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In this dissertation we present extensions of Rice’s formula for the expected
zero-crossing rate of a Gaussian process to some useful non-Gaussian cases. In
particular, we extend Rice’s formula to the class of stationary processes which
are a monotone transformation of a Gaussian process, to countable mixtures of
Gaussians, and to products of independent Gaussian processes. In all the above
mentioned cases the expected zero-crossing rates are given for both continuous
time and discrete time processes. We also investigate the application of para-
metric filtering, using zero-crossing count statistics, to the problem of frequency
estimation in a mixed spectrum model and the application of mean-level-crossing
counts of the envelope of a Gaussian process to a radar detection problem. For
the radar problem we prove asymptotic normality of the level-crossings of the
envelope of a Gaussian process and provide and expression for the asymptotic

variance.






Zero-Crossing Rates of Some Non-Gaussian Processes

with Application to Detection and Estimation

by

John Thomas Barnett

Dissertation submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
1996

Advisory Committee:

Professor Benjamin Kedem, Chairman/Advisor

Professor Harland Glaz, Department of Mathematics

Professor Abram Kagan, Department of Mathematics

Professor Prakash Narayan, Department of Electrical Engineering
Professor Eric Slud, Department of Mathematics



© Copyright by
John Thomas Barnett

1996



Dedication

To my wife Deborah Ann and our son Steven Thomas

for their love and patience.

il






Acknowledgements

I take great pleasure in writing this acknowledgement to the indi-
viduals who have helped me, in various ways, during the course of
my studies. First, to my advisor, Professor Benjamin Kedem, whose
enthusiasm, indomitable intellectual spirit, genuine concern and ded-
ication to my development, has been, and I am sure will continue to
be, an inspiration and creative catalyst for me as I continue my ca-
reer. His encouragement and support, intellectually, professionally,
and spiritually, has been for me, a sine qua non in completing this

endeavor. I truly thank him.

I would also like to acknowledge, as well, my teachers both formal
and informal, who have devoted their time and creative intellectual
energy, unselfishly, to me over the years. In particular, I would
like to express my sincere gratitude and appreciation to Professors’

Abram Kagan, Tzong-Yow Lee, and Eric Slud, all of whom have

111



interacted with me regarding a large part of the research in this the-
sis. They provided me with answers to mathematical questions, and
moreover, made valuable suggestions that affected the research con-
tained herein. I thank them, as well, for the contribution they most

certainly have made to this dissertation.

Finally, I would like to thank the other members of my advisory
committee, Professors’ Harland Glaz and Prakash Narayan, for their

time and energy in reviewing my work.

This research was partially supported by a Navy Fellowship for Long
Term Study while I was at the Naval Surface Warfare Center, White

Oak Laboratory, Silver Spring Maryland.

v



Contents

List of Tables viii
List of Figures ix
1 Introduction 1
1.1 Rice’sFormula . . ... ... .. ... ... 0L 1

1.2 Discrete Frequency Estimation via Zero-Crossings . . . . . . . . . 2
1.3 Expected zero-crossing rate of a Gaussian process . . . .. .. .. 4
1.4 The HK Algorithm . . . . .. ... ... ... ... .. ...... 6
1.5 Examples of Parametric Families and Contraction Mappings . . . 10
1.5.1 An example using a MA(1) filter . . . ... ... ... .. 11

1.5.2 An AR(2) filter family . .. .. .. .. ... .. ... ... .. 12

1.6 Summary . . . . . . it e e e 13

2 Zero-Crossing Rates of Functions of Gaussian Processes 17
2.1 Introduction . . . . . . . . . .. 17
2.2 Extension to Ellipsoidal and Purely Sinusoidal Processes . . . . . 20
2.2.1  Zero-Crossing Rate of a Pure Sinusoid . . . . ... .. .. 23

2.3 Two methods for generating zero-crossing formulas . . . ... .. 26
2.3.1 Method I for generating zero-crossing formulas . . . . . . . 27



2.3.2 Method II for generating zero-crossing formulas . . . . . . 33

2.4 SUMMATY . . v . v e e e e e e e e e e e e e e e 34

Zero-Crossing Rates of Mixtures and Products of Gaussian Pro-

cesses 36
3.1 Introduction . . . . . . .. ... ... 36
3.2 A Formal Orthant Probability Formula . . . . ... ... ... .. 38
3.2.1 Monotone transformations of a Gaussian process . . . . . . 41
3.3 Scaled-Time Mixture of a Gaussian Process . .. ... . ... .. 43
3.3.1 Cosine Formula for a Scaled-Time Mixture . ... .. .. 45
3.3.2 Rice’s Formula for a Scaled-Time Mixture . ... ... .. 45
3.4 Mixtures of Gaussian Processes . . . . ... .. ... ... .. 48
3.4.1 Cosine Formula for Gaussian Mixtures . . ... .. .. .. 49
3.4.2 Rice’s Formula for Gaussian Mixtures . . . . .. . ... .. 50
3.5 Products of Gaussian Processes . . . . ... ... ... .. .. .. 51
3.5.1 Cosine Formula for a Product of Gaussians . . . . . . . .. 52
3.5.2 Rice’s Formula for Products of Gaussians . . . . . ... .. 54
3.6 Summary . . . .. ... e 55

Radar Detection via Level-Crossings of the Envelope Process 57

4.1 Hilbert Transforms and Envelopes of Functions and Stationary

Processes . . . . . . . ..o e 60
4.1.1 Hilbert Transforms and Envelopes of Functions . . .. .. 60
4.1.2 The Hilbert Transform of a Stationary Process . . . . . .. 63
4.1.3 The Envelope of a Gaussian Process . . . ... ... ... 66
4.1.4 The joint Density of R(t) and R'(¢) . . . .. ... ... .. 67

vi



4.1.5 The Squared Envelope Process. . . . . . ... ... ... .. 71

4.2 Level-Crossing Based Detector . . . . . . ... ... ... ..... 74
4.2.1 Variance of the Level-Crossing Count . . . . . . .. .. .. 75
4.2.2  Variance for the Envelope Process . . . . .. .. ... ... 7

4.3 Asymptotic Normality for the Level-Crossings of the Envelope of

a Gaussian Process . . . . . . . .. .. ... 85
4.3.1 Preliminaries . . . . . . . . .. ... .o 88
44 Summary . . ... . e e e e e e e e 104

vil



List of Tables

1.1 Ilustration of the HK algorithm using the AR(1) filter
family, convergence based on the observed zero-crossing
count, (axy,) = mD,, /(N — 1), k = oo, towards w; = 0.8 as
a function of SNR. N =10,000. . ... ............. 15

1.2 Illustration of the HK algorithm using the AR(2) filter
family with v = —.9, convergence based on the observed
zero-crossing count, (axy1) = 7Dy, /(N —1), k — oo, towards

w; = 0.8 as a function of SNR. N=2,000. .. ... ...... 16

4.1 Sampled crossing rates for an ideal bandpass Gaussian
PrOCESS. . - ¢ v v v i i e e i et e e e e e e e e e e e e e e e 86
4.2 Sampled crossing rates for the envelope of an 1deal band-

pass Gaussian process. . . . . . . . .. ... .. 87

viil



List of Figures

4.1
4.2
4.3
4.4

4.5

4.6

Lowpass Gaussian process and envelope sampled at 4 Hz 88
Bandpass Gaussian process and envelope sampled at 4 Hz 89
Bandpass Gaussian process and envelope sampled at 4 Hz 90
Superposition of two Gaussian process and the envelope
sampledat 4 Hz . ... ...................... 91
Normal Probability Plot for the zero-crossings of an ideal
bandpass Gaussian process. . . . . . . . . ... ... ... .. 104
Normal Probability Plot for the mean-level- crossings of

the envelope of an ideal bandpass Gaussian process . . . . 105

ix






Chapter 1

Introduction

1.1 Rice’s Formula

The origin of Rice’s formula for the average level-crossing rate of a general class of
random processes can be traced back to his 1936 notes on “Singing Transmission
Lines,” (see Rainal 1988). This celebrated formula and the basic mathematical
techniques derived from Rice’s analysis have been used in numerous other related
problems such as first passage times, FM fading, and frequency estimation.

Oscillation as observed in time-series is ubiquitous. Simply considering a
centered pure sinusoid, we see that there are two zero-crossings per cycle. This
intimate connection between zero-crossings and frequency content will be the
starting point of this thesis. We will see how zero-crossing counts and higher-
order-crossing counts can be an efficient tool for performing discrete frequency
estimation - competitive in accuracy and speed with the renowned Cooley-Tukey
FFT algorithm.

After this illustrative example of a zero-crossings based frequency estima-

tor we present extensions of Rice’s formula to functions of Gaussian processes



(Chapter. 2) and then to mixtures and products of Gaussian (Chapter 3) and
answer a question regarding maximal level-crossing rates when the spectrum is
specified. In the last chapter we present an application of a level-crossing based

detector to a radar detection problem.

1.2 Discrete Frequency Estimation via Zero-

Crossings

Several techniques have been investigated which use parametric families of lin-
ear filters for discrete frequency estimation. The proposed methods are similar
in that they use iterative filtering procedures for estimating the frequencies of
underlying periodic components embedded in noise. In this chapter we present
a technique that combines parametric filtering with a contraction mapping prin-
ciple to recursively estimate the frequencies of discrete spectral components. By
incorporating the contraction mapping idea with parametric filtering a funda-
mental property is determined which when satisfied, guarantees the convergence
of the iterative procedure. Several examples are provided which illustrate the
method.

Frequency estimation is a classic problem in time series analysis. Aside from
the purely mathematical interest of the problem, there are a number of engineer-
ing systems that require precise discrete frequency estimation. Communications
systems, sonar receivers, and nuclear magnetic resonance spectroscopy devices
are such examples.

For almost a hundred years the periodogram has been widely used for spec-

tral estimation and analysis. The fast Fourier transform (FFT), which is an



efficient algorithm for evaluating the periodogram at the Fourier frequencies,
has helped to sustain the popularity of this important tool. However, over the
last decade a number of authors have suggested iterative filtering techniques for
discrete frequency estimation (see Dragosevi¢ and Stankovié¢ 1989, He and Ke-
dem 1989, Kay 1984, Li and Kedem 1993, Matausek et al. 1983, Troendle 1991
and Yakowitz 1991). Although there are similarities in the various methods, an
important and notable aspect of the He-Kedem work is a so-called fundamental
property required of the parametric filter family which guarantees convergence of
the frequency estimates. As we will show, a number of parametric filter families
can be defined which satisfy this property.

A useful mathematical model, as well as the one we will use for this example,

is the following mixed spectrum stationary process,

Zy = Xp:(Aj cos(w;t) + Bjsin(w;t)) + ¢ (1.1)

j=t
where, ¢t = 0,£1,+2,---, the A’s and B’s are all uncorrelated, E(A;) = E(B;) =
0, and Var(A;) = Var(B;) = o?. In general, one assumes {(;} is colored
stationary noise with mean 0 and variance o7, independent of the A’s and B’s.
The noise is assumed to possess an absolutely continuous spectral distribution
function F¢(w) with spectral density f;(w), w € [—m,x]. For our purposes we
will assume {Z;} to be Gaussian. However, the Gaussianity assumption is not
necessary for the parametric filtering method as Yakowitz shows in 1991.

Without loss of generality assume that the frequencies are ordered fixed con-
stants,

O<w <wp < <wp <.

The general problem is to estimate the frequencies, wy,ws, - - - ,wp, using a finite

length observation from the time series, 7,7, -, Zn.



In words, our basic strategy is to filter the observations Zi, Zs,- -+, Zn with
a filter from a given parametric family of linear filters, observe a zero-crossing
statistic of the filtered output, then select another filter from the family based on
this observed statistic. We will show, under some conditions, that this iterative
procedure will converge and accurate frequency estimates may be obtained.

The remainder of the chapter is as follows. In the next section we present the
formulas for the average zero-crossing rate of Gaussian processes. These are used
in subsequent sections and chapters. After that, the basic iterative scheme for
the case of a single sinusoid in Gaussian white noise is presented. This scheme
is known as the HK algorithm (He and Kedem 1989) and uses an autoregressive
order 1, AR(1) filter family. Later we provide two other examples of the para-
metric filters applicable to this method. They are, a moving average order 1,
MA(1) family and an autoregressive order 2, AR(2) family. The AR(2) family
is a particularly important example which illustrates the idea of contracting the
bandwidth of the filter during the iterative procedure. The idea of shifting the
center frequency of the filter and simultaneously contracting the bandwidth was

first presented in Yakowitz 1991.

1.3 Expected zero-crossing rate of a Gaussian
process

We present formulas for the expected zero-crossing rate of a Gaussian process.
Both the continuous time and discrete time cases are given. We start with the
well-known result of Rice for the expected zero-crossing rate of a continuous time

Gaussian process.



If a zero-mean, stationary Gaussian process {Z(t)}, for —oo < t < oo, with
normalized autocorrelation function p(t) has sufficiently smooth sample paths,

the average number of zero-crossings per unit time is given by Rice’s formula

(Rice 1944)

E[D] = /" (0) (12

where D is the number of zero-crossings of {Z(¢)} for ¢ in the unit interval [0, 1],
and p' (0) is the second derivative of the normalized autocorrelation of {Z(t)} at
0. Ylvisaker 1965 proved Rice’s formula (1.2) rigorously under mild conditions
and proved that the expected number of zero-crossings is finite if and only if the
autocorrelation function is twice differentiable at the origin.

The analogous formula for a discrete-time, zero-mean, stationary Gaussian
sequence {Zx}, k = 0,41, +£2- - - has been obtained by many authors (see Kedem
1986, Ylvisaker 1965) and is given by

p1 = COS ENE—[-_D—i] (1.3)
or, equivalently, by the inverse form

E[Dl] = l cos! P1

N-1 =«
where D, is the number of sign-changes or zero-crossings in Z1,---,2Zn, pr =

ElZi4;Z;)/ E|Z2) is the correlation sequence of {Z;}, and E[D,]/(N —1) is the
expected zero-crossing rate in discrete time. We refer to (1.3) as the “cosine
formula”. Observe that, because of stationarity, the expected zero-crossing rate
E[D,]/(N —1) is independent of N. In general cos 3% need not be a corre-

lation, see Kedem (1991). Since a linearly filtered Gaussian process results in a



Gaussian process, the cosine formula holds for the filtered process where the cor-
relation coeflicient and zero-crossing count of the filtered process are used in the
cosine formula (1.3). To be precise, let £,(Z): be the output at time t of a lin-
ear time invariant filter £, applied to {Z;}. Using the cosine formula (1.3) and
the spectral representation for stationary processes, the first-order correlation

coeflicient, p;(a), of the filtered process {L,(Z):} is given by,

mE[Da] _ [T, cos(w)|H(w; o)|*dFz(w)
N -1 7 |H(w; ) |?dFz(w)

p1(a) = cos (1.4)

where, D, is the zero-crossing count in {L,(Z)1, -, L(Z)n}, Fz(w) the spec-
tral distribution function of the process {Z:}, and |H(w;@)|? the squared gain
of the filter £,. The zero-crossings, D,, of filtered time series are referred to as
Higher-Order-Crossings or HOC (see Kedem 1986).

For a given zero-mean time series {Z;} and parametric filter family with

parameter space @, {L,(-),a € O}, the corresponding HOC family is denoted
by {Da, € 0}.

1.4 The HK Algorithm

The iterative scheme described below illustrates a method for detecting a single
frequency in Gaussian noise. Our model is (1.1) with p = 1 and {(;} white Gaus-
sian noise. As we will see the algorithm presented next guarantees convergence
of a HOC sequence to the frequency w; in our model. The filter family used is
the exponential smoothing filter or autoregressive order 1, AR(1) filter.

The AR(1) filter known as the (o-filter) is defined by the operation,

Zt(a) = LQ(Z)t = Zt -+ aZt_l + azZt_g +--- (15)



or equivalently in its recursive form by,
Zt(a) = aZt_l(CY) + Zt

where the squared gain of the filter |H(w; )| is given by

1
|H(w; @)|* = R P a€(-1,1), we [0,7]. (1.6)

Similarly define the output noise at time ¢ by,

C(a) = M, (1.7)

Then for « € (—1,1),
0<Cla)< 1.

Clearly C(a) also depends on w;, but this is not included to keep the notation

simple.

The following theorem from He and Kedem (1989) provides the theoretical basis
for the parametric filtering and contraction mapping method and reveals the
fundamental property in its proof.

Theorem 1.1 (He and Kedem 1989)

Suppose

Zy = Aj cos(wit) + By sin(wit) + ¢, ¢ = 0,41,

where w; € (0,7), A;, B; are uncorrelated, normal, zero-mean, variance o, (i.e.

N(0,0?)) random variables, and {(;} is Gaussian white noise with mean 0 and



variance 0‘2, independent of A;, B;. Let {D,} be the HOC from the AR(1) filter

( 1.5). Fix oy € (—1,1), and define
TE[Dg,
Qf+1 = COS (-N—[—l—]—> ; k= 1,2, s (18)

Then, as k£ — oo,

ax — cos(wi)

and
TE[Dqy,]
N -1 (1.9)
Proof: Note that the special form ( 1.6) gives
v ) 9 _ s
| 1H s 0)fde =
and
T . 2 N Vg
/0 cos(w) | H(w; o) *dw = ——— x o
Therefore, by symmetry, we obtain the factorization,
/7r cos(w)|H(w; @)’ dw = a x /7r |H(w; @) *dw (1.10)

and so, from the zero-crossing spectral representation (1.4), and the cosine for-

pu(@) = cos (@ﬁl>

mula (1.3),

N -1

we have, with dF¢(w) = ;-0ldw,

oF | H(wi; a)[ x cos(wi) + [, |H(w; o) PdF(w) x a

) = T TR @) + I, B (s @) PR (@) -
or, from the definition of C(a) in ( 1.7),
pi(a) = [1 — C(a)] x cos(wy) + C(a) x & (1.12)



We can see that p;(a) is a convex combination of cos(w;) and « and that it also

can be rewritten as a contraction mapping of the form,
pi(a) = " + C(a)(a — ™) (1.13)

where o* = cos(w;). Invoke the cosine formula, and write the recursion ( 1.8)

as,

Qe = pr(a) (1.14)

Starting with k = 1, substitute this in ( 1.13), iteratively, to obtain,

k
pr(ex) = & + [I] Cle)](en — ).

