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1 IntroductionAdaptive routing protocols are responsible for choosing optimal routes for data packets in wide-area store-and-forward computer networks such as the Internet. In these networks, each link has a cost (indicatingthe current tra�c on the link) that changes with time; furthermore, links can fail and recover. We refer tosuch changes as topology changes. A routing protocol must monitor these topology changes and adapt itsroutes accordingly.In a routing protocol, each node maintains for each destination a neighboring node id, referred to as itsnext{hop. The node forwards data packets destined for the destination to its next{hop. The next{hopcan be nil, in which case the node does not know where to forward data packets for that destination. Theobjective can be informally stated as follows: (a) the succession of next{hops for the destination from anynode should lead to the destination (unless the destination is unreachable); and (b) the cost of this next{hoppath should be minimum amongst all paths from the node to the destination.A popular approach to routing is the distance{vector approach, which is based on the Bellman-Fordalgorithm [5]. In this approach, each node maintains for each destination a set of distances, one for eachof its neighbors, and chooses a neighbor with minimum distance as the next{hop. Thus, each node requiresO(N�e) space, where N is the number of nodes in the network and e is the average degree of a node. Howeverit is well known that the straight-forward distributed implementation of the Bellman-Ford algorithm can havelong{lived loops (of the order of distances) [14]. In fact, the ARPANET initially used this DistributedBellman{Ford algorithm, but because of long{lived loops, it was replaced in 1979 by a brute{force \linkstate" algorithm which requires O(N2) space at each node (to maintain a view of the network topology witha cost for each link).Since 1979, many new kinds of distance{vector algorithms have been proposed [15, 19, 10, 21, 3, 6, 17, 9]which avoid long{lived loops by using various node coordination mechanisms. For example [15, 19, 10] usedi�usion computations [4] to avoid loops entirely. References [21, 3, 17, 9] avoid long{lived loops, but notshort{lived loops, i.e. loops that disappear in time proportional to N or less. In [21], each node maintainsfor each destination a set of paths (in addition to the distances), one for each of its neighbors. The intentionis that the path maintained at node u for a neighbor is the next{hop path of the neighbor with node uappended to the front. Long{lived loops are avoided by not choosing a neighbor as a next{hop if the pathmaintained for that neighbor contains a loop. However maintaining and exchanging paths is expensive andrequires O(N � e � H) storage at each node, where H is the length (in number of links) of a maximumlength shortest cost path between any two nodes (note that H can be as high as N ). References [3, 17, 9]1



overcome this problem by having nodes maintainpre�nal nodes instead of the paths. The pre�nal node fora destination is intended to be the last node before the destination on the next{hop path. Using the pre�nalnodes, a node can reconstruct the path to any destination (see Section 6), thereby avoiding long{lived loops.Understanding distance{vector algorithms, particularly the new ones, is di�cult. The analyses in theliterature of the above algorithms (e.g. showing that optimal paths are eventually achieved) are operationaland incomplete. In this paper, we present a stepwise assertional design of distance{vector algorithms. Wego through the following steps:(1) We start our design with the Distributed Bellman{Ford algorithm, referred to as A1. We prove thatafter any succession of topology changes, the nodes that can still reach the destination eventuallyachieve and maintain optimal next{hop paths.(2) We next obtain an algorithm, called A2, by adding a path{exchange mechanism to A1. We prove thatA2 converges to optimal paths in O(N ) steps, assuming synchronous execution of the network; i.e.the routing algorithm executes in steps, and in each step all (and only those) messages that are sendin the previous step are received. This proves that A2 avoids long{lived loops.(3) We next obtain an algorithm, calledA3, by adding toA2 a constraint that a node chooses a neighbor asthe next{hop for a destination only if the neighbor is also the next{hop for all intermediate destinationson the path to the destination.(4) Our fourth algorithm, called A4, is obtained from A3 by replacing paths with pre�nal nodes.For each algorithm Ai, the safety and progress properties satis�ed by the previous algorithms hold. Inthe case of A2 and A3, it is straightforward to check that the proofs for the previous algorithms continueto hold with minor modi�cations. For A4, we establish that A4 is a well{formed re�nement [11] of A3;thus, all safety and progress assertions satis�ed by A3 hold for A4 [11].Many algorithms proposed in the literature use similar mechanisms to algorithms A1 through A4. Forexample, Old Arpanet Routing Algorithm [14], Routing Information Protocol (an Internet standard) [7],and Inter-Gateway Routing Protocol [8] are variations of A1. Inter-Domain Routing Protocol (ISO draftstandard) [18], Border Gateway Protocol (an Internet standard) [12], and the algorithm in [21] are variationsof A2. The algorithms in [3, 17, 9] are variations of A4. Hence, understanding the properties of algorithmsA1 through A4 is very useful in understanding various internetworking routing protocols. We introduce A3because showing that properties of A2 hold for A4 is not simple (whereas showing that properties of A2hold for A3, and properties of A3 hold for A4 is simple).In section 2, we present our system model and proof rules. In sections 3, 4, 5, 6, we describe A1, A2,2



A3, and A4, respectively. In section 7, we give concluding remarks. A preliminary version of algorithmsA1 through A4, without most of the analysis, was presented in [1].2 Preliminaries: System Model and Proof RulesWe use state transition systems and fairness requirements to specify routing protocols, and safety andprogress assertions to describe their behaviors (e.g. [11, 20, 13]).A state transition system consists of a set of state variables, a set of events, and an initial conditionon the state variables. The state variables de�ne the set of system states. Each event e is speci�ed by anenabling condition, referred to as enabled(e) and an (atomically executed) action, referred to as action(e);together they de�ne a set of state transitions for the event.A behavior of the state transition system is a sequence of the form hs0; f0; s1; f1; : : :i, where the si's aresystem states, the fi's are event names, s0 is an initial state, and for each i � 0, (si; si+1) is a transition offi. A behavior can be in�nite or �nite (in which case it ends in a state). In the following de�nitions, weconsider behavior � = hs0; f0; s1; f1; : : :i.An event can be subject to a weak fairness. A behavior � satis�es weak fairness for event e i� (1) � is�nite and e is not enabled in the last state of �, or (2) � is in�nite and either e occurs in�nitely often or isdisabled in�nitely often in �.We use two types of safety assertions in this paper: invariant assertions and unless assertions. Aninvariant assertion is of the form Invariant(A) where A is a state formula, i.e. a formula which is true or falseat each state. By de�nition, Invariant(A) holds for a behavior � i� every state si in � satis�es A.An unless assertion is of the form A unless B _ E , where A and B are state formulas and E is a set ofevent names. By de�nition, A unless B_E holds for a behavior � i� for every state si in � satisfying A^:B,at least one of the following hold: (1) si is the last state (� is �nite), or (2) si+1 satis�es A _B, or (3) fi isin E . The event set E can be empty, in which case we simply write A unless B.A safety assertion holds for a state transition system i� it holds for every behavior of the system.Our progress assertions are of the form A leads{to B _ E , where A and B are state formulas and E is aset of event names. By de�nition, A leads{to B _ E holds for a behavior � i� for every si in � that satis�esA, there is a j � i such that sj is in � and satis�es B or fj is in � and belongs to E . The event set E canbe empty, in which case we simply write A leads{to B. Given a state transition system and a set of fairnessrequirements, a leads{to assertion holds for the system i� it holds for every behavior of the system whichsatis�es the fairness requirements. 3



We next list the proof rules used in this paper. We use Initial as a state formula specifying the initialcondition. Given an event e, we use fAgefBg to mean the Hoare{triple fA ^ enabled(e)gaction(e)fBg, i.e.,in any state that satis�es A, if e is enabled then its occurrence results in a state that satis�es B.Invariance rule: Invariant(A) holds if for some state formula C, the following hold:- Initial ) A- for every event e; fA ^ CgefAg- Invariant(C).Implication rule: Invariant(A) holds if for some state formula C, the following hold:- Invariant(C)- C ) A.Unless rule: A unless B _ E holds if for some state formula C, the following hold:- for every event e 62 E ; fA^ :B ^ CgefA _Bg- Invariant(C).Leads{to rule: A leads{to B _ E holds if for some state formula C, the following hold:- for every event e 62 E , fA ^ :B ^ CgefA _Bg- for some event e with weak fairness, fA ^ :B ^ CgefBg- Invariant(A ^ C ) enabled(e))- Invariant(C).Closure rules:� A leads{to B _ E holds if Invariant(A) B) holds.� A leads{to B_E holds if for some state formula C: A leads{to C_E and C leads{to B_E hold.� A leads{to B _ E holds if A = A1 _A2, A1 leads{to B _ E , and A2 leads{to B _ E hold.� A ^B leads{to (C _ (A ^D)) _ E holds if A unless C _ E and B leads{to D _ E hold.These rules are similar to the rules in [13, 2]. It is straightforward to show their soundness (e.g. [11, 20]).3 Algorithm A1We consider a computer network whose nodes and links form an arbitrary directed graph such that if thereis a link from node u to node v, then there is a link from node v to node u. Let NODES be the set of nodes,and LINKS (� NODES�NODES) be the set of links. Node v is a neighbor of node u if (u; v) is a link. Let4



