Stepwise Assertional Design of Distance-Vector Routing Algorithms*

Cengiz Alaettinoğlu, A. Udaya Shankar
Institute for Advanced Computer Studies
and Department of Computer Science
University of Maryland
College Park, Maryland 20742
ca@isi.edu, shankar@cs.umd.edu

UMIACS-TR-92-39, CS-TR-2869
August 1993

Abstract

There are many kinds of distance-vector algorithms for adaptive routing in wide-area computer networks, ranging from the classical Distributed Bellman-Ford to several recent algorithms that have better performance. However, these algorithms have very complicated behaviors and their analyses in the literature has been incomplete (and operational). In this paper, we present a stepwise assertional design of a recently proposed distance-vector algorithm. Our design starts with the Distributed Bellman-Ford and goes through two intermediate algorithms. The properties established for each algorithm hold for the succeeding algorithms. The algorithms analyzed here are representative of various internetwork routing protocols.

[^0]
Contents

1 Introduction 1
2 Preliminaries: System Model and Proof Rules 3
3 Algorithm A1 4
4 Algorithm A2 15
5 Algorithm A3 24
6 Algorithm A4 26
7 Concluding Remarks 28

1 Introduction

Adaptive routing protocols are responsible for choosing optimal routes for data packets in wide-area store-and-forward computer networks such as the Internet. In these networks, each link has a cost (indicating the current traffic on the link) that changes with time; furthermore, links can fail and recover. We refer to such changes as topology changes. A routing protocol must monitor these topology changes and adapt its routes accordingly.

In a routing protocol, each node maintains for each destination a neighboring node id, referred to as its next-hop. The node forwards data packets destined for the destination to its next-hop. The next-hop can be nil, in which case the node does not know where to forward data packets for that destination. The objective can be informally stated as follows: (a) the succession of next-hops for the destination from any node should lead to the destination (unless the destination is unreachable); and (b) the cost of this next-hop path should be minimum amongst all paths from the node to the destination.

A popular approach to routing is the distance-vector approach, which is based on the Bellman-Ford algorithm [5]. In this approach, each node maintains for each destination a set of distances, one for each of its neighbors, and chooses a neighbor with minimum distance as the next-hop. Thus, each node requires $O(N \times e)$ space, where N is the number of nodes in the network and e is the average degree of a node. However it is well known that the straight-forward distributed implementation of the Bellman-Ford algorithm can have long-lived loops (of the order of distances) [14]. In fact, the ARPANET initially used this Distributed Bellman-Ford algorithm, but because of long-lived loops, it was replaced in 1979 by a brute-force "link state" algorithm which requires $O\left(N^{2}\right)$ space at each node (to maintain a view of the network topology with a cost for each link).

Since 1979, many new kinds of distance-vector algorithms have been proposed $[15,19,10,21,3,6,17,9]$ which avoid long-lived loops by using various node coordination mechanisms. For example [15, 19, 10] use diffusion computations [4] to avoid loops entirely. References [21, 3, 17, 9] avoid long-lived loops, but not short-lived loops, i.e. loops that disappear in time proportional to N or less. In [21], each node maintains for each destination a set of paths (in addition to the distances), one for each of its neighbors. The intention is that the path maintained at node u for a neighbor is the next-hop path of the neighbor with node u appended to the front. Long-lived loops are avoided by not choosing a neighbor as a next-hop if the path maintained for that neighbor contains a loop. However maintaining and exchanging paths is expensive and requires $O(N \times e \times H)$ storage at each node, where H is the length (in number of links) of a maximum length shortest cost path between any two nodes (note that H can be as high as N). References [3, 17, 9]
overcome this problem by having nodes maintain prefinal nodes instead of the paths. The prefinal node for a destination is intended to be the last node before the destination on the next-hop path. Using the prefinal nodes, a node can reconstruct the path to any destination (see Section 6), thereby avoiding long-lived loops.

Understanding distance-vector algorithms, particularly the new ones, is difficult. The analyses in the literature of the above algorithms (e.g. showing that optimal paths are eventually achieved) are operational and incomplete. In this paper, we present a stepwise assertional design of distance-vector algorithms. We go through the following steps:
(1) We start our design with the Distributed Bellman-Ford algorithm, referred to as A1. We prove that after any succession of topology changes, the nodes that can still reach the destination eventually achieve and maintain optimal next-hop paths.
(2) We next obtain an algorithm, called A2, by adding a path-exchange mechanism to A1. We prove that A2 converges to optimal paths in $O(N)$ steps, assuming synchronous execution of the network; i.e. the routing algorithm executes in steps, and in each step all (and only those) messages that are send in the previous step are received. This proves that A2 avoids long-lived loops.
(3) We next obtain an algorithm, called A3, by adding to A2 a constraint that a node chooses a neighbor as the next-hop for a destination only if the neighbor is also the next-hop for all intermediate destinations on the path to the destination.
(4) Our fourth algorithm, called A4, is obtained from A3 by replacing paths with prefinal nodes.

For each algorithm $\mathbf{A} i$, the safety and progress properties satisfied by the previous algorithms hold. In the case of A2 and A3, it is straightforward to check that the proofs for the previous algorithms continue to hold with minor modifications. For A4, we establish that A4 is a well-formed refinement [11] of A3; thus, all safety and progress assertions satisfied by A3 hold for A4 [11].

Many algorithms proposed in the literature use similar mechanisms to algorithms A1 through A4. For example, Old Arpanet Routing Algorithm [14], Routing Information Protocol (an Internet standard) [7], and Inter-Gateway Routing Protocol [8] are variations of A1. Inter-Domain Routing Protocol (ISO draft standard) [18], Border Gateway Protocol (an Internet standard) [12], and the algorithm in [21] are variations of A2. The algorithms in $[3,17,9]$ are variations of A4. Hence, understanding the properties of algorithms A1 through A4 is very useful in understanding various internetworking routing protocols. We introduce A3 because showing that properties of A2 hold for A4 is not simple (whereas showing that properties of A2 hold for A3, and properties of A3 hold for A4 is simple).

In section 2, we present our system model and proof rules. In sections $3,4,5$, 6 , we describe A1, A2,

A3, and A4, respectively. In section 7, we give concluding remarks. A preliminary version of algorithms A1 through A4, without most of the analysis, was presented in [1].

2 Preliminaries: System Model and Proof Rules

We use state transition systems and fairness requirements to specify routing protocols, and safety and progress assertions to describe their behaviors (e.g. [11, 20, 13]).

A state transition system consists of a set of state variables, a set of events, and an initial condition on the state variables. The state variables define the set of system states. Each event e is specified by an enabling condition, referred to as enabled(e) and an (atomically executed) action, referred to as action(e); together they define a set of state transitions for the event.

A behavior of the state transition system is a sequence of the form $\left\langle s_{0}, f_{0}, s_{1}, f_{1}, \ldots\right\rangle$, where the s_{i} 's are system states, the f_{i} 's are event names, s_{0} is an initial state, and for each $i \geq 0,\left(s_{i}, s_{i+1}\right)$ is a transition of f_{i}. A behavior can be infinite or finite (in which case it ends in a state). In the following definitions, we consider behavior $\sigma=\left\langle s_{0}, f_{0}, s_{1}, f_{1}, \ldots\right\rangle$.

An event can be subject to a weak fairness. A behavior σ satisfies weak fairness for event e iff (1) σ is finite and e is not enabled in the last state of σ, or (2) σ is infinite and either e occurs infinitely often or is disabled infinitely often in σ.

We use two types of safety assertions in this paper: invariant assertions and unless assertions. An invariant assertion is of the form $\operatorname{Invariant}(A)$ where A is a state formula, i.e. a formula which is true or false at each state. By definition, Invariant (A) holds for a behavior σ iff every state s_{i} in σ satisfies A.

An unless assertion is of the form A unless $B \vee \mathcal{E}$, where A and B are state formulas and \mathcal{E} is a set of event names. By definition, A unless $B \vee \mathcal{E}$ holds for a behavior σ iff for every state s_{i} in σ satisfying $A \wedge \neg B$, at least one of the following hold: (1) s_{i} is the last state (σ is finite), or (2) s_{i+1} satisfies $A \vee B$, or (3) f_{i} is in \mathcal{E}. The event set \mathcal{E} can be empty, in which case we simply write A unless B.

A safety assertion holds for a state transition system iff it holds for every behavior of the system.
Our progress assertions are of the form A leads-to $B \vee \mathcal{E}$, where A and B are state formulas and \mathcal{E} is a set of event names. By definition, A leads-to $B \vee \mathcal{E}$ holds for a behavior σ iff for every s_{i} in σ that satisfies A, there is a $j \geq i$ such that s_{j} is in σ and satisfies B or f_{j} is in σ and belongs to \mathcal{E}. The event set \mathcal{E} can be empty, in which case we simply write A leads-to B. Given a state transition system and a set of fairness requirements, a leads-to assertion holds for the system iff it holds for every behavior of the system which satisfies the fairness requirements.

We next list the proof rules used in this paper. We use Initial as a state formula specifying the initial condition. Given an event e, we use $\{A\} \in\{B\}$ to mean the Hoare-triple $\{A \wedge$ enabled $(e)\}$ action $(e)\{B\}$, i.e., in any state that satisfies A, if e is enabled then its occurrence results in a state that satisfies B.

Invariance rule: Invariant (A) holds if for some state formula C, the following hold:

- Initial $\Rightarrow A$
- for every event $e,\{A \wedge C\} e\{A\}$
- Invariant(C).

Implication rule: Invariant (A) holds if for some state formula C, the following hold:

- Invariant(C)
- $C \Rightarrow A$.

Unless rule: A unless $B \vee \mathcal{E}$ holds if for some state formula C, the following hold:

- for every event $e \notin \mathcal{E},\{A \wedge \neg B \wedge C\} e\{A \vee B\}$
- Invariant(C).

Leads-to rule: A leads-to $B \vee \mathcal{E}$ holds if for some state formula C, the following hold:

- for every event $e \notin \mathcal{E},\{A \wedge \neg B \wedge C\} e\{A \vee B\}$
- for some event e with weak fairness, $\{A \wedge \neg B \wedge C\} e\{B\}$
- Invariant $(A \wedge C \Rightarrow \operatorname{enabled}(e))$
- Invariant(C).

Closure rules:

- A leads-to $B \vee \mathcal{E}$ holds if Invariant $(A \Rightarrow B)$ holds.
- A leads-to $B \vee \mathcal{E}$ holds if for some state formula C : A leads-to $C \vee \mathcal{E}$ and C leads-to $B \vee \mathcal{E}$ hold.
- A leads-to $B \vee \mathcal{E}$ holds if $A=A_{1} \vee A_{2}, A_{1}$ leads-to $B \vee \mathcal{E}$, and A_{2} leads-to $B \vee \mathcal{E}$ hold.
- $A \wedge B$ leads-to $(C \vee(A \wedge D)) \vee \mathcal{E}$ holds if A unless $C \vee \mathcal{E}$ and B leads-to $D \vee \mathcal{E}$ hold.

These rules are similar to the rules in [13, 2]. It is straightforward to show their soundness (e.g. [11, 20]).

3 Algorithm A1

We consider a computer network whose nodes and links form an arbitrary directed graph such that if there is a link from node u to node v, then there is a link from node v to node u. Let NODES be the set of nodes, and LINKS $(\subseteq N O D E S \times N O D E S)$ be the set of links. Node v is a neighbor of node u if (u, v) is a link. Let
neighbors (u) denote the set of neighbors of u. A sequence $\left\langle x_{0}, \ldots, x_{n}\right\rangle$ of nodes is a path iff $\left(x_{i}, x_{i+1}\right)$ is a link for $0 \leq i<n$. A path is simple if no node is repeated.

A routing protocol is specified by a state transition system and a set of fairness requirements. Each node u has a set of state variables and a set of events. Each link (u, v) has a state variable, called Channel $l_{u v}$, indicating the sequence of messages in transit. Channel $l_{u v}$ initially equals \rangle, the null sequence. The events of a node can access the state variables of the node, send messages to outgoing links, and receive messages from incoming links. A link (u, v) behaves as a FIFO queue, except when it fails, in which case Channel ${ }_{u v}$ is set to \rangle; for notational convenience, we group this failure event among the events of node u. We assume that each receive event has weak fairness; this is a convenient way to model finite message propagation delays.

Conventions: We use u, v, w, x, y, z to range over $N O D E S$; in some (explicitly stated) cases, they range over $N O D E S \cup\{n i l\}$. We use v, w to range over neighbors (u). We use z to indicate the destination node. We use c, k, d, newcost to range over $I^{+} \cup\{0, \infty\}$, indicating a distance or a cost, where I^{+}is the set of positive integers. We treat ∞ as a number higher than any number in I^{+}; e.g. ∞ plus any number is ∞. Given a set S of numbers, $\min S$ denotes the smallest number in S. If S is empty then min S returns ∞.

Table 1 specifies the state variables and events of an arbitrary node in A1, the Distributed Bellman-Ford algorithm. (Refer to the table in the following discussion.) Node u maintains the cost of each outgoing link (u, v) in state variable $\operatorname{Linkcost}_{u}(v)$. $\operatorname{Linkcost}_{u}(v)$ equals ∞ iff the link is failed; it can change its value at any time due to link failure, link recovery and link cost change events. Linkcost $u_{u}(v)$ is never 0 .

For each destination z, node u maintains in state variable $\operatorname{Distvia}_{u}(v, z)$ an estimate of the distance to z via neighbor v. It equals ∞ if node u believes z cannot be reached via v. The state variable Nhop (z) indicates the next-hop for destination z. It equals neighbor v only if Distvia (v, z) is minimum among all neighbors. $N h o p_{u}(z)$ equals nil iff $\operatorname{Distvia~}_{u}(v, z)$ equals ∞ for all neighbors v. Node u also maintains state variable $D_{i s t_{u}}(z)$ in which it stores the distance via its next-hop, except when $u=z$ (in which case $\left.\operatorname{Dist}_{z}(z)=0\right)$.

Nodes exchange information about their distances to various destinations. Specifically, node v sends messages of the form $\left(v, d_{-} v e c t o r\right)$, where $d_{-} v e c t o r$ is a set of (z, d) pairs such that $d=\operatorname{Dist}_{v}(z)$; note that d can be ∞.