=1
As k — oo, we have that

k
j=1

,01(’),

C(e;) — 0, and this implies o — o, and that o* is a fixed point of

or

o) = o (ZEL22)

By the monotonicity of cos(z), = € [0, 7],

TE[Dqge]
W = ———.
N-1

The most important single fact in the preceding proof is the factorization
equation ( 1.10) in which the parameter « is factorized outside the integral.
This factorization is the basis for extending Theorem 1 as was done in Li and
Kedem 1993 and Yakowitz 1991. The fact that the parameter is “kicked out” in

( 1.10) is somewhat more apparent if we rewrite ( 1.10) as

J7_ cos(w)|H (w; &) |*dw

N Y TP [ 119




where p; ¢() is the first-order autocorrelation of the filtered noise. The property
( 1.15) is what we call the fundamental property relative to a given family of
filters. Thus, the AR(1) parametric filter possesses the fundamental property
relative to white noise. This together with the correlation representation ( 1.12)
lead to the contraction mapping ( 1.13), and eventually to the convergent HOC
sequences o, and 1’?_[23&1 Fortunately, as we shall see in the next section,
factorizations of the form ( 1.10) are readily available. In actual practice, the
observed or empirical zero-crossing rate is used in place of E[D,,] at each stage
in the iteration and the noise process need not be white - it simply needs to

possess a sufficiently continuous spectrum. Computer simulation results using

the o-filter for a single sinusoid in white Gaussian noise are given in Table 1.1

1.5 Examples of Parametric Families and Con-
traction Mappings

In this section we give two examples of parametric filter families which satisfy
the fundamental property ( 1.15). They are, an M A(1) family, which is similar
to the a-filter family, and an AR(2) filter family. With the AR(2) filters it is
possible to simultaneously shift the center frequency of the filter and contract
the bandwidth. This allows for a faster rate of convergence of the HOC sequence
and greater accuracy in comparison with the o-filter family. General conditions
relating filter bandwidth contraction rate and the convergence rate of the HOC

sequences may be found in Li and Kedem 1993 and Troendle 1991.

10



1.5.1 An example using a MA(1) filter

Again let our model be as in Theorem 1.1 with {Z;}, a zero-mean stationary

Gaussian time series defined by,

Zy = A cos(wyt) + By sin(wit) + G, t=0,£1,--- (1.16)
where we restrict w; € (%, %) for convenience.

Consider the family {£,} of moving average order one, M A(1), filters indexed

by parameter r, r € (—1,1) and defined by,

Zt('f‘) = £1‘(Z)t = Zt + T'Zt_]_, (117)

and whose squared gain |H(w;r)|? s,

|H(w;r)> =14 2rcos(w) +r?, re (=1,1), welo,n] (1.18)

This family consists of simple finite impulse response filters which exhibit
lowpass characteristics for values of the parameter r which are positive and
exhibits highpass characteristics for values which are negative.

The fundamental property would require,

/_7; cos(w)|H (w; r)|?dw = r x /_: |H(w;r)|*dw, (1.19)

since we assume the noise to be white. However, evaluating the particular inte-

grals yields,

JIpcos(w)|H(w;r)|Pdw 7
S H(wir)Pdw 141

(1.20)

Thus, we need to reparameterize. To obtain a reparameterization which will

satisfy the fundamental property, set

r

= 14 r2’

B

11



and solve for r in terms of 8. This gives,

1 — /1= 4p2
28 '

T =

Thus, the fundamental property is satisfied by the family reparameterized by S.

Note that 3 € (—3, 1), hence the reason for restricting w; € (%, 4.

1.5.2 An AR(2) filter family

The next example illustrates how to enhance the HK algorithm by selecting a
parametric family that allows for adjustable narrow bandwidth filters.

Our model again will be {Z;} as in (1.16) with w; € (0,7). Consider the
family {£(s,,)} of autoregressive order 2, AR(2) filters indexed by the 2-vector

parameter (3,7) and defined by,

Z«(B,v) = L Z): = BZi—1(B,7) + ¥Z:-2(8,7) + Z;. (1.21)

The squared gain of the AR(2) filter, |H(w;(8,7))[*, is given by

2 1
|H(w; (B,7)I" = [T A 177 + 28(7 — 1) cos(ws) — 2y cos(2)’ w € [0,7](1.22)

Evaluating the integrals yields,

2 cos(w) | H(w; (8,7))|’dw _ B
J2 1 H(w; (8,7)) 2 dw 11—~

(1.23)

It is seen from ( 1.23 ) that we need to reparameterize the filter family in order
to satisfy (15).

Before reparameterizing the filter family, note that these filters have poles at

B+VB%+ 4y
2 b

12



which are inside the unit circle for values of the parameters given by,

4
~1<y<0 and |8| < 7—1I (1.24)

and approach the unit circle as vy — ~1. That is the poles go to exp(=+:f)
as v = —1 and 0 — cos™!(3/2). Thus, we will restrict our parameter space
according to (1.24) to guarantee stable filters.

If v is fixed to some 9 € (—1,0), then § = T»% gives a parameterization
( in terms of T%’ with only @ free) satisfying the fundamental property. Fur-
thermore, by allowing v to vary in a prescribed way with each iteration (i. e.
let v approach —1 during the iteration process for narrower bandwidths), the
filters can be made to simultaneously shift there center frequency and contract
the bandwidth. Thus, for suitably chosen sequences {~x}, with v, — —1, we can
also satisfy fundamental property with the added bonus of accelerated conver-
gence of the HOC sequence and greater accuracy of the estimates (see Li 1992,
Troendle 1991 and Yakowitz 1991). Simulation results for a single sinusoid in

white Gaussian noise using the AR(2) filter with ¥ = —.9 are given in Table 1.2

1.6 Summary

In this opening chapter a parametric filtering technique was presented for ap-
plication to the problem of discrete frequency estimation. By incorporating a
contraction mapping principle with parametric filtering a theoretical basis for
this new method was established (Theorem 1). The theorem also provides a
fundamental property ( 1.15), which places a condition on the parametric filter
family guaranteeing convergence of the iterative filtering method for frequency

estimation. Two contrasting examples were given which illustrate the utility of

13



the method.
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Table 1.1: Hlustration of the HK algorithm using the AR(1) filter fam-
ily, convergence based on the observed zero-crossing count, (i) =

7Dy, /(N—=1), k = oo, towards w; = 0.8 as a function of SNR. N = 10, 000.

1dB 0dB | —1.94dB | —6.02dB

k a1=——.1 a1=.9 a1=.2 011:.5

1] 0.8848 | 0.5194 | 0.9127 0.9291

2| 0.8006 | 0.5904 | 0.8222 0.8713
3 0.7987 | 0.6563 | 0.8015 0.8411
4| 0.7987 0.7142 | 0.7965 0.8191
51 0.7987 | 0.7600 | 0.7952 0.8053
6 0.7987 | 0.7864 | 0.7952 0.8015
71 0.7987 0.8002 | 0.7952 0.7990
81 0.7987 | 0.8065 | 0.7952 0.7984

91 0.7987 | 0.8065 | 0.7952 0.7977
10 ] 0.7987 | 0.8065 | 0.7952 0.7971
11| 0.7987 | 0.8065 | 0.7952 0.7971
12 | 0.7987 0.8065 | 0.7952 0.7971

15



Table 1.2: Hlustration of the HK algorithm using the AR(2) filter family
with v = —.9, convergence based on the observed zero-crossing count,
(0k41) = 7D, /(N — 1), k — 0o, towards w; = 0.8 as a function of SNR.
N = 2,000.

0dB 0dB —6.02dB | —6.02dB
klag=9|ay==-5| ay=.9 o = .2
1] 0.5613 | 2.0377 0.4685 1.3349
21 0.6839 | 2.0000 0.4890 1.3050
3107987 | 1.9717 0.5141 1.2830
41 0.8003 | 1.9198 0.5424 1.2547
51 0.8003 | 1.8679 0.5833 1.2390
6 | 0.8003 | 1.8050 0.6336 1.1918
71 0.8003 | 1.7689 0.6965 1.1516
81 0.8003 | 1.7233 0.7704 1.1242
91 0.8003 | 1.6651 0.7987 1.0676
10 | 0.8003 | 1.6274 0.8034 0.9119
>11 0.8003 | 1.5645 0.8034 0.8302
12 { 0.8003 | 1.5016 0.8034 0.8019
20 | 0.8003 | 0.8003 0.8019 0.8019

16



Chapter 2

Zero-Crossing Rates of Functions of

Gaussian Processes

2.1 Introduction

Formulas for the expected zero-crossing rates of random processes that are mono-
tone transformations of Gaussian processes can be obtained using two different
techniques. The first technique involves the derivation of the expected zero-
crossing rate for discrete-time processes and then extends the result to the
continuous-time case by using an appropriate limiting argument. The second
is a direct method that makes use, successively, of Price’s theorem, the chain
rule for derivatives, and Rice’s formula for the expected zero-crossing rate of
a Gaussian process. A constant, which depends on the variance of the trans-
formed process and a second-moment of its derivative, is derived. Multiplying
Rice’s original expression by this constant yields the zero-crossing formula for
the transformed process. The two methods can be used for the general level-
crossing problem of random processes that are monotone functions of a Gaussian

process.
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Recall that if a zero-mean, stationary Gaussian process {Z(t)}, for —oo <
t < oo with normalized autocorrelation function p(t) has sufficiently smooth

sample paths, the average number of zero-crossings per unit time is given by

Rice’s formula (Rice (1944))
1 e
EWD) = 1/ 0) (21)

where D is the number of zero-crossings of {Z(t)} for ¢ in the unit interval [0, 1],
and p"(0) is the second derivative of the normalized autocorrelation of {Z(t)}
at 0.

Recall as well the analogous formula for a discrete-time, zero-mean, station-
ary Gaussian process {Z¢}, k = 0,£1,42- - - has been obtained by many authors
(see McFadden, Ylvisaker, Ruchkin, Kedem (1980a), Kedem (1986)) and is given
by

E[D
p1 = cos ZV [_ i] (2.2)
or, equivalently, by the inverse form
E[D 1 _
N[—ll] =g A
where D; is the number of sign-changes or zero-crossings in Zy,---,Zn, pr =

E[Zi1;2,]/ E[Z7] is the correlation sequence of {Z;}, and E[D,]/(N — 1) is the
expected zero-crossing rate in discrete time.

The cosine formula only reaffirms the intuitive notion that in general, that is,
regardless of gaussianity, the expected number of zero-crossings D, is inversely
related to p; (i.e., as E[D] increases, p; decreases, and vice versa). This inverse
relationship is also exhibited by some new “cosine formulas” [egs. (2.19), (2.22),

(2.25) ] that we derive in this chapter for some special cases.
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Rice’s formula (2.1) is closely related to the cosine formula (2.2) . In fact,
Rice’s formula can be derived from the cosine formula as is shown in McFadden
(eq. (13)), Ylvisaker (1965), and Kedem (1980b, p. 23). That is, the continuous-
time version of the expected zero-crossing rate can be obtained from the discrete-
time analog, a fact that is exploited later in the chapter.

Extension of these formulas to non-Gaussian processes has generally been
found problematical. The difficulty with generalizing Rice’s approach is that it
requires knowledge of the joint density of Z(¢) and its derivative Z'(t), which in
general is not tractable when Z(t) is not Gaussian. Similarly, for the discrete-
time case, an extension to non-Gaussian sequences requires knowledge of the
orthant probability Pr(Z; > 0,Zx-; > 0) and its functional relationship to p;.
In general this functional relationship is not known when Z is not Gaussian.

For some cases, however, these difficulties can be overcome. To illustrate
this, we include in the next section a result from He and Kedem (1989) that
extends the cosine formula to the class of processes whose finite-dimensional
distributions are elliptically symmetric (Theorem 2.1), along with a new result
that under some stationarity conditions, extends the cosine formula to processes
that are purely sinusoidal (Theorem 2.2).

A general way to extend (2.1) and (2.2) to a class of non-Gaussian processes
is to transform a Gaussian process by a strictly monotone transformation. By
using such non-linear transformations of Gaussian processes, one can obtain new
zero-crossing formulas using (2.1) and (2.2), and second-moment properties of
the transformed processes. This is explained with the help of some specific cases

later in the chapter.
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2.2 Extension to Ellipsoidal and Purely Sinu-
soidal Processes
A distribution in R" defined by the n-dimensional density
f(x) = B[ p(x'5 " x) (2.3)

for some function ¥ (u) defined on [0,00) and parametrized by a symmetric
positive-definite matrix ¥ is called an ellipsoidal distribution (Jensen (1988))
or elliptically symmetric distribution (McGraw and Wagner(1968)). We shall
say that a stochastic process is an ellipsoidal process if its finite-dimensional

distributions are all elliptically symmetric.

Theorem 2.1 (He and Kedem (1989)) Let {Z;} for £ = 0,£1,42,--- be

a strictly stationary ellipsoidal sequence with mean 0, variance 1, and autocor-

relation sequence px. Then the cosine formula (2.2) holds.

Proof: If the joint density f(z,y) of (Zk, Zx—1) is

F(z,y) = =729 | (z y)=

where

1
Y=c P
p 1

for some ¢ > 0, then the correlation coefficient p; = p (see McGraw and Wagner
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eq. 28) and the orthant probability is given by

1 o0 [o 0] T
Pr(Zi> 0,21 20) = [ZF [7 [T | (@ y)z™? d dy.
0 0
Yy

By switching to polar coordinates, £ = rcos 8, y = rsin 6, we find

z’ +y° — 2pizy

oo 1
Pr(Z: 20,21 20)= [ [ ﬁ(l_p@w( S )dxdy
2 e 1 r2(1—plsin20)>rdrd0
b ¢cz<1—p§>¢< A= 7A)
/2 do oo
- ”1—'0%/0 2(1—plsin20)/o plu)du
m

= (Z + %sin'1 p1) /Ooo Y(u)du.

To evaluate the remaining integral note that

2 + 4y —2p17y

[.]. J(l;—p_f[’( =

and by switching to polar coordinates as above

o0 — %" df o
/0 zb(u)du:[ 1_'01/0 2(1—plsin20)} T

The last integral is evaluated by recognizing that

2 dé —/11'/2 do +/7r/2 do
o 2(1—p1sin20) Jo 1—p;sin20 Jo 1+ p;sin20’

Collecting our results we obtain

1
Pr(Ze 2 0,21 2 0) = (§ + 5 sin™ pu)/

r 1 . _
=Z+2—ﬂ_sm1p1. a

Therefore, from the definition of D;,
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E[Di] = (N — 1)[1 — 2Pr(Z; > 0, Zk—y > 0)]

1 1. _
:(N—l)(-é—;sm lpl)

or

mE[Dy] _ S(z_-—l )..
cos 7 = cos {5 —sinT gy | = pr.

g

Rice’s formula can now be obtained as a corollary. We need only sufficiently
smooth sample paths and the finiteness of p"(0) (Ylvisaker (1965)).

More precisely, let {Z(t)} for —oco < t < oo be a strictly stationary ellipsoidal
process possessing a correlation function p(t) that is twice differentiable at 0.
Assume that, for A > 0, the probability of more than a single crossing in (¢,{+A)
is negligible (i.e., goes to zero) as A — 0. Define the sampled time series

Zr=7Z((k—-1A) for k =1,2,---, N in such a way that

(N-1)A=1. (2.4)
By using the expected sign-change count of the A-sampled process, that is, by
sampling at ¢ = kA, the expected zero-crossing rate in continuous-time can be

obtained in the limit A — 0. The sampled process {Zy} is strictly stationary

with correlation sequence pi, say. Note that
pr = p(A). (2.5)
A corresponding binary time series we will use in defining D, y is

1 ifZ>0
Xy =

0 if Zx <.
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In terms of X, D; ny can be expressed as

Duw =3 X — Xos]?, (2.6)

=2
i.e., 0 is treated as positive. By the cosine formula, monotone convergence, and

I’Hopital’s rule,

B[DJ] = Jim E[Dyn]

~ tim L cos-l
—AIE}JECOS p(A)

= 2\="0) (2.7)

and so Rice’s formula (2.1) holds. In deriving (2.7) the cosine formula has been

used 1n its inverse form

N-1

E[D\n] = cos™ P1

where we substituted p(A) for p; and 1/A for N — 1.
The foregoing scheme above for deriving a zero-crossing formula in continuous-

time from its discrete-time counterpart is repeated often in this dissertation.

