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The current version of the International Language Testing Association (ILTA) 

Guidelines for Practice requires language testers to pretest items before including them 

on an exam, or when pretesting is not possible, to conduct post-hoc item analysis to 

ensure any malfunctioning items are excluded from scoring. However, the guidelines are 

devoid of guidance with respect to which item-analysis method is appropriate for any 

given examination. The purpose of this study is to determine what influence choice of 

item-analysis method has on the outcome of a high-stakes university entrance exam. Two 

types of classical-test-theory (CTT) item analysis and three item-response-theory (IRT) 

models were applied to responses generated from a single administration of a 70-item 

dichotomously scored multiple-choice test of English proficiency, administered to 2,320 

examinees applying to a prestigious private university in western Japan. Results illustrate 

that choice of item-analysis method greatly influences the ordinal ranking of examinees. 

The implications of these findings are discussed and recommendations are made for 

revising the ILTA Guidelines for Practice to delineate more explicitly how language 

testers should apply item analysis in their testing practice.
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1 Introduction 

1.1 Context of the Study  

Whether due to capitalist ideals, the accuracy of Malthusian predictions, or some 

other explanation, competitiveness at all levels of society is on the rise across the globe. 

Simultaneously, or perhaps as a result, the assessment of knowledge, skills, and abilities 

continues to increase, as does the influence of test-makers and administrators. Because 

many of these assessments are the primary (or even sole) factor in determining an 

examinee’s fate, the stakes of these exams have never been greater, nor has the 

importance of the creation, administration, and scoring of valid tests.  

One example of this type of all-or-nothing exam is the university entrance exam. 

As the increasing influence of the Scholastic Aptitude Test (SAT) on U.S. university 

admissions continues to be lamented in some circles (e.g., Schaeffer, 2010), the SAT is 

still but one of several factors influencing U.S. university admissions decisions. The same 

is not true in many other countries around the globe (e.g., Japan), where the outcome of 

the university entrance exam all but seals examinees’ academic fate, and in many cases, 

the trajectory of their subsequent careers. Quite literally, mere acceptance to one of the 

country’s premier universities can ensure the career success of its would-be students; 

conversely, admissions failure can have lifelong consequences (Cutts, 1997). 

 Of course, only a country’s most gifted students have any chance of acceptance to 

an elite university. Nevertheless, in academically oriented societies like Japan and Korea, 

higher education is the goal of virtually all students, so the decision of whether one will 

be admitted to a top-tier university, second-tier university, or even any university rests 
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solely on the outcome of their admissions exam. For this reason, the validity of these tests 

is of critical importance to both examinees and their families. 

The validity of any test is a function of numerous factors, whether one chooses to 

view validity theoretically as a unitary construct (e.g., Messick, 1989) or as a 

multidimensional construct (e.g., Borsboom, Mellenbergh, & van Heerden, 2004). 

Messick (1980) grouped numerous aspects of validity into three categories – construct 

validity, content validity, and criterion validity – where construct validity refers to the 

extent a test measures the construct it was designed to measure, content validity refers to 

the extent a test’s content covers a representative sample of the domain of interest, and 

criterion validity refers to the extent a test correlates with a variable representative of the 

construct (e.g., how well a written driving test correlates with a hands-on driving test, if 

the latter has already been shown to be a valid indicator of actual driving ability).1 It was 

in an even earlier paper (1965), however, that Messick addressed the importance of 

appropriate test use as a component of construct validity. Sometimes termed 

consequential validity, Messick stressed the fact that the psychometric adequacy of a test 

is a necessary but insufficient condition of overall test validity (c.f., Lissitz & Samuelsen, 

2007, p. 445). More specifically, he emphasized that it is imperative test-makers and 

administrators give due consideration to a test’s social consequences, both short-term and 

long-term (1980, p. 1012). In this light, the consequential validity of university entrance 

exam outcomes assumes a very important role in the test’s overall validity given the 

short- and long-term consequences of these exams, particularly in countries like Japan 

where it is the sole determinant of university admission. 

                                                
1 See also the Standards for Educational and Psychological Testing (1999) for a discussion of test validity. 
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1.2 Purpose of the Study 

Whether one considers consequential validity to be an integral component of test 

validity in a theoretical sense does not diminish its practical importance with respect to 

high-stakes tests. Evidence of this is reflected in many testing standards/guidelines, 

including those of at least four language-testing associations: 

• International Language Testing Association (ILTA) – Code of Ethics & 

Guidelines for Practice 

• European Association for Language Testing and Assessment (EALTA) – 

Guidelines for Good Practice in Language Testing and Assessment 

• Association of Language Testers in Europe (ALTE) – Principles of Good Practice 

• Japanese Language Testing Association (JLTA) – Code of Good Testing Practice 

In all of these guidelines, the ethical calculation of scores is attributed paramount 

importance. For example, Section B.4 of the ILTA Guidelines for Practice states: 

The work of the task and item writers needs to be edited before 

pretesting. If pretesting is not possible, the tasks and items should 

be analysed after the test has been administered but before the 

results are reported. Malfunctioning or misfitting tasks and items 

should not be included in the calculation of individual test takers’ 

reported scores. (p. 2)  

Clearly, language-test designers and administrators have an obligation to examine the 

quality of their tests before reporting scores, including removing any misfitting items 

before calculating scores. This requirement is certainly relevant to the testing context of 
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most East Asian countries (Japan, Korea, and China), where the culture often prohibits 

the pretesting of items due to the fact that exams are typically single use and created in 

secret, following long-established and well-regarded traditions (Ross, 2011). 

Unfortunately, neither the ILTA Guidelines (nor any other set of standards) specifies 

what type of item analysis should be conducted even if administrators acknowledge the 

need to do so. Stated differently, because there are numerous item-analysis methods in 

existence, it remains unclear how to determine which method will yield the most valid set 

of scores for a particular test.  

Like U.S. universities, Japanese universities have a target number of applicants 

they strive to admit each year. More specifically, the Japanese Ministry of Education sets 

an annual quota for how many students can be admitted to each college or university. As 

a result, the cut score for admission is sample dependent and norm referenced, meaning it 

is not tied to a particular standard or mastery level but simply is a function of the annual 

quota. For this reason, examinees are concerned only with their performance relative to 

other applicants rather than with demonstrating a particular level of proficiency. In this 

respect, the admissions fate of examinees is far less within their control than it would be 

were the entrance exam criterion referenced, so test scorers have an even greater 

responsibility for ensuring the classification accuracy of examinee scores, particularly 

around the cut line. The question is whether the item-analysis method chosen by scorers, 

assuming one is chosen at all, will yield the highest classification accuracy possible. The 

purpose of this study is to provide some insight into this issue by investigating how 

different item-analysis methods influence the classification accuracy of examinee scores 

on a single-use university entrance exam to provide some insight into this issue.  
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1.3 Research Questions 

To fulfill the purpose of this study, the following research questions will be 

addressed with respect to the examination under investigation: 

1. Do the item-analysis methods prescribed by Classical Test Theory (CTT) and 

Item Response Theory (IRT) identify any test items as faulty/misfitting, and if 

so, do they identify the same items? 

2. Does the identification of misfitting items influence the classification 

consistency of examinee scores across methods? 

3. Which item-analysis method is likely to lead to the highest level of 

classification accuracy given the nature of the test data? 

 

In addition to the above questions, the following three questions about the 

assumptions of IRT modeling will be addressed: 

4. Can a test designed to measure the construct English proficiency satisfy the 

assumption of unidimensionality? 

5. Can a test that contains testlets satisfy the assumption of local item 

independence? 

6. If both assumptions can be satisfied, does classification accuracy improve 

sufficiently to justify the added computational complexity of IRT modeling? 
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1.4 Significance of the Study 

 Although the impact of item-analysis method on test scores has been examined in 

the educational assessment literature on several occasions (e.g., Anderson, 1999; Silva, 

1985; Stone, Weissman, & Lane, 2005), it has been addressed in the second language 

(L2) literature only once (B. Zhang, 2010). As a result, this study will contribute to the 

L2 literature in a unique and important way. For only the second time, multiple item-

analysis methods will be applied to a large data set to determine what influence, if any, 

different item-analysis methods have on the classification consistency and accuracy of 

examinee test scores.  

Perhaps more importantly, the methods of data analysis described herein will 

contribute to the field’s relatively nascent understanding and application of item response 

theory (IRT) to second language assessments, particularly with respect to the satisfaction 

of IRT’s two key assumptions – unidimensionality and local item independence. The 

strengths and weaknesses of each model/method will be discussed in detail, as well as the 

criteria administrators can use to make an informed decision about which item-analysis 

method to employ in their particular testing context.  

Finally and most importantly, the necessity of item analysis per se, especially for 

high-stakes tests, will be discussed with respect to the standards and guidelines espoused 

by several language testing associations, most notably the International Language Testing 

Association (ILTA).
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2 Review of the Literature 

2.1 Item-Analysis Methods 

 In the business world, managers routinely track the performance of their 

subordinates against explicit quantifiable goals to determine whether they are performing 

successfully or unsuccessfully. This tracking of performance is applicable to most 

professions, including the field of educational assessment, where test validation can help 

stakeholders better understand how well their test is capturing the relationship between 

examinees’ observed scores and the construct(s) being measured. 

Within educational assessment, there are numerous means of evaluating the 

validity of a test through the use of item analysis, with these means commonly divided by 

test type – whether the test contains items that are scored dichotomously (e.g., multiple-

choice items with answers keyed as either correct or incorrect) or polytomously (e.g., 

constructed-response items keyed on a Likert scale or multiple-choice items that permit 

partial credit scoring depending on which distractor is chosen). On many large-scale tests, 

dichotomously scored multiple-choice items are preferred because machine scoring of 

these items is possible, thereby reducing scoring time and cost. This is certainly true of 

many university entrance exams, where resources for scoring tests are often in short 

supply. Following is a discussion of the most common scoring method, contrasted with 

item-analysis methods derived from the two test-model theories most often applied to 

dichotomously scored multiple-choice tests. 
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2.1.1 Raw-Score Method 

The simplest means of estimating examinee performance on a test containing only 

dichotomously scored items is the raw-score method, where the answer to each item is 

either correct or incorrect and the score of every item is equal in weight, such that the 

total score is simply the sum of all items answered correctly. For interpretive purposes, 

this number-correct score is often reported as a percentage-correct score, equal to the 

number of items answered correctly divided by the total number of items on the exam. To 

this day, the letter-grade system so often employed in U.S. schools has its basis in 

number-correct/percentage-correct scores, where scores of 90-100% are typically 

awarded an A, 80-89% a B, 70-79% a C, and so forth.  

Because of its simplicity in calculation and familiarity in reporting, the number-

correct scoring method is putatively the most pervasive scoring method. Unfortunately, 

this simplicity/familiarity is not without consequence because the number-correct method 

requires several assumptions to be true about the test items or the validity of the resulting 

scores greatly diminishes. For example, this method assumes each item on the test is a 

fair measure of examinee ability. More specifically, it assumes each item contains only 

one unambiguously correct answer, all other answer options (distracters) appear equally 

plausible to all examinees, and examinees of higher ability will get each item correct 

more often than will examinees of lower ability.  

A second assumption of this scoring method is that each item contributes equally 

to the overall estimate of examinee ability regardless of its relative difficulty. In other 

words, because each correct response is assigned an equal value (usually 1), the 
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assumption is that every item contributes equally to estimating an examinee’s ability 

despite the fact certain items on the test will be relatively more difficult than others.  

A third assumption of the raw-score method is that the distribution of answers 

across the full range of examinee ability is equal across all items. Put another way, it is 

assumed that the distance (discrimination) between, e.g., examinees of low ability and 

high ability will remain constant across all items.  

A fourth and final assumption of the raw-score method is that guessing does not 

influence the overall outcome of an examinee’s score in a meaningful way. Stated 

differently, the likelihood examinees will guess correctly the answer to any one item is 

equal across all items and therefore negligible in its effect on overall scores. 

 

2.1.2 Classical Test Theory (CTT) 

Because the assumptions inherent in the raw-score method are considered 

unreasonable for many exams, test theory has been evolving for more than a century to 

mitigate the need to subscribe to such assumptions. For example, in the first half of the 

20th century, psychometricians began evaluating the reliability of test scores, meaning 

they began to evaluate the internal consistency of tests. Various coefficients were created 

to measure a test’s internal consistency, either for single administrations of a test (e.g., 

Cronbach’s α) or multiple administrations (e.g., Pearson’s r). In principle, the higher the 

correlation between test scores (or test-half scores2), the more likely the test is measuring 

a construct consistently/reliably. In other words, the higher the correlation, the lower the 

amount of measurement error present in the observed scores. 

                                                
2 When there is only one administration of an exam, the test is sometimes split in half to create two 
“alternate” forms of a test so its internal consistency can be estimated. 
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Such correlation coefficients led to the genesis of a measurement theory 

eventually coined Classical Test Theory (Novick, 1966). Based on the premise that 

observed scores are a function of only two factors – true scores and measurement error – 

the theoretical basis for CTT resides in the following formula: 

X = T + E (1) 

where the observed score (X) is the score an examinee achieves on a test, the true score 

(T) is the score that represents the theoretical (but unobservable) ability of that examinee, 

and measurement error (E) is the byproduct of an imperfect measure of that examinee’s 

true ability. 

In vogue for much of the 20th century, CTT led psychometricians to develop 

numerous statistics designed to evaluate test/item characteristics, including correlation 

coefficients that examine the reliability of tests containing two continuous variables 

(Cronbach’s α, Pearson’s r), two dichotomous variables (Phi, ϕ), or one of each (Point 

Biserial, rpb). Other components of CTT analysis included estimates of an item’s 

difficulty and discrimination. For example, on a dichotomously scored multiple-choice 

test, the difficulty of an item (p) is equal to the number of examinees who answer the item 

correctly divided by the total number of examinees. In other words, its difficulty is 

reflected in the proportion of examinees who answer the item correctly.3 The lower the 

proportion of correct responses, the more difficult the item is presumed to be. 

In contrast, an item’s discrimination (D) is equal to the difference in proportion-

correct scores between examinee groups of differing abilities. Kelley (1939) was one of 

                                                
3 In this sense, the difficulty of an item is inversely related to its p-value, meaning easier items have higher 
p-values because more examinees are successful in answering the item correctly. For this reason, some 
researchers prefer the term “facility” to “difficulty” because of the positive correlation between p-values 
and relative ease of the item. 
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the first psychometricians to offer a means of calculating an item’s discrimination, 

suggesting use of the top 27% and bottom 27% of examinees (based on overall test score) 

as the basis for how well an item differentiates examinees of differing ability. An item 

that discriminates maximally would have D = 1.0, where all of the examinees in the 

upper-ability group answer the item correctly and all of the examinees in the lower-

ability group answer the item incorrectly, as shown below in Equation 2: 

D = pupper - plower (2) 

Within the CTT framework, the ideal item has a mean difficulty p = .50 and a 

discrimination D = 1.0. Mathematically speaking, discrimination is a function of an 

item’s difficulty across the pool of examinees, meaning the two statistics are interrelated, 

with discrimination limited by difficulty. Consider an item that is infinitely easy or 

impossibly difficult. In the former case, p = 1.0, where all examinees, regardless of 

overall ability, are able to answer the item correctly. In the latter case, p = 0, where no 

examinees, regardless of ability, are able to answer the item correctly. In both cases, the 

discriminating power of the item is D = 0; all examinees get the item correct or incorrect, 

regardless of ability, so there is no discrimination among examinees across ability levels. 

On the other hand, items with a difficulty p = 0.50 create the most opportunity for 

discrimination among examinees. For example, if 100 individuals record a response to an 

item with a difficulty p = 0.50, 50 of the examinees will have answered the item correctly 

and 50 will have answered it incorrectly. This allows up to 2500 (50 x 50) potential 

differentiations among the 100 examinees. On the other hand, if an item’s difficulty is, 

e.g., p = .25, it would indicate 25 examinees answered the item correctly and 75 

incorrectly, for a maximum of 1875 possible differentiations (25 x 75).  
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While item discrimination is a function of item difficulty, it is important to note 

that the possible number of differentiations among examinees is not always equal to the 

actual discrimination of an item because the value of D is dependent on how the upper- 

and lower-ability groups are formed. For example, Kelley’s (1939) suggestion of 27% as 

the basis for extreme group formation is somewhat arbitrary,4 so the discriminating 

power of any given item will vary depending on the percentage chosen for group 

formation. In most cases, the percentage should be between 25% and 33%, depending on 

several factors, including the number of examinees who take the exam and the 

distribution of total scores across the range of abilities. Whatever the case, maximum 

discrimination can be realized on items with difficulty at p = 0.50 for the reasons 

explained above. Table 1 below illustrates an example of what item difficulty and 

discrimination might look like for four items of a test: 

Table 1.    Example of item statistics using CTT 
Item Difficulty (p) Difficulty (p) Difficulty (p) Discrimination 

# All Examinees Upper 27% Lower 27% (D) 
1 0.50 0.90 0.10 0.80 

2 0.95 1.00 0.90 0.10 

3 0.65 0.80 0.30 0.50 
4 0.50 0.30 0.70 -0.40 

As shown, Item 1 appears to be functioning nearly ideally. Its difficulty is at the target 

0.50, thereby maximizing its discriminatory potential, and its actual discrimination is 

quite high (D = 0.90 – 0.10 = 0.80). In contrast, Item 2 is functioning very poorly because 

virtually every examinee was able to answer the item correctly (p = 0.95), resulting in a 

very low discrimination between upper- and lower-ability groups (D = 0.10). In other 

                                                
4 Kelley actually based the choice of 27% on where the tails of a normal distribution form, which has 
rationale but is still somewhat arbitrary from a mathematical standpoint.  
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words, the item contributes little to discerning examinee ability. Item 3 is an example of a 

solid item that is not necessarily ideal because it is relatively easy (p = 0.65) but is 

nevertheless serving the test well because it is discriminating well between extreme group 

ability levels (D = 0.50). A test containing items with similar characteristics would be 

considered a well-designed test, at least with respect to these aspects of reliability/validity. 

 Item 4 is interesting because of it has the ideal p-value (0.50), but it has a negative 

D-value. This negative value (D = -0.40) indicates the lower-ability group actually 

outperformed the upper-group on this item, suggesting a problem with the item. While 

there are many possible reasons an item would exhibit a negative D-value, a mistake in 

the answer key or a distractor that misleads examinees of higher-ability but does not have 

the same effect on examinees of lower ability are two possible explanations. Whatever 

the reason, items with negative D-values should be examined closely because they misfit 

the model and lower the reliability of the test. If the answer key is not mistaken, a 

decision will need to be made about whether to keep the item in the scoring analysis. 

When item analysis using difficulty and discrimination as the parameters is 

performed on all of the items of a test, items that contribute little (or worse, negatively) to 

the discriminatory power of a test overall can be removed, both for reliability analysis 

and subsequent test administrations. In most cases, removal of the misfitting items will 

improve the reliability of the test provided enough items remain.5 

While CTT is a considerable improvement over the raw-score method due to its 

focus on the internal consistency of a test, it is not without its own limitations. First, CTT 

item statistics are population dependent, meaning they are applicable only to the group of 

examinees who took the test at that particular time. Second, CTT person-ability estimates 
                                                
5 Generally speaking, the reliability of a test correlates with the number of items on the test. 
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are item dependent, meaning they are due solely to the particular group of items the 

examinees answered on that particular test administration. This item-person co-

dependence not only creates a circular reference, it also precludes the generalizability of 

CTT statistics to other examinee populations and test administrations. In other words, 

aside from the theoretical problem of circularity, there is a very practical problem in that 

any change to the composition of a test or to the examinee population necessitates a 

reanalysis of the item/test characteristics. 

Another limitation of CTT is the assumption of item equivalence, meaning total 

scores are the sum of equally-weighted item scores. Recall that in the case of the raw-

score method, all items are scored as either correct (value = 1) or incorrect (value = 0), so 

each item carries equal weight in contributing to the final score. While CTT item analysis 

can help identify and eliminate misfitting items from the analysis, thereby improving the 

overall reliability of the test score, it still assumes item equivalence in that all 

dichotomously scored items receive a value of 1 or 0. In other words, it assumes the test 

scale is an interval scale, which may not necessarily be the case. 

A third limitation of CTT is its treatment of measurement error. In CTT, it is 

assumed that the standard error of measurement (SEM) is constant across all ability 

levels. However, this assumption is often unreasonable. Recall that the ideal item 

difficulty value is p = 0.50. At this level of difficulty, item discrimination can be 

maximized, so the majority of test items on a well-designed test will typically have p-

values at/around 0.50. The consequence of this design is that there are relatively few 

items that are extremely difficult (e.g., p = 0.10) or extremely easy (e.g., p = 0.90), so 

examinees whose abilities are at the extremes (relative to those in their exam cohort) 
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confront very few items at their level of ability. This is problematic because reliability is 

positively correlated with the number of items, so fewer items equates to lower reliability, 

which in turn equates to greater measurement error in examinee scores that are in the tails 

of the distribution. In short, SEM in most cases will not be constant across ability levels, 

so the assumption of a fixed SEM is problematic. 

 

2.1.3 Item Response Theory (IRT) 

In response to the limitations of CTT item analysis, psychometricians began 

looking for means to identify test/item characteristics that could be generalized across 

both test administrations and examinee populations. These identification and calculation 

of these characteristics, collectively known as Item Response Theory (IRT), fulfill this 

need and have been in development since the 1950s, with several seminal publications 

emerging in the 1960s (e.g., Birnbaum, 1968; Lord & Novick, 1968; Rasch, 1960). It was 

not until the 1980s, however, that IRT realized its full potential, when computers became 

powerful enough to execute the complex calculations required (e.g., BILOG: Mislevy & 

Bock, 1982). To this day, IRT models are the preferred choice for large-scale, high-stakes 

test administrations because of their strong theoretical underpinnings and their practical 

benefits, including, e.g., sample-free item calibration, item-free person measurement, 

misfitting item and person identification, and test equating and linking (Henning, 1987). 

The prominence of IRT is evident throughout psychometric research, being the 

topic of several book chapters (e.g., W. Yen & Fitzpatrick, 2006) and monographs (e.g., 

Baker, 2001; Embretson & Reise, 2000; Hambleton & Swaminathan, 1985), as well as 

publications on the scholarly periphery (e.g., Chong, 2011; Partchev, 2004). It has been 
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applied to numerous contexts as well, including subscale scores (e.g., Kolen, Zeng, & 

Hanson, 1992; Skorupski & Carvajal, 2010), differential item functioning (e.g., Wyse & 

Mapuranga, 2009; Zenisky, Hambleton, & Robin, 2004) and growth/change modeling 

(Reise & Haviland, 2005).  

In contrast to CTT, which focuses primarily on test-level concerns like reliability, 

IRT focuses primarily on the factors that influence the observed scores of each individual 

item (i.e., item-pattern scoring vs. number-correct scoring). Common to all three IRT 

models is a set of three parameters, with the models varying only in the assumptions they 

make about each of the parameters. Below is a brief description of each model, in reverse 

order of model complexity for explanatory clarity. 

 

2.1.3.1 Three-Parameter Logistic (3PL) Model 

As mentioned, all three IRT models have three parameters: 

1. Item discrimination (a) 

2. Item difficulty (b) 

3. Pseudo-guessing6 (c) 

  

                                                
6 Following Yen & Fitzpatrick (2006), the term pseudo-guessing is used here to differentiate it from 
random guessing, in that low ability learners likely will at least try to make an educated guess at the correct 
answer rather than choosing an answer at random. In the latter case, ci = .25 on a 4-choice multiple-choice 
item, whereas ci could be greater than or less than .25 depending on the nature of the distracters and 
assuming examinees are trying to answer the item to the best of their ability. 
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The IRT-3PL model is expressed mathematically in the following formula, known as the 

item response function: 

 
P! θ =    c! +   

!!!!
!!!"#[!!!! !!!! ]

  (3) 
 

In Equation (3), the three parameters of the model are represented by ai, the 

discrimination power of item i, bi, the difficulty of item i, and ci, the likelihood of 

guessing item i correctly given no ability to answer the item correctly. The function 

1 [1 +   exp −t ] is a logistic function, with exp(–t) denoting e, the natural exponent. 

Within this logistic function, D is a multiplicative constant, typically set to 1.7 or 1.702, 

because this value helps the 2PL model approximate the normal ogive model (Yen & 

Fitzpatrick, 2006, p. 114).  

 Unlike the CTT model, where person abilities are dependent on the particular 

item set, IRT permits the calculation of the probability a person at a given level of ability 

will be able to answer a locally-independent item correctly, represented in Equation (3) 

by the term P! θ . In sum then, the IRT-3PL model states that the probability (P) a person 

of a given ability θ  will answer item i correctly is a (logistic) function of the item’s 

discrimination power, ai, its difficulty, bi, and the likelihood the correct answer can be 

guessed in the absence of any ability, ci. 
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2.1.3.2 Two-Parameter Logistic (2PL) Model  

The IRT-2PL model differs from the 3PL model only in that it assumes pseudo-guessing 

is not a meaningful contributor to item fit, or more typically, that it is not applicable to 

the data (e.g., in the case of rater-scored constructed-response items). Hence, its item 

response function is very similar in form: 

 
P! θ =    !

!!!"#[!!!! !!!! ]
  (4) 

 
 
Note the only difference is the absence of the guessing parameter, ci. Implicit in this 

model then is the assumption that the probability an examinee of very low ability will 

answer item i correctly approaches 0 (ci = 0). Stated differently, the lower asymptote 

intercepts the Y-axis (person ability) near 0 in the 2PL model. 

 

2.1.3.3 One-Parameter Logistic (1PL) Model 

In the IRT-1PL model, the only parameter that is estimated is the difficulty parameter, bi, 

as shown below in Equation (5): 

 
P! θ =    !

!!!"# !!!!
   (5) 
 

 
Implicit in this model is the assumption that item discrimination is constant across item 

difficulty and person ability. As with CTT, this assumption is unreasonable in many 

circumstances. Nevertheless, the IRT-1PL model is employed in many circumstances 

because a large amount of item information can be captured by this one parameter alone 

(Yen & Fitzpatrick, 2006, p. 114). 
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2.1.3.3.1 IRT-1PL model vs. Rasch-1PL model  

Even though IRT has been in existence for over 50 years, there is a common 

misconception to this day that the IRT-1PL model is synonymous with the Rasch-1PL 

model (e.g., Taylor & Lee, 2010). While it is true they employ the same item response 

function to examine fit (including only the difficulty parameter, bi), they have 

diametrically opposed philosophies of fit evaluation: whereas the IRT-1PL model (like 

all IRT models) assumes all items are sound, the Rasch-1PL model assumes the model is 

sound such that any item misfit is a function of the item, not the model. In other words, 

employment of the Rasch-1PL model excludes items (and persons) from the analysis to 

improve the fit of the model, whereas the IRT-1PL model does not – the model is either 

accepted or rejected depending on its initial global fit. Table 2 is a summary description 

of the differences between the two 1PL models (adapted from Linacre, 2005): 
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Table 2.    Differences between the Rasch-1PL model and the IRT-1PL model 
Aspect Rasch Dichotomous Model Item Response Theory 
Item Response 
Function 1PL 1PL 

Context 
When each individual in the 
person sample is parameterized for 
item estimation. 

When the person sample is 
parameterized by a mean and standard 
deviation for item estimation. 

Motivation 

Prescriptive: Distribution-free 
ability estimates and distribution-
free item-difficulty estimates on an 
additive latent variable 

Descriptive: Computationally simpler 
approximation to the Normal Ogive 
Model of L.L. Thurstone, D.N. 
Lawley, F.M. Lord 

Persons, objects, 
subjects, cases, etc. 

