
ABSTRACT

Title of thesis: TIMING ATTACKS
ON CRYPTOSYSTEMS:
18 YEARS LATER

Clarice Glowacki, Master of Arts, 2014

Thesis directed by: Professor Lawrence Washington
Department of Mathematics

This work applies methodology for cryptosystem timing attacks to elliptic

curve encryption using parametric coordinates. Additionally, we attempt to repli-

cate the results found by Paul Kocher regarding timing attacks on RSA cryptosys-

tems. Multiple implementations including Sage, MuPAD, Mathematica, and Python

are attempted. Viability of timing attacks with modern computing power is assessed.

TIMING ATTACKS ON CRYPTOSYSTEMS:
18 YEARS LATER

by

Clarice Megan Dziak Glowacki

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Arts

2014

Advisory Committee:
Dr. Lawrence Washington, Chair/Advisor
Dr. Jonathan Rosenberg
Dr. James Schafer

c© Copyright by
Clarice Megan Dziak Glowacki

2014

Table of Contents

1 1
1.1 Background . 1

1.1.1 Elliptic Curve Encryption . 2
1.1.2 RSA Encryption . 3
1.1.3 Timing Attacks . 3

2 6
2.1 Attempted Methods . 6

2.1.1 Elliptic Curve Attack . 6
2.1.1.1 Sage . 6
2.1.1.2 MuPAD . 11
2.1.1.3 Mathematica . 14

2.1.2 RSA Attack . 17
2.1.2.1 Python . 17

3 23
3.1 Computing Power . 23

4 25
4.1 Conclusions . 25

A Sage Files 26
A.1 SageCode . 26

B MuPAD Files 31
B.1 ellcurve.mu . 31
B.2 TimeMuPAD.mn . 32

C Mathematica Files 37
C.1 EllipticCurve.m . 37
C.2 ErrorAnalysis.nb . 39

ii

D Python Files 40
D.1 DataAnalysis.py . 40
D.2 ExponLengthVStdDev.py . 41
D.3 RSATimeAttack.py . 42

Bibliography 45

iii

Chapter 1:

1.1 Background

In 1996 Kocher [1] showed that given certain timing information, it was pos-

sible to determine the secret decryption exponent used in RSA encryptions. His

method required knowledge of approximately 250 ciphertexts, the amount of CPU

time used to decrypt the ciphertexts with the secret exponent, and the public mod-

ulus n. When the first k bits of the secret exponent were known, Kocher’s data

showed that with 85% accuracy, he could guess the next bit in in the secret expo-

nent. Since then, much effort has been made to counteract timing attacks on RSA

encryption, often at the expense of computation time for the user. Kocher’s com-

putations were all completed on a 120-MHz Pentium computer running MSDOS.

CPU speeds have increased in the last 18 years and how a machine processes com-

mands has changed. In addition, elliptic curve encryption has become a preferred

cryptosystem. We want to understand how these changes affect the feasibility of a

timing attack.

1

1.1.1 Elliptic Curve Encryption

Elliptic curve encryption is based on the group law for elliptic curve structures.

Given two points on a curve, when added together, one gets another point on the

curve. However, the addition of points on elliptic curves depends on the points given.

Let E be an elliptic curve defined by y2 = x3+Ax+B and P = (x1, y1), Q = (x2, y2)

be points on the curve. Then P + Q = R = (x3, y3) for projective coordinates is

defined as:

1. If x1 6= x2, then

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1, where m = y2−y1
x2−x1

2. If x1 = x2, but y1 6= y2, then P +Q =∞

3. If P = Q and y1 6= 0, then

x3 = m2 − 2x1, y3 = m(x1 − x3)− y1, where m =
3x2

1+A

2y1

4. If P = Q and y1 = 0, then P +Q =∞

Additionally, P +∞ = P for all points P on E.

Elliptic curve encryption involves the use of a single point P on an elliptic

curve and a secret “exponent” n. To encrypt, one computes nP which is done most

efficiently through the use of a double and add system. Let n with length w be

given by the binary representation b1b2 . . . bw. We may assume that b1 = 1 and n is

read left to right in the intuitive way. We follow this procedure:

1. Let k = 1, and S1 = 0.

2

2. If bk = 1, let Rk = Sk + P . If bk = 0, let Rk = Sk.

3. Let Sk+1 = Rk +Rk.

4. If k = w, stop, If k < w, increment k and return to step 2.

Notice that Sk + P is only computed if bk = 1, but in both cases, 2Rk is found.

1.1.2 RSA Encryption

In Kocher’s paper, he outlines the use of RSA timing attacks. To decrypt a

ciphertext y using RSA, one computes yd mod n where d is a secret decryption key

and n is the public product of two secret primes denoted p, q. The above steps are

modified as follows:

1. Let k = 1, and s1 = 1.

2. If bk = 1, let rk = sky mod n. If bk = 0, let rk = sk.

3. Let sk+1 = r2k mod n.

4. If k = w, stop, If k < w, increment k and return to step 2.

Here, similar to above, sky is only computed if bk = 1 and in both cases, r2k is found.

1.1.3 Timing Attacks

For both elliptic curve and RSA encryption, a timing attack is based on the

assumption that a bit’s value changes the amount of time it takes for a computer

to complete steps 2 and 3. The theory, described by Kocher in [1], is also the same

3

for both encryption methods. From statistics, we know that if two processes are

independent, the sum of their variances is the same as the variance of their sum.

Thus if total time t = t′ + t′′ then V ar({t}) = V ar({t′}) + V ar({t′′}).

For exposition purposes, we will write the group law additively (as in the

elliptic curve case). Assume that eavesdropper Eve knows the plaintexts Yi and the

total amount of time it takes to compute nYi. Assume that she also knows bits

b1 . . . bk−1 of the coefficient n. Since Eve knows each Yi, and the hardware being

used, she can time how long it takes to compute R1, . . . Rk−1 in the above algorithm

for each Yi and then subtract to determine how long it takes to find Rk, . . . Rw. Call

this time ti for each Yi.

Eve wants to know if bk = 1 or bk = 0. As mentioned above, if bk = 1 then

Sk + P is computed. If bk = 0 this addition is not performed. Let t′i be the amount

of time it takes to do this addition step and let t′′i = ti − t′i. Effectively, t′′i is the

amount of time it takes to do everything after the supposed addition. Note that at

this point, Eve does not know whether or not the addition occurs. However, she may

assume that it does, time the computation and then find V ar({ti}) and V ar({t′′i }).

If the addition does occur, then we may assume that t′i and t′′i are independent times

and therefore

V ar({ti}) ≈ V ar({t′i}) + V ar({t′′i }) > V ar({t′′i }). (1.1)

If the addition does not occur, then t′i is not part of the actual computations done

so ti and t′i are independent and

V ar({t′′i }) ≈ V ar({ti}) + V ar({−t′i}) > V ar({ti}). (1.2)

4

Thus, Eve need only check which variance is larger, V ar({ti}) or V ar({t′′i })

5

Chapter 2:

2.1 Attempted Methods

For all of the following implementations, except for Sage, computations were

performed on a 2.93 GHz Intel Core 2 Duo CPU running a 64-bit Windows OS.