2.2.1 Zero-Crossing Rate of a Pure Sinusoid

Next we extend the cosine formula to processes that are purely sinusoidal.
Theorem 2.2 (Kedem 1994, pg. 118-119) If {Z;} for k = 0, £1,£2,- -,
is a wide-sense stationary (i.e., stationary up to order 2 ) sampled random sinu-

soid:

Zy = Acoswk + Bsinwk (2.8)
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where A, B are uncorrelated random variables with zero means and each has

variance o2, p; is the autocorrelation sequence of {Z}, and if for all k

1
Pr(Z, >0) = 2 (2.9)
and
PI‘(Zk Z 0|Zk._1 Z 0) = )\1, (210)

then the cosine formula holds for a time series from {Z;}
Z17Z2)Z33'” 7ZN

where D, is the number of sign-changes or zero crossings, as defined in (2.6),

p1 = cos ”]5 [_Di]. (2.11)

Proof: Observe that, from (2.6), (2.9), and (2.10), the expected sign-change or

zero-crossing rate
E[D;]
N -1

=1—>\1

is independent of N. Also note that, for a random wide-sense or strict-sense
stationary sinusoid

pP1 = COsw.

If D, zero-crossings are observed in the time-series, and if w is in the interval

[0, 7], then w is bounded as

7rD1< <7rD1+g£< Dy +27r
N =“="N "N="N-1"N

and, by subtraction and simple manipulation,

N =“TNZ1I-N

-2 Dy < 2T
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Therefore with probability 1, as N — oo,

7D
N-1

— Ww.

By bounded convergence, then, as N — oo,

7TD1
N -1

]: WE[Dl] —_

El N -1

But the zero-crossing rate is independent of N, and it follows that

WE[D]] _
N-1 “
and so, we finally have
= co — cos T('E[Dl]
P1L =CO0sSWw ==cC N _1

In the random sinusoid (2.8), wide-sense stationarity is guaranteed if E[A] =
0 = E[B], Var(A) =Var(B) and E[AB] = 0. Furthermore, in this case, 4 and
B may assume any distribution, symmetric or not. Since the autocorrelation
function of a continuous-time stationary random sinusoid is p(t) = coswt, the

expected zero-crossing rate may be obtained, as in (2.7), and is given by
1 w
E[D] = —/=p"(0) = =
D=/ =2,

which says, the number of zero-crossings per unit time is two times the frequency

f of the random sinusoid (where 27 f = w), a result which is not surprising .
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2.3 Two methods for generating zero-crossing
formulas

In this section we present methods for generating zero-crossing formulas for some
non-Gaussian processes. The underlying general idea is to transform a stationary
Gaussian process by a monotone transformation that preserves the zero-crossing
count (by fixing the origin) but gives a different correlation or, equivalently,
spectral structure.

Let ¢(z) be a strictly monotone real-valued-function defined over the real
line. Let {Z(t)} for —oco < t < 0o be a zero-mean stationary process with unit
variance and autocorrelation p,(t). Define a new process {Y(¢)} for —oco < ¢ <

oo, with autocorrelation p,(t), as

Y(¢) = ¢(Z(t)) - ¢(0). (2.12)

{Y(¢)} is not necessarily Gaussian, and its mean need not be 0. A zero-crossing
occurs in {Y (1)} if and only if a zero-crossing occurs in {Z(t)}. That is, the
zero-crossing count in {Y'(t)},t € [0,1], is equal to the zero-crossing count
in {Z(t)},t € [0,1], with probability one. If ¢(z) is nonlinear, the finite-
dimensional distributions of {Y'(¢)} are different from those of {Z(¢)}. This
implies,in particular, that the correlation structures in the two processes are dif-
ferent, and hence we can expect different zero-crossing formulas if they are to
depend on correlation.

The same applies to the corresponding discrete-time processes {Z;} and {Y;}
defined as in the previous section by sampling at ¢ = kA the continuous-time
processes.

We describe two methods for deriving zero-crossing formulas for {Y'(¢)}. By
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the first method, we first derive “cosine formulas” in discrete time and then let
the sampling interval A approach 0. The second method bypasses the cosine
formulas by providing a general formula for the direct evaluation of the zero-
crossing rate of {Y'(¢)}. In both methods, Price’s (not Rice’s ) theorem (Price
(1958)) comes in very handy.

In what follows it is assumed that all relevant derivatives exist and are finite.

In particular we assume the existence of the second-order spectral moment
—p(0) = / M2dF()) < oo (2.13)
-0

where F'()) is the normalized spectral distribution function. Later we obtain an

equation that relates the second-order spectral moments of {Y'(¢)} and {Z(t)}.

2.3.1 Method I for generating zero-crossing formulas

The first method for generating new zero-crossing formulas derives the zero-
crossing rate in continuous time from the one in discrete time and is given by
the following algorithm. We note that the steps in the algorithm may not be
easy to follow when (z) is not “nice”, but the three examples that we consider
indicate that in general the task may be quite tractable nonetheless. The advan-
tage of this method is that it provides expressions for the expected sign-change

or zero-crossing rate in sampled signals.

Algorithm for zero-crossing formulas

e Partition the unit interval [0,1] into N — 1 intervals each of size A > 0,

with (N — 1)A = 1. Let {Z(t)} be a stationary Gaussian process. Let

Zy=2(0),Z> = Z(A), -, Zn = Z((N = 1)A).
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Denote the sign-change or zero-crossing count in Zi,---,Zy by Dy n, as

in (2.6).
Define

Y;c = (P(Zk) _9‘9(0)7 fO’f' k= 17"',N'
The zero-crossing count in Y3, -+, Yy also equals Dy y.

Apply Price’s theorem:

Ipy(A)  OE[YY;_4] 0°Yi Y
2 Yy - _ ———
o) - opud) - U \3Z:07,, (2.14)

to obtain the functional relationship between p,(A) and p,(A) by integra-
tion. That is, py(A)=H(p.(A)), for some function H, which is the solution
to (2.14), with the initial condition p,(A) =0 iff p.(A) = 0.

Substitute into the solution of (2.14)

WE[DI,N]
N-1

COS

for p,(A). This gives the new “cosine formula” that relates p,(A) to the

expected zero-crossing count in Y;,---, Yy

(2.15)

p(8) = H(pu(8)) = H ( “—?_—1”—]) .

Solve the new “cosine formula” (2.15) for E[D; n] in terms of p,(A), sub-

stitute N — 1 =1/A, and let A — 0.

The last step yields the expected zero-crossing rate of Y'(¢) in continuous

time.
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A symmetric uniform process

Let ®(z) be the distribution function of the standard normal distribution, and

define

Then, ¢(0) =1/2, and
(2.16)

For each ¢, Y (¢) is uniformly distributed on the interval [—1/2,1/2]. Write Z,, Z,
for Zy, Zx—1, respectively. Observe that, because {Z(t)} is Gaussian, Z; + Z; is

stochastically independent of Z; — Z;. Then Price’s theorem yields

JE[Y2Y1] oY1\ o ,
Fpa(D) E (8Z2621> = E[® (Z2)® (Z,))

SO

apy(A)
9p=(A)

= 2 Blexp(~1 (2] + Z3)] (2.17)

To evaluate the right-hand side of (2.17) it is helpful to note that

(Z + Z,)* and (Zy — Z,)*
20+ a) " AT —pad)

are independent x? (chi-square) random variables. Thus, we can rewrite (2.17)

24D = S Bloxp(— (14 o A5 L + (1= o))
6 1 pz(A) -1+ PZ(A)
= Sa (FEpB ) oy, (2 2Y)
6 1
_6 _ 2.18
T /22 — p2(A) (21
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where M,2(t) = 1/+/1 — 2t is the moment-generating function of the chi-square

distribution with one degree of freedom. By integrating (2.18), we get
6 . _,
py(A) = —sin™ (p:(A)/2) + Co,

where the constant of integration Co equals 0 because p,(A) = 0 if and only if
p=(A) = 0. Thus, by substituting for p,(A), we obtain a new “cosine formula”

for the foregoing uniform process:

py(A) = 5 sin™* (l cos —ﬂ-—E[Ql—l]) :

- 5 N1 (2.19)

It is interesting to observe that, by series expansion of sin™! z, the new formula
p -

(2.19) is close to the cosine formula (2.2). Indeed we have

3 nE[D
py(A) ~~ ; COs _]V[——IIN_]—

To obtain the continuous time version, we let A — 0 in (2.19). Using
I’Hépital’s rule, we obtain the expected zero-crossing rate per unit time for the

foregoing uniform process,

E[Dc] =

—p"(0). (2.20)

Because the expected zero-crossing rate is the same for {Z(¢)} and {Y'(¢)}, this
approximation means that the second-order spectral moment was not altered

much (py(A) = 2p.(A) + O(p3(A)) by the transformation (2.16).
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A shifted lognormal process

Let
o(z) = exp(z)

and consider the process
Y(t) = exp(Z(t)) - 1. (2.21)

For each ¢, Y(¢) has a shifted lognormal distribution with mean €!/? — 1 and
variance e(e — 1). Observe that the mean of Y(¢) is not 0. Price’s theorem yields

OEY;Yi1]
W = E[eXp(Zk + Zk-—l)]

= exp(1 + p2(A)).

The constant of integration is 0, and we have

— exp(pz(A)) - 1.

py(A) e—1

Replacing p,(A) by cos(m E[D1 n]/(N — 1)) leads to a new "cosine formula”

7E[Dy n]
exp (cos ——=—] — 1
Py(A) = ( el )

e—1

(2.22)

E[Dyx] = = cos™ [log((e ~ 1)py (&) + 1]

Now let A — 0 to obtain the continuous time expected zero-crossing rate

E[D] = /=2 /50) (2.23)

Because (e — 1)/e = 0.63 (i.e. less than 1), the transformation (2.21) leads

to an increase of about 59% in the second spectral moment. Thus, a direct
application of Rice’s original formula (2.1) as an approximation for the expected

zero-crossing rate in {Y(¢)}, would be somewhat erroneous.
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The cube of a Gaussian Process

In the previous example one may get the impression that the discrepancy be-
tween the zero-crossing rates of {Z(¢)} and {Y(¢)} is due to the fact that the
distribution of Y'(¢) is asymmetric. However, this is not exactly the case. The
distribution of Y(¢) can be symmetric, and yet have a sizable discrepancy be-
tween the zero-crossing rates as is shown by the next example.

Let p(z) = 2, and consider the process
Y(t) = Z%(2). (2.24)

Observe that, for each ¢, Y(¢) has a symmetric probability density function. By

Price’s theorem,

OE[Y:Yi1]

_ 2r72
apz(A) - gE[Zka—1]

= 9(2p2(A) +1).

The constant of integration is 0, and

2

py(8) = £p2(A) + %pz(A)-

The “cosine formula” now takes the form

py(A) _ -gCOS 71'E[D1’N] + _]; 37TE[D1,N]'

10 N—1 10 N_1 (2.25)

By implicit differentiation, in the limit as A — 0, we have

EID] = ;@/—p;@, (2.26)

and so, going from {Z(t)} to {Y(¢)}, we find an 80% increase in the second

spectral moment.
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2.3.2 Method II for generating zero-crossing formulas

Our second method for generating zero-crossing formulas is a direct method. For

the general transformation (2.12), Price’s theorem gives,

9py(A) 1 , ,
3p.(A) a—gE[SO (Z(1)e' (Z(t + A))).

Observe that, as A — 0,

Elp'(ZM))|1Z(t+ A)) = ¢ (2(2))
and
Bl (Z(t+ A) (ZW)|Z(t + A)] = ¢ (2(t))*

Elp(Z(t+ A))¢ (ZW)Z(t + A)] = ¢ (Z(t + A)El (Z(1)| Z(t + A))-

Therefore, by double expectation (i.e., F[E[Y|X]] = E[Y]) as A — 0,

3_2_ N E_[ﬂaﬂ_t))l (2:27)

Now, by the chain rule,

d*py _ d*py ( dp. ? + dpy &p;
dA?  dp? \dA dp, dA?

and by (2.27), as A — 0, we obtain an equation that relates the second-order

spectral moments,
" Elp (Z(t))¥] »
(o) = 22N ) (2.25)
Yy

From this and Rice’s formula (2.1), we obtain the expected zero-crossing rate for

FID.) = %‘l% —2(0). (229)

The previously considered three special cases (uniform, lognormal, and the cube

Y(t) in (2.12),

of a Gaussian ) easily follow from this formula.
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A Gaussian process raised to an odd power

To illustrate the use of general formula (2.29), let ¢(z) = z™, where n is a fixed

positive odd integer, and consider the process
Y(t) = o(Z(2)).
Observe that, for all ¢, Y () has a symmetric distribution about zero and
Var[Y(t)]=1:3-5---(2n - 3)(2n — 1).

Since

!

v (2(t) =nZ(t)"

El¢' (Z(t))’] =n®-1-3-5-(2n = 3),

thus, using (2.29), we obtain the expected zero-crossing rate for Y'(¢),

B = 2| 200, (2:30)

From (2.30) we see that n can be chosen so that in going from Z(¢) to Y (¢) the

increase in the second spectral moment can be made arbitrarily large.

2.4 Summary

In this chapter we have shown that the “cosine formula” (2.2), and hence Rice’s
formula (2.1) can be extended to the class of strictly ellipsoidal processes (the-
orem 2.1) and to the class of wide-sense-stationary purely sinusoidal processes
(theorem 2.2). Two distinct methods were presented for generating new formu-
las for the expected zero-crossing rates of some non-Gaussian processes: those

that are smooth, monotone, nonlinear transformations of a Gaussian. The first
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method provides an algorithm for obtaining new cosine formulas for discrete-
time series. These new cosine formulas are then used to obtain new formulas
like Rice’s by taking an appropriate limit (see eq. (2.7)) To help explain the
method, three examples were included for which explicit zero-crossing formulas
were calculated. The examples also illustrate that zero-crossing rates of distorted
Gaussian processes can be quite different from those given by Rice’s original for-
mula, even when the underlying univariate density of the process is symmetric.
The second method is a direct method that yields a general formula (2.29) for
the average zero-crossing rate of a transformed Gaussian process. This general
formula is Rice’s original expression multiplied by a constant which is the square

root of a ratio of second-moments.
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Chapter 3

Zero-Crossing Rates of Mixtures and

Products of Gaussian Processes

3.1 Introduction

Formulas for the expected zero-crossing rate of non-Gaussian mixtures and prod-
ucts of Gaussian processes are obtained. The approach we take is to first derive
the expected zero-crossing rate in discrete time and then obtain the rate in con-
tinuous time by an appropriate limiting argument. The processes considered,
which are non-Gaussian but derived from Gaussian processes, serve to illustrate
the variability of the zero-crossing rate in terms of the normalized autocorrela-
tion function, p(t), of the process. For Gaussian processes, Rice’s formula gives
the expected zero-crossing rate in continuous time as X4/—p"(0). We show pro-
cesses exist with expected zero-crossing rates given by £,/—p"(0) with either
£ > 1 or &« < 1. Consequently, such processes can have an arbitrarily large
or small zero-crossing rate as compared to a Gaussian process with the same

autocorrelation function.
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As usual we will consider a zero-mean, stationary Gaussian process {X(t)},
—00 < t < 00, with autocovariance R(t) and autocorrelation function p(t). We
assume throughout that the variance of the underlying Gaussian process {X(¢)}
is one so that R(0) = p(0) = 1. And as before we assume {X(¢)} is mean square
differentiable, that is, if p”(0) exists and is finite, so that the expected number

of zero-crossings per unit time is given by Rice’s formula (Rice (1944), Ylvisaker

(1965))
B[D] = ~/~7"(0) (3.1)

where D is the number of zero-crossings of { X (¢)} for t in the unit interval [0, 1],
and p"(0) is the second derivative of the autocorrelation function of {X(t)} at
0. Throughout this chapter we shall use D to denote the zero-crossing rate in
continuous time regardless of the process.

Again for reference, the analogous formula for a discrete-time, zero-mean,
unit variance, stationary Gaussian sequence {X(k)}, £ = 0,4£1,+£2--- is given
by ( McFadden (1956), Ylvisaker (1965), Kedem (1980) ) the cosine formula

TFE[Dl]
N-1

(3.2)

p1 = cos

where, D; is the number of sign-changes or zero-crossings in {X(1),---, X(N)},
pr = E[X(k+7)X(j)] is the correlation sequence of {X(k)}, and E[D;]/(N —1)
is the expected zero-crossing rate in discrete time.

In this chapter we present extensions of Rice’s formula of the form f\/———pT(O_)
where kK < 1 or k > 1, and p(t) is the autocorrelation function of the process
in question. Hence, given a non-Gaussian process and a Gaussian process, both
stationary with the same autocorrelation, the Gaussian process may have less or

more or an equal number of zero-crossings on the average.
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Our approach is to first derive the expected zero-crossing rate in discrete-time
(to obtain a cosine formula) and by an appropriate limiting argument arrive at
the zero-crossing rate in continuous time. In particular, we derive analogues
of the “cosine formula” and “Rice’s formula” for a scaled-time mixture of a
Gaussian process, for general mixtures of Gaussian processes, and for products
of Gaussian processes.

To motivate our investigation, we first discuss a formal “orthant probability
formula” for random processes satisfying mild stationarity requirements. Using
a formal “cosine formula”, a formal “orthant probability formula” is obtained

from which we argue that, in general,
K n
E[D} = =y/=p"(0) (3-3)

for sufficiently smooth processes. Moreover, the fact that « may be quite dif-
ferent than one in (3) serves as a warning that Rice’s formula, (1), may not be
indiscriminately applied in the non-Gaussian case (e.g. Chang et al. (1951) pg.
149, Ito and Donaldson (1971) pg. 236, Ou and Herrmann (1990) pg. 1398).

