the stoichiometric ratio of O2: N 
and O2: P as predicted from Redfield ratios (138 O2 : 16N : 1P).   
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Figure 3-6  Effects of light and dark incubation on N remineralization (DIN= ∑NH4
+ + NO3

- + 
N2-N) through denitrification (N2 flux) of the fine-grained sediments. The slope indicates the 
mean (± SE) of denitrification efficiency in light (P =0.03, R2=0. 85) and dark (P < 0.001, 
R2=0.97).  Data estimated from flux measurements in September 2009 and June 2010. 
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Figure 3-7 Flux rates of NH4
+ (A), NO3

- (B), SRP (C) and N2 (D) of sediments from the upper 
Sassafras River during Dec. 2007 to Oct. 2010. Flux measurements in darkness. Bar presents 
mean ± standard deviation, n = 2 – 5.  
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Figure 3-8 Comparison of mean of sediment oxygen demand (SOD ± standard deviation) and 
CO2 flux (± standard deviation) in dark incubation of sediments from the upper Sassafras River. 
Respiration measurements were conducted during the summer of 2009 and 2010. Blank indicates 
missing data.  
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Figure 3-9 Box and whisker plots of monthly NH4
+, NO3

-, SRP, O2 and denitrification fluxes in 
fine-grained sediments (stations 1A to 3A) and the sandy sediments (station 3B). Data shown are 
dark flux measurements in Figure 7 and 8. Dash bar presents the average monthly flux rates; the 
vertical box means the difference between the interquartile ranging from 25% and 75% and 
vertical bar from 10% to 90%.  
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Figure 3-10 Linear regressions of temperature and the natural logarithm of flux rates. These 
relationships are significantly positive for SRP flux (P = 0.002, R2= 0.35), NH4

+ flux (P = 0.002, 
R2=0.45), SOD (P < 0.001, R2 = 0.28) and CO2 (P < 0.001, R2= 0.22). Estimated from dark-
incubated cores of the fine-clay sediments (1A-3A) during 2007-2010. Estimated Q10 is 2.3 for 
SRP, 1.47 for NH4

+, and 1.3 for SOD and 1.5 for CO2. 
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Figure 3-11 Concentration of particulate organic carbon (POC) and particulate organic nitrogen 
(PON) as a correlation of pH in water column. The regression of POC = -0. 6 ×10-3 × exp (0.98 × 
pH) (n = 49, P < 0.001) and PON = -0.88 + 8. 78 ×10-11 × exp (2.54 × pH) (n =43, P < 0.001). 
Data shown from Chesapeake Bay Program records at Drawbridge during June to September for 
the year of 1986-1998  (www.chesapeakebay.net/data_waterquality.aspx).   
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Figure 3-12 pH effects on SRP flux rates in fine-grained sediments with dark incubation. The 
solid line presents the regression: SRP = 8.8483E-009×exp (pH × 2.2644) (n= 79, P < 0.01). Data 
are ambient pH’s (shown in Figure 2) and flux rates of SRP (shown in Figure 7) when water 
temperature > 25 oC.  
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Figure 3-13 The spatial variation of pH and average NH4
+ flux rates of sediment cores, taken 

from the bloom region (Zone I), transitional region (Zone II) and stations outside of bloom (Zone 
III). Data shown are flux rates of NH4

+ in dark (Figure 7) and ambient pH values (Figure 2) at 
temperature > 25 °C. The positive linear regressions between pH (x) and NH4

+flux (y) are as 
follows: in sediment 1A y=144.2 x -193.9 (R2 = 0.65, P < 0.05, n = 5 ); in 1B y= 345.2 x -1023.1 
(R2 = 0.68, P < 0.01, n = 6 ); in 1C: y = 100.7 x - 691.5 (R2 = 0.65, P < 0.05, n = 5). No significant 
influence existed outside the bloom region.   



124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-14  Vertical profiles of SRP, Fe2+, 
SO4

2-, the ratio of SO4
2- to Cl-, NH4

+ and NO3
-(A 

to F) in sediment pore-water in May, August 
and October 2011. The sediment cores were 
taken both within the bloom (1B) and out of 
bloom (3B).    
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Figure 3-15  The fraction of adsorbed and pore-water NH4

+ in the surface sediments from station 
1B (within bloom) and 3A (out of bloom). Pore water NH4

+ presented in dark green for stations 
within bloom and in black for stations outside of bloom. Adsorbed NH4

+ in solid phase presented 
in light green and in white for stations within and outside of bloom, respectively. Data calculated 
as the average changes in top 0-2 cm sediments, taken from May to September in 2010 
(Appendix table 1).  
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Figure 3-16  The spatial variation of denitrification rates (N2-N flux) of sediment cores, taken 
from the bloom region (Zone I), transitional region (Zone II) and stations out of the bloom (Zone 
III). Denitrification rates shown are from dark incubations at T > 25 °C during 2007-2010. pH (x) 
were negatively related to N2 flux  (y) in Zone I and Zone II. The linear regression for 1A : y= -
125.20 x +1267.95 (R2= 0.72, P = 0. 15, n= 4 ); for 1B: y= -60.51x + 656.46 (R2= 0.26, P =0.31, 
n= 6); for 2A: y= -12.387 x + 1188.59.62 (R2= 0.65, P = 0.097, n= 4 ); for 2B: y= -40.69x + 
412.28 (R2= 0.62, P = 0.11, n= 4).   
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Figure 3-17  Denitrification efficiency (DE%) response to pH elevation in the bloom region 
(Zone I), transitional region (Zone II) and stations out of bloom (Zone III), when sediments were 
taken at temperature > 25 °C. DE%  (y) is calculated as the percentage of N2-N flux to the net 
DIN flux in dark incubation during 2007-2010. The linear regression for 1A : y= -36.58 x 
+384.38 (R2= 0.57, P = 0. 14, n= 5 ); for 1B: y= -13.02 x+ 150. 33 (R2= 0.36, P =0.20, n= 6); for 
2A: y= -16.94 x + 187.62 (R2= 0.43, P = 0.22, n= 4); for 2B: y= -41.06x + 375.72 (R2= 0.36, P = 
0.0085, n= 4).  
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Figure 3-18  The linear relationship of the dark-incubated CO2 flux rates and sediment oxygen 
consumption rates (K = 1.24, P < 0.05) from spring to summer in 2009 and 2010. The estimated 
slope of CO2 versus SOD (solid line) is 171: 138, which generally exceeds the predicted 
stoichiometry that every 106 mol CO2 production is generated from138 mol oxygen consumption 
(dashed line). 
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Figure 3-19  Response of oxygen penetration depth to the diel changes of oxygen in the bottom 
water. DO concentration is the real time measurement in the Budd’s Landing 
(eyesonthebay.com); oxygen penetration depth is estimated from DO diffusion from the bottom 
water into sediment and oxygen consumption rates of sediment (SOD, measured in June 4st and 
July 1st , 2010). 
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Figure 3-20  Oxygen penetration effects on nitrification efficient during non-bloom (A) and 
bloom periods (B). Nitrification efficiency were estimated from flux rates of NO3

- and N2 as well 
as the N remineralization rates from respiration rates when NO3

- concentration in the water is less 
than 25 µM. The linear regressions of nitrification % (x) to depth of oxic zone (y) are y = -1.60 x 
-1.08 (P = 0.29; R2 = 0.21) and y= 3.06 x – 3.39 (P = 0.036; R2 = 0.44).  

 

Figure 3-21  Oxygen penetration depth effects on denitrification rates (DE %). Data shown are 
similar to nitrification efficiency in the whole pH range of 7– 9.52 in the bottom water during the 
sediment core sampling. DE % is the proportion of N2 flux in the estimated N remineralization 
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rates from SOD. DE % is weekly related to the depth of aerobic zone as a function of y = 0.014 x 
-3.08 (P = 0.11; R2 = 0.10).  

 

 

Figure 3-22  The box-whisker of the bioavailable inorganic nutrient release (A-C) and the ratio of 
DIN: SRP flux rates (D) at high and low pH. Data shown from dark-incubated flux rates on fine-
grained sediment during 2007- 2010 (T > 25 ⁰C). Horizontal line presents the average value; the 
vertical box means the difference between the interquartile ranging from 25% and 75% and 
vertical bar from 10% to 90% confident interval. 
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Figure 3-23  Mean (± SE) of  A) the estimated N flux across the sediment-water interface and the 
predicted remineralization rates B) the contribution of NH4

+ and N2 –N release to total  
remineralization at bottom water pH < 9 and ≥ 9. Dark-incubated sediments flux rates at 
temperature > 25 OC, varying from locations within bloom (I), transition zone (II) and out of 
bloom (III). The oxygen-based remineralization (REM) was converted to NH4

+ and N2-N flux 
rates in 2007-2010 by assuming an O2: DIN ratio of 8.62.  CO2- based remineralization for to 
NH4

+ and N2-N flux in 2009-2010 was based on the theoretical CO2: DIN ratio of 6.625.  The 
significant influence of high and low pH on N regeneration was noted in each group (*, P < 0.05, 
Student’s t - test). 
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Chapter 4 Photosynthesis and nitrogen fixation during 

cyanobacterial blooms in an oligohaline / tidal 

fresh estuary 

 

Abstract  

 

Cyanobacteria blooms have frequently been described in eutrophic, freshwater 

regions of Chesapeake Bay, but estimation of nitrogen (N) fixation and its response to 

constraining ecological factors are limited. In this study, we estimated cyanobacterial 

biomass, species composition, photosynthetic and N2- fixation rates with increasing light 

irradiance during cyanobacterial blooms in the Sassafras River, a tidal tributary of 

Chesapeake Bay, USA. N2-fixing cyanobacterial blooms are likely to be triggered by 

rising temperatures and the switch to low dissolved inorganic N: P ratios in late spring 

and early summer.  Domination of diazotrophic cyanobacteria was taken by 

heterocystous Anabaena spp., reaching a peak biomass of 10.5 mg C L-1 from June to 

August; followed by the non-heterocystous Pseudanabaena sp. in late August to early 

September. The unicellular diazotroph Synechococcus sp. persisted with a low biomass of 

< 1 mg C L-1 from July through the end of the bloom in September. Carbon (C) fixation 

rates based on Chl a were positively related to irradiance in the experimental incubations. 

N2 fixation rates, normalized to the biomass of diazotrophic cyanobacteria, generally 
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increased with increasing  irradiances associated with C fixation, with the exception of an 

extremely high pH and DO period (Jun 30 - July 14 and early Sept. in 2010) caused by 

high photosynthetic removal of dissolved inorganic carbon (DIC). The constraint of 

oxygen on nitrogenase activity and C limitation on photosynthesis appeared to inhibit N2 

fixation in the light.  Nevertheless, alleviation of oxygen stress by respiration in darkness 

along with the presence of a night time N2 fixer Synechococcus sp. enhanced dark N2-

fixation rates, accounting for up to 40% of total N2 fixation during the dense bloom 

periods when pH and DO were extremely high.   

 

  Introduction 

In temperate and eutrophic estuaries, cyanobacterial harmful blooms have been 

reported widely and frequently (Paerl and Pinckney 1996; Piehler et al. 2002), often 

causing degradation in water quality and posing threat of toxicity (Codd et al. 2005).  

Moreover, cultural eutrophication and climate changes in estuaries may create the 

suitable environments for cyanobacteria, such as nutrient enrichment, warmer water 

temperatures and associated intensification of stratification in summer. These changes 

may cause global expansion of cyanobacterial blooms and increase the likelihood of 

blooms in temperate estuaries (Anderson et al. 2002; Paerl 2008).  

One important attribute of some, but not all, bloom-forming cyanobacteria is 

nitrogen fixation. N2 fixing cyanobacteria have evolved divergent strategies to protect 

nitrogenase from oxygen inhibition, reflecting different N fixation mechanisms among 

species and in light-dark phase (Bothe et al. 2010; Fay 1992). N2 fixation in 

heterocystous cyanobacteria (e.g., Anabaena flos-aquae) can occur in light by protecting 
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nitrogenase within the specialized heterocysts (Milligan et al. 2007). Most non-

heterocystous cyanobacteria (e.g., Trichodesmium) can fix N2 in light by the combination 

of temporal and spatial separation of photosynthesis and N2 fixation (Bergman et al. 