neighbors(u) denote the set of neighbors of u. A sequence hx0; : : : ; xni of nodes is a path i� (xi; xi+1) is alink for 0 � i < n. A path is simple if no node is repeated.A routing protocol is speci�ed by a state transition system and a set of fairness requirements. Each nodeu has a set of state variables and a set of events. Each link (u; v) has a state variable, called Channeluv,indicating the sequence of messages in transit. Channeluv initially equals hi, the null sequence. The eventsof a node can access the state variables of the node, send messages to outgoing links, and receive messagesfrom incoming links. A link (u; v) behaves as a FIFO queue, except when it fails, in which case Channeluv isset to hi; for notational convenience, we group this failure event among the events of node u. We assume thateach receive event has weak fairness; this is a convenient way to model �nite message propagation delays.Conventions: We use u; v; w; x; y; z to range over NODES; in some (explicitly stated) cases, theyrange over NODES [ fnilg. We use v; w to range over neighbors(u). We use z to indicate the destinationnode. We use c; k; d; newcost to range over I+ [ f0;1g, indicating a distance or a cost, where I+ is the setof positive integers. We treat 1 as a number higher than any number in I+; e.g. 1 plus any number is 1.Given a set S of numbers, minS denotes the smallest number in S. If S is empty then minS returns 1.Table 1 speci�es the state variables and events of an arbitrary node in A1, the Distributed Bellman{Fordalgorithm. (Refer to the table in the following discussion.) Node u maintains the cost of each outgoing link(u; v) in state variable Linkcostu(v). Linkcostu(v) equals 1 i� the link is failed; it can change its value atany time due to link failure, link recovery and link cost change events. Linkcostu(v) is never 0.For each destination z, node u maintains in state variable Distviau(v; z) an estimate of the distance toz via neighbor v. It equals 1 if node u believes z cannot be reached via v. The state variable Nhopu(z)indicates the next{hop for destination z. It equals neighbor v only if Distviau(v; z) is minimum amongall neighbors. Nhopu(z) equals nil i� Distviau(v; z) equals 1 for all neighbors v. Node u also maintainsstate variable Distu(z) in which it stores the distance via its next{hop, except when u = z (in which caseDistz(z) = 0).Nodes exchange information about their distances to various destinations. Speci�cally, node v sendsmessages of the form (v; d vector), where d vector is a set of (z; d) pairs such that d = Distv(z); note thatd can be 1.When Linkcostu(v) changes (either because of link failure, recovery or change in cost), Distviau(v; z), andif needed Nhopu(z) and Distu(z), is updated for each destination z (for details see procedure Update&Sendin table 1). If the distance of any destination z has been a�ected (i.e. Distu(z) has changed), node u sendsa message to its neighbors containing the (z;Distu(z)) pairs for all a�ected destinations z.Additionally, when link (u; v) recovers, u sends a message to v containing the (z;Distu(z)) pairs for all5



destinations z. This is to ensure that if u o�ers a better path for some destination z, node v will choose uas its next{hop. This also ensures that if a network become connected after being disconnected (due to aset of link failures), nodes in di�erent partitions obtain paths to each other.When node u receives a (v; d vector) message, it updates Distviau(v; z), and if needed Nhopu(z) andDistu(z), for each destination z in d vector. If the distance of any destination has been a�ected, node usends a message to its neighbors containing the (z;Distu(z)) pairs for all a�ected destinations z.We say that the network is in a symmetric state if for every link (u; v), link (u; v) is up i� link (v; u) isup. In the rest of this section, we prove that after any succession of topology changes that leaves the networksymmetric, for every node u and every destination z reachable from u, eventually the next{hop path startingfrom u leads to z and has minimum cost among all paths from u to z. To specify this formally, we de�nethe following functions (on the system state):UPLINKS: Set of up links. Formally,= f(u; v) 2 LINKS : Linkcostu(v) <1g.Symmetric: Boolean.= true i� [8(u; v) 2 LINKS : (u; v) 2 UPLINKS i� (v; u) 2 UPLINKS].Nhoppath(u; z): The succession of next{hops for z starting from u. Formally,= hx0; : : : ; xni such that x0 = u;for i 2 [0::n� 1] : Nhopxi(z) = xi+1; ^ xi 62 fx0; : : : ; xi�1g [ fnilg [ fzg; andxn = z _ Nhopxn(z) = nil _ xn 2 fx0; : : : ; xn�1g.Availablepaths(u; z): The simple paths from u to z over up links. Formally,= fhx0; : : : ; xni : x0 = u ^ xn = z ^ [for i 2 [1::n] : (xi�1; xi) 2 UPLINKS ^ xi 62 fx0; : : : ; xi�1g] g.Reachable: Set of node pairs (u; z) such that u can reach z. Formally,= f(u; z) : Availablepaths(u; z) 6= fg g.Path cost(hx0; : : : ; xni): The cost of path hx0; : : : ; xni. Formally,=8>>><>>>: Pn�1i=0 Linkcostxi (xi+1) n > 00 n = 0 (i.e. path equals hx0i)1 n < 0 (i.e. path equals hi)Note that the path cost is 1 if any link cost in the path is 1.Cost(u; z): The cost of a minimum cost path from u to z. Formally,= minfPath cost(p) : p 2 Availablepaths(u; z)g.6



HighestCost = maxfCost(u; z) : (u; z) 2 Reachableg:T C: The set of topology change events. Formally,= fLinkFailureu(v); LinkRecoveryu(v; c); LinkCostChangeu(v; c) : (u; v) 2 LINKS ^ c 2 I+g.Conventions: We use the term distance when we refer to the values of state variables Distu(z) andDistviau(v; z), either in the nodes or in transit in the channels. We say \distance d in transit for destinationz" to mean there is a message in transit whose d vector contains a (z; d) pair. We use the term cost, andnot \distance", when we refer to the current values of link costs, e.g. Path cost, Cost. Note that costs cannot change unless a topology change happens.Notation: For any non{empty sequence hx0; : : : ; xni, last(hx0; : : : ; xni) denotes xn, tail(hx0; : : : ; xni)denotes hx1; : : : ; xni, and head(hx0; : : : ; xni) denotes x0. When applied to a null sequence, head(hi) =last(hi) = nil and tail(hi) = hi. We use @ as the concatenation operator for sequences, i.e. hx0; : : : ; xni@hy0; : : : ; ymi =hx1; : : : ; xn; y0; : : : ; ymi.We de�ne a boolean function Has optimal path(u; z) that is true i� the next{hop path starting from ureaches z and has optimal cost; note that this implies that all nodes on the next{hop path also have optimalnext{hop paths to z. Formally:Has optimal path(u; z) � last(Nhoppath(u; z)) = z^ [8x 2 Nhoppath(u; z) : Distx(z) = Cost(x; z) = Path cost(Nhoppath(x; z))]The desired objective can be stated as follows, where A is some state formula (that can depend on therouting algorithm):� Symmetric ^ (u; z) 2 Reachable leads{to T C _ (u; z) 2 Reachable ^ Has optimal path(u; z) ^ A� Symmetric ^ (u; z) 2 Reachable ^ Has optimal path(u; z) ^ A unless T CThat is, after any succession of topology changes that leaves the network in a symmetric state, if thereare no further topology changes, then every reachable node u eventually achieves a stable optimal path toz. We point out that most routing algorithms, including the ones in this paper, do not satisfy the aboveproperty if A = true. That is, it is possible for a node to achieve an optimal next{hop path and then switchto some other non{optimal path. However, eventually, it will �nd an optimal next{hop path and also satisfyA; once this is achieved, the optimal next{hop path is stable.The following assertions M1 and M2 specify an appropriate A for algorithm A1:(M1) Symmetric leads{to T C _[8(u; z) 2 Reachable : Has optimal path(u; z) ^ [8v 2 neighbors(u) : Channeluv(z) = hi]]7