Sage computations were performed on a Linux virtual machine.

2.1.1 Elliptic Curve Attack

2.1.1.1 Sage

We first used Sage because of its existing elliptic curve infrastructure. The

code used in Sage can be found in Appendix A. The elliptic curve used is the

NIST-521 curve with parameters (in Sage):

• p = 2521 − 1

• A = p− 3

• B = 10938490380737342745111123907668055699362075989516837489945863944

959531161507350160137087375737596232485921322967063133094384525

31591012912142327488478985984

6

Figure 1 shows a histogram of 500 elliptic curve multiplications. The x-axis gives the

total time observed to compute nP and the y-axis shows the frequency of an observed

time. The same random 160-bit integer was used for the coefficient and the 500

points were found using Sage’s E.random point() function. For timing, the built-

in cputime() function was called. The data in Figure 1 have a mean of 0.01953702s

and a standard deviation of 0.0051370s. Similar to Kocher’s observations, the data

shows a rough bell curve. While we were unable to exactly determine the resolution

of the cputime() function, based on the times observed, we assume that it is no

better than the nearest microsecond, but possibly worse. This is reflected in the

gaps between bars on the histogram as some times were not observed.

To determine the stability of a given computation time, we repeated the mul-

tiplication nP with the same 160-bit n 30 times for each P and observed the time.

The standard deviation of the 30 measured times was computed. Figure 2 shows a

histogram of this data. The x-axis gives the standard deviation and the y-axis shows

the number of points for which a standard deviation was observed. Most points had

a standard deviation of less than 4ms, indicating reasonable stability.

Next, we measured the time to compute nP for a single P and 500 choices for

n to understand how measurements would vary for different 160-bit integers. Figure

3 shows a histogram of the results. In this graph the x-axis gives the total time to

computte nP and the y-axis shows the number of coefficients n for which the total

time was observed. We see a rough variation in the data, but also the same problem

as in Figure 1 with some intermediate times not observed.

7

Figure 1: Elliptic Curve Multiplication Times, Sage

Figure 2: Standard Deviations for Elliptic Curve Multiplication Times, Sage

8

Figure 3: Elliptic Curve Multiplication Times for 500 160-bit Coefficients, Sage

When the timing attack was attempted, it was not successful. First, we used

a small coefficient n = 57 = 1110012 thinking that a small coefficient is similar to

knowing only a couple of bits of large exponent. We assumed that 5 bits were known

and set n = 110012. In 100 repetitions of the attack guessing only 1 bit, the correct

bit was guessed 45 times and incorrect bit 55 times for 45% accuracy. Next, we used

a large, 160-bit coefficient with 159 bits assumed known. In 100 repetitions of the

attack guessing only 1 bit, the correct bit was guessed 51 times and the incorrect

bit 49 times for 51% accuracy. In both cases, time measurements from 500 random

elliptic curve points were used to compute the variances. Note that this is double

the number of inputs that Kocher used.

The timing attack theory says that when an incorrect bit is guessed, we should

see larger variances than prior to the incorrect guess. We tested the attack with

80 of 160 bits known and observed the results and variances. Table 2.1 shows the

9

results of 5 repetitions of the attack. Column 1 gives the bit at which an incorrect

guess was made, column 2 gives the variances observed at the incorrectly guessed

bit, and column 3 gives the variances observed at the end of the attack. The two

variances which are compared in the theory are listed V ar(t′′) first and V ar(t)

underneath. The variances observed at the end of the attack are nearly double the

variances observed at the incorrect bit. However, this increase is very gradual, not

the expected spike. Variances that are less than or equal to the variances at the

incorrect bit were seen at least 10 bits later in each test.

Bit Variances at bit Variances at bit 160

81 1.3814080989096613e-05 2.026191450093075e-05
1.3873913853961377e-05 2.0191891613147683e-05

81 1.8148831897157328e-05 2.524744423186938e-05
1.728345749229817e-05 2.4314313284479428e-05

82 1.712263188382494e-05 1.9198801907495903e-05
1.434403782944255e-05 2.1434962315087e-05

82 1.3683165155011767e-05 1.7723214643276426e-05
1.1890501679049207e-05 1.949544140933549e-05

81 1.4712336205836341e-05 2.373369625073616e-05
1.4687941022601642e-05 2.24747658376279e-05

Table 2.1: Changes in Variance After an Incorrect Bit is Guessed During an Elliptic
Curve Timing Attack

Given the above observations, the exact reason that an elliptic curve attack

does not work in Sage is not clear. The data collected are normally distributed

and the timing resolution was expected to be refined enough. Even using a larger

number of points did not successfully yield reasonable accuracy. It is possible that

Sage computes elliptic curve multiplications so quickly and that the code to do so is

significantly optimized as to skew observed time data. In addition, the precision and

resolution of the timer may not be good enough to accurately capture differences in

10

bits.

2.1.1.2 MuPAD

We next attempted to implement the elliptic curve timing attack in Matlab

because of its perceived slowness. Due to the size of the parameters for the NIST-521

curve, Matlab’s symbolic engine MuPAD was used to carry out the elliptic curve

multiplication. The code for these operations was modified from code written by

Dr. Rosenberg found at [2]. The modified code can be found in Appendix B.

First, 500 points on the NIST-521 curve were multiplied by a 160-bit integer.

The computations were timed using MuPAD’s time() function which measures

CPU time in milliseconds. Figure 4 shows a histogram of the times observed. In

this graph, the x-axis gives the total time observed to compute nP and the y-axis

gives the frequency of a measured time. Interestingly, the fractional milliseconds

were always the same for a given whole millisecond. For example, a computation

that took between 78ms and 79ms would always be recorded as 78.0005ms. This

fact can be seen in the large gaps between bars in the histogram. The data shown

in the histogram has a mean of 61.995ms and a standard deviation of 7.478ms. Out

of the 500 points used, only 4 had multiplication time less than 40ms. This analysis

was completed on two sets of timing data and the means differed by approximately

3ms and standard deviations by approximately 2ms. While the observed times in

Figure 4 do appear to have a rough bell shape, such little variation is a concern for

timing attacks.

11

We next wanted to check the stability of timing data with the intent to use

an average time for the attack if necessary. To determine how much timing data

may change from one iteration to the next, we timed 30 repetitions of the same

computation nP for the 500 points and 160-bit integer used earlier. The results

can be seen in Figure 5. Here the x-axis represents the standard deviation of the

30 repetitions, the y-axis counts the number of points for which a given standard

deviation was observed. The data shown in this graph have a mean of 5.2048ms

and have a rough bell shape. In all tests, the first time was larger than all subse-

quent times. It was discovered that Matlab caches computations using a built-in

remember() function. This function saves the results of large computations and is

intended to speed up repeated operations. For that reason, it is not possible to

completely eliminate caching making averaging an ineffective method to guarantee

timing stability.