When $\operatorname{Linkcost}_{u}(v)$ changes (either because of link failure, recovery or change in cost), Distvia (v, z), and if needed $N h o p_{u}(z)$ and $D i s t_{u}(z)$, is updated for each destination z (for details see procedure Update\&Send in table 1). If the distance of any destination z has been affected (i.e. Dist $_{u}(z)$ has changed), node u sends a message to its neighbors containing the $\left(z, \operatorname{Dist}_{u}(z)\right)$ pairs for all affected destinations z.

Additionally, when link (u, v) recovers, u sends a message to v containing the $\left(z, D i s t_{u}(z)\right)$ pairs for all
destinations z. This is to ensure that if u offers a better path for some destination z, node v will choose u as its next-hop. This also ensures that if a network become connected after being disconnected (due to a set of link failures), nodes in different partitions obtain paths to each other.

When node u receives a ($v, d_{-} v e c t o r$) message, it updates $\operatorname{Distvia}_{u}(v, z)$, and if needed $N h o p_{u}(z)$ and $D_{i s t_{u}}(z)$, for each destination z in d_vector. If the distance of any destination has been affected, node u sends a message to its neighbors containing the $\left(z, \operatorname{Dist}_{u}(z)\right)$ pairs for all affected destinations z.

We say that the network is in a symmetric state if for every link (u, v), link (u, v) is up iff link (v, u) is up. In the rest of this section, we prove that after any succession of topology changes that leaves the network symmetric, for every node u and every destination z reachable from u, eventually the next-hop path starting from u leads to z and has minimum cost among all paths from u to z. To specify this formally, we define the following functions (on the system state):

UPLINKS. Set of up links. Formally,

$$
=\left\{(u, v) \in L I N K S: \operatorname{Link}^{\operatorname{cost}}{ }_{u}(v)<\infty\right\}
$$

Symmetric. Boolean.

$$
=\text { true iff }[\forall(u, v) \in L I N K S:(u, v) \in U P L I N K S \text { iff }(v, u) \in U P L I N K S]
$$

Nhoppath (u, z). The succession of next-hops for z starting from u. Formally,
$=\left\langle x_{0}, \ldots, x_{n}\right\rangle$ such that $x_{0}=u$,

$$
\begin{aligned}
& \text { for } i \in[0 . . n-1]: N h o p_{x_{i}}(z)=x_{i+1}, \wedge x_{i} \notin\left\{x_{0}, \ldots, x_{i-1}\right\} \cup\{n i l\} \cup\{z\} \text {, and } \\
& x_{n}=z \vee \text { Nhop }_{x_{n}}(z)=\text { nil } \vee x_{n} \in\left\{x_{0}, \ldots, x_{n-1}\right\} .
\end{aligned}
$$

Availablepaths (u, z). The simple paths from u to z over up links. Formally,

$$
=\left\{\left\langle x_{0}, \ldots, x_{n}\right\rangle: x_{0}=u \wedge x_{n}=z \wedge\left[\text { for } i \in[1 . . n]:\left(x_{i-1}, x_{i}\right) \in U P L I N K S \wedge x_{i} \notin\left\{x_{0}, \ldots, x_{i-1}\right\}\right]\right\}
$$

Reachable. Set of node pairs (u, z) such that u can reach z. Formally,

$$
=\{(u, z): \text { Availablepath } s(u, z) \neq\{ \}\} .
$$

Path_cost $\left(\left\langle x_{0}, \ldots, x_{n}\right\rangle\right)$. The cost of path $\left\langle x_{0}, \ldots, x_{n}\right\rangle$. Formally,

$$
= \begin{cases}\sum_{i=0}^{n-1} \text { Linkcost }_{x_{i}}\left(x_{i+1}\right) & n>0 \\ 0 & \left.n=0 \text { (i.e. path equals }\left\langle x_{0}\right\rangle\right) \\ \infty & n<0 \text { (i.e. path equals }\langle \rangle)\end{cases}
$$

Note that the path cost is ∞ if any link cost in the path is ∞.
$\operatorname{Cost}(u, z)$. The cost of a minimum cost path from u to z. Formally,

$$
=\min \{\text { Path_cost }(p): p \in \text { Availablepath } s(u, z)\}
$$

HighestCost $=\max \{\operatorname{Cost}(u, z):(u, z) \in$ Reachable $\}$.
$\mathcal{T C}$. The set of topology change events. Formally,

$$
=\left\{\operatorname{LinkFailure}_{u}(v), \text { LinkRecovery }_{u}(v, c), \operatorname{LinkCostChange}{ }_{u}(v, c):(u, v) \in \operatorname{LINKS} \wedge c \in I^{+}\right\}
$$

Conventions: We use the term distance when we refer to the values of state variables Distu (z) and Distvia $_{u}(v, z)$, either in the nodes or in transit in the channels. We say "distance d in transit for destination $z "$ to mean there is a message in transit whose d_vector contains a (z, d) pair. We use the term cost, and not "distance", when we refer to the current values of link costs, e.g. Path_cost, Cost. Note that costs can not change unless a topology change happens.

Notation: For any non-empty sequence $\left\langle x_{0}, \ldots, x_{n}\right\rangle$, last $\left(\left\langle x_{0}, \ldots, x_{n}\right\rangle\right)$ denotes $x_{n}, \operatorname{tail}\left(\left\langle x_{0}, \ldots, x_{n}\right\rangle\right)$ denotes $\left\langle x_{1}, \ldots, x_{n}\right\rangle$, and $\operatorname{head}\left(\left\langle x_{0}, \ldots, x_{n}\right\rangle\right)$ denotes x_{0}. When applied to a null sequence, head $(\rangle)=$ $\operatorname{last}\left(\rangle)=\right.$ nil and $\operatorname{tail}\left(\rangle)=\langle \rangle\right.$. We use @ as the concatenation operator for sequences, i.e. $\left\langle x_{0}, \ldots, x_{n}\right\rangle @\left\langle y_{0}, \ldots, y_{m}\right\rangle=$ $\left\langle x_{1}, \ldots, x_{n}, y_{0}, \ldots, y_{m}\right\rangle$.

We define a boolean function Has_optimal_path (u, z) that is true iff the next-hop path starting from u reaches z and has optimal cost; note that this implies that all nodes on the next-hop path also have optimal next-hop paths to z. Formally:

$$
\begin{aligned}
\text { Has_optimal_path }(u, z) \equiv & \text { last(Nhoppath }(u, z))=z \\
& \wedge\left[\forall x \in{\left.\operatorname{Nhoppath}(u, z): \operatorname{Dist}_{x}(z)=\operatorname{Cost}(x, z)=\operatorname{Path}_{-} \operatorname{cost}(\operatorname{Nhoppath}(x, z))\right]} \begin{array}{rl}
&
\end{array}\right)
\end{aligned}
$$

The desired objective can be stated as follows, where A is some state formula (that can depend on the routing algorithm):

- Symmetric $\wedge(u, z) \in$ Reachable leads-to $\mathcal{T C} \vee(u, z) \in$ Reachable \wedge Has_optimal_path $(u, z) \wedge A$
- Symmetric $\wedge(u, z) \in$ Reachable \wedge Has_optimal_path $(u, z) \wedge A$ unless $\mathcal{T C}$

That is, after any succession of topology changes that leaves the network in a symmetric state, if there are no further topology changes, then every reachable node u eventually achieves a stable optimal path to z. We point out that most routing algorithms, including the ones in this paper, do not satisfy the above property if $A=$ true. That is, it is possible for a node to achieve an optimal next-hop path and then switch to some other non-optimal path. However, eventually, it will find an optimal next-hop path and also satisfy A; once this is achieved, the optimal next-hop path is stable.

The following assertions M_{1} and M_{2} specify an appropriate A for algorithm A1:
(M_{1}) Symmetric leads-to $\mathcal{T C} \vee$

$$
\left[\forall(u, z) \in \text { Reachable : Has_optimal_path }(u, z) \wedge\left[\forall v \in \text { neighbors }(u): \text { Channel }_{u v}(z)=\langle \rangle\right]\right]
$$

$\left(M_{2}\right)$ Symmetric $\wedge\left[\forall(u, z) \in\right.$ Reachable: Has_optimal_path $(u, z) \wedge\left[\forall v \in\right.$ neighbors $(u):$ Channel $\left.\left._{u v}(z)=\langle \rangle\right]\right]$ unless $\mathcal{T C}$
where Channel $l_{u v}(z)$ is a state function which denotes the sequence of messages in Channel $l_{u v}$ that contain a distance for destination z. Formally,

Channel $_{u v}(z)=\left\langle m_{0}, m_{1}, \ldots, m_{n}\right\rangle$ such that

$$
\begin{aligned}
& {\left[\exists p_{0}, \ldots, p_{n+1}: \text { Channel }_{u v}=p_{0} @\left\langle m_{0}\right\rangle @ p_{1} @\left\langle m_{1}\right\rangle @ \ldots @ p_{n} @\left\langle m_{n}\right\rangle @ p_{n+1} \wedge\right.} \\
& \quad\left[\forall i, 0 \leq i \leq n, \exists d:(z, d) \in m_{i}\right] \wedge \\
& \left.\quad\left[\forall i, 0 \leq i \leq n+1, \forall m \in p_{i}, \forall d:(z, d) \notin m\right]\right] .
\end{aligned}
$$

Theorem 1. A1 satisfies M_{1} and M_{2}.

Proof of Theorem 1

Readers who are interested in the algorithms but not in the proofs can skip this proof.
Conventions: For a leads-to assertion " A leads-to $\mathcal{T} \mathcal{C} \vee B$ ", we refer to A as the left side of the assertion, and B as the right side. We use the same convention for " A unless $\mathcal{T} \mathcal{C} \vee B$ " and for "Invariant $A \Rightarrow B$ ". Most of our leads-to assertions have the form Symmetric $\wedge A$ leads-to $\mathcal{T} \mathcal{C} \vee B$, that is, if Symmetric and A holds, then eventually B holds or a topology change occurs. When informally describing such an assertion, for brevity, we just say "if A holds then eventually B holds". The same convention is used with assertions of the form "Symmetric $\wedge A$ unless $\mathcal{T} \mathcal{C} \vee B$ ". We assume the following precedence of operators: $\neg, \wedge, \vee, \Rightarrow$, Invariant, unless, leads-to. We say cost of a node pair (u, z) and distance of a node pair (u, z) to mean $\operatorname{Cost}(u, z)$ and $\operatorname{Dist}_{u}(z)$ respectively.

The following assertions express rather obvious relationship between neighboring nodes:
$\left(B_{1}\right) \operatorname{Dist}_{v}(z)=d \wedge(v, u) \in U P L I N K S$ leads-to $\mathcal{T} \mathcal{C} \vee$ Distvia $_{u}(v, z)=d+\operatorname{Linkcost}_{u}(v)$
$\left(B_{2}\right)$ Invariant $(v, u) \in U P L I N K S \wedge$ Channel $_{v u}(z) \neq\langle \rangle \Rightarrow\left(z, \operatorname{Dist}_{v}(z)\right)=\operatorname{last}\left(\right.$ Channel $\left._{v u}(z)\right)$
$\left(B_{3}\right)$ Invariant $(v, u) \in U P L I N K S \wedge$ Channel $_{v u}(z)=\langle \rangle \Rightarrow$ Distvia $_{u}(v, z)=$ Dist $_{v}(z)+$ Linkcost $_{u}(v)$
$\left(B_{4}\right)$ Invariant $(v, u) \in U P L I N K S \wedge \operatorname{Distvia}_{u}(v, z) \neq \operatorname{Dist}_{v}(z)+\operatorname{Linkcost}_{u}(v)$

$$
\Rightarrow\left(z, \operatorname{Dist}_{v}(z)\right)=\operatorname{last}\left(\text { Channel }_{v u}(z)\right)
$$

$\left(B_{5}\right) m$ in Channel $l_{v u}$ leads-to $\mathcal{T C} \vee m=$ front(Channel $\left.v_{v u}\right)$
$\left(B_{6}\right)$ Channel $_{u v}=\langle m\rangle @ x$ leads-to $\mathcal{T C} \vee\left[\exists y:\right.$ Channel $\left._{u v}=x @ y\right]$
$\left(B_{7}\right)(z, d)$ in Channel ${ }_{v u}$ leads-to $\mathcal{T} \mathcal{C} \vee$ Distvia $_{u}(v, z)=d+\operatorname{Linkcost}_{u}(v)$
$\left(B_{8}\right)(z, d)=\operatorname{front}\left(\right.$ Channel $\left._{v u}\right)$ leads-to $\mathcal{T C} \vee$ Distvia $_{u}(v, z)=d+\operatorname{Linkcost}_{u}(v)$
$B_{1}, B_{2}, B_{3}, B_{4}, B_{7}$ and B_{8} deal with the distances of neighboring nodes to a destination z and the distances to z in transit between the neighboring nodes.
B_{1} states that if the distance of v is d and the $\operatorname{link}(v, u)$ is not failed, then u eventually learns of $d . B_{1}$ follows from B_{4} and B_{7} by the closure.
B_{2} states that if a channel has distances to z, then the last message contains the current distance of the sender. B_{2} follows from invariance rule.
B_{3} states that if no distances to z are in transit, then the distance of the receiver through the sender is up-to-date. B_{3} follows from B_{2} using invariance rule.
B_{4} states that if a distance of node u via a neighbor v is not up-to-date, then the current distance of v is in the last message in Channel ${ }_{v u}(z) . B_{4}$ follows from B_{2} and B_{3} by implication (left side of B_{4} implies the negation of the right side of B_{3}; since B_{3} holds, the left side of B_{3} must also be false, which implies the left side of B_{2}, which implies the right side of B_{2}, which implies the right side of B_{4}).
B_{5} states that a message in transit eventually advances to the front of the channel. B_{6} states that the message in the front of the channel eventually gets removed. B_{6} follows from leads-to rule (via receive event). B_{5} follows from B_{6} by closure. B_{7} states that each distance in link (v, u) is eventually used to update the distance of u via $v . B_{8}$ states that the distance in the front of a link (v, u) is eventually used to update the distance of u via $v . B_{8}$ follows from leads-to rule (via receive event). B_{7} follows from B_{5} and B_{8} by the closure.