Person n of ability Bn, or Person ν 
(Greek nu) of ability βn in logits 

Normally-distributed person sample of 
ability distribution θ, conceptualized as 
N(0,1), in probits: incidental 
parameters 

Items, prompts, etc.: 
structural parameters 

Item i of difficulty Di, or Item ι 
(Greek iota) of difficulty δi in 
logits 

Item i of difficulty bi (the "one 
parameter") in probits 

Nature of binary data 1 = success (presence of property) 
0 = failure (absence of property) 

1 = success (presence of property)  
0 = failure (absence of property) 

Probability of binary 
data 

Pni = probability that person n is 
observed to have the requisite 
property, "succeeds", when 
encountering item i 

Pi(θ) = overall probability of "success" 
by person distribution θ on item i 

Local origin of scale: 
zero of parameter 
estimates 

Average item difficulty, or 
difficulty of specified item 
(criterion-referenced) 

Average person ability (norm-
referenced) 

Item discrimination 
Item characteristic curves (ICCs) 
modeled to be parallel with a slope 
of 1 (the natural logistic ogive) 

ICCs modeled to be parallel with a 
slope of 1.7 (approximating the slope 
of the cumulative normal ogive) 

Fit evaluation Fit of the data to the model; Local, 
one parameter at a time 

Fit of the model to the data; Global, 
accept or reject the model 

Data-model mismatch 

Defective data do not support 
parameter separability in an 
additive framework. Consider 
editing the data. 

Defective model does not adequately 
describe the data. Consider adding 
discrimination (2-PL), lower 
asymptote (guessability, 3-PL) 
parameters. 

 

In short, the Rasch-1PL model is confirmatory and the IRT-1PL model is exploratory. In 

other words, with Rasch, the data must fit the model, while with IRT, the model must fit 

the data. This distinction is important when classification accuracy as a function of item 

fit is being examined because model fit will depend on the philosophy adhered to – either 

initial fit (in the case of the IRT-1PL model) or upon subsequent fit after misfitting items 
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and persons are removed from the data (in the case of the Rasch-1PL model). In this 

study, the Rasch-1PL model will be employed because the IRT-1PL model is not 

theoretically justifiable given the nature of the test items, as explained later. 

 

2.1.3.4 IRT Assumptions 

 Like classical test theory, IRT relies on a set of assumptions. First is the 

assumption of unidimensionality. Central to all IRT models, unidimensionality is the 

assumption that all of the items on a test (or test section) measure only one latent 

trait/ability (e.g., reading comprehension). This assumption is the basis of all 

measurement theory to the extent the sum of item scores is used to assign some overall 

value of ability to an examinee, as is the case on most tests. A second related but separate 

assumption central to IRT is local item independence (LII), meaning the response to each 

item is not influenced by the response to any other item. In other words, LII is achieved if 

examinees’ respective ability value (θ) explains fully their performance on all items.  

 Because the assumptions of unidimensionality and local item independence are 

very strong assumptions, whether they can be satisfied in practice has been the source of 

much debate in both the educational assessment and second language testing literature. 

Broadly speaking, three approaches have been advocated for dealing with assumption 

violations: overcome them (using more advanced item-analysis methods like 

multidimensional IRT modeling), mitigate them (through modification of existing IRT 

models like Bejar’s (1980) method), or disregard them (by relaxing the requirements of 

assumption satisfaction through claims of “essential unidimensionality” or “psychometric 
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unidimensionality”). Following is a review of the means of testing IRT assumptions and 

the proposed solutions to managing violations.  

 

2.1.3.4.1 Unidimensionality 

According to Hambleton, Swaminathan, Cook, Eignor, and Gifford (1978), 

testing the assumption of unidimensionality takes precedence over all other goodness of 

fit tests because the results of all other tests will be difficult to interpret if the assumption 

of unidimensionality is untenable (p. 487). To date, the most common test of 

unidimensionality has been some variant of factor analysis.  

Stout (1984) was an early implementer of factor analysis in assessing 

unidimensionality, comparing classical and modern methods of factor analysis. However, 

Stout was not alone in suggesting a means of testing unidimensionality. In a quasi-meta-

analysis of the existing indices at the time, Hattie (1984) found a staggering 87 different 

tests of unidimensionality (Table 1, pp. 51-4). To test the efficacy of these indices, Hattie 

employed multivariate 3PL modeling in a simulation study involving 36 models (2 levels 

of difficulty x 3 levels of guessing x 6 model combinations of dimensions and levels of 

discrimination) and found that indices based on answer patterns, reliability, component 

analysis, linear analysis and non-linear factor analysis were all ineffective. He therefore 

concluded the only reasonable means of assessing dimensionality is by summing the 

absolute residuals from the 2PL latent-trait estimation procedure. 

The following year, Hattie (1985) once again conducted a simulation study, this 

time with 30 indices, and he found similar results to his previous study, concluding that 

researchers were incorrectly equating unidimensionality with other terms like reliability, 
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internal consistency, and homogeneity. Reckase, Carlson, and Ackerman (1985) echoed 

this claim, stating factor analysis does not recover the underlying structure of 

dichotomous data, so it should not be used to demonstrate unidimensionality (due to its 

failure to meet the assumptions of tetrachoric correlations). 

Alternatives to factor analysis have been proposed over the years. For example, 

Bejar (1980) created a method that tests unidimensionality via item parameter estimate 

comparison, where one set of estimates is obtained using all of the items on the test and 

the other using only the items contained within a particular subsection. When violations 

of unidimensionality are apparent, a decision must be made whether to accept the 

content-area-based estimates or total-test-based estimates. If total-test-based estimates are 

accepted, the implicit assumption is that the entire latent space is unidimensional and 

everything outside that space is "error," i.e., sources of variation are of no concern. On 

the other hand, if the content-area-based estimates are accepted, then there is implicit 

acknowledgement of a multidimensional latent space. The question then is whether the 

multidimensionality found is important for practical purposes.  

One application of the Bejar (1980) method was conducted by Henning (1988), 

which was a follow-up study to Henning et al (1985), who examined the effects of a 

violation of unidimensionality on Rasch-1PL item and person estimates. In the 1988 

study, Henning conducted a simulation study using a two-dimensional set of 60 items 

taken by a simulated 120-person sample and a two-dimensional set of 60 participants 

taking a 120-item test. Using the Bejar method to test for a violation of the assumption, 

Henning demonstrated that IRT models are robust to violations of item unidimensionality 

but not person unidimensionality. As a result, Henning concluded it is appropriate to use 
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the Bejar method to eliminate items/persons responsible for causing the violation. In 

other words, because the Bejar method is sensitive to item-by-item and person-by-person 

changes, it is useful to employ because violations of the unidimensionality assumption 

diminish person/item separability. 

Despite such applications, the Bejar method is not without critics. For example, 

Hambleton and Rovinelli (1986) compared four methods of testing dimensionality: 1) 

linear factor analysis 2) non-linear FA 3) residual analysis and 4) the Bejar method. 

Using five simulated data sets (each with 40 items and 1500 participants) with 

unidimensional and two-dimensional latent ability, two variables were manipulated: 1) 

the correlation between traits; and 2) the percent of items measuring the trait (fixed to 

either 50-50 or 25-75). Results show that the linear factor analysis method overestimated 

the number of dimensions in all simulations, the non-linear FA successfully estimated the 

number of dimensions in three of the five cases, and the residual analysis and Bejar 

methods failed across all conditions. The authors therefore concluded non-linear factor 

analysis is most promising method of assessing unidimensionality. Bejar (1988) later 

claimed Hambleton and Rovinelli misinterpreted the Bejar method and that it should still 

be considered valid, particularly for achievement tests that appear to examine multiple 

domains/content, but there are few recent references to the Bejar method in the literature. 

Another proposed alternative to factor analysis is multidimensional scaling 

(MDS). Ayala and Herzog (1991), for example, proposed its use because they claimed it 

is easier to apply and less expensive than conducting factor analysis. In a comparison of 

MDS, confirmatory factor analysis (CFA), and exploratory factor analysis (EFA), Ayala 

and Herzog found both MDS and CFA successful in identifying all of the dimensions of 
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the data. Despite these findings, however, their suggestion for use of MDS instead of 

factor analysis seems to have gained little traction in the field, at least with respect to 

assessing unidimensionality. One exception can be found in Meara, Robin, and Sireci 

(2000), who evaluated the suitability of multidimensional scaling (MDS) to dichotomous 

data due to the fact that if a test is multidimensional, it is unclear whether a composite 

score can be used to summarize examinee performance. Their results show MDS was 

successful in identifying multiple dimensions when the correlation between the 

dimensions was low but not when it was high. 

Despite these proposed alternatives, factor analysis has persisted over the years as 

the preferred means of testing unidimensionality. A recent example of this can be found 

in Cook, Kallen, and Amtmann (2009), who conducted a confirmatory factor analysis of 

a pain test to examine the impact of n-size and non-normality on unidimensionality. In 

particular, the authors explored how CFA fit criteria were affected by two characteristics 

of item banks developed to measure health outcomes: a large number of items and non-

normal data. Analyses were conducted using both observed data and simulated data. 

Results show that CFA fit values were sensitive to both data distribution and the number 

of items. As a result, the authors concluded that using traditional cutoffs and standards for 

CFA fit statistics is not recommended for establishing unidimensionality of large item 

banks but that it is the preferred method under other testing conditions. 

Interestingly, most early analyses of unidimensionality rarely found clear 

satisfaction of the assumption. As a result, it was not long before researchers started 

proposing relaxed interpretations of the assumption. For example, Drasgow and Parsons 

(1983) conducted a simulation study to examine the effects of violating the 
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unidimensional assumption. Using maximum likelihood to estimate item and person 

parameters for the 1PL, 2PL, and 3PL models, the authors specifically examined whether 

an item set was “sufficiently unidimensional” such that the use of IRT modeling could be 

justified. Using LOGIST software (Wood & Lord, 1976) with a simulated population of 

1000 and responses designed to represent the normal ogive curve of the 2PL model, 

results show violations of unidimensionality did affect model fit adversely. They 

therefore argued unidimensionality must be achieved with IRT applications, but they also 

stressed the fact that if the first factor is “prepotent,” then unidimensional models do in 

fact provide adequate descriptions of multidimensional data (p. 198). 

The concept of “sufficient unidimensionality” was first suggested by Reckase 

(1979), who examined the robustness of IRT models when applied to achievement tests 

because, according to Reckase, many achievement tests are by design multidimensional. 

Applying the IRT-1PL and -3PL models in particular, Reckase analyzed their fit of 10 

data sets (five real and five simulated) and found that in cases where more than one 

dimension was present, the 3PL model fit one factor and disregarded the others while the 

1PL summed the loadings. As a result, Reckase claimed that both person and item 

parameters are stable provided at least 20% of the variance can be explained by the 

primary factor (i.e., 20% of the variance explained would result in a 3PL-discrimination 

parameter of about .60). Reckase went further to state that even if less than 20% of the 

variance could be explained by the first factor, the person ability estimates would still 

likely remain stable, although the same is not true for the item parameter estimates (p. 

227). In short, Reckase made the case, perhaps for the first time, that unidimensionality 

could be seen as relative and not necessarily absolute for IRT model applications. 
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Stout (1987, 1990) furthered this claim by creating a test of what he called 

essential unidimensionality. Based not on factor analysis per se but on the principle that 

unidimensionality should hold when sampling from a subpopulation of examinees of 

approximately equal ability, Stout found that a non-parametric IRT model is a more 

straightforward means of testing unidimensionality than factor analysis, and that only if a 

multidimensional latent space appears to exist should factor analysis be employed. 

In the field of second language testing (SLT), Henning, Hudson, and Turner 

(1985) claimed that unidimensionality is “mythical” in almost all cases, so the real 

question is to what degree items must appear to be measuring the same trait in order for 

IRT analysis to hold (p. 142). They also stated that CTT assumes unidimensionality 

insofar as a summative test score is reported as a reflection of ability, so violations of 

unidimensionality are problematic for both CTT and IRT analyses.  

To support their claims, Henning et al (1985) examined data derived from 312 

examinees who took the UCLA English as a Second Language Placement Exam (ESLPE), 

which consisted of 150 four-option multiple-choice items (30 each in five subsections – 

listening comprehension, reading comprehension, grammar, vocabulary, and error 

detection). Conducting a Rasch analysis of the test as a whole and each of its five subtests, 

Henning et al employed the Bejar (1980) method to examine unidimensionality. Results 

demonstrate a linear relationship between each test subsection and the test as a whole, so 

the authors claimed unidimensionality was not violated. They found further support for 

their claim in the form of an independent factor analysis conducted on the same test 

(Davidson, 1985), as well as its very high internal consistency (KR-20 = .96). In short, 

and although not explicitly stated, Henning et al appear to have implied there is a general 
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language proficiency trait that is sufficiently unidimensional for use with IRT analysis, at 

least as reflected by the ESLPE.  

Lynch, Davidson, and Henning (1988) also used the ESLPE to measure the 

impact of person dimensionality on differential item functioning (DIF) estimates. With a 

sample size of 678 participants, Lynch et al found no real difference between the top and 

bottom 27% other than ability, although there was some clustering by major (more 

engineering & science majors in the top 27% and more arts & humanities majors in the 

bottom 27%). The authors therefore concluded unidimensionality was not violated with 

respect to person parameter estimates. 

Henning (1992) further refined his previous ideas regarding dimensionality by 

introducing the concepts of psychological dimensionality and psychometric 

dimensionality. Taking a relatively strong position, Henning stated:  

Item response theory (IRT) models are…considered by some to be suspect 

as appropriate measurement tools with language assessment data…since 

communicative language performance is assumed to be by nature 

multidimensional…However, it is the position of this paper that these 

criticisms may be based on insufficient awareness of the nature and 

constraints of unidimensionality and multidimensionality and on 

inadequate appreciation of the distinction between what may be termed 

‘psychological’ dimensionality and ‘psychometric’ dimensionality. (p. 2) 

Stating that psychometric unidimensionality is similar to psychological unidimensionality 

in that both refer to the capacity of a test to measure some primary dimension or trait, 
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Henning went on to state that psychometric unidimensionality can be present when the 

test measures a variety of correlated underlying psychological dimensions.  

An earlier study by Reckase, Ackerman, and Carlson (1988) reinforces Henning’s 

(1992) claim that psychometric unidimensionality can be demonstrated even when 

psychological multidimensionality is being measured. In this study, the authors used the 

2PL model to analyze two datasets – one real and one simulated – to demonstrate that 

multidimensional ability can be considered psychometrically unidimensional provided 

each item in the set is measuring the same composite ability (e.g., FLP). In their 

conclusion, Reckase et al state that: 

Most items require more than one ability to obtain a correct answer. This 

would seem to preclude the use of unidimensional IRT procedures with 

such items…Rather than specifying that items need to measure only a 

single trait, the results presented here show that the unidimensionality 

assumption implies that items need only measure the same composite of 

abilities as indicated by multidimensional IRT analysis. (p. 203) 

Further arguing the case that most academic constructs are multidimensional by 

nature, Dawadi (1999) examined the robustness of IRT modeling in the face of deliberate 

violations of unidimensionality. Comparing the root mean squared errors (RMSEs) of 

both unidimensional and simulated two-dimensional data, Dawadi found that minor 

violations of unidimensionality were tolerable (provided the correlations between all 

factor pairs are greater than .80). Dawadi also reiterated the fact that even, e.g., 

vocabulary ability can be shown to be multidimensional if analyzed at a granular-enough 

level, so unidimensionality should be seen as a relative rather than absolute concept, 
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despite the fact other studies have shown IRT models are not valid when 

unidimensionality is violated (e.g., Dorans & Kingston, 1985; Downing & Haladyna, 

1996; Folk & Green, 1989; Oshima & Miller, 1990; Walker & Beretvas, 2000). 

 Zhang (2008) provides a relatively recent summary of the issue of dimensionality, 

stating that when a unidimensional model is applied to tests with two ability traits, the 

unidimensional ability estimate shows each examinee’s original standing on two traits by 

one statistic and that this statistic will probably reflect the stronger trait more than the 

weaker one. The question then is to decide whether the influence from the weaker trait 

can be ignored, or to the extent it cannot, whether items that measure multiple ability 

dimensions do so to the same degree. If this is the case, unidimensionality can be 

assumed to not be violated, as was the case in two studies of dimensionality on two large-

scale standardized tests. 

 Two relevant applications of IRT support this argument for essential 

unidimensionality. In the first study, Childs & Oppler (1999) conducted an IRT analysis 

of the Medical College Admission Test (MCAT) based on the presumed 

multidimensionality of each of the three test sections – verbal reasoning, physical 

sciences, and biological sciences. Results showed that while some items in each section 

were not completely homogenous, violation of unidimensionality was not a particular 

concern; i.e., essential unidimensionality was achieved. In the second, Schedl, Gordon, 

Carey, and Tang (1996) examined the dimensionality of the TOEFL reading test in an 

effort to determine whether reasoning skill – a construct putatively tested in four item 

types appearing in the ETS test specifications – was a separate dimension from general 

reading ability. Using Stout’s (1987) procedure for assessing essential unidimensionality 
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and McDonald’s (1982) nonlinear factor analysis procedure, Schedl et al found a two-

factor solution but no evidence of a reasoning-skill factor. Instead, it appeared the second 

factor was related either to passage content or passage position (the final two passages 

had the highest second-factor loadings). As a result, the authors claimed support for the 

finding of Lunzer, Waite, & Dolan (1979) that reading comprehension is a single 

construct (c.f., Freedle & Kostin, 1993; Grabe & Stoller, 2002), or rather, that the 

psychological construct is multidimensional but the psychometric construct is 

unidimensional (op. cit., Henning, 1992; Reckase et al., 1988). As will be illustrated, it 

could be the case the second order factor is what is now known as a testlet effect. 

 

2.1.3.4.1.1 Multidimensional IRT (MIRT) vs. Unidimensional IRT (UIRT) 

For all the attempts to relax the unidimensional assumption, there is still a wealth 

of evidence multidimensional data negatively impact the model fit of unidimensional IRT 

models. This has been demonstrated in many areas, including bias detection (Oshima & 

Miller, 1992), test equating (Bolt, 1999; De Champlain, 1996), and test score and 

subscale score interpretation (Tate, 2004), among others. As a result, the development of 

multidimensional IRT (MIRT) models began to emerge in parallel with the research on 

so-called essential unidimensionality.  

As Hartig and Hohler (2009) explained, the advantage of MIRT models over 

unidimensional IRT (UIRT) models is strongest under three circumstances: 1) when 

unintended multidimensionality is uncovered in a presumed unidimensional construct; 2) 

when modeling latent covariance structures between ability dimensions; and 3) when 

modeling interactions of multiple abilities that are required to solve specific test items. 
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Other researchers (e.g., Gibbons, Immekus, & Bock, 2007) have also demonstrated the 

added value of MIRT modeling with computerized adaptive tests (CATs), and still others 

have shown how MIRT modeling can improve parameter estimates when the number of 

items is small (J. Zhang, 2004). 

 Despite the positive results MIRT models have generated, many researchers have 

argued against their use because of their complexity and their need for massive numbers 

of data. Zhang (2008), for example, defended the use of standard IRT models with many 

types of multidimensional data, citing the computer programs MULTILOG (Thissen, 

1991) and BILOG (Mislevy & Bock, 1990) as examples of relatively straightforward IRT 

modeling programs that can estimate both ability and item parameters, while existing 

MIRT modeling programs like TESTFACT (Wood et al., 2003) and NOHARM (Fraser 

& McDonald, 1988) can estimate only item parameters. Zhang also argued 

unidimensional models are more parsimonious and are therefore preferred, particularly 

given the fact their estimates are satisfactory provided they either meet Stout’s (1987, 

1990) requirements for essential unidimensionality or if the multiple dimensions 

uncovered are highly correlated. In brief, Zhang stated that: 

In educational testing, construct-relevant secondary dimensions are usually 

correlated with the main construct, thus the essential unidimensionality 

assumption probably holds and the unidimensional ability estimates 

adequately represent the ability level of students on the main construct. 

Regarding the construct-irrelevant dimensions, such as cultural 

background, curricular emphasis, and speed of work, although they may 

not be related to the studied cognitive trait, the chance that any of them will 
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affect a multitude of items in a well-designed and well-administered test is 

also small, thus the unidimensional model may still fit. (p. 164) 

Ip (2010) is another advocate of the standard IRT model, claiming MIRT is 

empirically indistinguishable from locally dependent IRT, so multidimensional response 

data do not necessarily require the use of MIRT models. Ip further argues that 

“…unidimensionality is more of an abstract ideal than a reality…In fact, it is hard to 

argue that truly valid unidimensional tests exist in any subject matter area” (p. 397). As a 

result, Ip states that if there is a predominant general factor in the data and if the 

dimensions beyond that major dimension are relatively small, the presence of 

multidimensionality has little effect on item parameter estimates and the associated 

ability estimates. On the other hand, if the data are multidimensional with strong factors 

beyond the first one, utilizing a locally dependent IRT model will improve fit and avoid 

the need to employ one of the considerably more complex MIRT models in existence. 

Stone, Ye, Zhu, and Lane (2010) conducted one of the more recent studies that 

examined the cost-benefit tradeoff of MIRT models. In their study, the authors compared 

three means of improving the reliability of subscale scores. Analyzing data collected 

from 10,545 eighth-graders who took the Delaware Student Testing Program (DSTP) test, 

the authors conducted an assessment of essential unidimensionality (Stout, 1987, 1990) 

via exploratory factor analysis, using Mplus to calculate eigenvalues, fit statistics, and 

residuals.7 For the 48 dichotomously scored items, a MIRT model equivalent to 

Reckase’s (1997) MIRT-3PL model was employed along with two IRT models. Results 

show that the MIRT model led to greater reliability of the subscale scores, but there were 
                                                
7 A confirmatory factor analysis was not conducted because eigenvalues were unavailable and the chi-
square goodness-of-fit index was not calculated because of its sensitivity to large n-sizes. 
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practical issues that limit its routine application. For example, it was significantly more 

complex to employ than the IRT models commonly employed. Moreover, higher inter-

factor correlations were found with the MIRT approach, indicating that less unique 

variance existed among the subscale scores. As a result, the authors concluded that is 

would make sense to either increase the multidimensionality of tests to maximize the 

utility of the MIRT model or continue using the unidimensional IRT models because 

essential unidimensionality can in fact be demonstrated, at least with these types of data.  

 Yen & Walker (2007) also examined the impact of MIRT modeling on a test with 

subsections, each of which presumably measured a different trait (listening, speaking, 

reading, and writing). Running multiple analyses of data collected from 12,008 

elementary school students in second to fifth grade, the authors found that MIRT models 

could better model the composite scores, but that, citing Davey and Hirsch (1990), MIRT 

analysis may not be as capable of discriminating among examinees traits because of the 

increase in parameters needed to obtain estimates (at least for tests of fewer than 100 

items). The authors went on to say that these types of problems have hindered the 

development of practical applications involving MIRT models and that they are 

essentially ignored in favor of the less-complex UIRT models. 

 

2.1.3.4.2 Local Item Independence 

Differing from dimensionality but an equally important assumption of IRT 

models is local item independence (LII). Whereas dimensionality is concerned with 

whether each item on the test is measuring one or more dimensions of ability, LII is 

concerned with whether the response to any one item influences the response to any other. 
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Yen (1993) provided a good summary of the causes of local item dependence (LID; i.e., a 

violation of LII), including test-external factors like assistance, interference, speededness, 

fatigue, practice, the explanation of a previous answer, scoring rubrics, and raters, as well 

as test-internal factors like item/response format, passage dependence, and item chaining. 

In her study, Yen described how performance assessments are susceptible to 

violations of LII because multiple items often are based on a single setting (e.g., on a test 

in language arts, a setting might be established with a short story and then the student is 

asked to contrast two characters in the story, provide and defend an alternative ending, 

and relate events in the story to a personal experience). Analyzing three LID contexts – 

the extent of within-passage LID on performance assessments vs. multiple-choice tests, 

the extent of LID on follow-up math item sets, and the effect of inappropriate LII 

assumptions on model statistics – Yen compared data from the Comprehensive Test of 

Basic Skills, Fourth Edition (CTBS/4), to data from the Maryland School Performance 

Assessment Program (MSPAP), and found, perhaps surprisingly, that the reading 

comprehension component of the CTBS/4 exhibited little LID, while the MSPAP did. 

Unfortunately, Yen did not describe the reading comprehension part of the test in detail 

(see p. 194), so it is not possible to discern why multiple items related to the same 

passage did not exhibit LID. Nevertheless, Yen concluded that violation of LII typically 

leads to overestimates of test information and reliability while underestimating the 

standard error of measurement, suggesting the need to use testlets (Wainer & Kiely, 1986, 

1987) to offset this effect. However, Yen warned a lot of information is lost when 

analyzing at the testlet level, as demonstrated in Figure 1.  
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Figure 1.   Information for a pair of Math-Content LID items when 
they are scaled separately or as a testlet (from Yen, 1993, p. 204) 
 

In conclusion, Yen identified six procedures that can be employed to reduce LID, 

or when not feasible, to analyze the data in a way that ensures LID has a minimal impact 

on parameter estimation:  

1. Create independent items. 

2. Administer tests under favorable conditions (e.g., eliminate likelihood of fatigue). 

3. Combine the grading of LID items. 

4. Review tests to identify LID items a priori. 

5. Create separate scales to grade items. 

6. Use testlets. 

Yen went on to state that managing LID later in the testing process has the added 

advantage of having less impact on test design, administration, and scoring, so using the 

latter procedures is desirable when possible. 
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As with the assumption of unidimensionality, Henning spent considerable time 

discussing the assumption of local item independence (LII). In particular, Henning, 

Hudson, and Turner (1985) made the relatively bold claim that LII does not appear to be 

violated on most language tests, and that the unitary vs. divisible-trait hypothesis (see, 

e.g., Farhady, 1983; Oller, 1976, 1983) is not applicable because tests can have items 

regrouped according to factors to run multiple IRT analyses. Moreover, they claimed 

cloze tests do not violate LII inasmuch as internal consistency estimates are unaffected by 

such violations. Nevertheless, these claims are questionable given the findings of other 

research on the dimensionality of language proficiency (e.g., Bachman & Palmer, 1981b, 

1982, 1989; Fouly, Bachman, & Cziko, 1990; Llosa, 2007, 2008; Sawaki, 2003, 2007; 

Sawaki, Stricker, & Oranje, 2009a; D. Shin, 1999; S. Shin, 2005). 

From a theoretical perspective, Henning (1989) claimed that at least a dozen 

different definitions of LII were found in the literature, not all of which are compatible or 

sufficient in their level of detail. As a result, Henning attempted to synthesize the 

definitions and further delineate the concept, stating three conditions must be satisfied in 

order for LII to be achieved: 1) unidimensionality; 2) uncorrelated local items, meaning 

responses to any given item are uncorrelated with any other item at a fixed ability level; 

and 3) non-invasiveness, meaning the performance on one item does not influence the 

performance on any other item for any given individual. It is the distinction of these two 

latter conditions that differentiates Henning’s definition of LII from other more widely 

known definitions (e.g., Lord & Novick, 1968), which Henning claimed inadvertently 

equates unidimensionality and what he termed classical item independence. Perhaps 

more importantly, Henning reiterated his claim in an earlier paper (Henning, 1988) that 
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LII is required of CTT as well as IRT in that CTT relies on internal consistency and 

difficulty estimates, both of which would be distorted if LII were violated. As a result, it 

is no more reasonable to violate LII when employing CTT than it is when employing IRT. 