We also wanted to ensure that for a given point, there would be enough varia-

tion in timing data to distinguish between different 160-bit integers. Figure 6 shows

the observed time for multiplication of a single point with 500 different 160-bit in-

tegers. The x-axis gives the time to compute nP for a single P and 500 different

160-bit n. The y-axis gives the frequency of an observed time. Once again, the

graph shows very little variation. Additionally, all data points counted at one bar

were recorded as exactly the same time.

12

Figure 4: Elliptic Curve Multiplication Times, MuPAD

Figure 5: Standard Deviations for Elliptic Curve Multiplication Times, MuPAD

13

Figure 6: Elliptic Curve Multiplication Times for 500 160-bit Coefficients, MuPAD

When the timing attack was attempted, it did not work. We started with a

small coefficient, n = 57 = 1110012 and bits known. In 50 repetitions, the correct

bit was guessed 13 times and incorrect bit 37 times for 26% accuracy. Then we

attempted a large (160-bit) coefficient with 159 bits known. In 50 repetitions, the

correct bit was guessed 23 times and incorrect bit 27 times for 46% accuracy.

We concluded that while MuPAD may be slow enough, there is not enough

precision in the time measurement and consequently variation to distinguish between

bits.

2.1.1.3 Mathematica

We next chose to try implementing in Mathematica hoping that increased

precision could be obtained. Unfortunately, precision for Mathematica is dependent

14

on the machine used and was only to the nearest millisecond. Using the timing[]

function we timed 500 elliptic curve multiplications with the same 160-bit integer

coefficient.

Figure 7 shows the resulting distribution. In this graph the x-axis represents

the time observed to compute nP and the y-axis shows the frequency of the time

observed. The data in Figure 7 have a mean of .0159s and standard deviation of

.0027s. Similar to the data collected from MuPAD, the Mathematica data showed

a lack of variation. All multiplications counted in the bar at .015s were recorded

as .0156s. Figure 8 shows a histogram of standard deviations for 30 repetitions of

multiplication with the same 160-bit coefficient for each of the 500 points. Nearly 90

points have a standard deviation of 0.0s while most points have a standard deviation

between .002s and .01s.

Additionally, we timed the multiplication of one point with 500 different 160

bit integers. Figure 9 gives a histogram of the results where the x-axis gives total

computation time in seconds and the y-axis shows the number of coefficients n which

took a given time. Nearly all of the points had an observed time of 0.0156s. These

results were not better than those for MuPAD so a timing attack was not attempted

in Mathematica.

The code that obtained these results can be found in Appendix C.

15

Figure 7: Elliptic Curve Multiplication Times, Mathematica

Figure 8: Standard Deviations for Elliptic Curve Multiplication Times, Mathemat-
ica

16

Figure 9: Elliptic Curve Multiplication Times for 500 160-bit Coefficients, Mathe-
matica

2.1.2 RSA Attack

Based on the difficulty in obtaining data which is consistent and varied enough

for the elliptic curve timing attack, we returned to Kocher’s original attack on RSA.

We used RSA-704/212 with parameters

• p = 90912135295978188784406583026004374858926083103283587204285121689

60411528640933367824950788367956756806141

• q = 14385925911004526572780912628442933587789900216762788320091417242

9324360133004116702003240828777970252499.

2.1.2.1 Python

We attempted to implement the RSA attack in Python. The time.perf counter()

function with .3µs resolution was used to measure CPU time spent on computations.

17

Figure 10: Modular Exponentiation Times, Python

Figure 10 shows the histogram of 500 exponentiations using a 254 bit exponent. The

data shown has a mean of 273.1µs and standard deviation of 160µs. Upon repe-

tition, mean total time differed by less than 5µs. and standard deviation by less

than 45µs. Compared to Kocher’s original data, the total time was 3 orders of

magnitude faster. We next checked the stability of timing data by computing the

standard deviation of 30 repetitions of the same computation ye for the 500 points

used above. As can be seen in Figure 11, for most points the standard deviation

was less than 100µs.

We next attempted to complete the timing attack in Python. The code for

this attack can be found in Appendix D. We began with a small exponent d = 57 =

1110012 and 5 bits known, d = 110012, under the assumption that finding a small

exponent would be equivalent to determining the first few bits of a large exponent.

In 50 repetitions of this code, the correct final bit was guessed 25 times with 25

18

Figure 11: Standard Deviations for Modular Exponentiation Times, Python

incorrect guesses for 50% accuracy. Next, we used a large (254-bit) exponent with

253 bits known. In 50 repetitions of the attack, the correct final bit was guessed 20

times with 30 incorrect guesses for 40% accuracy.

In an attempt to determine the reason for such failure, we compared the expo-

nent size and standard deviation of the total time distribution. We used 52 different

exponents of ranging from 20-bit length to 1040-bit length. For each exponent, each

dot in Figure 12 represents the standard deviation of the total time distribution

for that exponent. The process was repeated 10 times for each exponent. As the

exponent gets larger, we see greater spread in the standard deviations measured,

indicating that the timing data does not remain consistent and may not be reliable.

19

Figure 12: Total Time Standard Deviations for Modular Exponents of Different
Lengths

Today’s RSA encryptions typically use much larger decryption exponents. Fig-

ure 13 shows a histogram of the total time for computing yd mod n when d is a

1024-bit integer. The data shown has a mean of 10.57ms and a standard deviation

of .3968ms. These computations take significantly more time than those with the

256-bit exponent, but still 1 order or magnitude less than the times Kocher observed.

Figure 14 shows a histogram of standard deviations. For each y-value the standard

deviation of 30 timed repetitions of yd for a 1024-bit d were calculated. The x-axis

gives the standard deviation and the y-axis gives the frequency of a given standard

deviation. This suggests that at the 1024-bit level, we may be able to use a timing

attack to determine the next bit. However, given the earlier data, it is not likely

20

Figure 13: Modular Exponentiation Times for 1024-bit Exponent, Python

we would be able to start from 0 known bits and guess the entire exponent with

reasonable success.

21

Figure 14: Standard Deviations of Modular Exponentiation Times for 1024-bit Ex-
ponent, Python

22

Chapter 3:

3.1 Computing Power

Nearly 20 years have passed since Kocher’s results were published. In that

time, the computer industry has seen the introduction of multi-core CPU’s and

parallel processing. In Kocher’s paper, he observes modular multiplication times

which take at least 1ms and modular exponentiation times which take at least

400ms. The computer he used had a 120-MHz Pentium processor running MSDOS.

The results we obtained were from a computer running a 2.93-GHz Intel Core 2 Duo

processor. We saw modular exponentiation times around 2.7ms. While the times

we observed were only 2 orders of magnitude faster than those from 1996, there

are potential complications introduced by the dual core processor. In particular, a

scenario where the timing function is carried out by one processor and the actual

computation by another would be a problematic for obtaining accurate timing.