The following safety assertions state that the values of Symmetric, Reachable, cost of a node pair, and HighestCost do not change. Each of them holds from the unless rule.
$\left(C_{1}\right)$ Symmetric unless $\mathcal{T C}$
$\left(C_{2}\right)$ Reachable $=\mathcal{S}$ unless $\mathcal{T C}$
$\left(C_{3}\right) \operatorname{Cost}(u, z)=K$ unless $\mathcal{T} \mathcal{C}$
$\left(C_{4}\right)$ Highest Cost $=K$ unless $\mathcal{T C}$

We now define functions that, in some sense, characterize the essence of algorithm A1:
In. Maximal subset of Reachable such that (u, z) is a member of In iff
(1) Has_optimal_path (u, z),
(2) for any message (x, d) in transit, $\operatorname{Dist}_{u}(z)$ is less than d,
(3) for any node pair (w, x) in Reachable not satisfying Has_optimal_path (w, x),

$$
\operatorname{Dist}_{u}(z)<\operatorname{Dist}_{w}(x) \text { and } \operatorname{Dist}_{u}(z)<\operatorname{Cost}(w, x)
$$

$$
\text { Out }=\text { Reachable }- \text { In } .
$$

Lowest. The minimum of the cost of node pairs in Out, the distances of node pairs in Out, and the distances in transit between nodes from which the destination is reachable. Formally,

$$
\begin{aligned}
=\min (\{ & \operatorname{Cost}(x, z):(x, z) \in \text { Out }\} \cup \\
& \left\{\text { Dist }_{u}(z):(u, z) \in \text { Out }\right\} \cup \\
& \left.\left\{d:(x, d) \in \text { Channel }_{u v} \wedge(u, x),(v, x) \in \text { Reachable }\right\}\right) .
\end{aligned}
$$

The intuition behind a node pair (u, z) being in In is the following: u has an optimal path to z, and this cannot be affected by any message in transit or by any message that can be generated by other nodes. Note that if a node pair (u, z) is in $I n$ and $u \neq z$, then $N H o p_{u}(z) \neq n i l$ and the node pair ($\left.N H o p_{u}(z), z\right)$ is also in In. If a node pair (u, z) is in In, then the outgoing channels of u do not contain any (z, d) messages. This follows from B_{2} and the definition of In (i.e. since (u, z) is in $I n$, the messages in transit for z have larger distances than the distance of u, and if an outgoing channel of u contained a message for z, the last message in that channel for z would contain a distance which was not larger).

The intuition behind Lowest is the following: Lowest never decreases, and keeps increasing as long as it is less than HighestCost. Furthermore, Lowest $>$ HighestCost iff In $=$ Reachable (this is because Lowest $>$ HighestCost means that cost of all reachable node pairs are less than Lowest, hence they are not in $O u t$). In contrast, the minimum distance in transit can decrease or increase without a change in Out; the same is true for the minimum distance of a node pair in Out.

We now proceed to prove M_{1} and M_{2}. The proof of M_{1} is summarized in Figure 1.
M_{2} holds from the unless rule; specifically, once the left side of M_{2} holds, no receive event of any node in Reachable is enabled, and all other events belong to $\mathcal{T C}$. Thus, it suffices to prove M_{1}.
(M_{3}) Symmetric leads-to $\mathcal{T C} \vee$ In $=$ Reachable
M_{3} states that eventually In contains all reachable node pairs. M_{1} follows from M_{3} by closure (since $I n=$ Reachable implies right side of M_{1}). Thus it suffices to prove M_{3}.
$\left(M_{4}\right)$ Symmetric leads-to $\mathcal{T} \mathcal{C} \vee$ Lowest $>$ HighestCost
M_{4} states that Lowest eventually exceeds HighestCost. M_{3} follows from M_{4} by closure. Thus it suffices to prove M_{4}.
$\left(M_{5}\right)$ Symmetric \wedge Lowest $=k \leq$ HighestCost leads-to $\mathcal{T} \mathcal{C} \vee$ Lowest $\geq k+1$
M_{4} follows from M_{5}, C_{1} and C_{4} by closure. Thus it suffices to prove M_{5}. We first define the following functions:

Figure 1: Proof of $M 1$. Each arrow indicates that the tail assertion is used in the proof of the head assertion. Proof rule used is indicated in parenthesis.

$$
\begin{aligned}
& D \operatorname{Via}(k)=\left\{(u, v, z): \operatorname{Distvia}_{u}(v, z)=k \wedge(v, z) \in O u t\right\} \\
& \operatorname{DTransit}(k)=\operatorname{bag}\left\{(u, v, z):(z, k) \in \text { Channel }_{u v} \wedge(u, z),(v, z) \in \text { Reachable }\right\}
\end{aligned}
$$

Note that $D \operatorname{Transit}(k)$ is a bag; i.e. if there are two messages whose distance vectors contain the same (z, k) pair in the same channel, DTransit (k) contains two $\langle u, v, z\rangle$ triplets.

We next define the following assertions:
$\left(M_{6}\right)$ Symmetric \wedge Lowest $=k$ leads-to $\mathcal{T C} \vee$ Lowest $\geq k \wedge \mid$ Via $(k) \mid=0$
$\left(M_{7}\right)$ Symmetric \wedge Lowest $\geq k \wedge|D \operatorname{Via}(k)|=0$

$$
\text { leads-to } \mathcal{T} \mathcal{C} \vee \text { Lowest } \geq k \wedge|D \operatorname{Via}(k)|=0 \wedge|D \operatorname{Transit}(k)|=0
$$

(M_{8}) Invariant Lowest $\geq k \wedge|D \operatorname{Via}(k)|=0 \wedge|D \operatorname{Transit}(k)|=0 \Rightarrow$ Lowest $>k$
M_{6} and M_{7} state that if Lowest $=k$, then $\operatorname{DVia}(k)$ and $D \operatorname{Transit}(k)$ eventually become empty. At that point, M_{8} states that Lowest is greater than $k . M_{5}$ follows from M_{6}, M_{7}, M_{8} and C_{1} by closure.

Thus it suffices to prove M_{6}, M_{7} and M_{8}, which is done next.

Proof of M_{8}

The following assertions state that if Lowest $\geq k$ and $D V i a(k)$ and $D \operatorname{Transit}(k)$ are empty, node pairs in Out have both costs and distances higher than k.
$\left(M_{9}\right)$ Invariant Lowest $\geq k \wedge|D \operatorname{Via}(k)|=0 \wedge|D \operatorname{Transit}(k)|=0 \wedge \operatorname{Cost}(u, z)=k \Rightarrow(u, z) \in \operatorname{In}$
$\left(M_{10}\right)$ Invariant Lowest $\geq k \wedge|D V i a(k)|=0 \wedge(u, z) \in$ Reachable $\wedge \neg{\text { Has_optimal_path }(u, z) \Rightarrow \text { Dist }_{u}(z)>k}^{\prime}(z)$
M_{8} follows from M_{9} and M_{10} by implication. (The details are as follows: From M_{9}, the cost of a node pair in Out is greater than k. From $|D \operatorname{Transit}(k)|=0$ and Lowest $\geq k$, the minimum distance in transit is greater than k. From M_{10}, the distance of a node pair in Out is greater than k; note that if (u, z) is in Out and Has_optimal_path (u, z), then $\operatorname{Dist}_{u}(z)=\operatorname{Cost}(u, z)>k$. Hence Lowest is greater than k.)

Thus it suffices to prove M_{9} and M_{10}. We next proceed to prove M_{9}.
$\left(M_{11}\right)$ Invariant Lowest $\geq k \wedge|D V i a(k)|=0 \wedge \operatorname{Cost}(u, z)=k \Rightarrow$ Has_optimal_path (u, z)
M_{9} follows from M_{11} and M_{10} by implication. (The details are as follows: Consider a node pair (u, z) satisfying left side of $M_{9} .(u, z)$ has optimal path (from $\left.M_{11}\right)$. Distances of node pairs (w, x) not satisfying Has_optimal_path (w, x) are greater than k (from M_{10}). Costs of node pairs (w, x) not satisfying Has_optimal_path (w, x) are greater than k (from M_{11} and Lowest $\geq k$). Distances in transit are greater than k (from Lowest $\geq k$ and $|D \operatorname{Transit}(k)|=0$).)

Thus it suffices to prove M_{11} and M_{10}. We next proceed to prove M_{11}.
(M_{12}) Invariant $u \neq z \Rightarrow$ Dist $_{u}(z)=\min \left\{\right.$ Distvia $_{u}(v, z): v \in$ neighbors $\left.(u)\right\}$
$\left(M_{13}\right)$ Invariant $\left[\forall(v, z) \in \operatorname{In} \wedge v \in \operatorname{neighbors}(u): \operatorname{Distvia}_{u}(v, z) \geq \operatorname{Cost}(u, z)\right]$
$\left(M_{14}\right)$ Invariant $\operatorname{Cost}(u, z) \leq$ Lowest $\wedge u \neq z \Rightarrow\left[\exists(v, z) \in \operatorname{In} \wedge v \in \operatorname{neighbors}(u): \operatorname{Distvia}_{u}(v, z)=\operatorname{Cost}(u, z)\right]$
M_{12} states that distance of a node pair equals the minimum of distances via its neighbors. M_{12} follows from invariance rule.
M_{13} states that distance of a node via a node pair in In is greater than or equal to the cost of the node. M_{13} follows from B_{2} and B_{3} by implication (since (v, z) is in In, $\operatorname{Dist}_{v}(z)=\operatorname{Cost}(v, z)$ and v 's outgoing channels do not contain a message for z, hence $\operatorname{Distvia}_{u}(v, z)$ equals $\operatorname{Cost}(v, z)+\operatorname{Linkcost}{ }_{u}(v)$, which is greater than or equal to cost of node pair $(u, z))$.
M_{14} states that a node pair with cost less than or equal to Lowest has a neighbor in $I n$ and its distance via this neighbor equals its cost. M_{14} follows from B_{2} and B_{3} by implication (note that if cost of (u, z) is less than or equal to Lowest and v is u 's next node on an optimal path, then (v, z) is in $I n$ since v has a smaller cost; also since outgoing channels of v do not contain a message for z, the distance of u via v equals cost of $(u, z))$.
M_{11} follows from M_{14}, M_{13} and M_{12} by implication. (The details are as follows: Consider node pair (u, z) that satisfies left side of M_{11}. From M_{14}, there is a neighbor v of u such that (v, z) is in $I n$ and u 's distance to z via v equals its cost k. From M_{13}, u 's distance to z via neighbors in $I n$ is not less than k. From \mid Via $(k) \mid=0$ and Lowest $\geq k$ (left side of M_{11}), u 's distance to z via neighbors in Out is higher than k. Thus from M_{12}, u 's distance to z is k and $N h o p_{u}(z)$ is a neighbor v in $I n$. Thus u has optimal path.)

Thus it suffices to prove $M_{10} . M_{10}$ follows from M_{11}, M_{12} and M_{13} by implication. (The details are as follows: Consider a node pair (u, z) that satisfies left side of M_{10}. From \neg Has_optimal_path (u, z) and Lowest $\geq k$, we have $\operatorname{Cost}(u, z) \geq k$. From $\neg H a s_{-}$optimal_path (u, z) and M_{11}, we have $\operatorname{Cost}(u, z) \neq k$. Thus, $\operatorname{Cost}(u, z)>k$. From M_{13}, u 's distance to z via neighbors in $I n$ is greater than k. From $|D V i a(k)|=0$ and Lowest $\geq k$ (left side of M_{10}), u's distance to z via neighbors in $O u t$ is greater than k. Thus, from M_{12}, u 's distance to z is greater than k.)

This completes the proof of M_{8}.

Proof of M_{6}

We repeat M_{6} :
$\left(M_{6}\right)$ Symmetric \wedge Lowest $=k$ leads-to $\mathcal{T C} \vee$ Lowest $\geq k \wedge|D \operatorname{Via}(k)|=0$
Define
$\left(M_{15}\right)$ Symmetric \wedge Lowest $\geq k \wedge|D V i a(k)|=n>0$ leads-to $\mathcal{T C} \vee|D V i a(k)|=n-1$
$\left(M_{16}\right)$ Lowest $\geq k$ unless $\mathcal{T C}$
M_{16} follows from the unless rule. M_{6} follows from M_{15}, M_{16} and C_{1} by closure. Thus it suffices to prove M_{15}.
(M_{17}) Lowest $\geq k \wedge|D \operatorname{Via}(k)| \leq n$ unless $\mathcal{T C}$
M_{17} states that if Lowest $\geq k$ then the size of $\operatorname{DVia}(k)$ does not increase. M_{17} follows from the unless rule.
M_{15} follows from M_{17} and B_{1} by closure. (The details are as follows: From B_{1}, Distvia (v, z) eventually becomes greater than Lowest (since d in B_{1} is greater than Lowest), hence decreases $|D V i a(k)| . M_{17}$ ensures that $|D V i a(k)|$ does not increase before $\operatorname{Distvia}_{u}(v, z)$ becomes greater than Lowest.)

This completes the proof of M_{6}.

Proof of M_{7}

We repeat M_{7} :
$\left(M_{7}\right)$ Symmetric \wedge Lowest $\geq k \wedge|D \operatorname{Via}(k)|=0$

$$
\text { leads-to } \mathcal{T} \mathcal{C} \vee \text { Lowest } \geq k \wedge|D \operatorname{Via}(k)|=0 \wedge|D \operatorname{Transit}(k)|=0
$$

Define
$\left(M_{18}\right)$ Symmetric \wedge Lowest $\geq k \wedge|D \operatorname{Via}(k)|=0 \wedge|D \operatorname{Transit}(k)|=n>0$

$$
\text { leads-to } \mathcal{T C} \vee|D \operatorname{Via}(k)|=0 \wedge|D \operatorname{Transit}(k)|=n-1
$$

M_{18} states that if Lowest $\geq k$ and DVia (k) is empty, then the size of $D \operatorname{Transit}(k)$ eventually decreases.
M_{7} follows from M_{18}, M_{16} and C_{1} by closure. Thus it suffices to prove M_{18}.
$\left(M_{19}\right)$ Lowest $\geq k \wedge|D \operatorname{Via}(k)|=0 \wedge \operatorname{DTransit}(k)$ bag-subset S unless $\mathcal{T} \mathcal{C}$
M_{19} states that if Lowest $\geq k$ and DVia(k) is empty then DTransit (k) does not expand ${ }^{1} . M_{19}$ follows from unless rule.
M_{18} follows from B_{5}, B_{6} and M_{19} by closure. (The details are as follows: From B_{5}, a message participating in $D \operatorname{Transit}(k)$ advances to front. From B_{6}, it gets removed, decreasing $|D \operatorname{Transit}(k)|$. M_{19} ensures that D Transit (k) does not expand while the message advances to front.)