Berman-Frank et al. 2001; Levitan et al. 2007). But some of diazotrophic cyanobacteria, 

such as Oscillatoria sp. strain 23 (Stal and Krumbein 1985)  and Lyngbya majuscula 

(Watkinson et al. 2005), showed nitrogenase activity in both light and dark phase. 

Unicellular cyanobacteria (e.g., Synechococcus and Synechocystis) temporally separate 

the two processes, N2 fixation occurring in darkness and photosynthesis in light (Falcon 

et al. 2004; Rippka et al. 1971).  

Dissolved N2 can be reduced to form ammonium and organic nitrogen by 

diazotrophic cyanobacteria through the catalytic action of enzyme nitrogenase, and 

provide ‘new’ N to support primary productivity in N limited waters (Paerl and Zehr 

2000). For instance, non-heterocystous filamentous cyanobacteria (e.g. Trichodesmium) 

have been found to support 50% of new production in tropical and subtropical ocean 

areas where they are common (Mulholland 2007). Unicellular N2-fixing cyanobacteria 

may be distributed globally and responsible for 10% of new production in the oceans 

(Montoya et al. 2004).  

In contrast to ocean, estuarine N2 fixation rates are generally thought to be low 

due to the high N loadings, and thus not been considered in ecosystem analyses and 

modeling of N dynamics (Boynton and Kemp 2009). However, cyanobacterial blooms 

occur frequently at the tidal-fresh and oligohaline zone of  the tributaries and main 

channel in Chesapeake Bay (Tango and Butler 2008).  Association of diazotrophic 

cyanobacteria within Microcystis blooms has been observed in summer months (O’Neil 
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unpublished data). Nitrogenase has been detected in many regions of the Chesapeake Bay 

with a remarkable diversity in speciation and nitrogenase gene sequences (Jenkins et al. 

2004; Short and Zehr 2007). Nevertheless, the mechanisms for cyanobacterial persistence 

and N2 fixation are poorly understood. 

Nutrients in estuaries have a complicated influence on the growth of N2 fixing 

cyanobacteria (Lehtimaki et al. 1997). Generally, N2 fixing cyanobacteria prefer to use 

ammonium (NH4
+), nitrate (NO3

-), urea or other available organic sources of N over 

energetically costly N2-fixation (Capone and Ferrier 1994; Paerl and Pinckney 1996). 

Nutrient loading into estuaries may enhance primary productivity but may also alter N to 

phosphorus (P) ratios. Increases in inorganic and organic N inputs can lead to a decline in 

N2 fixation rates, absence of N2-fixing cyanobacteria, and speciation changes in the 

phytoplankton community (Howarth et al. 1988). Reductions in N but not P loading may 

enhance N2 fixation and favor cyanobacteria over eukaryotic phytoplankton (Paerl 2008).  

In estuaries, temperature, salinity and associated physical changes are critical to 

determine cyanobacterial magnitude and distribution. Rising temperatures can promote 

cyanobacterial growth  (Lewis 1984), and increase their competitive advantage (Coles 

and Jones 2000). Enhancement in the frequency, strength, and duration of stratification 

with temperature, which may minimize the availability of remineralized nutrient in 

surface water, may benefit buoyant cyanobacteria that access nutrients in the 

hypolimnoin (Paerl 2008; Wagner and Adrian 2009). With different salinity tolerance 

among species, cyanobacterial growth, photosynthesis and nitrogenase activity vary 

greatly with salinity increase (Tonk et al. 2007). Salinity changes in estuaries may 
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consequently impact the spatial and temporal distribution of cyanobacterial blooms as 

well as species composition (Moisander et al. 2010; Sellner et al. 1988). 

Beyond direct regulation of environmental factors on cyanobacterial blooms, 

photosynthesis during agglomerated blooms also can dramatically enhance intracellular 

oxygen concentrations and release oxygen into water column (Badger et al. 2006), which 

can suppress nitrogenase activity in many cyanobacteria  (Bergman et al. 1997; Capone et 

al. 2008).  

Reduction of dissolved inorganic carbon (DIC) and elevated pH due to their 

photosynthetic carbon removal may exert effects on their physiological responses. 

Although the net acquisition of inorganic carbon (CO2 and HCO3
-) can support 

photosynthetic CO2 fixation, only CO2 can serve as the substrate for ribulose 

bisphosphate carboxylase-oxygenase (RuBisco). CO2 availability is often limited by its 

interception from the atmosphere and the water column diffusion rate, which is 104 times 

slower than in the atmosphere (Price et al. 2008; Stumm and Morgan 1996). With low 

carbonate buffering in freshwater and oligohaline environments, further increases in pH 

from photosynthesis quickly reduces CO2 (the main component of DIC  in pH range of 7- 

8.5) and drives the chemical equilibrium from HCO3
- to CO3

2-.  Taking advantage of 

CO2-concentrating-mechanisms (CCM) that improve their photosynthetic performance 

(Price et al. 2008), cyanobacteria (e. g. Nodularia spumigena) may competitively survive 

under DIC limited concentrations and out compete non-CCM eukaryotic phytoplankton 

in mixed cultures and in situ (Mogelhoj et al. 2006).  

However, the limited carbon availability may exert negative effects on C and N2 

fixation (Bothe et al. 2010; Fay 1992). Once DIC availability is outside the range of 
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CCM mechanisms, the combined pH and inorganic carbon limitation may negatively 

affect photosynthesis, growth rate and cause changes in community composition 

(Carrasco et al. 2008; Hansen 2002). These pH and DIC mediated changes in 

photosynthetic physiology and in species composition of cyanobacterial blooms can in 

turn influence N2 fixation, diel cycles and the cellular C: N ratio of cyanobacteria (Engel 

et al. 2008; Fu et al. 2008; Gattuso et al. 2010).  

In this study, investigations on cyanobacteria blooms were carried out in the 

upper Sassafras River, where many cyanobacteria possess the capacity to fix N2 (O’Neil, 

unpublished data). Following bloom development in 2010, we measured cyanobacterial 

abundance and speciation, physiological C and N2 fixation as well as other regulating 

factors in water quality. Questions are addressed of how changes in environmental 

variables affect cyanobacterial abundance and species composition and their 

physiological responses in N2 fixation. Assuming high irradiance combined with high 

photosynthetic biomass can lead to high rates of photosynthesis, pH elevation, and carbon 

depletion (Burton 1987; Hansen 2002; Jones and Stanley 2003), C and N2 fixation rates 

were measured at different irradiance levels in laboratory experiments.  

 

Materials and Methods 

Sampling was conducted weekly or biweekly from May 10th to September 15th in 

2010 at two adjacent areas in the upper Sassafras River, Budds’ Landing (BL) and 

Drawbridge (DB, Fig. 1). Cyanobacterial blooms have occurred at both locations during 

most summers in the past decade (MD DNR, Butler, unpublished). BL is located near the 

head of the river, and DB is a short distance down river close to a marina and sewage 
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treatment plant in Georgetown, MD. Subsamples were taken for Chlorophyll (Chl a), 

cyanobacterial biomass and species composition as well as and particulate C N P. 

Laboratory experiments were conducted for N2 fixation and primary production (H14CO3
- 

fixation) rates in samples from the Sassafras River. Dissolved oxygen (DO), pH, 

dissolved inorganic nutrient and dissolved inorganic carbon (DIC) were measured from 

the incubations. 

4.1.1 In situ measurements 

Temperature, salinity, DO and pH were measured with a YSI sensor (LI-1000). 

Photosynthetically active radiance (PAR) was measured at depth intervals of 0.2 m from 

the surface to bottom depths using a Li-Cor underwater PAR light sensor (Li-192). Data 

were also obtained for the real time changes of pH, temperature, salinity and DO at BL 

from the Maryland Department of Natural Resource (MD DNR) (Fig. 3). This monitoring 

sensor at BL was located in the middle of the 2m water column. Samples were collected 

from 10 cm below the surface in 10 L carboys and returned for processing to the Horn 

Point Laboratory within 2 hours. Samples were held overnight at close to in situ 

conditions and used the following day (within 24 hours of collection) for incubations to 

measure C and N2 fixation as a function of irradiance.  

4.1.2 Chl a and cyanobacterial biomass  

Samples for Chl a were filtered onto 25mm GF/F filters and then stored frozen at 

-20 ⁰C until analyses. Filters were extracted in 10 ml 90% acetone overnight at -20⁰C and 

Chlorophyll a  was then determined by fluorescence using standard techniques (Parsons 

et al. 1984). Triplicate samples for cyanobacterial biomass and identification were fixed 
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with 2.5% glutaraldehyde and enumerated via epi-fluorescence microscopy (Nikon 

Eclipse E800; filter set for Ex 465-495, DM 505 and BA 515-555). Based on geometric 

approximations (Hillebrand et al. 1999), biomass was calculated by a regression model 

for 1-1000 µm3 cells preserved in glutaraldehyde (Verity et al. 1992).  

            log C=-0.363 + 0.863 × log (BV) 

where C and BV is carbon content of biomass (pg cell-1) and biovolume (µm3 cell-1), 

respectively. 

4.1.3 Dissolved and particulate nutrients  

Triplicate samples for dissolved inorganic nutrients were filtered through 0.45 µm 

cellulose acetate syringe filters and frozen at -4 °C for the subsequent analysis of nitrate 

(NO3
-), ammonium (NH4

+) and soluble reactive phosphate (SRP). Concentration of  NH4
+ 

was determined using the phenol hypochlorite method (Parsons 1984). Analysis of NO3
- 

and nitrite (NO2
-) were conducted with iron chronometry (Kopp and Mckee 1983).  SRP 

concentrations were determined with a UV-spectrophotometer following the procedure of 

Murphy and Riley (1962). Samples (10-20 ml) for particulate C, N and P were filtered 

onto pre-combusted (450 ˚C, 4h) GF/F filters and stored at -20 ˚C. Particulate C and N 

were analyzed by CE-440 Elemental Analyzer (Exeter Analytical Inc.) at Horn Point 

Laboratory Analytical Services (Lane et al. 2011). Particulate P was extracted by HCl 

solution and analyzed by the colorimetric method (Parsons et al. 1984). 

4.1.4 Laboratory measurement of pH, DO and DIC  

The measurement of pH, DO and DIC were carried out immediately before and 

after the 24 h incubations. pH was recorded by a standard Radiometer glass pH electrode 
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(sensitivity 0.01), calibrated (3 point) with buffers of pH 4, 7 and 10. Dissolved gas 

samples for DO and DIC were collected in 7 ml test tubes with ground glass stoppers and 

5 ml DIC samplers, respectively. HgCl2 was immediately added into the dissolved gas 

samples at a final concentration of 10 mg L-1 to inhibit microbial activity. Gas samples 

were sealed and stored under water until analysis. DO values were determined by the O2: 

Ar method using membrane inlet mass spectrum analysis (MIMS) (Kana et al. 1994; 

Kana and Weiss 2004).  DO concentrations were corrected by dissolved Ar 

concentrations at 25°C and ambient salinities (Kana and Weiss 2004). Total DIC 

concentrations were determined by automatically injecting 0.75 ml samples with 

phosphoric acid. The DIC pool resulting from the conversion of the three carbon 

components (H2CO3, HCO3
- and CO3

2-) was qualified with LI-7000 DIC/H2O analyzer 

(Model A5-C3). During the 24 h laboratory incubations, changes in pH and DO were also 

monitored continuously using pH and DO microsensors (NexSens Technology, Inc.). 

Micro-sensors of pH were calibrated with pH standards. Additional DO subsamples were 

measured by MIMS at the beginning and the end of 24 h incubation on Jun. 2, Jun. 10, 

Jul. 28, Aug. 10 and Sept. 15. The results of DO sensors were compared with MIMS 

measurement and found to be similar.  