In this sense, Henning claimed LII is the central assumption of all testing theory (p. 95). 

Because LII is such a stringent assumption, researchers have proposed several 

modifications to IRT models in an attempt to overcome its requirements (e.g., Bradlow, 

Wainer, & Wang, 1999; Braeken, Tuerlinckx, & De Boeck, 2007; Hoskens & De Boeck, 

1997; Ip, 2000, 2002; Ip, Smits, & De Boeck, 2009; W. Wang & Wilson, 2005). In 

particular, Keller, Swaminathan, and Sireci (2003) proposed two strategies for dealing 

with context-dependent items (locally dependent) items on tests designed to be scored 

dichotomously: 1) ignore the LID and proceed as planned; or 2) model the LID through 

polytomous (testlet) scoring. Citing concerns from previous research about the need to 

account for a loss of information through testlet formation (Sireci, Thissen, & Wainer, 

1991; Thissen, Steinberg, & Mooney, 1989; W. Yen, 1993), Keller et al concluded that, 

while ignoring LID does lead to an overestimation of statistics, trying to offset the 

overestimation through polytomous scoring may cause an underestimation and may even 

lead to improper classification decisions. In other words, “…the way test specialists 

approach the scoring of context-dependent item sets will not only affect the estimates of 

test characteristics such as reliability and information, it will also affect the outcome of 

the test for many examinees” (p. 218). This is an important finding for this research given 

that the focus is on the classification accuracy of various item-analysis methods. In other 

words, whether LID is present in the data and how it is managed is an important factor 

when trying to maximize classification accuracy.  



 

     39 

2.1.3.4.2.1 Testlet Response Theory 

Just as MIRT models were created in response to violations of the assumption of 

unidimensionality, Testlet Response Theory (TRT) models were created in response to 

violations of local item independence. Wainer and Kiely (1986, 1987) are credited with 

coining the term testlet, defined as “a group of items related to a single content area that 

is developed as a unit and contains a fixed number of predetermined paths that an 

examinee may follow” (p. 190). Interestingly, the motivation for testlet response theory 

has its genesis in trying to maintain the viability of computerized adaptive tests (CATs), 

which have IRT as their basis and therefore require the assumption of LII to be met, 

particularly because the sequence of item presentation is based directly on whether the 

previous item had been answered correctly. Stated differently, “context effects” could be 

seen as irrelevant when participants take an identical test, but because CATs by design 

create a novel test for each examinee, context effects can heavily influence the outcome 

and therefore must be avoided. Wainer and Kiely further explained that context effects 

can be due to three factors: 1) item location (e.g., item difficulty has been shown to vary 

depending on an item’s location on a test (e.g., W. Yen, 1980)); 2) cross information (i.e., 

the answer to one item contributes to the answer of another); and 3) unbalanced content 

(i.e., repeated emphasis on the same content or theme, as is the case when several items 

are generated from the same prompt). 

In their results, Wainer and Kiely acknowledged a loss of information but stated 

that testlets remain a better option for scoring when full information is not required. In 

short, they consider TRT a good compromise between losing some information and 

having IRT models better fit the data: 
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In both the simulations and the analysis of real data, we have shown how 

this model can be used to score such tests and provide estimates of the 

tests’ precision that are neither as optimistic as models that incorrectly 

assume conditional independence nor as pessimistic as those that only use 

total score. (p. 124) 

In two later studies about the use of TRT in response to violations of local item 

independence – Bradlow, Wainer, and Wang (1999), and Wang, Bradlow, and Wainer 

(2002) – the authors explained that standard IRT models fit to dichotomously scored 

responses ignore the fact that item sets often are based on a single prompt (e.g., a reading 

comprehension passage). In such cases, at least some items are unlikely to be locally 

independent, so standard IRT models that assume LII is satisfied will overestimate the 

precision with which examinee proficiency is measured. This in turn may lead to 

inaccurate inferences, such as prematurely ending an examination in which the stopping 

rule is based on the estimated standard error of examinee proficiency (i.e., on a CAT).  

To model examinations that contain a combination of independent items and 

testlets, Bradlow et al (1999) modified a standard IRT model to include an additional 

random effect for items nested within a testlet. Using a Bayesian framework, the authors 

applied their modified IRT model and a standard IRT model to SAT data. Among other 

results, the authors concluded, importantly, that violations of LII appear to be more 

problematic on CATs than paper-based tests (p. 167). Moreover, even though IRT 

models fit each item of the testlet as if it were an independent item (which led to an 

overestimation of the parameters), the amount of error introduced was considered 

acceptable given the testlets were short (4-6 items). Conversely, and as Keller et al (2003) 
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found, treating the testlet as a single item resolved the LID problem but had two 

shortcomings. First, it resulted in a loss of information, and second, all of the items in the 

testlet had to be calibrated together to identify the parameters of the testlet, which limited 

the item-selection algorithm to a much smaller item bank from which to select items.  

 More recently, Rijmen (2009, 2010) analyzed the impact of testlets (“item 

bundles”) using three different models: a bi-factor model (Gibbons & Hedeker, 1992), a 

testlet model (Bradlow et al., 1999; Wainer, Bradlow, & Wang, 2007), and a second-

order model. As Rijmen explained, the latter two are formally equivalent and can be 

structured as restricted bi-factor models, where the bi-factor and second-order models 

originate out of the factor-analysis tradition and the testlet model of out educational 

measurement. That is, the testlet model is a special case of the bi-factor model, obtained 

by constraining the loadings on a specific dimension to be proportional to the loadings on 

the general dimension (p. 364).  

 Fitting the three models to the 20-item reading comprehension section of an 

international English-proficiency test (four testlets with five items each) taken by 13,508 

participants, the bi-factor model fit the data best on a variety of estimates, including the 

likelihood-ratio test statistic. Subsequently, Rijmen fit the IRT-2PL model to the data and 

found the standard errors “too optimistic” (i.e., underestimated) when LII did not hold. 

He therefore concluded LII cannot be assumed when testlets are part of an exam. 

 

2.1.3.4.3 Unidimensionality vs. Local Item Independence 

Within the context of IRT modeling, an abundant literature has emerged regarding 

the relationship between unidimensionality and local item independence. While some 
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researchers conflated the two concepts (e.g., Lord & Novick, 1968), others have claimed 

they are separate but related (e.g., Henning, 1989), while others still claim they are 

independent (Ip, 2010; Meara et al., 2000). It is argued here they are independent because 

local item independence is concerned only with the relationship across all items while 

unidimensionality is concerned only with the relationship within each item. Consider a 

crossword puzzle. It is easy to argue there is a lack of local item independence in that as 

each word is correctly filled in, responses to adjacent words become easier to identify. On 

the other hand, the dimension(s) being measured by the items in the puzzle, whether 

general content knowledge or some combination of content knowledge and spatial ability, 

for example, is a completely separate matter. In other words, the dimension(s) being 

tested by any one item, whether one or many, has no relationship to whether the response 

to one item influences the response to another. Any relationship that is demonstrated 

between the two would be merely coincidental.  

Items based on a single reading passage are a good example of this potentially 

coincidental relationship: the item bundle presumably lacks local item independence 

because all of the items are based on the same prompt; it could also be the case each item 

is measuring multiple dimensions of ability (e.g., reading comprehension and subject 

matter expertise). In this case, both assumptions are violated, but for coincidental 

(independent) reasons. In other words, in any given context, both assumptions can be 

satisfied, one can be violated and the other satisfied, or both violated. Even in the latter 

case, though, the violations would be independent. Ip’s (2010) mathematical analysis of 

the two assumptions reinforces this theoretical argument, demonstrating the concepts are 

“unequivocally distinct mathematical entities” (p. 396).  
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2.2 Assessing Model Fit 

Whatever model is chosen, there are numerous means of assessing model fit. Below are 

the three components of assessing model fit that will be considered in this dissertation. 

 

2.2.1 Rationale for Model Choice 

The first criterion for satisfying model selection is the rationale on which the 

choice of model is based. As illustrated throughout the literature review, there are several 

components of each item-analysis method that can help determine which is most 

appropriate for a test, and at first blush, it would appear method/model selection is a 

straightforward endeavor. For example, if a single-use 20-item multiple-choice algebra 

exam were administered to 50 students at a local school, CTT item analysis would 

probably be appropriate. In fact, IRT modeling requires far more data than available in 

this example, so it would not even be an option. Alternatively, if a 10-item constructed-

response exam was administered to 10,000 students and each was exam scored by two 

raters selected randomly from a pool of 200 raters, a polytomous IRT model might be 

most appropriate because it could take into account both the relative difficulty of each 

item and rater severity/leniency such that the resulting scores would put all participants 

on equal footing because of the true interval scale that would result from the analysis.  

Unfortunately, model choice is not as clear as it may seem in these examples. 

Consider the composition of the test analyzed in this study (see Appendix A). On the 

surface, it would appear the IRT-3PL model is most appropriate because the test consists 

of 70 dichotomously scored multiple-choice items that presumably will discriminate 

among participants differently and result in pseudo-guessing in some cases, particularly 
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for some of the lower-ability examinees. On the other hand, it is possible the assumption 

of unidimensionality will be violated because the test contains three different item 

formats – reading comprehension, cloze, and grammaticality judgment – which, taken 

collectively, purportedly measure general English proficiency but could in fact measure 

multiple dimensions.  

Whether the test as a whole is measuring a single dimension is an empirical 

matter and will be tested via factor analysis, but even if it is found to be “essentially 

unidimensional,” it is very likely local item independence is violated because of the 

presence of three long testlets – two reading passages with 15 and 20 reading-

comprehension items, respectively, and a 15-item cloze test based on a third reading 

passage. As a result, it could be argued testlet response theory (TRT) is most appropriate 

for this exam, or perhaps an even more sophisticated MIRT model if in fact 

unidimensionality has been violated as well. 

One could also argue for application of the Rasch-1PL model. Because this test 

was designed to be administered only once with no pilot testing, it could be argued any 

misfitting items should be removed from the analysis before scoring, regardless of 

whether any of the IRT models fits the data well. Stated differently, it could be argued the 

exploratory “model must fit the data” approach of IRT is too lenient for this test given 

that its items have not been piloted in advance, so employing the confirmatory “data must 

fit the model” approach of Rasch is more appropriate. 

Of course, one could also rationalize the use of CTT analysis. Because this is a 

single-use test that will never be linked or equated to any other version or administration, 

even Rasch analysis could be considered unnecessarily complex. As long as internal 
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consistency can be established, there may be no real advantage to employing one of the 

more complex IRT approaches. In fact, even though many researchers across a wide 

range of subjects have espoused the virtues of IRT, claiming that it can improve the 

precision and validity of psychological research (e.g., Reeve, Hays, Chang, & Perfetto, 

2007; Reise, Ainsworth, & Haviland, 2005), other researchers have been left to explain 

why it has not been more widely applied outside large testing firms, state agencies, and a 

few school districts (e.g., De Champlain, 2010; Reise & Henson, 2003; Scherbaum, 

Finlinson, Barden, & Tamanini, 2006).  

Acknowledging the theoretical superiority of IRT models to CTT models, the 

fundamental question this latter group poses is whether IRT modeling is sufficiently 

superior to justify the added complexity and cost associated with IRT analyses. In the end, 

they conclude IRT should play a significant role in future assessments, but they should be 

seen more as a complement to CTT analysis and not necessarily a wholesale replacement 

of it (De Champlain, 2010, p. 117), particularly when, e.g., a participant’s relative 

standing will experience little change whether CTT or IRT item-analysis methods are 

employed (Reise & Henson, 2003, pp. 99-100). 

Linn (1990) took this argument one step further, arguing IRT use is sometimes 

unsupported, particularly with achievement test data. Acknowledging that “IRT is the 

most important technical development in measurement in recent years (pre-1990),” Linn 

argued test use and score interpretation are more important concerns and should not be 

forsaken in favor of the somewhat indiscriminate use of IRT, as had been the case at the 

time of Linn’s publication. Linn concluded by stating: “If items that are found to be most 

sensitive to instruction are eliminated so that the IRT assumptions are better satisfied, 
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there is a real danger that IRT will do more to decrease than to increase the validity of 

achievement test scores” (p. 136). 

Wainer and Thissen (1985, 1987) among others (e.g., Barnes & Wise, 1991; 

Dinero & Haertel, 1977; Hambleton & Traub, 1971, 1973; van de Vijver, 1986) 

discussed this impact of estimating ability with the wrong item-analysis method. Using 

simulated data and examining the extent accuracy was influenced by model misfit, 

Wainer and Thissen found the IRT-3PL model to be superior for long tests (more than 40 

items) but disadvantageous with shorter tests. As a result, they concluded that item-

analysis-method selection should at least in part be dictated by test length and sample size. 

Sireci (1991) found similar results for small sample populations. Examining data 

collected from the administration of a 28-item reading comprehension test with a sample 

population of 428 (the combination of three administrations over three years, Sireci 

performed CTT analysis (p-values, KR-20, and Point Biserial) and IRT analysis (1PL, 

2PL and 3PL) using chi-square difference testing of the -2loglikelihoods. Results show 

that the IRT-2PL model fit the data best, but none of the models exhibited item-parameter 

stability because of the small sample size and small number of items. As a result, Sireci 

concluded it is possible to use IRT in some small-scale testing contexts, but its benefit 

over CTT analysis is minimal, so it is probably unnecessary and perhaps even undesirable. 

This debate among researchers continues not only over the presumed merits of 

IRT over CTT, but also over the relative merits of IRT models with respect to each other. 

As mentioned, the amount of additional data required to maximize an IRT model’s utility 

is considerable, so many researchers have questioned the benefit of adding, e.g., the 
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guessing parameter to the already-complex IRT-2PL model. For example, Hernandez 

(2009), citing Hambleton, Crocker, Masters, van der Linden, and Wright (1992), stated:  

The inclination to guess is an idiosyncratic characteristic of particular low 

ability examinees. Lucky guessing is a random event. Neither feature 

contributes to valid measurement of a latent trait. Parameterizing guessing 

penalizes the low performer with advanced special knowledge and also the 

non-guesser. Rasch flags lucky guesses as unexpected responses. They can 

either be left intact which inflates the ability estimates of the guessers, or 

removed which provides a better estimate of the guessers' abilities on the 

intended latent trait. In practice, 3-P guessing parameter estimation is so 

awkward that values are either pre-set or pre-constrained to a narrow 

range. (p. 217) 

Not all researchers agree. Barnes & Wise (1991) proposed a modified IRT model to 

account for guessing even when a sample size is small because they claimed the impact 

of guessing is even more dramatic under such circumstances. As a result, they suggested 

a modified 1PL model with a fixed nonzero lower asymptote due to the fact the Rasch-

1PL model is robust to violations of equal discrimination but not to the presence of 

nonzero asymptotes (Dinero & Haertel, 1977; Hambleton & Traub, 1971; van de Vijver, 

1986). Using their model, results were found to be comparable for simulations run with 

50, 100, and 200 examinees and 25 & 50 test items, respectively, and in fact much better 

compared to the Rasch-1PL model with a zero lower asymptote. They therefore 

concluded their modified 1PL model should be used for multiple-choice tests when the 

sample size and/or number of items is insufficient for the data-hungry 3PL model. 
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Overall, von Davier (2009) perhaps summarized this debate best: 

If questioned about their beliefs, psychometricians in one camp would 

argue the firm conviction that the Rasch model is mathematically elegant 

and intuitive as well as plausible for practitioners, pointing out the 

advantages of a simple model that “counts” every item in the same way. 

Psychometricians of another camp would argue that the 3PL is much more 

flexible and is suitable to take into account that some item types have a 

nonzero probability to be solved by guessing and other random response 

strategies. This leads us to ask: which of these models is appropriate for 

test data of a certain type? Or better: is there a correct answer to this 

question? Unfortunately, choosing between the 3PL and the Rasch model 

or other variants of item response theory (IRT) does not become easier 

even after it is understood that these models are closely related. If an 

extraneous principle such as Occam’s razor is used, one may argue in 

favor of the simpler model; if the goal is to be more flexible in terms of 

the ability of the item function to fit different trace lines, a model with 

more parameters may seem appropriate. To make matters worse, there are 

alternatives that can be substituted for the 3PL model when the issue is to 

account for random response strategies or guessing. (p. 111) 

In the end, von Davier argued that models that account for guessing are not necessarily 

superior and that practical concerns may dictate which model is chosen rather than 

considerations about how guessing should be conceptualized within a model (p. 114).  
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As demonstrated, a rational argument can be made for the employment of 

virtually any item-analysis method, which only reinforces the need to examine multiple 

models on a single set of data to determine whether/how model choice impacts the 

validity of the resulting test scores.8 In short, ethics standards governing international 

testing specialists mandate more responsible model-choice decisions than basing it on 

rationale alone, especially when the fates of thousands of examinees hang in the balance. 

 

2.2.2 Estimation of Item Parameters 

 Although trying to match model design with the characteristics of the test is an 

important first step in identifying the model that will lead to the most valid scores, as 

shown there is no guarantee one particular model will fit the data best, or even well. As a 

result, actually running a set of item analyses can help clarify which item-analysis 

method is most suitable for a particular set of data.  

Over the years, numerous parameter estimates, both within CTT and IRT, have 

been proposed. Although others exist, those most commonly utilized statistics for 

dichotomously scored multiple-choice items include the following: 

                                                
8 In addition to the models discussed thus far, there has also been research into whether a polytomous 
scoring model should be used for single-select multiple-choice questions, the rationale being that not all 
distracters are created equal and there may be some systematic differences between the wrong answers 
chosen by high-ability examinees and low-ability examinees. Hakstian and Kansup (1975) summarized 
some of the earliest work on this issue, explaining the concepts of elimination testing (Coombs, Milholland, 
& Womer, 1956) and confidence/probabilistic testing (Dressel & Schmid, 1953). They concluded that 
because both methods require special training for examinees and considerably more testing time, 
considerable improvement in reliability and validity must be achieved in order to justify their use. In their 
study, neither reliability nor validity was consistently increased by the experimental methods, so there was 
little reason to recommend either over traditional dichotomous scoring. Kansup and Hakstian (1975) 
published a second article on the same topic nearly concurrently, this time framing it as differential 
weighting but coming to the same conclusion – there is very little reliability or validity to be gained by 
polytomous scoring of multiple-choice items, so such methods should not be employed given the 
substantial time and cost associated with them (c.f., Adams, Griffin, & Martin, 1987). 
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CTT 

Item difficulty (p) 

Item discrimination (D)  

Internal consistency (rpb), and  

Global reliability (Cronbach’s 𝛼,  KR-20/21) 

 

IRT 

Item difficulty (b),  

Item discrimination (a) 

Pseudo-guessing (c) 

Model fit (TIF, Test Information Function) 

Model misfit (SEM, Standard Error of Measurement) 

 

Because these statistics are derived differently for each theory, it is important to be able 

to create equitable comparisons across the two theories. Fan (1998) provided a good 

summary of how this can be accomplished. In a quasi-replication of Lawson (1991), Fan 

evaluated two issues: 1) the empirical relationship between IRT and CTT item and person 

statistics; and 2) the extent to which IRT and CTT item statistics are invariant across 

participant samples. As noted elsewhere, Fan explained that the weak theoretical 

assumptions of CTT are one of the theory’s strengths, but it suffers from a circular 

dependency: person statistics are item dependent and item statistics are sample dependent. 

IRT, on the other hand, generates item and person statistics that are sample and item 

independent, respectively, but its strong theoretical assumptions are sometimes difficult 

to satisfy, as illustrated throughout this literature review. 



 

     51 

Using data from the Texas Assessment of Academic Skills (TAAS), Fan 

generated three different sampling plans (random, gender, high/low ability) so CTT and 

IRT statistics could be compared multiple times. With each sample population equal to 

1000 (chosen from a pool of 193,000 eleventh-graders in Texas public schools), Fan 

analyzed the responses to 48 reading and 60 math multiple-choice items. Person statistics 

were compared by correlating IRT ability values with observed scores; item statistic 

comparisons included item difficulty (b with p) and item discrimination (a with bias-

corrected rpb). Overall, the two sets of statistics were compared based on the degree of 

invariance within their respective ordinal rankings. 

Interestingly, the correlations of CTT and IRT person statistics across all 

sampling plans and model comparisons were very high (range = 0.966-0.997). Moreover, 

correlations for item difficulty (p) were very high, ranging from 0.862 to 0.999. In 

particular, the Rasch model correlated almost perfectly with CTT item difficulty (.999 for 

all sampling plans), leading Fan to conclude that, “the results here would suggest that the 

Rasch model might not offer any empirical advantage over the much simpler CTT 

framework” (p. 371).  

With respect to item discrimination, the correlations between rpb and a were also 

high, but less so than the other statistics, and with some notable exceptions (e.g., 

primarily with reading: random (.264), females (.358), and males (.199)). Interestingly, 

Fan stated that, “…CTT and IRT may yield noticeable discrepancies with regard to which 

items have more discrimination power, which, in turn, may lead to the selection of 

different items for a test” (p. 373, emphasis added), a very important conclusion 

considering the focus of this dissertation.  
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With respect to invariance, the correlations again were very high, ranging from 

0.862 to 0.993, and with nearly all above 0.90. In this case, Fan measured the invariance 

of item statistics within samples and found that all models tracked similarly, with random 

reading having the highest correlation, random math the second highest, and so forth. In 

short, Fan stated that the overall findings failed to support the IRT framework as superior 

enough to CTT to justify its application for these data and reiterated the prediction put 

forth by Thorndike (1982) regarding IRT:  

For the large bulk of testing, both with locally developed and with 

standardized tests, I doubt there will be a great deal of change. The items 

that we will select for a test will not be much different from those we 

would have selected with earlier procedures, and the resulting tests will 

continue to have much the same properties. (p. 12) 

In contrast to Fan (1998), Adedoyin (2010) did find differences in invariance 

between CTT and IRT. Examining data collected from a random sample of 5000 

participants on a 40-item math exam to determine whether invariance across person 

ability estimates could be achieved with both CTT and IRT modeling, results show that 

CTT estimates were not invariant (and in fact exhibited great variation) while the IRT-

2PL model was invariant. As a result, Adedoyin concluded IRT is superior to CTT for 

similar testing contexts. 

 Anderson (1999) also examined the benefits of moving from CTT to IRT in a 

study involving 6000 students who took the 50-item Mathematics 12 exam, which is 

administered to prospective high school graduates in British Columbia, Canada. Because 

the IRT 3PL seemed to be the most rationale choice given the nature of the test, it was 
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chosen as a means of comparison with traditional CTT indices. Strikingly, Anderson 

found that results were virtually indistinguishable for all letter-grade levels. As a result, 

Anderson concluded application of the IRT-3PL model was not justified given the 

substantial increase in complexity and cost. 

 

2.2.3 Estimation of Classification Accuracy (CA) 

 Although parameter estimation can illuminate how well a particular model fits a 

particular set of data, more specific reliability indices are often required. For example, 

classification consistency and classification accuracy are of supreme importance for tests 

with cut scores. Emerging in the 1970s as an alternative measure of reliability for 

criterion-referenced tests, classification consistency is the degree to which classifications 

across parallel-form test administrations align; classification accuracy is defined as the 

extent to which examinee classifications based on observed scores match the true scores 

of the examinees (Livingston & Lewis, 1995, p. 180).  

Throughout the decade and into the 1980s, numerous researchers posited 

measures of classification consistency and accuracy, including Huynh (1976), Livingston 

and Wingersky (1979), Subkoviak (1976a, 1976b, 1988), and Wilcox (1981). Common to 

all of these measures are the assumptions that test items are scored dichotomously, 

weighted equally, and summed to calculate observed scores. Recognizing the limitation 

of these assumptions, Livingston and Lewis (1995) suggested a broader method of 

estimating classification accuracy, applicable not only to tests like those described above, 

but also to tests that include partial credit scoring (e.g., essay tests or tests with free 

response items) and tests that have items (or subtests) of unequal weight. In order to 
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apply Livingston & Lewis’ (1995) method, four kinds of input are required: 1) the 

distribution of observed scores; 2) a reliability coefficient of the scores; 3) the minimum 

and maximum possible scores; and 4) the cut point(s) separating classifications/categories. 

From this input, decisions about classification accuracy and consistency can be derived. 

In addition, an estimate of the effective test length can also be derived, which represents 

the minimum number of items required to produce a total score of the same reliability.  

Classification accuracy and consistency measures have been utilized in a 

multitude of ways over the years, including to simplify estimates of pass/fail 

classification accuracy (Breyer & Lewis, 1994); classify students with a modified 

Guttman scale (Schulz, Kolen, & Nicewander, 1999); base classification decisions on 

measurement decision theory for dichotomous data (Rudner, 2001, 2002, 2003), 

polytomous data (Rudner, 2005) and raw scores (Li & Sireci, 2005); obtain greater 

accuracy with small data sets (Guo, 2006); merge common classification accuracy 

measures with randomized response designs (Betebenner, Shang, Xiang, & Zhao, 2008); 

estimate the accuracy and consistency of complex assessments (W. Lee, Brennan, & Wan, 

2009); derive measures of classification accuracy from measures of consistency (Newton, 

2009) – or the problem with doing so (Bramley, 2010); estimate the classification 

accuracy of a single decision based on multiple measures (Douglas & Mislevy, 2010), 

and even why cut scores should not be employed at all (Dwyer, 1996). 

 

2.2.3.1 CA Studies outside Language Testing 

 In addition to the applications cited above, there are several applications directly 

relevant to this dissertation, both within and outside second language testing. For 
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example, Silva (1985) compared CTT measures of classification consistency to IRT 

measures of consistency for cut scores. Results show that the IRT indices were superior 

to the CTT indices. Hoffman and Wise (2000) also examined the accuracy of decisions 

near the cut score but for single administration exams. Claiming such exams “up the 

stakes” for classification accuracy, the authors defined error as the difference between 

true and observed scores on a single administration of the exam and stated that the 

classification accuracy of a true score can be determined by looking at the proportion of 

the conditional (normal) distribution of observed scores falling within the same category 

as the true score. On this basis, they examined the standard errors of measurement 

(SEMs) to determine classification accuracy within IRT. The primary conclusion is that 

classification-accuracy functions based on true scores vary considerably from those based 

on observed scores, which is very problematic on high-stakes tests. 

Lee, Hanson, and Brennan (2000, 2002) also examined the classification accuracy 

and consistency of a single administration test but with multiple-category classifications. 

They found that the IRT-3PL model was superior to the two beta binomial models (2-

parameter and 4-parameter) they examined, but they reiterated the now-common theme 

that in practice model choice should be based on model fit, assumption satisfaction, and 

computational feasibility. 

Ercikan and Julian (2002) made several important clarifications in their study 

regarding classification accuracy, most notably that: 1) classification accuracy is a 

measure of the accuracy of decisions, not scores; 2) the level of classification accuracy 

will vary with changes in measurement accuracy across ability levels; and 3) the effect of 

measurement accuracy on classification accuracy will be most observable near cut scores, 
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a claim suggested by several researchers (e.g., Hambleton & Slater, 1997; W. Lee et al., 

2000; Livingston & Lewis, 1995; Schulz et al., 1999).  

Further expounding on this latter point, Ercikan and Julian argued that the most 

common indicators of measurement accuracy (e.g., KR-20, Cronbach’s α) are 

inappropriate for assessing the accuracy of proficiency scores because they provide an 

indication of overall measurement accuracy, not the measurement accuracy at cut scores. 