3.2 A Formal Orthant Probability Formula

Let {X(t)}, —o0 < t < o0, be a stochastic process consisting of continuous

random variables with mean zero and satisfying the “stationarity” requirement:

Pr[X(£) > 0] =
Pr[X(£) > 0,X(s) > 0] = g(Jt—s])
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for some function ¢(-). For ¢t € [0,1] and for a positive integer N > 2 we define

the discrete time process
Xe=X({(k-1A), k=1,2,---,N
such that
(N-1A=1. (3.4)

The interval (0, 1] is now partitioned into N — 1 subintervals each of length A
so that {Xi} is simply {X(¢)} evaluated at the endpoints of the subintervals.

Define the indicator,

dy =1 [Sign change in X;,Xx—1]"
Then
N
D]_ = Z dk
k=2
the number of sign changes in X, k= 1,2,---, N approximates the number of

zero-crossings of {X(t)} for ¢ € [0,1]. Clearly D; depends on A and satisfies:
0<D;<N-1.

We are interested in a “correlation-like” quantity. If we define

) s (FEL21),

N-1
then,
1 E[D,]
> — = —_— —
Pr[X () > 0,X(t — A) > 0] 2[ N—l]
1,1 n  wE[Dq]
= Z+%sm [s1n<§— N 1
= %+—sm Lr(A)
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Thus, r(A) acts to some extent as a correlation coefficient between X(¢) and
X(t — A), regardless of whether or not X (¢) has moments of any order. In the
stationary Gaussian case, however, r(A) becomes precisely the correlation coef-
ficient between X (t) and X (¢ — A). For more details see He and Kedem (1989),
and Kedem (1991).

Remark: Note that in the preceding argument we could have used any mono-
tone function defined on [, 2], not just the sine function, but our choice leads

naturally to a convenient “cosine formula”.

So far our construction uses minimal assumptions. Now assume that E[d;] is

essentially proportional to A as A approaches 0:
Eld,] = h(A),

where, as A — 0, we have h{(A) — 0,h'(A) = p,h"(A) — ¢, u and ¢ constants
with g > 0. An example is h(A) = pA + A3. This is a reasonable assumption
since Korolyook’s theorem (Cramér and Leadbetter (1967), pg. 56) guarantees

that the probability of a sign change between Xj, X;_, satisfies
E[di] = pA + o(A)

as A — 0, if the stream of zero-crossings with intensity u is both stationary and
regular. When Korolyook’s theorem holds, the intensity u coincides with the
expected number of zero-crossings per unit time.

Since

r(A) = cos w E[dy],
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it follows that r(0) = 1, and

él_l’%’f‘ (A)=0
and
. " _ 2
Jim, (&) = ()
so that
E[D, = il_% E[Dyl=pu
or

E[D] = 1/~ (0).

Clearly, r(:) is not necessarily an autocorrelation function. Suppose however
that the true autocorrelation, denoted by p(-), satisfies for some positive constant

x and sufficiently small A,

p(A) =r(A).
Then we would have
BID.] = =/~¢(0). (3.5)

This heuristic argument points to the possibility that there may be processes for
which the zero-crossing rate is given by ( 3.5) with « greater or smaller than 1.

We shall show this is in fact true.

3.2.1 Monotone transformations of a Gaussian process

Here we present examples of non-Gaussian processes with zero-crossing rates
given by ( 3.5) with « < 1. Smooth monotone transformations of Gaussian

processes investigated in Chapter 1 provide such examples.
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In the previous chapter the cosine formula (3.2) and Rice’s formula (3.1)
were extended to memoryless monotone transformations of a Gaussian process.
There it was shown that for any real-valued function ¢(z) defined on (—o0, co),
which is differentiable, strictly monotone, and for which E[p'(X(t))?] < co, the

expected zero-crossing rate in continuous time of {Y(¢)} for Y () = p(X (1)) is

Ew4=1J%%%§%QV—&w» (3.6)

T

Note that in (3.6) py(¢) is the normalized autocorrelation function of the trans-
formed process {Y(¢)}.
By Chernoff’s inequality (Chernoff (1981), Houdre and Kagan (1995))

Varlp(X(1)] < Elp (X(t))*) (3.7)

we need only assume E[p (X (t))?] < oo to guarantee Var[p(X(t))] < oo in (3.6).
Moreover, from ( 3.7) we see that (3.6) is of the form ( 3.5) with x < 1 (with
equality iff ¢ is an affine mapping). This observation motivates the following
definition.

Property 1: We say that a random process satisfies Property 1 if its ex-

pected zero-crossing rate per unit time, E[D], satisfies
1 "
E[D] < —/="(0) (38)

where p(t) is the normalized autocorrelation of the process.
By (3.6) and ( 3.7) we see that Property 1 holds for monotone transformations
of a Gaussian process. We next show it holds for a scaled-time mixture of a

Gausslan process.
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3.3 Scaled-Time Mixture of a Gaussian Pro-
cess

Let {X(¢)} be a continuous time, zero-mean, variance one, stationary Gaussian
process with autocorrelation function px(¢). In the sequel we assume {X(¢)} is

mean square differentiable so —p'y (0) < 0o, or equivalently

A
px(t)=1-— §t2 + oft?)

as t — 0 where A, is the second-spectral-moment of the process (Leadbetter et
al. (1983) pg. 151). All processes are separable with continuous sample paths
(with probability one) and all random variables and processes are assumed to
be real-valued.

For any random variable ¢, independent of {X(¢)}, with or without finite
moments, we define the scaled-time mixture of {X(¢)} by ¢ to be the process
{M(t)}, where M(t) = X(£-t).

The scaled-time mixture {M(t)} is a strictly stationary process which is, in
general, non-Gaussian. Note however, that, although the univariate distribution
of {M(t)} is standard normal, the finite-dimensional joint distributions are, in
general, non-Gaussian. Thus, the mean and variance of {M(t)} are zero and
one respectively. Although we do not require the existence of moments in the
above definition, we will assume £ has a finite second-moment which guarantees
a finite expected zero-crossing rate for {M(t)}.

The normalized autocorrelation function of {M(t)}, denoted pas(t), can be

obtained by conditioning and is given by,

pu(t) = Be[BIX(€ - (ta+ )X(E - to) | 8} = Belpx(6 -] = [ px(€ - O1dF(ef39)
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where F¢(¢) is the probability distribution function of the random variable €.
To determine the zero-crossing rate in discrete time of {M(t)} we again use

the orthant probability of the pair of random variables {M(t1), M(¢2)}
Pr[M(t,) > 0, M(t2) > 0]. (3.10)

As remarked earlier, (3.10) has a simple closed form for random variables which
are jointly Gaussian. For that case, assuming X (¢1), X (t2) are both zero-mean

and unit variance, the orthant probability is (see Ch. 4, Kedem 1995)

1 1
Pr[X(t1) > 0,X(t2) > 0] = Yl %sin_1 P (3.11)

where p is the correlation coefficient of X(¢1), X(¢2), so p = E[X ()X (t2)] =

p(ta —t1).
Now for any continuous, zero-mean, symmetric random variables M (t;), M(t,),
the probability of a sign-change or zero-crossing can be expressed in terms of the

orthant probability
2-Pr[M(t,) <0,M(t2) >0 =1-2-Pr[M(t;) > 0,M(tz) > 0],

since Pr[M(¢) < 0] = 1. By stationarity, the expected number of sign-changes

or zero-crossings E[D;], in a sequence {M(1),---, M(N)} is

E[Dy] = (N —1)(1 — 2 Pr[M(1) > 0, M(2) > 0]). (3.12)

Recall that %[L_L;l is the normalized zero-crossing rate in discrete time and is

independent of N. Using (3.11) in the above formula (i.e. take X(t) = M(t))

we arrive at (3.2) for the Gaussian case.
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3.3.1 Cosine Formula for a Scaled-Time Mixture

Let {M(t)} be a scaled-time mixture of a Gaussian process. Consider the discrete
time process {M(k)}, obtained by sampling { M ()}, where, M(k) = X(¢-k) for
k =0,£1,£2,---. The orthant probability (3.10) is obtained by conditioning,
Pr{M(k) > 0, M(k +1) > 0] = E[lix(e-t)20,% (¢-(k+1))201 (3.13)
and using double expectation,
Ellixerzo.x @20l = Ee[Blixernzoxerezald]l  (3.14)

Using (3.11)

1 1 .
Ellix(erzox (e t+1)zalé] = 7 + 5-sin Ypx(6).

By (3.12), the zero-crossing rate in discrete time for the process {M(k)} is ob-

tained,
E[D s
N[_ll] = % - %/_oo sin™" px (€)dFe(€) (3.15)
or
PO _ L™ cos px(e)dR(e). (3.16)

3.3.2 Rice’s Formula for a Scaled-Time Mixture

Dividing the interval (0, 1] into subintervals of size 4, and then applying the same
limiting argument used in the derivation of ( 3.1), it can be shown rigorously
that the zero-crossing rate (per unit time) of a continuous time Gaussian process

E[D] is the limit as § — 0% (from above) of

(3.17)
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(see Ylvisaker (1965), Kedem (1995, p. 129))

This same limiting procedure may be used for non-Gaussian processes by sub-
stituting the appropriate discrete time zero-crossing rate (or “cosine formula”)
in (3.17). Consequently, the zero-crossing rate in continuous time for the scaled-

time mixture is obtained by,

.1 o cos™! px(8€)
lim — _—
§—=0t T Joo 5

dF¢(¢). (3.18)
Note that, if £ has an atom at 0 it (i.e. the atom) does not contribute
to the integral in (3.18). Thus, we assume, without loss of generality, that

Pr[¢ = 0] = 0. Furthermore, since px(¢) is an even function, we may rewrite

(3.18) as
.1 o cos™! px(d€) .1 o cos™! px(8]€])
s LT RO=Jn o T (R
Since
. cos~! ) -
Jim 2 2x0) ) (3.19)

and when 6 > 1 the ratio [c—“’——ls”ﬂﬂ[ is bounded by , [c—"s:ltsﬂ@” is bounded for
all 6 > 0. Therefore, by the bounded convergence theorem we may interchange

the limiting operations and write,

BiD) = i 2 7 2 ap ) L [ i 1 2O )

6§20t T J—0o 5 T J—c0 6—0+ 5’§I

Taking the limit,

B0 =~ [ /o O)leldFe) = ~Blely—px©@).  (3.20)

Thus, rescaling time by the random variable £, we can speed up or slow down
E[D] by the factor E[|¢]]. A good example is a pure stationary Gaussian sinusoid

with frequency w, for which time is rescaled by a positive constant £ = k (with
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probability one). Then clearly, E[D] changes from % to *2. But this is exactly
what (3.20) gives.

In (3.20) the zero-crossing rate of {M(¢)} is given in terms of the autocor-
relation function of the process {X(t)}. We wish to write (3.20) in terms of
the autocorrelation function of the mixture process {M(t)}, itself. Using the

representation (3.9) we see,

pm(t) = Eelpx (& - 1)) (3.21)

so that par(0) = px(0) = 1.
Assuming sufficient regularity conditions on px(¢) to justify the interchange
of differentiation and expectation (p’(t) bounded in a neighborhood of ¢ = 0 is

sufficient) and taking the limit as ¢t — 0,

pu(0) = px (0)E[€7]. (3.22)

Thus, Rice’s formula for the scaled-time mixture process {M(t)} is

E[D] = 71r \/Eﬁg‘z_\/ o (3.23)

By the Cauchy-Schwarz inequality we see that the zero-crossing scaling factor «
is

ETl¢N

VEI[E]

which is strictly less than one except when ¢ = ¢, (with probability one) for

some constant & in which case equality holds. Thus, scaled-time mixtures satisfy
Property 1, eq. (3.8).
In the next section we derive the average zero-crossing rates in discrete time

and continuous time for a general mixture of Gaussian processes.
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3.4 Mixtures of Gaussian Processes

In this section we derive the cosine formula and Rice’s formula for a process
which i1s a mixture of Gaussian processes. We show for a certain subset of the
class of Gaussian mixtures, those with suitable integrability conditions on the
autocorrelation function, that the expected zero-crossing rate in continuous time
satisfies Property 1 in (3.8).

Consider a denumerable collection of independent random processes {X;(¢)},
indexed on I, with ¢ € [ and t € (—o00,00). We assume that each member
of the collection {X;(t)}, is defined on the same probability space and that all
processes are stationary, mean square differentiable, and have continuous sample
paths with probability one.

For each i, let {F:} denote the n-dimensional joint distribution function of
the process {X;(t)}. For any collection {p;}, such that p; > 0 and ¥;c;p;i = 1,
define the mixture process {M(¢)} as the random process whose n-dimensional
joint distribution functions are defined by,

Frya() = Y piFy(). (3.24)
i€l
Kolmogorov’s existence theorem (see Doob (1953), Billingsly (1986), Wise, et
al. (1977)) guarantees the existence of a separable process defined on the same
probability space as {X;(¢)} with the above specified finite-dimensional joint
distributions. This is the process we take as the mixture {M(¢)}.

For our purposes we will assume that {X;(¢)} is a countable collection of inde-
pendent mean-zero, unit variance, mean-square differentiable Gaussian processes
with normalized autocorrelation functions {p;(¢)}. We now find the zero-crossing

rates for a Gaussian mixture {M(¢)}, defined by the collection {X;(t)} and the
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so-called mixing probabilities {p;}.

3.4.1 Cosine Formula for Gaussian Mixtures

We proceed as before and first find the orthant probability for the pair of vari-
ables {M(1), M(2)}. By conditioning and applying the Stieltjes-Sheppard arcsine
law,

PrM(1) 2 0,M(2) > 0] = Ypi- [ +—1—s1n 1))

i€l

Again using stationarity, the expected number of zero-crossings, F[D], in

the sequence {M(1),---,M(N)} is

E[D,] = (N = 1)(1 — 2 Pr[M(1) > 0, M(2) > 0]), (3.25)

so that from the above expression for the orthant probability we obtain the

cosine formula for the mixture,

E[Dy]
N 1= “Ez;pl cos™* p;(1). (3.26)

Since the series in (3.26) is absolutely summable, the discrete time zero-
crossing rate is obtained without any uniform smoothness conditions on the
collection of autocorrelation functions {p;(t)}. However, to obtain the continuous
time zero-crossing rate we’ll impose uniform smoothness conditions on the family
{pi(t)} in order to guarantee a differentiable process and a finite zero-crossing

rate.

49



3.4.2 Rice’s Formula for Gaussian Mixtures

The zero-crossing rate in continuous time is obtained using the limiting argument

as in (3.17) and (3.18),

E[D] = lim — Zp, (5) (3.27)

6—>0+ T

Assuming we can interchange the limit and sum,
%Pz Jim =—£2 = - %;pz\/ (3.28)
Equation (3.28) is not unexpected. Intuitively the average rate of zero-crossings
for the mixture should be the weighted average of the zero-crossing rates for the
individual processes, {X;(¢)}. This can also be seen by considering realizations
of the mixture process. Realizations of {M(¢)} can be constructed by selecting
realizations from the family { X;(¢)}; that is, we select a realization of the process
{X;(t)} with probability p;.
To show that Property 1 eq. (3.8) is satisfied, consider the autocorrelation
function of the mixture pps(2),
t) = pipi(t) (3:29)
i€l
If the family {p;(¢)} is sufficiently well behaved, (i.e. if the collection {p; (¢)} is
uniformly bounded in a neighborhood of ¢ = 0) we may interchange the limits

so that in a neighborhood of zero,

B =Y piel (1) (3.30)
i€l
and in particular at ¢t =0,
par(0) = pip; (0). (3.31)
el
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Finally, by the convexity of the square root function,
1 7 1 "
E[D] = ;sz'\/ —pi(0) < - — > pip: (0), (3.32)
i€l i€l
so Gaussian mixtures satisfy Property 1.
Since monotone transformations and mixtures of Gaussian processes both
satisfy Property 1, it becomes of interest to determine if all processes derived

from a Gaussian satisfy Property 1. This question is answered next.

3.5 Products of Gaussian Processes

In this last section we derive the expected zero-crossing rate for products of
independent Gaussian processes.

Consider a collection of zero-mean, unit variance independent Gaussian pro-
cesses {X;(t)} indexed over the positive integers (X*) with our usual assump-
tions. Again denote the respective normalized autocorrelation function of {X;(¢)}

by pi(t). For M € X* define the product process {W(t)} by
M
Wa(t) = IT X:i(2) (3.33)
=1

The product process {Was(t)} is stationary, with mean zero and unit variance.
It is non-Gaussian for all M > 1.

Our motivation for using a product of Gaussians is illustrated by the following
example. For the moment consider the process Wa(t) = X (t) - X,(¢) which is a
product of two independent Gaussian processes X;(t), : = 1,2. Since the X;(t)
are independent, intuitively we would expect the location of the zeros of any two
sample realizations from X;(t) and X2(t) to be independent. One then might

guess that on average, the number of zeros of a sample realization of the product
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process {W,(¢)} for t € [0,1] is the sum of the average number of zeros of the
sample realizations of X1(¢) and X»(¢) for ¢ € [0,1]. As we show below this is

indeed the case.

3.5.1 Cosine Formula for a Product of Gaussians

We first derive the cosine formula for the case M=2, then for arbitrary M € X*
by using a recursive equation expressing the probability of a sign-change in the
process {War+1(k)} in terms of the probability of a sign-change in the process
{Wu(k)} and the probability of a sign-change in the process {Xp41(k)}, k =
0,+£1,£2,---.