In the future, it is not unreasonable to expect parallelization of the actual

computation [3](especially if a GPU is utilized by the user’s encryption software).

This results in extremely fast computations compared to those not parallelized. An

especially fast computation in itself is not a problem. However, computations so

fast that bit differences cannot be distinguished eliminates the possibility of a tim-

23

ing attack. Thus for a timing attack to be viable in the future, we must have timers

with large CPU time precision to counteract the increased speed of the computa-

tions. Assuming that a timing function is precise enough to measure a computation

with a small exponent, that measurement must be distinguishable from one where

the exponent differs by a single bit with variation in timing accounted for. Even

with an accurate and precise timing device, lack of consistency will make single bit

changes indistinguishable. Any person trying to implement a timing attack must be

sure to use the same exact computer specifications and encryption implementation.

However, this is not enough if the timing data obtained cannot be expected to be

reliable.

24

Chapter 4:

4.1 Conclusions

Based on the data collected and analysis above, it is suggested that timing

attacks may no longer be a viable way to obtain a secret key in both the elliptic

curve and RSA methods. An eavesdropper Eve is assumed to have access to the

ciphertexts and the total time it took to decrypt each ciphertext with the same secret

key. However, the accuracy, precision and consistency of the timing data observed

by an eavesdropper are not guaranteed especially if optimization techniques such as

parallelization are used for fast computation. Additionally, our observations show

it is unlikely that an eavesdropper would be able to accurately determine an entire

secret exponent starting with the first bit due to such small, fast computations and

timer precision. Given these obstacles, we do not believe that timing attacks will

be a good use of resources to determine a secret key.

25

Chapter A: Sage Files

A.1 SageCode

Randomly gene ra t e s po in t s and s e c r e t c o e f f c i e n t c
p = 2ˆ521 − 1
F = GF(p)
A = p − 3
B = 10938490380737342745111123907668055699362075989516837489945863944

95953116150735016013708737573759623248592132296706313309438452531
591012912142327488478985984

E = El l i p t i cCurve ([F(A) , F(B)])

from sage . misc . prandom import randrange
#c= ge t randb i t s (160)
import numpy
Points10000=numpy . array ([])
f o r i in range (10000) :

Pi=E. random point ()
Points10000= numpy . append (Points10000 , [Pi])

save (Points10000 , ’ Points10000 ’)
#save (c , ’C’)
#c

Mul i p l i e s c∗Points
import numpy
#import sage . misc . t r a c e
Points = load (’ Points500 ’)
c = load (’C’)
#c=57
p = 2ˆ521 − 1
F = GF(p)
A = p − 3
B = 10938490380737342745111123907668055699362075989516837489945863944

95953116150735016013708737573759623248592132296706313309438452531
591012912142327488478985984

26

E = El l i p t i cCurve ([F(A) , F(B)])

Time = numpy . array ([] , dtype=ob j e c t)
#Make sure that po in t s are o f type ECPoint
Pt=[]
f o r i in range (0 , l en (Points) , 3) :

Pi = E(Points [i] , Points [i +1] , Points [i +2])
Pt=Pt+[Pi]

f o r j in range (l en (Pt)) :
t i = cputime ()
=c∗Pt [j]
c i=cputime (t i)
Time = numpy . append (Time , [c i])

Time

#E l l i p t i c Curve Timing Attack
import numpy

Points = load (’ Points500 ’)
p = 2ˆ521 − 1
F = GF(p)
A = p − 3
B = 109384903807373427451111239076680556993620759895168374899

458639449595311615073501601370873757375962324859213229670
6313309438452531591012912142327488478985984

E = El l i p t i cCurve ([F(A) , F(B)])

c=load (’C’)
#c=57
cBin=bin (c)
l en (cBin)
Let w g ive the number o f known b i t s

w=159 #when c i s 160−b i t
#w=5 #when c i s 6 b i t s
#w=80 #t e s t l ength

cBin = cBin [2 : l en (cBin)]
KnownBitsInit = cBin [1 :w]

KnownBits=KnownBitsInit
KnownBitsIntInit=in t (s t r (KnownBits) , base=2)
KnownBitsInt=KnownBitsInit
p r i n t (cBin)
Pt =[]
f o r i in range (0 , l en (Points) , 3) :

Pi = E(Points [i] , Points [i +1] , Points [i +2])
Pt = Pt+[Pi]

27

Time=numpy . array ([] , dtype=ob j e c t)
f o r i in range (l en (Pt)) :

t i=cputime ()
=c∗Pt [i]
c i=cputime (t i)
Time=numpy . append (Time , [c i])

f o r n in range (1 0 0) :
KnownBits=KnownBitsInit
KnownBitsInt=KnownBitsIntInit
KnownTime = numpy . array ([] , dtype=ob j e c t)
f o r k in range (l en (Pt)) :

tk = cputime ()
=KnownBitsInt∗Pt [k]
ck=cputime (tk)
KnownTime = numpy . append (KnownTime , [ck])

t=Time−KnownTime
vart= var iance (t)
f o r j in range (l en (cBin)−w) :

NextBit0 = KnownBits+ ’0 ’
NextBit1 = KnownBits+ ’1 ’
INextBit0 = in t (s t r (NextBit0) , base=2)
INextBit1 = in t (s t r (NextBit1) , base=2)
Time NextBit1 = numpy . array ([] , dtype=ob j e c t)
Time NextBit0 = numpy . array ([] , dtype=ob j e c t)
f o r j in range (l en (Pt)) :

t j NextB i t1 = cputime ()
=INextBit1 ∗Pt [j]
t j 1=cputime (t j NextB i t1)
Time NextBit1 = numpy . append (Time NextBit1 , [t j 1])
t j NextB i t0 = cputime ()
=INextBit0 ∗Pt [j]
t j 0=cputime (t j NextB i t0)
Time NextBit0=numpy . append (Time NextBit0 , [t j 0])

tPrime = Time NextBit1−KnownTime
TimeDiff1 = t−tPrime
v1=var iance (TimeDiff1)
#v1
#vart
i f v1<vart :

KnownBits = NextBit1
KnownTime=Time NextBit1
t= Time−KnownTime
vart=var iance (t)
p r i n t (INextBit1)

e l i f v1>vart :
KnownBits = NextBit0
KnownTime=Time NextBit0
t= Time−KnownTime
vart=var iance (t)
p r i n t (INextBit0)

e l s e :
p r i n t (’ Same var iance ’)

28

#Gather Standard Deviat ion Data
import numpy
Points = load (’ Points500 ’)
c = load (’C’)
p = 2ˆ521 − 1
F = GF(p)
A = p − 3
B = 1093849038073734274511112390766805569936207598951683748994

5863944959531161507350160137087375737596232485921322967063
13309438452531591012912142327488478985984

E = El l i p t i cCurve ([F(A) , F(B)])

StdDevs = numpy . array ([] , dtype=ob j e c t)
Reps=numpy . array ([] , dtype=ob j e c t)
Pt=[]
f o r i in range (0 , l en (Points) , 3) :