As an alternative, Ercikan and Julian advocated for the amount of measurement error near 

the cut scores to be used for the estimation of classification accuracy (based on the 

likelihood of misclassification errors). In their study, the authors examined the impact of 

the number of proficiency levels on classification accuracy near the cut scores (as a 

function of the measurement error). The authors found that, perhaps unsurprisingly, as 

the number of levels increased, the overall classification accuracy decreased. They 

therefore concluded that classification accuracy is sensitive to measurement accuracy, 

particularly when larger numbers of proficiency levels are included. Moreover, they 

stated that even though higher measurement accuracy tends to imply higher classification 

accuracy, higher reliability as indicated by, e.g., KR-20 does not imply higher 

classification accuracy. Therefore, in designing (or choosing among) tests, it is very 

important to examine the measurement accuracy provided by the test at cut-score points 

rather than relying on more common measures of classification accuracy.  

Nystrom (2004) examined the classification accuracy of a Swedish national test in 

mathematics, trying to derive a single decision regarding mastery/non-mastery from two 

subtests previously scored independently (algebra and differential equations). The author 

found there was a significant reduction in classification accuracy when mastery was 
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based on the composite score. Perhaps more importantly, Nystrom found that accuracy 

near the cut score depended on where the cut score fell along the ability-level distribution, 

indicating it would be highest near the middle ability level and far less accurate toward 

the extremes, which supports (and further clarifies) Ercikan and Julian’s (2002) finding. 

In a study very similar to the proposed dissertation, Stone, Weissman, and Lane 

(2005) examined the consistency of classifications based on competing IRT models using 

data from a state assessment program. Examining data collected from 13,621 eleventh-

grade students who took a test comprising 60 multiple-choice items and four constructed-

response items, the authors found the 3PL model a better fit of the data than the 1PL 

model, stating that there were significant and systematic differences between the 1PL and 

3PL model classifications despite a high level of agreement between classifications 

(kappa, κ = 0.92). Stone et al concluded that this difference is particularly relevant when 

classifications are used for high-stakes purposes and indicated the importance of 

identifying the best-fit model for each data set.   

Kalohn and Spray (1999) examined the effects of a misfitting IRT model on 

classification accuracy. In a simulation study of 623 items taken by a randomly generated 

sample of 2000 examinees, the 3PL model misfit no items, while the (Rasch) 1PL model 

misfit nearly half of the items, resulting in the elimination of nearly half the items for 

model fit analysis. This item elimination led to a substantial increase in false negative 

errors, false positive errors, and the percentage of misclassifications for the 1PL model. 

In other words, applying a misfitting model (in this case, the Rasch-1PL model) had a 

dramatic effect on the outcome of the classification accuracy of the test. The authors 

therefore posited a warning against the misuse of models: 
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There has been a trend recently of some practitioners recommending the 

use of only one IRT model. A blanket recommendation of a particular 

model, regardless of fit, could have serious repercussions in the 

certification and licensure industry and may impact the protection of the 

general public. (p. 59)  

Stated differently, it appears some practitioners have employed the models they know 

how to employ, whether or not there was sufficient rationale to justify the application, a 

problem that will be addressed in this dissertation. 

 

2.2.3.2 CA Studies within Language Testing 

As illustrated, there have been numerous classification-accuracy studies outside 

the field of second language testing (SLT). Within SLT, however, there appears to be 

only one study that has examined the impact of item-analysis method on classification 

consistency and accuracy (B. Zhang, 2010). In that study, the author examined the 

classification of 5000 examinees who took a large-scale language certification exam. 

Comparing the outcomes of CTT, IRT, Polytomous IRT, and TRT models, the author 

found that the TRT model fit the language-proficiency data best because of the clear 

violation of local independence among items (i.e., a strong testlet effect was present). 

While Zhang’s finding is important, it is noteworthy he did not explicitly 

investigate violations of the two assumptions of IRT – unidimensionality and local item 

independence. While he indirectly investigated LII by citing the presence of a strong 

testlet effect (using the criteria suggested in Bradlow, Wainer, and Wang (1999)), he 

apparently did not investigate the possibility of multidimensionality despite the fact it 
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would appear likely given what is known about measures of general language proficiency. 

At the very least, a discussion of why the clear violation of LII was not problematic such 

that it still made sense to include IRT models in his comparison should have been 

included. Put another way, it is questionable whether standard unidimensional IRT 

models should have been included at all in his comparison. In fact, to the extent CTT 

modeling requires satisfaction of these assumptions as well (see, e.g., Henning et al., 

1985), these issues should have been addressed but were not. As a result, they remain 

open questions with respect to the choice of item-analysis method in SLT. 

 

2.2.4 Other IRT Applications within L2 Testing 

Zhang’s (2010) multi-model comparison notwithstanding, the majority of studies 

in second language testing that have examined measurement models have employed 

Rasch analysis, including many recent studies in the areas of pragmatics (e.g., Brown & 

Ahn, 2011), lexicon (e.g., Beglar, 2010), writing (e.g., di Gennaro, 2009), cut-score 

setting (e.g., Kozaki, 2010), rater judgment (e.g., Kim, 2009), oral discourse (e.g., Davis, 

2009), and C-Test validation (e.g., Lee-Ellis, 2009). On the other hand, far fewer studies 

have employed IRT modeling despite their widespread use in other contexts. 

One reason IRT modeling has not gained more footing in language testing may be 

due to the skepticism surrounding its appropriateness to the domain, as mentioned earlier. 

Choi (1989, 1992) and Choi & Bachman (1992), for example, highlighted several 

possible theoretical and practical issues associated with the use of IRT in language testing, 

the primary one being the assumption of unidimensionality. As Choi & Bachman (1992) 

pointed out, L2 research has shown on numerous occasions that language proficiency is 
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likely a multidimensional construct (e.g., Bachman, 1982; Bachman & Palmer, 1981a, 

1981b; Sang, Schmitz, Vollmer, Baumert, & Roeder, 1986). As such, it is equally likely 

many tests purportedly measuring language proficiency are multidimensional. Another 

concern pertains only to the Rasch model, which assumes equal discrimination among 

items and no guessing by examinees. Because it is likely unreasonable to assume all 

items on a test discriminate equally and that examinees will not guess at all, especially 

when there is no penalty for doing so, the legitimacy of these Rasch model assumptions 

has been called into question. 

 To test these assumptions, Choi & Bachman (1992) examined data collected from 

1400 participants who took the reading comprehension sections of the First Certificate of 

English (FCE) and 1000 participants who took the reading comprehension section of the 

Test of English as a Foreign Language (TOEFL). Results regarding unidimensionality 

were conflicting, with the most stringent test (a factor analysis of inter-item tetrachoric 

correlations) indicating clear violations of the assumption, while the least stringent test 

indicating support for unidimensionality (greater than 20% of the variance accounted for 

by the first factor – see Reckase, 1979).  

Results regarding the testing of Rasch-model assumptions were much clearer, 

with several measures indicating the IRT-2PL and -3PL models being superior fits of the 

data. Choi and Bachman (1992) therefore concluded the more sophisticated IRT models 

are more appropriate for language tests than the Rasch model, despite its widespread use 

in SLT (c.f., McNamara, 1990, 1991).  

 Another reason IRT may not have yet gained a foothold in SLT is merely because 

not enough second language testing specialists understand it conceptually and/or know 
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how to apply it in practice. Evidence of this supposition can be inferred from the data in 

Brown and Bailey (2008). As shown in Table 3 below, CTT item analysis was taught in 

many language testing courses at the time of the survey (Item facility: mean = 2.69, and 

Item discrimination: mean = 2.55, on a 0-5 Likert scale), but IRT concepts were taught 

far less often (IRT and Rasch: means = 0.32-0.74, on the same 0-5 scale).  

Stated differently, CTT item analysis was taught in 92% of the courses (100% - 

8.0% in the column “None”), but IRT concepts were taught in only 24-42% of the 

courses (e.g., 100% - 76.5% in the column “None” for IRT 3PL). While Brown & Bailey 

explain this is a self-identified, self-selected sample and cannot be assumed to be a 

representative sample of all language testing courses, it is clear IRT is taught far less 

often and in much less detail than CTT, which could help explain the relative dearth of 

IRT studies in the SLT literature.  

 
Table 3.    Excerpt of table from Brown & Bailey (2008), illustrating topics taught in 
language-testing courses 
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The field of SLT is of course not alone in its lack of widespread adoption of IRT. 

As mentioned earlier, Streiner’s (2010) discussion about the lack of IRT adoption within 

medical education highlights its still relative underutilization in many contexts (e.g., 

Edelen & Reeve, 2007; Hall, Reise, & Haviland, 2007; Prieto, Delgado, Perea, & Ladera, 

2010; Reeve et al., 2007; Scherbaum et al., 2006; Unick & Stone, 2010). In a search for 

reasons, Streiner posited that it is a reflection of the fact that: 1) only a handful of 

graduate students are taught IRT, a finding corroborated by Brown and Bailey; 2) CTT is 

much easier to understand conceptually and its parameters are easier to calculate; and 3) 

IRT software has a steep learning curve and is expensive compared to common statistical 

packages that have means of calculating CTT statistics. 

Despite this relative dearth of IRT studies in SLT, there are a few language 

researchers who have examined the IRT assumptions. For example, Matthews (1992) 

examined the local item independence of foreign language proficiency cloze tests and 

found they do exhibit sufficient LII to justify the use of IRT models despite the 

theoretical assumption cloze items are locally dependent (Bachman, 1982; Turner, 1989 - 

Sorry, no Overdrive). Lee (2004) alternatively examined the LII of a 40-item EFL 

reading comprehension test and found clear violation of LII among passage-related items 

but questioned whether violation of the assumption could not be absorbed by the test as a 

whole. Referring to Reckase, Ackerman, and Carlson (1988), Lee noted that even if the 

ability trait putatively being measured is not necessarily a single trait, it could be that the 

composite of abilities being measured across items is sufficiently unidimensional such 

that application of IRT models is reasonable (p. 79), the same conclusion reached by 

other researchers (e.g., Henning, 1992).  
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 With respect to unidimensionality, Yen and Walker (2007) examined the 

dimensionality of composite scores on an English language proficiency test. In an 

analysis of data from 12,008 elementary school students who took a State English 

Proficiency Assessment (SEPA) as part of the No Child Left Behind Act, the authors 

examined the dimensionality of oral language proficiency as measured by the oral and 

listening comprehension sections of the SEPA. Results indicate the MIRT model best fit 

the data of the upper elementary students but the UIRT model best fit the lower 

elementary students, at least with respect to the χ2-difference test. These mixed results led 

Yen and Walker (2007) to conclude it is necessary to conduct simulation studies to 

examine further this discrepancy in model fit. Moreover, the authors stated these findings 

may reflect the hypothesis put forth by Davey and Hirsch (1990), who stated that MIRT 

models may be less able to discriminate examinees on tests with fewer than 100 items 

because of the increase in parameterization. In other words, the increase in model 

complexity dramatically increased the need for both larger sample populations and item 

counts in order to discriminate among examinees more effectively. 

 von Davier (2008) also examined dimensionality, proposing a general diagnostic 

model (GDM) to examine multidimensional data collected from the reading and listening 

sections of the TOEFL Internet-Based Test (iBT). Analyzing the model fit of the 

unidimensional IRT-2PL model, the two-dimensional IRT 2PL, and an eight-skill GMD 

(among other things), von Davier (2008) found the unidimensional model to fit nearly as 

well as the multidimensional model and better than the far more complex eight-skill 

GDM, therefore reiterating the need for considerably more data to accommodate the 

increase in parameters of the more complex models.   
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  In another examination of the dimensionality of the TOEFL iBT, Sawaki, 

Stricker, and Oranje (2009b) found that a single higher-order factor model fit the sample 

data well, thereby providing support for the case of a unidimensional language 

proficiency measure. However, this finding is tempered by the fact the authors found the 

model with a higher-order factor and four first-order factors to be the best-fitting model. 

This finding led the authors to conclude that not only should composite test scores be 

reported, but also section sub-scores.  

Aside from those studies testing the assumptions of IRT, there are a few other 

studies relevant to the focus of this dissertation. One is Henning (1984), who compared 

CTT and the Rasch-1PL model to demonstrate the advantages of latent-trait (IRT) models 

over CTT models.9 Using a sample population of 108 university applicants who scored 

lower than 500 on the TOEFL, a 48-item reading comprehension test containing eight 

passages with six 4-option multiple-choice items each was administered. Analysis of the 

data yielded the finding that the KR-20 and KR-21 values were higher for the Rasch 

model than CTT, thereby supporting Henning’s thesis that latent-trait models are superior 

to CTT analysis. Unfortunately, Henning did not address the fact that local item 

independence was probably violated (i.e., there was a testlet effect), so it is unclear what 

role, if any, violation of this assumption should have played in Henning’s analysis. 

Another interesting finding resulting from the Rasch analysis is that the responses 

of 14 participants misfit the model, leading Henning to proclaim these test scores should 

not be used for decision-making purposes. While excluding such data from analysis for 

research purposes is reasonable, an interesting ethical question arises when the scores are 

                                                
9 Interestingly, Henning acknowledged that his choice of Rasch over the IRT-2PL and -3PL models was 
made for practical reasons: it requires fewer data, does not require software, and does not try to identify 
systematicity in measurement error (p. 125). 
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the result of a high-stakes test where retesting or discarding data is not an option. That is, 

how should administrators deal with scores around the cut that misfit the chosen model? 

Perkins and Miller (1984) also conducted a CTT-Rasch comparison study using 

the same 48-item reading comprehension test to determine whether CTT and Rasch 

would identify the same misfitting items. Interestingly, each model found a very different 

set of items, indicating examinee scores likely would vary depending on which item-

analysis method were employed. This is another important finding regarding this focus of 

this dissertation. 

De Jong and Glas (1987) also employed the Rasch-1PL model to examine the 

construct validity of a Dutch standardized national test of foreign language listening 

comprehension and found it was indeed valid. Boldly, the authors claimed Rasch (1960) 

“proved” that the Rasch model is the only valid model for dichotomous data when 

summing scores (p. 170), based on the fact that summed scores imply unidimensionality, 

and that the Rasch-1PL model is appropriate for similar language proficiency tests 

because foreign-language proficiency can be measured along a single dimension (p. 191). 

This latter statement is of particular interest to the focus of this dissertation because of the 

ongoing question of whether language proficiency tests are by design multidimensional 

or whether they can be treated as “essentially unidimensional” (Stout, 1987) or 

“psychometrically unidimensional” (Henning, 1992) for IRT modeling purposes. 

 A fourth relevant study was conducted by McCall (2002), who conducted an IRT 

analysis of a multiple-choice reading-comprehension test. Unlike most other language 

testing researchers, McCall actually examined model-fit for all three IRT models and 

examined the assumption of unidimensionality using factor analysis. Perhaps 
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unsurprisingly, McCall found the 3PL model fit the data best and that the test was 

unidimensional because items clustered on the passages rather than the content. However, 

this latter conclusion is a misinterpretation of the findings in that the clustering of items 

on passages, while not a violation of unidimensionality, would be a violation of local 

item independence, the other key assumption required of standard IRT modeling. 

Therefore, the question of whether LII was violated remains unanswered and should have 

been considered in the analysis. 

Finally, Carr (2006) examined the impact of reading-passage task characteristics 

on examinee performance. Using data obtained from a random sample of 9,000 

participants who took the reading-comprehension section of the TOEFL, Carr found that 

the 3PL model best fit the data, both in terms of log-likelihood values and the least 

number of misfitting items. Interestingly, however, Carr found no significant relationship 

between guessing by low-ability examinees and empirically salient characteristics of 

passages and key sentences, which could be interpreted to mean guessing is not an 

important parameter to measure on reading-comprehension tests given the complexity it 

adds to the IRT model, an issue to be investigated in this dissertation. 

 
 
 
The remainder of this dissertation is organized as follows: Chapters 3, 4, and 5 

contain the results of three sets of data analysis – one with the full data set and two with 

resampled data sets – to see whether the outcomes of the full-data analysis hold across 

different population samples. Chapter 6 is a discussion of the synthesized findings from 

the three sets of analysis, and Chapter 7 is a discussion of the implications of the findings 

with respect to the ILTA Guidelines for Practice and the language-testing field at large.  
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3 Data Analysis I (Full Data Set) 

3.1 Participants 

The participants in this study were 2,320 high school students applying to a 

prestigious private university in western Japan. Almost all applicants attended 

mainstream or “academic” (college-preparatory) high schools, and most fell within the 

82nd percentile in terms of relative academic ability among all Japanese high school 

students at the time of admission (2006). This restricted range in aptitude is a function of 

the university entrance system in Japan, where students can take numerous practice 

exams that are comprised of former exam items. Using publicly available data, college-

prep institutes (“cram schools”) create, administer, and score these practice exams for 

would-be students, thereby helping them determine the university departments to which 

they are most likely to be admitted. 

3.2 Methods 

3.2.1 Japanese University Admissions Process 

The university admissions process in Japan involves a complex series of steps that 

starts literally years before a student takes a university department examination like the 

one being examined in this study. After the sixth grade, students who wish to attend a 

selective public or private middle school must take a school-specific exam that helps 

determine which track they will follow through their middle-school years. For example, if 

they exhibit aptitude in the humanities, they will take the H track, in sciences the S track, 

and so forth. For all other students, they attend a local middle school. 

Following middle school, schooling splits into three tiers: elite academic, 

mainstream academic, and vocational. For those who will go on to university (those who 
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attend elite academic high schools and some who attend mainstream academic high 

schools), university entrance exams follow. Public universities, considered more 

prestigious than private universities on the whole, require applicants to take a standard 

national exam. Created in the late-1980s and endorsed by the Japanese Ministry of 

Education (MOE), the exam comprises a series of constructed-response items developed 

by a revolving committee of college faculty. To ensure equity from year to year, the 

format and content of the exam are standardized and rarely change, with any proposed 

changes requiring a forewarning of at least two years. In total, there are exams in 34 

subjects, and each public university and its departments require a particular combination 

of subjects depending on their academic focus.  

Because of the extremely rigorous nature of the public national exam, only those 

most academically gifted will take it. To attend private universities, on the other hand, 

examinees are required to take only the specific university department’s exam for which 

they strive to gain admission. In this particular case, the data under investigation were 

generated from the Form-H exam of the policy studies department at a prestigious private 

university in western Japan.  

 

3.2.2 Form H of the Entrance Exam 

For the policy studies department of this particular university, several forms of the 

entrance examination are administered depending on the characteristics of the applicant. 

For example, Form F is administered to legacy applicants, Form R to graduates of foreign 

high schools, Form S to applicants in the early admissions process, Forms T to athletes, 

and so on. The form under investigation in this study is Form H (Appendix A), which is 
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the most competitive form because it is open to any high-school graduate and therefore 

has the largest candidate pool. Designed to be an exam of general English language 

proficiency, Form H is comprised of 70 dichotomously scored multiple-choice items 

grouped into four sections: 

Part I: 15 reading-comprehension items based on a single reading passage 

Part II: 20 cloze-test items based on a single reading passage 

Part III: 15 synonym-choice items based on a single reading passage 

Part IV: 20 error-identification items based on 20 unrelated sentences 

As mentioned in the literature review, each of the forms is administered only once per 

year without any pilot testing and then made part of the public domain after scores have 

been calculated and admission decisions are complete.  

The creation of a new version of Form H is a highly structured event with a long 

tradition and is the product of many hours of test construction and internal moderation by 

a team of sequestered foreign-language specialists. Every summer, around 20 faculty 

members from the various departments within the school gather to evaluate the tests 

created by each department and to make changes as necessary. Because consensus on the 

correct answer is reached for every item on every test, there is the implicit belief all items 

are fair, reliable, valid measures of examinee ability. As a result, scoring is based on the 

number-correct method, where each correct response is given a value of 1 and the total 

score is the sum of all correct responses. Student scores are then ordered from highest 

scoring to lowest scoring, with a maximum score of 70 and a minimum score of 0. Offers 

of acceptance are based on this ordinal ranking of student scores. 
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   No test specifications exist at the item level for Form H. Test designers follow 

an approximate blueprint by reviewing previous versions of the exam and for the most 

part attempt to replicate the format used in earlier versions. After a process involving 

many rounds of item drafting, moderation, and internal critique, the 2005 version of Form 

H, the one used to collect data for this study, was administered in a single administration. 

Because justification for this “moderation model” of test development is based on the 

belief that expert opinion and careful editing of test content is sufficient to create items 

that can measure candidates’ relative abilities, no pretesting was performed and no item 

analysis post administration was conducted. This ‘pre-scientific’ approach to language 

testing (Spolsky, 1978, 1981) predates both modern psychometric methods and the 

formulation of the ILTA Guidelines for Practice, yet arguably remains the most 

commonly used model around the world in language testing. 

3.2.3 Calculation of Examinee Scores 

After confirmation the scoring key contains no clerical errors, examinee scores 

are calculated by summing the total number of items answered correctly by each 

examinee. The validity of this summative score is predicated on one very strong 

assumption: the moderation process used to create the exam ensures only one answer per 

item is correct, but the distracters contained in each item are plausible options that can 

help discriminate among examinees of varying ability. Table 4 displays the descriptive 

statistics of the examinee scores for this particular administration of Form H. 

Table 4.    Descriptive statistics of the raw score data 
N Min Max Mean Std Dev Skewness Kurtosis 
     Statistic SE Statistic SE 

2320 5 65 37.303 8.254 -.064 .051 -.080 .102 
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As shown, examinee scores range from 5 to 65, with 70 being the maximum 

attainable score. The mean score is 37.303, and as shown in Figure 2, the distribution of 

scores approximates a normal distribution, although the distribution skews slightly to the 

left (Skewness = -.064) and is slightly platykurtic (Kurtosis = -.080). Given its near-

normal distribution, it can be estimated about two-thirds of examinee scores fall between 

the raw scores of 29 and 46 (± 1 s.d. from the mean) while 95% of the scores fall 

between 21 and 54 (± 2 s.d. from the mean). 

Figure 2.   Distribution of examinee raw scores 
 

3.2.4 Determination of the Cut Score 

Recall that the cut score for this exam is a function not of an attained level of 

mastery but of a quota set by the Japanese Ministry of Education. In other words, the cut 

score is not criterion referenced and can fall anywhere along the distribution of scores 

depending on the target number of enrollees for the given year. 
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Derived from a complex formula containing numerous variables, the quota has its 

basis in the belief that the quality of education is at least in part influenced by the 

physical environment: for every student, there has to be a certain number of books in the 

library, a certain number of faculty on staff, a certain number of seats in the cafeteria, and 

so forth. The number of examinees offered admission in any given year (λ) can be 

derived from the following formula: 

λ =   
Q
r  

where Q = the MOE quota for the year and r = the projected enrollment rate based on 

historical data. For both regulatory and financial reasons, it is very important universities 

accurately determine the cut score that will yield the desired number of enrollees: if too 

few examinees enroll, they will lose money (due to less tuition), but if too many enroll, 

they face potential penalties, including the loss of government funding or even loss of 

accreditation if quotas are exceeded routinely. 

 The Form-H quota for the policy studies department of this particular university 

was 150 in 2006, and 37% of applicants offered admission to this department historically 

have accepted. As a result, the target number of admissions offers for this particular year 

was 405 (λ =    !"#
!.!"

). To determine the 405th highest score, summative scores obtained 

from the actual administration of the test were compiled in Excel and sorted from highest 

to lowest. The resulting ranking indicates that the 405th highest-ranking examinee 

achieved a raw score of 45, a score achieved or exceeded by the top 462 examinees. The 

next higher cut score, 46, was achieved by 385 candidates, 20 fewer than the target 

number of admission offers. Because the raw number-correct method has no inherent 

means of breaking ties, a decision had to be made whether to set the cut score at 45 or 46 
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for the purpose of this analysis. Based on the historic pattern of admissions offers at this 

university, it is assumed here 462 examinees were offered admission rather than the 

fewer number of 385 (Ross, 2011). Figure 3 portrays the location of the cut score along 

the distribution of examinee raw scores. 

 

Figure 3.   Cut score (45) along the distribution of examinee raw scores 
 

3.3 Problems with the Raw-Score Method 

One practical problem with using raw scores for admissions decisions is the lack 

of sufficient granularity in the scoring scale. As explained, 462 candidates scored at or 

above 45. Because there is no principled means of deciding who among those that scored 

45 should be offered admission so the ideal number of offers can be made, the admissions 

committee is forced to choose between moving the cut score higher (to 46), which would 

likely result in a lower-than-target enrollment, or keeping the cut score at 45, which 

would increase the risk of having a larger-than-desired number of students enroll. 
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 Practical concerns aside, the use of raw scores alone, particularly when compiled 

from a non-piloted version of the exam, contravenes the ILTA Guidelines for Practice, 

which mandate either pretesting or post-hoc item analysis be conducted to ensure 

malfunctioning items are excluded from scoring. In this particular case, there is no 

confirmation the test-moderation process has been successful despite the time and effort 

spent creating the exam. Instead, it is taken on faith alone all items are fair estimates of 

examinee ability. Because this is likely an unreasonable assumption, some form of post-

hoc item analysis needs to be conducted to ensure all items are contributing appropriately 

to the total scores. 

Unfortunately, the test moderation panel for Form H involves different 

combinations of faculty members from year to year, so who could/should conduct this 

item analysis is unclear. Perhaps more troubling is the fact that many panel members 

have literature or linguistics backgrounds and often do not consider item analysis to be of 

value (Ross, 2011). Regardless, conducting such an analysis is critical for ensuring the 

scores used in making admissions decisions are justifiable, as espoused by ILTA and 

other international language-testing bodies.  

To illustrate the concern of relying solely on the rigor of test development as 

sufficient for test validation, Figures 4 to 6 illustrate how differently items on Form H are 

functioning with this set of participants.10 Item 51, shown in Figure 4, portrays an ideally 

functioning item. As candidate ability increases (along the horizontal axis), the 

probability of selecting the keyed option (B) increases (along the vertical axis). 

                                                
10 The item characteristic curves (ICCs) portrayed in Figures 4-6 were generated using WINSTEPS as part 
of the item analysis delineated later in Chapter 3. The ICCs are shown here merely to demonstrate how 
different items are functioning on the test, thereby demonstrating the need for item analysis. Full item 
analysis follows in subsequent sections. 
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Conversely, as ability increases, the probability of selecting one of the distracters 

decreases, approaching 0 at the highest levels of ability.  

 

 

51. The (a) term automobile is commonly (b) applies to a four-wheeled vehicle designed (c) to carry two to six 
passengers and a limited amount of cargo, as (d) contrasted with a truck. (e) no error 

Figure 4.   Item that is functioning well 
 

Under the moderation model of test development, all items are expected to function like 

Item 51. Unfortunately, this is not the case. Despite the extensive moderation of Form H, 

it appears to contain several malfunctioning items, as suggested by its mediocre internal 

consistency estimate (KR-20 = 0.78).  

Item 69, shown in Figure 5, is illustrative of one of the malfunctioning items that 

likely contributes to the marginal level of internal consistency of Form H. 
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69.  The sun is the (a) center of the solar system (b) with nine planets (c) revolving around (d) it.  (e) no error 

Figure 5.   Item not differentiating candidates by ability 
 

As shown, Item 69 does not sufficiently differentiate examinee ability levels. At 

higher levels of ability (e.g., logit = 1.0), there is only a 40% probability examinees will 

choose the keyed response (E), while candidates at the lowest level of ability exhibit a 

15% probability of choosing the keyed response. Moreover, the probability of choosing 

one of the distracters approaches 0 only for Option A and in fact even increases in the 

case of Option B, further indicating this item is not discriminating among ability levels 

well/properly. 