Take {X,(k)} and {X2(k)} to be independent Gaussian processes in dis-
crete time as above. Define the product process, {W)(k)}, in discrete time,
by Wa(k) = Xi(k) - X2(k). Now consider the probability of a sign-change
or zero-crossing for the pair {W,(k), Wa(k + 1)}. Denote this probability by
Pr[XC Wa,(k)]. Similarly denote the probability of no sign-change or zero-
crossing by Pr[~ XC W,(k)]. Then, by conditioning (or directly) we have
Pr[XC Wy(k)] =

Pr[XC Xi(k)]-Pr[~ XC X3(k)] + Pr[XC Xa(k)]-Pr[~ XC X(k)],

or equivalently,

Pr[XC Wy(k)] =
Pr[XC X,(k)]+Pr[XC Xa(k)] —2-Pr[XC X,(k)]-Pr[XC Xa(k)]. (3.34)

Using the cosine formula (3.2) and (3.34) the expected zero-crossing rate in

discrete time for {W5(1),- -, W,(N)} is obtained as

E[D 1 1 2
N[—li = cos™! py (1) + ;cos‘1 p2(1) — ;—2—cos"1 pi(1) - cos™ pa(1)  (3.35)
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In particular if p;(¢) = pa(t), then (3.35) simplifies to

]Ii[l_?q = ;2—2 cos™ (p1(1)) - cos™ (—p1(1))- (3.36)

Now observe that we may write a recursive equation equating the probability
of a sign-change in {Wj(k)} in terms of the probability of a sign-change in
{Whr-1(k)} and the probability of a sign-change in {Xm(k)} by conditioning
and using the recursive representation, Was(¢) = War—1(t) - Xam(¢). From (3.34)
we see that,

Pr[XC Wiy(k)] =

Pr[XC Wy_1(k)] + Pr[XC Xum(k)] —2-Pr[XC Wpy_i(k)] - Pr[XC Xp(k)).
(3.37)
Using the cosine formula for Pr[XC X;(k)] j € 1,..., M we solve (3.37) and

obtain
Pr[XC Wn(k)] =
= | M 2 1
—cos7lpi(1) - ] (1 = =cos™ p;(1))| + = cos™" par(1) (3.38)
=1 |7 j=it1 Q 4

so that the discrete time zero-crossing rate for {Wps(1),---, War(N)} is

ED,) i1 M 2 1,
= = (1) - — Zcos~tp; - )
Mo 2 [pes ) T Zeos™ o) + Coos™ pw(1)

In particular, if all the autocorrelation functions are the same p;(t) = p(t), (3.38)

simplifies to
1— (1= 2cos™t p(1))M

Pr[XC Wy(k)] = .

(3.39)

and the cosine formula becomes,

EID] _ 1= (1= 2cos™ p(1))
N-1 2 ’
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For M an odd integer, 0 < %%1 < 1las —1 < p(l) < 1. For even M,

0<% [D‘] < 1as0<p(l) <1 Itisalso worth noting that for all processes

considered in this Chapter it can be shown that the expected zero-crossing rate

E{D,y

~—5 is inversely proportional to the correlation coefficient p;, that is, as p;

increases —[—— decreases and vice versa. It is believed, in general, that EDI] is

inversely related to p;, however this is still an open problem.

3.5.2 Rice’s Formula for Products of Gaussians

Lastly, we obtain the continuous time expected zero-crossing rate of the product

M

process Wy (t) = T[;Z; Xi(t) by using the same limiting argument as before

applied to (3.38). That is, the average zero-crossing rate per unit time is

E[D] = li EMX:I = (d)- ﬁ 1= 2 cos1:(5 o 1L o1, (s
5—1}1(?*' S COS pz j=i+1( - ﬂ_COS pJ( )) +5‘LI('§'1+ S;COS pM( )
M deosTe) B2 s
= LIE& s L= ZesTal@)+ 2/ =el0)
M1 1cos™! py(d) 9 . i
- =1 [S]ilg}!’ :’;_—5_——— 5]irrg'l+j]-:‘_|*:_l(1__cos pJ((s)) ; _pM(O)a
but
2
i _111(1—;;008 pi(8)) = 1,
SO
Y1
B[D) =2 -vV—ri(0) (3.40)
=1

As remarked above, (3.40) verifies our intuition regarding the expected zero-
crossing rate of the product {Wjs(t)} as simply the sum of the expected zero-

crossing rates of {X;(¢)} fori=1,..., M.

o4



If we again suppose that p;(t) = p(¢) for all 7, then

e =2 /570, (3.41)

™
By direct calculation the autocorrelation function of {Wys(t)} is simply the prod-

uct of the {p;(¢)} 1€ 1,...,.M

M
pwye(t) = T pi(2). (3.42)

=1

From (3.42) the second-spectral-moment of {Wjs(¢)} is obtained

M
A2 = =pi,, (0) = = 3 i 0). (3.43)

Thus, if p;(¢) = p(t), for all ¢, then from (3.41) and (3.42)

50y = 2L /) = L S = o)

However, a Gaussian process with the same spectrum as {Wy(¢)} has an ex-

pected rate

2 =P 0) (3.44)

7r
which is strictly less than —‘/W—A_’[ —pw,,(0) (M > 1) by a factor of VM. Therefore,
{Wum(t)} (for large M ) is an example of a random process with an expected

zero-crossing rate given by £,/—p”(0) where x > 1, and consequently Property

1 is not satisfied.

3.6 Summary

By the celebrated formula of Rice (1944) we know that the expected zero-crossing
rate per unit time of a stationary, mean-square differentiable Gaussian process

is given by

L ®
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We have shown that there are non-Gaussian processes for which the expected

zero-crossing rate per unit time is

with k <1lorx > 1.

For monotone transformations and mixtures of a Gaussian process £ < 1,
for products £ > 1. Moreover, these examples show that non-Gaussian pro-
cesses exist which can have quite different zero-crossing rates-arbitrarily larger
or smaller-than a Gaussian process with the same spectral density as that of the

non-Gaussian process.
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Chapter 4

Radar Detection via Level-Crossings of

the Envelope Process

A radar system generally transmits a waveform which is both amplitude and
phase modulated in a deterministic fashion. The transmitted signal, St(?), is
given by Sr(t) = A(t) cos|w.t + 6(¢)], where the amplitude, A(t), and the phase,
6(t), are known deterministic functions. The carrier frequency of the radar trans-
mitter, w,, is a known constant. For a simple radar transmitter the amplitude
and phase functions, A(t) and 6(t), are slowly varying relative to the carrier
frequency w,. This condition will indeed be met if w, is much greater than the
largest frequency components in the spectra of A(t) and 6(t). For this case, as we
shall see, it is reasonable to identify A(t) as the “envelope” of the signal Sr(t).

When the transmitted signal backscatters off a source (i.e. target), the re-
ceived signal, Sg(t), is a randomly attenuated and phase distorted version of
St(t). The phase and amplitude modulation of Sg(t) is, in part, due to radi-
ation propagation effects and source kinematics which can modulate the radar
cross-section of the target. Now if the radar receivers’ noise characteristics are

modeled by a sufliciently regular, ergodic, stationary process, then filtering with
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an ideal narrow bandpass filter, centered on the carrier frequency, w., essentially
converts the receiver noise to a narrow-band Gaussian process (Rosenblatt 1961,
Davis 1961). The intuition here is as follows: A wide-band process will neces-
sarily decorrelate “fast”(i.e. have a short decorrelation time). A narrow-band
filter has long memory and allows for averaging samples of the input over a long
period. Thus, for a wide-band input to a narrow-band filter, the output will
contain a component which is a long period averaging of essentially uncorrelated
samples. With constraints on the filter weights it should not be unexpected that
a central limit theorem holds. Consequently, a reasonable mathematical model
for Sg(t) is a narrow-band Gaussian process. That is, Sr(t) = R(t) cos[w.t+¢(t)]
where R(t) and ¢(t) are jointly stationary random processes with Rayleigh and
Uniform marginal densities respectively.

In short, by first conditioning the radar receivers output by pre-filtering with
an ideal narrow-band filter, centered on w,, we convert the receiver noise to a
narrow-band Gaussian noise process, say N(t). As long as the spectrum of the
received signal, Sgr(t), is contained in the passband of the prefilter, we preserve
Sr(t) as well.

The detection problem can now be stated: Determine if a narrow-band Gaus-
sian signal, Sg(t), is present or not in the receiver output Y (¢). This detector
may be handled as a decision problem, that is, as a hypothesis testing procedure:
Hy: no signal present, noise only [Y(¢) = N(¢)]

Hi: signal plus noise [Y(¢) = Sg(t) + N(¢)]-

If we assume the received signal and noise are statistically independent and

Jointly Gaussian, the Neyman-Pearson likelihood ratio test is optimal. Here the
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optimality criterion is maximum power for a fixed size test. Stated in signal
processing vernacular, maximum probability of detection for a fixed false alarm
rate.

This detection problem and variations of it are known collectively as “in-
coherent detection” or “partially coherent detection” processing. Optimum de-
tector structures have been derived and investigated by many authors. For a
comprehensive and thorough discussion see Van Trees (1968), pp. 333-366.

As an alternative to the optimal procedure for detecting a narrow-band Gaus-
sian signal in narrow-band Gaussian noise, we consider a detector based on
level-crossing counts. We detail an approach first proposed by Rainal (1966).
His procedure for detecting weak narrow-band signals in narrow-band Gaussian
noise uses the sample mean level-crossing counts of the “envelope” of the receiver
output as a test statistic for detection processing. This approach, though not
optimum, can be less computationally complex than the optimum detector, with
apparently little penalty paid in terms of probability of detection performance.
In subsequent sections we provide the details of Rainal’s detector and formally
verify the performance of his detector, he observed, via computer experiments.
One assumption made by Rainal, but not rigorously proved, is that the mean
level-crossings of the envelope of a Gaussian process are asymptotically nor-
mal. For Gaussian processes the level-crossing counts are asymptotically normal
(Malevich 1969, Cuzick 1976, Slud 1991). Later, we prove asymptotic normal-
ity of the level-crossing count of the envelope of a bandpass Gaussian process
and provide an integral expression for the variance of the envelope level-crossing
counts, which can be numerically evaluated.

In the next section we define the envelope of a stationary random process
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and detail some of its properties used in subsequent sections. We shall make
frequent use of Hilbert transforms of both deterministic and random functions in
the sequel, thus we start with a review the appropriate definitions and properties

as well.

4.1 Hilbert Transforms and Envelopes of Func-

tions and Stationary Processes

4.1.1 Hilbert Transforms and Envelopes of Functions

We start with the definition of the Hilbert transform of a deterministic, real-
valued, function.
The Hilbert transform of a real-valued function (non-random), ¢(t), is defined
as (see Titchmarsh 1948, pp.119-151),
1 oo g(2 —g(t —
glt+s)—gt—s)

i0=— [ - (4.1)
or, equivalently, as a Cauchy Principal Value integral (PV) at s = t.
= Lpy IS ) 4 (4.2)
T —ol—3s

We recall the definition of the PV integral at s = t. Let f(s) € L(—o0,t —
d)U L(t + 8,00,) for every § > 0. Then, the principal value integral of f(s) is
defined as (Rudin 1973 pg.165),

PV / $)ds = lim ( / R f )f(s)ds (4.3)
when the limit exits. Thus, starting with (4.2)
g(s 1 7 reeigls) , 1 17 g(s) > g(s)
PV/ - (,/-oo+/t+ )t—sds_w oot——sd + t+ t—sds'
(4.4)

60



By a change of variables the right hand side of (4.4) becomes

Leoglt=s), 1 [=gtts), (4.5)

™ Jot S T Jot S

which is (4.1), provided that each individual integral exits. As with the Fourier
transform, the Hilbert transform is likewise invertible, with inversion formula

given by,

g(t):%/ooog(t-}_S);g(t—S)ds (46)

or equivalently as a PV integral at s = ¢,
1 = g(s)
)= —— EAS2A .
gty =—=Pv [~ £24s (4.7)

We state, without proof, some of the salient properties of the Hilbert transform
for later reference { see Bedrosian 1963, Bendat and Piersol 1986, pp. 489-492,
Whalen 1971 pp.61-85). Denoting §(t) = H[g(t)],

Hilbert Property 1 Linearity:

Hlagi () + Bga(t)] = aH[g:(t)] + BH[ga(t)]

Hilbert Property 2 Parseval’s:

| st = [ g

—0o0 -0

Hilbert Property 3 Convolution:

Hgi(t) * g2(t)] = Gu1(t) * ga(t) = g1 (2) * Go(t)
Hilbert Property 4 Modulation:

Hig(t) cosw,t] = g(¢) sinw,t
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provided that g(t) is a bandlimited function and w, > 0 is outside the support
of the spectrum of g(¢).

From Hilbert Property 1 we see that the Hilbert transform is a linear opera-
tion. Moreover, in fact, it is a linear operator or filter on the space of L?(—o0, 00)
functions into itself. That is, if g(¢t) € L?(~oco,00) then §(¢) € L?*(—o00,0)
(Titchmarsh pg. 122) so that g X §is an isometry. Using the equivalent defini-

tion given by (4.4), §(t) can be written as a convolution,

|

§(1) = Hlg(t)] = (1) »

where the transfer function of the linear operator or filter,

1 e —twiy—1
H@O:—f emiwt=144
mJ—c0
is given by,
—1 w>0
H(w) = 0 w=0 (4.8)
? w<0

Now to see that H(w) is as given in (4.8), consider the sequence of L?*(~c0, )

functions {A,(¢)}, n = 1,2,3, ..., where

B (2) SN (4.9)
0 else .

Now h, — h pointwise, where h(t) = }. Also, for each n, the Fourier transform

of hy(t), denoted by A, (w), is

~ o0 . _2- n - o nw .
hn(w)=/ hn(t)e_“"tdtz Z/l Slnwtdt___ 22/ Smtdt.

T t T Je t

For a fixed w > 0, h,(w) — =2Z = —4. Similarly, for w < 0, ho(w) — 3. At

w =0, h,(0) = 0. Now, {h,} are uniformly bounded so for any g € L?(—o0, c0)
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we have
~ 2
g*h, L g-
We next define the envelope of a function.

The “envelope” of the function, g(t), which we denote by, A,(t), is defined
as (Bendat and' Piersol pg. 487),

Ay(t) = [¢2(t) + P(1))7. (4.10)

If g(¢) is a narrow-band function, the above definition conforms to our intu-
itive understanding or notion of what the envelope of the function g(t) should
be. For example, let g(t) = A(t) coswot. Using Hilbert Property 3: Modulation,
4(t) = A(t)sinwgt, provided wp > 0 is outside the support of the spectrum of
A(t). Thus, our intuition is verified in this case by the fact that the envelope
of g(t) is A(t). The following table of transform pairs and envelope functions

further illustrates our intuitive notion of the envelope:

9(t) 4(?) [9°() + §*(1)]2
A cos(wt) A sin(wt) |A]
Asin(wt) — A cos(wt) |A|
sin(¢) 1 — cos(?) sin(%)
t t .;.
1 t 1

1

1412 1+1¢2 1+1¢2
sin(wt)Jp(wit) cos(wt)J,(wit) | T (wrt)

where J,(-) is the Bessel function of order n =0,1,2,--- and 0 < w < wy.

4.1.2 The Hilbert Transform of a Stationary Process

Let {X (%)} be a zero-mean weakly stationary process. Using the spectral repre-

sentation for real-valued processes (Cramér and Leadbetter 1967, pg. 137) one
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can write X (%),

X(t) = /0 " cos(wt)é(dw) + /O " sin(wt)éx(dw) (4.11)

where ¢ (dw) and £;(dw) are orthogonal random measures, &1(dw) is even and
¢2(dw) is odd. We assume the spectral distribution function, F: x(w), of the

process {X(t)}, is continuous and normalized so that

/0 ¥ dGx (w) = 1
where Gx(w) = 2Fx(w). It then follows from (4.11) that the autocorrelation
function, px(7), of {X(¢)} is,
px(T) =/ cos(wr)dGx (w).
0

The “Hilbert Transform”, X(t), of X(t) can be defined as ( Cramér and
Leadbetter (1967), pg. 142),

X(t) = /0 T sin(wt)é (dw) - /0  cos(wt)a(dw) (4.12)

From definition (4.12) it follows that the Hilbert transform (defined for sta-
tionary processes) is a linear operator or filter which maps stationary processes
to stationary processes. The Hilbert transform can also be defined, equivalently,

in the frequency domain, by its transfer function, H(w) ( Cramér and Leadbetter

(1967), pp. 141-142),

-1 w>10
H(w) = 0 w=0 (4.13)
7 w<0

The pre-envelope of the process {X(t)} is defined as the complex random

process, {W(t)}, with real part X(t¢) and and imaginary part X(1),

W(t) = X (1) +iX(2).
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The envelope of the stationary process {X(t)}, which we denote by R(t), is
defined analogously as in the non-random case. The envelope process is given
by,

R(t) = [X*(1) + X)) = [W(2)]

It is worth noting that the above definition for the envelope process, which
appears to be different than that given by Rice (Rice 1944, pp. 81-82) is in fact
the same. Rice shows that the underlying Gaussian process, which he writes as

I(t), in our notation X (%), can in fact be written as
I(t) = I.(t) cosw.t — I;(t)sinwt = X () (4.14)

where I.(t) and I;(t) are the so-called in-phase and quadrature components.

To see this, make the following change of variables for any Y (¢)

I(t) = X(t) cosw.t + Y () sinw,t (4.15)
Ii(t) = Y(t) cos wet — X(t) sinw,t (4.16)

Then (4.14) holds. If Y = X, then I.(t) and I,(t) are uncorrelated. Rice then

defines the envelope by,
R(t) = [12(t) + ;@)

However, upon using the Hilbert transform we obtain
R(t) = [I2(t) + IX®)F = [(X*(0) + X)),

and this is yet another justification for the use of X in defining the envelope.
For an interesting survey paper on different definitions one may use for defining
an envelope of narrow-band signals see Rice 1982.