Pi = E(Points [i] , Points [i +1] , Points [i +2])
Pt=Pt+[Pi]

l en (Pt)
f o r j in range (5 0 0) :

f o r k in range (0 , 3 0) :
tk = cputime ()
=c∗Pt [j]
ck=cputime (tk)
Reps=numpy . append (Reps , ck)

StdDevs = numpy . append (StdDevs , std (Reps))
StdDevs

#Mult ip ly s i n g l e po int by 500 160−b i t I n t e g e r s

import numpy
Points=load (’ Points500 ’)
Coe f f s=load (’ Coef fs500 ’)

Pt=[]
f o r i in range (0 , l en (Points) , 3) :

Pi = E(Points [i] , Points [i +1] , Points [i +2])
Pt=Pt+[Pi]

l en (Pt)

Times=numpy . array ([] , dtype=ob j e c t)
f o r i in range (5 0 0) :

t i= cputime ()
=Coe f f s [i]∗Pt [1 4 3]
c i=cputime (t i)
Times= numpy . append (Times , c i)

Times

29

std (Times)
numpy .mean(Times)

30

Chapter B: MuPAD Files

B.1 ellcurve.mu

plug in :=proc (x , a , b , n , b i t)
local y2 , y ;
begin

y2 := mod(xˆ3+a∗x+b , n) :
i f numlib : : l e gendre (y2 , n)=1
then y :=numlib : : sqrtmodp (y2 , n) ;

i f b i t=1 then
re turn (y)
else
re turn (mod(−y , n))
end if ;

else re turn (0)
end if ;

end proc :

testEC := (x , y , a , b , n) −> i f (x=i n f i n i t y and y=i n f i n i t y)
or mod(xˆ3+a∗x+b−yˆ2 , n) = 0
then TRUE else FALSE end if :

addEC := proc (x1 , y1 , x2 , y2 , a , b , n)
local z , m, num, den , x3 ;
begin
i f (x1=i n f i n i t y and y1=i n f i n i t y)

then re turn ([x2 , y2]) end if ;
i f (x2=i n f i n i t y and y2=i n f i n i t y)

then re turn ([x1 , y1]) end if ;
i f (x1=x2 and y1=y2 and y1=0)

then re turn ([i n f i n i t y , i n f i n i t y]) end if ;
i f (x1=x2 and y1<>y2)

then re turn ([i n f i n i t y , i n f i n i t y]) end if ;
i f (x1=x2 and y1=y2) then den :=2∗y1 else

den :=x2−x1 end if :
z := gcd (den , n) :
i f (z<>1 and z<>n)

then pr in t (” found f a c t o r o f n” , z) ;
r e turn () end if :

i f (x1=x2 and y1=y2) then num:=3∗x1ˆ2+a else

31

num:=y2−y1 end if :
m := mod(1/ den ,n)∗num:
x3 := mod(mˆ2 − x1 −x2 , n) :
r e turn ([x3 , mod(m∗(x1−x3)−y1 , n)])
end proc :

multEC := proc (k , mult)
local z , out , x1 , y1 ;

begin
read (”C:\\ Users \\Cla r i c e \\SkyDrive \\Documents\\ School \\MatlabFi les \\521 Points1000 ”) :

z := mult :
out :=[i n f i n i t y , i n f i n i t y] :
x1 :=Xvals [k] :
y1 :=Yvals [k] :
n :=p :
A:=a :
B:=b :
while z<>0 do

while (mod(z , 2))=0 do
z :=z /2 :
[x1 , y1] := addEC(x1 , y1 , x1 , y1 ,A,B, n) :
f o r g e t (addEC) ;

end while :
z :=z−1:
out := addEC(x1 , y1 , out [1] , out [2] ,A,B, n) :
f o r g e t (addEC) ;

end while ;

r e turn (out)
end proc :

B.2 TimeMuPAD.mn

P521 Parameters
a:=−3
b :=79691428531592760000:
p :=686479766013060971498190079908139321726943530014330540939446

3459185543183397656052122559640661454554977296311391480
85803712187999716643812574028291115057151:

Load nece s sa ry f i l e s

r e s e t () ;
d e l e t e HISTORY;
HISTORY;
read (”C:\\ Users \\Cla r i c e \\SkyDrive \\Documents\\ School

\\MatlabFi les \\ e l l c u r v e .mu”) ;
read (”C:\\ Users \\Cla r i c e \\SkyDrive \\Documents\\ School

\\MatlabFi les \\521 Points1000 ”) :
a:=−3:
b :=1093849038073734274511112390766805569936207598951683748994586

32

39449595311615073501601370873757375962324859213229670631
3309438452531591012912142327488478985984:

p :=6864797660130609714981900799081393217269435300143305409394463
45918554318339765605212255964066145455497729631139148085
8037121987999716643812574028291115057151:

Generate 500 , 160−b i t c o e f f i c i e n t s

C: = [] :
IntC : = [] :
f o r i from 1 to 500 do
C:=append (C, s t r i n g l i b : : random (160 , [” 0” , ” 1”] , P r e f i x= ”1”)) ;
IntC:=append (IntC , t e x t 2 i n t (C[i] , 2)) ;
end fo r :
wr i t e (”160 Coe f f ” , IntC) ;
IntC ;
Mult ip ly 500 160−b i t C o e f f i c i e n t s by 1 po int
read (”160 Coef f ”) :
read (”C:\\ Users \\Cla r i c e \\SkyDrive \\Documents\\ School

\\MatlabFi les \\ e l l c u r v e .mu”) ;
TimeSinglePoint : = [] ;

f o r j from 1 to 500 do
t i :=time (multEC(2 , IntC [j])) :
TimeSinglePoint :=append (TimeSinglePoint , t i) :
end fo r :
TimeSinglePoint ;

Find Standard Deviat ion f o r same Point and Co e f f i c i e n t
Repeated 30 t imes

IntC :=1241632396484394193694744905331410247131251011868:
StdDevs : = [] :
f o r i from 1 to 500 do
Reps : = [] :
f o r j from 1 to 30 do
t i :=time (multEC(i , IntC)) :
Reps:=append (Reps , t i)
end fo r :
StdDevs :=append (StdDevs , s t a t s : : s tdev (Reps)) :
end fo r :
StdDevs ;

The E l l i p t i c Curve t iming attack

HISTORY:=0:
r e s e t () ;
read (”C:\\ Users \\Cla r i c e \\SkyDrive \\Documents\\ School

\\MatlabFi les \\ e l l c u r v e .mu”) ;
TotalTime : = [] :

33

a:=−3:
b :=109384903807373427451111239076680556993620759895168374899458639

4495953116150735016013708737573759623248592132296706313309
438452531591012912142327488478985984:

p :=686479766013060971498190079908139321726943530014330540939446345
9185543183397656052122559640661454554977296311391480858037
121987999716643812574028291115057151:

IntC :=1241632396484394193694744905331410247131251011868;
BinC:= in t 2 t e x t (IntC , 2) :
KnownBits:=BinC [1 . . 1 5 9] :
KnownBitsInt := t ex t 2 i n t (KnownBits , 2) :

Large c o e f f c i e n t
TotalTime : = [] ;
f o r i from 1 to 500 do
t i :=time (multEC(i , IntC)) :
TotalTime:=append (TotalTime , t i) ;
HISTORY:=0:
end fo r :

f o r k from 1 to 10 do :
HISTORY:=0:
KnownBits:=BinC [1 . . 1 5 9] :
KnownBitsInt := t ex t 2 i n t (KnownBits , 2) :
KnownTimes : = [] :
f o r i from 1 to 500 do
t i k :=time (multEC(i , KnownBitsInt)) :
KnownTimes:=append (KnownTimes , t i k) :
end fo r :
t :=TotalTime−KnownTimes :

vart := s t a t s : : va r i ance (t) :
f o r j from 1 to 1 do

NextBit0 :=KnownBits . ” 0 ” :
NextBit1 :=KnownBits . ” 1 ” :
INextBit1 := t ex t 2 i n t (NextBit1 , 2) :
INextBit0 := t ex t 2 i n t (NextBit0 , 2) :
TimeNB1 : = [] :
TimeNB0 : = [] :
f o r l from 1 to 500 do

TimeNB1:=append (TimeNB1 , time (multEC(l , INextBit1))) :
TimeNB0:=append (TimeNB0 , time (multEC(l , INextBit0))) :

end fo r :
tprime :=TimeNB1−KnownTimes :
TimeDiff1 :=t−tprime :
v1:= s t a t s : : va r i ance (TimeDiff1) :
p r i n t (vart) ;
p r i n t (v1) ;
i f (v1<vart)
then KnownBits:= NextBit1 :

KnownTimes:= TimeNB1 :
t :=TotalTime−KnownTimes :
vart := s t a t s : : va r i ance (t) :

34

pr in t (INextBit1) ;
e l i f (vart<v1)
then KnownBits:=NextBit0 :

KnownTimes:= TimeNB0 :
t :=TotalTime−KnownTimes :
vart := s t a t s : : va r i ance (t) :
p r i n t (INextBit0) ;

e l s e p r i n t (”Same Variance ”) e nd i f ;
end fo r :
end fo r :

E l l i p t i c Curve attack with smal l c o e f f c i e n t

IntC :=57;
BinC:= in t 2 t e x t (IntC , 2) :
KnownBits:=BinC [1 . . 5] :
KnownBitsInt := t ex t 2 i n t (KnownBits , 2) :

TotalTime : = [] ;
f o r i from 1 to 500 do
t i :=time (multEC(i , IntC)) :
TotalTime:=append (TotalTime , t i) ;
HISTORY:=0:
end fo r :

f o r k from 1 to 10 do :
KnownBits:=BinC [1 . . 5] :
KnownBitsInt := t ex t 2 i n t (KnownBits , 2) :
KnownTimes : = [] :
f o r i from 1 to 500 do
t i k :=time (multEC(i , KnownBitsInt)) :
KnownTimes:=append (KnownTimes , t i k) :
end fo r :
t :=TotalTime−KnownTimes :

vart := s t a t s : : va r i ance (t) :
f o r j from 1 to 1 do

NextBit0 :=KnownBits . ” 0 ” :
NextBit1 :=KnownBits . ” 1 ” :
INextBit1 := t ex t 2 i n t (NextBit1 , 2) :
INextBit0 := t ex t 2 i n t (NextBit0 , 2) :
TimeNB1 : = [] :
TimeNB0 : = [] :
f o r l from 1 to 500 do

TimeNB1:=append (TimeNB1 , time (multEC(l , INextBit1))) :
TimeNB0:=append (TimeNB0 , time (multEC(l , INextBit0))) :

end fo r :
tprime :=TimeNB1−KnownTimes :
TimeDiff1 :=t−tprime :
v1:= s t a t s : : va r i ance (TimeDiff1) :
i f (v1<vart)

35

then KnownBits:= NextBit1 :
KnownTimes:= TimeNB1 :
t :=TotalTime−KnownTimes :
vart := s t a t s : : va r i ance (t) :
p r i n t (INextBit1) ;

e l i f (vart<v1)
then KnownBits:=NextBit0 :

KnownTimes:= TimeNB0 :
t :=TotalTime−KnownTimes :
vart := s t a t s : : va r i ance (t) :
p r i n t (INextBit0) ;

e l s e p r i n t (”Same Variance ”) e n d i f ;
end fo r :
end fo r :

36

Chapter C: Mathematica Files

C.1 EllipticCurve.m

(∗ This computes us ing E l l i p t i c Curves over a f i e l d o f d e f i n i t i o n
that i s a prime (f i n i t e) f i e l d o f order p . The curve i s in
Weie r s t ra s s form yˆ2 = xˆ3 + ax + b and the po in t s are a l s o
in Weie r s t ra s s (a f f i n e) form . ∗)

BeginPackage [” E l l i p t i cCurve ‘ ”]

ECPt : : usage=\
”ECPt [{ x , y} , {a , b} , p] r e p r e s en t s the po int {x , y} on the e l l i p t i c \
curve yˆ2 = xˆ3 + ax + b over the i n t e g e r s mod p . The ope ra t i on s o f \
add i t i on and mu l t i p l i c a t i o n by an i n t e g e r are implemented . ” ;

RandomECPt : : usage=\
”RandomECPt [{ a , b} , p] r e tu rn s a random point on the e l l i p t i c curve \
yˆ2 = xˆ3 + ax + b over the i n t e g e r s mod p . Before computing , t h i s \
performs a san i ty check to see i f (not implemented) \
the curve i s non−s i n gu l a r . ” ;

IdentityECPt : : usage=\
” IdentityECPt [{ a , b} , p] r e tu rn s the i d e n t i t y po int on the s p e c i f i e d

curve . ” ;

OrderECPt : : usage=\
”OrderECPt [ECPt [. . .]] computes the order o f the po int on the e l l i p t i c \
curve . ” ;

Begin [” ‘ Pr ivate ‘ ”]

Format [ECPt [{ x , y } ,{ a , b } , p]] := {x , y } ;
Format [ECPt [I n f i n i t y ,{ a , b } , p]] := {0} ;

ECPt/ :ECPt [{ x1 , y1 } ,{ a , b } , p] + ECPt [{ x2 , y2 } ,{ a , b } , p] := \
Module [{m, x3 , y3 , xgcd } ,

I f [x1 == x2 && Mod[y1+y2 , p] == 0 ,
ECPt [I n f i n i t y ,{ a , b} , p] ,

(∗ Else ∗)
m = I f [x1 == x2 ,

37

xgcd = ExtendedGCD[2∗ y1 , p] ;
Mod[(3∗ x1ˆ2+a)∗ xgcd [[2 , 1]] , p] ,
(∗ Else ∗)
xgcd = ExtendedGCD [x1−x2 , p] ;
Mod [(y1−y2)∗ xgcd [[2 , 1]] , p]] ;