(M2) Symmetric ^ [8(u; z) 2 Reachable : Has optimal path(u; z) ^ [8v 2 neighbors(u) : Channeluv(z) = hi]]unless T Cwhere Channeluv(z) is a state function which denotes the sequence of messages in Channeluv that containa distance for destination z. Formally,Channeluv(z) = hm0;m1; : : : ;mni such that[9p0; : : : ; pn+1 : Channeluv = p0@hm0i@p1@hm1i@ : : :@pn@hmni@pn+1 ^[8i; 0 � i � n; 9d : (z; d) 2 mi] ^[8i; 0 � i � n+ 1; 8m 2 pi; 8d : (z; d) 62 m]].Theorem 1. A1 satis�es M1 and M2.Proof of Theorem 1Readers who are interested in the algorithms but not in the proofs can skip this proof.Conventions: For a leads-to assertion \A leads{to T C_B", we refer to A as the left side of the assertion,and B as the right side. We use the same convention for \A unless T C _ B" and for \Invariant A ) B".Most of our leads-to assertions have the form Symmetric ^ A leads{to T C _ B, that is, if Symmetricand A holds, then eventually B holds or a topology change occurs. When informally describing such anassertion, for brevity, we just say \if A holds then eventually B holds". The same convention is used withassertions of the form \Symmetric ^ A unless T C _ B". We assume the following precedence of operators::; ^; _; ); Invariant; unless; leads{to. We say cost of a node pair (u; z) and distance of a node pair(u; z) to mean Cost(u; z) and Distu(z) respectively.The following assertions express rather obvious relationship between neighboring nodes:(B1) Distv(z) = d ^ (v; u) 2 UPLINKS leads{to T C _ Distviau(v; z) = d+ Linkcostu(v)(B2) Invariant (v; u) 2 UPLINKS ^ Channelvu(z) 6= hi ) (z;Distv(z)) = last(Channelvu(z))(B3) Invariant (v; u) 2 UPLINKS ^ Channelvu(z) = hi ) Distviau(v; z) = Distv(z) + Linkcostu(v)(B4) Invariant (v; u) 2 UPLINKS ^ Distviau(v; z) 6= Distv(z) + Linkcostu(v)) (z;Distv(z)) = last(Channelvu(z))(B5) m in Channelvu leads{to T C _ m = front(Channelvu)(B6) Channeluv = hmi@x leads{to T C _ [9y : Channeluv = x@y](B7) (z; d) in Channelvu leads{to T C _ Distviau(v; z) = d+ Linkcostu(v)(B8) (z; d) = front(Channelvu) leads{to T C _ Distviau(v; z) = d+ Linkcostu(v)8



B1, B2, B3, B4, B7 and B8 deal with the distances of neighboring nodes to a destination z and thedistances to z in transit between the neighboring nodes.B1 states that if the distance of v is d and the link (v; u) is not failed, then u eventually learns of d. B1follows from B4 and B7 by the closure.B2 states that if a channel has distances to z, then the last message contains the current distance of thesender. B2 follows from invariance rule.B3 states that if no distances to z are in transit, then the distance of the receiver through the sender isup-to-date. B3 follows from B2 using invariance rule.B4 states that if a distance of node u via a neighbor v is not up-to-date, then the current distance of vis in the last message in Channelvu(z). B4 follows from B2 and B3 by implication (left side of B4 impliesthe negation of the right side of B3; since B3 holds, the left side of B3 must also be false, which implies theleft side of B2, which implies the right side of B2, which implies the right side of B4).B5 states that a message in transit eventually advances to the front of the channel. B6 states that themessage in the front of the channel eventually gets removed. B6 follows from leads{to rule (via receive event).B5 follows from B6 by closure. B7 states that each distance in link (v; u) is eventually used to update thedistance of u via v. B8 states that the distance in the front of a link (v; u) is eventually used to update thedistance of u via v. B8 follows from leads{to rule (via receive event). B7 follows from B5 and B8 by theclosure.The following safety assertions state that the values of Symmetric, Reachable , cost of a node pair, andHighestCost do not change. Each of them holds from the unless rule.(C1) Symmetric unless T C(C2) Reachable = S unless T C(C3) Cost(u; z) = K unless T C(C4) HighestCost = K unless T CWe now de�ne functions that, in some sense, characterize the essence of algorithm A1:In: Maximal subset of Reachable such that (u; z) is a member of In i�(1) Has optimal path(u; z),(2) for any message (x; d) in transit, Distu(z) is less than d,(3) for any node pair (w; x) in Reachable not satisfying Has optimal path(w; x),Distu(z) < Distw(x) and Distu(z) < Cost(w; x).9



Out = Reachable�In:Lowest: The minimum of the cost of node pairs in Out , the distances of node pairs in Out , and thedistances in transit between nodes from which the destination is reachable. Formally,= min(fCost(x; z) : (x; z) 2 Outg [fDistu(z) : (u; z) 2 Outg [fd : (x; d) 2 Channeluv ^ (u; x); (v; x) 2 Reachableg).The intuition behind a node pair (u; z) being in In is the following: u has an optimal path to z, and thiscannot be a�ected by any message in transit or by any message that can be generated by other nodes. Notethat if a node pair (u; z) is in In and u 6= z, then NHopu(z) 6= nil and the node pair (NHopu(z); z) is alsoin In . If a node pair (u; z) is in In, then the outgoing channels of u do not contain any (z; d) messages. Thisfollows from B2 and the de�nition of In (i.e. since (u; z) is in In, the messages in transit for z have largerdistances than the distance of u, and if an outgoing channel of u contained a message for z, the last messagein that channel for z would contain a distance which was not larger).The intuition behind Lowest is the following: Lowest never decreases, and keeps increasing as longas it is less than HighestCost. Furthermore, Lowest > HighestCost i� In = Reachable (this is becauseLowest > HighestCost means that cost of all reachable node pairs are less than Lowest , hence they are notin Out). In contrast, the minimum distance in transit can decrease or increase without a change in Out ; thesame is true for the minimum distance of a node pair in Out .We now proceed to prove M1 and M2. The proof of M1 is summarized in Figure 1.M2 holds from the unless rule; speci�cally, once the left side of M2 holds, no receive event of any nodein Reachable is enabled, and all other events belong to T C. Thus, it su�ces to prove M1.(M3) Symmetric leads{to T C _ In = ReachableM3 states that eventually In contains all reachable node pairs. M1 follows from M3 by closure (sinceIn = Reachable implies right side of M1). Thus it su�ces to prove M3.(M4) Symmetric leads{to T C _ Lowest > HighestCostM4 states that Lowest eventually exceeds HighestCost. M3 follows from M4 by closure. Thus it su�cesto prove M4.(M5) Symmetric ^ Lowest = k � HighestCost leads{to T C _ Lowest � k + 1M4 follows from M5, C1 and C4 by closure. Thus it su�ces to prove M5. We �rst de�ne the followingfunctions: 10
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Figure 1: Proof ofM1. Each arrow indicates that the tail assertion is used in the proof of the head assertion.Proof rule used is indicated in parenthesis.DVia(k) = f(u; v; z) : Distviau(v; z) = k ^ (v; z) 2 OutgDTransit(k) = bagf(u; v; z) : (z; k) 2 Channeluv ^ (u; z); (v; z) 2 ReachablegNote that DTransit(k) is a bag; i.e. if there are two messages whose distance vectors contain the same(z; k) pair in the same channel, DTransit(k) contains two hu; v; zi triplets.We next de�ne the following assertions: 11



(M6) Symmetric ^ Lowest = k leads{to T C _ Lowest � k ^ jDVia(k)j = 0(M7) Symmetric ^ Lowest � k ^ jDVia(k)j = 0leads{to T C _ Lowest � k ^ jDVia(k)j = 0 ^ jDTransit(k)j = 0(M8) Invariant Lowest � k ^ jDVia(k)j = 0 ^ jDTransit(k)j = 0 ) Lowest > kM6 and M7 state that if Lowest = k, then DVia(k) and DTransit(k) eventually become empty. At thatpoint, M8 states that Lowest is greater than k. M5 follows from M6, M7, M8 and C1 by closure.Thus it su�ces to prove M6, M7 and M8, which is done next.Proof of M8The following assertions state that if Lowest � k and DVia(k) and DTransit(k) are empty, node pairs inOut have both costs and distances higher than k.(M9) Invariant Lowest � k ^ jDVia(k)j = 0 ^ jDTransit(k)j = 0 ^ Cost(u; z) = k ) (u; z) 2 In(M10) Invariant Lowest � k ^ jDVia(k)j = 0 ^ (u; z) 2 Reachable ^ :Has optimal path(u; z) ) Distu(z) > kM8 follows from M9 and M10 by implication. (The details are as follows: From M9, the cost of a nodepair in Out is greater than k. From jDTransit(k)j = 0 and Lowest � k, the minimum distance in transit isgreater than k. From M10, the distance of a node pair in Out is greater than k; note that if (u; z) is in Outand Has optimal path(u; z), then Distu(z) = Cost(u; z) > k. Hence Lowest is greater than k.)Thus it su�ces to prove M9 and M10. We next proceed to prove M9.(M11) Invariant Lowest � k ^ jDVia(k)j = 0 ^ Cost(u; z) = k ) Has optimal path(u; z)M9 follows from M11 and M10 by implication. (The details are as follows: Consider a node pair (u; z)satisfying left side of M9. (u; z) has optimal path (from M11). Distances of node pairs (w; x) not sat-isfying Has optimal path(w; x) are greater than k (from M10). Costs of node pairs (w; x) not satisfyingHas optimal path(w; x) are greater than k (from M11 and Lowest � k). Distances in transit are greaterthan k (from Lowest � k and jDTransit(k)j = 0).)Thus it su�ces to prove M11 and M10. We next proceed to prove M11.(M12) Invariant u 6= z ) Distu(z) = minfDistviau(v; z) : v 2 neighbors(u)g(M13) Invariant [8(v; z) 2 In ^ v 2 neighbors(u) : Distviau(v; z) � Cost(u; z)](M14) Invariant Cost(u; z) � Lowest ^ u 6= z ) [9(v; z) 2 In ^ v 2 neighbors(u) : Distviau(v; z) = Cost(u; z)]M12 states that distance of a node pair equals the minimum of distances via its neighbors. M12 followsfrom invariance rule. 12