The Hilbert transform, {X ()}, is obtained via a linear operation on {X(t)},

so we have immediately, that, if {X(¢)} is a stationary Gaussian process, so
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is {X(t)}. Generally, if {X(t)} is zero-mean and has a continuous spectral
distribution function, then {X (t)} is zero-mean as well, and moreover, since
&, and ¢ are uncorrelated, has exactly the same spectrum and autocorrelation

function as {X(#)} ( Cramér and Leadbetter (1967) pg. 142). So, in particular,

px(7) = px(7).

We assume in the sequel that all spectral distribution functions considered are
continuous unless noted otherwise.
The cross-correlation function of {X(¢)} and {X ()}, p*(7), is also of interest

and is given by ( Cramér and Leadbetter (1967) pg. 142)

~

p*(1) = E[X($)X (¢ + 7)) = /0 ” sin(wr)dGx (w).

The above integral expression for the cross-correlation is in fact just the Hilbert
transform of the autocorrelation function, px(7), ( Zakai 1960, pg.556, eq. 3) so

that,

p (1) = px () = Hlpx(7)]. (4.17)
Since the Hilbert transform of an even-function is an odd-function, p*(7) is odd
and in particular p*(0) = 0. Thus, if {X(¢)} is Gaussian, the pair of random
variables, (X (t), X (t)), are independent for all £.

We next consider the envelope and the squared envelope of a Gaussian pro-

Cess.

4.1.3 The Envelope of a Gaussian Process

We first detail the derivation originally given by Cramér and Leadbetter (1967,
pp. 248-255), which is based on the work of Rice (1944, pp. 81-84), for the
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joint density of the envelope, {R(t)}, and its mean-square derivative, {R'(¢)}.
We will assume the underlying process {X(t)} is Gaussian and for convenience
mean-zero with variance one.

The main results used later are: the marginal distributions of the envelope,
E(t), and its mean-square derivative, R'(t), are respectively, Rayleigh and Gaus-

sian. For each ¢, R(t) and R'(t) are independent, and hence by Rice’s formula

w - - -
[ tilpm (. )

the expected u (u > 0) level-crossing rate per unit time of R(t) is,

w?
E-Du = (?é)%ue_T

s

where A is the variance of R'(t) and D, = N,[0,1] is the number of u level-
crossings in the unit interval. Lastly, the variance of the number of level-crossings

per unit time is given by the
1
Var(D,) = E[D.] — (E[D))? + 2 /0 (1= 7)p(r)dr

where,
o0 o0
P(7) =/ / [*172|pR, Ry Ry Ry (U, 1, U, T2 )dr1dry
—00 J—00

and pg,,r,R,,R, 15 the joint density of (R(0), R'(0), R(7), R'(7)). The formula
above is sometimes called the Bendat-Rice formula (Bendat 1958, pg. 396, eq.

10-121) but has been given by many authors.

4.1.4 The joint Density of R(t) and R'(¢)

The joint density of R(t) and its mean-square derivative, R/(t), can be obtained

as the limit as 7 — 0 of the joint density of R(¢) and 2[R(¢+7)— R(t)]. We start
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with the derivation of the joint density of R(t) and R(f + 7). As noted above,
this derivation is essentially that given by Rice (1944, pp. 81-84).

Consider the jointly normal random variables X (t), X (t), X (t+7), X(t+71).
Again for convenience we assume mean-zero and variance one. The covariance

matrix is obtained using (4.17) and is

prop 0 1

where p = px(7) and p* = p*(7). The inverse of the above covariance matrix is

easily obtained as

- —p 0 1

where A = 1—p? —p*2. Hence, the joint density of X(#), X(t), X(t+7), X(t—}—T),
which we denote by, fx .(z1, 22,3, z4), is
1 { 1
24 P17 34

[(mf+m§+x§+wﬁ) —2p(z123+2224)— 20" (2124—z273)]}. (4.18)

By changing variables,
2y = Rycosb; 5= R;sinb,
23 = Rycosbly z4= Rysinb,
and integrating over §; and 6, the joint density of R(t) and R(t+ ) is obtained

(with some further coordinate transformations) as

FrBy _(mpimg)oa [T Ry Ry(p? + %)%
—1 ¢ /0 cosh {[ Y ] cos ¢p}de. (4.19)
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The integral in (4.19) can be evaluated in terms of the zero-order modified Bessel
function of the first kind, Io(z), ( Abramowitz and Stegun, 1972 pp. 374-378)

and so finally,
PRO).R()(B1, Be) = R;f ~(RHF)A] {Rlﬁz( +p?)7}. (4.20)
With (4.20) the joint distribution of R(t) and R'(t) is obtained and given by
Pro).r@)(R, R) = (27 A)~2 exp(— RY**)Rexp~F'/2 (4.21)

Since the univariate density of {R(¢)} is Rayleigh and and {R/(¢)} is Gaussian,
mean zero, variance A, we see that R(¢) and R/(t) are independent for each ¢.
Using (4.20) the covariance function of {R(¢)} can be calculated, with some

work (the two-fold integration is a bit involved), and is

1

EIR()R(+7)) = 5 Fi(- ; 5515 R2), (4.22)

where, k2 = p? + p*? < 1 and 2Fi(a,B;7;z) is the Gaussian hypergeometric
function (see Middleton 1960, pp.1076-1077) which is represented by the series

af (a+1)B(B+1)
2Fi(e,B;732) = 14 — f!+a°‘7(7+1)2! P4 |zl<l. (4.23)

Equation (4.22), giving the covariance in terms of the hypergeometric function,
2 F, was originally given by Uhlenbeck (1943) but is hinted at by Rice (1944 pg.
84 eq. 3.7-13) as well. For our special case, where o = § = —% and v = 1, the
covariance is given by a power series in kg (which depends on 7),

E[R(t)R(t+ 7)) = —(1 + kg + g +). (4.24)

The power series clearly converges for all k2 < 1.
It is interesting to note by (4.24), that if we take the Fourier transform of the
autocovariance of the envelope, E[R(t)R(t+7)] — E[R(¢)]?, noting E[R(})}* = Z,
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to obtain the power spectrum we see that, in general, the envelope process may
not be bandlimited. To see this assume that the spectrum of {X(¢)} has a
continuous component. The power spectrum of the envelope, Pr(w), is given by
the termwise Fourier transform of

T kg ks

2g toat )
or
7['];?0*]:70 120*%0*];0*];0
= — 4.2
Paw) = g (0 4 RERERID (425)

Assume the spectrum of {X(t)} is bandlimited. Then, by considering each
successive term in the series for Pr(w), we see that each higher-order convolution
of p(w) = fx(w) with itself effectively doubles the bandwidth, thus guaranteeing
that the support of the spectrum is unbounded.

An example, and one we will use in the sequel, is provided by the envelope
of an ideal bandpass process. Let {X(¢)} be a Gaussian process with a spectral
density function which is constant over the frequency intervals (—w, — &, —w.+9)
and (w; — 6,w, + J) and zero elsewhere. The center frequency is said to be w,
and the bandwidth is 26. Assume the total power of this ideal bandpass process

is unity. Then, the autocorrelation function is given by

sin 07
p(r) = 5o cosweT

. Using Hilbert Property 4 Modulation we see
*

. sin 07T
pr) = 5o sinwer

and so k2 is given by,

sin 67

2
57')'

kg = ko(r) = p*(r) + p*(1) = (
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Note that in this example the spectral support of k2(7) is [—26,26]. This will,
in fact, turn out to be the spectral support of the squared envelope of the ideal

bandpass process as we see next.

4.1.5 The Squared Envelope Process

For the purpose of counting mean level-crossings of the envelope process we can
use the squared envelope process instead. That is, the u level-crossings of R(t)
are, of course, the u? level-crossings of R*(t).

As we saw in the last section the autocorrelation function and spectral density
of the envelope process {R(t)} are given by infinite series expansions. This
is in contrast to the squared envelope process, {R?(t)}, whose autocorrelation
and spectral density are given by simpler looking expressions which are easily

obtained in terms of px(7) and fx(w). We will see that the autocorrelation is,

pra(T) = px (7) + P (7) (4.26)

and thus, by the convolution theorem, the spectral density is
Fre(w) = Fx(w) * fx(w) + fx(w) * fx(w) (4.27)

where fx(w) is the Fourier transform of jx (7).
To obtain the autocorrelation of the squared envelope, { R*(t)}, we compute

the following expectation,
E[R¥t+ T)R*(t)] = E[X*t+7)+ X2t +7))(X%(1) + X%(t)] (4.28)
= E[X*(t+7)X*t)]+ EX?0)X2t+7)] (429
+E[X*(t + 1) X)) + E[X*(t + 7)X*(t)] (4.30)

(4.31)
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Now using the fact that X and X are jointly Gaussian, we assume again mean

zero and unit variance, the individual expectations are given by,

E[X*(t+7)X2(t)] = E*[X%(¢t+7)EXt)]) + 2E[X (¢ + 7) X (2)][4.32)
= 14 2p%(7) (4.33)
EX*)X*(t+71)] = EYX®)EYX2(t + 7)) + 2B (X (1) X (¢ + 7)]4.34)
= 1+2p%(7) (4.35)
EX*(t+7)X1)] = E’[X*(t+ )] EX2(t)] + 2B (X (¢ + 7) X (1)]4.36)
= 1+2p%(~7) (4.37)
EIX*(O)X*(t+7)] = E[X*OIEYX(t+ 7))+ 2B X ()X (¢ + 7)[4.38)
= 1+ 2p%(7). (4.39)
(4.40)
Using px(—7) = —px(7) and collecting terms,
E[R*(t + T)R(t)] = 4 + 4p% (1) + 4p% (7). (4.41)
Now
E[R*(t)] = E[X*(t) + X*(t)] = 2E[R*(t)] = E[(X*(t) + X2(1))}] =8 (4.42)
50 0% = 4, and hence, the autocorrelation, pgz(7), of {R?(£)} is,
E[R*(t + 7)R¥(t)] — E[R*(t + 7)) E[R(t)]

pR2(T) = o2 (443)
R2

= px(1) +p%(7) (4.44)

If the underlying Gaussian process is an ideal bandpass process, we see from

(4.44) that

pre(7) = () + () = (20T (4.45)
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and hence the spectral density is

Hwts  —20<w<0
fRrW=9¢ 5-Aw 0<w<?2s (4.46)
0 else

Using (4.25) it is interesting to observe that for this particular example,
when {X(t)} is an ideal bandpass process, the power spectrum of {R?(t)} is
bandlimited while the spectral support of {R(t)} is the whole real line.

From (4.20) the joint density of R%(t) and R%(t + 7) is easily obtained by a
change of variables and is given

1 VUV won L
Pre(o).re(r) (Us V) = e UL S (6 4 o)) (4.47)

To obtain the joint probability demsity R*(t) and its mean-square derivative,
2R(t)R'(t), we first show that, 2R(¢t)R'(t), is indeed the mean-square deriva-
tive, and then by a simple change of variables, obtain the joint density of
(R?(t),2R(t)R'(t)) from the joint density of (R(t), R'(¢)).

To see that the mean-square derivative of, { R*(¢)}, at time ¢ is {2R(¢)R'(¢)}

consider the following limits,

lim(R(t + §) + R(2)] L 2R() (4.48)
lim R+ ‘2 — RO 25 gy (4.49)

Since we assume {R(t)} is mean-square differentiable, this implies mean-square
continuity (the autocorrelation function is continuous at origin) so both the
above limits hold. Now if X, 52) X and Y, 2) Y then X,Y, —L—2> XY (Yaglom pg.
63) so

[R(t+6) — R(t)] _ R*(t+6)— R(1)
5 - 5

[R(t+ &) + R(t)] B 2R(t)R (1)
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The joint density of R?(t) and 2R(¢)R/(t) is obtained using the change of

variables formula for the transformation,

Ult) = Rt) (4.50)
V(t) = 2R(t)R'(1). (4.51)
(4.52)
The Jacobian of the above transformation is 7 Ul o Using (4.21) the joint density
of R%(t) and 2R(¥)R'(t) is,
1 (X)) ¥
pre2rr/(U, V) = NN (oa)e~z. (4.53)

4.2 Level-Crossing Based Detector

As an alternative to the optimal procedure for detecting a narrow-band Gaussian
signal in narrow-band Gaussian noise we consider a detector based on level-
crossing counts of the envelope of the observed process.

Following Rainal’s (1964) procedure, the envelope of the received signal is
obtained and the mean level-crossing counts of the envelope are used as a test
statistic for detection processing, that is, to determine whether a narrow-band
Gaussian signal is present or not in the narrow-band Gaussian noise.

Rainal assumes, without proof, that the level-crossing counts are asymptoti-
cally normal ( for observations over a large time interval ), and consequently, a
test of a given significance level is then determined by the variance (asymptotic)
of the mean level-crossing count. Hence, the asymptotic variance of the crossing

counts is needed to set an appropriate threshold for a fixed probability of false
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alarm. This is the usual Neyman-Pearson criterion. Rainal shows experimen-
tally that his less complex level-crossing based detector is competitive with the
near-optimal quadratic detector, also known as the square-law detector. Optimal
linear-quadratic detectors for Gaussian systems are well known. For a general
discussion, including both Gaussian and non-Gaussian systems, see (Picinbono
and Duvaut, 1988).

In the next two sections we derive an expression for the variance of the u-level-
crossings (u > 0) of the envelope process and then prove asymptotic normality
of the crossing counts. We start with the general formula for the variance of the

crossings.

4.2.1 Variance of the Level-Crossing Count

The formula for the variance of the number of zero-crossings in an interval, [0, T,
has its roots in the work of Rice (1944). This formula has been investigated by
many authors over the last 40 years with emphasis on necessary and sufficient
conditions for a finite second moment.

One of the earliest papers, if not the first, that deals with the variance of
the number of zero-crossings is Steinberg et al., 1955. In their paper an explicit
formula (equation 40) is given for the mean-square number of zeros in the interval
[0,T] of a Gaussian process. The formula for the variance includes expressions
which depend on the autocorrelation function and its first two derivatives.

Let D = NJ[0,T] be the number of zero-crossings of {X(¢)} in the interval
[0,7]. Assume {X(¢)} is a zero-mean sufficiently smooth stationary process.
Then,

Var(D) = E[D] — (E[D])? +2 /0 f(T _ 1)(r)dr (4.54)
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where,

() = /_ Z /_ °; |é122lpxs x1 0,51 (0, 1, 0, ) dbr i (4.55)
and px, x: x,,x; is the joint density of (X(0), X'(0), X(7), X'(7)). To obtain the
variance of the u-level-crossings of { X (2)}, for any u, simply replace px, x/ x,,x;(0, £1, 0, Z2)
by PXI,X{,Xz,Xz’(u, T1, U, 552)-

The above formula, (4.54), is in fact a general formula, which is applicable
to a wide class of random processes, and may be adapted to non-stationary
processes as well. A thorough discussion for the general case including rigorous
mathematical formulation and proof is in Cramér H. and M. R. Leadbetter
(1967), pp. 202-212. A general treatment of higher order product moments of
level-crossing counts for processes with absolutely continuous sample paths can
be found in Marcus 1977.

When {X(t)} is a mean zero, unit variance, Gaussian process with autocor-

relation function p(7), (4.54) becomes (Bendat 1958, pp. 398-401)

Vax(D) = EID] ~ (EID)? + = [ (T )T gnga;j(tj)n 90) Jrir)dr, (4.56)

where

h(r) = [1=p2(n)][p"(0) — p"(7)] + 2[p"(0) — p"(7)p(r)]p™(r) + p*(7)
[1 — p*(1))p"(7) + p(7)p(7)
V(L = p2(7))h(7)

Necessary and sufficient conditions for the variance of the number of zero-

g(r) =

crossings of {X(¢)} to be finite can be found in Geman 1972. The conditions are
given in terms of the second derivative of the autocorrelation function, p(7), of

{X(¢)} and are: (1) p"(0) finite and (2)

§ M o
/ M«h < oo for some § > 0. (4.57)
0
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4.2.2 Variance for the Envelope Process

In this section we obtain an expression for the variance of the u-level-crossing
count (u > 0) of the envelope of a symmetric bandpass Gaussian process. We
assume the underlying process is Gaussian, zero-mean, unit variance, with a
one-sided power spectral density, gx(w), which is symmetric about the positive
midband frequency, w, > 0. That is, for any § € [0,w,] we have gx(w, — ) =
gx(we + 6).

Unless otherwise stated, we understand {R(¢)} to be the envelope of the
symmetric bandpass Gaussian process, whose autocorrelation function, p(7), is
given by,

0 o
p(r) = /0 cos(wT)dGx (w) = /0 cos(wt)gx (w)dw. (4.58)

By using (4.14) we can write
X(t) = I(t) coswet — Is(t) sin wet
and
R (t) = I2(t) + I3(t),

where {/(t)} and {Z,(¢)} are the so-called in-phase and quadrature components
respectively. {/.(t)} and {I,(t)} are, independent, identical, Gaussian processes,

zero-mean, unit variance with power spectral density, gr(w), given by

91(0) = 3{ox(w — ) + gx( +w)}.

The results obtain in this section on the variance rely heavily on the work of
Rice (1958). In his paper entitled, “ Duration of Fades in Radio Transmission”,
Rice is concerned with obtaining the probability density function of the interval

length between zero-crossings for a particular class of Gaussian processes. He
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also considers the probability density function for the interval length between
u-level-crossings of the envelope for this same class of Gaussian processes.