I f [xgcd [[1]] != 1 ,
Pr int [” Found f a c t o r o f ” , xgcd [[1]]] ;
Abort []] ;

x3 = Mod[mˆ2 − x1 − x2 , p] ;
y3 = Mod[−m∗(x3−x1) − y1 , p] ;
ECPt [{ x3 , y3 } ,{a , b} , p]]]

ECPt/ : ECPt [I n f i n i t y ,{ a , b } , p] + ECPt [pt2 ,{ a , b } , p] := \
ECPt [pt2 ,{ a , b} , p]

ECPt/ : −ECPt [{ x , y } ,{ a , b } , p] := ECPt [{ x ,Mod[−y , p]} ,{ a , b} , p]

ECPt/ : n In t eg e r ∗ ECPt [{ x , y } ,{ a , b } , p] := \
Module [{mult=n , accum=ECPt [I n f i n i t y ,{ a , b} , p] ,

powpt=ECPt [{ x , y} ,{a , b} , p]} ,
I f [mult < 0 , powpt = −powpt ; mult = −mult] ;

Pr int ”Here ” ;
While [mult != 0 ,

I f [OddQ[mult] , accum = accum + powpt ; mult = mult−1] ;
powpt = powpt + powpt ;
mult = mult / 2] ;

accum]
IdentityECPt [{ a , b } , p] := ECPt [I n f i n i t y ,{ a , b} , p]

RandomECPt [{ a , b } , p] := \
Module [{ x , y} ,
(∗ Sanity check f i r s t : I s {a , b} a non−s i n gu l a r curve ∗)

(∗ Don ’ t check f o r p r ima l i t y so we can use f o r EC f a c t o r i n g
I f [! PrimeQ [p] ,

Message [ECPt : : notprime , p] ;
Return [ECPt [I n f i n i t y ,{ a , b} , p]]] ; ∗)

(∗ Find the f i r s t va lue o f x f o r which xˆ3 + ax + b
has a square root ∗)

x = Random [Integer ,{0 , p−1}] ;
While [JacobiSymbol [xˆ3+a∗x+b , p] != 1 , x=Mod[x+1,p]] ;
y = PowerMod [xˆ3+a∗x+b ,1/2 ,p] ;
ECPt [{ x , y} ,{a , b} , p]] ;

ECPt : : notprime = ”ECPt only de f ined f o r prime f i e l d s ,
‘ 1 ‘ i s not prime ” ;

OrderECPt [pt :ECPt [{ x , y } ,{ a , b } , p]] := \
Module [{ accum = pt , i =1, id = IdentityECPt [{ a , b} , p]} ,
While [(accum =!= id) && (i <= p+1+2∗Sqrt [p]) ,

accum += pt ; i ++];
i]

End [] ; (∗ El l ip t i cCurve ‘ Private ‘ ∗)
(∗ Protect [the names] ∗)
Pr int [Names [” E l l i p t i cCurve ‘ ∗ ”] , ” have been de f ined . ”] ;

38

EndPackage [] (∗ El l ip t i cCurve ‘ ∗)

C.2 ErrorAnalysis.nb

CInt = FromDigits [RandomChoice [{0 , 1} , 1 60] , 2]
Points=Table ;
Points << C:\ Users \Cla r i c e \SkyDrive\Documents\School \

MathematicaFi les \521 Points500 ;
a=−3;
b=2455155546008943817740293915197451784769108058161191238065;
p=6277101735386680763835789423207666416083908700390324961279;
TotalTime=Table [F i r s t [Timing [CInt∗Points [[i]]]] , { i , 5 0 0 }] ;
376560096055051555448332120890000974689596476916

Points=Table ;
Points << C:\ Users \Cla r i c e \SkyDrive\Documents\School \

MathematicaFi les \521 Points500 ;
<< C:\ Users \Cla r i c e \SkyDrive\Documents\School \

MathematicaFi les \El l i p t i cCurve .m;
a=−3;
b=2455155546008943817740293915197451784769108058161191238065;
p=6277101735386680763835789423207666416083908700390324961279;
CInt=76560096055051555448332120890000974689596476916;
StdDevs=Table [StandardDeviat ion [
Table [F i r s t [Timing [CInt∗Points [[i]]]] , { 3 0 }]] , { i , 500}]

39

Chapter D: Python Files

D.1 DataAnalysis.py

import p i c k l e
import s t a t i s t i c s
import i o
import time
import numpy

yva l sF i l e = open (” yva l s . p i c k l ed ” , ” rb”)
YVals = p i c k l e . load (yva l sF i l e)
y v a l sF i l e . c l o s e ()

#256 Bit Expon
#exponFi le = open (” expon . p i c k l e d ” , ” rb ”)
#Expon = p i c k l e . load (exponFi l e)
#exponFi le . c l o s e ()

#1024 Bit Expon
p = 90912135295978188784406583026004374858926083103283587204285121689

60411528640933367824950788367956756806141
q = 14385925911004526572780912628442933587789900216762788320091417242

9324360133004116702003240828777970252499
n = 74037563479561712828046796097429573142593188889231280849362326389

72765034028266276891996419625117843995894330502127585370118968098
28673317327310893090055250511687706329907239638078671008609696253
7934563796359

Expon=155469282227633543031122317440184677573936624013280134348519786
00013756356416184693914453384902064082787225086661390770820549975
20145660372241893073209000564478473914777473699720760705363972291
62171353782014039124932569807879250994172255137579922909000241507
582782392545817068241113569638993447420444836108650

BinExpon=bin (Expon)

TotalTime = numpy . array ([] , dtype=ob j e c t)
TotalTime2= numpy . array ([] , dtype=ob j e c t)
StdDevs = numpy . array ([] , dtype=ob j e c t)
#Averages = numpy . array ([] , d type=ob j e c t)

40

#Compute Time Data or Standard Dev ia t ions .
#Must change inden t s and remove ’#’
for y in range (5 0 0) :

#Reps = numpy . array ([] , d type=ob j e c t)
#fo r x in range (30) :
t i c = time . p e r f c oun t e r ()

#YVals [1]∗∗5%n
pow(YVals [y] , Expon , n)
toc = time . p e r f c oun t e r ()

#Reps = numpy . append (Reps , toc−t i c)
TotalTime=numpy . append (TotalTime , toc−t i c)

#StdDevs= numpy . append (StdDevs , numpy . s t d (Reps))
#Averages = numpy . append (Averages , [s t a t i s t i c s .mean(Reps [i : i +20])

#fo r i in range (1 , 200 , 20)])

print (TotalTime)
print (s t a t i s t i c s .mean(TotalTime))
print (numpy . std (TotalTime))
#pr in t (StdDevs)
#pr i n t (Averages)