4.1.5 C and N2 fixation  

We examined C and N2 fixation rates at different irradiance to generate the 

combination of   pH elevation and DIC reduction in samples, based on the consumption 

that carbon removal rates increase with irradiance by photosynthesis. Water samples were 

acclimated around 2 hours after the samples were brought back to the laboratory in the 

late afternoon. Triplicates subsamples, used for primary production and N2 fixation, were 
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gently mixed and dispensed into 125 ml glass bottles. To keep their natural diel cycle, 

subsamples were incubated in a light: dark cycles of 14 h: 10 h at 25 ⁰C, close to the 

average water temperature of 26 ± 3 ⁰C during the sampling season.  

A preliminary incubation of 4 h was conducted to find the irradiance range that 

was not inhibitory for subsequent experiments. Based on these results, the irradiance 

levels were 0, 62.5, 125 and 250 µmol photons m-2 s-1 in the diel incubations. C fixation 

rates were measured by phytoplankton incorporation of 14C-bicarbonate (Parsons et al. 

1984). All C fixation rates were calculated with the initial DIC concentrations. N2 

fixation rates were estimated for the same time periods by the acetylene reduction method 

using flame ionization detector (FID) gas chromatography (GC-8A) (Capone 1995). The 

production of ethylene was corrected by the Bunsen gas solubility coefficient (Breitbarth 

et al. 2004), and then a theoretical ratio of 3:1 was used to convert ethylene production to 

N2 fixation (Capone 1995). 

4.1.6 Data analysis  

The effects of light on C and N2 fixation rates were assessed using a nested 

ANOVA at the level of sampling time for BL and DB.  A Pearson correlation was used to 

examine co-variation of pH, DO and DIC with irradiance during incubations. Linear 

regressions were used to quantify the influence of irradiance on both C and N2 fixation in 

each sample. A forward stepwise regression was used to analyze the effects of 

environmental variation (e.g. nutrients, pH, DIC, DO and irradiance) on photosynthesis 

and N2 fixation rates for samples spanning the whole bloom season. All data analyses 

were conducted with SAS system for windows (9.0) (Delwiche and Slaughter 2003; 

Quinn and Keough 2002).   
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Results 

4.1.7 In situ conditions 

The upper Sassafras River is a turbid, tidal freshwater and shallow estuary. Light 

attenuation coefficient (Kd), calculated from the light flux at different depths, was 3- 5.8 

m-1.  Cyanobacteria were not concentrated in or near surface layers but were relatively 

uniformly distributed in the water column, partly as a result of tidal mixing and 

freshwater flushing. This is consistent with the long-term observations of non- significant 

differences in Chl a concentration between the surface and bottom water depths 

(unpublished data from Chesapeake Bay Program). The water temperature, ranging from 

20 to 32 ⁰C, indicated an increase from spring to summer and decrease after September 

(Fig. 3). Salinity was generally less than 1 in summer and gradually increased in autumn 

with a clear spatial pattern, slightly lower salinity at up river (< 1, BL) than the further 

downstream (0 – 2, DB) (Fig. 1). 

4.1.8 Cyanobacterial bloom development and succession 

Development of cyanobacterial blooms, as indicated by cyanobacterial biomass, 

DO and pH, can be divided into three stages: stage I (the bloom initiation period, May to 

mid-June); stage II (first bloom, from mid-June to mid-August), and stage III (second 

bloom, after late August).  The dominant cyanobacteria switched from non-N2 fixing 

species of eukaryotic phytoplankton and Microcystis spp. to the diazotrophic 

cyanobacteria, varying in speciation and abundance. Diazotrophic filamentous 

heterocystous Anabaena spp. and non-heterocystous Pseudanabaena sp. biomass peaked 
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in stage II and III, respectively. Unicellular Synechocystis spp. were present during both 

blooms (Table 1 and Fig. 4). 

The cyanobacterial bloom is initiated in stage I, with the cyanobacterial 

domination changing from the non-N2 fixing genera Microcystis spp. to heterocystous N2-

fixers, including Anabaena circinalis, Anabaena planctonica and Anabaena flos-aquae 

(Table 1). Concentrations of Chl a increased from ~20 µg L-1 to ~80 µg L-1 without 

significant difference between the two stations (Fig. 2). The biomass of Microcystis 

increased by ~ 1 mg C L-1 from May to Mid-June, but the abundance and proportion of 

Anabaena in the total phytoplankton biomass were slightly different at BL and DB sites 

(Fig. 4).  The biomass of Anabaena spp. rapid increased to an estimated 7 mg C L-1at BL 

and 4 mg C L-1 at DB, respectively.  This indicates a increasing tendency of Anabaena 

spp. domination, growing from a small fraction (12- 24%) of the total phytoplankton 

biomass in May to approximate 95% at BL and over 60% at DB by the end of stage I 

(Fig.4). The daily average of pH and DO from the monitoring records were similar to in 

situ observations at BL. In correspondence with bloom development, pH gradually rose 

from 7 to 9 at both stations. The diel fluctuation in DO was large but the daily average 

DO was relatively constant at 300 – 400 µmol L-1 (Fig. 3).  

In stage II, the N2-fixer,  Anabaena dominated fully developed blooms and 

peaked in July, reaching 10.5 mg C L-1 upriver at BL and 6.2 mg C L-1 at further 

downstream (DB). The unicellular N-fixer, Synechocystis, presented at a relatively low 

and constant biomass (< 0.8 mg C L-1) from July to the end of the bloom season in 

September. Chl a concentration increased rapidly and was generally higher at the 

relatively up-river station (BL) than DB. At the upriver station, pH increased dramatically 
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to 10.3, with the daily average of pH > 9.2 for several weeks. The daily average DO 

almost doubled, with a similar maximum DO from field monitoring (732.9 µmol L-1) and 

laboratory observation (643.4 µmol L-1) (Fig. 3 and Fig. 10). During the same period, no 

significant increase of Chl a, pH nor DO was observed in situ at the downstream DB 

station. The highest value for Chl a (112.4 µg L-1) occurred in early July at DB. The daily 

maximum of pH was 9.6 and of DO was 454.7 µmol L-1at DB during light experiments 

(Fig. 2 and Fig 10).  

The second cyanobacterial bloom (stage III) occurred after heavy precipitation 

from August 13 to Aug. 17 (Fig. 2). After the decline of the Anabaena dominated 

blooms, a general increase of Pseudanabaena biomass was observed and reached up to 

11.2 mg C L-1 at BL and 6.1 mg C L-1 at early September (Fig. 4). The diazotroph, 

Pseudanabaena sp., along with a small fraction of Synechococcus sp., became prevalent 

and comprised up to 94% at BL and 42.2 % at DB of the total phytoplankton biomass 

(Fig. 4). A sharp increase in Chl a, pH and DO occurred again, with larger increases at 

BL than at DB (Fig. 2, 3 and 11). In early September, Chl a increased up to 158.2 at BL 

and 124.7 µg L-1 at DB, respectively (Fig.2); the maximum of pH and DO were similar to 

the highest observation during stage II. Blooms rapidly dissipated at both stations at the 

end of September, which was followed by the both decrease in pH and DO 

concentrations (Fig. 3). 

4.1.9 Dissolved inorganic nutrients and particulate C, N, P  

Dissolved inorganic nutrients decreased with bloom development from spring to 

summer (Fig. 5).  During May to August, concentration of NO3
- and NH4

+ at BL declined 

rapidly from above 40 µmol L-1 to less than 1.2 µmol L-1 and from 2.1 µmol L-1 to the 
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detection limit, respectively. Similar pattern of DIN concentrations were found at DB, but 

were generally higher than at the BL. SRP concentrations at both stations declined from 

0.5~ 0.6 µmol L-1 to 0.03 ~  0.2 µmol L-1. After the bloom initiation in May, the ratio of 

DIN: SRP decreased from > 100 to 3 ~ 30 during summers and early autumn, except for 

an abruptly increased DIN: SRP (> 40) in September at BL (Fig. 5).   

The ratio of C: N, N: P and C: P in particulate organic matter varied with time and 

location (Fig. 6). At the upriver station, particulate C: N ranged from 6 to 12, C: N from 

18 to 32 and C: P from 84 to 265. Ratios were generally higher than the Redfield ratio 

during bloom stage I, and below or close to the Redfield ratio during bloom stage II and 

III. At DB, the ratios of C: P and N: P declined from above 250 and 20~38, respectively, 

during stage I to below the Redfield ratio in stage III. The ratios of C: N varied from 6 

to10, which is higher than the Redfield ratio. 

4.1.10 Photosynthesis experiments 

In the preliminary experiment, photoinhibition of C fixation was not observed in 

the irradiance range of 0 to 500 µmol photons m-2 s-1; therefore irradiances  ≤ 250 µmol 

photons m-2 s-1 were used for subsequent incubations (Fig. 7).   

There was a positive correlation of average pH and DO with incubation irradiance 

and an inverse relationship with DIC during the 24 hour incubations (Table 6). With 

increased irradiance, enhanced pH and decreased DIC were observed in samples during 

all incubations (Fig. 8 and Fig.10). With samples in incubations at 250 µmol photons m-2 

h-1 from the river head (BL), the daily average pH rose from ~ 7.2 in stage I to ~10.5 in 

stage II. The daily average DIC concentration coincidently decreased from over 800 µM 

to ~300 µM (Fig 10). With samples from DB, pH was enhanced to 9.6 during the bloom 
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and DIC declined to values as low as ~500 µM. When the bloom died out at both 

pH during incubations decreased to 7.5 ~8.6 and DIC increased to around 800 µM (Fig. 

10).  

As expected, Chl a-normalized C fixation rates increased linearly with irradiance 

(Table 2); however, the linear regression coefficients (αchl, photosynthetic efficiency) 

changed with bloom development (Table 3). The estimated αchl decreased from stage I ( 

>20 mg C (mg Chl a)-1 (µmol photon-1 m-2 s-1) h-1) to a minimum in stage II ( < 8.5 mg C 

(mg Chl a)-1 (µmol photon-1 m-2 s-1) h-1), and then rose again to above 9 mg C (mg Chl a)-

1 (µmol photon-1 m-2 s-1) h-1 at the end of stage III. During stage II, the correlation of 

photosynthesis with irradiance was non-significant in 3 out of 4 incubations under the 

conditions of low DIC and elevated pH (Fig 8 and 10). Moreover, C fixation rates at 250 

µmol photons m-2 h-1 declined from 6.2-7.8 mg C (mg Chl a)-1 h-1 in stage I, reached a 

minimum of less than 1 mg C (mg Chl a)-1 h-1 in stage II, and then rose to 2-4 mg C (mg 

Chl a)-1 h-1 in stage III.  Net C uptake rates were below 2 mg C mg (mg Chl a)-1 h-1 and 

did not significantly increase with irradiance when DIC concentrations were < 540 µmol 

L-1 (Fig. 9). Above this level, photosynthetic rates were positively related to DIC supply 

and irradiance with αchl ranging from 65.3 to 117.1 mg C (mg Chl a)-1 (µmol photon-1 m-2 

s-1) h-1.   

4.1.11 N2 fixation 

N2 fixation was first detected in mid-June when the ratio of DIN: SRP had 

decreased from over 100 to < 30. According to a preliminary experiment, 250 µmol 

photons m-2 s-1 was determined to be close to the light saturation for photosynthesis but 
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was not high enough to inhibit N2 fixation in laboratory incubations. N2 fixation was 

inhibited at incubation irradiances of 500 µmol photons m-2 s-1 (Fig. 7).  

In the range of 0 to 250 µmol photons m-2 s-1, irradiance usually significantly 

enhanced N2 fixation rates based on N2-fixing cyanobacterial biomass for samples taken 

from both stations (Table 4 and Table 8). However, in samples from BL in stage II and 

from DB in stage III, biomass specific N2 fixation did not significantly increase as a 

function of irradiance (Table 4). 