Rice approximates the density function for the interval between crossings by
considering related conditional probability density functions. Let p(7,u) denote
the probability density function for the length of the interval when R(¢) < u (i.e.,
p(T,u)d7 is the probability that the interval length is between 7 and 7 + d7).
Rice argued that as a “first approximation ” to the density function p(7,u), one
could use the conditional probability that an upcrossing occurs at time, 7, given
a downcrossing occurred at time 0, we will denote this conditional probability
by pi1(7,u). Rice maintained that p;(7,u) should be close to the actual density
function, p(7,u), especially for small 7. (Finding an expression for p(T,u) was
known to be difficult, and in fact, it is still an open problem today.)

Since conditional probabilities must be approached with care and depend on
the limiting process itself, to be precise, all conditional probabilities are to be
understood in the horizontal-window averaging sense (Kac and Slepian, 1959 pg.
1216, eq. 2.1 and Cramér H. and M. R. Leadbetter (1967), pp. 219-223.). That
is, we will use the following definition:

The probability of the event {R(t) € S} conditioned on R(0) = u, denoted by,
Pr[R(t) € S| R(0) = u] is defined by the following limit,

lim Pr[R(t) € S | R(t) = u for some t € [—4,0]], (4.59)

provided the limit exits.
The conditioning event A we need for determining pi(7,u) is A = {R(t) =

u for some ¢t € [—6,0] and R'(t) > 0}. By Korolyook’s theorem the limiting
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behavior of this probability is given by,

u?

lim Pr[R(t) = u for some ¢ € {—4,0] and R'(¢) > 0] = (%)%ue_T -6 + 0o(9),

§—0

which is just the average u-level-upcrossing rate per unit time of R(t) times ¢

plus a o(§). Thus,

prw) ()

[

2 0 0
wes = [ div [ dislivalpr,mpr r (st ). (4.60)
—o0

Rice (1958, pp. 611-613, eq. 97) completes the required integration and shows

that,
) = uMoye¥’!? 2 ex _uz(l—n(T)coscﬁ)

plnw) = oot [ IR expl s (46
where

n(r) = /Ooogx(w)cos((w—wc)T)dw (4.62)

1 (o) )

Ik = gy /k de /k (@ — k)(y - k)e*dy (4.63)

vy = %coscb (4.64)

ko= unl(?[ﬁ(;l(;)cow] 1_A;7222(T) (4.65)

My, = —n"(0)[1 —n*(7)] —n"*(7) (4.66)

Mys = 7"(7)[L = n*(7)] +n(m)n*(7) (4.67)

_ _x2+y2—2fyzy
F = T (4.68)
A = —1"(0) (4.69)

Now the first step in obtaining an expression for the variance of the u-level-

crossing count of the envelope process, {R(t)}, is the computation of (),

'I[)(T) = ‘/_ /_ |7’17‘2|pR1,R1,RQ,R;(u,fl,u,fg)dr'ldf2. (470)
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Here again pg, g r,.r, is the joint density of (R(0), R'(0), R(7), R'(7)). From
(4.60) and (4.61) we see that

0 )
Lcmﬁdﬂmm%%&wmm%mz (4.71)
u?Ma, 2 u?(1 — n(7) cos @)
_ 4.72
SR )y T Resl- e (472)

And thus, we have a start on evaluating (7).

Let Ir denote the integrand |F173|pR, & Ry R, (4, 1,4, 2). (4.71) gives the in-
tegral of Ir over the second quadrant in the (7, 72) plane. The integral over the
fourth quadrant is obtained using Rice’s result for the conditional probability
of a u-level-downcrossing, at time 7, given a u-level-upcrossing at time 0. De-
note this conditional probability by p2(7,u) (taken in horizontal window sense).

Then,

A
5

W=

u2 w - 0 . - . - -
pa(7,u) - ( ue 7 =/0 dr1/ dra|f172|pR, Ry Ry RY (U, T1, 4, To). (4.73)
—_00

Rice ( 1958, pg. 615, eq. 107) shows

p2(7u) = pa(7,u)+

’U,Mzzeu */2

(2rA)z (1 — 7%(

= [ et 4 e el I 2 g

where erf(z) is the error function,
2 z —t2
erf(z) = 7= / e di. (4.75)
0

Using (4.71) and (4.74) the integral over the second and fourth quadrants (de-

noted [r;,rv) is,

/IIUIV [7172[pR, Ry ’R2’R'z(u’ 1, U, To)drdry =

30



u? Mo, 2r 0 k 2k 24 u?(1 — n(7) cos ¢)
27(1 — 2(7))2 /0 [2J(7,k) +l(v+k )erf(ji) + \/2—7re o ]} exp[— = 72() 1d@4.76)

Following the same type of analysis as Rice, we obtain the two remaining inte-
grals necessary for determining 1 (7). These are, the integral of |#173|pr, r! R, r: (4, 71,4, T2),
over the first and third quadrants of the (7;,7;) plane. In fact, due to symmetry

of the integrand, we will see that
/1 |7172|PRy Ry, Ry Ry (U, T1, U,y o )dr 1 dFy = /m |7172|pRy Ry Ry Ry (s 1, U,y F2)dF 1.

From Rice (1958, pg. 613, eq. 92) the joint density

. i u 2 _1
PRy R, Ry Ry (U 1, U, F2) = (2—7;)2/0 (M — cos® pMZ) ™5 etde (4.77)

where A is a quadratic form in the variables {#;,7,}. All linear terms in the
quadratic expression enter in the form, 7; — 72, and Rice uses the following

change of variables to simplify the exponent A (1958, pg. 613, eq. 96),

[V

z=—(f1 — a)[(1 = n(1)) /M)t y=(f2— a1)[(1 = 7%(7))/Mas)?  (4.78)

where,

un'(7)(cos ¢ — (7))
1 —n2(7)

With this final change of variables Rice then arrives at (4.71). Key to the right

. (4.79)

ay =

hand side of (4.71) is the function J(v, k), which is obtained by integrating the
right side of (4.77) with respect to z and y using (4.78).
Following the same analysis that led to (4.77), the integral of I over the first

quadrant can be evaluated and is given by,

/0 dﬁ/O dra|f172|PR, Ry Ry Ry (4, 1, U, 2) = (4.80)
u®Ma, - u?(1 — n(7) cos ¢)
21(1 — n2(7))? /0 J*(v, k) exp[— T 2(7) 1dé (4.81)
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where,
1 —-00 =5
(v,k) = ——s d ~ k)(y — k)e*dy. 4.82
J* (v, k) 271'\/1_——’7_2/k x/k (z Ny )e*dy (4.82)
(4.81) is the same form as (4.71) except that J(v, k) is replaced by J*(v, k).

Finally, the integral of Ir over the third quadrant yields,

0 0
/ dry / dra|f172|pRy RY Ry Ry (U T1, Uy P2) = (4.83)
—00 —00

u® My LG _“2(1_77(7')C°S¢)
s R el

[ (4.84)

where,

T (7, k) = 5;\/%_75 [ [T@-Ry-ked.  (@485)

However, recall that
2?2+ y? — 2yzy
2(1=72)

so the integrand in (4.85) is symmetric in (z,y), and therefore J**(v,k) =
J*(7,k). Collecting terms from (4.76), (4.81), and (4.84),

¥(r) = zﬂ(lu Mz"z 7 /0 - 27 (v, k) + 27 (1, k) +  (4.86)

[(y + k)erf(— f) jk_ 412 .exp[_uz(ll—_ng():;s s,

Further simplification of (4.86) occurs using the result of Rainal (1965, eq.
5) which relates J*(-) to J(-) by

—k2/2 k? +7

. b
J(v, k) = J(v,k) + Wer exp —[1—e f(\/_)] (4.87)

and allows us to write (4.86)

2u? My, 2 k
W) = e R+ =

(1 -772(7))2
(r+ k) w*(1 (7 cos §)
T 2erf( ﬁ> L] - expl=—g— 55— 1dé:

e /2 4 (4.88)
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To see that 1(7) is well behaved, assume baseband autocorrelation function,
n(7), is at least four times continuously differentiable (which is certainly true for

a symmetric bandpass process). Expanding n(7) about zero we have

A2 krt
Mﬂ=1—-§-+zr+d#% (4.89)

where A and « are the second and fourth spectral moments, respectively, for the
baseband spectrum gr(w).

We need to examine the behavior of ¥(7) as 7 approaches zero from above.

Note that as 7 — 07, using (4.89), we have the following limits

M, B

-rC? ~ 1 %)
Y — cos¢ (4.91)
PR, —2u (1 — A7?/2 — cos @) (4.99)

VB~
where B = k — A%,
Thus, for small 7, the contribution to ¢ (7) from the first term in the integrand

of (4.88),

[ It pepl- L, (4.93)

as 7 — 0 is given by (see Rice pg. 614, 1958 using the change of variable

d) = \/ZT(E,)

/027r J(v, k) exp[— u2(11—-_777(772'():)os ¢)]d¢ — 7'-/000 J[1, %%(1—3:2)] exp[—u’z?/2]dz

so that

2(1 — n(7) cos @)
1 —n*r)

/0 " J(v, k) expl—2 1db = O(). (4.94)
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Also, for small 7, we see

[ ey ('V_Zk_zl[Qerf(\%) 1)) - expl- uz(ll-_";;g;f ?)46(4.95)

— T/OOO [%e—kgﬂ + (_1_-‘;0_)[261{’( ) — 1]} . eXP[—-u2x2/2]dx(496)

ko
V2
— O(7%)(4.97)

ul
where kg = ——(1 — z?).
¢} \/E( )
For use later we also need the asymptotic behavior of % at the origin when
the baseband autocorrelation function is singular. Suppose that n(7) is twice

differentiable but has a discontinuous third derivative at the origin. So that

AT 9|78

n(r)=1- =+ — +o(r) (4.98)
Then using (4.98) we can shown that
M22 T 249
SN Cozs ¢ (4.100)
E — 0 (4.101)

So that using (4.88) as before we see that as 7 — 0

(1) = 1o > 0. (4.102)

So 9(7) does not go to zero but still is well-behaved, i.e. continuous (see Longuet-
Higgins, 1962, pgs. 557, 572 on how this relates to the distribution of the interval
between crossings).

We evaluated (1) for the particular process of interest, namely, the envelope
of an ideal narrow-band Gaussian process. For this special case we performed

numerical quadrature to evaluate ¥(7), and then found the variance using (4.54)
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and (4.88). These numerical results based on the analytic expression (4.88) were
then compared with computer simulations for the envelope of a Gaussian process.

Computer simulations of the envelope of bandlimited white Gaussian noise
were obtained by two different methods. The first method used an approximation
of continuous time bandlimited white Gaussian noise (BLWGN), which was syn-
thesized by first generating a discrete time sequence of independent, identically
distributed, pseudo-Gaussian numbers, and then using the sampling theorem to
approximate the continuous time BLWGN. The envelope was then obtained via
the Hilbert transform of the continuous time process (4.12). The second method
used simply synthesized the in-phase, I.(t), and quadrature, 5(t), components

of BLWGN and then used Rice’s equivalent definition for the envelope, R(¢),
R(t) = [I3(t) + ()=

Results of computer experiments for the mean and variance of the crossing
counts are presented in Tables (4.2.2) and (4.2.2) and in Figure’s (4.2.2), (4.2.2),
(4.2.2), (4.2.2). We compare theoretical values with the sample statistics ob-
tained from the simulations for both BLWGN and the envelope of BLWGN.

4.3 Asymptotic Normality for the Level-Crossings

of the Envelope of a Gaussian Process

In this last section we prove asymptotic normality for the level-crossing counts of
the envelope of a narrow-band Gaussian process. Throughout we will assume the
underlying Gaussian process, {X(¢)}, is separable, and whose one-sided spectral

density, gx(w), is symmetric about the center frequency of the passband w..
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Table 4.1: Sampled crossing rates for an ideal bandpass Gaussian pro-

cess.
Sample Mean Nx(1000) || Sample Variance Nx(1000)

Theor. value 577.4 284
Run # 1 573.4 285.8

2 573.8 277.7

3 572.9 278.3

4 573.1 278.5

) 572.7 272.3

The approach taken here parallels the proof given by Cuzick 1976 of the
asymptotic normality for the zeros of a differentiable Gaussian process. Cuz-
ick’s proof is based on the paper of Malevich 1969, whereby Malevich proves
asymptotic normality of the zero-crossings with restrictive assumptions on the
spectrum.

Both Cuzick’s and Malevich’s proofs use a sequence of M-dependent processes
which converge in mean-square to the underlying Gaussian process {X(t)}. By
using a CLT for M-dependent processes (see Diananda 1953, 1955) the sequence
of zero-crossings of the approximating sequence are shown to be asymptotically
normal, so it is enough to show uniform convergence of the M-dependent pro-
cesses to {X(¢)}, in mean-square, and show that the zero-crossing counts, as
well, converge uniformly in mean-square.

Cuzick shows that some associated correlation functions and cross-correlation

functions between the M-dependent processes and the underlying Gaussian pro-
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Table 4.2: Sampled crossing rates for the envelope of an ideal bandpass

Gaussian process.

Sample Mean Ng(1000) || Sample Variance Ng(1000)
Theor. value 413.5 265
Run # 1 411.5 255.5
2 411.8 263.9
411.4 256.1
4 4114 268.6
) 411.7 264.1

cess converge in mean-square and this enables him to prove a CLT under less
restrictive conditions than those used by Malevich. However, still even less re-
strictive assumptions were needed by Slud 1991 (Theorem 3, pg. 353) to prove
asymptotic normality of the crossing counts. Using the powerful stochastic calcu-
lus of multiple Wiener-Ito expansions and under the least restrictive assumptions
to date, (p(r) € L%*(—o0,00) and p"(7) € L*(—o00,00) along with the indis-
pensable (4.57) ), Slud proves asymptotic normality of the level-crossings and
guarantees nondegeneracy of asymptotic variance with a useful positive lower
bound.

In the next section we prove a CLT for the level-crossings of the envelope
process. The method used is an adaptation of Cuzick’s and Malevich’s proofs
whereby we approximate the in-phase and quadrature components of the under-
lying Gaussian process by M-dependent Gaussian processes. Since each compo-

nent is Gaussian we can readily apply a number of results of Cuzick and Malevich
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Sample mean envelope crossing count = 4.6 (theoretical=4.13 )
2.5 T T T T T T

1.5

Ll

]

1.5 .
2} _
_2.5 ) 1 1 1 L S 1
0 50 100 150 200 250 300 350

Gaussian process sampled at 4Hz — Passband=[.2pi,.3pi]

Figure 4.1: Lowpass Gaussian process and envelope sampled at 4 Hz

to aid in our proof.

4.3.1 Preliminaries

Let {X(t)} be our standard Gaussian bandpass process, zero-mean, and unit
variance, whose one-sided spectral density is symmetric about the midband fre-

quency w,. Using Rice’s representation, we can write
X(t) = I(t) coswet — I(t) sinw,t,
and as before, the envelope R(t) is

R(t) = [I2() + B0,
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Sample mean envelope crossing count = 4.17 (theoretical=4.1 3)
2.5 T T T T T T T

L

|

o 50 100 150 200 250 300 350
Gaussian process sampied at 4Hz — Passband=[.45pi,.55pi]

Figure 4.2: Bandpass Gaussian process and envelope sampled at 4 Hz

We define M-dependent (i.e. autocorrelation function vanishes for |7| > 4M)
Gaussian processes which are approximations to {I.(¢t)} and {I,(¢)}. For the
in-phase component {I.(t)} define the M-dependent approximation, {I.a(¢)}
by

Lom(t) = / " coswt[(gr * Par)(w)]3dBe(w) (4.103)
where dB,(w) is a Gaussian white noise process, gr(w) the spectral density of
{L.(t)} (and {I;(¢)} as well), and

sin Mw

PM(w):K-M[ Mo

. (4.104)

Above the * denotes convolution and K is a normalization constant such that

/ °:° Pag(w)dw = 1.
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Sample mean envelope crossing count = 4.8 (theoretical=4.13 )

2.5 /v\l L 1 T T T T

TAm
AN (1

_2.5 1 1 1 Ll 1 1 i
0 50 100 150 200 250 300 350
Gaussian process sampled at 4Hz — Passband=[.7pi,.8pi]

Figure 4.3: Bandpass Gaussian process and envelope sampled at 4 Hz

By the convolution theorem the autocorrelation, pra(7), of {I (%)} is given

- by pointwise product
prm(r) = pr(7) - Par(7), (4.105)

where p(7) is the autocorrelation function of {I(¢)} (and {I,(t)}), and Py (7) =
F{Py(w)} is the Fourier transform of Pys(w). It follows that (see pg. 549, Cuzick
1976):

(1) Pa(r) is piecewise cubic,

(2) Pu(r) =1 — (Ko/M*)72 + O(|7]?) as 7 — 0, with Kj > 0,

(3) Pr(7) =0 for |7| > 4M.

So by (3) above we see that {I.a(t)} is an M-dependent Gaussian process. Now
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Sample mean level—crossings of 500 realizations 17.06 — the or.=16.92
4 T T
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o 500 1000 1500 2000 2500
Lowpass Gaussian process with narrow—band signal — SNR=.5

Figure 4.4: Superposition of two Gaussian process and the envelope

sampled at 4 Hz

take {I;p(t)} to be defined in an analogous fashion

L(t) = /_ °; cos wt|(gr * Pu)(w)]FdB;(w),

where dB;(w) is again Gaussian white noise, but is independent of dB.(w). This
implies that {I.a(¢)} and {I; p(¢)} are independent random processes.