This completes the proof of M_{7}, and hence of Theorem 1 .

End of proof of Theorem 1

Even though we have shown that after any succession of topology changes, the nodes that can reach the destination obtain optimal paths, this convergence may contain long-lived loops and be very lengthy. For example, consider the simple network in Figure 2.a. Three are three nodes u, v, and z. Destination node is z. Assume all link costs are 1. Numbers on the arrows indicate the distances of nodes via their neighbors, and solid arrows indicate the next-hops to z. That is, node u 's distance to z via z is 1 and via node v is 3. In Figure 2.b, cost of the link (u, z) increases to D such that $D>3$. As a result u chooses v as its

[^1]
(a)

(d)

(b)

Figure 2: Long-lived loops.
next-hop, causing a loop, and sends its new distance to v. Upon receiving this message, v will add 1 (i.e. $\left.\operatorname{Linkcost}_{v}(u)\right)$ to this distance (see Figure 2.c), and send a message back to u, causing node u 's distance to increase (see Figure 2.d). Node u and v will keep on exchanging messages (referred to as bouncing effect in the literature), each time increasing their distances by 2 (i.e. $\operatorname{Linkcost}_{u}(v)+\operatorname{Link}_{\operatorname{Cost}}^{v}(u)$) until node u's distance via v exceeds D, at which point u chooses z as its next-hop. This convergence will require
 thus nodes u and v cannot reach z), they will exchange distances indefinitely (referred to as count-to-infinity problem). With more realistic network topologies, this behavior can be even more complex, for example: loops can involve multiple hops and breaking one loop may cause another loop. In the next algorithm, these problems are avoided.

4 Algorithm A2

Table 2 specifies the state variables and events of a node in A2. (Refer to the table in the following discussion.) Each node maintains the state variables required for A1. In addition, node u maintains in state variable Routevia (v, z) an estimate of the next-hop path for destination z via neighbor v. It is equal to the null sequence if node u believes z cannot be reached via v. Node u also maintains a state variable Costseqvia (v, z) which stores the sequence of estimated link costs for the corresponding links in Routevia (v, z). State variables Route $_{u}(z)$ and $\operatorname{Costseq}_{u}(z)$ store the route and cost sequence via node u's next-hop.

Convention: We use the term route to refer to estimates maintained by nodes of next-hop paths.
The variables $\operatorname{Costseq}_{u}(z)$ and $\operatorname{Costsequia}_{u}(v, z)$ are auxiliary variables; they are needed for verification only, and do not have to be implemented. (Formally they satisfy the following conditions: (1) they do not
affect the enabling condition of any event, and (2) they do not affect the update of any nonauxiliary state variable [16].)

Algorithm A2 is like algorithm A1, except that A2 uses paths to avoid long-lived loops. Long-lived loops in the next-hop path for destination z can be avoided by having node u not choose a neighbor v as its next-hop if Routevia (v, z) contains a cycle. Another way to achieve the same effect is by having node v send ∞ as its distance to node u if node u is in $\operatorname{Route}_{v}(z)$. We have chosen the second approach, as specified in the last five lines of procedure Update\&Send in table 2. That is, sending ∞ as the distance prevents the receiver from choosing a route with a loop. It does not prevent the receiver from choosing an optimal path.

In addition to exchanging distances, nodes also exchange information about their paths and cost sequences. More precisely, node v sends messages of the form ($v, d_{-} v e c t o r$), where d_vector is a set of $(z, d, p, c s, r d)$ tuples such that either (1) $d=r d=\operatorname{Dist}_{v}(z), p=\operatorname{Route}_{v}(z)$, and $c s=\operatorname{Costseq}_{v}(z)$ if node u is not in Route $_{v}(z)$, or (2) $d=\infty, p=\langle \rangle, c s=\langle \rangle$, and $r d=$ Dist $_{v}(z)$, if node u is in Route (z). Fields $c s$ and $r d$ are auxiliary fields, and do not have to be implemented ($r d$ is only used in the proof of Theorem 2).

When Linkcost (v) changes, Distvia $_{u}(v, z)$, Routevia (v, z), Costseqvia (v, z), and if needed Nhop (z), $\operatorname{Dist}_{u}(z)$, Route (v, z), and $\operatorname{Costseq}_{u}(z)$, are updated for each destination z (as shown in procedure Update\&Send in table 2). If the distance or route of any destination has been affected, node u sends messages to its neighbors for all affected destinations z (as described in the previous paragraph).

When node u receives a ($v, d_{\text {_vector }}$) message, it updates its state variables for each destination z in $d_{-} v e c t o r$ (note that $r d$ is not used to update any state variable). If the distance or route of any destination has been affected, node u sends messages to its neighbors.

Theorem 2. A2 satisfies M_{1} and M_{2}.
Proof of Theorem 2
The proof of Theorem 2 is identical to that of Theorem 1, except that the assertions $B_{1}-B_{8}$ describing the relationship between neighboring nodes, are replaced by new assertions $B_{1}-B_{9}$ below.

The main differences between A2 and A1 are reflected in the new B assertions. First, messages in transit may contain ∞ as distance even though the sender's distance is finite (see B_{2} below). This only happens when the receiver is on the sender's route. Second, when the channel between two nodes do not contain a distance for a destination, distance of the receiver via the sender may not equal the sum of sender's distance and the cost of the link between them (see B_{3} below). B_{4} now has two parts $B_{4 a}$ and $B_{4 b}$; the first part covers the case when the receiver is not on the route of the sender, and the second part covers the case when
it is. Proofs of $B_{1}-B_{8}$ are identical to their counterparts in A1. (Assertions B_{5} and B_{6} stay the same.)
$\left(B_{1}\right) \operatorname{Dist}_{v}(z)=d \wedge$ Route $_{v}(z)=p \wedge(v, u) \in U P L I N K S$

$$
\begin{gathered}
\text { leads-to } \mathcal{T C} \vee\left(u \notin p \Rightarrow \operatorname{Distvia~}_{u}(v, z)=d+\operatorname{Linkcost}_{u}(v)\right) \vee \\
\left(u \in p \Rightarrow \operatorname{Distvia}_{u}(v, z)=\infty\right)
\end{gathered}
$$

$\left(B_{2}\right)$ Invariant Channel $v_{v}(z) \neq\langle \rangle \wedge(u, v) \in$ UPLINKS

$$
\begin{aligned}
\Rightarrow & \left(\left(z, \operatorname{Dist}_{v}(z), \text { Route }_{v}(z), \operatorname{Costseq}_{u}(z), \text { Dist }_{v}(z)\right)={\left.\operatorname{last}\left(\text { Channel }_{v u}(z)\right) \wedge u \notin \operatorname{Route}_{v}(z)\right) \vee}\left(\left(z, \infty,\langle \rangle,\langle \rangle, \operatorname{Dist}_{v}(z)\right)=\operatorname{last}\left(\text { Channel }_{v u}(z)\right) \wedge u \in \operatorname{Route}_{v}(z)\right)\right.
\end{aligned}
$$

$\left(B_{3}\right)$ Invariant Channel $v_{v}(z)=\langle \rangle \wedge(u, v) \in$ UPLINKS

$$
\begin{aligned}
\Rightarrow\left(\operatorname{Distvia~}_{u}(v, z)\right. & \left.=\text { Dist }_{v}(z)+\operatorname{Linkcost}_{u}(v) \wedge u \notin \operatorname{Route}_{v}(z)\right) \vee \\
& \left(\operatorname{Distvia~}_{u}(v, z)=\infty \wedge u \in \operatorname{Route}_{v}(z)\right)
\end{aligned}
$$

$\left(B_{4 a}\right)$ Invariant $(u, v) \in U P L I N K S \wedge \operatorname{Distvia}_{u}(v, z) \neq \operatorname{Dist}_{v}(z)+\operatorname{Linkcost}_{u}(v) \wedge u \notin$ Route $_{v}(z)$

$$
\Rightarrow\left(z, \operatorname{Dist}_{v}(z), \operatorname{Route}_{v}(z), \text { Costseq}_{u}(z), \operatorname{Dist}_{v}(z)\right)=\operatorname{last}\left(\text { Channel }_{v u}(z)\right)
$$

$\left(B_{4 b}\right)$ Invariant $(u, v) \in U P L I N K S \wedge$ Distvia $_{u}(v, z) \neq \infty \wedge u \in \operatorname{Route}_{v}(z)$

$$
\Rightarrow\left(z, \infty,\langle \rangle,\langle \rangle, \text { Dist }_{v}(z)\right)=\operatorname{last}\left(\text { Channel } l_{v u}(z)\right)
$$

$\left(B_{7}\right)(z, d, p, c s, r d)$ in Channel $_{v u}$ leads-to $\mathcal{T C} \vee$ Distvia $_{u}(v, z)=d+\operatorname{Linkcost}_{u}(v)$
$\left(B_{8}\right)(z, d, p, c s, r d)=$ front $\left(\right.$ Channel $\left._{v u}\right)$ leads-to $\mathcal{T C} \vee$ Distvia $_{u}(v, z)=d+\operatorname{Linkcost}_{u}(v)$
(B_{9}) Invariant ($z, d, p, c s, r d$) in Channel $v_{v u} \Rightarrow d=\infty \vee d=r d$
B_{9} states that $r d$ in a message is less than or equal to the corresponding d. B_{9} follows from invariance rule.
We redefine In, Lowest and DTransit for A2 as follows:
In. Maximal subset of Reachable such that (u, z) is a member of In iff
(1) Has_optimal_path (u, z),
(2) for any message $(x, d, p, c s, r d)$ in transit, $\operatorname{Dist}_{u}(z)$ is less than $r d$,
(3) for any node pair (w, x) in Reachable not satisfying Has_optimal_path(w, x),
$\operatorname{Dist}_{u}(z)<\operatorname{Dist}_{w}(x)$ and $\operatorname{Dist}_{u}(z)<\operatorname{Cost}(w, x)$.
Lowest. Formally,

$$
\begin{aligned}
=\min (\{ & \operatorname{Cost}(x, z):(x, z) \in O u t\} \cup \\
& \left\{\text { Dist }_{u}(z):(u, z) \in O u t\right\} \cup \\
& \left.\left\{r d:(x, d, p, c s, r d) \in \text { Channel } l_{u v} \wedge(u, x),(v, x) \in \text { Reachable }\right\}\right) .
\end{aligned}
$$

DTransit $(k)=\operatorname{bag}\left\{(u, v, z):(z, d, p, c s, r d) \in\right.$ Channel $_{u v} \wedge r d=k \wedge(u, z),(v, z) \in$ Reachable $\}$.

The proof of Theorem 2 is identical to the proof of Theorem 1 with new B assertions. B_{9} is required for M_{17}, M_{18} and M_{19} to hold for A2. Except for these changes, every assertion used in the proof of Theorem 1 also holds for A2 (and the proof is identical). Hence M_{1} and M_{2} hold for A2.

End of proof of Theorem 2

Next, we establish that after any succession of topology changes that leaves the network symmetric, A2 achieves optimal paths within $N+H$ steps assuming synchronous execution.

We define a synchronous execution as follows: Each message includes a step counter which is a nonnegative integer. Any message sent by a receive event has step counter one higher than the step counter of the received message. Any topology change event sets the step counter of all messages (including the ones being generated) to zero. We require that Receive events are executed such that the sequence of step counters of the received messages is non-decreasing. Formally, we define Step to be the step counter of the last message received, and add the following $S E$ condition as a conjunct to the enabling condition of every receive event:
$S E:$ step counter of the message to be received $=$ minimum step counter of the messages in transit Note that Step equals 0 immediately after any topology change.

The following assertions N_{1} and N_{2} state the desired property, that is, reachable node pairs achieve optimal paths within $N+H$ steps, and other node pairs obtain ∞ distances within N steps.

$$
\begin{aligned}
& \left(N_{1}\right) \text { Symmetric } \wedge \text { Step }=0 \text { leads-to } \mathcal{T C} \vee \text { Step } \leq N+H \wedge \\
& {\left[\forall(u, z) \in \text { Reachable : Has_optimal_path }(u, z) \wedge\left[\forall v \in \text { neighbors }(u): \text { Channel }_{u v}(z)=\langle \rangle\right]\right]} \\
& \left(N_{2}\right) \text { Symmetric } \wedge \text { Step }=0 \text { leads-to } \mathcal{T C} \vee \text { Step } \leq N \wedge\left[\forall(u, z) \notin \text { Reachable : } \text { Dist }_{u}(z)=\infty\right]
\end{aligned}
$$

Theorem 3. Assuming synchronous execution, A2 satisfies N_{1} and N_{2}.

Proof of Theorem 3

The rest of Section 4 is a proof of Theorem 3. Readers interested in the algorithms but not in the proofs can skip to Section 5.