M13 states that distance of a node via a node pair in In is greater than or equal to the cost of the node.M13 follows from B2 and B3 by implication (since (v; z) is in In , Distv(z) = Cost(v; z) and v's outgoingchannels do not contain a message for z, hence Distviau(v; z) equals Cost(v; z) + Linkcostu(v), which isgreater than or equal to cost of node pair (u; z)).M14 states that a node pair with cost less than or equal to Lowest has a neighbor in In and its distancevia this neighbor equals its cost. M14 follows from B2 and B3 by implication (note that if cost of (u; z) isless than or equal to Lowest and v is u's next node on an optimal path, then (v; z) is in In since v has asmaller cost; also since outgoing channels of v do not contain a message for z, the distance of u via v equalscost of (u; z)).M11 follows from M14, M13 and M12 by implication. (The details are as follows: Consider node pair(u; z) that satis�es left side of M11. From M14, there is a neighbor v of u such that (v; z) is in In and u'sdistance to z via v equals its cost k. From M13, u's distance to z via neighbors in In is not less than k.From jDVia(k)j = 0 and Lowest � k (left side of M11), u's distance to z via neighbors in Out is higher thank. Thus from M12, u's distance to z is k and Nhopu(z) is a neighbor v in In. Thus u has optimal path.)Thus it su�ces to prove M10. M10 follows from M11, M12 and M13 by implication. (The details areas follows: Consider a node pair (u; z) that satis�es left side of M10. From :Has optimal path(u; z) andLowest � k, we have Cost(u; z) � k. From :Has optimal path(u; z) and M11, we have Cost(u; z) 6= k.Thus, Cost(u; z) > k. FromM13, u's distance to z via neighbors in In is greater than k. From jDVia(k)j = 0and Lowest � k (left side of M10), u's distance to z via neighbors in Out is greater than k. Thus, fromM12,u's distance to z is greater than k.)This completes the proof of M8.Proof of M6We repeat M6:(M6) Symmetric ^ Lowest = k leads{to T C _ Lowest � k ^ jDVia(k)j = 0De�ne(M15) Symmetric ^ Lowest � k ^ jDVia(k)j = n > 0 leads{to T C _ jDVia(k)j = n� 1(M16) Lowest � k unless T CM16 follows from the unless rule. M6 follows fromM15, M16 and C1 by closure. Thus it su�ces to proveM15.(M17) Lowest � k ^ jDVia(k)j � n unless T C 13



M17 states that if Lowest � k then the size of DVia(k) does not increase. M17 follows from the unlessrule.M15 follows fromM17 and B1 by closure. (The details are as follows: From B1, Distviau(v; z) eventuallybecomes greater than Lowest (since d in B1 is greater than Lowest), hence decreases jDVia(k)j. M17 ensuresthat jDVia(k)j does not increase before Distviau(v; z) becomes greater than Lowest.)This completes the proof of M6.Proof of M7We repeat M7:(M7) Symmetric ^ Lowest � k ^ jDVia(k)j = 0leads{to T C _ Lowest � k ^ jDVia(k)j = 0 ^ jDTransit(k)j = 0De�ne(M18) Symmetric ^ Lowest � k ^ jDVia(k)j = 0 ^ jDTransit(k)j = n > 0leads{to T C _ jDVia(k)j = 0 ^ jDTransit(k)j = n� 1M18 states that if Lowest � k and DVia(k) is empty, then the size of DTransit(k) eventually decreases.M7 follows from M18, M16 and C1 by closure. Thus it su�ces to prove M18.(M19) Lowest � k ^ jDVia(k)j = 0 ^ DTransit(k) bag-subset S unless T CM19 states that if Lowest � k and DVia(k) is empty then DTransit(k) does not expand1. M19 followsfrom unless rule.M18 follows fromB5, B6 andM19 by closure. (The details are as follows: FromB5, a message participatingin DTransit(k) advances to front. From B6, it gets removed, decreasing jDTransit(k)j. M19 ensures thatDTransit(k) does not expand while the message advances to front.)This completes the proof of M7, and hence of Theorem 1.End of proof of Theorem 1Even though we have shown that after any succession of topology changes, the nodes that can reach thedestination obtain optimal paths, this convergence may contain long{lived loops and be very lengthy. Forexample, consider the simple network in Figure 2.a. Three are three nodes u; v; and z. Destination node isz. Assume all link costs are 1. Numbers on the arrows indicate the distances of nodes via their neighbors,and solid arrows indicate the next-hops to z. That is, node u's distance to z via z is 1 and via node v is3. In Figure 2.b, cost of the link (u; z) increases to D such that D > 3. As a result u chooses v as its1 Bag S is a bag-subset of bag Z i� every element m of S is also an element of Z. Note that, if S contains k instances ofm, then Z contains at least k instances of m. 14
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(e)(d) Figure 2: Long-lived loops.next-hop, causing a loop, and sends its new distance to v. Upon receiving this message, v will add 1 (i.e.Linkcostv(u)) to this distance (see Figure 2.c), and send a message back to u, causing node u's distance toincrease (see Figure 2.d). Node u and v will keep on exchanging messages (referred to as bouncing e�ectin the literature), each time increasing their distances by 2 (i.e. Linkcostu(v) + LinkCostv(u)) until nodeu's distance via v exceeds D, at which point u chooses z as its next-hop. This convergence will require(D� 1)=(Linkcostu(v) +LinkCostv(u)) number of exchanges. Note that if D is 1 (i.e. link (u; z) fails, andthus nodes u and v cannot reach z), they will exchange distances inde�nitely (referred to as count{to{in�nityproblem). With more realistic network topologies, this behavior can be even more complex, for example:loops can involve multiple hops and breaking one loop may cause another loop. In the next algorithm, theseproblems are avoided.4 Algorithm A2Table 2 speci�es the state variables and events of a node in A2. (Refer to the table in the followingdiscussion.) Each node maintains the state variables required for A1. In addition, node u maintains instate variable Routeviau(v; z) an estimate of the next{hop path for destination z via neighbor v. It isequal to the null sequence if node u believes z cannot be reached via v. Node u also maintains a statevariable Costseqviau(v; z) which stores the sequence of estimated link costs for the corresponding links inRouteviau(v; z). State variables Routeu(z) and Costsequ(z) store the route and cost sequence via node u'snext{hop.Convention: We use the term route to refer to estimates maintained by nodes of next{hop paths.The variables Costsequ(z) and Costseqviau(v; z) are auxiliary variables; they are needed for veri�cationonly, and do not have to be implemented. (Formally they satisfy the following conditions: (1) they do not15



a�ect the enabling condition of any event, and (2) they do not a�ect the update of any nonauxiliary statevariable [16].)Algorithm A2 is like algorithm A1, except that A2 uses paths to avoid long{lived loops. Long{livedloops in the next{hop path for destination z can be avoided by having node u not choose a neighbor v as itsnext{hop if Routeviau(v; z) contains a cycle. Another way to achieve the same e�ect is by having node vsend 1 as its distance to node u if node u is in Routev(z). We have chosen the second approach, as speci�edin the last �ve lines of procedure Update&Send in table 2. That is, sending 1 as the distance prevents thereceiver from choosing a route with a loop. It does not prevent the receiver from choosing an optimal path.In addition to exchanging distances, nodes also exchange information about their paths and cost se-quences. More precisely, node v sends messages of the form (v; d vector), where d vector is a set of(z; d; p; cs; rd) tuples such that either (1) d = rd = Distv(z), p = Routev(z), and cs = Costseqv(z) ifnode u is not in Routev(z), or (2) d = 1, p = hi, cs = hi, and rd = Distv(z), if node u is in Routev(z).Fields cs and rd are auxiliary �elds, and do not have to be implemented (rd is only used in the proof ofTheorem 2).When Linkcostu(v) changes, Distviau(v; z), Routeviau(v; z), Costseqviau(v; z), and if needed Nhopu(z),Distu(z), Routeu(v; z), andCostsequ(z), are updated for each destination z (as shown in procedure Update&Sendin table 2). If the distance or route of any destination has been a�ected, node u sends messages to its neigh-bors for all a�ected destinations z (as described in the previous paragraph).When node u receives a (v; d vector) message, it updates its state variables for each destination z ind vector (note that rd is not used to update any state variable). If the distance or route of any destinationhas been a�ected, node u sends messages to its neighbors.Theorem 2. A2 satis�es M1 and M2.Proof of Theorem 2The proof of Theorem 2 is identical to that of Theorem 1, except that the assertions B1-B8 describing therelationship between neighboring nodes, are replaced by new assertions B1-B9 below.The main di�erences between A2 and A1 are re
ected in the new B assertions. First, messages in transitmay contain 1 as distance even though the sender's distance is �nite (see B2 below). This only happenswhen the receiver is on the sender's route. Second, when the channel between two nodes do not contain adistance for a destination, distance of the receiver via the sender may not equal the sum of sender's distanceand the cost of the link between them (see B3 below). B4 now has two parts B4a and B4b; the �rst partcovers the case when the receiver is not on the route of the sender, and the second part covers the case when16