Define the M-dependent approximation to the envelope by

Ru(t) = [I20(t) + I2ps(1)]7. (4.106)

Observe that since {I.p(t)} and {I; m(t)} are independent processes, and each

M-dependent, it follows that {Rp(¢)} is an M-dependent process as well. This
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is easily seen to be the case using the expressions (4.22) and (4.24) for the

covariance of the envelope

ERu(t)Ruy(t+ 1)) = g—(l + %Oi + g—g‘ +--0), (4.107)

and noting ko = ko(r) = prm(7). The squared envelope process, {R%,(¢)} is

M-dependent as well by observing,

pra, (T) = p1(T) - Piy(7)) = pF (7).

Next with the help of the following two lemmas from (Cuzick 1976, pg. 549)

we prove mean-square convergence of { R3,(t)} and its derivative {2Rps(¢) R}, (?)}.

We show
R, (1) B RX(1) (4.108)
2Ru(t) Ry (1) 5 2R R (4). (4.109)

Lemma 4.1 If f >0, f, >0, and f2 — f? in L}(—o00,00) then f, — f in
L?*(—00, 00).

Lemma 4.2 If f in L2(—00,00), then (f * Py)2 — +/F in L*(—00, 00) and
w - (f * Par)% = w/T in L*(—00,00).

Since g; € L', and Py € L, then g7 * Pyy € L* so by virtue of lemma 4.1 we
have

(g1 % Par)? 5 V91

Consequently,

/ * coswil(gr * Par)(w)]FdBu(w) B /_‘:cosw 9r(@)dBy(w)  (4.110)

-0

(4.111)
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S0
L2
L) B 1L@) (4.112)
and similarly for I s(¢), so that
L) 5 L), (4.113)

The convergence in both cases is uniform in ¢. From the last two equations we

easily obtain (since E[(I{3(T))?] < o)

Pyt B 1) (4.114)
2yt 5 1), (4.115)

again uniformly in ¢. Thus, we have mean-square convergence, uniformly in ¢,

of the approximating squared envelope process,
2 L2 o
Ry,(t) = R*(t). (4.116)

We also have uniform convergence of the approximating sequence of derivatives

also. To see this recall from (??) that the mean-square derivative of {R?(¢)} is
{2R(t)R'(t)} and likewise the derivative of {R3,(¢)} is {2Ran(¢)R);(¢)}. Using
lemma 4.2 we get
wlgr * Pult & wy/gr
so that
~ [ wsinwt [(gr* Pu)@)FdBow) B - [ w sinw \far(w)dBu(w)4.117)

and we have convergence uniformly in ¢

(@) B L),
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Similarly for the quadrature component, I;(t), we get
’ L o
ou(t) = 1), (4.118)

uniformly in ¢, and since all second-moments are finite,

L)) 5 L)L) (4.119)
L) I 0(t) 5 L()LL(2). (4.120)

Therefore, the sequence of M-dependent derivatives converge uniformly in ¢
2R (t) By (t) B 2RO R (1). (4.121)

Definition 4.1 Denote the number of u?-level-crossings of R*(t) for t € [0, T

by Ng:(T). We define the centered normalized u?-level-crossings, Z(T'), by
Z(T) = T2 Nga(T) — E[Np2(T)] ).
Similarly, we define the u®-level-crossings of R3,(t) for t € [0,T] by Ngz (T') and
Zu(T) = T75[ Ngg,(T) ~ E[Nps, (T)] .

With these preliminary results and definitions we are ready to prove a CLT
for the u level-crossings of the envelope of a sufficiently smooth Gaussian process.

Theorem 4.1 Let I.(t) and I,(t) be independent, identical, Gaussian pro-
cesses, mean-zero, variance 1. Suppose their autocorrelation function, pz(7), is
four times continuously differentiable at the origin, both ps(7) and pj(7) are
€ L?*(—o0,0)

Then for u > 0 the u*level-crossings of R?(t) = I%(t) + I%(t) are asymptoti-

cally normal. That is,

T~#[ Npa(T) - EINw(T)]] 5" Normal(0, %),
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where
0% = E[Zga(1)] + 2 / E[Zge(1)])%)dr (4.122)

Proof: First note that since py(t) is four times continuously differentiable at

the origin, we have the following expansion about the origin for small 7,

AV
p1(t) = I—T—l- ai + o)
and the indispensable (4.57),
5 p// //
/ pr(7) = £7(0) dT < oo for some § > 0, (4.123)

is satisfied.
Now following Cuzick’s argument, to prove asymptotic normality of Z(T) as
T — oo it is enough to show that
(A) Zy(T) B Z(T) uniformly in T as M — oo,
(B) Zy(T) ™%’ Normal(0,02,) for each M as T — oo,
and
(C) limg oo T~ Var[Ng:(t)] = V5 > 0.
If we assume our one-sided spectrum is symmetric about a midband frequency

w, then our expression for the variance of the envelope crossings guarantees that
lim T%'Var[Ng:(t)] = Vo > 0.
T—00

For the more general case we will assume we have non-degeneracy.
From (A) and (B) we that

2 2
oy >0

and so by (C)
o3, > 0. (4.124)
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Once we have (4.124) we can use Diananda’s (1953, 1955) CLT for M-dependent
sequences and obtain the asymptotic normality of {Z/(t)} given as (B). There-

fore, we need to show (A)

Zu(T) B 2(T) (4.125)

uniformly in T as M — oo, and (C)
711_1)11 Var[Ng:(T)] — T - Vo, (4.126)

with V5 > 0.
To demonstrate (A), Za(T) K Z(T) uniformly in T as M — oo,

it is enough to show that for any € > 0 there is an M, such that
T~} [E[(Npo(T) = Npa (1))%) = (E[Np2(T) — Nps (D)) <€ (4.127)

when M > M, and for all T > Ty where Ty is independent of M,. The next part
of the proof follows Cuzick, at times verbatim, with appropriate modifications
to deal with the envelope process.

Let T tend to infinity through the integers and define v = 27" for n a positive
integer which will be determined later. By subdividing the interval [0, T] into

27T subintervals we can write

2"T-1

Ng:(T) = Z Npg2(7)

=0

and
nT—-1

N3 (T)= X Ngg,(5)

=0
where Nge(7) is the number of u? level-crossings in the interval [{277, (i +1)27™)
and similarly for Npz (7). We now can write (4.127) as
-1

Tt IE Cov[Ngz(i) — Ngz (i), Nr2(3) — Nr2, (5)] + (4.128)
|7-4]<1,i=0
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27T-1
T~ 3. Cov[Ng(i) — Nga (1), Nr2(5) — Nrz, (5)]- (4.129)

lj—il>2,i=0
Using stationarity and the Cauchy-Schwarz inequality, the first term in the above

sum, which only contains terms about the diagonal, is less than
2 E[(Nm(v) ~ Nag, () + 21 E[Ne(v) = N, ()] (4.130)
v M v M
As M — oo,
|E[Np2(v) — Npg, (v)]| = 0

by the fact that {p7 ,/(0)} = p7(0).
The first term,

 Bl(Ns(v) ~ Nag, (1))

is less than

D(BI(Ngs(v) — x4 Bl = X241+ El(Nag, (v) — X2

where x, is the indicator random variable on {[R?*(0) — »?] - [R*(v) — v?] < 0}

and xM is the indicator on {[R%,(0) — u?] - [R%,(v) — u?] < 0}. Observe that,

E[(Ne() - x) < 3 K PriNp(v) = &] (4.131)
k=2

< 22 — k) Pr[Npz(v) = k] (4.132)

= BINB() — Nes(v)] (4.133)

Using expressions (4.54), (4.88) for the variance of the envelope level-crossings

we have
“E[(Nwe() = 01 < 5 [ = m)p(r)dr (4134)

where (7) is given by (4.86) with n(r) replaced by p;(7). From (4.94) and

(4.97) and the fact that p; is four-times differentiable, we know that 3(7) is
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continuous, and in this case, ¢(0) = 0. Thus, as v — 0

—ll;fou(z/ —7m)(r)dTr = 0
so that

lim = E[(Np (v) — x)2] = 0.

v—0

In the same way we can show that
. M2
lim E[(Npz, (v) —x,")°] = 0 (4.135)

provided that the function %(7) obtained from (4.86), when we replace n(7) by
p1,m(T), is continuous at the origin. This is indeed the case from (4.102). To see
that
. _ M2
Jdim E{(x, —x,")*] = 0

for any v, note that

El(x, ~ x')"] = Prlxs # xJ1)]
and since R3, LIy ( which implies R%, e R?) the probability of the set where
the indicator random variables differ tends to zero, for any fixed v, as M — oo.
We next show that the second sum in (4.129) vanishes, uniformly for T > T

as M — oco. To this end we use the fact that E[Npe(1) Nz (j)] can be expressed

as
E[Np(2)Ngz, (5)] = (4.136)
(1) (G+1)v ! ! 2 2 2
[ s [ BB RO RO B0 |B6) = o7 = Bl (68130
where p,:(u?) is the joint density of {R?(s), R%(t)} evaluated at the point

(u?,4?). The covariance of Npz(2), Ngz (j) is then

COV[NRz(i)NR%J(j)] = (4.138)
B[Ny (i) Nz ()] — %(AAM)W exp —u? (4.139)
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where Ay is —pll 5 (0). Since R,(t) 53 R2(t) and 2Ru () Ry (1) & 2R()R/(2)
we have uniform convergence, in i, of Npz (i) BN r2(2). Therefore we only need
consider the case for |i — j| > 2"Tp, with Ty independent of M > My. Using

stationarity we can write the first summand in (4.129) as
Cov[Ng2(z) Ng2 (5)] — 2Cov[Npz (i) Nga (5)] + Cov[Npg (:)Nrz, (7)].  (4.140)

We show that Cov[Nga(¢)Ngz (j)] tends to zero as To — co independent of
M > M,. The other two covariances can be bounded exactly in the same
fashion. We will estimate the covariance Cov[Ng2(2)Npz (7)] indirectly, by first

conditioning with the set of random variables
C= {IC(S)7 IS(S)’ Ic,M(t)a Is,M(t)’ R2(S)a Rlzvf(t)}

By conditioning the derivatives on the above set of variables we will see that the
conditional derivatives, 2R(s)R'(s)|C and 2Rp(t)R);(t)|C are in fact a pair of
jointly Gaussian random variables whose conditional bivariate joint density can
be obtained in terms of the underlying autocorrelation function p;(7) and the

cross-correlation function of I, and I, a1, ym(7),
m(T) = E[L()Iepm(t + 7). (4.141)

Since
2R(s)R'(s) = 2L.(s)I(s) + 2L,(s)I;(s)
and

2Ru (8) Ry () = 2L (1) Lpa (8) + 20500 () L pa ()

we use the statistical independence of the I.’s and the I,’s and the conditional

joint density of the pair {I.(s), I a(t)|C} (which is the same as the conditional
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joint density of the pair {I,(s), I;»m(¢)|C} to obtain the conditional joint density
of 2R(s)R'(s), 2Rum(t)R),(1)|C.

Using Anderson 1984, pg. 37, Theorem 2.5.1 which gives the conditional
density of any q components of an n-dimensional multivariate normal vector
conditioned on the remaining n-q variables we arrive at the following conditional
bivariate normal joint density for 2R(s)R'(s), 2R (t)Rys(t)|C (see also Sharpe
1978, pg. 379 eq.’s 4.7 and 4.8) with

1 2, | Thi zazi — ymu’
mean = = {2
H2 M ’)’M’M2 - Z?:l TinZTi2
and covariance matrix
4 [AQ =) — &) —[var (L = 73r) + gl Ty zazie
1 A2
M — [ = ) + YR DL, Tz [Anm(1 =) — V2]

where ) and its derivatives are evaluated at ¢ — s = 7 and the particular

conditioning values are given by
C = {IL(s) = 211, Ls(s) = wa1, I m(t) = 12, L m(t) = 22, R*(s) = u? = RZ,(¢)}.

Now using stationarity and (4.137) we are done if we can show, independent

of the conditioning values, that as Ty — oo

[ CorlI O 1Y) hpu(u)at (4.142)
and
L B OIEIG@p) - Y222 exp(—u)|dt (4.143)

vanish uniformly for M > M. The variables Y;(¢) and Y3(¢) above are, re-
spectively, the conditional derivatives 2R(s)R'(s)|C and 2R () Rjs(8)|C. pr(u?)
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is the joint density of {R?(0)} and {R3%,(t)} evaluated at the diagonal point,

(u?,u?),

e~ /=) 2|y ()|
—ar(1 = (7)) 1= (7))
Since (Abromowitz and Stegun, pg. 375)

pT(u2) 1.

Io(z) = 1+ ~2? + O(a*)

4
for all z and
[ya (7)) 1
-~ o)
1 — (7)) T
for large 7, we see that the asymptotic behavior is
u? u? 1

Therefore, it is sufficient to show that

[ contimio) Iva(o

and

VABY ,

E[Vi()E(Ya(0)]] - Y5’ exp(—u?)|dz

/OO
To

both vanish uniformly for M > Mj.

Observe that

] < 6u’|va(7)]
R S TC )

and by direct calculation,

2 —u2 /202 1
E[Yi(t)|) = ﬁo—?m exp™+ /2730 +2|u|[®43, () — 3]

(4.144)

(4.145)

(4.146)

(4.147)

(4.148)

where @2 (+) is the cumulative distribution of a normal mean-zero, variance
1

o%s; random variable and

4
T = T (=30 ~ 7]
4
T = T Al =) = 75
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Now, without loss of generality, take o3, = 1 and write Y;(¢) = X — u and
Yy(t) = Y + 1 where X and Y are normal mean-zero, variance one, random vari-
ables with correlation p. Using the Hermite polynomial expansion for bivariate

normal variables we can express E[|Y1(¢)Y5(2)|] by (see Cuzick, pg. 550)

= LY bl bl S VA —(=?+4%)/2
fo) = Eln@n@l=5- [ [~ 3 Srle—nly-+ul Ho(e) Haly)e dady
(4.151)
where {H,(z)} are the Hermite polynomials. Note that f(0) = (E[|Yi(2)]])?,

since E[|Y1(t)|]] = E[|Y2(t)|] and that

f(1) = E[|X? - p*|) = 2(—1)"[% /_C: |z — ulHn(x)e“x2/2dmlgl.l52)

f(-1) = E[(X — p)"] = i[\/% /_Z & — ul Hy ()™= 2da]? = 1 + .

Thus, the covariance Ef|Y1(¢)Y2(2)|] — E[|Y1(2)|]E[|Y2(2)]] is

Cov(( 6(t)) = S (=Pl [ e = plHn(@)e P 2def?  (4.15)
Note that the first term in the above sum is bounded above by
1 o 2
ooz [ e = plee™V2da] < lpl[L - 294 (1) (4.154)
so that
Cov(IW(0)], Va(®)) < PP+ w71+ lollL = 2Bs (). (4.155)

Since yar and v}, are both L2, this implies that v}, is L? as well. Consequently,

p is L? since

o] < (L
= 1= i(r)

Therefore |p|[1 — 2®,(u)] is L! in light of p? being L? and so

[ Covi I¥a(t)t (4.156)
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can be made uniformly small for M > M,. Finally, we see that

[ IEm@nemy@n - Yol ep-afae (415)

vanishes uniformly in M > M, if each of the following

/T:o ] - \/gu exp(—u2/2)|dt (4.158)

/T°° |EqYa ()] - \/—:uexp w?/2)|dt (4.159)

These both follow, exactly as in Cuzick pg. 553, using (4.148) and this completes

the proof.
The asymptotic variance is obtained as follows. Recall the expression for the
variance of Zgp2(T') (use the fact that the u®-level-crossings of R?(t) are the same

as the u-level-crossings of R(t),
Var[Zge(T)] = E[Zge(T)] — (E[Zre(T)))? + 2 / dr  (4.160)

where,

T :_?u_z‘ML o k oK/
Wr) = it JECR) v (4.161)

(v + ) k u*(1 — pi(7) cos ¢)
" [2erf(7§) - 1]] - exp[— T 2(r) |dé.

Using E[Zge(T)] = T - E[Zg2(1)] and (4.160) and by the above analysis the

limit exists and is finite we have

lim

T—o00

Y__[ZTR@ ElZm(W)+2 [ (1) - (BZm()fldr.  (4162)

Normal probability plots from computer simulations are given in Figures (4.3.1)

and (4.3.1).
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Normal Prob. Plot for zero—crossings of ideal bandlimited G aussian Noise
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Figure 4.5: Normal Probability Plot for the zero-crossings of an ideal

bandpass Gaussian process

4.4 Summary

In this last chapter we derived an expression for the variance of the level-crossings
of the envelope of a Gaussian process possessing a symmetric one-sided spectral
density. The integral expression obtained for the variance was evaluated numer-
ically for the case of an ideal bandpass process and the results were compared
with computer simulations. The theoretical values were found to be in good
agreement with the monte carlo computer experiments.

Lastly, we proved for sufficiently smooth Gaussian processes, that the level-

crossings of the envelope are asymptotically normal. This was fact was assumed
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Normal Prob. Plot for level-crossings of envelope of ideal bandlimited Gaussian Noise
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Figure 4.6: Normal Probability Plot for the mean-level- crossings of the

envelope of an ideal bandpass Gaussian process

in Rainal (1966) and then used to devise a radar detector based on the mean-

level-crossing counts of the envelope. The advantage of the level-crossing detector

is that it is within 1dB of the square law detector but less computationally

complex and immune to gain fluctuations. The central limit theorem for the

envelope level-crossings formalizes the computer analysis by Rainal and verifies

his intuition.
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