Conventions: We use step\# to refer to the step number of a message.
We recast the assertions relating the states of neighbor nodes assuming synchronous execution:

$$
\begin{aligned}
& \left(D_{1}\right) \text { Step }=n \wedge(v, u) \in U P L I N K S \wedge \text { Dist }_{v}(z)=d \wedge \text { Route }_{v}(z)=p \wedge \text { Costseq }_{v}(z)=c s \wedge u \notin p \\
& \text { leads-to } \mathcal{T} \mathcal{C} \vee S t e p \leq n+1 \wedge \text { Distvia }_{u}(v, z)=d+\operatorname{Linkcost}_{u}(v) \\
& \wedge \text { Routevia }_{u}(v, z)=\langle u\rangle @ p \wedge \operatorname{Costseqvia~}_{u}(v, z)=\left\langle\operatorname{Link}^{\operatorname{cost}} u_{u}(v)\right\rangle @ c s
\end{aligned}
$$

$\left(D_{2}\right)$ Step $=n \wedge(u, v) \in U P L I N K S \wedge$ Dist $_{v}(z)=d \wedge$ Route $_{v}(z)=p \wedge$ Costseq $_{v}(z)=c s \wedge u \in p$ leads-to $\mathcal{T} \mathcal{C} \vee$ Step $\leq n+1 \wedge$ Distvia $_{u}(v, z)=\infty$

$$
\wedge \text { Routevia }_{u}(v, z)=\langle \rangle \wedge \text { Costseqvia }_{u}(v, z)=\langle \rangle
$$

$\left(D_{3}\right)$ Invariant Step $=n \wedge(u, v) \in U P L I N K S \wedge$ $u \notin \operatorname{Route}_{v}(z) \wedge \operatorname{Distvia}_{u}(v, z) \neq \operatorname{Dist}_{v}(z)+\operatorname{Linkcost}_{u}(v) \wedge \operatorname{Routevia}_{u}(v, z) \neq\langle u\rangle @ \operatorname{Route}_{v}(z) \Rightarrow$ $\left.\operatorname{last}_{(C h a n n e l}^{v u}(z)\right)=\left(z, \operatorname{Dist}_{v}(z)\right.$, Route $_{v}(z), \operatorname{Costseq}_{v}(z)$, Dist $\left._{v}(z)\right)$ with $n \leq \operatorname{step}=n \leq 1$
$\left(D_{4}\right)$ Invariant Step $=n \wedge(u, v) \in U P L I N K S \wedge$

$$
u \in \operatorname{Route}_{v}(z) \wedge \operatorname{Distvia~}_{u}(v, z) \neq \infty \wedge \text { Routevia }_{u}(v, z) \neq\langle \rangle \Rightarrow
$$ $\left.\operatorname{last}^{\operatorname{Channel}}{ }_{v u}(z)\right)=(z, \infty,\langle \rangle,\langle \rangle)$ with $n \leq \operatorname{step} \# \leq n+1$

$\left(D_{5}\right) \operatorname{front}\left(\right.$ Channel $\left.v_{v u}\right)=(z, d, p, c s, r d)$ with step $\#=n \wedge d \neq \infty$

$$
\text { leads-to } \mathcal{T C} \vee \text { Step }=n \wedge \text { Distvia }_{u}(z)=d+\operatorname{Linkcost}_{u}(v)
$$

\wedge Routevia $_{u}(v, z)=\langle u\rangle @ p \wedge$ Costseqvia $_{u}(v, z)=\left\langle\operatorname{Linkcost}_{u}(v)\right\rangle @ c s$
$\left(D_{6}\right)$ front $\left(\right.$ Channel $\left.v_{u}\right)=(z, \infty, p, c s, r d)$ with step\# $=n$ leads-to $\mathcal{T C} \vee$ Step $=n \wedge$ Distvia $_{u}(z)=\infty$
\wedge Routevia $_{u}(v, z)=\langle \rangle \wedge$ Costseqvia $_{u}(v, z)=\langle \rangle$
Suppose link (v, u) is not failed. Given any state of v 's distance, route and cost sequence to z, D_{1} states that if u is not on the route from v to z, then u eventually learns of v 's state within one step. D_{2} states that if u is on the route from v to z, then u eventually learns within one step that v has a distance of ∞, route of $\left\rangle\right.$, and cost sequence of $\left\rangle . D_{3}\right.$ and D_{4} (and D_{5} and D_{6}) make the same distinction. D_{3} and D_{4} follow from invariance rule. D_{5} and D_{6} follows from the leads-to rule (via receive event). D_{1} follows from D_{3}, B_{5}, and D_{5} by closure. D_{2} follows from D_{4}, B_{5}, and D_{6} by closure.

Define $\left\langle x_{0}, \ldots, x_{n}\right\rangle$ to be a $u d$-path from x_{0} to x_{n} if $\left[\forall 0 \leq i<n:\left(x_{i}, x_{i+1}\right) \in\right.$ LINKS $]$. Note that $u d$-path does not distinguish between up and down links.

Some safety assertions:
(E_{1}) Invariant Route $_{u}(z)$ is a simple $u d$-path
Routevia $_{u}(v, z)$ is a simple $u d$-path

$$
(z, d, p, c s, r d) \text { in Channel } l_{v u} \Rightarrow p \text { is a simple } u d \text {-path } \wedge u \notin p
$$

$\left(E_{2}\right)$ Invariant \mid Routevia $_{u}(v, z)|\leq N \wedge|$ Route $_{u}(z) \mid \leq N \wedge[(z, d, p, c s, r d)$ in transit $\Rightarrow|p| \leq N]$
(E_{3}) Invariant Distvia $_{u}(v, z)=\operatorname{sum}\left\{c: c \in \operatorname{Costseqvia}_{u}(v, z)\right\}$

$$
\begin{aligned}
& \wedge \text { Dist }_{u}(z)=\operatorname{sum}\left\{c: c \in \operatorname{Costseq}_{u}(z)\right\} \\
& \wedge[(z, d, p, c s, r d) \text { in transit } \Rightarrow d=\operatorname{sum}\{c: c \in c s\}]
\end{aligned}
$$

E_{1} follows from invariance rule. E_{2} states that route lengths (in number of links) are bounded above by N. E_{2} follows from E_{1} by implication (since a simple path may contain at most N nodes).
E_{3} states that all distances equal the sum of the link costs in the corresponding cost sequences (we assume $\operatorname{sum}\}=\infty) . E_{3}$ follows from invariance rule.

We define the following:
Consistent_distances. Boolean function. True iff (1) distance of any node pair equals path cost of its route, (2) distance of any node pair via a neighbor equals path cost of its route via that neighbor, and (3) any distance in transit in a message equals path cost of the route in the same message. Formally,

$$
\begin{aligned}
&=\left[\forall u, z \in N O D E S: \operatorname{Dist}_{u}(z)=\text { Path_cost }^{\left.\left(\text {Route }_{u}(z)\right)\right]}\right. \\
& \wedge\left[\forall u, z \in N O D E S, \forall v \in \text { neighbors }(u): \operatorname{Distvia}_{u}(v, z)=\operatorname{Path}_{-} \operatorname{cost}\left(\text { Routevia }_{u}(v, z)\right)\right] \\
& \wedge[\forall(z, d, p, c s, r d) \text { in transit }: d=\operatorname{Path} \operatorname{cost}(p)]
\end{aligned}
$$

Done. Set of node pairs. Formally,

$$
=\left\{(u, z) \in \text { Reachable }:\left[\forall x \in \text { Route }_{u}(z): \text { Has_optimal_path }(x, z) \wedge\left[\forall v \in \text { neighbors }(x): \text { Channel }_{x v}(z)=\langle \rangle\right]\right]\right\}
$$

The proof of N_{1} is summarized in Figure 3. A2 achieves N_{1} in two stages: first within N steps Consistent_distances (z) is established; after that within H steps Done $=$ Reachable is established (which implies the right side of N_{1}). Formally,
$\left(N_{3}\right)$ Symmetric \wedge Step $=0$ leads-to $\mathcal{T C} \vee$ Step $\leq N \wedge$ Consistent_distances
$\left(N_{4}\right)$ Symmetric \wedge Step $=j \wedge$ Consistent_distances

$$
\text { leads-to } \mathcal{T C} \vee \text { Step } \leq j+H \wedge \text { Done }=\text { Reachable }
$$

N_{1} follows from N_{3}, N_{4} and C_{1} by closure. N_{2} follows from N_{3} by closure. Thus it suffices to prove N_{3} and N_{4}.

Proof of N_{3}

We define the following:
k_{-}Consistent $\left(\left\langle x_{0}, \ldots, x_{n}\right\rangle,\left\langle c_{0}, \ldots, c_{n}\right\rangle\right)$. Boolean function where $\left\langle x_{0}, \ldots, x_{n}\right\rangle$ is a $u d$-path and c_{i} 's are costs.
True iff the link costs of the first k links $\left(x_{i}, x_{i+1}\right)$ equal respectively the first k costs c_{i}. Formally, $=$ true iff for $i \in[0, \ldots, \min (k-1, n-1)]: c_{i}=\operatorname{Linkcost}_{x_{i}}\left(x_{i+1}\right)$.

Figure 3: Proof of $N 1$.
k_Consistent_Routes. Boolean function. True iff all routes are k-consistent. Formally,

$$
\begin{aligned}
=[\forall u, z & \left.\in \text { NODES }: k_{-} \operatorname{Consistent}\left(\operatorname{Route}_{u}(z), \operatorname{Costseq}_{u}(z)\right)\right] \\
& \wedge\left[\forall u, z \in \text { NODES }, v \in \text { neighbors }(u): k_{-} \operatorname{Consistent}\left(\text { Routevia }_{u}(v, z), \text { Costseqvia }_{u}(v, z)\right)\right] \\
& \wedge\left[\forall(z, d, p, c s, r d) \text { in transit }: k_{-} \operatorname{Consistent}(p, c s)\right] .
\end{aligned}
$$

Note that the first argument of k_{-}Consistent in the definition of k_{-}Consistent_Routes is a ud-path (from $\left.E_{1}\right)$.
$\left(N_{5}\right)$ Symmetric \wedge Step $=0$ leads-to $\mathcal{T C} \vee$ Step $\leq N \wedge N_{\text {_Consistent_Routes }}$
N_{5} states that within N steps all routes are N-consistent. N_{3} follows from N_{5}, E_{2} and E_{3} by closure. (For the Routevia part of Consistent_Distances, the details are as follows: From E_{3}, Distvia $_{u}(v, z)=$ $\operatorname{sum}\left\{c: c \in\right.$ Costseqvia $\left._{u}(v, z)\right\}$. From N_{-}Consistent_Routes (right side of N_{5}) and \mid Routevia $_{u}(v, z) \mid \leq N$ $\left(E_{2}\right)$, we have that $\operatorname{Distvia}_{u}(v, z)$ equals the current cost of Routevia (v, z).) Thus it suffices to prove N_{5}.
(N_{6}) Symmetric \wedge Step $\leq k \wedge k_{-}$Consistent_Routes

$$
\text { leads-to } \mathcal{T C} \vee \text { Step } \leq k+1 \wedge(k+1) \text { _Consistent_Routes }
$$

(N_{7}) Symmetric $\wedge k_{-}$Consistent_Routes unless $\mathcal{T C}$
N_{6} state that if at step k all routes are k-consistent, then within one more step all routes are $(k+1)-$ consistent. N_{7} state that once k_{-}Consistent_Routes is established, it continues to hold. N_{7} follows from the unless rule. N_{5} follows from N_{6}, N_{7} and C_{1} by closure (since 0 -consistency is true for any route at any step).

Thus it suffices to prove N_{6}. N_{6} follows from D_{1}, and D_{2} by closure. To see this, suppose the route and the cost sequence of a node v are p and $c s$, respectively (p and $c s$ are k-consistent). Then in at most one step, the route and the cost sequence of a neighbor u via v either become $\langle u\rangle @ p$ and $\left\langle L_{\text {inkcost }}(v)\right\rangle @ c s$, or become \rangle and \rangle. In either case, they are $(k+1)$-consistent.

Proof of N_{4}
We first define the following:
depth (u, z). Minimum length (in number of links) of a minimum cost path from u to z. Formally,
$=\min \{|p|: p \in$ Availablepaths $(u, z) \wedge$ Path_cost $(p)=\operatorname{Cost}(u, z)\}$.
Note that $\operatorname{depth}(z, z)=0$ since $|\langle z\rangle|=0$.
k_{-}Reachable. Subset of node pairs in Reachable with depth less than or equal to k. Formally,

$$
=\{(u, z) \in \text { Reachable }: \operatorname{depth}(u, z) \leq k\}
$$

Some safety assertions:
$\left(N_{8}\right) \operatorname{depth}(u, z)=k$ unless $\mathcal{T C}$
N_{8} states that the value of $\operatorname{depth}(u, z)$ does not change. N_{8} follows from the unless rule.
(N_{9}) Symmetric \wedge Consistent_distances unless $\mathcal{T C}$
N_{9} follows from the unless rule.
(N_{10}) Symmetric \wedge Step $=j \wedge$ Consistent_distances leads-to $\mathcal{T C} \vee$ Step $\leq j+k \wedge k_{-}$Reachable \subseteq Done N_{10} states that once consistent distances are obtained, within k steps, Done will contain all nodes in k_{-}Reachable. N_{4} follows from N_{10} by replacing k by H (note that H_{-}Reachable $=$Reachable from the definition of $H)$. Thus it suffices to prove N_{10}.
$\left(N_{11}\right)$ Symmetric \wedge Step $=j \wedge$ Consistent_distances $\wedge k_{-}$Reachable \subseteq Done
leads-to $\mathcal{T C} \vee$ Step $\leq j+1 \wedge(k+1)$ _Reachable \subseteq Done
$\left(N_{12}\right)$ Invariant Step $>0 \Rightarrow(z, z) \in$ Done
N_{11} states that once consistent distances are obtained and Done contains all nodes in $k_{_}$Reachable, within one step Done will contain all nodes in $(k+1)$ _Reachable. N_{12} states that Done includes 0_Reachable after all messages generated by topology change events are received (at this time, outgoing channels of z do not contain any message for destination z). N_{10} follows from N_{9}, N_{11}, N_{12}, and N_{8} by closure. N_{12} follows from E_{1} using the invariance rule (from E_{1}, a message received by z does not contain a distance for z, hence z always has an optimal path).
$\left(N_{13}\right)$ Symmetric \wedge Step $=j \wedge$ Consistent_distances $\wedge k_{-}$Reachable \subseteq Done $\wedge \operatorname{depth}(u, z)=k+1$ leads-to $\mathcal{T C} \vee$ Step $\leq j+1 \wedge(u, z) \in$ Done
$\left(N_{14}\right)$ Symmetric \wedge Consistent_distances $\wedge \mathrm{S} \subseteq$ Done unless $\mathcal{T} \mathcal{C}$
N_{13} states that once consistent distances are obtained and Done contains all nodes in k_{-}Reachable, within one step a node u in Reachable with depth $k+1$ will join Done. N_{14} states that once consistent distances are obtained, Done does not shrink. N_{14} follows from the unless rule. N_{11} follows from N_{9}, N_{13}, N_{14}, and C_{1} by closure. Thus it suffices to prove N_{13}.
$\left(N_{15}\right)$ Invariant Symmetric \wedge Consistent_distances $\wedge k_{-}$Reachable \subseteq Done $\wedge \operatorname{depth}(u, z)=k+1$
\Rightarrow Has_Optimal_Path (u, z)
(N_{16}) Symmetric \wedge Step $=j \wedge$ Consistent_distances $\wedge k_{-}$Reachable \subseteq Done $\wedge \operatorname{depth}(u, z) \leq k+1$ leads-to $\mathcal{T} \mathcal{C} \vee$ Step $\leq j+1 \wedge\left[\forall v:\right.$ Channel $\left._{u v}(z)=\{ \}\right]$
N_{15} states that if consistent distances are obtained and Done contains all nodes in k _Reachable, a node at depth $k+1$ has an optimal next-hop path. N_{16} states that once consistent distances are obtained and