it is. Proofs of B1{B8 are identical to their counterparts in A1. (Assertions B5 and B6 stay the same.)(B1) Distv(z) = d ^ Routev(z) = p ^ (v; u) 2 UPLINKSleads{to T C _ (u 62 p ) Distviau(v; z) = d+ Linkcostu(v)) _(u 2 p ) Distviau(v; z) =1)(B2) Invariant Channelvu(z) 6= hi ^ (u; v) 2 UPLINKS) ((z;Distv(z); Routev(z); Costsequ(z); Distv(z)) = last(Channelvu(z)) ^ u 62 Routev(z)) _((z;1; hi; hi; Distv(z)) = last(Channelvu(z)) ^ u 2 Routev(z))(B3) Invariant Channelvu(z) = hi ^ (u; v) 2 UPLINKS) (Distviau(v; z) = Distv(z) + Linkcostu(v) ^ u 62 Routev(z)) _(Distviau(v; z) =1 ^ u 2 Routev(z))(B4a) Invariant (u; v) 2 UPLINKS ^ Distviau(v; z) 6= Distv(z) + Linkcostu(v) ^ u 62 Routev(z)) (z;Distv(z); Routev(z); Costsequ(z); Distv(z)) = last(Channelvu(z))(B4b) Invariant (u; v) 2 UPLINKS ^ Distviau(v; z) 6=1 ^ u 2 Routev(z)) (z;1; hi; hi; Distv(z)) = last(Channelvu(z))(B7) (z; d; p; cs; rd) in Channelvu leads{to T C _ Distviau(v; z) = d+ Linkcostu(v)(B8) (z; d; p; cs; rd) = front(Channelvu) leads{to T C _ Distviau(v; z) = d+ Linkcostu(v)(B9) Invariant (z; d; p; cs; rd) in Channelvu ) d =1 _ d = rdB9 states that rd in a message is less than or equal to the corresponding d. B9 follows from invariance rule.We rede�ne In , Lowest and DTransit for A2 as follows:In: Maximal subset of Reachable such that (u; z) is a member of In i�(1) Has optimal path(u; z),(2) for any message (x; d; p; cs; rd) in transit, Distu(z) is less than rd,(3) for any node pair (w; x) in Reachable not satisfying Has optimal path(w; x),Distu(z) < Distw(x) and Distu(z) < Cost(w; x).Lowest: Formally,= min(fCost(x; z) : (x; z) 2 Outg [fDistu(z) : (u; z) 2 Outg [frd : (x; d; p; cs; rd)2 Channeluv ^ (u; x); (v; x) 2 Reachableg).DTransit(k) = bagf(u; v; z) : (z; d; p; cs; rd) 2 Channeluv ^ rd = k ^ (u; z); (v; z) 2 Reachableg:17



The proof of Theorem 2 is identical to the proof of Theorem 1 with new B assertions. B9 is required forM17, M18 and M19 to hold for A2. Except for these changes, every assertion used in the proof of Theorem 1also holds for A2 (and the proof is identical). Hence M1 and M2 hold for A2.End of proof of Theorem 2Next, we establish that after any succession of topology changes that leaves the network symmetric, A2achieves optimal paths within N +H steps assuming synchronous execution.We de�ne a synchronous execution as follows: Each message includes a step counter which is a non{negative integer. Any message sent by a receive event has step counter one higher than the step counterof the received message. Any topology change event sets the step counter of all messages (including theones being generated) to zero. We require that Receive events are executed such that the sequence of stepcounters of the received messages is non{decreasing. Formally, we de�ne Step to be the step counter of thelast message received, and add the following SE condition as a conjunct to the enabling condition of everyreceive event:SE : step counter of the message to be received = minimum step counter of the messages in transitNote that Step equals 0 immediately after any topology change.The following assertions N1 and N2 state the desired property, that is, reachable node pairs achieveoptimal paths within N +H steps, and other node pairs obtain 1 distances within N steps.(N1) Symmetric ^ Step = 0 leads{to T C _ Step � N +H ^[8(u; z) 2 Reachable : Has optimal path(u; z) ^ [8v 2 neighbors(u) : Channeluv(z) = hi]](N2) Symmetric ^ Step = 0 leads{to T C _ Step � N ^ [8(u; z) 62 Reachable : Distu(z) =1]Theorem 3. Assuming synchronous execution, A2 satis�es N1 and N2.Proof of Theorem 3The rest of Section 4 is a proof of Theorem 3. Readers interested in the algorithms but not in the proofscan skip to Section 5.Conventions: We use step# to refer to the step number of a message.We recast the assertions relating the states of neighbor nodes assuming synchronous execution:(D1) Step = n ^ (v; u) 2 UPLINKS ^ Distv(z) = d ^ Routev(z) = p ^ Costseqv(z) = cs ^ u 62 pleads{to T C _ Step � n+ 1 ^ Distviau(v; z) = d+ Linkcostu(v)^ Routeviau(v; z) = hui@p ^ Costseqviau(v; z) = hLinkcostu(v)i@cs18



(D2) Step = n ^ (u; v) 2 UPLINKS ^ Distv(z) = d ^ Routev(z) = p ^ Costseqv(z) = cs ^ u 2 pleads{to T C _ Step � n+ 1 ^ Distviau(v; z) =1^ Routeviau(v; z) = hi ^ Costseqviau(v; z) = hi(D3) Invariant Step = n ^ (u; v) 2 UPLINKS ^u 62 Routev(z) ^ Distviau(v; z) 6= Distv(z) + Linkcostu(v) ^ Routeviau(v; z) 6= hui@Routev(z) )last(Channelvu(z)) = (z;Distv(z); Routev(z); Costseqv(z); Distv(z)) with n � step# � n+ 1(D4) Invariant Step = n ^ (u; v) 2 UPLINKS ^u 2 Routev(z) ^ Distviau(v; z) 6=1 ^ Routeviau(v; z) 6= hi )last(Channelvu(z)) = (z;1; hi; hi) with n � step# � n+ 1(D5) front(Channelvu) = (z; d; p; cs; rd) with step# = n ^ d 6=1leads{to T C _ Step = n ^ Distviau(z) = d+ Linkcostu(v)^ Routeviau(v; z) = hui@p ^ Costseqviau(v; z) = hLinkcostu(v)i@cs(D6) front(Channelvu) = (z;1; p; cs; rd) with step# = nleads{to T C _ Step = n ^ Distviau(z) =1^ Routeviau(v; z) = hi ^ Costseqviau(v; z) = hiSuppose link (v; u) is not failed. Given any state of v's distance, route and cost sequence to z, D1 statesthat if u is not on the route from v to z, then u eventually learns of v's state within one step. D2 states thatif u is on the route from v to z, then u eventually learns within one step that v has a distance of 1, routeof hi, and cost sequence of hi. D3 and D4 (and D5 and D6) make the same distinction. D3 and D4 followfrom invariance rule. D5 and D6 follows from the leads{to rule (via receive event). D1 follows from D3, B5,and D5 by closure. D2 follows from D4, B5, and D6 by closure.De�ne hx0; : : : ; xni to be a ud-path from x0 to xn if [80 � i < n : (xi; xi+1) 2 LINKS ]. Note that ud-pathdoes not distinguish between up and down links.Some safety assertions:(E1) Invariant Routeu(z) is a simple ud-pathRouteviau(v; z) is a simple ud-path(z; d; p; cs; rd) in Channelvu ) p is a simple ud-path ^ u 62 p(E2) Invariant jRouteviau(v; z)j � N ^ jRouteu(z)j � N ^ [(z; d; p; cs; rd) in transit ) jpj � N ]19



(E3) Invariant Distviau(v; z) = sum fc : c 2 Costseqviau(v; z)g^ Distu(z) = sum fc : c 2 Costsequ(z)g^ [(z; d; p; cs; rd) in transit ) d = sum fc : c 2 csg]E1 follows from invariance rule. E2 states that route lengths (in number of links) are bounded above byN . E2 follows from E1 by implication (since a simple path may contain at most N nodes).E3 states that all distances equal the sum of the link costs in the corresponding cost sequences (we assumesum fg =1). E3 follows from invariance rule.We de�ne the following:Consistent distances: Boolean function. True i� (1) distance of any node pair equals path cost of itsroute, (2) distance of any node pair via a neighbor equals path cost of its route via that neighbor, and(3) any distance in transit in a message equals path cost of the route in the same message. Formally,= [8u; z 2 NODES : Distu(z) = Path cost(Routeu(z))]^ [8u; z 2 NODES; 8v 2 neighbors(u) : Distviau(v; z) = Path cost(Routeviau(v; z))]^ [8(z; d; p; cs; rd) in transit : d = Path cost(p)].Done : Set of node pairs. Formally,= f(u; z) 2 Reachable : [8x 2 Routeu(z) : Has optimal path(x; z) ^ [8v 2 neighbors(x) : Channelxv(z) = hi]]gThe proof of N1 is summarized in Figure 3. A2 achieves N1 in two stages: �rst within N stepsConsistent distances(z) is established; after that within H steps Done = Reachable is established (whichimplies the right side of N1). Formally,(N3) Symmetric ^ Step = 0 leads{to T C _ Step � N ^ Consistent distances(N4) Symmetric ^ Step = j ^ Consistent distancesleads{to T C _ Step � j +H ^ Done = ReachableN1 follows from N3, N4 and C1 by closure. N2 follows from N3 by closure. Thus it su�ces to prove N3and N4.Proof of N3We de�ne the following:k Consistent(hx0; : : : ; xni; hc0; : : : ; cni): Boolean function where hx0; : : : ; xni is a ud-path and ci's are costs.True i� the link costs of the �rst k links (xi; xi+1) equal respectively the �rst k costs ci. Formally,= true i� for i 2 [0; ::;min(k � 1; n� 1)] : ci = Linkcostxi (xi+1).20
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Figure 3: Proof of N1.k Consistent Routes: Boolean function. True i� all routes are k{consistent. Formally,21