Another type of malfunctioning item is one that appears to have two correct 

answers (a double-keyed item). In such cases, the test-moderation panel might not detect 

ambiguity in an option that is designed to be a distracter but actually could be an alternate 

correct response. Figure 6 illustrates one example of this type of item. 
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(58) If you are (a) doing the laundry, you (b) should try to wash white things and bright colored things (c) separate, or 
the colors might (d) ruin the white clothes. (e) no error 

Figure 6.   Item with two apparent correct responses (a double-keyed item) 
 

As shown, three of the distracters in Item 58 are functioning well, with minimal 

likelihood of being chosen at higher levels of ability. One of the distracters (E), however, 

attracted a subset of candidates with a similar ability range as the candidates who selected 

the keyed option (C). Closer inspection of the item reveals that Option C is indeed the 

only correct answer from a prescriptive grammar standpoint, given that adverbs – not 

adjectives – modify verbs (i.e., the correct construction is “…you should try to wash 

white things and bright colored things separately.”). However, many examinees who 

experienced more naturalistic language acquisition (e.g., while living overseas in a 

predominantly English-speaking environment) may have noticed/learned that native 

English speakers often permit adjectives to function as adverbs, particularly when they 

are split from the verb. Conversely, candidates taught English grammar more explicitly 
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and/or those who have had a lot of test-prep training are more likely to be aware of such 

subtle distinctions and thus better prepared to choose the (prescriptively) correct answer. 

The items portrayed in Figures 5 and 6 are only a sample of the items that misfit 

the models, but they do illustrate the problem of not conducting item analysis as required 

by the ILTA Guidelines. Following is an introduction to some alternatives to the raw-

score method that could be applied to these data to improve the validity of the test scores. 

 

3.4 Alternatives to the Raw-Score Method 

Given that item analysis is necessary to validate all test items, there are numerous 

item-analysis methods in existence from which to choose. For the purposes of comparing 

such scoring methods and their implications, the raw-score method currently used by the 

university is used here as the baseline. The objective of the following comparisons is to 

determine how the ordinal ranking of candidates might vary depending on the method of 

item analysis applied to the data. In other words, the objective is to determine the 

magnitude of examinee displacement in rank order with respect to the status quo. 

 

3.4.1 CTT (Kelley’s Discrimination Index) 

As described in the literature review, one of the earliest forms of item analysis 

was created by (Kelley, 1939), who developed an item-discrimination index (D) based on 

the argument that item analysis is maximally effective when comparing the proportion-

correct scores between groups comprising the upper and lower 27% of the distribution, 

but only when the proportion correct (p) is approximately 50% (pp. 23-4).11 Following 

                                                
11 Although a lot of researchers use the upper and lower 27% groups by default, Kelley (1939) clearly 
indicates that 27% is ideal only when items are scored “in graduated amounts” and/or when item reliability 
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these guidelines, an item analysis was conducted on all 70 items of Form H. Table 5 

contains a sample of the items analyzed using Kelley’s discrimination index.12  

Table 5.    Excerpt of item analysis based on Kelly's D 

Item 
Upper 

Correct 
(N=616) 

Lower 
Correct 
(N=646) 

Total 
Correct 

(N=2320) 
p D Flag 

1 486 398 1592 69% 17% F 
2 391 151 958 41% 40%   
3 352 147 903 39% 34%   
4 355 169 930 40% 31%   
5 320 210 938 40% 19% F 
6 398 156 979 42% 40%   
7 495 289 1478 64% 36%   
8 432 152 1013 44% 47%   
9 443 212 1198 52% 39%   

10 346 190 920 40% 27%   
11 513 262 1457 63% 43%   
12 484 286 1405 61% 34%   
13 347 159 829 36% 32%   
14 273 139 743 32% 23%  
15 444 262 1271 55% 32%   
16 309 217 923 40% 17% F 
17 164 60 352 15% 17% F 
18 319 227 1001 43% 17% F 
19 562 401 1755 76% 29%   
20 487 285 1444 62% 35%   

As shown in Table 5, the second column contains the number of upper-group examinees 

who answered the item correctly (out of 616: 580 + 36 ties at the lower bound), the third 

column contains the number of lower-group examinees who answered the item correctly 

(out of 646: 580 + 66 ties at the upper bound), and the fourth column contains all those 

who answered the item correctly (out of all 2,320 examinees). The fifth column 

represents the item difficulty (p) and the sixth column represents the discrimination (D) 

between the upper and lower groups. Items were flagged when they exhibited low 

                                                                                                                                            
is very low, and that 25% is ideal when items are scored dichotomously and item reliability is fairly high (p. 
23). In this case, all items were scored dichotomously and reliability is reasonably high, so the upper and 
lower quartiles were used for comparison groups rather than the more commonly cited 27%. 
12 Only a subsection of each table is shown in the main text for readability purposes and to illustrate the 
how each method flags items. Full tables of each item analysis can be found in Appendices B-D. 
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discrimination values (D   ≤ 0.20) and/or when items were excessively easy or difficult 

(𝑝   ≤   0.20  or  𝑝 ≥   0.80). Using these criteria, five of the first 20 items (Items 1, 5, 16, 17, 

and 18) and 19 of the 70 items overall were flagged (see Appendix B.1). 

 

3.4.2 CTT (Point-Biserial Correlation) 

Another form of item analysis within CTT involves correlating dichotomous item 

responses to the total raw score to yield a point-biserial correlation. While there is no firm 

basis for a point-biserial correlation cutoff, widespread convention within language 

testing suggests an item with a correlation less than 0.20 is faulty. Using this rpb < .20 

criterion, 15 of the 70 items were flagged as faulty. Table 6 illustrates a sample of the 

items with low point-biserial correlations, and Appendix B.2 contains the complete table. 

 
Table 6.    Excerpt of item analysis based on point-biserial correlations 

Item rpb Flag 
1  0.18  F 
2  0.34    
3  0.30    
4  0.26    
5  0.17  F 
6  0.33    
7  0.32    
8  0.38    
9  0.32    

10  0.21  
 

11  0.38    
12  0.30    
13  0.28    
14  0.21  

 
15  0.26    
16  0.17  F 
17  0.21  

 
18  0.15  F 
19  0.31    
20  0.31    
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3.4.3 Rasch/1PL 

Item analysis using the IRT 1-parameter logistic (1PL) model – or more 

specifically, the Rasch equivalent of the IRT-1PL model – was also conducted. Using the 

software WINSTEPS, information about all 70 items was captured, with a sample of that 

information displayed in Table 7.  

Table 7.    Excerpt of item analysis for the Rasch/1PL model 
         Infit Exact Match   

Item b MnSq Zstd Obs% Exp% Flag 
1 -0.84 1.04 2.2 68.2 69.6 F 
2 0.37 0.95 -3.7 65.8 63.0   
3 0.48 0.98 -1.7 65.0 64.3   
4 0.43 1.00 0.0 64.0 63.6   
5 0.41 1.05 3.8 61.6 63.4 F 
6 0.33 0.96 -3.2 65.6 62.6   
7 -0.61 0.97 -2.2 67.2 65.9   
8 0.27 0.93 -5.9 66.9 62.0   
9 -0.08 0.97 -3.1 63.8 60.9   

10 0.45 1.03 2.1 62.8 63.8 F 
11 -0.57 0.93 -4.8 68.4 65.3   
12 -0.47 0.98 -1.4 64.4 64.0   
13 0.62 0.98 -1.2 69.6 66.2   
14 0.80 1.02 1.3 69.1 69.0   
15 -0.21 1.00 0.0 62.2 61.5   
16 0.44 1.06 4.2 60.8 63.8 F 
17 1.83 0.99 -0.3 84.8 84.8   
18 0.29 1.07 5.5 57.1 62.2 F 
19 -1.22 0.96 -1.5 76.6 75.9   
20 -0.54 0.97 -2.0 66.8 65.0   

 
 
The second column of Table 7 contains the difficulty (b) estimates of each item as 

measured in Rasch logits, a unit of measure on an interval-level scale with its mean 

centered on 0 and a standard deviation of 1. As shown, Item 1 has a difficulty estimate of 

-0.84 logits, indicating it is relatively easy in that it is nearly 1 standard deviation below 

the mean level of difficulty of all items. Put another way, it indicates that an examinee 

with an ability of -0.84 logits has a 50% probability of answering the item correctly. Item 

17 on the other hand is considerably more challenging, where an ability of 1.83 logits is 
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required to have a 50% probability of answering that item correctly. 

The third column contains the information-weighted fit (infit) mean-square 

(MnSq) measures of each item, where the mean square represents the randomness of the 

fit, with an expected value of 1. A value less than 1 indicates the item-response pattern is 

overly predictable (overfitting), while a value greater than 1 indicates the response 

pattern contains excessive randomness (underfitting).13 The Z-std values in the fourth 

column are the standardized mean-square statistics, with an expected value of 0. It is 

these values that are the basis of flagging items, where any value greater than 2.0 is 

deemed faulty, following guidelines suggested by (Linacre, 2002).14 Using this criterion, 

18 of the 70 items were flagged. See Appendix B.3 for a complete list of flagged items. 

 Other item information included in Table 7 are the observed and expected 

percentages of examinee performance, where the observed percentage is equal to the 

proportion of examinees who answered the item correctly and the expected percentage is 

equal to the proportion of examinees who are expected to answer the item correctly given 

its level of difficulty (b). Note that the observed percentage of examinees is always lower 

than the expected percentage when Z-std ≥ 2.0, another indication the item-response 

patterns of these items underfit the model. 

Figure 7 depicts the information the exam is providing at each level of theta. 

Known as the Test Information Function (TIF), maximum information for the Rasch/1PL 

model is 14.393, achieved at 𝜃  = -0.050. Note that the term information is used in IRT to 

describe the level of precision/reliability at any given level of theta.  

                                                
13 Mean-square values are chi-square statistics divided by their degrees of freedom (Linacre, 2002). 
14 Items with z-std values ≤ 2.0 were ignored because they overfit the model, suggesting there may be other 
dimensions constraining the response pattern, which is of little concern with respect to Rasch’s 
confirmatory model. 
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Figure 7.   Test Information Function of the Rasch model 
 
 
As shown, the TIF of the Rasch/1PL model has a normal distribution with its mean 

centered at/near 𝜃 = 0. Note that the amount of information (Y-axis) at each level of theta 

(X-axis) decreases as the value of theta moves away from 0, with the least amount of 

information available in the tails of the distribution (e.g., info = 1.5 at ± 4.0 theta). 

On the surface, this TIF appears to suggest the Rasch/1PL model fits the data 

nearly perfectly. However, this symmetry is merely a byproduct of Rasch parameters that 

force the difficulty parameter to a mean of 0 while holding other parameters 

(discrimination and guessing) invariant. Recall that the Rasch model forces the data to fit 

the model, unlike the 2PL and 3PL models, which adjust to fit the data. As such, all 

Rasch TIFs look like the one in Figure 7. Nevertheless, the concept is introduced here to 

serve as a means of comparison with the TIFs of the 2PL and 3PL models that are 

introduced later, as well as to orient the reader to the additional information gained over 

CTT item analysis when employing IRT modeling. 
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To illustrate the difference in levels of item information available between 

application of CTT item-analysis methods and IRT modeling, Figure 8 portrays what a 

CTT TIF would look like were it graphed. 

 
Figure 8.   Test Information Function of CTT analyses 

 

What should be immediately evident from Figure 8 is the lack of item information 

available when CTT analyses are employed. Rather, there is information, but it is the 

same at every level of theta (denoted by the solid horizontal line because CTT analysis 

occurs at the test level rather than at the item level). In other words, information is 

averaged across all levels of theta, thereby obviating the need to visually depict the item 

information generated by CTT item analysis. It is exhibited here only as a means of 

comparison with IRT information curves/functions. 

Returning to the information available with the Rasch/1PL model, Figure 9 is a 

graph of the Conditional Standard Error of Measurement (CSEM) Function, which is the 

inverse of the Test Information Function and estimates the amount of error in theta 

estimation at each level of theta. Because the CSEM is the inverse of the TIF, the 
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minimum CSEM is always located at the same point on the distribution as is maximum 

information, which in this case is at  𝜃 = -0.050. 

Figure 9.   CSEM of the Rasch model 
 

Figure 10 is a visual depiction of the Test Response Function (TRF) for the 

Rasch/1PL model. The TRF is the sum of all individual item response functions,15 and its 

corresponding Test Response Curve (TRC) illustrates the proportion (left Y-axis) or 

number (right Y-axis) of items that examinees are predicted to answer correctly at each 

level of theta.   

                                                
15 Assuming all items are locally independent, meaning the response to any one item does not influence the 
response of any other item. 
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Figure 10.  Test Response Function of the Rasch model 
 

As shown, low-ability examinees (𝜃 = −4.0) are predicted to answer almost no items 

correctly while examinees of the highest ability (𝜃 = 4.0) are predicted to answer nearly 

100% of the items correctly.  

 

3.4.4 IRT 2PL 

The next item analysis conducted was application of the IRT 2-parameter logistic 

(2PL) model to the data set. Table 8 contains an excerpt of the resulting item analysis 

when applying the 2PL model to the data using Xcalibre (Version 4.1).16  

 
  

                                                
16 The options for input and output specifications within Xcalibre are described in 
Appendix E. 
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Table 8.    Excerpt of item analysis for the 2PL model 
Item a b Flag 

1 0.242 -1.947 F 
2 0.472 0.475   
3 0.39 0.725   
4 0.313 0.778   
5 0.208 1.091 F 
6 0.439 0.449   
7 0.437 -0.845   
8 0.534 0.305   
9 0.423 -0.121   

10 0.254 0.979 F 
11 0.564 -0.651   
12 0.394 -0.714   
13 0.371 0.978   
14 0.269 1.675   
15 0.328 -0.384   
16 0.192 1.264 F 
17 0.373 2.852   
18 0.176 0.899 F 
19 0.482 -1.550   
20 0.413 -0.790   

 
 
Columns 2 and 3 of Table 8 contain the discrimination (a) and difficulty (b) parameter 

estimates of each item resulting from application of the IRT-2PL model to the data. The 

a-parameter for this model has a mean of 0.365 and standard deviation of 0.137, while the 

model forced the b-parameter to center its mean at 0 with a standard deviation of 1. Items 

were flagged if either value exceeded the acceptable parameter ranges suggested by 

Xcalibre (𝑎   ≥ 0.30;   −3.0 ≤   b ≤ 3.0). Overall, 23 of the 70 items were identified as 

misfitting, all for unacceptably low discrimination parameter estimates (𝑎 < .30). See 

Appendix B.4 for the complete item-analysis table. 

Figure 11 displays a graph of the Test Information Function for the 2PL model. 

As shown, maximum information obtained is 6.275 at 𝜃 = -0.90. 
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Figure 11.  Test Information Function of the 2PL model 
 

In comparison to the Rasch-1PL model, the 2PL Test Information Function (TIF) is 

considerably flatter, indicating items discriminate less near the mean but overall better 

across the distribution. Note too that maximum information was not obtained near 𝜃 = 0 

as it was in the Rasch model, but instead at 𝜃 = -0.90. This is visually apparent, with the 

peak of the curve on the left half of the distribution, well to the left of 𝜃 = 0. 

Figure 12 displays a graph of the Conditional Standard Error of Measurement 

(CSEM) Function for the 2PL model. As a reminder, the CSEM function is the inverse of 

the TIF and estimates the amount of error in theta estimation at each level of theta. For 

the 2PL model, the minimum CSEM modeled is 0.399 at 𝜃 = -0.90, which again is the 

same location as the point of maximum information. 
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Figure 12.  CSEM of the 2PL model 
 

Figure 13 is a graph of the Test Response Function (TRF) for the 2PL model.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.  Test Response Function of the 2PL model 
 
 
As illustrated, the 2PL model does not fit the data particularly well. The flat TRF across 

all levels of theta indicates items are not differentiating among examinees very well. To 

further investigate why this might be the case, Figure 14 portrays the scatterplot of the b-

parameter (difficulty) by the a-parameter (discrimination) in the 2PL model. 
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Figure 14.  Scatterplot of difficulty (b) by discrimination (a)  
 

The broken horizontal line inserted into the scatterplot crosses the Y-axis at the minimum 

level of discrimination considered acceptable for the model (0.30). As mentioned, 23 of 

the 70 items have unacceptably low discriminatory power when the 2PL model is fit to 

the data. The broken vertical line that crosses the X-axis at 𝜃 = 0  was added to divide the 

graph into quadrants to further illustrate how items are functioning. Of particular note is 

item 36 (the most extreme outlier in the upper left quadrant), which exhibits the greatest 

discriminatory power of all items (a = .809) despite being one of the easiest (b = -2.096). 

In fact, visual inspection of the graph suggests easier items in general exhibit greater 

discriminatory power than more difficult items, which is confirmed by the solid fit line 

modeling the negative correlation between the two parameters (r = - .401, p < .01). It also 

concurs with the theta where maximum information is obtained (𝜃 = -0.90). Given that 
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the cut score for the 2PL model occurs near 𝜃 = 1.0, this bias toward more information 

being available at the easier end of the difficulty contiuum is problematic for model fit.  

To further examine the distribution of items at each level of theta, Figure 15 

portrays a histogram of the difficulty (b) parameter estimates for the 2PL model. 

 

Figure 15.  Histogram of the b-parameters of the 2PL model 

 
As shown, there is confirmation the graph skews positive, meaning there are more items 

in the left half of the distribution than the right. That said, nine of the 70 items have 

difficulty estimates near the cut score (𝜃 = 1.0) that can help differentiate among 

candidates near the cut line. 

 

3.4.5 IRT 3PL 
 

The final item-analysis method employed is the IRT 3-paramter logistic (3PL) 

model. Table 9 contains an excerpt of the resulting item analysis when the 3PL model 

was employed using Xcalibre (Version 4.1).  



 

     92 

Table 9.    Excerpt of item analysis for the 3PL model 
Item a b c Flag 

1 0.278 -0.895 0.214 F 
2 0.704 0.888 0.173   
3 0.583 1.189 0.174   
4 0.58 1.333 0.210   
5 0.405 1.893 0.227   
6 0.748 0.913 0.197   
7 0.539 -0.242 0.202   
8 0.872 0.715 0.188   
9 0.584 0.470 0.198   

10 0.553 1.575 0.232   
11 0.687 -0.196 0.190   
12 0.507 -0.030 0.208   
13 1.052 1.265 0.227   
14 0.535 2.023 0.192   
15 0.457 0.400 0.210   
16 0.355 2.162 0.223   
17 0.938 2.345 0.118   
18 0.278 2.030 0.209 F 
19 0.534 -1.045 0.204   
20 0.488 -0.189 0.196   

 
 
Columns 2 through 4 of Table 9 contain the discrimination (a), difficulty (b), and 

guessing (c) parameter estimates of each item resulting from application of the 3PL 

model. The a-parameter for this model has a mean of 0.525 and standard deviation of 

0.192, while the model forced the b-parameter to center its mean at 0 with a standard 

deviation of 1; the c-parameter for this model has a mean of 0.20 and a standard deviation 

of 0.02. Items were flagged if any of the three-parameter estimates exceeded the 

acceptable parameter ranges suggested by Xcalibre (a ≥ 0.30;   −3.0   ≤   b ≤ 3.0;   c <    .40) 

As shown, only two of the first 20 items were flagged for not fitting the model. Overall, 

only 10 of the 70 items were identified as misfitting the model, all for unacceptably low 

discrimination parameter estimates (a < 0.30). See Appendix B.5 for a complete list of the 

items flagged by the 3PL model. 
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Figure 16 is a graph of the Test Information Function (TIF) or the 3PL 

model. Maximum information is 7.822, obtained at 𝜃 = 1.250. 

Figure 16.  Test Information Function of the 3PL model 
 

 
Note that the TIF of the 3PL model is similar in shape to the Rasch/1PL model in that it 

has a steeper peak and more symmetric distribution than did the 2PL TIF (Figure 11). 

Because the Y-axis of this graph is on a different scale than that of the Rasch model (see 

Figure 7), the maximum item information obtained in the 3PL model is considerably 

lower than that of the 1PL model. Nevertheless, the 3PL model discriminates very well 

near its peak. Note too that the 3PL peak is on the right half of the graph, which differs 

from both the 1PL and 2PL model. Because the cut score for the 3PL model is at 

𝜃 = 1.1129, there is much more information available around the cut score for the 3PL 

model than the other two IRT models, which is very favorable with respect to model fit. 
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Figure 17 is a graph of the Conditional Standard Error of Measurement (CSEM) 

Function for the 3PL model, which again is the inverse of the TIF. The minimum CSEM 

obtained is 0.358 at 𝜃 = 1.25. 

Figure 17.  CSEM of the 3PL model 
 
 
As with the other two IRT models, the 3PL model exhibits its worst fit in the tails of the 

distribution. As shown above, the CSEM nearly reaches 1.0 at the far left of the 

distribution, where examinee ability and item difficulty is lowest. This finding makes 

sense because there are fewer items and examinees at this end of the distribution in which 

to find reliable item-pattern responses. Generally speaking, the reliability of a test is 

proportional to its number of items, so with so few items and examinees at this end of the 

distribution, error in parameter estimation is expected to be quite high, and it is. 

To view model fit from a different perspective, Figure 18 depicts the scatterplot of 

the b-parameter (difficulty) by the a-parameter (discrimination) for the 3PL model. 
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Figure 18.  Scatterplot of difficulty (b) by discrimination (a) 
 

Recall that the broken horizontal line inserted into the scatterplot crosses the Y-axis at the 

minimum level of discrimination considered acceptable (a = 0.30). The broken vertical 

line that crosses the X-axis at 𝜃 = 0  was added to break the graph into quadrants to 

further illustrate how items are functioning in the 3PL model. As shown, the majority of 

items discriminate sufficiently. Item 36 is of particular note again, as it is the most 

extreme outlier in the upper left quadrant. However, it is not the most discriminating item 

overall as it is when the 2PL model is employed. Four other items discriminate better 

with the 3PL model, as illustrated by the items in the upper right quadrant that cross the 

Y-axis at values higher than Item 36. Moreover, a greater number of well-discriminating 

items are relatively difficult with the 3PL model, as opposed to the 2PL model where a 

greater number of items are relatively easy. This is visual confirmation the 3PL model 

seems to fit the data better, which is in part confirmed by the fact that the cut score for the 

3PL is at 𝜃 = 1.1129 and maximum information was obtained at 𝜃 = 1.25, values 
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considerably closer than those obtained with the 2PL model (where maximum 

information is at 𝜃 = −.90  and  the  cut  score  is  at  𝜃 = 1.0). 

Another difference between the scatterplots of the 2PL and 3PL models is the 

correlation between their respective difficulty and discrimination parameters. Whereas 

the 2PL model exhibits a statistically significant negative correlation between the two     

(r = - .401, p < .01), the 3PL model exhibits a statistically non-significant correlation      

(r = .089, n.s.), and the little correlation that does exist is positive rather than negative, as 

indicated by the slightly positive slope of the solid fit line that is portrayed in Figure 18.  

 To further examine the distribution of items when the 3PL model is applied, 

Figure 19 portrays a histogram of the difficulty (b) estimates of each item on the test. 

Figure 19.  Histogram of the b-parameters of the 3PL model 
 

As shown, the graph skews negative, with a greater number of items in the right half of 

the distribution. This is a desirable quality with respect to model fit because the cut score 

is at 𝜃 = 1.25, indicating numerous items are at/near the cut score, thereby providing 

maximum information where it is most important for decision making. 
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3.5 Summary of Analyses 

Given the number of analyses conducted to this point, this next section was 

created to synthesize the findings. To begin, Table 10 summarizes all of the items flagged 

by each model as misfitting. 

Table 10.  Summary of flagged items across models 
Model CTT (Kelley) CTT (Pt Bis) Rasch/1PL IRT 2PL IRT 3PL 

Flagged 
Item # 

1 1 1 1 1 
5 5 5 5  
  10 10  

16 16 16 16  
17     
18 18 18 18 18 
21     

 22 22 22  
23     
28     

   31  
 32 32 32  

33 33 33 33 33 
34 34 34 34 34 
35 35 35 35 35 
36     
37 37 37 37 37 

   38  
39     
41 41 41 41 41 
42 42  42  

  47 47  
   48  

49  49 49 49 

 57 57 57 57 
58 58 58 58 58 

  65 65  
  66 66  

69 69  69  
Total # 
of Items 19 15  18 23 10 

 

As shown, there is considerable variation in the items flagged as faulty, both in terms of 

which items were flagged and the total number flagged. For example, only eight of the 

items were flagged by all five models (Items 1, 18, 33, 34, 35, 37, 41, and 58), while 

some items were flagged by only one of the models (e.g., Items 17, 23, 31). Moreover, 
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the IRT-3PL model flagged only 10 of the 70 items overall, whereas the IRT-2PL model 

flagged more than twice as many (23).  

 Another means of comparison across models is the cross-tabulation values of each 

model pair. Cross-tabulations indicate the level of agreement (classification consistency) 

between model-pair rank orders. Table 11 is a summary of the cross-tabulations for each 

of the item-analysis methods employed relative to the baseline raw scores. 

Table 11.  Classification consistency across models 

  
Raw Score Classification 

Admit Reject Consistency 

CTT (Kelley) 
Admit 383 50  

94.4% Reject 79 1808 

CTT (PtBis) 
Admit 392 54  

94.7% Reject 70 1804 

Rasch/1PL 
Admit 376 41  

94.5% Reject 86 1817 

IRT 2PL 
Admit 369 37  

94.4% Reject 93 1821 

IRT 3PL 
Admit 381 24  

95.5% Reject 81 1834 
 

Recall that the purpose of using the raw-score data as the baseline is to determine the 

magnitude of displacement across models when compared to actual placement. As shown, 

each of the methods classifies about 95% – or about 2200 of the 2,320 – examinees the 

same as the raw-score method. However, anywhere from 105 (in the Raw-3PL 

comparison) to 130 (in the Raw-2PL comparison) of the examinees are classified 

differently. More specifically, the alternate-model outcomes would lead to a rejection of 

70 to 93 more examinees than would the raw-score method, while they would lead to the 

admittance of 24 to 54 more examinees than would the raw-score method. 
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 Another indication of the level of agreement between model pairs is the Kappa 

statistic. Table 12 illustrates the Kappa values for each pairwise comparison. 

Table 12.  Kappa statistics of each pairwise model comparison 
Pairwise Comparison Statistic Std Dev Approx T Approx sig 

Raw-CTT (Kelley) 0.821 0.015 39.599 0.000 

Raw-CTT (Pt Bis) 0.830 0.015 39.998 0.000 
Raw-Rasch/1PL 0.822 0.015 39.665 0.000 

Raw-IRT 2PL 0.816 0.016 39.425 0.000 

Raw-IRT 3PL 0.851 0.014 41.134 0.000 
 

As shown, all pairwise comparisons exhibit statistically significant Kappa values 

(𝜅 ≥ 0.8, 𝑝   < .001), with the 3PL model exhibiting the strongest agreement (𝜅 = 0.851). 

While these Kappa values are indeed statistically significant, they indicate a fair amount 

of classification inconsistency, a matter of importance explored in subsequent chapters. 

 

3.6 Test of IRT Assumptions 

 As illustrated, all of the models employed in this study achieve comparable levels 

of agreement with the original rankings derived from application of the raw-score method. 

However, as explained in the literature review, the IRT family of models requires two 

primary assumptions to be satisfied in order for their use to be considered valid. One is 

the assumption of unidimensionality, meaning all of the items on the test are measuring 

only one dimension of ability, in this case English proficiency.  

 

3.6.1 Test of Unidimensionality  

To test whether the assumption of unidimensionality is reasonably satisfied, a 

confirmatory factor analysis was conducted using structural equation modeling (SEM), 
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where 1-factor and 2-factor models were applied to the data to test goodness of fit. 