D.2 ExponLengthVStdDev.py

import i o
import p i c k l e
import numpy
import time

yva l sF i l e = open (” yva l s . p i c k l ed ” , ” rb”)
YVals = p i c k l e . load (yva l sF i l e)
y v a l sF i l e . c l o s e ()

ExpLi s tF i l e = open (”expon500 . p i ck l ed ” , ” rb”)
Expons=p i c k l e . load (ExpLi s tF i l e)
ExpLi s tF i l e . c l o s e ()

p = 9091213529597818878440658302600437485892608310328358720428512168
960411528640933367824950788367956756806141

q = 1438592591100452657278091262844293358778990021676278832009141724
29324360133004116702003240828777970252499

n = 7403756347956171282804679609742957314259318888923128084936232638
9727650340282662768919964196251178439958943305021275853701189680
9828673317327310893090055250511687706329907239638078671008609696
2537934563796359

StdDevs=numpy . ndarray (shape =(52 ,10) , dtype=ob j e c t)
for i in range (5 2) :

print (Expons [i])
for x in range (1 0) :

Times=numpy . array ([] , dtype=ob j e c t)

41

for y in YVals :
t i c=time . p e r f c oun t e r ()
pow(y , Expons [i] , n)
toc=time . p e r f c oun t e r ()
Times=numpy . append (Times , toc−t i c)

tSD=numpy . std (Times)
StdDevs [i , x]=tSD

print (StdDevs)

D.3 RSATimeAttack.py

import p i c k l e
import i o
import time
import numpy
import s t a t i s t i c s

y v a l sF i l e = open (” yva l s . p i c k l ed ” , ” rb”)
YVals = p i c k l e . load (yva l sF i l e)
y v a l sF i l e . c l o s e ()
#256− b i t Exponent
#exponFi le = open (” expon . p i c k l e d ” , ” rb ”)
#Expon = p i c k l e . load (exponFi l e)
#exponFi le . c l o s e ()

p = 909121352959781887844065830260043748589260831032835872042851216896
0411528640933367824950788367956756806141

q = 143859259110045265727809126284429335877899002167627883200914172429
324360133004116702003240828777970252499

n = 740375634795617128280467960974295731425931888892312808493623263897
27650340282662768919964196251178439958943305021275853701189680
98286733173273108930900552505116877063299072396380786710086096
962537934563796359

#1024− b i t Exponent
Expon=1554692822276335430311223174401846775739366240132801343485197860
0013756356416184693914453384902064082787225086661390770820549975201456
6037224189307320900056447847391477747369972076070536397229162171353782
0140391249325698078792509941722551375799229090002415075827823925458170
68241113569638993447420444836108650
print (Expon)
BinExpon=bin (Expon)
print (l en (BinExpon))
#160− b i t Exponent
#Expon = 737594632511118677735731068268133317738981665915
#BinExpon=bin (Expon)
#pr i n t (l en (BinExpon))

Repeat the a t t a c k 10 t imes

42

for j in range (1 0) :
TotalTime = numpy . array ([] , dtype=ob j e c t)

#Find Tota l Time (assumed g iven)
for x in range (5 0 0) :

RepsTot= numpy . array ([] , dtype=ob j e c t)
for z in range (1) :

t i c = time . p e r f c oun t e r ()
#x∗∗Expon%n a l t e r n a t e f o r exponen t i a t i on
pow(YVals [x] , Expon , n)
toc = time . p e r f c oun t e r ()
RepsTot = numpy . append (RepsTot , toc−t i c)

TotalTime = numpy . append (
TotalTime , s t a t i s t i c s .mean(RepsTot))

k=len (BinExpon)−1
KnownBits = BinExpon [2 : k]
KnownTime = numpy . array ([] , dtype=ob j e c t)
KnownBitsInt = in t (KnownBits , 2)

#Find time known g iven some b i t s are known
for x in range (5 0 0) :

Reps = numpy . array ([] , dtype=ob j e c t)
for z in range (1) :

t i c = time . p e r f c oun t e r ()
#x∗∗KnownBitsInt%n
#a l t e r n a t e f o r exponen t i a t i on
pow(YVals [x] , KnownBitsInt , n)
toc = time . p e r f c oun t e r ()
Reps = numpy . append (Reps , toc−t i c)

KnownTime = numpy . append (
KnownTime , s t a t i s t i c s .mean(Reps))

#pr in t (KnownTime)
t= TotalTime−KnownTime
vart = numpy . var (t)

#Compute t imes f o r both gues se s f o r the next b i t
for j in range (l en (BinExpon)− l en (KnownBits)−2):

NextBit0 = KnownBits+’ 0 ’
NextBit1 = KnownBits+’ 1 ’
INextBit0 = in t (s t r (NextBit0) , base=2)
INextBit1 = in t (s t r (NextBit1) , base=2)
#pr in t (INextBi t1)
#pr in t (INextBi t0)
TimeNextBit1 = numpy . array ([] , dtype=ob j e c t)
TimeNextBit0 = numpy . array ([] , dtype=ob j e c t)
for y in range (5 0 0) :

Reps = numpy . array ([] , dtype = ob j e c t)
Reps2 = numpy . array ([] , dtype = ob j e c t)
for z in range (5) :

t i c 2 = time . p e r f c oun t e r ()
#y∗∗ INextBi t0%n

43

pow(YVals [y] , INextBit0 , n)
toc2 = time . p e r f c oun t e r ()
Reps2 = numpy . append (Reps2 , toc2−t i c 2)

t i c = time . p e r f c oun t e r ()
#y∗∗ INextBi t1%n
pow(YVals [y] , INextBit1 , n)
toc = time . p e r f c oun t e r ()
Reps = numpy . append (Reps , toc−t i c)

TimeNextBit1 = numpy . append (
TimeNextBit1 , s t a t i s t i c s .mean(Reps))

TimeNextBit0 = numpy . append (
TimeNextBit0 , s t a t i s t i c s .mean(Reps2))

tPrime = TimeNextBit1−KnownTime
TimeDiff1 = t−tPrime
v1=numpy . var (TimeDiff1)
print (vart)
print (v1)

#Comparison o f var iances f o r the next b i t
i f v1<vart :

KnownBits = NextBit1
#pr in t (NextBit1)
KnownTime=TimeNextBit1
t=TotalTime−KnownTime
vart = numpy . var (t)

e l i f v1>vart :
KnownBits = NextBit0
#pr in t (NextBit0)
KnownTime=TimeNextBit0
t=TotalTime−KnownTime
vart = numpy . var (t)

else :
print (’Same var iance ’)

print (i n t (KnownBits , 2))

44

Bibliography

[1] Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Advances in CryptologyCRYPTO96, pages 104–113.
Springer, 1996.

[2] Jonathan Rosenberg. ellcurve.mn. http://www.math.umd.edu/~jmr/456/

ellcurve.pdf.

[3] Masumeh Damrudi and Norafida Ithnin. Numerical analysis of parallel mod-
ular exponentiation for RSA using interconnection networks. SCIENCEASIA,
39:103–106, 2013.

45