= [8u; z 2 NODES : k Consistent(Routeu(z); Costsequ(z))]^ [8u; z 2 NODES; v 2 neighbors(u) : k Consistent(Routeviau(v; z); Costseqviau(v; z))]^ [8(z; d; p; cs; rd) in transit : k Consistent(p; cs)].Note that the �rst argument of k Consistent in the de�nition of k Consistent Routes is a ud-path (fromE1).(N5) Symmetric ^ Step = 0 leads{to T C _ Step � N ^ N Consistent RoutesN5 states that within N steps all routes are N -consistent. N3 follows from N5, E2 and E3 by closure.(For the Routevia part of Consistent Distances, the details are as follows: From E3, Distviau(v; z) =sum fc : c 2 Costseqviau(v; z)g. From N Consistent Routes (right side of N5) and jRouteviau(v; z)j � N(E2), we have that Distviau(v; z) equals the current cost of Routeviau(v; z).) Thus it su�ces to prove N5.(N6) Symmetric ^ Step � k ^ k Consistent Routesleads{to T C _ Step � k + 1 ^ (k + 1) Consistent Routes(N7) Symmetric ^ k Consistent Routes unless T CN6 state that if at step k all routes are k{consistent, then within one more step all routes are (k + 1){consistent. N7 state that once k Consistent Routes is established, it continues to hold. N7 follows fromthe unless rule. N5 follows from N6, N7 and C1 by closure (since 0{consistency is true for any route at anystep).Thus it su�ces to prove N6. N6 follows from D1, and D2 by closure. To see this, suppose the route andthe cost sequence of a node v are p and cs, respectively (p and cs are k{consistent). Then in at most onestep, the route and the cost sequence of a neighbor u via v either become hui@p and hLinkcostu(v)i@cs, orbecome hi and hi. In either case, they are (k + 1){consistent.Proof of N4We �rst de�ne the following:depth(u; z): Minimum length (in number of links) of a minimum cost path from u to z. Formally,= minfjpj : p 2 Availablepaths(u; z) ^ Path cost(p) = Cost(u; z)g.Note that depth(z; z) = 0 since jhzij = 0.k Reachable: Subset of node pairs in Reachable with depth less than or equal to k. Formally,= f(u; z) 2 Reachable : depth(u; z) � kg.Some safety assertions:(N8) depth(u; z) = k unless T C 22



N8 states that the value of depth(u; z) does not change. N8 follows from the unless rule.(N9) Symmetric ^ Consistent distances unless T CN9 follows from the unless rule.(N10) Symmetric ^ Step = j ^ Consistent distances leads{to T C _ Step � j + k ^ k Reachable � DoneN10 states that once consistent distances are obtained, within k steps, Done will contain all nodes ink Reachable . N4 follows from N10 by replacing k by H (note that H Reachable = Reachable from thede�nition of H). Thus it su�ces to prove N10.(N11) Symmetric ^ Step = j ^ Consistent distances ^ k Reachable � Doneleads{to T C _ Step � j + 1 ^ (k + 1) Reachable � Done(N12) Invariant Step > 0 ) (z; z) 2 DoneN11 states that once consistent distances are obtained and Done contains all nodes in k Reachable , withinone step Done will contain all nodes in (k + 1) Reachable . N12 states that Done includes 0 Reachable afterall messages generated by topology change events are received (at this time, outgoing channels of z do notcontain any message for destination z). N10 follows from N9, N11, N12, and N8 by closure. N12 follows fromE1 using the invariance rule (from E1, a message received by z does not contain a distance for z, hence zalways has an optimal path).(N13) Symmetric ^ Step = j ^ Consistent distances ^ k Reachable � Done ^ depth(u; z) = k + 1leads{to T C _ Step � j + 1 ^ (u; z) 2 Done(N14) Symmetric ^ Consistent distances ^ S � Done unless T CN13 states that once consistent distances are obtained and Done contains all nodes in k Reachable , withinone step a node u in Reachable with depth k + 1 will join Done . N14 states that once consistent distancesare obtained, Done does not shrink. N14 follows from the unless rule. N11 follows from N9, N13, N14, andC1 by closure. Thus it su�ces to prove N13.(N15) Invariant Symmetric ^ Consistent distances ^ k Reachable � Done ^ depth(u; z) = k + 1) Has Optimal Path(u; z)(N16) Symmetric ^ Step = j ^ Consistent distances ^ k Reachable � Done ^ depth(u; z) � k + 1leads{to T C _ Step � j + 1 ^ [8v : Channeluv(z) = fg]N15 states that if consistent distances are obtained and Done contains all nodes in k Reachable , a nodeat depth k + 1 has an optimal next{hop path. N16 states that once consistent distances are obtained and23



Done contains all nodes in k Reachable , within one step, outgoing channels of a node pair (u; z) at depthk + 1 will not contain any messages for z.N13 follows from N15, N16, and N14 by closure.N15 follows from D3, E1 and M12 by the implication. (The details are as follows: Consider (u; z)satisfying the left side of N15. Consider v, a next node on a shortest length optimal path from u to z. Fromthe de�nition of depth, depth(v; z) = k. From the left side of N15, the outgoing channels of v do not containany messages for z. Hence, from D3, Routeviau(v; z) is an optimal path. From Consistent distances (leftside of N15) and E1, distances via all other neighbors of u equal cost of some path. Hence, fromM12, u hasan optimal path.) Thus it su�ces to prove N16.(N17) Symmetric ^ Consistent distances ^ k Reachable � Done ^ depth(u; z) � k + 1^ sum fjChanneluv(z)j : v 2 neighbors(z)g � n unless T CN17 states that once Consistent distances is achieved, and Done contains k Reachable , the number ofmessages in the outgoing channels of a node u at depth k + 1 does not increase.N16 follows from N17 and B6 by closure. N17 follows from the unless rule. This completes the proof ofthe theorem.End of proof of Theorem 35 Algorithm A3Table 3 speci�es the state variables and events of a node in A3. (Refer to the table in the followingdiscussion.) A3 di�ers from A2 only in the procedure Update&Send.In A3, the node id's are considered totally ordered. Node u chooses a neighbor v as its next{hop fordestination z i� (i) v is the minimumnode inBest hopsu(z), and (ii) v is the minimumnode in Best hopsu(x)for every node x in the route to z via v. If there is no such v, then the next{hop is nil. (See de�nition ofMin best hop(z) in the table.)Procedure Update&Send considers a destination z as a�ected if (1) distance for z has changed, or (2) routefor z has changed, or (3) some node x on Routeu(z) is a�ected. This ensures that if the next{hop changesfor a destination x, which is on the route to another destination z, the next{hop for z also changes.This way of choosing next{hops and a�ected destinations ensures that during convergence (when theroutes are not stable), the following property P holds: the next{hop of u for destination z is also thenext{hop for all intermediate destinations on Routeu(z).Note that in A3, node u may choose the next{hop for destination z to be nil, when in fact there is a24



neighbor v, and chosing v as the next-hop to z satis�es P . Although it may seem that this slows down theconvergence, there is a good reason for doing this: if the minimum node in Best hopsu(z), say w, does notsatisfy P , then it means that u has inconsistent distances via v and w.Theorem 4. A3 satis�es M1 and M2.Proof of Theorem 4Proof of Theorem 4 is identical to proof of Theorem 2 with the following changes. We rede�ne In and Lowestfor A3 as follows:In: Maximal subset of Reachable such that (u; z) is a member of In i�(1) Has optimal path(u; z),(2) for any message (x; d; p; cs; rd) in transit, Distu(z) is less than rd,(3) for any node pair (w; x) in Reachable not satisfying Has optimal path(w; x),Distu(z) < minfDistviaw (v; x) : v 2 neighbors(w)g and Distu(z) < Cost(w; x).Lowest: Formally,= min(fCost(x; z) : (x; z) 2 Outg;fDistviau(v; z) : (u; z) 2 Out ^ v 2 neighbors(u)g;frd : (x; d; p; cs; rd) 2 Channeluv ^ (u; x); (v; x) 2 Reachableg).We modify the assertions M12 and M14 as follows:(M12) Invariant u 6= z ^ Distu(z) 6=1 ) Distu(z) = minfDistviau(v; z) : v 2 neighbors(u)g(M14) Invariant Cost(u; z) � Lowest ^ u 6= z) [9(v; z) 2 In : Distviau(v; z) = Cost(u; z)] ^[8(v; z) 2 In : Distviau(v; z) = Cost(u; z) ^ x 2 Routeviau(v; z) ) Distviau(v; x) = Cost(u; x)]M12 follows from invariance rule. M14 follows from B2 and B3 by implication.Other assertions that hold for A2 also hold for A3. Their proofs are identical except M11 which nowfollows from M20, M21, M12, M13 and M14 by implication where M20 and M21 are as follows:(M20) Invariant [9v 2 neighbors(u) : [8x 2 Routeviau(v; z) : v = minBest hopsu(x)]] ) Distu(z) 6=1(M21) Invariant Lowest � k ^ jDVia(k)j = 0 ^ Distanceviau(v; z) = Cost(u; z) = k^ x 2 Routeviau(v; z) ^ Distviau(w; x) = Cost(u; x)) Distanceviau(w; z) = Cost(u; z)M20 follows from invariance rule. M21 follows from B2 and B3 by implication. Hence M1 and M2 hold for25