Figures 20 and 21 illustrate the standardized factor loadings of the relationships between 

each latent trait and the observed measures of each trait, generated using AMOS 6.0. 

 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
Figure 20.  1-factor SEM of the full data set 

 
 
 

 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
Figure 21.  2-factor SEM of the full data set 
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As shown, the latent trait of the 1-factor model (Prof: English proficiency) was 

split into two hypothesized traits for the 2-factor model (Disc: discourse ability, and 

LexGram: lexico-grammatical ability). However, as the standardized factor loadings 

between each latent trait and the observed measures of those traits show, the 1-factor 

model fits nearly identically to the 2-factor model, suggesting there is no meaningful 

advantage to splitting the latent trait of English proficiency into two traits. In short, the 

assumption of unidimensionality seems satisfied by these data. This conclusion is 

confirmed by a comparison of the Chi-square (𝜒!) statistics of the two models.  

Table 13.  Chi-square comparison of CFA models 
Model NPAR CMIN DF P CMIN/DF 
1-Factor 12 3.392 2 .183 1.696 
2-Factor 13 2.356 1 .125 2.356 

 

As shown in Table 13, both Chi-square statistics are statistically non-significant 

(CMIN/DF = 1.696, p = .183 and CMIN/DF = 2.356, p = .125, respectively), indicating 

each model fits the data well.17 In fact, the 1-factor model fits even better than the 2-

factor model as evidenced by the lower Chi-square (CMIN/DF) value, thereby providing 

further evidence the assumption of unidimensionality has been satisfied for these data. 

 

  

                                                
17 Note that the null hypothesis of the Chi-square goodness-of-fit test is that the model fits the data. As a 
result, these statistically non-significant findings indicate the null hypothesis cannot be rejected, which is a 
good thing because it means the models fit the data well. 
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3.6.2 Test of Local Item Independence  

The second assumption required of IRT is local item independence, which again 

means the response to each item is independent of all other item responses. To determine 

whether this assumption is satisfied by the data, a testlet response theory (TRT) model 

was applied to the data using SCORIGHT (Version 3.0) because of the presence of three 

large testlets on the test (Sections I, II, and III – see Appendix A). 

According to the SCORIGHT User’s Manual (X. Wang, Bradlow, & Wainer, 

2005), any testlet variance (𝜆!") – a measure of the examinee-by-testlet interaction – in 

excess of 0.30 is problematic as it indicates that 30% or more of the variance in examinee 

scores on the testlet is attributable to the item dependence found among the testlet items.  

Table 14.  Estimated gamma variances 
Testlet Variance S.E. 

1 0.5100 0.2502 
2 0.4971 0.2523 
3 0.4152 0.1564 

 

As shown in Table 14, all three testlets exhibit a large testlet effect, with the first and 

second testlets exhibiting especially strong testlet effects, with about half of the variance 

in examinee scores in these two testlets attributable to examinee-by-testlet interaction. 

Because of this clear violation of the assumption of local item independence, there is 

considerable question as to whether it is appropriate to apply IRT models to these data, an 

issue explored in detail later. 
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4 Data Analysis II (Random 80%) 

4.1 Participants 

Recall that with IRT modeling, the 2PL and 3PL models are adjusted to maximize 

fit to the data. As a result, they are exploratory in nature and require replication of their 

findings before they can be considered valid (unlike CTT and Rasch/1PL models, which 

are confirmatory). Because the particular exam under investigation is both single use and 

single administration, there is no opportunity to validate the two models using data 

collected during another administration or from a parallel form of the exam. As a result, 

two similar sets of item analyses to those conducted in Chapter 3 were performed using 

resampled data to determine whether the nature and magnitude of the differences between 

models would hold across “different” examinee populations.  

The first resampling analysis involved removal of a random 20% of the original 

candidate pool, leaving 1,856 of the original 2,320 examinee scores in tact. The 

motivation for choosing this subset of the population is to determine how classification 

consistency might change were there a smaller number of candidates in the pool but with 

a similar distribution of ability levels.  

4.2 Descriptive Statistics 

 Descriptive statistics of the resampled data were calculated to determine whether 

they had similar characteristics to the original data. Table 15 displays the descriptive 

statistics for both the original data set and the resampled data set. 

Table 15.  Descriptive statistics of the original data and first resampling 
N Min Max Mean Std Dev Skewness Kurtosis 
     Statistic SE Statistic SE 

1856 10 61 37.340 8.181 -.035 .057 -.171 .114 
2320 5 65 37.303 8.254 -.064 .051 -.080 .102 
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As shown in Table 15, the range of scores for this candidate pool is somewhat narrower 

than the original range, with a minimum score of 10 and a maximum of 61. However, the 

means are very similar (37.340 vs. 37.303), as are the standard deviations (8.181 vs. 

8.254), which suggest the two data sets have similar distributions. Figure 22 illustrates 

this is indeed the case. 

Figure 22.  Distribution of examinee scores for the first resampling 
 

As shown in Table 15 and Figure 22, this first resampling of the data exhibits slightly less 

skewness than the original distribution (-.035 vs. -.064), but it is more platykurtic than the 

original distribution (Kurtosis = -.171 vs. -.080). Nevertheless, the distribution of these 

data approximate a normal distribution like the original data. 
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4.3 Cut-Score Determination 

 The same protocol for cut-score determination was used with this resampling of 

the data as with the original data. Recall from Chapter 3 that the cut score is a function of 

the Japanese Ministry of Education annual quota and the historical acceptance rate for the 

policy studies department of this particular university, where: 

λ =   
Q
r  

and sigma (𝜆) represents the number of admissions offers to be made. In 2006, the 

admissions year for which this test was administered, Q = 150 and r = 37%, so the target 

number of admissions offers was 405 (λ =    !"#
!.!"

=   405). To determine the 405th highest 

score for this examinee pool, raw scores obtained from the actual administration of the 

test were compiled in Excel and sorted from highest to lowest. The resulting ranking 

indicates the 405th highest-ranking examinee achieved a raw score of 44, a score achieved 

or exceeded by the top 425 examinees. The next higher cut score, 45, was achieved by 

373 candidates, 32 fewer than the target number of admission offers. Based on the 

historic pattern of admissions offers at this university, it is assumed here 425 examinees 

would have been offered admission rather than the fewer number of 373. Figure 23 on the 

following page depicts the cut score location along the distribution of examinee scores. 

 



 

     106 

Figure 23.  Cut score (44) along the distribution 
 

4.4 Item Analyses 

 To help identify similarities and differences in the data sets (across examinee 

populations), the same set of item analyses performed on the original data set was 

performed on the resampled data. Following is a description of the results generated from 

each item analysis that was applied to the resampled data. 

 

4.4.1 CTT (Kelley) 

Once again employing the item-analysis method introduced by Kelley (1939), the 

performance of the upper 25% and lower 25% of the distribution was conducted. Table 

16 contains an excerpt of this item analysis. 
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Table 16.  Excerpt of item analysis based on Kelley’s D 
Item UG LG Total p D Flag 

1 380 300 1273 69% 19% F 
2 306 119 767 41% 39%   
3 276 114 730 39% 34%   
4 272 130 750 40% 30%   
5 248 160 748 40% 20%   
6 317 124 797 43% 41%   
7 385 220 1181 64% 36%   
8 343 121 817 44% 47%   
9 339 164 968 52% 37%   

10 261 149 750 40% 24%   
11 394 199 1173 63% 42%   
12 371 212 1124 61% 35%   
13 280 124 676 36% 33%   
14 201 104 589 32% 21%   
15 345 200 1016 55% 32%   
16 234 163 741 40% 16% F 
17 122 45 281 15% 16% F 
18 249 180 808 44% 16% F 
19 436 305 1403 76% 30%   
20 374 218 1148 62% 34%   

 

As shown, four of the first 20 items were flagged as faulty, all for unreasonably low 

discrimination values (D < 0.20). In addition, Item 17 was flagged for being so difficult 

(p = 0.15) that use of Kelley’s index has less validity because of where the item falls 

along the distribution. Overall, 21 of the 70 items were flagged as faulty, all for having 

low discrimination indexes and/or levels of difficulty outside the range considered 

acceptable for this form of item analysis (p < 0.20 or p > 0.80). See Appendix C.1 for the 

complete item analysis of this data set. 

 

4.4.2 CTT (Point Biserial) 

 The second type of item analysis performed on the resampled data is examination 

of the point-biserial correlations, which again is a measure of the reliability between 

individual test items and the overall test. Recall that while there is no firm benchmark for 
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acceptable levels of point-biserial correlation, convention within the language-testing 

field suggests a correlation of at least 0.20 is acceptable.  

Table 17.  Excerpt of item analysis based on point-biserial correlations 
Item rpb Flag 

1 0.20   
2 0.34   
3 0.30   
4 0.26   
5 0.18 F 
6 0.33   
7 0.31   
8 0.38   
9 0.32   

10 0.20   
11 0.38   
12 0.30   
13 0.28   
14 0.20   
15 0.27   
16 0.16 F 
17 0.21   
18 0.14 F 
19 0.31   
20 0.30   

 

As illustrated, three of the first 20 items were identified as having unacceptably low 

correlations (Items 5, 16 and 18). Overall, 15 of the 70 items were flagged for having 

unacceptably low correlations (see Appendix C.2 for a complete list of flagged items).  

 

4.4.3 Rasch/1PL 

 Item analysis within the Item Response Theory (IRT) framework was also 

conducted. The first of these analyses was application of the 1-parameter logistic (1PL) 

model, or more specifically, the Rasch equivalent of the 1PL (see Section 2.1.3.3.1 of the 

literature review for additional detail). For the Rasch model, the decision criterion for 

item acceptability is a Z-standard value equal to or less than 2.0 (Linacre, 2002).  
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Table 18.  Excerpt of item analysis for the Rasch/1PL model 

Item  b  
 Infit   Exact Match  

Flag  MnSq   Z-std   Obs%   Exp%  
1 -0.84 1.03 1.33  68.4   69.5    
2 0.37 0.95 -3.35  65.9   62.9    
3 0.46 0.98 -1.56  64.7   64.0    
4 0.41 1.00 -0.09  63.5   63.4    
5 0.42 1.05 3.19  61.6   63.5  F 
6 0.30 0.96 -3.24  66.2   62.2    
7 -0.60 0.97 -1.90  67.2   65.7    
8 0.25 0.93 -5.57  67.2   61.8    
9 -0.10 0.97 -2.76  64.1   60.8    

10 0.41 1.03 2.01  62.2   63.4  F 
11 -0.59 0.93 -4.46  69.1   65.5    
12 -0.47 0.98 -1.57  64.7   63.9    
13 0.59 0.98 -1.20  69.3   65.7    
14 0.81 1.03 1.32  69.1   69.2    
15 -0.21 1.00 -0.08  61.4   61.4    
16 0.44 1.06 3.83  59.5   63.7  F 
17 1.83 0.99 -0.17  84.7   84.9    
18 0.27 1.07 5.35  56.9   62.0  F 
19 -1.21 0.96 -1.53  76.7   75.8    
20 -0.52 0.97 -1.67  65.8   64.6    

 

As shown in Table 18, four of the first 20 items were flagged as faulty when applying the 

Rasch/1PL model (Items 5, 10, 16, and 18), with Item 18 particularly misfitting the 

model (Z-std = 5.35). Overall, 17 of the 70 items misfit the model (see Appendix C.3 for 

a complete list of the flagged items).  

 

4.4.4 IRT 2PL 

The second IRT-model application was the 2-parameter logistic (2PL) model. 

Recalling that the 2PL model accounts for both difficulty (b) and discrimination (a) 

among items (vs. only difficulty in the case of the Rasch/1PL model), the criteria for 

flagging items as faulty are unacceptably low discrimination and/or unacceptably low or 

high difficulty parameter estimations.  
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Table 19.  Excerpt of item analysis for the 2PL model 
Item a b Flag 

1 0.273 -1.736 F 
2 0.470 0.472   
3 0.382 0.705   
4 0.317 0.741   
5 0.217 1.056 F 
6 0.450 0.391   
7 0.431 -0.849   
8 0.547 0.277   
9 0.420 -0.157   

10 0.253 0.899 F 
11 0.576 -0.662   
12 0.407 -0.697   
13 0.375 0.911   
14 0.265 1.717 F 
15 0.331 -0.380   
16 0.195 1.219 F 
17 0.381 2.796   
18 0.172 0.854 F 
19 0.497 -1.504   
20 0.402 -0.780   

 

As shown in Table 19, six the of the first 20 items were flagged as faulty when the 2PL 

model was applied to the data, all for unacceptably low discrimination values (a < .30). 

Overall, 27 of the 70 items were flagged when the 2PL model was applied (see Appendix 

C.4 for the complete item-analysis table).  

 Because of the greater complexity of the IRT-2PL model compared to the 

Rasch/1PL model or either of the CTT item-analysis methods, much more information is 

generated from the analysis. Recall that one example of this is the Test Information 

Function (TIF), which is an indication of how much information about examinee 

performance the test is providing at each level of theta. For this resampling of the data, 

maximum information is 6.233 at 𝜃 = -0.850, as shown in the graphical representation of 

the Test Information Function (TIF) portrayed in Figure 24. 
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Figure 24.  Test Information Function of the 2PL model 
 

Like the TIF for the 2PL model of the original data set, this TIF is somewhat flat, with its 

peak well left of the mean. As a result, it seems to indicate discrimination is highest at 

relatively low levels of theta, which is troubling considering the fact that the cut score is 

higher than average for these data (θ = 1.0026).  

Figure 25 displays a graph of the Conditional Standard Error of Measurement 

(CSEM) Function for the 2PL model, which again is the inverted function of the TIF and 

estimates the amount of error in theta-estimation for each level of theta. The minimum 

CSEM for this application of the 2PL model is 0.401, achieved at 𝜃 = -0.850. 
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Figure 25.  CSEM of the 2PL model 
 

As shown, the CSEM function is generally high across the distribution, which 

indicates the 2PL model does not seem to fit the data particularly well. This finding 

mirrors the finding of the first analysis (see Figure 12). 

Figure 26 displays a graph of the Test Response Function (TRF) for all items on 

the exam.  Recall that the TRF predicts the proportion/number of items that examinees 

are predicted to answer correctly at any given level of theta. The left Y-axis portrays the 

predicted proportion-correct, while the right Y-axis represents the predicted number-

correct for all levels of theta. 
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Figure 26.  Test Response Function of the 2PL model 
  

 

Synthesizing the information portrayed in Figures 24-26, it is clear the 2PL model 

does not fit the data very well, much like in the case of the original candidate pool (see 

Chapter 3, Figures 10 through 12). Once again, maximum information is obtained at a 

level of theta (-0.850) well below that of the cut score (1.0026). In other words, there is 

much greater error in parameter estimates around the cut score than desirable, as was the 

case in the original data analysis. 

 To view the fit of the 2PL model to the data from another perspective, Figure 27 

illustrates the scatterplot of the b-parameter (difficulty) estimates by the a-parameter 

(discrimination) estimates. 
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Figure 27.  Scatterplot of difficulty (b) by discrimination (a) 
 
 
The broken horizontal line inserted into the scatterplot crosses the Y-axis at the minimum 

level of discrimination considered acceptable for the model (a = 0.30). As mentioned, 23 

of the 70 test items have unacceptably low discriminatory power when the 2PL model is 

fit to the data. The broken vertical line that crosses the X-axis at 𝜃 = 0  was added to 

break the graph into quadrants to further illustrate how items are functioning in the 2PL 

model. Of particular note is item 36 (the most extreme outlier in the upper left quadrant). 

As was the case in the analysis of the full data set, Item 36 exhibits the greatest 

discriminatory power of all the items (a = .816) despite being one of the easiest (b = -

2.039). Once again, visual inspection of the graph suggests easier items in general exhibit 

greater discriminatory power than more difficult items, which is confirmed by the slight 

negative correlation between the two parameters (r = - .1.208). It also concurs with the 

theta where maximum information is obtained (𝜃 = -0.850). Given that the cut score for 

the 2PL model occurs near 𝜃 = 1.0026, this bias toward more information being available 

at the easier end of the difficulty contiuum is problematic for model fit.  
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Finally, Figure 28 portrays a histogram of the difficulty (b) estimates of each item 

on the test, further illustrating the relative facility of the items as a whole. 

 

Figure 28.  Histogram of the b-parameters of the 2PL model 
 
 
As shown, the majority of items are on the left half of the distribution (below 𝜃 = 0), 

which corresponds to the shape of the TIF curve in Figure 24. Nevertheless, eight of the 

70 items at least approximate the level of difficulty at the cut score of 𝜃 = 0.750, which 

helps contribute to the classification accuracy of the model where it is most important. 

 

4.4.5 IRT 3PL 

 One final analysis conducted was application of the IRT-3PL model. Building on 

the foundation of the 2PL model, recall that the 3PL model estimates not only the 

difficulty (b) and discrimination (a) parameters, but also a guessing parameter (c) based 

on the belief that examinees will at least make an educated guess at any dichotomously 

scored item when there are no penalties for guessing.  
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 Table 20 depicts an excerpt of the item analysis that results from application of 

the 3PL model on the resampled data.  

Table 20.  Excerpt of item analysis for the 3PL model 
Item a b c Flag 

1 0.32 -0.75 0.22   
2 0.73 0.91 0.19   
3 0.59 1.21 0.19   
4 0.58 1.32 0.21   
5 0.41 1.88 0.23   
6 0.78 0.88 0.20   
7 0.54 -0.20 0.21   
8 0.91 0.70 0.19   
9 0.59 0.47 0.21   

10 0.54 1.57 0.23   
11 0.70 -0.20 0.20   
12 0.53 -0.01 0.21   
13 1.05 1.24 0.23   
14 0.54 2.10 0.20   
15 0.46 0.42 0.22   
16 0.36 2.16 0.23   
17 0.93 2.40 0.12   
18 0.29 2.05 0.22 F 
19 0.56 -0.98 0.21   
20 0.49 -0.12 0.21   

 

As shown, only one of the first 20 items was flagged as faulty (Item 18, for an 

unacceptably low correlation: a < 0.30). Overall, only nine of the 70 items misfit the 3PL 

model, the fewest number of items among all models employed (see Appendix C.5 for 

the complete item-analysis table).  

  Figure 29 further illustrates the fit of the 3PL model to the data. As shown, the 

graphical representation of the Test Information Function (TIF), a display of how much 

information about examinee scores the test is providing at each level of theta, reaches its 

maximum level of 8.042 at 𝜃 = 1.250. 
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Figure 29.  Test Information Function of the 3PL model 
 

As was the case with the original data set, application of the 3PL model to this data set 

yields a fairly peaked curve, with maximum information near the cut score, which again 

is a desirable outcome for these data. 

Figure 30 displays the Conditional Standard Error of Measurement (CSEM) of the 

3PL model, which again is the inverse of the TIF function and portrays the amount of 

error in each theta estimate. In this case, minimum CSEM is 0.353, achieved at 𝜃 = 1.250. 
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Figure 30.  CSEM of the 3PL model 
 

 
One other graphical representation of how the model fits these data is the Test 

Response Function (TRF), shown in Figure 31. Recall that the TRF predicts the 

proportion/number of items that examinees are expected to answer correctly at each level 

of theta. The left Y-axis represents the predicted proportion correct while the right Y-axis 

depicts the predicted number of correct responses. 

Figure 31.  Test Response Function of the 3PL model 
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Taken together, Figures 29-31 illustrate that the 3PL model fits the resampled 

data pretty well, which replicates the findings of the original data analysis. This 

conclusion is confirmed in Figure 32 below. 

Figure 32.  Scatterplot of difficulty (b) by discrimination (a) 
 

The broken horizontal line inserted into the scatterplot crosses the Y-axis at the minimum 

level of discrimination considered acceptable (a = 0.30). The broken vertical line that 

crosses the X-axis at 𝜃 = 0  was added to break the graph into quadrants to further 

illustrate how items are functioning in the 3PL model. As shown, the majority of items 

discriminate sufficiently when the 3PL model is applied to the data, with a majority of the 

items above the broken horizontal line. Item 36 is of particular note again, as it is the 

most extreme outlier in the upper left quadrant. However, it is not the most discriminating 

item overall as it is when the 2PL model is applied to the data. Five other items actually 

discriminate better within the 3PL model (Items 8, 13, 17, 53, and 60), illustrated by 

those items in the upper right quadrant that cross the Y-axis at values higher than Item 36. 

Moreover, a greater number of well-discriminating items are relatively difficult (see 
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Figure 33), as opposed to the 2PL model, where a greater number of items are relatively 

easy (see Figure 28). 

Figure 33.  Histogram of the b-parameters of the 3PL model 
 

Overall, Figures 32 and 33 confirm that the 3PL model fits the data better than the 2PL 

model, which is further confirmed by the fact that the cut score for the 3PL is at 

𝜃 = 1.1129 and maximum information was obtained at 𝜃 = 1.250, values considerably 

closer on the distribution than the corresponding values obtained with the 2PL model 

(where maximum information is at 𝜃 = −.850  and  the  cut  score  is  at  𝜃 = 1.0026).  

 

4.5 Summary of Analyses 

 In an effort to synthesize the respective outcomes of each item analysis, Table 21 

is a summary of the items flagged as faulty according to each model’s criteria. As shown, 

the 2PL model identified the most number of misfit items (27), while the 3PL model 

identified the fewest, exactly one-third the number of the 2PL model (9). 
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Table 21.  Summary of the items flagged across models 
Model CTT (Kelley) CTT (Pt Bis) Rasch/1PL 2PL 3PL 

Flagged Items 

1     1   
  5 5 5   
    10 10   
      14   

16 16 16 16   
17         
18 18 18 18 18 
21         
    22 22   

23         
24         
26     26   
28         
      30   
      31   
  32 32 32   

33 33 
 

33 33 
34 34 34 34 34 
35 35 35 35 35 
36         
37 37 37 37 37 
    38 38   

39         
41 41 41 41 41 
42 42   42   
    47 47   
      48   

49 49 49 49 49 
50         
  57 57 57 57 

58 58 58 58 58 
      63   
    65 65   
  66 66 66   

69 69   69   
# Items 
Flagged 21 15 17 27 9 

 
 
As is the case with the analysis of the full data set, there is considerable variation in the 

items flagged across the models. For example, only seven of the items were flagged 

across all models (Items 18, 34, 35, 37, 41, 49, and 58), which is one fewer than in the 

full-data analysis. Interestingly, all seven of these items are in the group identified in the 
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analysis of the full data set. As with the original analysis, several items were identified as 

misfitting only one model, although there are many more in this second analysis (Items 

14, 17, 21, 23, 24, 28, 30, 31, 36, 39, 48, 50, and 63). Interestingly, all of the items 

identified as misfitting only one model were identified by either the CTT-Kelley method 

or the IRT-2PL model.  

Another means of comparison across models is the cross-tabulation values of each 

model pair. As a reminder, cross-tabulations indicate the level of agreement 

(classification consistency) between model rankings. Table 22 is a summary of the cross-

tabulations for each of the models relative to the baseline raw scores. 

Table 22.  Classification consistency across models 

  
Raw Score Classification 

Admit Reject Consistency 

CTT (Kelley) 
Admit 379 51 

94.8% 
Reject 46 1380 

CTT (PtBis) 
Admit 377 48 

94.8% 
Reject 48 1383 

Rasch/1PL 
Admit 386 80 

93.6% 
Reject 39 1351 

IRT 2PL 
Admit 381 24 

96.3% 
Reject 44 1407 

IRT 3PL 
Admit 378 27 

96.0% 
Reject 47 1404 

 

As shown, classification consistency ranges from about 93.6% (for the Rasch model) to a 

maximum of 96% (for the 3PL model). In other words, a similar level of classification 

consistency was found with this resampling as with the full data set, albeit with a slightly 

wider range than with the original data. Nevertheless, as stated earlier, a 4-6% difference 

in classification is non-trivial: anywhere from 74 (in the Raw-3PL comparison) to 119 (in 

the Raw-Rasch/1PL comparison) of the 1,856 examinees are classified differently across 



 

     123 

models when compared to the baseline raw-score method. More specifically, the 

alternate-model outcomes would lead to a rejection of 39 to 48 more examinees than 

would the raw-score method, while they would lead to the admittance of 24 to 80 more 

examinees than would the raw-score method. 

 One other indication of the level of agreement between model pairs is the Kappa 

statistic. Table 23 illustrates the Kappa values for each pairwise comparison. 

Table 23.  Kappa statistics of each pairwise model comparison 
Pairwise Comparison Statistic Std Dev Approx T Approx sig 

Raw-CTT (Kelley) 0.853 0.015 36.732 0.000 

Raw-CTT (Pt Bis) 0.854 0.015 36.771 0.000 
Raw-Rasch/1PL 0.824 0.015 35.580 0.000 

Raw-IRT 2PL 0.894 0.013 38.555 0.000 

Raw-IRT 3PL 0.885 0.013 38.153 0.000 
 

As shown, all pairwise comparisons exhibit statistically significant Kappa values 

(𝜅 ≥ 0.8, 𝑝   < .001), with the 2PL model exhibiting the strongest agreement (𝜅 = 0.894) 

and the 3PL model second strongest agreement (𝜅 = 0.885). Overall, these values 

indicate respectable levels of agreement, but they are far from ideal, particularly given 

the high-stakes nature of the exam. 

 

4.6 Test of IRT Assumptions 

Because the 3PL model was designed specifically to model dichotomously scored 

multiple-choice items, it is of little surprise it seems to fit both the original data and the 

resampled data well. Recall, however, that all IRT models require satisfaction of two 

strong assumptions: unidimensionality and local item independence. Failure to satisfy 

either of these assumptions often leads to overestimations of parameter precision and 
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underestimations of error, which if severe enough, can undermine the validity of the 

model’s application to the data. As a result, and in a fashion similar to the original 

analysis in Chapter 3, both of these assumptions were tested using the resampled data.  

 

4.6.1 Test of Unidimensionality 

 To test whether the assumption of unidimensionality is reasonable for the 

resampled data, a confirmatory factor analysis was conducted using structural equation 

modeling (SEM), where 1-factor and 2-factor models were applied to the data to test their 

respective goodness of fit. Figures 34 and 35 illustrate the standardized factor loadings of 

the relationships between each latent trait and the observed measures of each trait. 

 

Figure 34.  1-factor SEM of the first resampling 
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Figure 35.  2-factor SEM of the first resampling 
 

As shown, the latent trait of the 1-factor model (English proficiency) was split 

into two hypothesized traits for the 2-factor model (discourse ability and lexico-

grammatical ability). However, as the standardized factor loadings show, the 1-factor 

model fits nearly identically to the 2-factor model (e.g., General Proficiency à Reading 

Comprehension = .61; Discourse à Reading Comprehension = .61), suggesting there is 

no advantage to splitting the latent trait of English proficiency into two traits. This 

conclusion is confirmed by a comparison of the Chi-square statistics of the two models.  

Table 24.  Chi-square comparison of CFA models 
Model NPAR CMIN DF P CMIN/DF 
1-Factor 12 3.160 2 .206 1.580 
2-Factor 13 2.776 1 .096 2.776 

 

As shown, both Chi-square statistics are non-significant (CMIN = 3.160, p = .206 and 

CMIN = 2.776, p = .096, respectively), indicating each model fits the data well. In fact, 

the 1-factor model fits the data better, recalling that the null hypothesis is the model fits 
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the data. In other words, the further from statistical significance the Chi-square value, the 

better the fit. In this case, p = .206 for the 1-factor model and p = .096 for the 2-factor 

model, so the 1-factor model is a better fit overall. In short, the assumption of 

unidimensionality appears satisfied, a finding similar to that of the original analysis.  