Done contains all nodes in k_{-}Reachable, within one step, outgoing channels of a node pair (u, z) at depth $k+1$ will not contain any messages for z.
N_{13} follows from N_{15}, N_{16}, and N_{14} by closure.
N_{15} follows from D_{3}, E_{1} and M_{12} by the implication. (The details are as follows: Consider (u, z) satisfying the left side of N_{15}. Consider v, a next node on a shortest length optimal path from u to z. From the definition of depth, depth$(v, z)=k$. From the left side of N_{15}, the outgoing channels of v do not contain any messages for z. Hence, from D_{3}, Routevia (v, z) is an optimal path. From Consistent_distances (left side of N_{15}) and E_{1}, distances via all other neighbors of u equal cost of some path. Hence, from M_{12}, u has an optimal path.) Thus it suffices to prove N_{16}.
$\left(N_{17}\right)$ Symmetric \wedge Consistent_distances $\wedge k_{-}$Reachable \subseteq Done \wedge depth $(u, z) \leq k+1$
$\wedge \operatorname{sum}\left\{\mid\right.$ Channel $_{u v}(z) \mid: v \in$ neighbors $\left.(z)\right\} \leq n$ unless $\mathcal{T C}$
N_{17} states that once Consistent_distances is achieved, and Done contains k_{-}Reachable, the number of messages in the outgoing channels of a node u at depth $k+1$ does not increase.
N_{16} follows from N_{17} and B_{6} by closure. N_{17} follows from the unless rule. This completes the proof of the theorem.

End of proof of Theorem 3

5 Algorithm A3

Table 3 specifies the state variables and events of a node in A3. (Refer to the table in the following discussion.) A3 differs from A2 only in the procedure Update\&Send.

In A3, the node id's are considered totally ordered. Node u chooses a neighbor v as its next-hop for destination z iff (i) v is the minimum node in $B e s t_{-} h o p s_{u}(z)$, and (ii) v is the minimum node in Best_hops (x) for every node x in the route to z via v. If there is no such v, then the next-hop is nil. (See definition of Min_best_hop(z) in the table.)

Procedure Update\&Send considers a destination z as affected if (1) distance for z has changed, or (2) route for z has changed, or (3) some node x on $\operatorname{Route}_{u}(z)$ is affected. This ensures that if the next-hop changes for a destination x, which is on the route to another destination z, the next-hop for z also changes.

This way of choosing next-hops and affected destinations ensures that during convergence (when the routes are not stable), the following property P holds: the next-hop of u for destination z is also the next-hop for all intermediate destinations on Route $_{u}(z)$.

Note that in A3, node u may choose the next-hop for destination z to be nil, when in fact there is a
neighbor v, and chosing v as the next-hop to z satisfies P. Although it may seem that this slows down the convergence, there is a good reason for doing this: if the minimum node in Best_hopsu(z), say w, does not satisfy P, then it means that u has inconsistent distances via v and w.

Theorem 4. A3 satisfies M_{1} and M_{2}.

Proof of Theorem 4

Proof of Theorem 4 is identical to proof of Theorem 2 with the following changes. We redefine In and Lowest for A3 as follows:

In. Maximal subset of Reachable such that (u, z) is a member of In iff
(1) Has_optimal_path (u, z),
(2) for any message $(x, d, p, c s, r d)$ in transit, $\operatorname{Dist}_{u}(z)$ is less than $r d$,
(3) for any node pair (w, x) in Reachable not satisfying Has_optimal_path (w, x),

$$
\operatorname{Dist}_{u}(z)<\min \left\{\text { Distvia }_{w}(v, x): v \in \operatorname{neighbors}(w)\right\} \text { and } \text { Dist }_{u}(z)<\operatorname{Cost}(w, x) .
$$

Lowest. Formally,

$$
\begin{aligned}
=\min (\{ & \text { Cost }(x, z):(x, z) \in O u t\} \\
& \left\{\text { Distvia }_{u}(v, z):(u, z) \in \text { Out } \wedge v \in \text { neighbors }(u)\right\} \\
& \left.\left\{r d:(x, d, p, c s, r d) \in \text { Channel }_{u v} \wedge(u, x),(v, x) \in \text { Reachable }\right\}\right) .
\end{aligned}
$$

We modify the assertions M_{12} and M_{14} as follows:
$\left(M_{12}\right)$ Invariant $u \neq z \wedge$ Dist $_{u}(z) \neq \infty \Rightarrow \operatorname{Dist}_{u}(z)=\min \left\{\right.$ Distvia $_{u}(v, z): v \in$ neighbor $\left.s(u)\right\}$
$\left(M_{14}\right)$ Invariant $\operatorname{Cost}(u, z) \leq$ Lowest $\wedge u \neq z$

$$
\begin{aligned}
\Rightarrow & {\left[\exists(v, z) \in \operatorname{In}: \operatorname{Distvia~}_{u}(v, z)=\operatorname{Cost}(u, z)\right] \wedge } \\
& {\left[\forall(v, z) \in \operatorname{In}: \operatorname{Distvia}_{u}(v, z)=\operatorname{Cost}(u, z) \wedge x \in \operatorname{Routevia}_{u}(v, z) \Rightarrow \operatorname{Distvia}_{u}(v, x)=\operatorname{Cost}(u, x)\right] }
\end{aligned}
$$

M_{12} follows from invariance rule. M_{14} follows from B_{2} and B_{3} by implication.
Other assertions that hold for A2 also hold for A3. Their proofs are identical except M_{11} which now follows from $M_{20}, M_{21}, M_{12}, M_{13}$ and M_{14} by implication where M_{20} and M_{21} are as follows:
$\left(M_{20}\right)$ Invariant $\left[\exists v \in\right.$ neighbors $(u):\left[\forall x \in\right.$ Routevia $_{u}(v, z): v=\min$ Best_hops $\left.\left._{u}(x)\right]\right] \Rightarrow$ Dist $_{u}(z) \neq \infty$
$\left(M_{21}\right)$ Invariant Lowest $\geq k \wedge|D \operatorname{Via}(k)|=0 \wedge$ Distancevia $_{u}(v, z)=\operatorname{Cost}(u, z)=k$

$$
\wedge x \in \operatorname{Routevia}_{u}(v, z) \wedge \text { Distvia }_{u}(w, x)=\operatorname{Cost}(u, x)
$$

$$
\Rightarrow \text { Distancevia }_{u}(w, z)=\operatorname{Cost}(u, z)
$$

M_{20} follows from invariance rule. M_{21} follows from B_{2} and B_{3} by implication. Hence M_{1} and M_{2} hold for

A3.

End of proof of Theorem 4

Theorem 5. Assuming synchronous execution, A3 satisfies N_{1} and N_{2}.

Proof of Theorem 5

Proof of Theorem 5 is identical to proof of Theorem 3 with $\operatorname{depth}(u, z)$ being redefined. In A2, depth(u,z) stood for minimum length of an optimal path from u to z. Many such paths can exist and any of them can be chosen by u. In A3, only one of these optimal paths can be chosen by u; i.e. the path $p=\left\langle x_{0}, x_{1}, \ldots, x_{n}\right\rangle$ where $x_{0}=u, x_{n}=z$ and x_{1} is the minimum-id neighbor of the neighbors on the optimal paths to x_{i}, for $i=1, \ldots, n$. (Note that this may not be the shortest length optimal path.) We redefine depth(u,z) to handle this:

$$
\begin{aligned}
& \text { depth }(u, z) \text {. Length of the optimal path from } u \text { to } z \text { such that the next hop in this path is the minimum-id } \\
& \text { neighbor providing an optimal path for all intermediate nodes in this path. Formally, } \\
& =|p| \text { such that } p \in \text { Availablepaths }(u, z) \wedge \operatorname{Path_ cost~}(p)=\operatorname{Cost}(u, z) \wedge \\
& {[\forall x \in p: \operatorname{front}(\operatorname{tail}(p))=\min \{\operatorname{front}(\operatorname{tail}(q)): q \in \operatorname{Availablepaths}(u, x) \wedge} \\
& \left.\left.\operatorname{Path_ cost}(q)=\operatorname{Cost}(u, x)\right\}\right] .
\end{aligned}
$$

All assertions that hold for A2 also hold for A3. Their proofs are identical except N_{15} now follows from M_{20}, M_{12} (as defined in the proof of Theorem 4), E_{1} and D_{3} by implication. Hence N_{1} and N_{2} hold for A3.

End of proof of Theorem 5

6 Algorithm A4

Table 4 specifies the state variables and events of a node in A4. Each node u maintains the state variables of A3, except that Routevia (v, z) and Route $_{u}(z)$ are now auxiliary. Instead, node u maintains new state variables $\operatorname{Pfnodevia}_{u}(v, z)$ and $\operatorname{Pfnode}_{u}(z)$. In $\operatorname{Pfnodevia}_{u}(v, z)$, node u maintains an estimate of the prefinal node via neighbor v (i.e. the last node before z on the path to z via v). Pfnodevia (v, z) is equal to nil if node u believes z cannot be reached via v. State variable $\operatorname{Pfnode} e_{u}(z)$ indicates the prefinal node via node u's next-hop.

The messages of A4 are like the message of A3, except that they now contain prefinal node information, and the route information is auxiliary (i.e. not implemented).

The events of algorithm A4 are like those of algorithm A3, with the following twist: each node in A4 uses its prefinal nodes to construct prefinal-routes, which take the place of the routes in A3. Node
u constructs its prefinal-route via neighbor v for destination z, referred to as $\operatorname{Pfroutevia}_{u}(v, z)$, as follows: Start with a sequence $\langle z\rangle$; add to the left of this sequence the prefinal node via v for the leftmost element of the sequence, until either (1) node u is added, or (2) the prefinal node is nil, or (3) a loop is established. We use Pfroute $_{u}(z)$ to refer to the prefinal-route for destination z via the next-hop. (Formal definitions of functions Pfroutevia (v, z) and $\operatorname{Pfroute}_{u}(z)$ are in the table).

Theorem 6.

(a) A4 satisfies M_{1} and M_{2}
(b) Assuming synchronous execution, A4 satisfies N_{1} and N_{2}.

Proof of Theorem 6

Because the variables of A4 (both auxiliary and non-auxiliary) are a superset of the non-auxiliary variables of A3 and their domains are the same, there is a natural (projection) mapping from the states of A4 to the states of A3. For any state s of A4, let s^{\prime} denote the corresponding state of A3. It is obvious that event e of A4 is enabled in any state s iff the corresponding event e of $\mathbf{A} \mathbf{3}$ is enabled in s^{\prime}. We next show that event e of A4 updates the variables of A3 in the same way as the corresponding event e of $\mathbf{A} \mathbf{3}$; more precisely, if event e of $\mathbf{A} 4$ has a transition (s, t), then the corresponding event e of $\mathbf{A} \mathbf{3}$ has a transition (s^{\prime}, t^{\prime}). For this, it is sufficient to establish that the prefinal-routes of A4 simulate accurately the routes of A3. This is specified by the following assertion:
$\left(R_{1}\right)$ Invariant $\left(\left[\right.\right.$ Routevia $_{u}(v, z)=$ Pfroutevia $\left._{u}(v, z)\right] \vee\left[\right.$ Routevia $_{u}(v, z)=\langle \rangle \wedge$ Pfroutevia $\left.\left._{u}(v, z)=\langle z\rangle\right]\right) \wedge$

$$
\begin{aligned}
& \left(\left[\text { Route }_{u}(z)=\text { Pfroute }_{u}(z)\right] \vee\left[\text { Route }_{u}(z)=\langle \rangle \wedge \text { Pfroute }_{u}(z)=\langle z\rangle\right]\right) \wedge \\
& \left((z, d, \text { pfn, } p)=\text { Channel }_{u v}[j] \Rightarrow\left[p=\text { PfMroute }_{u v}(j, z)\right] \vee\left[p=\langle \rangle \wedge \text { PfMroute }_{u v}(j, z)=\langle z\rangle\right]\right)
\end{aligned}
$$

where Channel ${ }_{u v}[j]$ denotes the j-th message in Channel Chv $^{\text {(Channel }}{ }_{u v}[0]$ is the front) and PfMroute ${ }_{u v}(j, z)$ is defined as follows:

PfMroute $_{u v}(j, z)$. Sequence of nodes. $\left\langle s_{0}, \ldots, s_{n}\right\rangle$ where
(a) $s_{n}=z$,
(b) for all $i \in[0 . . n-1]: s_{i}= \begin{cases}\operatorname{Pfnodevia}_{v}\left(u, s_{i+1}\right) & \begin{array}{l}\text { if for all } k \leq j, \text { Channel }_{u v}[k] \text { does } \\ \text { not contain }\left(s_{i+1}, d, p f n, p\right)\end{array} \\ & \begin{array}{l}\text { if for largest } k \leq j, \text { Channel } \\ \text { fv }\end{array}[k] \\ & \text { contains }\left(s_{i+1}, d, p f n, p\right)\end{cases}$
(c) for all $i \in[1 . . n-1]: s_{i} \notin\left\{s_{i+1}, \ldots, s_{n}\right\}$, and
(d) $s_{0}=u \vee P \operatorname{Pfode} e_{u}\left(s_{0}\right)=n i l \vee s_{0} \in\left\{s_{1}, \ldots, s_{n}\right\}$.
R_{1} states that the prefinal-routes and the routes (which are auxiliary) agree. R_{1} follows from invariance
rule.
Given R_{1}, if event e of $\mathbf{A} 4$ has transition (s, t), then the corresponding event e of $\mathbf{A} \mathbf{3}$ has transition $\left(s^{\prime}, t^{\prime}\right)$. We have already established that e of $\mathbf{A} 4$ is enabled whenever e of $\mathbf{A} \mathbf{3}$ is enabled. We also have that the initial condition of A4 imply the initial condition of A3. Thus, A4 is a strongly well-formed refinement of A3; that is, A4 satisfies any safety or progress properties of A3. This and Theorem 4 imply Theorem 5.