A3.End of proof of Theorem 4Theorem 5. Assuming synchronous execution, A3 satis�es N1 and N2.Proof of Theorem 5Proof of Theorem 5 is identical to proof of Theorem 3 with depth(u; z) being rede�ned. In A2, depth(u; z)stood for minimum length of an optimal path from u to z. Many such paths can exist and any of them canbe chosen by u. In A3, only one of these optimal paths can be chosen by u; i.e. the path p = hx0; x1; : : : ; xniwhere x0 = u, xn = z and x1 is the minimum-id neighbor of the neighbors on the optimal paths to xi,for i = 1; : : : ; n. (Note that this may not be the shortest length optimal path.) We rede�ne depth(u; z) tohandle this:depth(u; z): Length of the optimal path from u to z such that the next hop in this path is the minimum-idneighbor providing an optimal path for all intermediate nodes in this path. Formally,= jpj such that p 2 Availablepaths(u; z) ^ Path cost(p) = Cost(u; z) ^[8x 2 p : front(tail(p)) = minffront(tail(q)) : q 2 Availablepaths(u; x) ^Path cost(q) = Cost(u; x)g].All assertions that hold for A2 also hold for A3. Their proofs are identical except N15 now follows fromM20, M12 (as de�ned in the proof of Theorem 4), E1 and D3 by implication. Hence N1 and N2 hold for A3.End of proof of Theorem 56 Algorithm A4Table 4 speci�es the state variables and events of a node in A4. Each node u maintains the state variablesof A3, except that Routeviau(v; z) and Routeu(z) are now auxiliary. Instead, node u maintains new statevariables Pfnodeviau(v; z) and Pfnodeu(z). In Pfnodeviau(v; z), node u maintains an estimate of the pre�nalnode via neighbor v (i.e. the last node before z on the path to z via v). Pfnodeviau(v; z) is equal to nil ifnode u believes z cannot be reached via v. State variable Pfnodeu(z) indicates the pre�nal node via nodeu's next{hop.The messages of A4 are like the message of A3, except that they now contain pre�nal node information,and the route information is auxiliary (i.e. not implemented).The events of algorithm A4 are like those of algorithm A3, with the following twist: each node inA4 uses its pre�nal nodes to construct pre�nal{routes, which take the place of the routes in A3. Node26



u constructs its pre�nal{route via neighbor v for destination z, referred to as Pfrouteviau(v; z), as follows:Start with a sequence hzi; add to the left of this sequence the pre�nal node via v for the leftmost elementof the sequence, until either (1) node u is added, or (2) the pre�nal node is nil, or (3) a loop is established.We use Pfrouteu(z) to refer to the pre�nal{route for destination z via the next{hop. (Formal de�nitions offunctions Pfrouteviau(v; z) and Pfrouteu(z) are in the table).Theorem 6.(a) A4 satis�es M1 and M2(b) Assuming synchronous execution, A4 satis�es N1 and N2.Proof of Theorem 6Because the variables of A4 (both auxiliary and non-auxiliary) are a superset of the non-auxiliary variablesof A3 and their domains are the same, there is a natural (projection) mapping from the states of A4 to thestates of A3. For any state s of A4, let s0 denote the corresponding state of A3. It is obvious that event eof A4 is enabled in any state s i� the corresponding event e of A3 is enabled in s0. We next show that evente of A4 updates the variables of A3 in the same way as the corresponding event e of A3; more precisely,if event e of A4 has a transition (s; t), then the corresponding event e of A3 has a transition (s0; t0). Forthis, it is su�cient to establish that the pre�nal-routes of A4 simulate accurately the routes of A3. This isspeci�ed by the following assertion:(R1) Invariant ([Routeviau(v; z) = Pfrouteviau(v; z)] _ [Routeviau(v; z) = hi ^ Pfrouteviau(v; z) = hzi]) ^([Routeu(z) = Pfrouteu(z)] _ [Routeu(z) = hi ^ Pfrouteu(z) = hzi]) ^((z; d; pfn; p) = Channeluv[j] ) [p = PfMrouteuv(j; z)] _ [p = hi ^ PfMrouteuv(j; z) = hzi])where Channeluv[j] denotes the j-th message in Channeluv (Channeluv[0] is the front) and PfMrouteuv(j; z)is de�ned as follows:PfMrouteuv(j; z): Sequence of nodes. hs0; : : : ; sni where(a) sn = z;(b) for all i 2 [0::n� 1] : si = 8>><>>: Pfnodeviav(u; si+1) if for all k � j, Channeluv[k] doesnot contain (si+1; d; pfn; p)pfn if for largest k � j, Channeluv[k]contains (si+1; d; pfn; p)(c) for all i 2 [1::n� 1] : si 62 fsi+1; : : : ; sng; and(d) s0 = u _ Pfnodeu(s0) = nil _ s0 2 fs1; : : : ; sng.R1 states that the pre�nal{routes and the routes (which are auxiliary) agree. R1 follows from invariance27
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Table 1: Algorithm A1.State variables and initial conditions of node u:Linkcostu(v) : I+ [ f1g: Initially 1. Cost of the link (u; v).Distviau(v; z) : I+ [ f1g: Initially 1. Distance to destination z via neighbor v.Nhopu(z) : neighbors(u) [ fnilg: Initially nil. Next-hop for destination z.Distu(z) : I+ [ f0;1g: Initially 1 for u 6= z, and 0 for u = z. Distance to destination z via next{hop.Events of node u:Receiveu(v; d vector)action: Update&Sendu(v; f(z; d+ Linkcostu(v)) : (z; d) 2 d vectorg) fd can be 1gLinkCostChangeu(v; newcost) fnewcost 6=1genabled: Linkcostu(v) <1action: c := newcost� Linkcostu(v); Linkcostu(v) := newcost;Update&Sendu(v; f(z;Distviau(v; z) + c) : 8z 2 NODESg)LinkFailureu(v)enabled: Linkcostu(v) <1action: Channeluv := hi; Linkcostu(v) :=1;Update&Sendu(v; f(z;1) : 8z 2 NODESg)LinkRecoveryu(v; newcost) fnewcost 6=1genabled: Linkcostu(v) =1action: Linkcostu(v) := newcost;Update&Sendu(v; f(v; newcost)g);Send(u; f(z;Distu(z)) : 8z 2 NODESg) to vUpdate&Sendu(v; d vector)local variable a�ectedsinks initially fg;for all (z; d) 2 d vector doDistviau(v; z) := d; fNote that d can be 1gif [Nhopu(z) 6= v ^ Distviau(v; z) < Distu(z)]_ [Nhopu(z) = v ^ Distviau(v; z) 6= Distu(z)] thenif Best hopsu(z) 6= fg thenfor some k 2 Best hopsu(z) doNhopu(z) := k; Distu(z) := Distviau(k; z)elseNhopu(z) := nil; Distu(z) :=1endif;a�ectedsinks := a�ectedsinks[ fzgendiffor all w such that (u;w) 2 UPLINKS doSend(u; f(z;Distu(z)) : 8z 2 a�ectedsinksg) to w;where Best hopsu(z) is a function that returns the following subset of neighbors(u):fv : Distviau(v; z) 6=1 ^ Distviau(v; z) = minfDistviau(w; z) : w 2 neighbors(u)g g30