4.6.2 Test of Local Item Independence 

To test for local item independence, the three testlets on the test (Sections I, II, 

and III – see Appendix A) were modeled using SCORIGHT 3.0, software created by 

Wang et al (2005) specifically to model testlet effects. Table 25 shows the variance in 

item scores accounted for by examinee-testlet interactions (𝛾!"(!)). 

Table 25.  Estimated gamma variances 
Testlet Variance S.E. 

1 0.7583 0.5172 
2 0.4069 0.1614 
3 0.5899 0.4810 

 

As shown, all three testlets exhibit a large testlet effect, with the first and third testlets 

exhibiting especially strong effects. Over 75% of the variance in examinee scores on 

Testlet 1 is due to examinee-testlet interaction, meaning less than 25% of the variance in 

Testlet-1 scores can be attributed to examinee ability. Though not quite as extreme for the 

other testlets, nearly 60% of the variance in Testlet-3 scores and over 40% of the variance 

in Testlet-2 scores is attributable to this interaction. For this reason, it would seem 

inappropriate to apply the 2PL and 3PL IRT models to these data,18 the same conclusion 

reached with the original data set. 

  

                                                
18 Because the Rasch-1PL model is confirmatory, it could be applied to these data despite the large testlet 
effects, although application of the Rasch model presents other problems as discussed later. 
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5 Data Analysis III (Middle 80%) 

5.1 Participants 

 A second resampling of the original data was conducted to further validate the 

generalizability of the findings presented in Chapter 3. In this case, resampling involved 

removal of the upper 10% and lower 10% of the candidate pool (based on raw scores). 

Removing the top 10% ensures a new cut score will be established (since the top 20% of 

the original examinee pool would have been offered admission based on the 2006 quota – 

462/2,320), while removing the bottom 10% helps restore symmetry to the distribution 

(to better approximate a normal distribution). The motivation for choosing this subset of 

the examinee population is to determine how classification consistency would change if 

there were a more restricted range of ability among the examinees, as well as forcing the 

cut score more toward the center of the distribution to determine what impact, if any, 

doing so would have on the classification accuracy of different item-analysis methods. 

 

5.2 Descriptive Statistics 

After removal of the upper 10% and lower 10% of examinees from the data, the 

new sampling includes 1,856 of the original 2,320 examinees. Table 26 displays the 

descriptive statistics of the original data set and this second resampled data set. 

Table 26.  Descriptive statistics of the original data and second resampling  
N Min Max Mean Std Dev Skewness Kurtosis 
     Statistic SE Statistic SE 

1856 27 48 37.350 5.520 .003 .057 -.933 .114 
2320 5 65 37.303 8.254 -.064 .051 -.080 .102 
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As shown, the range of scores for this candidate pool is considerably narrower than that 

of the original candidate pool, with the minimum score 27 and a maximum of 48. The 

means are very similar (37.350 vs. 37.303), but the standard deviation of this restricted-

range data is much narrower (5.520 vs. 8.254), suggesting about two-thirds of all scores 

fall within a very tight range (between 32 and 43) and 95% of the scores fall between 26 

and 48.19 Interestingly, the distribution exhibits virtually no skew (Skewness = .003), but 

it is considerably more platykurtic than the original distribution (Kurtosis = -.933), with 

fewer scores near the peak and in the tails than would be found in a normal distribution of 

scores. Figure 36 depicts the histogram of this data set. 

 

Figure 36.  Distribution of examinee scores for the second resampling 
  

                                                
19 In reality 100% of the scores fall between 27 and 48, as they are the minimum and maximum scores of 
the distribution. 
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5.3 Cut-Score Determination 

 Once again, the same protocol for cut-score determination was used with these 

data as with the previous two sets of data. As a reminder, the annual quota (Q)  for  2006 = 

150 and the historical acceptance rate (r) = 37%, so the target number of admissions 

offers (𝜆) was 405 (λ =    !"#
!.!"

). To determine the 405th highest score, raw scores obtained 

from the actual administration of the test were compiled in Excel and sorted from highest 

to lowest. The resulting ranking indicates that the 405th highest-ranking examinee 

achieved a raw score of 42, a score achieved or exceeded by the top 471 examinees. The 

next higher cut score, 43, was achieved by 384 candidates, 21 fewer than the target 

number of admission offers. Based on the historic pattern of admissions offers at this 

university, it is assumed 471 examinees would be offered admission rather than the fewer 

number of 384. Figure 37 portrays the location of the cut score along the distribution. 

Figure 37.  Cut score (42) along the distribution 
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5.4 Item Analyses 

To help identify similarities and differences in the data across examinee 

populations, the same set of item analyses performed on the original data set was 

performed on this set of resampled data. Following are the findings of these analyses. 

 

5.4.1 CTT (Kelley) 

Once again employing the test validation method introduced by Kelley (1939), an 

item analysis was conducted comparing the performance of the upper 25% of the 

distribution against that of the lower 25%. Table 27 contains a sample of the items 

analyzed using Kelley’s discrimination index. 

 
Table 27.  Excerpt of item analysis based on Kelley’s D 

Item UG LG Total p D Flag 
1 352 321 1271 68% 12% F 
2 277 133 750 40% 33%   
3 250 136 720 39% 27%   
4 242 134 715 39% 25%   
5 226 175 737 40% 14% F 
6 263 126 746 40% 31%   
7 358 253 1190 64% 27%   
8 281 130 773 42% 34%   
9 304 191 953 51% 27%   

10 236 150 708 38% 21%   
11 381 232 1186 64% 36%   
12 343 245 1118 60% 25%   
13 201 134 610 33% 17% F 
14 175 126 577 31% 13% F 
15 316 211 1016 55% 26%   
16 232 180 742 40% 14% F 
17 93 46 250 13% 11% F 
18 231 197 813 44% 11% F 
19 421 350 1425 77% 21%   
20 356 251 1179 64% 27%   
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The second column of Table 27 contains the number of upper-group examinees who 

answered the item correctly (out of 471: 464 + 7 ties at the lower bound), the third 

column contains the number of lower-group examinees who answered the item correctly 

(out of 515: 464 + 51 ties at the upper bound), and the fourth column contains all those 

who answered the item correctly (out of all 1,856 examinees). The fifth column 

represents the item difficulty (p) and the sixth column represents the discrimination (D) 

between the upper and lower groups. Items were flagged when they exhibited low 

discrimination values (D < 0.20) and/or when items were excessively easy or difficult 

(𝑝   ≤   0.20  or  𝑝 ≥   0.80). Using these criteria, 35 of the 70 items were flagged, a full half 

of the test (see Appendix D.1 for the full item-analysis table). 

 

5.4.2 CTT (Point Biserial) 

The second analysis performed on this set of resampled data is examination of the 

point-biserial correlations between individual test items and the overall test. Recall that 

while there is no firm benchmark for acceptable levels of point-biserial correlation, 

convention within the language-testing field suggests a correlation of at least 0.20 is 

acceptable.  
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Table 28.  Excerpt of item analysis based on point-biserial correlations 
Item rpb Flag 

1 0.10 F 
2 0.27   
3 0.22   
4 0.19 F 
5 0.10 F 
6 0.23   
7 0.21   
8 0.28   
9 0.21   

10 0.16 F 
11 0.29   
12 0.20   
13 0.14 F 
14 0.11 F 
15 0.21   
16 0.11 F 
17 0.13 F 
18 0.09 F 
19 0.19 F 
20 0.23   

 

As shown, 10 of the first 20 items were flagged for having item-test correlations below 

0.20. Overall, a staggering 42 of the 70 items were flagged for having insufficient point-

biserial correlations (see Appendix D.2). 

 

5.4.3 Rasch/1PL 

Item analysis within the Item Response Theory (IRT) framework was also 

conducted. The first of these analyses was application of the 1-parameter logistic (1PL) 

model, or more specifically, the Rasch equivalent of the 1PL (see Section 2.1.3.3.1 of the 

literature review for additional detail). For the Rasch model, the decision criterion for 

item acceptability is a Z-standard value at or below 2.0, as suggested by Linacre (2002).  
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Table 29.  Excerpt of item analysis for the Rasch/1PL model 

Item b 
Infit Exact Match 

Flag MnSq Zstd Obs% Exp% 
1 -0.80 1.02 1.21 68.5 68.5   
2 0.40 0.97 -2.83 62.8 60.9   
3 0.47 0.98 -1.26 62.6 62.0   
4 0.48 1.00 -0.36 61.9 62.2   
5 0.43 1.03 2.20 60.4 61.4 F  
6 0.40 0.98 -1.60 62.2 61.0   
7 -0.61 0.99 -0.94 64.8 64.4   
8 0.34 0.96 -3.48 63.4 60.1   
9 -0.07 0.99 -1.11 59.6 57.8   

10 0.49 1.01 0.54 61.7 62.4   
11 -0.60 0.96 -2.89 65.6 64.2   
12 -0.44 0.99 -0.47 61.5 61.4   
13 0.73 1.01 0.69 67.0 67.0   
14 0.82 1.02 1.04 68.8 68.8   
15 -0.20 0.99 -1.06 59.9 58.6   
16 0.42 1.02 1.99 59.4 61.2   
17 1.91 1.00 -0.01 86.5 86.5   
18 0.25 1.03 3.31 55.4 59.1 F  
19 -1.24 0.99 -0.38 76.9 76.8   
20 -0.58 0.98 -1.30 64.9 63.9   

 

As shown, only two of the first 20 items of the test were flagged for having excessive Z-

standard values. Moreover, only seven of the 70 total items were flagged as faulty by the 

Rasch/1PL model (see Appendix D.3), an outcome quite surprising given the large 

number of items flagged by the other models for this data set. 

  

5.4.4 IRT 2PL 

 The IRT 2-parameter logistic (2PL) model was also applied to the data. As with 

the other two sets of analyses, the difficulty (b) and discrimination (a) parameter 

estimates were used as the basis for examining item fit. As a reminder, unacceptably low 

discrimination (a < 0.30) and/or unacceptably low or high difficulty parameter 
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estimations (b < -3.0 or b > 3.0) were the benchmarks used in the analysis. Table 30 

portrays an excerpt of the item analysis findings for the 2PL model. 

 
Table 30.  Excerpt of item analysis for the 2PL model 

Item a b Flag 
1 0.177 -2.559 F 
2 0.340 0.680   
3 0.261 1.028 F 
4 0.206 1.306 F 
5 0.149 1.560 F 
6 0.280 0.826 F 
7 0.264 -1.351 F 
8 0.348 0.571   
9 0.228 -0.185 F 

10 0.194 1.417 F 
11 0.393 -0.942   
12 0.238 -1.083 F 
13 0.206 1.994 F 
14 0.185 2.448 F 
15 0.235 -0.518 F 
16 0.147 1.545 F 
17 0.303 3.644 F 
18 0.130 1.024 F 
19 0.313 -2.342   
20 0.285 -1.210 F 

 
 

As shown, virtually every item is identified as misfitting when the 2PL model is applied. 

Sixteen of the first 20 items and 54 of the 70 total items were flagged, an obvious 

problem with respect to model fit. See Appendix D.4 for the complete item-analysis table. 

 The Test Information Function (TIF) for the 2PL model is depicted in Figure 38, 

which as a reminder is a graphical representation of how much information about 

examinee performance the test is providing at each level of theta. For this resampling of 

the data, maximum information is 2.899 at 𝜃 = -1.350. 
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Figure 38.  Test Information Function of the 2PL model 
 
 

Figure 39 portrays the Conditional Standard Error of Measurement (CSEM), 

which again is the inverse of the TIF. For the 2PL model, the minimum CSEM is 0.587, 

achieved at 𝜃 = -1.350. As shown, there is an enormous amount of error at each level of 

theta, which of course is not surprising given how poorly the model fits the data. 

Figure 39.  CSEM of the 2PL model 
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 Figure 40 displays a graph of the Test Response Function (TRF) for the 2PL 

model. As explained in Chapter 3, the TRF portrays the proportion or number of items 

examinees are predicted to answer correctly at each level of theta. The left Y-axis 

represents the predicted proportion correct and the right Y-axis represents the predicted 

number correct at any given level of theta. 

Figure 40.  Test Response Function for the 2PL model 
 

As shown, the TRF is further confirmation the 2PL fits the data poorly. There is very 

little discrimination among examinees across the entire distribution, as evidenced by the 

very flat slope of the function at all levels of theta. 
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 Figure 41 is the scatterplot of the difficulty (b) by discrimination (a) parameters 

for the 2PL model.  

 

Figure 41.  Scatterplot of difficulty (b) by discrimination (a) 
 

Once again, the broken horizontal line inserted into the scatterplot crosses the Y-

axis at the minimum acceptable level of discrimination for the model (a = 0.30). As 

mentioned, 54 of the 70 test items have unacceptably low discriminatory power and/or 

are unacceptably easy or difficult when the 2PL model is fit to the data.  

The broken vertical line that crosses the X-axis at 𝜃 = 0  was added to break the 

graph into quadrants to further illustrate how items are functioning in the 2PL model. Of 

particular note once again is item 36 (the most extreme outlier in the upper left quadrant). 

As was the case in the analysis of the full data set and this restricted-range data set, Item 

36 exhibits the greatest discriminatory power of all the items (a = .707) despite being one 

of the easiest (b = -2.200). Moreover, easier items in general exhibit greater 

discriminatory power than more difficult items, which is evidenced by the slight negative 

correlation between the two parameters (r = - 1.93). It also concurs with the theta where 
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maximum information is obtained (𝜃 = -1.350). Given that the cut score for the 2PL 

model for these data occurs near 𝜃 = 0.604, this bias toward more information being 

available at the easier end of the difficulty contiuum continues to be problematic. This 

finding is confirmed by the distribution of b-parameter estimates as shown in Figure 43.  

 

Figure 42.  Histogram of the b-parameters of the 2PL model 
 

As shown, the majority of items are in the left half of the distribution, confirming the fact 

that maximum item information can be found at lower levels of theta (i.e., among the 

easier items on the exam).  
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5.4.5 IRT 3PL 

 The final model applied to the restricted-range data set is the IRT-3PL model. 

Table 31 portrays an excerpt of the item analysis findings for this model application. 

 
Table 31.  Excerpt of item analysis for the 3PL model 

Item a b c Flag 
1 0.207 -0.696 0.275 F 
2 0.604 1.312 0.225   
3 0.483 1.814 0.235   
4 0.440 2.162 0.250   
5 0.405 2.636 0.287 K 
6 0.505 1.600 0.234   
7 0.357 -0.110 0.259   
8 0.581 1.250 0.225   
9 0.356 1.071 0.254   

10 0.444 2.255 0.257   
11 0.515 -0.115 0.248   
12 0.331 0.269 0.261   
13 0.544 2.515 0.250   
14 0.510 3.060 0.254 F 
15 0.369 0.737 0.257   
16 0.377 2.745 0.285 K 
17 0.838 3.359 0.138 F 
18 0.279 2.624 0.271 F 
19 0.374 -1.272 0.266   
20 0.370 -0.054 0.259   

 

As a reminder, the 3PL model estimates three parameters: difficulty (b), discrimination 

(a), and pseudo-guessing (c). In this case, low discrimination estimates (a < .30), 

excessively easy or difficult items (b < -3.0 or b > 3.0), and/or excessively high guessing-

parameter estimates (c > .40) all trigger flags. In addition, some items that have highly 

unexpected response patterns can trigger a flag, denoted by K, for a possible keying error. 

As shown in Table 31, six of the first 20 items were flagged when the 3PL model 

was applied, two of which for possible keying errors (Items 5 and 16). This is actually not 

the case, thereby indicating badly misfitting items. It appears the correlation for each is 
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very low, presumably because the items are quite difficult and just could not correlate 

well within ability parameters because of such a restricted range of abilities. See 

Appendix D.5 for the complete item-analysis table. 

As with all IRT analyses, additional information is available to describe/portray 

model fit. Figure 43 is a graph of the Test Information Function (TIF) for 3PL model. 

Recall the TIF is a graphical representation of how much information the test is providing 

at each level of theta. Maximum information is 4.178, achieved at 𝜃= 2.050. 

Figure 43.  Test Information Function of the 3PL model 
 

The inverse of the TIF is the Conditional Standard Error of Measurement (CSEM) 

Function, and it illustrates the amount of error in theta estimation for each level of theta.  

In this case, the minimum CSEM is 0.489, achieved at 𝜃= 2.050, as shown in Figure 44. 
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Figure 44.  CSEM of the 3PL model 
 

Figure 45 is a graph of the Test Response Function (TRF) for 3PL model. Recall 

that the TRF predicts the proportion/number of items examinees will answer correctly as 

a function of theta. The left Y-axis represents the anticipated proportion correct while the 

right Y-axis represents the anticipated number correct. 

Figure 45.  Test Response Function of the 3PL model 
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As is the case with the 2PL model, the TRF illustrates that the 3PL model does not fit the 

restricted-range data as well as it did the other two data sets. For example, the slope of 

the TRF is comparatively flat (c.f., Figure 25). Nevertheless, the model does appear to 

discriminate best toward the upper end of the theta continuum, a finding confirmed by the 

theta at which maximum information was achieved (𝜃 = 2.050). This is generally positive 

since the cut scores across analyses tend to be at high levels of theta. 

 To investigate model fit from a different perspective, Figure 46 depicts the 

scatterplot of the difficulty (b) by discrimination (a) parameter estimates. 

Figure 46.  Scatterplot of difficulty (b) by discrimination (a) 
  

To maintain continuity with the other scatterplots contained in this dissertation, a 

broken horizontal line was inserted into the scatterplot that crosses the Y-axis at the 

minimum level of discrimination considered acceptable (a = 0.30). The broken vertical 

line that crosses the X-axis at 𝜃 = 0  was added to break the graph into quadrants to 

further illustrate how items are functioning in the 3PL model. As shown, many more 

items fall below the level of acceptable discrimination in this application of the 3PL than 
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in the previous two. Nevertheless, a greater number of well-discriminating items are 

relatively difficult, which again is desirable given the location of the cut score (𝜃 = .715). 

The slightly positive slope of the regression line (the solid line, r = 0.01) further confirms 

the finding that more difficult items are discriminating better than easier items. This 

differs from the 2PL model, where a greater number of easy items discriminate better. A 

comparison of Figures 42 and 47 demonstrate this trend between the two models.  

Figure 47.  Histogram of the b-parameters of the 3PL model 
 

5.5 Summary of Analyses 

In an effort to synthesize the respective outcomes of each item analysis, Table 32 

is a summary of the items flagged as faulty according to each model’s criteria.  

Table 32.  Summary of the items flagged across models 
Model CTT (Kelley) CTT (Pt Bis) Rasch/1PL 2PL 3PL 

Flagged Items 

1 1   1 1 
      3   
  4   4   
5 5 5  5 5 
      6   
      7   
      9   
  10   10   
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      12   
13 13   13   
14 14   14 14 
      15   

16     16 16 
17     17 17 
18    18 18 18 
      20   

21 21   21   
22 22   22 22 
23 23   23   
24 24   24   
  25   25 25 

26 26   26 26 
  27   27   

28         
  29   29   
  30   30   

31 31   31 31 
32 32  32 32   
33 33   33   
34 34  34 34   
35 35  35 35   
36 36   36   
37 37  37 37   
  38   38   

39 39   39   
40 40   40 40 
41 41   41   
42 42   42   
      45   

46 46   46   
  47   47 47 

47 48   48 48 
49 49   49 49 
50         
  51   51   
  52       
  54       

55 55   55   
57 57 57  57 57 
58 58   58 58 
61         
      62   
  63   63   
      64   

65 65   65 65 
66 66   66 66 
  68   68   

69 69   69 69 
      70   

# Flagged 35 42  7 54 19 
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As shown, the two Classical Test Theory (CTT) item-analysis methods identified half or 

more of the items as faulty. Application of the 2PL model led to even greater misfit, with 

a staggering 54 of 70 items flagged, almost all of which were due to insufficient 

discrimination parameter estimates. Interestingly, the Rasch model only identified seven 

items as misfitting, which is the fewest not only among the models applied to these data, 

but among all model applications across all data sets. While there could be other reasons 

this is the case, it is likely due to the fit-decision criterion (Z-std > 2.0). As shown in 

Table 30, Items 2, 8, and 11 also “misfit” the model in that they fit too well (are overly 

predictable). It appears that if items were flagged for both underfitting and overfitting the 

model (Z < 2.0 and Z > 2.0) as is the case with other models, the number of flagged items 

would greatly increase for the Rasch/1PL model.  

Regardless, the trend of much large numbers of items flagged with these data 

indicates model fit quickly broke down when the range of scores became narrower. This 

is particularly troubling considering admit-reject decisions for this entrance exam revolve 

around a very narrow slice of the distribution, far narrower in range than the range of data 

included in this second resampling analysis. Recall that classification accuracy really is 

only a function of a narrow band of scores along the distribution, given that the majority 

of examinees will either “pass” (be admitted) or “fail” (be rejected) regardless of the 

item-analysis method employed because of how far their scores are from the cut line. 

This substantial degradation of model fit as range narrows will be discussed in Chapter 6 

as it relates to the classification-accuracy decisions to be made for these data. 

As delineated in Chapters 3 and 4, another means of model comparison is 

examination of the cross-tabulation values of each model pair. As a reminder, cross-
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tabulation values indicate the level of agreement (classification consistency) between 

model rankings of examinee scores. Table 33 is a summary of the cross-tabulations for 

each of the models relative to the baseline raw scores for this restricted-range data set. 

Table 33.  Classification consistency across models 

  
Raw Score Classification 

Admit Reject Consistency 

CTT (Kelley) 
Admit 375 58 

91.7% 
Reject 96 1327 

CTT (PtBis) 
Admit 347 58 

90.2% 
Reject 124 1327 

Rasch/1PL 
Admit 384 75 

91.3% 
Reject 87 1310 

IRT 2PL 
Admit 365 40 

92.1% 
Reject 106 1345 

IRT 3PL 
Admit 383 22 

94.1% 
Reject 88 1363 

 

As shown, each alternate model classifies 90-94% of the examinees consistently, which is 

about 3-5% lower than was the case with the other two data sets (see Tables 11 and 22). 

In other words, anywhere from 110 (in the Raw-3PL comparison) to 182 (in the Raw-

Point-Biserial comparison) of the 1,856 examinees are classified differently. More 

specifically, the alternate-model outcomes would lead to a rejection of 87 to 124 more 

examinees than would the raw-score method, while they would lead to the admittance of 

22 to 75 more examinees than would the raw-score method. 

 One other comparison of classification consistency between model pairs 

considered here is the Kappa statistic. Table 34 illustrates the Kappa values for each 

pairwise comparison. 
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Table 34.  Kappa statistics of each pairwise model comparison 
Pairwise Comparison Statistic Std Dev Approx T Approx sig 

Raw-CTT (Kelley) 0.775 0.017 33.437 0.000 

Raw-CTT (Pt Bis) 0.751 0.018 32.297 0.000 
Raw-Rasch/1PL 0.768 0.017 33.074 0.000 

Raw-IRT 2PL 0.782 0.017 33.864 0.000 

Raw-IRT 3PL 0.836 0.015 36.189 0.000 
 

As shown, all pairwise comparisons exhibit statistically significant Kappa values 

(𝑝   < .001), but unlike the other two sets of analyses, all but the IRT-3PL model has a 

Kappa value below what is considered acceptable (𝜅 ≥ 0.8). Note too that the Rasch/1PL 

model exhibits poorer agreement than the IRT-2PL model despite having identified far 

fewer items as misfitting. Taken together, these Kappa values illustrate the number of 

problems this restricted-range data set creates for this set of test items. 

 

5.6 Test of IRT Assumptions 

 Given that the data for this third data analysis is contrived and fails to 

approximate a normal distribution, the application of some of the item-analysis methods 

used in this section is probably inappropriate. Nevertheless, to maintain consistency 

across analyses, the IRT assumptions were tested once again. Below is a summary of the 

findings of each test. 

 

5.6.1 Test of Unidimensionality 
 
 As with the other data analyses, confirmatory factor analysis was run using 

structural equation modeling (SEM) to determine whether one factor alone could account 

for the majority of variance among examinee scores. Figures 48 and 49 illustrate the 1- 

and 2-factor models created, as well as their standardized factor loadings. 
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Figure 48.  1-factor SEM of the restricted-range data 
 
 
 
 

Figure 49.  2-factor SEM of the restricted-range data 
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Once again, the models fit similarly, indicating there is no advantage to modeling two 

latent traits (factors) rather than only one. English proficiency (Prof) as a single factor 

loads equally well (even slightly better) on the four observed measures than do the two 

hypothesized factors (.35 > .34 on the reading-comprehension section, .32 > .31 on the 

cloze section, .34 . > .33 on the synonyms section, and .31 > .30 on the error-

identification section, respectively). As a result, it seems reasonable to conclude the 

underlying factor being measured is sufficiently unidimensional to justify application of 

IRT to the data, at least with respect to this one assumption. Of course, this finding is 

relative and says nothing about the overall fit of either model. As it happens, both models 

failed to converge, indicating they fit the data extremely poorly. This is confirmed by 

their respective Chi-square statistics (CMIN/DF), shown in Table 35. 

Table 35.  Chi-square comparison of CFA models 
Model NPAR CMIN DF p CMIN/DF 
1-Factor 12 9.525 2 .009 4.762 
2-Factor 13 9.312 1 .002 9.312 

 

As shown, both Chi-square statistics are statistically significant (p = .009 and p = .002), 

which means the null hypothesis that the models fit the data must be rejected. This 

finding is not surprising given how many items the item-analysis methods identified as 

misfitting, but it remains disconcerting, as will be explained in the next chapter. 
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5.6.1 Test of Local Item Independence 
 

To complete the analysis of IRT assumptions, SCORIGHT (Version 3.0) was 

once again employed to examine the magnitude of any testlet effects on the test (see 

Sections I, II, and III of the test in Appendix A). Table 36 illustrates the testlet effects as 

reflected by the variance in gamma (a parameter measuring examinee-testlet interaction). 

 
Table 36.  Estimated gamma variances 

Testlet Variance SE 
1 0.3647 0.1718 
2 0.3248 0.1310 
3 0.4274 0.3512 

 

As shown, the gamma variance of each testlet is considerably lower for this restricted-

range data than for the other two data sets. While a positive finding on the surface, this is 

probably due more to the level of noise among the data than a truly smaller testlet effect. 

Testlet 3 illustrates this point, where the standard error of the variance (SE = .3512) is 

nearly as large as the statistic itself (Variance = .4274). As a result, it is questionable 

whether one could claim the assumption of local item independence is satisfied by these 

data. Regardless, it is clear from all three data sets that the size of the testlets included in 

the exam (15 items, 20 items, and 15 items, respectively, and 50 of the 70 items overall) 

is a structural problem that should be addressed by the examination-creation committee, a 

recommendation explored in greater detail in the next chapter. 
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6  Discussion 

As described in Chapters 3 through 5, a set of five item-analysis methods was 

applied to three sets of data to determine how test outcomes might change across methods. 

Following is a discussion of the cumulative findings with respect to the six research 

questions identified in Section 1.3 of this dissertation. 

6.1 Research Question 1 

Do the item-analysis methods prescribed by Classical Test Theory (CTT) and 
Item Response Theory (IRT) identify any test items as faulty/misfitting, and if so, 
do they identify the same items? 

 
The answer to the first half of this question is yes. Analysis of all three data sets 

yielded similar results, meaning each item-analysis method flagged several items. 