End of proof of Theorem 6

7 Concluding Remarks

The algorithms analyzed in this paper are representative of various internetworking distance-vector routing protocols. Distance-vector routing algorithms are difficult to understand. Most of their analyses in the literature is operational. In the course of our work, we discovered that they are often incomplete or inaccurate; for example, reference [17] considers only one or two link failures rather than an arbitrary succession of topology changes, to prove the properties of their algorithm; the routing table update procedure in [3] is inaccurate; the example in [3] to illustrate $O(N)$ convergence is wrong, etc. A stepwise assertional design, such as the one presented here, is effective at making it easier to understand these algorithms.

In our opinion, the major drawback of our stepwise design is that we could not obtain a refinement result for algorithm A2 and A3 similar to the result for algorithm A4. Instead, we had to check that the proof that A1 eventually achieves optimal paths also holds for A2 and A3, and that the proof that A2 achieves optimal paths in $N+H$ steps also holds for A3.

References

[1] C. Alaettinoğlu and A. U. Shankar. Stepwise assertional design of distance-vector routing algorithms. In IFIP Protocol Specification Testing and Verification '92, Orlando, Florida, June 1992.
[2] K. M. Chandy and J. Misra. Parallel Program Design, chapter 2,3 and 8. Addison-Wesley, 1988.
[3] C. Cheng, R. Riley, S. P. R. Kumar, and J. J. Garcia-Luna-Aceves. A loop-free Bellman-Ford routing protocol without bouncing effect. In ACM SIGCOMM '89, pages 224-237, September 1989.
[4] E. Dijkstra and C. Scholten. Termination detection for diffusing computations. Information Processing Letters, 11(1):1-4, 1980.
[5] L. Ford and D. Fulkerson. Flows in Networks, pages 297-333. Prentice-Hall, Inc., 1962.
[6] J.J. Garcia-Luna-Aceves. A unified approach to loop free routing using distance vectors or link states. In ACM SIGCOMM '89, pages 212-223, September 1989.
[7] C. Hedrick. Routing information protocol. Request for Comment RFC-1058, Network Information Center, June 1988.
[8] C. L. Hedrick. An introduction to igrp. Technical report, The State University of New Jersey, Center for Computer and Information Services, Laboratory for Computer Science Research, Rutgers, New Jersey, August 1991. Available by anonymous ftp from ftp.cisco.com.
[9] P. A. Humblet. Another adaptive distributed shortest path algorithm. IEEE Transactions on Communications, 39(6):995-1003, June 1991.
[10] J. M. Jaffe and F.H. Moss. A responsive distributed routing algorithm for computer networks. IEEE Transactions on Communications, COM-30(7):1758-1762, July 1982.
[11] S. S. Lam and A. U. Shankar. A relational notation for state transition systems. IEEE Transactions on Software Engineering, SE-16(7):755-775, July 1990. An abriviated version appeared in Protocol Specification, Testing, and Verification VIII, 1988.
[12] K. Lougheed and Y. Rekhter. Border gateway protocol (bgp). Request for Comment RFC-1105, Network Information Center, June 1989.
[13] Z. Manna and A. Pnueli. Adequate Proof Principles for Invariance and Liveness Properties of Concurrent Programs. Science of Computer Programming, 4:257-288, 1984.
[14] J. M. McQuillan, G. Falk, and I. Richer. A review of the development and performance of the Arpanet routing algorithm. IEEE Transactions on Communications, COM-26:1802-1811, Dec 1978.
[15] P. M. Merlin and A. Segall. A failsafe distributed routing protocol. IEEE Transactions on Communications, COM-27(9):1280-1287, September 1979.
[16] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs i. Acta Informatica, 6:319-340, 1976.
[17] B. Rajagopalan and M. Faiman. A new responsive distributed shortest-path routing algorithm. In ACM SIGCOMM '89, pages 237-246, September 1989.
[18] Y. Rekhter. Inter-domain routing protocol (idrp). Available from the author., 1992. T.J. Watson Research Center, IBM Corp.
[19] A. Segall. Advances in verifiable fail-safe routing procedures. IEEE Transactions on Communications, COM-29(4):491-497, April 1981.
[20] A.U. Shankar. An Introduction to Assertional Reasoning for Concurrent Systems. ACM Computing Surveys, September 1993. to appear.
[21] K. G. Shin and M. Chen. Performance analysis of distributed routing strategies free or ping-pong-type looping. IEEE Transactions on Computers, 1987.

Table 1: Algorithm A1.

```
State variables and initial conditions of node \(u\) :
    Linkcost \(t_{u}(v): I^{+} \cup\{\infty\}\). Initially \(\infty\). Cost of the link \((u, v)\).
    Distvia \(_{u}(v, z): I^{+} \cup\{\infty\}\). Initially \(\infty\). Distance to destination \(z\) via neighbor \(v\).
    Nhop \({ }_{u}(z):\) neighbors \((u) \cup\{n i l\}\). Initially nil. Next-hop for destination \(z\).
    \(\operatorname{Dist}_{u}(z): I^{+} \cup\{0, \infty\}\). Initially \(\infty\) for \(u \neq z\), and 0 for \(u=z\). Distance to destination \(z\) via next-hop.
Events of node \(u\) :
    \(\operatorname{Receive}_{u}\left(v\right.\), d_vector \(^{\text {) }}\)
    action: Update\&Send \({ }_{u}\left(v,\left\{\left(z, d+\operatorname{Link}^{\operatorname{Linost}}(v)\right):(z, d) \in d_{-} v e c t o r\right\}\right) \quad\{d\) can be \(\infty\}\)
    LinkCostChange \(e_{u}(v\), newcost \() \quad\{n e w \operatorname{cost} \neq \infty\}\)
    enabled: \(\operatorname{Link} \operatorname{cost}_{u}(v)<\infty\)
    action: \(\quad c:=n e w c o s t-\operatorname{Link} \operatorname{cost} t_{u}(v) ; \operatorname{Link}^{\operatorname{cost}}{ }_{u}(v):=n e w c o s t ;\)
                Update\&Send \({ }_{u}\left(v,\left\{\left(z\right.\right.\right.\), Distvia \(\left.\left.\left._{u}(v, z)+c\right): \forall z \in \operatorname{NODES}\right\}\right)\)
    LinkFailure \({ }_{u}(v)\)
    enabled: \(\operatorname{Linkcost}_{u}(v)<\infty\)
    action: Channel \({ }_{u v}:=\langle \rangle ; \operatorname{Linkcost}_{u}(v):=\infty\);
                Update\&Send \({ }_{u}(v,\{(z, \infty): \forall z \in\) NODES \(\})\)
    LinkRecovery \(y_{u}(v\), newcost \() \quad\{\) newcost \(\neq \infty\}\)
    enabled: \(\operatorname{Linkcost}_{u}(v)=\infty\)
    action: \(L_{\text {inkcost }}^{u}(v):=n e w c o s t ;\)
                Update\&Send \(d_{u}(v,\{(v\), newcost \()\}) ;\)
                \(\operatorname{Send}\left(u,\left\{\left(z, \operatorname{Dist}_{u}(z)\right): \forall z \in \operatorname{NODES}\right\}\right)\) to \(v\)
    Update\&Send \({ }_{u}\left(v, d_{-} v e c t o r\right)\)
        local variable affectedsinks initially \{\};
        for all \((z, d) \in d_{-} v e c t o r ~ d o\)
            Distvia \(_{u}(v, z):=d ; \quad\{\) Note that \(d\) can be \(\infty\}\)
            if \(\left[\operatorname{Nhop}_{u}(z) \neq v \wedge \operatorname{Distvia}_{u}(v, z)<\operatorname{Dist}_{u}(z)\right]\)
                    \(\vee\left[N \operatorname{Mop}_{u}(z)=v \wedge \operatorname{Distvia}_{u}(v, z) \neq \operatorname{Dist}_{u}(z)\right]\) then
                    if Best_hops \({ }_{u}(z) \neq\{ \}\) then
                        for some \(k \in\) Best_hops \(_{u}(z)\) do
                        Nhop \((z):=k ; \operatorname{Dist}_{u}(z):=\) Distvia \(_{u}(k, z)\)
                    else
                        Nhop \({ }_{u}(z):=n i l ; \operatorname{Dist}_{u}(z):=\infty\)
                    endif;
                    affectedsinks \(:=\) affectedsinks \(\cup\{z\}\)
            endif
        for all \(w\) such that \((u, w) \in\) UPLINKS do
            \(\operatorname{Send}\left(u,\left\{\left(z\right.\right.\right.\), Dist \(\left.\left.\left._{u}(z)\right): \forall z \in \operatorname{affectedsinks}\right\}\right)\) to \(w ;\)
where Best_hopsu( \(z\) ) is a function that returns the following subset of neighbors(u):
\[
\left\{v: \operatorname{Distvia}_{u}(v, z) \neq \infty \wedge \operatorname{Distvia}_{u}(v, z)=\min \left\{\operatorname{Distvia}_{u}(w, z): w \in \operatorname{neighbors}(u)\right\}\right\}
\]
```

Table 2: Algorithm A2.

```
State variables and initial conditions of node \(u\) :
    Linkcost \({ }_{u}(v)\), Nhop \(_{u}(z), \operatorname{Dist}_{u}(z), \operatorname{Distvia}_{u}(v, z)\). As in A1.
    Routevia \({ }_{u}(v, z)\). sequence of nodes. Initially \(\rangle\). Path from \(u\) to \(z\) via \(v\).
    Costseqvia \((v, z)\). sequence of \(I^{+} \cup\{\infty\}\). Auxiliary. Initially 〈〉. Sequence of link costs on Routevia \((v, z)\).
    Route \(_{u}(z)\). sequence of nodes. Initially \(\rangle\) for \(u \neq z,\langle u\rangle\) for \(u=z\). Path from \(u\) to \(z\).
    Costsequ \((z)\). sequence of \(I^{+} \cup\{\infty\}\). Auxiliary. Initially \(\rangle\) for \(u \neq z,\langle 0\rangle\) for \(u=z\).
        Sequence of link costs on Route \(u(z)\).
Events of node \(u\) :
    Receive \(_{u}\left(v\right.\), d_vector \(\left.^{\prime}\right)\)
        action: local variable d_vector 2 : initially \(\}\);
        \(d_{-} v e c t o r 2:=\left\{\left(z, d+\operatorname{Link}^{2} \operatorname{cost}_{u}(v),\langle u\rangle @ p,\left\langle\operatorname{Linkcost}_{u}(v)\right\rangle @ c s\right):(z, d, p, c s, r d) \in d_{\text {vector }} \wedge d \neq \infty\right\}\)
                        \(\cup\left\{(z, \infty,\langle \rangle,\langle \rangle):(z, d, p, c s, r d) \in d_{-} v e c t o r \wedge d=\infty\right\} ;\)
            Update\&Sendu (v, d_vector 2\()\)
    Link Cost Change \(_{u}(v\), newcost \() \quad\{\) newcost \(\neq \infty\}\)
    enabled: \(\operatorname{Linkcost}_{u}(v)<\infty\)
    action: local variable d_vector: initially \(\} ; c\);
                \(c:=n e w \cos t-L i n k \operatorname{cost}_{u}(v) ; \operatorname{Linkcost}_{u}(v):=n e w c o s t ;\)
                \(d_{-}\)vector \(:=\left\{\left(z, \operatorname{Distvia}_{u}(v, z)+c\right.\right.\), Routevia \(_{u}(v, z),\langle\) newcost \(\left.\rangle @ \operatorname{tail}\left(\operatorname{Costseqvia}_{u}(v, z)\right)\right): \forall z \in\) NODES \(\} ;\)
                Update\&Send \({ }_{u}\left(v, d_{-v e c t o r}\right)\)
    LinkFailure \({ }_{u}(v)\)
    enabled: \(\operatorname{Linkcost}_{u}(v)<\infty\)
    action: Channel \({ }_{u v}:=\langle \rangle ;\) Linkcost \(_{u}(v):=\infty ;\)
        Update\&Send \(u\left(v,\left\{(z, \infty,\langle \rangle,\langle \rangle): \forall z \in \operatorname{NODESS}^{\prime}\right) ;\right.\)
    LinkRecovery \(y_{u}(v\), newcost \() \quad\{\) newcost \(\neq \infty\}\)
    enabled: \(\operatorname{Linkcost}_{u}(v)=\infty\)
    action: \(\quad L_{i n k} \operatorname{cost}_{u}(v):=n e w c o s t ;\)
        Update\&Send \({ }_{u}\left(v,\left\{\left(v, n e w c o s t,\langle u, v\rangle,\left\langle\operatorname{Linkcost}_{u}(v), 0\right\rangle\right)\right\}\right)\);
        \(\operatorname{Send}\left(u,\left\{\left(z, \operatorname{Dist}_{u}(z)\right.\right.\right.\), Route \(\left.\left._{u}(z), \operatorname{Costseq}_{u}(z), \operatorname{Dist}_{u}(z)\right): \forall z \in \operatorname{NODES} \wedge v \notin \operatorname{Route}_{u}(z)\right\}\)
                        \(\left.\cup\left\{\left(z, \infty,\langle \rangle,\langle \rangle, \operatorname{Dist}_{u}(z)\right): \forall z \in \operatorname{NODES} \wedge v \in \operatorname{Route}_{u}(z)\right\}\right)\) to \(v\)
    Update\&Send \({ }_{u}\left(v\right.\), d_vector \(^{\text {) }}\)
        local variable affectedsinks: initially \{\};
        for all \((z, d, p, c s) \in d_{-} v e c t o r\) do \(\quad\{\) Note that \(d\) can be \(\infty\}\)
            Distvia \(_{u}(v, z):=d ;\) Routevia \(_{u}(v, z):=p ;\) Costseqvia \(_{u}(v, z):=c s ;\)
            if \(\left(\operatorname{Nhop}_{u}(z) \neq v \wedge \operatorname{Distvia}(z, v)<\operatorname{Dist}_{u}(z)\right)\)
                \(\vee\left(\operatorname{Nhop}_{u}(z)=v \wedge\left(\right.\right.\) Distvia \(_{u}(v, z) \neq \operatorname{Dist}_{u}(z) \vee\) Routevia \(_{u}(v, z) \neq\) Route \(\left.\left._{u}(z)\right)\right)\) then
                if Best_hops \({ }_{u}(z) \neq\{ \}\) then
                    for some \(k \in\) Best_hops \(_{u}(z)\) do
                        Nhop \(_{u}(z):=k ; \operatorname{Dist}_{u}(z):=\operatorname{Distvia}_{u}(k, z) ;\)
                        Route \(_{u}(z):=\) Routevia \(_{u}(k, z) ; \operatorname{Costseq}_{u}(z):=\operatorname{Costseqvia}_{u}(k, z)\)
            else
                Nhop \((z):=\) nil; Dist \(_{u}(z):=\infty ;\) Route \(_{u}(z):=\langle \rangle ;\) Costseq \(_{u}(z):=\langle \rangle\)
            endif;
            affectedsinks \(:=\) affectedsink \(s \cup\{z\}\)
        endif
    for all \(w\) such that \((u, w) \in\) UPLINKS do
        local variable d_vector: initially \{\};
            d_vector \(:=\left\{\left(z, \infty,\langle \rangle,\langle \rangle\right.\right.\), Dist \(\left._{u}(z)\right): w \in\) Route \(_{u}(z) \wedge z \in\) affectedsinks \(\}\)
                        \(\cup\left\{\left(z, \operatorname{Dist}_{u}(z), \operatorname{Route}_{u}(z), \operatorname{Costseq}_{u}(z), \operatorname{Dist}_{u}(z)\right): w \notin \operatorname{Route}_{u}(z) \wedge z \in\right.\) affectedsinks \(\} ;\)
            Send(u,d_vector) to \(w\);
where Best_hopsu \((z)\) is as defined in A1 (Table 1).
```