In the bloom initiation period (stage I), N2 fixation rates incubated at 250 µmol 

photons m-2 s-1 could reach up to 1600 pmol N mg C-1 d-1 in the samples from BL and up 

to 540 pmol N mg C-1 d-1 in the samples from DB. Dark N2 fixation rates were below 36 

pmol N mg C-1 d-1 and sometimes undetectable.  

Stage II and III of the bloom were characterized by elevated pH / DO and low 

DIC and SRP concentrations (Fig.3 and 5). In comparison with stage I, N2 fixation rates 

were generally lower in stage II and III, and tended to decrease with rising pH and DO 

during blooms (Fig. 10). In samples taken during the intensive bloom at BL on June 30 

and July 14 and from both stations on Sept 2, N2 fixation rates dropped below 200 pmol 

N mg C-1 d-1 at an incubation irradiance of 250 µmol photons m-2 s-1. 

There was a positive relationship between N2 fixation rates and irradiance in most 

of the incubated samples as determined by linear regression (Table 4), but the 

correlations were usually weak or non-significant during bloom stage II and III at BL and 

stage III at DB (Table 4). Although N2 fixation rates remained higher during the light: 

dark = 14 : 10 incubation than the 24 h dark treatment, dark period N2 fixation increased 

up to 60 pmol N mg C-1 d-1 during the dense bloom periods. Assuming that N2 fixation 
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rate in the 24 h dark incubation was similar to the rates during the dark period of light: 

dark incubation, dark period N2 fixation could account for 40 – 62% of daily N2 fixation 

in samples of stage II from upriver and for 20 – 45% of daily N2 fixation in samples from 

downstream when the bloom expanded during the Pseudanabaena bloom (stage III) (Fig. 

12).   

4.1.12 The environmental effects on C and N2 fixation rates 

The environmental effects on both C and N2 fixation rates were estimated using a 

forward stepwise regression analysis (Table 7 and 8).   Both C and N2 fixation rates were 

positively related to irradiance and SRP concentration. DIC concentration had a positive 

effect on C fixation; while DO had a negative effects on N2 fixation rates.  In this study, 

DIN was usually limiting for cyanobacterial blooms relative to SRP (Fig. 4). N: P ratios 

were negatively correlated with N2 fixation rates (Table 8).  

 

Discussion  

4.1.13 Bloom Stage I  

        The cyanobacterial blooms in the Sassafras River may be initiated by 

seasonal increases in water temperature (Fig. 3). In the culture experiments, rising 

temperatures were positively related to growth and photosynthetic rates of cyanobacteria 

(e.g. M. aeruginosa, M. ichthyoblabe and A. aphanizomenoides) (Coles and Jones 2000; 

Sabour et al. 2009). Cyanobacteria appeared to become more successful competitors than 

diatoms and green algae as temperatures approach and exceed 20 °C (> 20⁰C) 

(Amirbahman et al. 2003; Coles and Jones 2000). This is likely a result that the growth 
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rates of freshwater eukaryotic phytoplankton generally stabilize or decrease while growth 

rates of many cyanobacteria increase, providing a competitive advantage (O’neil  et al. 

2011; Paerl and Huisman 2009). 

Moreover, the decreased DIN: SRP ratios during May to June (Fig.5) favor the 

diazotrophic cyanobacteria, evidenced by the increased cyanobacterial biomass and the 

succession of Microcystis spp. toward Anabaena spp. dominance in phytoplankton 

community by June (Fig. 4). In spring DIN and SRP are higher than other seasons due to 

the maximum freshwater run-off and low nutrient consumption in the water during this 

period. Non-N fixers were dominant at DIN: SRP > 50 in May. However, dissolved N 

limitation after June in the water column (Fig. 5) promoted the dominance by Anabaena 

spp., which may satisfy its need for N by dinitrogen reduction. Besides, N2 fixation 

possibly supported the growth of co-occurring non-N2 fixing cyanobacteria, such as M. 

wesenbergii and M. aeruginosa (Howarth et al. 1988). Evidence suggests the release of 

fixed N from diazotrophic cyanobacteria into the water as NH4
+, amino acids or other 

organic N compounds (Carpenter et al. 1999; Glibert et al. 2004), and this could support 

the growth of the bacteria and other phytoplankton (Mulholland 2007; Mulholland et al. 

2004).  

Consistent with previous studies (Coles and Jones 2000; Lewis 1984), 

photosynthesis  generally increases with light in stage I (Fig. 8). The maximum rates of 

photosynthesis, at 250 µmol photons m-2 h-1 in each experimental incubation, were below 

or close to the maximum photosynthetic rates reported from cultures of cyanobacteria,  

2.9 – 3.8 mg C mg Chl a-1 h-1observed for A. flos-aquae at 20 °C (Oh et al. 1991; Sabour 

et al. 2009),  6.8 mg C mg Chl a-1 h-1 observed for M. aeruginosa at 25 °C (Coles and 
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Jones 2000; Oh et al. 1991). The average photosynthetic rates were 6.98 mg C mg Chl a-1 

h-1 , in the range of 1.4 – 24.5 mg C mg Chl a-1 h-1 during a cyanobacterial summer bloom 

in the tidal freshwater zone of Potomac River, another Chesapeake Bay tributary (Jones 

1998). The increase in photosynthesis rates within our experimental light irradiances 

8),  estimated by photosynthetic efficiency (αchl), was consistent with observation of 2.79 

– 14.4 mg C ⋅ mg Chl a-1 h-1 ⋅µmol photon-1 m-2 s-1 in the Potomac river (Jones 1998). 

The dominance of cyanobacteria (Fig. 4) and light dependent C fixation (Fig. 8) 

were consistent with previous study for their adaption, succession and dominance in 

phytoplankton community when water column CO2 concentrations are drawn down and 

pH are enhanced with bloom development (Oliver and Ganf 2000). Although 

photosynthesis driven-pH elevation from 7 to 9 resulted in DIC decrease and speciation 

changes from CO2 to mainly HCO3
- , cyanobacteria may benefit from carbon 

concentrating mechanisms (CCM) and buoyancy. All cyanobacteria have CCM 

mechanisms that improve the efficiency of CO2 fixation by multiple Ci transporter and 

carbonic anhydrates to enhance HCO3
- affinity and transportation (Beardall et al. 1998; 

Ogawa and Kaplan 2003). Partition of Rubisco into micro-compartments within 

cyanobacteria, known as Carboxysomes, can increase efficiency of CCM mechanisms by 

generating a high concentration of CO2 around the Rubisco enzyme (Badger et al. 2006; 

Beardall and Giordano 2002). In addition, surface-dwelling cyanobacteria (e.g., 

Anabaena, Pseudanabaena, Microcystis) may have an advantage over other 

phytoplankton due to their closer proximity to atmospheric CO2 that may rapidly diffuse 

into surface waters and promote their growth (O’neil  et al. 2011; Oliver 1994; Paerl and 

Huisman 2009).  
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The increase in N2 fixation rates with irradiance (Table 3 and Fig. 10) were 

consistent with the field study of N2 fixation by Severin and Stal (2008) during the 

Anabaena spp. dominated blooms. The low dark N2 fixation rates may be a result of the 

Anabaena spp. dominance, with co-occurrence of oxygenic photosynthesis and N2 

fixation in the day time. Heterocysts have lost photosystem II and hence the capacity of 

oxygenic photosynthesis (Adams and Duggan 1999). Moreover, the cell envelope of 

heterocysts represents a gas diffusion barrier and any O2 that enters the cell is scavenged 

by an efficient and high-affinity respiratory system (Walsby, 2007). Hence, Anabaena 

spp. can spatially separate photosynthesis in the vegetative cells from N2 fixation in the 

heterocysts (Milligan et al. 2007).  

N2 fixation in each experiment with irradiances below 250 µmol photons m-2 s-1, 

and the positive relationship between C and N2 fixation in the bloom stage I suggests a 

co-dependence (Table 5). Cyanobacteria can meet the high energy demand of N2 fixation, 

which requires ATP and reductants to convert N2 to ammonium (Bothe et al. 2010), and 

photosynthetically  produced carbon skeletons to assimilate fixed nitrogen (Cox 1969). 

Formation of ammonium through N2 reduction to, in return, supports growth and 

photosynthesis of the cyanobacterial community.  

4.1.14 Bloom Stage II 

During June to August, the cyanobacterial bloom was more intense at BL, with 

the Chl a maximum 48% higher than at DB (Fig. 2).The increase in biomass of N2-fixing 

cyanobacteria may have been stimulated by a deficiency in N and concomitant 

sufficiency in P. The ratio of DIN: SRP in stage II was in the range of 3 – 20 (95% 

confidence limit), supporting the dominance of N2-fixing species (Fig. 4 and Fig. 5). 
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ranging from 0.18 – 4.2 µmol L-1, may not be a strong limiting factor for N and C 

fixation in this tributary when high pH is maintained in the water column (Fig. 5). 

Inorganic P input from land erosion and agriculture runoff is an important seasonal input 

of P to the Sassafras River (Sassafras River Association 2010). Additionally, 

cyanobacteria may alleviate their P limitation through physiological functions such as the 

luxury uptake and storage of P (Krauk et al. 2006); the ability to utilize P from the 

dissolved organic P pool (Dyhrman et al. 2006; Dyhrman and Haley 2006; Dyhrman and 

Ruttenberg 2006); and use of surface-adsorbed phosphate (Sanudo-Wilhelmy et al. 2004). 

The persistence of cyanobacteria may benefit from the high pH that was 

maintained from July to August in the poorly buffered brackish water of the upper 

Sassafras River. Even though SRP concentration in the water decreased from spring to 

summer with increases in nutrient assimilation and less land input of P during the 

summer drought period, P consumption by cyanobacteria in the water column may be 

quickly compensated for by pH-driven P release from sediment and suspended particles 

(Seitzinger 1991). Phosphate release due to high pH can constitute a high fraction (30 – 

100%) of P demand during cyanobacterial blooms in lakes and oligohaline estuaries 

(Seitzinger 1991; Xie and Xie 2003). In addition, cyanobacteria associated with high pH 

may also relieve grazing pressure by some small sized zooplankton on themselves. These 

may benefit the persistence of Anabaena spp. and appearance of unicellular 

Synechococcus sp. (Fig. 4).When large cyanobacteria (Anabaena flos‐aquae, 

Aphanizomenon flos‐aquae, large Microcystis colonies) were abundant, some Daphnia 

spp. showed reduced reproduction and development due to toxin production from 
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cyanobacteria (Burns 1987). High pH (9-10.6) also suppresses the growth of Daphnia 

longispina, Bosmina longirostris and Chydorus sphaericus (Hansen et al. 1991).  

However, the photosynthetic carbon consumption that occurred during dense 

bloom periods caused dramatic elevations of pH and reduction of DIC at BL (Fig. 3 and 

8). The rapid rise of pH shifted the DIC equilibrium away from HCO3
- towards CO3

2-, 

and even caused depletion in available inorganic carbon (CO2 and HCO3
2-). Although 

CO2 production via dark respiration, supplement from air-water exchange and CCM 

mechanisms may alleviate carbon limitation for cyanobacteria maintenance in high 

biomass (Beardall et al. 1998; Ogawa and Kaplan 2003), the limited DIC concentrations 

reduce photosynthetic carbon uptake efficiency (Fig 10 and Table 3). In previous studies, 

carbon limitation and high pH were found to inhibit growth, cell division and 

photosynthesis of cyanobacteria such as M. aeruginosa and A. cylindrica (Qiu and Gao 

2002; Yamamoto and Nakahara 2005). Alternatively, Anabaena biomass increased ~20 

fold after Na2CO3 enrichment and became competitive in a mixed phytoplankton 

community in a high pH and N-limited lake (Unrein et al. 2010). 