Table 2: Algorithm A2.State variables and initial conditions of node u:Linkcostu(v);Nhopu(z);Distu(z);Distviau(v; z): As in A1.Routeviau(v; z): sequence of nodes. Initially hi. Path from u to z via v.Costseqviau(v; z): sequence of I+ [ f1g. Auxiliary. Initially hi. Sequence of link costs on Routeviau(v; z).Routeu(z): sequence of nodes. Initially hi for u 6= z, hui for u = z. Path from u to z.Costsequ(z): sequence of I+ [ f1g. Auxiliary. Initially hi for u 6= z, h0i for u = z.Sequence of link costs on Routeu(z).Events of node u:Receiveu(v; d vector)action: local variable d vector2 : initially fg;d vector2 := f(z; d+ Linkcostu(v); hui@p; hLinkcostu(v)i@cs) : (z; d; p; cs; rd) 2 d vector ^ d 6=1g[f(z;1; hi; hi) : (z;d; p; cs; rd) 2 d vector ^ d =1g;Update&Sendu(v; d vector2)LinkCostChangeu(v; newcost) fnewcost 6=1genabled: Linkcostu(v) <1action: local variable d vector : initially fg; c;c := newcost� Linkcostu(v); Linkcostu(v) := newcost;d vector := f(z; Distviau(v; z) + c; Routeviau(v; z); hnewcosti@tail(Costseqviau(v; z))) : 8z 2 NODESg;Update&Sendu(v; d vector)LinkFailureu(v)enabled: Linkcostu(v) <1action: Channeluv := hi; Linkcostu(v) :=1;Update&Sendu(v; f(z;1; hi; hi) : 8z 2 NODESg);LinkRecoveryu(v; newcost) fnewcost 6=1genabled: Linkcostu(v) =1action: Linkcostu(v) := newcost;Update&Sendu(v; f(v; newcost; hu; vi; hLinkcostu(v); 0i)g);Send(u;f(z;Distu(z); Routeu(z);Costsequ(z);Distu(z)) : 8z 2 NODES ^ v 62 Routeu(z)g[f(z;1; hi; hi;Distu(z)) : 8z 2 NODES ^ v 2 Routeu(z)g) to vUpdate&Sendu(v; d vector)local variable a�ectedsinks : initially fg;for all (z; d; p; cs) 2 d vector do fNote that d can be 1gDistviau(v; z) := d; Routeviau(v; z) := p; Costseqviau(v; z) := cs;if (Nhopu(z) 6= v ^ Distvia(z;v) < Distu(z))_ (Nhopu(z) = v ^ (Distviau(v; z) 6= Distu(z) _ Routeviau(v; z) 6= Routeu(z))) thenif Best hopsu(z) 6= fg thenfor some k 2 Best hopsu(z) doNhopu(z) := k; Distu(z) := Distviau(k; z);Routeu(z) := Routeviau(k; z); Costsequ(z) := Costseqviau(k; z)elseNhopu(z) := nil; Distu(z) :=1; Routeu(z) := hi; Costsequ(z) := hiendif;a�ectedsinks := a�ectedsinks[ fzgendiffor all w such that (u;w) 2 UPLINKS dolocal variable d vector : initially fg;d vector :=f(z;1; hi; hi;Distu(z)) : w 2 Routeu(z) ^ z 2 a�ectedsinksg[f(z;Distu(z); Routeu(z);Costsequ(z);Distu(z)) : w 62 Routeu(z) ^ z 2 a�ectedsinksg;Send(u; d vector) to w;where Best hopsu(z) is as de�ned in A1 (Table 1). 31



Table 3: Algorithm A3.State variables and initial conditions of node u:Linkcostu(v);Nhopu(z);Distu(z);Distviau(v; z);Routeu(z); Routeviau(v; z); Costsequ(z); Costseqviau(v; z):As in A2.Events of node u:Receiveu; LinkCostChangeu ; LinkFailureu ; LinkRecoveryu: As in A2.Update&Sendu(v; d vector)local variable a�ectedsinks : initially fg;for all (z; d; p; cs) 2 d vector do fNote that d can be 1gDistviau(v; z) := d; Routeviau(v; z) := p; Costseqviau(v; z) := cs;if (Nhopu(z) 6= v ^ Distviau(v; z) < Distu(z))_ (Nhopu(z) = v ^ (Distviau(v; z) 6= Distu(z) _ Routeviau(v; z) 6= Routeu(z))) thena�ectedsinks := a�ectedsinks[ fzgendiffor all z 2 NODES�a�ectedsinks doif [9x : x 2 Routeu(z) ^ x 2 a�ectedsinks] thena�ectedsinks := a�ectedsinks[ fzgendiffor all z 2 a�ectedsinks doif Min best hopu(z) 6= fg thenfor some k 2Min best hopsu(z) doNhopu(z) := k; Distu(z) := Distviau(k; z);Routeu(z) := Routeviau(k; z); Costsequ(z) := Costseqviau(k; z)elseNhopu(z) := nil; Distu(z) :=1; Routeu(z) := hi; Costsequ(z) := hiendiffor all w such that (u;w) 2 UPLINKS dolocal variable d vector : initially fg;d vector :=f(z;1; hi; hi;Distu(z)) : w 2 Routeu(z) ^ z 2 a�ectedsinksg[f(z;Distu(z); Routeu(z);Costsequ(z);Distu(z)) : w 62 Routeu(z) ^ z 2 a�ectedsinksg;Send(u; d vector) to w;where the function Min best hopu(z) is now de�ned as follows:fv : [8x 2 Routeviau(v; z) : v = minBest hopsu(x)]gwhere the function Best hopsu(x) is as de�ned in A1.
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Table 4: Algorithm A4.State variables and initial conditions of node u:Linkcostu(v);Nhopu(z);Distu(z);Distviau(v; z): As in A3.Routeu(z); Routeviau(v; z): Auxiliary. As in A3.Pfnodeviau(v; z) : neighbors(z) [ fnilg: Initially nil. Pre�nal node on the path from u to z via v.Pfnodeu(z) : neighbors(z) [ fnilg: Initially nil. Pre�nal node on the path from u to z.Functions:Pfrouteu(z) : sequence of nodes. hs0; : : : ; sni wheresn = z;for all i 2 [0::n� 1] : si = Pfnodeu(si+1);for all i 2 [1::n� 1] : si 62 fsi+1; : : : ; sng; ands0 = u _ Pfnodeu(s0) = nil _ s0 2 fs1; : : : ; sng.Pfrouteviau(v; z) : De�ned like Pfrouteu(z) except Pfnodeu(x) is replaced by Pfnodeviau(v; x).Events of node u:Receiveu(v; d vector)action: local variable d vector2 : initially fg;d vector2 :=f(z;1; nil; hi) : (z;d; pfn; p) 2 d vector ^ d =1g[f(z;d + Linkcostu(v); u; hui@p) : (z; d; pfn; p) 2 d vector ^ z = v ^ d 6=1g[f(z;d + Linkcostu(v); pfn; hui@p) : (z; d; pfn; p) 2 d vector ^ z 6= v ^ d 6=1g;Update&Sendu(v; d vector2)LinkCostChangeu(v; newcost) fnewcost 6=1genabled: Linkcostu(v) <1action: local variable d vector : initially fg; c;c := newcost� Linkcostu(v); Linkcostu(v) := newcost;d vector := f(z;Distviau(v; z) + c;Pfnodeviau(v; z);Routeviau(v; z)) : 8z 2 NODESg;Update&Sendu(v; d vector)LinkFailureu(v)enabled: Linkcostu(v) <1action: Channelu(v) := hi; Linkcostu(v) := newcost;Update&Sendu(v; f(z;1; nil; hi) : 8z 2 NODESg)LinkRecoveryu(v; newcost) fnewcost 6=1genabled: Linkcostu(v) =1action: Linkcostu(v) := newcost;Update&Sendu(v; f(v; newcost;u; hu; vi)g)Send(u;f(z;1; nil; hi) : v 2 Pfrouteu(z) ^ z 2 a�ectedsinksg[f(z;Distu(z);Pfnodeu(z);Routeu(z)) : v 62 Pfrouteu(z) ^ z 2 a�ectedsinksg) to v33



Table 4 (cont.): Algorithm A4.Update&Sendu(v; d vector)local variable a�ectedsinks : initially fg;for all (z; d; pfn; p) 2 d vector do fNote that d can be 1gDistviau(v; z) := d; Pfnodeviau(v; z) := pfn; Routeviau(v; z) := p;if (Nhopu(z) 6= v ^ Distviau(v; z) < Distu(z))_ (Nhopu(z) = v ^ (Distviau(v; z) 6= Distu(z) _ Pfrouteu(z) 6= Pfrouteviau(v; z))) thena�ectedsinks := a�ectedsinks[ fzgendiffor all z 2 NODES�a�ectedsinks doif [9k : k 2 Pfrouteu(z) ^ k 2 a�ectedsinks] thena�ectedsinks := a�ectedsinks[ fzgendiffor all z 2 a�ectedsinks doif Min best hopu(z) 6= fg thenfor some k 2Min best hopsu(z) doNhopu(z) := k; Distu(z) := Distviau(k; z);Pfnodeu(z) := Pfnodeviau(k; z); Routeu(z) := Routeviau(k; z);elseNhopu(z) := nil; Distu(z) :=1; Pfnodeu(z) := nil; Routeu(z) := hi;endiffor all w such that (u;w) 2 UPLINKS dolocal variable d vector : initially fg;d vector :=f(z;1; nil; hi) : w 2 Pfrouteu(z) ^ z 2 a�ectedsinksg[f(z;Distu(z);Pfnodeu(z); Routeu(z)) : w 62 Pfrouteu(z) ^ z 2 a�ectedsinksg;Send(u; d vector) to w;where the function Min best hopu(z) is now de�ned as follows:fv : [8x 2 Pfrouteviau(v; z) : v = minBest hopsu(x)]gwhere the function Best hopsu(x) is as de�ned in A1.
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