Table 3: Algorithm A3.

```
State variables and initial conditions of node \(u\) :
    \(\operatorname{Linkcost}_{u}(v)\), Nhop \(_{u}(z)\), Dist \(_{u}(z)\), Distvia \(_{u}(v, z)\), Route \(_{u}(z)\), Routevia \(_{u}(v, z), \operatorname{Costseq}_{u}(z), \operatorname{Costseq}^{(z i a}(v, z)\).
        As in A2.
Events of node \(u\) :
    Receive \({ }_{u}\), LinkCostChange \({ }_{u}\), LinkFailure \({ }_{u}\), LinkRecovery \({ }_{u}\). As in A2.
Update\&Sendu (v, d_vector)
        local variable affectedsinks: initially \(\} ;\)
        for all \((z, d, p, c s) \in d_{-}\)vector do \(\quad\{\) Note that \(d\) can be \(\infty\}\)
            Distvia \(_{u}(v, z):=d ;\) Routevia \(a_{u}(v, z):=p ;\) Costseqvia \(_{u}(v, z):=c s ;\)
            if \(\left(\operatorname{Nhop}_{u}(z) \neq v \wedge \operatorname{Distvia}_{u}(v, z)<\operatorname{Dist}_{u}(z)\right)\)
                    \(\vee\left(\operatorname{Nhop}_{u}(z)=v \wedge\left(\right.\right.\) Distvia \(_{u}(v, z) \neq \operatorname{Dist}_{u}(z) \vee\) Routevia \(\left.\left._{u}(v, z) \neq \operatorname{Route}_{u}(z)\right)\right)\) then
                    affectedsinks \(:=\) affectedsinks \(\cup\{z\}\)
            endif
        for all \(z \in N O D E S-\) affectedsinks do
            if \(\left[\exists x: x \in\right.\) Route \(_{u}(z) \wedge x \in\) affectedsink. \(]\) then
                affectedsinks \(:=\) affectedsinks \(\cup\{z\}\)
            endif
        for all \(z \in\) affectedsinks do
            if Min_best_hopu \((z) \neq\{ \}\) then
                for some \(k \in\) Min_best_hops \(_{u}(z)\) do
                        Nhop \(_{u}(z):=k ;\) Dist \(_{u}(z):=\) Distvia \(_{u}(k, z) ;\)
                    Route \(_{u}(z):=\) Routevia \(_{u}(k, z) ;\) Costseq \(_{u}(z):=\) Costseqvia \(_{u}(k, z)\)
            else
                \(N h o p_{u}(z):=n i l ; \operatorname{Dist}_{u}(z):=\infty ; \operatorname{Route}_{u}(z):=\langle \rangle ; \operatorname{Costseq}_{u}(z):=\langle \rangle\)
            endif
        for all \(w\) such that \((u, w) \in\) UPLINKS do
            local variable d_vector : initially \(\}\);
            d_vector \(:=\left\{\left(z, \infty,\langle \rangle,\langle \rangle\right.\right.\), Dist \(\left._{u}(z)\right): w \in\) Route \(_{u}(z) \wedge z \in\) affectedsinks \(\}\)
                        \(\cup\left\{\left(z, \operatorname{Dist}_{u}(z)\right.\right.\), Route \(_{u}(z)\), Costseq \(_{u}(z)\), Dist \(\left._{u}(z)\right): w \notin\) Route \(_{u}(z) \wedge z \in\) affectedsinks \(\} ;\)
            Send(u, d_vector) to \(w\);
where the function Min_best_hop \((z)\) is now defined as follows:
\[
\left\{v:\left[\forall x \in \text { Routevia }_{u}(v, z): v=\min \text { Best_hop }_{s}(x)\right]\right\}
\]
where the function Best_hops \({ }_{u}(x)\) is as defined in A1.
```

Table 4: Algorithm A4.

```
State variables and initial conditions of node \(u\) :
    \(\operatorname{Linkcost}_{u}(v)\), Nhop \({ }_{u}(z)\), Dist \(_{u}(z)\), Distvia \(_{u}(v, z)\). As in A3.
    Route \(_{u}(z)\), Routevia \((v, z)\). Auxiliary. As in A3.
    Pfnodevia \(a_{u}(v, z):\) neighbors \((z) \cup\{\) nil \(\}\). Initially nil. Prefinal node on the path from \(u\) to \(z\) via \(v\).
    Pfnode \(_{u}(z):\) neighbors \((z) \cup\{\) nil \(\}\). Initially nil. Prefinal node on the path from \(u\) to \(z\).
```


Functions:

```
Pfroute \(_{u}(z)\) : sequence of nodes. \(\left\langle s_{0}, \ldots, s_{n}\right\rangle\) where
\(s_{n}=z\),
for all \(i \in[0 . . n-1]: s_{i}=\operatorname{Pfnode}_{u}\left(s_{i+1}\right)\),
for all \(i \in[1 . . n-1]: s_{i} \notin\left\{s_{i+1}, \ldots, s_{n}\right\}\), and
\(s_{0}=u \vee\) Pfnode \(_{u}\left(s_{0}\right)=\) nil \(\vee s_{0} \in\left\{s_{1}, \ldots, s_{n}\right\}\).
\(\operatorname{Pfroutevia}_{u}(v, z)\) : Defined like \(\operatorname{Pfroute}_{u}(z)\) except \(\operatorname{Pfnode}_{u}(x)\) is replaced by Pfnodevia \((v, x)\).
```


Events of node u :

```
Receive \(_{u}\left(v, d_{-} v e c t o r\right)\)
action: local variable d_vector 2 : initially \(\} ;\)
\(d_{-}\)vector \(2:=\left\{(z, \infty\right.\), nil,\(\langle \rangle):(z, d, p f n, p) \in d_{-}\)vector \(\left.\wedge d=\infty\right\}\) \(\cup\left\{\left(z, d+\operatorname{Link} \operatorname{cost}_{u}(v), u,\langle u\rangle @ p\right):(z, d, p f n, p) \in d_{-} v e c t o r \wedge z=v \wedge d \neq \infty\right\}\) \(\cup\left\{\left(z, d+\operatorname{Link} \operatorname{cost}_{u}(v), p f n,\langle u\rangle @ p\right):(z, d, p f n, p) \in d_{-} v e c t o r \wedge z \neq v \wedge d \neq \infty\right\} ;\)
Update\&Send \({ }_{u}\left(v, d_{-} v e c t o r 2\right)\)
LinkCostChange \({ }_{u}(v\), newcost \() \quad\{n e w c o s t \neq \infty\}\)
enabled: Linkcostu \((v)<\infty\)
action: local variable d_vector: initially \(\} ; c\);
\(c:=n e w \operatorname{cost}-\operatorname{Link}_{\operatorname{cost}}^{u}(v) ; \operatorname{Linkcost}_{u}(v):=n e w \operatorname{cost} ;\)
d_vector \(:=\left\{\left(z, \operatorname{Distvia}_{u}(v, z)+c, \operatorname{Pfnodevia}_{u}(v, z)\right.\right.\), Routevia \(\left._{u}(v, z)\right): \forall z \in\) NODES \(\} ;\)
Update\&Sendu \(\left(v, d_{\text {_vector }}\right)\)
LinkFailure \({ }_{u}(v)\)
enabled: \(\operatorname{Linkcost}_{u}(v)<\infty\)
action: Channel \(u_{u}(v):=\langle \rangle ; \operatorname{Linkcost}_{u}(v):=\) newcost;
Update\&Send \((v,\{(z, \infty\), nil,\(\langle \rangle): \forall z \in \operatorname{NODES}\})\)
LinkRecovery \(y_{u}(v\), newcost \() \quad\{\) newcost \(\neq \infty\}\)
enabled: \(\operatorname{Linkcost}_{u}(v)=\infty\)
action: \(\quad L i n k \operatorname{cost}{ }_{u}(v):=n e w c o s t ;\)
Update\&Send \({ }_{u}(v,\{(v\), newcost \(, u,\langle u, v\rangle)\})\)
Send \(\left(u,\left\{(z, \infty\right.\right.\), nil, \(\langle \rangle): v \in\) Pfroute \(_{u}(z) \wedge z \in\) affectedsinks \(\}\)
\(\cup\left\{\left(z\right.\right.\), Dist \(_{u}(z)\), Pfnode \(_{u}(z)\), Route \(\left._{u}(z)\right): v \notin\) Pfroute \(_{u}(z) \wedge z \in\) affectedsinks \(\left.\}\right)\) to \(v\)
```

Table 4 (cont.): Algorithm A4.

```
Update\&Send \({ }_{u}(v\), d_vector \()\)
    local variable affectedsinks: initially \(\} ;\)
    for all \((z, d, p f n, p) \in d \_v e c t o r ~ d o ~\)
        \(\{\) Note that \(d\) can be \(\infty\) \}
        Distvia \(_{u}(v, z):=d ;\) Pfnodevia \(_{u}(v, z):=p f n ;\) Routevia \(_{u}(v, z):=p ;\)
        if \(\left(N_{\text {hop }}^{u}(z) \neq v \wedge\right.\) Distvia \(\left._{u}(v, z)<\operatorname{Dist}_{u}(z)\right)\)
            \(\vee\left(\right.\) Nhop \(_{u}(z)=v \wedge\left(\right.\) Distvia \(\left.\left._{u}(v, z) \neq \operatorname{Dist}_{u}(z) \vee \operatorname{Pfroute}_{u}(z) \neq \operatorname{Pfroutevia}_{u}(v, z)\right)\right)\) then
            affectedsinks \(:=\) affectedsinks \(\cup\{z\}\)
        endif
    for all \(z \in N O D E S-\) affectedsinks do
        if \(\left[\exists k: k \in\right.\) Pfroute \(_{u}(z) \wedge k \in\) affectedsinks] then
            affectedsinks \(:=\) affectedsinks \(\cup\{z\}\)
        endif
    for all \(z \in\) affectedsinks do
        if Min_best_hopu \((z) \neq\{ \}\) then
            for some \(k \in\) Min_best_hopsu \((z)\) do
                Nhop \({ }_{u}(z):=k ;\) Dist \(_{u}(z):=\) Distvia \(_{u}(k, z) ;\)
            \(\operatorname{Pfnode}_{u}(z):=\) Pfnodevia \(_{u}(k, z) ;\) Route \(_{u}(z):=\) Routevia \(_{u}(k, z)\);
        else
            Nhop \((z):=n i l ; \operatorname{Dist}_{u}(z):=\infty ; \operatorname{Pfnode}_{u}(z):=n i l ; \operatorname{Route}_{u}(z):=\langle \rangle ;\)
        endif
    for all \(w\) such that \((u, w) \in\) UPLINKS do
        local variable d_vector : initially \(\}\);
        d_vector \(:=\left\{(z, \infty\right.\), nil, \(\langle \rangle): w \in \operatorname{Pfroute}_{u}(z) \wedge z \in\) affectedsinks \(\}\)
                \(\cup\left\{\left(z\right.\right.\), Dist \(_{u}(z)\), Pfnode \(_{u}(z)\), Route \(\left._{u}(z)\right): w \notin\) Pfroute \(_{u}(z) \wedge z \in\) affectedsinks \(\} ;\)
            Send(u,d_vector) to \(w\);
```

where the function Min_best_hop $p_{u}(z)$ is now defined as follows:

$$
\left\{v:\left[\forall x \in \text { Pfroutevia }_{u}(v, z): v=\min \text { Best_hop }_{u}(x)\right]\right\}
$$

where the function Best_hops $_{u}(x)$ is as defined in A1.

[^0]: * This work is supported in part by National Science Foundation Grant No. NCR 89-04590, and by RADC and DARPA under contract F30602-90-C-0010 to UMIACS at the University of Maryland. The views, opinions, and/or findings contained in this report are those of the author(s) and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency, RADC, or the U.S. Government.

[^1]: ${ }^{1}$ Bag S is a bag-subset of bag Z iff every element m of S is also an element of Z. Note that, if S contains k instances of m, then Z contains at least k instances of m.