During the mid-bloom, oxygen produced by photosynthesis resulted in super- 

saturated DO values and extremely high pH up to above 10, which showed a similar 

range of pH and DO values observed in the 24 h incubations (Fig. 10) to the field diel 

fluctuation (Fig. 3). High DO concentration can inhibit the activity of nitrogenase, the 

enzyme responsible for the reduction of N2 to ammonium (Paerl and Zehr 2000). Even 

though irradiance increase can slightly promote Chl a-specific C fixation rates, the 

response of N2 fixation rates was reduced in the light and turned into dark fixation from 

end of June to July (Fig. 10 and 11), partly as a result of light-stimulated oxygen 
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accumulation, carbon limitation as well as their different tolerance among cyanobacterial 

species (Boyd et al. 2010).  

Biomass specific N2 fixation rates to irradiance became weaker in July (Table 4), 

obviously reflecting the constraint of carbon limitation, high pH, and oxygen depression 

during dense bloom. N2 fixation has a high-energy demand (16 mol ATP for the reduction 

of 1 mol N2) (Bergman et al. 1997), and requires the photosynthetic production of 

‘assimilatory power’ (ATP and reducing equivalents in the form of NADPH or reduced 

ferredoxin). Several culture studies that used changing pCO2 to adjust water column DIC 

concentration have suggested that the lower DIC availability, the more limitation on 

growth, C fixation and N2 fixation rates of Trichodesmium and Crocosphaera  (Fu et al. 

2008; Levitan et al. 2007)  . This, in return, may constrain carbon uptake by 

cyanobacteria that starved for nitrogen.     

In addition, high pH also leads to precipitation of essential elements (Cu, Fe, Mo) 

for photosynthesis and N2 fixation (Gallon 1992; Strauss et al. 2002). All diazotrophic 

organisms need Mo nitrogenase either exclusively or together with other alternative 

forms (Schmidt 2006). Limitation of Fe may reduce growth rates and nitrogenase activity 

by regulating different N2-fixing strategies among diazotrophs, such as the filamentous 

non-heterocystous Trichodesmium, the filamentous heterocystous Anabaena, and the 

unicellular Cyanothece (Berman-Frank et al. 2007; Fu et al. 2008; Mahaffey et al. 2005). 

Shift of N2 fixation from light to dark possibly minimized the deleterious effects 

of O2 on nitrogenase activity, possibly a consequence of changes in species composition 

of diazotrophic cyanobacteria associated with heterotrophic bacteria. Dark N2 fixation 

increased with bloom progression and contributed up to a calculated ~ 60% of total N2 
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fixation, especially when pH was > 9.5 and DO super-saturated (Fig. 12). Unicellular N2-

fixing cyanobacteria Synechococcus sp., which occurred within the aggregates of 

heterocystous N2-fixers, may have been largely responsible for the dark N2 fixation. In 

unicellular cyanobacteria, nitrogenase activity and nifH activity usually are engaged at 

night to temporally separate them from O2 production in day time (Gallon 1992; Mohr et 

al. 2010). On the other hand, increases of dark N2 fixation were possibly contributed by 

species that could fix N2 in light.  After switching from light to dark, dark respiration may 

alleviate oxygen stress by consuming intracellular O2 and decreasing DO concentrations 

in the water (Fay 1992).  Excess energy produced during the light period may also be 

available and cover part of the energy demand of N2 fixation in the dark (Paerl 1996). 

Relatively higher N2 fixation rates were found in the beginning of dark incubation for 

heterocystous Anabaena spp. and non-heterocystous Oscillatoria limosa, Limnothrix 

aestuarii and Lyngbya aestuarii (Bergman et al. 1997; Severin and Stal 2008).  

Although no direct measurements were made in this study, heterotrophic bacteria 

were proved to maintain optimal growth and nitrogen-fixing potential for the 

cyanobacterial community in a previous study.  Paerl (1978) found that nitrogenase 

activity of Anabaena with attached heterotrophic bacteria on its heterocysts can be higher 

or that they can recover quicker than axenic cultures under oxygen pressure. Under high 

pH conditions in photosynthetic periods, bacteria association may provide zones of 

increased CO2 availability coupled with O2 removal through mineralization of organics, 

which may provide protection from O2 inhibition of nitrogenase activity and relax DIC 

limitation. In turn, diazotrophs may release surplus nitrogen to the heterotrophic 

community (Ploug 2008). In spite of low N2 fixing for bacteria relative to cyanobacterial 
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diazotrophs, some of heterocystous bacteria may fix nitrogen both in light and darkness 

when DIN is limiting (Stevenson and Waterbury 2006; Zehr et al. 1995).  

Particulate C: N ratios under high pH /low DIC decreased to approximately  

Redfield ratio values, which is possibly due to carbon limitation (Burkhardt et al. 1999). 

However, N2 fixers can balance their assimilation of C and N during blooms by accessing 

atmospheric dissolved reservoirs of N2 and CO2 (Klemer et al. 1996). The low particulate 

N: P ratio during stage II is consistent with N limitation in water column and SRP 

enrichment due to pH elevation.  

4.1.15 Bloom Stage III 

The filamentous bloom-forming cyanobacteria Pseudanabaena spp., which are 

closely related to Limnothrix (Acinas et al. 2009), are capable of fixing N2 during the 

daytime (Bergman et al. 1997). At the peak biomass of Pseudanabaena spp. in early 

September, the enhancement of dark N2 fixation occurred again and potentially 

comprised a large fraction of new N input (Fig. 12).  

High photosynthesis and biomass of cyanobacteria (mainly Pseudanabaena spp.) 

evidently led to drawdown of SRP at both stations (Fig. 5).  Especially at BL, there was a 

clear excess of DIN relative to SRP at the end of the bloom. The increase in DIN: SRP 

(Fig. 3) may end the domination of diazotrophic cyanobacterial blooms (Perakis et al. 

1996). SRP supply becomes more critical for bloom persistence, as evidenced by the high 

particulate N: P ratio (Fig. 6). The fixation rates of DIC and N2 were gradually reduced in 

the whole water (Fig. 8 and 11). Decrease of temperature and the slight increase of 

salinity may have suppressed cyanobacterial growth, photosynthesis (Moisander et al. 
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2002) and N2 fixation (Fu et al. 2007; Moisander et al. 2002), ending the bloom by late 

September.  

 

Conclusions 

During the summer of 2010, dense diazotrophic cyanobacterial blooms were 

dominant in the Sassafras River, a tidal-fresh/ oligohaline and eutrophic tributary of the 

Chesapeake Bay.  The occurrence of non-diazotrophic and diazotrophic cyanobacteria 

resulted from a variety of interactions among constraining environmental factors, such as 

temperature, salinity and the low ratio of bioavailable N : P. Interestingly,  the 

consequences of their high photosynthetic metabolism (e. g. low DIC concentration, 

extremely high pH) may favor their persistence. Negative feedbacks on cyanobacterial 

growth occur due to their own metabolism (e. g. low DIC concentration, extremely high 

pH and the supersaturated dissolve oxygen) which may cause reduction and diel 

variations in the biomass-specific N2 fixation rates. Dark N2 fixation, mediated by 

diazotrophic species succession and their various physiological adaptations, appeared to 

supply the lack of nitrogen during dense blooms.  
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Tables 

 
        Table 4-1 The Cyanobacterial species and N2 fixers observed in the summer of 2010. 

 
Latin name Ref: N2 fixer 
Microcystis aeruginosa   
Microcystis botrys  
Microcystis wesenbergii  
Merismopedia glauca  
Merismopedia  
Anabaena circinalis 1 
Anabaena crassa 1,2 
Anabaena flos-aque 1,2 
Anabaena planctonica 1 
Anabaena spiroides 1 
Anabaena Oscillarioides 1 
Anabaena sp. 1 
Lyngbya sp. 1, 4 
Pseudanabaena sp. 3, 4, 5 
Chroococcus sp. 4, 6 
Synechococcus sp. 1 
  

Note : the species identification and N2 fixation record from 1. John et al. 2002; 2. Fay 1992; 3. Singh et al. 1987; 4.Bergman 
et al. 1997; 5.Staal et al. 2003; 6.  Rippka et al. 1971 
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Table 4-2   Three-level nested analysis of variance of effects of station (n= 2), sampling date (n=5 for C and n= 9 for N) and irradiance 
(n=4) on carbon and nitrogen fixation in laboratory incubations. Data are shown in Fig 8 (C fixation) and Fig 11 (N-fixation). 

 

Dependent variable: C fixation rate (mean of 3 triplicates) 

Source of variation DF Sum of Squares Mean Square F Value Pr > F

Model 19 3.89E+08 2.05E+07 10.82 <.0001 ***
Error 18 3.41E+07 1.89E+06  
Corrected Total 37 4.23E+08     

Source of variation DF Type III SS Mean Square F Value Pr > F  

All  1 3.62E+05 3.62E+05 0.19 0.667  
Dates within stations 8 9.19E+06 1.15E+06 0.61 0.7607  
Irradiance within stations and dates 10 1.79E+08 1.79E+07 9.44 <.0001 ***

Dependent variable: N2 fixation rate  (mean of 3 triplicates) 

Source of variation DF Sum of Squares Mean Square F Value Pr > F  

Model 39 7.58E+06 1.94E+05 20.26 <.0001 ***
Error 39 3.74E+05 9.59E+03  
Corrected Total 78 7.95E+06     

Source of variation DF Type III SS Mean Square F Value Pr > F  
All  1 4.45E+03 4.45E+03 0.46 0.4996  
Dates within stations  18 2.12E+05 1.18E+04 1.23 0.2872  
Irradiance within stations and dates 20 2.89E+06 1.44E+05 15.06 <.0001 ***
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Table 4-3  Photosynthetic efficiency (α chl , mg C mg Chl a-1 h-1 (µmol photon-1 m-2 s-1)),  in laboratory incubation of samples collected 
during bloom stage I, II and III at 2 stations on the upper Sassafras River in 2010.  Data are shown in Figure 8.  

Phase Date 
Budds Landing   Drawbridge   

αchl SE P  αchl SE t P   

Stage I 6/10 41.94 16.24 0.04 * 45.97 10.00 4.60 0.04 ** 
  6/15 19.14 4.89 0.059   24.20 8.61 2.81 0.11   
Stage II 6/30 8.28 5.83 0.39  3.60 3.97 0.91 0.53  
 7/14 1.63 0.29 0.030 * 1.86 0.25 7.42 0.02 ** 
Stage III 9/14 15.21 3.18 0.041 * 9.67 1.91 5.05 0.04 * 
Note:  * P≤ 0. 05; ** P≤ 0.01; *** P≤ 0.001. 
 
 
Table 4-4   Response of N-fixation to irradiance in laboratory incubations of samples collected during bloom stage I, II and III at 2 stations 
on the upper Sassafras River in 2010. Regression coefficient (Cof) = (mg N mg Chl a-1 h-1 (µmol photon-1 m-2 s-1).  Data are shown in 
Figure 11. ‘-’ = undetectable data.  

Phase Date Budds Landing   Drawbridge   
Cof SE P  Cof SE P  

Stage I 5/25 -    -    
 6/10 6.70 1.52 0.05 * 2.62 0.59 0.05 *
  6/15 1.52 0.25 0.03 * 3.96 0.59 0.02 *
Stage II 6/25 0.29 0.10 0.10  0.14 0.02 0.02 *
 6/30 -0.16 0.39 0.72  1.16 0.28 0.05 *
 7/14 -0.42 0.31 0.41  0.23 0.04 0.03 *
 8/9 2.98 0.41 0.02 * 1.36 0.24 0.03 *
Stage III 8/26 0.78 0.17 0.05 * 0.57 0.47 0.35  
 9/1 0.04 0.05 0.47  0.63 1.26 0.66  
  9/14 0.90 0.15 0.03 * 0.56 0.16 0.08  
Note:  * P≤ 0. 05; ** P≤ 0.01; *** P≤ 0.001. 
Table 4-5  Response of N-fixation to C fixation in the laboratory incubation of samples collected during bloom stage I, II, and III at 2 
stations in the upper Sassafras River in 2010. K is the correlation between N fixation and C fixation rates. Data are shown in Figure 11.  
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Phase Date Budds Landing   Drawbridge   
K SE Pr> t   K SE Pr> t   

Stage I 6/10 0.14 0.02 0.02 *  0.06 0.01 0.01 ** 

  6/15 0.07 0.01 0.02 *  0.13 0.05 0.12   

Stage II 6/30 -0.05 0.00 0.02 *  0.03 0.02 0.39  

 7/14 0.68 0.47 0.07   0.74 0.08 0.01 * 

Stage III 9/14 0.05 0.02 0.12    0.05 0.03 0.20   
 
Note:  * P≤ 0. 05; ** P≤ 0.01; *** P≤ 0.001.  
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Table 4-6   Correlation among pH, dissolved oxygen (DO), dissolved inorganic carbon (DIC) and irradiance in 24 h incubations of 
samples collected from Budds Landing and Drawbridge. Corr is Pearson correlation coefficient; N is the sample size and P is the 
significant level. 

 

    pH DO DIC Irradiance 

pH Corr 1 0.61 -0.05 0.41 

 P  <.001 *** 0.8 0.009 ** 

 n 76 69 69 74 

DO Corr   1 -0.56 0.70 

 P   0.002 ** <.0001 *** 

 n  79 68 68 

DIC Corr     1 -0.44 

 P    0.004 ** 

 n   78 68 

Irradiance Corr       1 

 P     

  n       74 
Note:  * P≤ 0. 05; ** P≤ 0.01; *** P≤ 0.001. 
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Table 4-7  Multiple linear relationship between C fixation rates and environmental parameters, estimated by forward stepwise regression. 
Independent variables are from the daily average value of DO, DIC, pH, SRP, NO3

- and NH4
+. SE is standard error. Dates for Chl  a-

normalized C fixation rates shown in Figure 8. 

 

Parameters Slope SE Type II SS F P > F   

Intercept -3047.44 1398.97 1.81E+07 4.75 0.04 * 
DIC 8.21 1.60 1.01E+08 26.38 <.0001 *** 
Irradiance 24.15 5.67 6.93E+07 18.14 0.0002 *** 
DO -13.23 4.09 4.00E+07 10.47 0.0031 ** 
SRP 7425.74 3616.94 1.61E+07 4.21 0.0495 * 
N: P ratio 38.71 22.34 1.15E+07 3.00 0.09  
NH4

+ 824.22 621.85 6.71E+06 1.76 0.1957  
NO3

- -191.47 152.65 6.01E+06 1.57 0.2201  
 
Note:  * P≤ 0. 05; ** P≤ 0.01; *** P≤ 0.001 
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Table 4-8  Multiple linear relationship of N2 fixation rates with changes in water column, estimated by forward stepwise regression. 
Independent variables from the daily average value of DO, DIC, pH, SRP, NO3- and NH4+. Date for C- specific N2 fixation rates shown 
in Figure 11. SE is standard error. 

 

Variable Slope SE Type II SS F Pr > F  

Intercept 371.9 159.8 408434 5.4 0.0228 * 
Irradiance 2.2 0.4 1883573 25.0 <.0001 *** 
DO -1.4 0.4 817279 10.8 0.0015 ** 
NO3

- -14.1 4.5 746205 9.9 0.0024 ** 
SRP 599.3 287.8 327131 4.3 0.0409 * 
N: P ratio -1.5 1.2 121748 1.6 0.208   
 
Note:  * P≤ 0. 05; ** P≤ 0.01; *** P≤ 0.001 
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Figures 

 

 

Figure 4-1  Sampling stations in the upper Sassafras River, Maryland, USA. Budds Landing (BL) 
and Drawbridge (DB) are located on the upper river, with BL close to the river head and DB 
slightly downstream from BL.   
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Figure 4-2  The variation in precipitation at Georgetown, Maryland (A) and Chl a concentrations 
(B) at Budds Landing (BL, upstream) and Drawbridge (DB, downstream site)  from early May to 
Mid September in 2010. Data are shown for the bloom stage I, II and III. 
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Figure 4-3  The seasonal patterns of temperature, pH, dissolved oxygen and salinity in the 
Sassafras River. A) the continuous changes at Budds Landing in 2010. Circles represent the daily 
average of the continuous records. The daily maximum and minimum values are indicated with 
solid line and dash lines, respectively (Maryland Department of Natural Resources). B) In situ 
measurements at Budds Landing (solid circles) and Drawbridge (empty circles). Data are shown 
for the bloom stage I, II and III. 
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Figure 4-4  The estimated biomass of phytoplankton at Budds Landing (BL) and Drawbridge 
(DB) in 2010, including non-diazotrophic cyanobacteria (mostly Microcystis sp.) diazotrophic 
cyanobacteria (heterocystous Anabaena sp., unicellular Synechocystis sp., filamentous non-
heterocystous Pseudoanabaena sp.) and eukaryotic phytoplankton. Data are shown for the bloom 
stages I, II and III. 
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Figure 4-5  Weekly or biweekly inorganic nutrient concentrations (NH4
+, NO3

-, SRP) and the 
ratio of dissolved inorganic nitrogen to SRP (DIN: SRP) at Budds Landing (BL) and Drawbridge 
(DB) in 2010. Data presented as the mean ± SE for nutrients during the bloom stage I, II and III. 
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Figure 4-6  Particulate molar ratio of C: N: P at Budds Landing (BL) and Drawbridge (DB) in 
2010. * = missing data. Dotted line= the Redfield ratio. Data are shown for bloom stage I, II and 
III.  
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Figure 4-7  Photosynthesis and N2 fixation rates as a function of irradiance in laboratory 
incubations of samples collected from Budds Landing (BL) and Drawbridge (DB) on June 10, 
2010. 
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Figure 4-8  The mean (± standard deviation) of DIC concentration and carbon fixation rates in 
laboratory incubations of samples from Budds Landing (BL) and Drawbridge (DB). Samples 
were taken during bloom Stage I (on June 11 and June 15), Stage II (on July 16 and August 15), 
and the end of bloom stage III (on September 15).  
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Figure 4-9  Net photosynthetic rate as a function of average DIC concentration at incubation 
irradiances of 62.5, 125, 250 µmol photons m-2 h-1. At DIC concentrations below 540 µmol L-1 
(indicated by vertical line), photosynthetic rates did not increase with irradiance. 
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Figure 4-10  The average of pH and dissolved oxygen (DO) in the laboratory incubations of 
samples from Budds Landing (BL) and Drawbridge (DB).  The bars are pH ± SE; the circles are 
DO ± SE. Data are shown for the bloom stage I, II and III. 
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Figure 4-11  N2 fixation rates of at Budds Landing (BL) and Drawbridge (DB), including 24 hr 
dark and dark-light incubation at irradiance of 125 and 250 µmol photons m-2 h-1. Note difference 
in y-axis scales. Data are shown for the bloom stage I, II and III. 
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Figure 4-12   Contribution of dark N2 fixation to daily N2 fixation at Budds Landing (BL) and 
Drawbridge (DB). Assuming N2 fixation rate in 24 h dark incubation was equal to that in dark 
period at the 24 hr D: L incubation, accumulation of fixed N in the 10 hr dark was compared with 
the daily N fixation in D: L incubation at each light level. Data are shown for the bloom stage I, II 
and III. 

 

 
  



187 

 

Chapter 5  Summary and Conclusions: Factors contribution 

to cyanobacterial blooms in the Sassafras River, 

Maryland 

 

In many years, cyanobacteria cause massive blooms in the tidal-fresh and 

oligohaline region of the upper Sassafras River, which can result in toxic events and 

degradation of water quality (Tango and Butler 2008). In recent decades, diazotrophic 

cyanobacteria dominated blooms have increased in magnitude and have reached 

abundances up to 4.2× 106 cells ml-1 (Fig.1). In order to understand why these 

undesirable blooms occur in estuarine-tidal fresh waters such as the Sassafras River, data 

were assembled on nutrient input and burial, nutrient regeneration through 

biogeochemical recycling, and N2 fixation, as well as on the factors that may control 

cyanobacterial bloom initiation, persistence and termination (Table 1). 

Nutrient loading from watershed 

Eutrophication can strongly influence and sustain harmful cyanobacterial blooms 

in estuarine ecosystems (Kemp et al. 2005; Richardson 1997). Land use in the Sassafras 

River watershed is 59% agricultural, 24% forested and 5% developed (residential and 

industrial) (Sassafras River Association). In the counties around the Sassafras River 

(Kent and Cecil Counties in Maryland, and New Castle County in Delaware), human 

population has increased about 17% (from 46 × 103 to 54 × 103) between 1980 and 2008, 

likely increasing nutrient loading. However, the most dramatic increase in a potential 
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source of nutrient loading has been in chicken growing operations. Total chicken 

inventory and sales increased by 40% from 1997 to 2007 in these counties (National 

Agriculture Association). Estuaries are experiencing nutrient enrichment through land 

runoff, land erosion and waste water input. Based on estimates from modeling of point 

and non-point sources in the Sassafras watershed (Shenk and Boynton, results of 

Chesapeake Bay Watershed model), the yearly loading rate of total nitrogen (N) and total 

phosphate (P) has increased 2-3 fold and 3-4 fold, respectively, during 1985 to 2005 (Fig. 

2). Similar increases in nutrient loading are reported for other Chesapeake Bay tributaries 

including the Potomac River,  Choptank River and Patuxent River (Boynton et al. 1995; 

Fisher et al. 2006a; Testa et al. 2008).  

Hydrological influences  

In the Sassafras River, flow rates decline from winter-spring to summer-fall and 

are positively related to DIN and DIP input (Fig. 3). Paerl (2008) has suggested that 

elevated winter-spring rainfall and flushing events followed by prolonged summer 

droughts might promote cyanobacterial blooms in estuaries. Winter-spring rainfall would 

tend to increase nutrient availability for bloom initiation. During prolonged droughts, 

cyanobacteria may out-compete eukaryotic algae because they may be better at recycling 

and retaining nutrients.  In addition, the long water residence times during droughts may 

favor relatively slow growing cyanobacterial species. 

 We found that in summer, flow has a negative effect on cyanobacterial 

abundance in the upper Sassafras River (Fig. 4), which is similar to the Potomac River 

and other estuaries (Bennett et al. 1986). Cell densities of cyanobacteria were 5-10 times 

higher during the dry years (2002 and 2005) than the wet years (2003 and 2004, Fig. 8A). 
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Moreover, diazotrophic cyanobacteria accounted for 70-98% of the cyanobacterial 

abundance when the monthly average river flow was below 2 m3 s-1 in summer; while < 

10% of the cyanobacteria were  diazotrophic  in the summer of 2003, a wet, stormy year 

(Fig. 8B). Soluble N input from fields into the river may be reduced in summer due to 

nutrient uptake with crop growth  and evaporation that usually exceeds rainfall (Fisher et 

al. 2006a). Particularly during drought, the constant input of sewage effluent with low N : 

P ratio (5-8) may cause N limitation (Staver et al. 1996). Intense precipitation, which is 

usually consistent with increased river discharge, may bring more nutrients into the water 

(Bennett et al. 1986).  However, rapid river discharge increases turbidity and decreases 

light penetration in the water column due to resuspension and higher input of terrestrially 

derived particulates, potentially decreasing the growth rate of cyanobacteria.  Rising flow 

rates also decrease the residence time of water; if residence times are lower than the 

growth rate of cyanobacteria, cyanobacterial populations will decrease.  Accumulated 

cyanobacteria colonies in the water may be flushed from the system.  This scenario 

suggests that although high flow delivers more nutrients, it might still discourage bloom 

formation (Paerl 2008). 

The seasonal increase in nutrient release from sediments and N2 fixation are 

important for supporting massive blooms.  From spring to summer, nutrient loading rates 

declined from 1.5 to 0.5 mmol m-2 d-1 of DIN and 0.8 to 0.2 mmol m-2 d-1 of DIP (Fig. 5). 

In contrast, release of NH4
+ and SRP from sediment increased in the same time frame 

(Fig. 7). In summer, sediment fluxes of DIN and SRP provide 5-20 times more N and 2-9 

times more P than nutrient loading from land to the estuary. In addition, N2 fixation may 

be important to meet the nitrogen demand of phytoplankton in N limited conditions. 
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Sediment N and P burial in the Sassafras River estuary  

We took sediment cores in the upper Sassafras River to estimate sedimentation 

rates and nutrient burial in the sediments (Fig. 6). Based on radiometric 210Pb 

geochronology dating techniques (Armentano and Woodwell 1975b), sedimentation rates 

were calculated with the mass accumulation amounts at depth and a modified equation 

for the first- order decay in sediment  (Robbins et al. 1978). The estimated sedimentation 

rate (1.5 kg m-2 y-1) in the upper Sassafras River was similar to those obtained from for 

cores from other tidal fresh regions of Chesapeake Bay, such as the rates of 2.9-4.4 kg m-

2 y-1 in the Patuxent River (Harttzell, 2009), 1.8-8.4 kg m-2 y-1 for the subtidal region in 

the Corsica River (Palinkas and Cornwell, in press), and 1-3 kg m-2 y-1 in the main 

channel of the upper Chesapeake Bay (Cooper and Brush 1993; Cornwell et al. 1996). 

Based on the N and P content of sediments integrated over  the last  30 years (top ~10 cm 

sediment) in the Sassafras River cores, N and P burial rates are 1.8 and 6.6 g m-2 y-1, 

respectively. These results are close to the nutrient burial rates in the tidal-fresh and sub-

tidal regions in the Patuxent River and Corsica River (Hartzell et al. 2010; Merrill 1999). 

Sediments trapped a substantial fraction of nutrients entering the Sassafras River. 

During 1985-2005, the input of TN from point and diffusive sources averaged 10.9 g N 

m-2 y-1, and ranged from 5.8-15 g N m-2 y-1.  Meanwhile, TP input varied from 0.2 to 2.2 

g P m-2 y-1 with a mean of 0.86 g P m-2 y-1. Assuming the atmospheric deposition in this 

river is similar to that of the Choptank River, which is coved with 65% of agriculture, 

forest and 6% urban, direct atmospheric deposition were 0.16 g N m-2 y-1and 1.1 g P m-2 

y-1 for the watershed (Fisher et al. 2006b). Therefore, approximately 50% of TN 

delivered from the watershed and atmospheric deposition was temporarily sequestered in 
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sediment; TP retention in sediments accounted for 80% - 200 % of external nutrient 

High P storage efficiency has been suggested by a whole Chesapeake mass balance 

(Boynton 1995).  

Although the whole watershed model estimation of nutrient loading might differ 

from the ‘real’ input in our study region, the N and P retention in sediments reasonably 

reflects nutrient accumulation and regeneration. In agriculturally dominated regions, 

application of fertilizer to soils may enrich soil P content, and enhance particulate P input 

though bank erosion, rain events and land runoff (Fisher et al. 2006a). Phosphorus input, 

mainly as particulate form, may be deposited in sediments, especially during periods of 

low river discharge. In contrast to P, the dominant input of N is dissolved N, which may 

be directly taken up by phytoplankton or flushed downstream.  In addition, N regenerated 

from particulate decomposition in sediments has a high turnover rate due to ammonium 

release, nitrification and denitrification (Kemp and Boynton 1984; Vouve et al. 2000). In 

contrast, P release is usually hindered by re-adsorption and co-precipitation with iron 

oxides in surface sediment under aerobic water. Once triggered by the suitable conditions 

(e.g. temperature, redox condition, and pH), the efflux of N and P from sediments can 

support primary production in the water column.  

Contribution of sediment nutrient flux and N2 fixation in supporting 

cyanobacteria blooms 

Nutrient release from sediments and N2 fixation might support most of N and P 

demand by summer cyanobacterial blooms (Table 3). In situ primary productivity and N2 

fixation were measured every 2-4 hours for 24 hours at Budds Landing (BL) during a 

massive cyanobacterial bloom in July 30, 2010.  Daily rates of primary production and N2 
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fixation were measured, and integrated with depth and incubation time in the field. The N 

demand and fixed N through nitrogenase activity were estimated from net primary 

production with a ratio of 106C : 16N, and N2 fixation estimated from nitrogenase 

activity (Carpenter and Price 1977). N2 fixation is estimated to have contributed 3.3 

mmol N m-2 d-1 and to have accounted for 21% of the N supply for cyanobacterial growth 

on this date (Table 3B and Fig. 8).     

Flux measurements within the bloom zone suggest that dissolved nutrient fluxes 

from sediment into the water might support a substantial fraction of primary production. 

In sediments taken near station Budds Landing, net DIN release was 8.3 mmol m-2 d-1 in 

July and 11.4 mmol m-2 d-1 in early August, 2010. SRP release from Budds Landing was 

0.2 to 0.9 mmol m-2 d-1 from July to August (Fig. 7). If we disregard soluble nutrient 

transport downriver, release from sediment may contribute 52% to 72% of N and 20% to 

91% of P needed to support summer cyanobacterial bloom nutrient demand (Fig. 8).  

Factors influencing sediment nutrient regeneration 

Several environmental factors may favor sediment nutrient regeneration and 

release of nutrients to the water column (Tab. 2).  Rising temperatures increase the 

efficiency of bacterially mediated decomposition of organic matter,  and thus enhance 

remineralization of  N and P as well as their release into water (Cowan and Boynton 

1996; Kim et al. 2006). The temperature coefficient (Q10) reflects the change in rates as a 

consequence of increasing temperature by 10 °C. The estimated Q10 in the Sassafras 

River is 2.3 for SRP, 1.47 for NH4
+, 1.3 for SOD and 1.5 for CO2. 

Benthic and pelagic processes in shallow water estuaries are tightly coupled with 

organic matter production in the water-column, fueling sediment nutrient recycling 



193 

 

(Cowan and Boynton 1996). Partly due to the low freshwater discharge, sediments within 

the bloom region received higher deposition of phytodetritus than sediments further 

downstream, where cyanobacteria density was generally low.  

Both experimental and field observations suggest that photosynthesis-driven pH 

elevation impacts nutrient exchange at the sediment-water interface. During dense 

cyanobacterial blooms, high pH is maintained for several weeks in the shallow waters of 

the upper Sassafras River (www.eyesonthebay.com), allowing progressive pH 

penetration into the sediment. In the N-rich sediment of a tidal fresh estuary (Kithome et 

al. 1998), conversion of NH4
+ to NH3 as pH increases results in desorption of 

exchangeable ammonium, increased ammonium concentrations in the pore water, vertical 

gradients of both NH4
+ and NH3, and increased  ammonium flux rates. The high NH4

+ 

flux rates in the bloom areas compared to that outside the bloom (Fig. 7) might be 

attributable to the high labile organic matter input and high pH in the bloom area (Newell 

et al. 2009).   

 Nitrification can be inhibited by the toxic effects of NH3 and high pH in the thin 

oxic layer ~ 2 mm of sediments; inhibition can occur once the water column pH is above 

the optimal range of 6.5-8.5 of nitrification (Anthonisen et al. 1976; Cuhel et al. 2010). 

Bloom induced changes in biogeochemical processes can limit the supply of NO3
- for 

denitrification, either from nitrification or diffusion from the overlying water. The 

combined toxic effects of pH and NH3 can reduce the activity of denitrifying bacteria and 

thus NO3
- availability (Park et al. 2010). 

 Photosynthesis and dark respiration by cyanobacteria can result in great 

variability in environmental conditions during the diel cycle that affect biogeochemical 
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processes. As a consequence of oxygen penetration from the overlying water into 

sediment, the redox boundary layer may move up in light and downward in dark, which 

may result in a decline in denitrification with bloom development (Fig. 7). The elevated 

pH and DO fluctuations during blooms favor the remineralization of N through benthic 

NH4
+ release, rather than loss of N from the system, and thus provide bioavailable N in 

the N-limited bloom water.  

In addition, elevated pH (> 9) triggers massive P release from Fe-bonded P 

compounds, which are usually preserved due to particulate precipitation and re-

adsorptions of soluble P at the oxic sediment surface.  In experimental core incubations, 

as the pH increased from neutral to 9.5, SRP flux rates dramatically increased by 5-10 

fold. Unlike the constant pH conditions used in the laboratory simulations, the pH in 

sediments may change with the diel changes of pH in the overlying water. High pH 

effects on SRP fluxes from sediments were only found when high pH in the water 

column persisted for days during the massive bloom in summer.  The high pH kept 

moving downward into sediment, leading to further desorption of P and continued SRP 

release from sediment into the water column.  The maximum SRP flux rates were 23.7 ± 

4.3 and 42.5 ±5.2 µmol m-2 h-1 at sites 1A and 1B, respectively, during the high pH 

period. Ratios of DIN: SRP flux rates during the high pH period were generally < 16 (the 

Redfield Ratio). Relative to DIN flux, high SRP tends to favor the diazotrophic 

cyanobacterial blooms.  

Factors influencing N2 fixation rates 

Although cyanobacteria may take advantage of N2 fixation when DIN supply  is 

insufficient during summer (Capone et al. 2005), N2 fixation rates varied greatly both 
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spatially and temporally during our multiple year investigation. Dissolved nutrient 

concentrations and N to P ratios in estuaries are more influenced by land input and 

episodic rain events than these parameters in oceanic waters, which lead to more complex 

changes in N2 fixing activity in estuaries than in the ocean.  However, a number of 

environmental factors have a predictable influence on the diazotrophic response to N 

deficiency (Table 2). The biomass of N2-fixing cyanobacteria and nitrogenase activity in 

2010 generally increased from spring to summer, which was partly due to rising 

temperature and decrease in N: P ratios in the water.  

Increases in irradiance can promote both C and N fixation as cyanobacterial 

blooms develop. Once cyanobacteria become dense enough to cause unusually high pH 

and DO in a tidal freshwater estuary, limitation of DIC (in the available form of CO2 and 

HCO3
-) may inhibit carbon uptake and subsequently reduce N fixation rates; oxygenic 

photosynthesis may also inhibit nitrogenase activity. N2-fixation rates were generally low 

in high pH /DO water during 2010 blooms. However, cyanobacteria tended to adapt to 

high pH and DO by changes in species composition which appeared to be related to their 

diel pattern of nitrogenase activity. Unicellular Synechococcus was usually in lower 

biomass than Anabaena and Pseudanabaena spp., but in the dark, it is estimated that it 

could contribute 60 – 80% of the total daily N-fixation.  However, limited SRP and the 

high pH-induced trace metal (e.g. Fe, Mo) precipitation may constrain N2 fixation due to 

a greater demand for these elements by N2-fixers. In early autumn, the gradual increase in 

salinity, reduction in water temperature and decrease in daily irradiance probably 

contributed to the termination of the cyanobacterial bloom.  
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Advantages of cyanobacteria over eukaryotic phytoplankton  

Cyanobacteria are more competitive than most eukaryotic phytoplankton when 

high pH causes limitation of inorganic carbon (Mogelhoj et al. 2006). Cyanobacteria can 

take up HCO3
- to provide CO2 for photosynthesis through an efficient carbon 

concentration mechanism (CCM) that elevates the concentration of CO2 around Rubisco 

and increases enzyme activity (Badger et al. 2006; Kaplan et al. 1980). Gas-vacuolated 

cyanobacteria, Microcystis, Anabaena and Pseudanabaena, can carry out vertical 

migration to the surface layer where the higher irradiance and dissolved CO2 may support 

a high rate of photosynthesis (Klemer et al. 1996; Walsby et al. 1997). Thus, CCM and 

buoyancy can help cyanobacteria survive and continue to take up inorganic C at higher 

pH levels than most phytoplankton, and thus allows them to maintain high pH in the 

water column and promote nutrient release in shallow water estuaries.  

Cyanobacteria may be relatively resistant to grazing by zooplankton and other 

small grazers, which may potentially increase the chance for cyanobacteria to outcompete 

other phytoplankton in the community (Buskey 2008; Lampert 1987).  Lampert (1987) 

suggested that large colonies of Aphanizomenon, Anabaena and Microcystis were hard to 

handle by zooplankton. Cyanobacterial toxins provide another positive feedback for their 

growth by reducing the filtration, growth, reproduction and survival of zooplankton 

(Thostrup and Christoffersen 1999). High pH ( > 9.5) causes death of most 

protozooplankton and pH > 9 reduces the biomass of heterotrophic protists in estuarine 

and coastal waters (Pedersen and Hansen 2003). Thus, high pH driven by photosynthesis 

of cyanobacterial assemblages may reduce mortality of cyanobacteria due to grazing. 
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Some studies suggest a linkage between the persistence of cyanobacteria blooms 

in certain areas and storage of “seed” populations of cyanobacteria and polyphosphates in 

sediment.  Some species of cyanobacteria (e.g. Microcystis) that help form summer 

blooms can survive overwinter in the sediment as vegetative cells, rather than forming 

special akinetes (Brunberg and Bostrom 1992). In spring, when conditions are suitable 

for cyanobacterial growth, recruitment can occur from this benthic ‘seed’ population.  

Polyphosphates stored by cyanobacteria (e.g. Synechocystis spp., Synechococcus spp.) 

under P sufficient conditions may help them to survive under P deficiency (Grillo and 

Gibson 1979; Lawerence et al. 1998). When cyanobacteria containing polyphosphates 

settle to the bottom in oxic waters, polyphosphates are found at the sediment surface 

which may then influence P release from sediment (Sannigrahi and Ingall 2005). 

Conclusions 

 Increased inputs of nutrients from land and low N: P ratios in the water column, 

combined with high winter-spring flow and summer drought, can create conditions that 

favor cyanobacterial blooms in shallow fresh-oligohaline tidal waters.  Once established, 

cyanobacterial blooms “bioengineer’ the ecosystem to support their persistence and 

growth during the warm season. Most notably, this includes sustained increases in water 

column pH, which in shallow waters cause changes in sediment biogeochemistry that 

result in increased nutrient fluxes from the sediments into the water column, thus 

supporting the bloom.  The high pH may also inhibit competitors and grazers on the 

cyanobacteria.  In addition to the pH-driven effects on nutrient biogeochemistry and 

community ecology, cyanobacteria increase N availability through N2-fixation and 

inhibition of denitrification.  This can result in changes in the estuarine ecosystem that 
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favor eutrophication, retention of nutrients, and persistent and recurrent cyanobacterial 

blooms.  
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Tables  

Table 5.1 Data on cyanobacterial bloom, nutrient inputs and biogeochemical processes in the Sassafras River. 
 

  

General description Location Time Measurement 
frequency 

Source 

Nutrient land 
input 

Includes diffuse TN,TP, TIN and 
TIP loads from all point and non-
point sources in the basin  

The whole 
Sassafras River 1985-2005 monthly 

Bay program HSPG 
model (Hank and 
Boynton 2009) 

Burial rates and 
sedimentation 

Mass accumulation of C, N and P; 
210Pb dating technique in the top 
100 cm sediment 

The upper river June 2009 1  

Nutrient conc. 
Dissolved nutrient concentrations 
of NH4

+, NO3
-, and SRP in water 

column 
Budds Landing 2007-2009 bi-week or 

monthly 
Chesapeake Bay 
Program 

Cell conc. Species composition and 
abundance of phytoplankton, 
including cyanobacteria   

Budds Landing 2007-2009 monthly 
Maryland DNR  

  Drawbridge 2000-2009   

pH and DO  
Continuous monitoring of pH, DO, 
salinity, temperature in water 
column 

Budds Landing 2006-2010 
Continuous 
April to 
October  

eyesonthebay.net 
(Maryland DNR) 

Primary 
production and N2 
fixation  

The diel measurement of the 
vertical changes in primary 
productivity and N2 fixation  

Budds Landing July 30, 2010 One time Field incubation  

 

Note: sediment releases were measured in Chapter 3; atmospheric deposition rates were estimation in Choptank River (Fisher 
2010), a similar estuary in the Chesapeake Bay.    
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Table 5.2 Positive (+) and negative (-) effects of environmental factors in water column on N2 fixation by cyanobacteria and nutrient 
release from sediment into the water column.  
 

  Temperature Light pH DO NH4
+ NO3

- SRP N: P 
N2 fixation + + - - - - + - 

Nutrient exchange at sediment-water interface           

NH4
+ flux + - + ? 

NO3
- flux - + - + 

N2 flux + - - - 
SRP flux + - + -         
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Table 5.3 Net primary production (A, N=3) and N2 fixation (B, N=-3) incubations at Budds Landing (BL). Water samples were taken from 
the surface 0.1 - 0.2 m and incubated at depths of 0.1, 0.3, 0.5 and 1 m in July 30, 2010. The 1.0 m incubation is close to the bottom. 
Primary production was calculated from the difference of oxygen production between the light and dark bottles. N2 fixation was measured 
by acetylene reduction.  

 
        Mean of net primary production 

Stand Error 
Adjusted 
ΔT(h) 

Net PP 

 A) Incubation (µmmol O2 L-1 h-1) (µmmol O2 m-2 h-1) 
Time ΔT  

Initial End  (h) 0-0.2m 0.2-0.4m 0.4-0.6m >0.6m 0-0.2m 0.2-0.4m 0.4-0.6m >0.6m   
T1 8:10 10:05 1.9 108.0 34.3 43.8 31.4 12.7 0.4 2.19 0.4 1.92 2159.3 
T2 9:35 11:10 1.6 187.9 158.7 104.0 -2.7 7.0 5.2 5.20 1.4 1.08 28053.9 
T3 10:50 14:15 3.4 120.5 60.9 84.1 65.3 7.9 0.4 4.21 0.1 3.08 2409.1 
T4 14:15 17:00 2.8 149.5 109.5 117.6 66.9 7.5 1.4 5.88 50.1 2.75 20667.4 
T5 17:30 20:50 3.3 7.9 7.9 -3.9 -13.8 2.9 2.9 0.20 2.8 3.83 315.5 
T6 17:30 5:10 11.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.5 8.33 0.0 
T7 6:00 8:30 2.5 33.3 20.0 24.2 16.2 1.0 3.1 1.21 1.5 3.33 1550.5 
T8 8:15 11:05 2.8 65.9 12.6 14.1 0.0 8.6 0.3 0.71 0.2 

Total of net primary production (µmmol O2 L-1 d-1)   105171.3 
 

Note: Adjusted ΔT is calculated from the difference of the initial to the end incubation for T1 and from the ending point of adjacent 
incubation for rest of time periods.   
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        Mean of N2 fixation rates 

Stand Error 
Adjusted 
ΔT (h) 

∑N2 fixation  

 B) Incubation (µmmol N2-N L-1 h-1) (µmmol N2 -N m-2 h-1) 
Time ΔT  

Initial End  (h) 0-0.2m 0.2-0.4m 0.4-0.6m >0.6m 0-0.2m 0.2-0.4m 0.4-0.6m >0.6m   
T1 8:10 10:05 1.9 4.25  2.68  2.48  1.43  0.1 0.0 0.02 0.0 1.92 289.1 
T2 9:35 11:10 1.6 6.19  4.79  5.54  ‐0.78  0.1 0.0 0.07 0.0 1.08 190.6 
T3 10:50 14:15 3.4 2.37  1.70  3.95  0.02  0.0 0.0 0.04 0.0 3.08 138.2 
T4 14:15 17:00 2.8 0.49  1.58  3.52  0.02  0.0 0.0 0.02 0.0 2.75 109.3 
T5 17:30 20:50 3.3 0.04  0.04  0.04  0.04  0.0 0.0 0.05 0.0 3.83 6.4 
T6 17:30 5:10 11.7 0.80  0.93  0.51  0.39  0.1 0.1 0.06 0.1 8.33 76.1 
T7 6:00 8:30 2.5 4.92  5.04  2.58  0.04  0.1 0.0 0.01 3.33 206.1 
T8 8:15 11:05 2.8 5.02  5.85  3.18  0.03  0.0 0.0 0.01 0.0   

N2-N fixation rates (µmmol N2 -N L-1 d-1)   3352.9 
 
Note: Adjusted ΔT is calculated from the difference of the initial to the end incubation for T1 and from the ending point of adjacent 
incubation for rest of time periods.   
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Figures 

 

Figure 5-1   Cyanobacterial blooms of Drawbridge (DB) and Budds Landing (BL) in the upper 
Sassafras River, a tributary of Chesapeake Bay.  Data shown are from Maryland Department of 
Natural Resource (Butler and Michael). Note: changes in y-axis scale between the two sites. 
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Figure 5-2  Annual maximum cell density of N2-fixing cyanobacteria at two stations on the upper 
Sassafras River: Drawbridge (DB, 2000 – 2010) and Budds Landing (BL, 2007 – 2010) (MD 
DNR and our samples in 2009 – 2010). 
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Figure 5-3 The relationship of nutrient loading and river flow. The linear regression coefficient 
(K) are 252.2 for TN(P < 0.001; R2 = 0.87), 116.4 for DIN (P < 0.001; R2 = 0.69), 26.9 for TP (P 
< 0.001; R2 = 0.84) and 22.8 for DIP (P < 0.001; R2 = 0.82). The monthly average of nutrient 
inputs include non-point and point source release into this tidal-fresh water estuarine system 
(model results from Dr. Walter Boynton, UMCES, CBL). 
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Figure 5-4  Flow rate effects on cyanobacterial abundance (A) and the percentage of diazotrophic 
cyanobacteria of total cyanobacteria (B). The flow rates are the mean of monthly river flow 
during June to September in 2000-2005. The maximum cyanobacteria cell concentration (y1) 
during summer is functional related to flow rates (y1 = 5.16+1.42/x, R2 = 0.69, P = 0.12); % of 
diazotrophic cyanobacteria is calculated from the fraction of diazotrophic cyanobacteria in total 
phytoplankton community when blooms had the highest density.   The proportion of N2 fixer (y2) 
is negatively related to flow rates as a function of y2 = 1.21 - 0.18 x (R2 = 0.90, P = 0.014). 
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Figure 5-5  Mean of monthly input of DIN and DIP from the point source and nonpoint diffusion 
into the Sassafras River. The data shown are the average monthly inputs in 2000-2005, excluding 
the wet years, 2003 and 2004.  
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Figure 5-6  The balance between nutrient input from land use and burial rate into the upper 
Sassafras River. The rates of input and burial are g m-2 y-1. A one meter sediment core was taken 
at the upper Sassafras River (39°22.310', 75°50.380') in June 2009. After section into intervals of 
2.0 cm at the top 20cm, of 5.0 cm at 30-60 cm depth, and of 10.0 cm until to the end, sediment 
samples were analyzed using a sequential extraction technique for 210 Pb (T1/2=22.3 yr) and its 
daughter radionuclide 210Po (T1/2=138 days) (Armentano and Woodwell 1975a). Sediment 
nutrients (C, N and P) were used to quantify burial rates in recent 100 year scale (Nittrouer et al. 
1979).   

Water column transformation and 
exportation 

Nutrient Entering from watershed 

TP=0.86 
(0.22‐2.2) 

TN=11 

(5.9‐15.3) 

TP =1.8 TN=6.6 

Burial rates in sediment 
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Figure 5-7  Nutrient release (+) and loss (-) to the shallow water column from sediment due to 
biogeochemical processes within and outside of bloom area during June to September 2010.  Data 
shown are from the seasonal investigation in SR_2 and SR_5 (Chap 4). 
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Figure 5-8  The summary of mass balance for SRP and DIN demands by a cyanobacterial bloom, 
accounting from benthic nutrient fluxes and N2 fixation. The rates of nutrient demands were 
estimated from cyanobacterial C uptake (Table 5.3) based on N: P  Redfield ratio. N2 fixation 
rates and nutrient release from sediments were integrated from the field investigation on June 30, 
2010 (Table 5.3) and average flux rates within bloom zone in July and August (Figure 5.7), 
respectively.   
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