However, the answer to the second half of the question is no. As illustrated throughout 

the analyses, both the number and the nature of items flagged varied quite considerably 

among the methods. Recall that the IRT-3PL model flagged the least number of items 

during analysis of the full data set (only 10 of the 70), whereas the IRT-2PL model 

flagged more than twice as many (23). Moreover, only eight items were flagged by all 

five models, while several items were flagged by only one of the models. The same is 

true for the random-80% data set, where the 3PL model flagged nine items overall but the 

2PL model flagged three times as many (27). Additionally, only six items were flagged 

across all of the models, but many more were flagged by only one of the models. Finally, 

with the restricted-range data set, differences in item flagging varied the most, where 

only two of the 70 items were flagged by every model despite the fact a staggering 54 

items were flagged by the 2PL model. Clearly, model choice greatly influences which 

items are flagged as faulty.  
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It is important to note, however, that both the number and nature of items flagged 

by each model is a function of the decision criteria applied to the output of that model, 

criteria that are somewhat arbitrary in nature. As explained elsewhere, the language-

testing field commonly considers a point-biserial correlation of 0.20 or greater as 

acceptable, Linacre (2002) suggested a Z-standard infit value of less than 2.0 as 

acceptably fitting, and Xcalibre has its default flag specifications set to a minimum a-

parameter of 0.30, b-parameters between -3.0 and 3.0, and a maximum c-parameter of 

0.40. All of these decision criteria lack theoretical motivation and are subject to change. 

For example, if items that “overfit” the Rasch model (i.e., are too predictable, with Z-

standard infit values < -2.0) are also excluded from scoring – a decision criterion as 

sound theoretically as removing only underfitting items – then an additional 13 items 

would have been found faulty with the full data set analyzed in this study. As a result, 

these findings must be tempered by the fact that they are a function of the chosen 

decision criteria and that model outcomes would change were different criteria applied.  

 
6.2 Research Question 2 

Does the identification of misfitting items influence the classification consistency 
of examinee scores across methods? 

 
 While the answer to the first research question is important in itself, if ultimately 

there is no impact on the ordinal ranking of examinees, there really is no consequence 

(nor benefit) of applying one particular scoring method instead of another for these 

particular data. In fact, given that the various methods flagged such different item sets, it 

could be argued that the raw-score method is as valid as any of the other scoring methods. 

However, as shown in each of the data-analysis chapters, each item-analysis method 
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identified anywhere from 4-9% of examinees that would have been classified differently 

had it been employed instead of the raw-score method. This finding is troubling. Despite 

the widely varying nature and number of items flagged across models, the number of 

students who would be displaced by each model is similarly large: 105-130 of the 2,320 

examinees would be classified differently in the full data set, 74-119 (of 1856) in the 

random-80% data set, and 110-182 (of 1856) in the restricted-range data set. These 

displacements result in Kappa statistics ranging from good (e.g., 3PL/Full Data Set: 

𝜅 =    .851) to relatively poor (e.g., Point-Biserial/Restricted-Range Data Set: 𝜅 =    .751), 

suggesting displacement is indeed a concern with these data sets. 

 Similar variation in displacement is also evident when the alternate item-analysis 

methods are compared to each other. Table 37 illustrates the amount of variation present 

between/among the methods themselves.  

 
Table 37.  Cross-tabulation results between/among methods 

 
CTT (Kelley) CTT (Pt Bis) Rasch/1PL IRT 2PL IRT 3PL 
Reject Admit Reject Admit Reject Admit Reject Admit Reject Admit 

 CTT (Kelley)  
Reject  1,874   0     1,829   58   1,840   47   1,815   72   1,827   60  
Admit  0     446   45   388   63   370   99   334   88   345  

 CTT (Pt Bis)  
Reject    1,886   0     1,853   21   1,809   65   1,822   52  
Admit            0     434   50   396   105   341   93   353  

 Rasch/1PL  
Reject      1,903   0     1,823   80   1,835   68  
Admit      0     417   91   326   80   337  

 IRT 2PL  
Reject        1,914   0     1,888   26  
Admit        0     406   27   379  

 IRT 3PL  
Reject          1,915   0    
Admit          0     405  

 
 
As shown, the IRT 2PL-3PL model comparison exhibits the most consistency of all 

pairwise comparisons, where “only” 53 examinees would have been displaced (26 would 

have been admitted with the 3PL method but would have been rejected by the 2PL 

method, while 27 would have been admitted with the 2PL but not the 3PL). On the 
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opposite end of the spectrum, there is a displacement of 170-171 examinees between the 

2PL model and the CTT and Rasch methods, respectively. These findings seem to 

indicate that the differences in items flagged by each method do indeed impact the 

classification consistency of examinee scores. This conclusion is reinforced by the Kappa 

values of the pairwise comparisons of all methods. 

Table 38.  Levels of agreement between methods 
Pairwise Comparison Kappa 
 Kelley-Point Biserial  0.855 
 Kelley-Rasch  0.842 
 Kelley-2PL  0.751 
 Kelley-3PL  0.785 
 Point Biserial - Rasch  0.899 
 Point Biserial-2PL  0.756 
 Point Biserial-3PL  0.791 
 Rasch-2PL  0.747 
 Rasch-3PL  0.781 
 2PL-3PL  0.921 

 
 
As shown in Table 38, the 2PL-3PL pairwise comparison exhibits the greatest level of 

agreement (𝜅 = .921), while the lowest levels of agreement are between the 2PL model 

and the other methods (Kelley-2PL: 𝜅 = .751, Point Biserial-2PL: 𝜅 = .756, Rasch-2PL:  

𝜅 = .747). The 3PL model also exhibits relatively weak levels of agreement with the other 

methods (Kelley-3PL 𝜅 = .785, Point Biserial-3PL 𝜅 = .791, and Rasch-3PL 𝜅 = .781), 

demonstrating that the two IRT models generate substantially different outcomes than the 

CTT and Rasch methods when applied to these data.  

 To summarize, the identification of misfitting items not only influences the 

classification consistency of examinee scores when comparing item-analysis methods to 

the baseline raw-score method, but also when comparing the methods to each other. This 

is an important finding, one that reinforces the importance of the decision regarding 

which method to apply to a testing context. Stated differently, this finding is of concern 
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because of its implications with respect to wrongly admitting or rejecting examinees due 

either to the absence of item analysis or to a mismatch of item-analysis method and data. 

 
6.3 Research Question 3 

Which item-analysis method is likely to lead to the highest level of classification 
accuracy given the nature of the test data? 

 
 As explained, there is clear evidence each item-analysis method yields results 

substantially different results from the raw-score method when it comes to the ordinal 

ranking of examinees. However, because each of the methods also yield results different 

from each other, it is necessary to determine which of these methods is likely to yield the 

greatest classification accuracy for these data. Note, however, that only a narrow slice of 

the examinee pool is affected by the application of different scoring methods, so 

classification accuracy really is concerned only with this portion of the candidate pool 

rather than the pool at large. In other words, the majority of examinees will be admitted 

or rejected consistently regardless of the scoring method employed, so it is only those 

examinees whose scores falls close enough to the cut score that they may be admitted in 

some cases and rejected in others. To get a sense of the number of examinees whose 

scores might be affected by the choice of item-analysis method, Table 39 portrays two of 

the most extreme classification discrepancies within the random-80% data set. 

Table 39.  Examples of examinee misclassification 
  

 
Examinee A  Examinee B  Placement 

Variance  Method  Cut Score Score Rank Score Rank 

 Raw Score  44.0000   43.0000  T-426  45.0000  T-310 116 
 CTT-Kelley   33.0000   34.0000  T-305  31.0000  T-513 -208 
 CTT-PB   0.5200   0.8200  T-188  0.2500  T-580 -392 
 Rasch-1PL   0.4700   0.7800  T-222  0.1800  T-650 -428 
 IRT-2PL   0.7465   1.1436  243  0.4530  567 -323 
 IRT-3PL   0.7565   1.1407  210  0.4934  577 -367 
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As shown, Examinee B would have been admitted using the raw-score method (Raw 

Score = 45, Cut Score = 44), but Examinee A would have been rejected (Raw Score = 43, 

Cut Score = 44). Under every other scoring method, however, Examinee B would have 

been rejected and Examinee A admitted. The displacement in ordinal ranking is non-

trivial too, with up to a 428-place difference between the two examinees under the Rasch 

method, compared to only a 116-place difference under the raw-score method. While 

these two examinees are among the most extreme cases, 300-400 candidates attained 

scores close enough to the cut score where their fates rest solely on the choice of scoring 

method. Table 40 illustrates an example of this method-choice variance. 

Table 40.  Example of examinee classification variance  
  

 
Examinee C 

 Method  Cut Score Score Rank 
 Raw Score  44.0000   43.0000  T-426 
 CTT-Kelley   33.0000   32.0000  T-431 
 CTT-PB   0.5200   0.4300  T-429 
 Rasch-1PL   0.4700   0.5700  T-342 
 IRT-2PL   0.7465   0.7150  421 
 IRT-3PL   0.7565   0.7733  399 
 
As shown, Examinee C would be rejected if the raw-score method, either of the CTT 

methods, or the IRT-2PL model were employed but admitted if either the Rasch-1PL 

model or IRT-3PL model were employed. This is very disconcerting, particularly because 

several hundred examinees would be classified differently depending on the scoring 

method employed. As a result, it is critical administrators identify and employ the scoring 

method most likely to lead to the highest classification accuracy for this testing context. 

Unfortunately, no language-testing body provides any guidance on how administrators 

can make this decision, and because many of these administrators are not language-

testing experts themselves, they are ill equipped to make the determination on their own. 
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Therefore, while it is important to note there is no definitively correct answer with 

respect to which method would achieve the highest classification accuracy for this 

particular context, there are defensible criteria against which each method can be 

evaluated. Below is a description of the decision-making process applied here to illustrate 

which of the item-analysis methods previously described would likely to lead to the 

highest classification accuracy for this testing context. In brief, pairwise comparisons are 

made in sequence from the least-sophisticated scoring method to the most-sophisticated 

scoring method, with a decision being made at each stage until only one method remains. 

 

6.3.1 Raw-Score vs. CTT (Kelley) 

 As illustrated throughout this study, the raw-score method lacks validity despite 

the fact it is arguably the most widely used scoring method in the language-testing field. 

Validity aside, the lack of granularity in the raw-score scale is problematic for these data 

in terms of admissions overflow. Recall that strict admissions criteria are in place to 

ensure students have adequate access to faculty, libraries, cafeterias, and other on-campus 

facilities. Because of the crude scale of the raw-score method, the university must offer 

admission to more examinees than desired to avoid a shortage of enrollees, but doing so 

could result in accreditation sanctions. Equally importantly, offering admission based on 

raw scores will likely lead to a reduction in the overall quality of instruction, not only 

because larger classes/higher student-to-teacher ratios reduce the amount of instruction 

available to each student, but also because faculty will likely have to accommodate less-

qualified students during class, thereby reducing the amount of level-appropriate 

guidance and instruction available to examinees who entered the university fully 
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qualified. In short, the application of a more fine-grained scoring method would not only 

be more defensible theoretically, it would if nothing else yield an important practical 

benefit. For this reason, Kelley’s D would be preferred to the raw-score method.  

 

6.3.2 CTT (Kelley) vs. CTT (Point-Biserial) 

 As application of the CTT-Kelley method is a vast improvement over the raw-

score method, so too is the application of point-biserial correlations over Kelley’s D. The 

primary reason for this improvement is because the entire population sample is included 

in the analysis when calculating point-biserial correlations rather than only 50-54% of the 

sample when Kelley’s D is calculated (the upper and lower 25-27% groups of the 

distribution). At the very least, including the entire examinee population in the 

calculation of item effectiveness has greater face validity, but it also seems 

mathematically more valid because more data are included in the analysis. The only 

potential downside to choosing point-biserial calculations over Kelley’s D is that they are 

more complex and time-consuming to calculate when calculated manually. However, 

there are numerous relatively inexpensive user-friendly software programs (e.g., SPSS, 

SAS) that can calculate point-biserial correlations quickly. As a result, using point-

biserial correlations as the basis for item removal would be preferable to Kelley’s D for 

these data (and really any data where there is one continuous variable and one 

dichotomous variable). 
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6.3.3 CTT (Point-Biserial) vs. Rasch/1PL 

 Because IRT models can extract a greater amount of item information from data 

than simpler item-analysis methods like those within CTT, it would seem they would 

always be superior to CTT methods. However, the Rasch/1PL model in particular poses a 

challenge to this general rule because of its confirmatory perspective. As a reminder, 

Rasch models require data to fit the model, so any misfitting data should be discarded 

from the analysis. The problem for this particular testing context is that the discarding of 

data would include not only misfitting items but also misfitting examinees, of which there 

are over 100 in the full data set. This poses two problems. The first is how these 

examinee scores should be evaluated with respect to all of the other examinee scores 

given that it would be unethical to remove them from admissions consideration merely 

because they misfit the Rasch model. The second problem is the philosophy of the Rasch 

model itself. As Yen (2006) explained, many test developers believe it is inappropriate 

for a scaling model to be the driving force in test construction, as is the case with the 

Rasch model (p. 124). In this case, the Rasch philosophy certainly seems to go against the 

collective belief of the test developers given how much time university faculty spend 

creating the exam year after year. As a result, it would seem unlikely these stakeholders 

would accept the Rasch model as a legitimate scoring method, thereby leaving point-

biserial correlations as a better alternative despite the additional item information gleaned 

from application of the Rasch model. 
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6.3.4 CTT (Point-Biserial) vs. IRT 2PL 

Because the two- and three-parameter logistic IRT models are exploratory rather 

than confirmatory, they lack the same ethical concern regarding the treatment of 

misfitting persons. Instead, it is merely a question of which, if either, fits the data well 

enough to justify their added complexity over relatively straightforward point-biserial 

correlations. In the case of the 2PL model, this potential gain in information does not 

appear to justify its application over point-biserial calculations. As shown in Figures 11 

and 12 (pp. 88-89), for instance, maximum information is available at a low level of theta 

for the 2PL model (Figure 11), but the cut score is at a much higher level of theta, where 

the conditional standard error of measurement is quite high (Figure 12). As a result, even 

though the 2PL model seems to fit the data reasonably well overall, it fits relatively 

poorly near the cut score, thereby diminishing its classification accuracy for the 300-400 

candidates whose scores are impacted most by the choice of scoring method. For this 

reason, point-biserial correlations remain the best item-analysis choice for these data. 

 

6.3.5 CTT (Point-Biserial) vs. IRT 3PL 

 Unlike the 2PL model, which has a lot of error around the cut score, the 3PL 

model fits the data particularly well near the cut (see, e.g., Figures 16 and 17 on pp. 93 

and 94, respectively). As a result, the 3PL model seems superior to point-biserial 

correlations as the basis for item removal given all of the additional information gleaned 

from its application. This makes sense theoretically because the 3PL model was designed 

specifically to model dichotomously scored items that do not penalize examinees for 

guessing. More specifically, the 3PL models difficulty, discrimination, and guessing, all 
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parameters likely to contribute to the item-scoring patterns of examinees taking a 

multiple-choice test that does not penalize guessing.20 The only potential drawbacks of 

applying the 3PL model here would be insufficient data, which is a non-issue, and the 

inability to compute and interpret the results. As explained elsewhere, however, modern 

software programs like Xcalibre 4.1 make barriers to use minimal, even for the 

uninitiated. In short, then, the IRT-3PL model seems to be the item-analysis method that 

will result in the highest classification accuracy for this particular test. The only question 

that remains is whether the application of any IRT model is appropriate for these data, 

which is the focus of the research questions addressed in the following two sections. 

 

6.4 Research Question 4 

Can a test designed to measure English language proficiency satisfy the IRT 
assumption of unidimensionality? 

 
 Given the classification-accuracy analysis in the preceding sections, it would 

appear the IRT-3PL model is the most appropriate method to employ among the five 

evaluated. Recall, however, that IRT modeling requires two very strong assumptions to 

be satisfied for their application to be considered valid. The first assumption is 

unidimensionality, meaning only a single latent trait is being measured. As shown in all 

three analyses (see, e.g., Figures 20 and 21, p. 100), it seems reasonable to assume 

unidimensionality is satisfied, so the answer to this research question is yes. That is, it is 

reasonable to assume a latent trait loosely termed English Proficiency is the construct 

being measured by the test. As a result, application of the 3PL model remains valid with 

respect to this assumption.  
                                                
20 On some exams, examinees are penalized for guessing, where, e.g., an additional .25 points is subtracted 
from incorrect answers as opposed to receiving only a score of 0 for unanswered items. 
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6.5 Research Question 5 

Can a test that contains testlets satisfy the IRT assumption of local item 
independence? 

 
Unlike unidimensionality, the second IRT assumption – local item independence 

(LII) – clearly was not satisfied by these data. Across all of the analyses, testlet effects 

account for 40-75% of the total variance in examinee scores. It is for this reason 

employing the 3PL model is unjustified with these data, despite all of its advantages with 

respect to modeling long dichotomously scored tests taken by large examinee pools. 

Fortunately, there is a comparable item-analysis method available, that being Testlet 

Response Theory (TRT) analysis. Recall from Section 2.1.3.4.2.1 that TRT analysis was 

created to address violations of local item independence by modeling the examinee-testlet 

interaction among items within a testlet. Mathematically, the equation is written as: 

𝑡!" = 𝑎! 𝜃! − 𝑏! − 𝛾!"(!)  

where tij represents the TRT-based ability of examinee i on item j, aj is the discriminating 

power of item j, 𝜃! is the theta-ability of examinee i, bj is the difficulty of item j, and 

𝛾!"(!) is the testlet effect (the interaction between examinee i and item j of testlet d). By 

definition, 𝛾!"(!) = 0 for all independent items. Therefore, 𝛾!"(!)  is the set of parameters 

that differentiates the TRT model from the IRT-3PL model. Otherwise, the two models 

are mathematically equivalent. 

While TRT analysis does have the disadvantage of resulting in the loss of 

information (see Figure 1, p. 36), this is of less concern for this testing context because 

the exam is single use and single administration, and because the ordinal ranking of 

examinees is the only consideration. In other words, the resulting information loss is a 
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reasonable sacrifice given that the examinee-testlet interaction of each testlet is modeled, 

which is of vital importance given how dramatically these interactions influence testlet 

scores. Table 41 contains an excerpt of the TRT item analysis performed on the full data 

set to illustrate how its outcome differs from the other item-analysis methods. 

Table 41.  Excerpt of item analysis for TRT 
Item a b c Flag 

1 0.343 -1.209 0.206   
2 0.669 0.899 0.059   
3 0.524 1.251 0.049   
4 0.550 1.657 0.127   
5 0.826 2.976 0.304   
6 0.954 1.167 0.163   
7 0.665 -0.824 0.066   
8 1.007 0.746 0.109   
9 0.642 0.107 0.060   

10 0.756 2.294 0.240   
11 0.899 -0.620 0.060   
12 0.723 -0.309 0.133   
13 1.723 1.776 0.238   
14 0.475 2.572 0.090   
15 0.445 -0.180 0.060   
16 0.491 2.883 0.202   
17 1.164 2.895 0.085   
18 0.300 1.896 0.099   
19 0.759 -1.627 0.051   
20 0.617 -0.769 0.046   

 

Of immediate note is the fact that not a single item of the first 20 was flagged for 

misfitting the model. All of the a-parameter estimates are acceptable (a ≥ .30), as are all 

of the b- and c-parameters (-3.0 < b < 3.0 and c < .40). Overall, only seven of the items 

were flagged as misfitting the TRT model, two of which had unacceptably low 

discrimination parameter estimates (Items 34 and 35), while the other five (Items 37, 39, 

41, 42 and 58) had b-parameter estimates that lay outside the acceptable range of 

difficulty. See Appendix B.6 for the complete TRT item-analysis table. 
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 By way of comparison, recall that the 3PL model identified as faulty 10 of the 70 

items when it was applied to the full data set. Interestingly, some but not all of the items 

flagged as faulty by the TRT model are the same as those identified by the 3PL model. 

For example, both models flagged Items 34, 35, 37, 41, and 58, but only the TRT model 

flagged items 39 and 42. Meanwhile, the 3PL model flagged five other items that the 

TRT model did not (Items 1, 18, 33, 49, and 57).  

Despite the relative similarities in terms of item flagging, their classification 

consistency with respect to raw scores varied, as shown in Table 42.  

 
Table 42.  Classification consistency across models 

  
Raw Score Classification 

Admit Reject Consistency 

3PL 
Admit 381 24  

95.5% Reject 81 1834 

TRT 
Admit 364 41  

94.0% Reject 98 1817 
 

Note there is a slight drop in classification consistency when the TRT model is compared 

to the 3PL model. Whereas over 95% of the examinees were classified the same between 

the 3PL and raw-score rankings, 94% were classified the same between the TRT and 

raw-score rankings. Put another way, 129 examinees were classified differently under the 

TRT model, compared to only 105 for the 3PL model. Interestingly, the 3PL and TRT 

models classified examinees quite differently between themselves, as shown in Table 43. 

 
Table 43.  Classification consistency between 3PL and TRT 

  3PL Classification 
Admit Reject Consistency 

TRT Admit 348 57 95.0% Reject 57 1858 
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This finding provides evidence that item-analysis methods not only classify examinees 

differently when compared to the baseline raw-score ranking, but also among themselves, 

even when they are similar in design and identify similar items as misfitting. In this 

particular case, the large testlet effects found in the three exam testlets undoubtedly 

explain the variance in classification consistency between the TRT and 3PL models. In 

fact, its is because of the presence of this variance that the TRT model is the one that 

seems most appropriate to employ with these data rather than the 3PL model. 

 

6.6 Research Question 6 

If both IRT assumptions can be satisfied, does classification accuracy improve 
sufficiently to justify the added computational complexity IRT modeling requires? 

 
 As demonstrated, the two IRT assumptions could not be satisfied with these data 

due to severe local item dependence among the items contained in each testlet. However, 

the TRT model, which is an extension of the IRT-3PL model, can be employed, so the 

question is whether the level of complexity inherent in the model increases the validity of 

test scores enough to justify its use over a simpler item-analysis method like CTT.  

While some of the limitations of CTT are of no concern here because the exam is 

single use and single administration (e.g., population dependence and item dependence), 

other CTT assumptions are problematic. First is the assumption of item equivalence, 

where it is assumed each item contributes equally to the measure of examinee ability, 

given that each correct response earns a score of 1 and the total score is the sum of 

correct responses. As shown, however, this clearly is not the case (see, e.g., Figure 16, p. 

93). The amount of information varies quite markedly across the distribution of ability 

levels, so it is unreasonable to score an exam where each item is given equal weight in 
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the final score. This is especially true for these data because only a small subsection of 

the population is ultimately effected by the scoring method. Put another way, extracting 

the most information possible from the items around the cut score is of utmost 

importance, so treating all of the items as if they contribute equally is indefensible. 

The second problem with resorting to a simpler form of analysis like CTT is its 

treatment of measurement error, where it is assumed the standard error of measurement 

(SEM) is constant across all ability levels. As shown throughout the analyses, this is 

decidedly not the case (see, e.g., Figure 17, p. 94). The error at each level of theta 

changes dramatically and is especially prevalent in the tails of the distribution, so it is 

important to minimize error as much as possible around the levels of theta where 

admissions decisions are made. As illustrated, this is accomplished through the 

application of more sophisticated modeling procedures like IRT 3PL and TRT. 

One final argument that could be made against application of more sophisticated 

modeling is the lack of familiarity among the university’s faculty, both in terms of 

computation and interpretation. However, this argument holds little credibility because 

modern software packages (e.g., Xcalibre for IRT, SCORIGHT for TRT) are all user-

friendly enough that users with little or no experience can learn how to run them and 

interpret the data simply by reading the respective user manual. Nevertheless, rescoring 

remains a challenge in this particular context if for no other reason than because Japanese 

universities traditionally release the full exam (with answer key) to the media soon after 

the exam is administered so examinees can calculate their scores to get a sense of how 

well they performed. Depending on the timing of the identification of malfunctioning 

items and recalculation of scores, implementation of the ILTA Guidelines could result in 
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some candidates being moved off the admissions roster after they have formed an opinion 

about their chances of being accepted. Put another way, examinees would be 

understandably disturbed if their admissions fate were changed post hoc. Nevertheless, 

scoring tests that has several faulty items included is not justifiable. As a result, TRT 

analysis should be employed over CTT analysis because of the substantial gains in 

classification accuracy, particularly around the cut score. Assuming this takes place, 

ample forewarning to all stakeholders, with a full explanation of the changes to scoring 

and the rationale for such, should help mitigate the consternation that would result from 

any post-hoc changes to the ordinal ranking of examinees. 
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7 Conclusion 
 

The impetus for this dissertation was to determine whether choice of item-

analysis method would influence the ordinal ranking of examinees who took a large-scale 

university entrance exam. As the analysis of each data set shows, it clearly does. In all 

three analyses, anywhere from 4% to 9% of the examinees were classified differently 

from their original raw-score-based classification. As a result, it seems clear that scoring 

exams using the raw-score method, especially without any item analysis, is inappropriate.  

This finding reinforces the guidance espoused by international testing-bodies like 

the International Language Testing Association (ILTA) regarding the necessity of item 

pretesting and/or post-hoc item analysis. Although one can argue about which item-

analysis method is most appropriate for this particular testing context, there is no question 

some form of item analysis is necessary. Regardless of the data set analyzed or the item-

analysis method employed, several items were flagged as faulty without fail. Moreover, it 

is argued that TRT modeling will provide the highest classification accuracy for these 

data because testlet effects are present, which prevents use of the 3PL model given the 

clear violation of local item independence.  

The only question that remains is whether administrators of this exam are willing 

to use a scoring method that is not only unfamiliar to the majority of stakeholders, but 

one that would require the current long-standing scoring system be discarded. Given that 

these exams are single use and single administration, there would be no repercussions 

with respect to past exam classifications, and future scores could be linearly transformed 

onto a scale that is more readily identifiable by the public if that would increase the 

likelihood of stakeholder endorsement. 
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Whatever the outcome of this particular exam, the findings of this study make it 

clear that ILTA and other language-testing bodies need to expand their guidelines to 

include information about the item-analysis methods available to exam scorers, as well as 

under what conditions they should be employed. Recall that current ILTA guidelines call 

for the following procedures with respect to item testing and scoring: 

The work of the task and item writers needs to be edited before pretesting. 

If pretesting is not possible, the tasks and items should be analysed after 

the test has been administered but before the results are reported. 

Malfunctioning or misfitting tasks and items should not be included in the 

calculation of individual test takers’ reported scores. (p. 2) 

While these guidelines clearly call for item analysis prior to the final scoring of tests, they 

remain devoid of guidance with respect to which item-analysis method to employ. As the 

findings of this study demonstrate, different item-analysis methods generate different sets 

of items that should be removed before scoring. The ILTA committee therefore needs to 

expand its guidelines to explain which item-analysis method should be applied to which 

contexts. Criteria for making such a decision include the number of examinees taking the 

test, the number of items on the test, the nature of the items (e.g., multiple choice, 

constructed response), the medium of delivery (e.g., computer adaptive, paper and pencil), 

the scoring method (dichotomous, polytomous, or a combination of both), the number of 

dimensions being measured, whether local item dependence is likely due to the presence 

of numerous/large testlets, and whether the items will be administered only once or on 

multiple occasions.  
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Figure 50 is a decision tree that represents an example of the type of delineation the ILTA 

committee could provide to language testers. 

 

Figure 50.  Proposed model-choice decision tree 
 
 
As shown, the most fundamental decision is whether exam scorers have the ability to run 

IRT analysis. As explained earlier, the barriers to implementing IRT analysis are 

considerably lower these days due to more user-friendly IRT software and well-written 
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supporting documentation. However, even if IRT analysis remains beyond the reach of 

exam scorers, CTT analysis at a minimum should be conducted because it is highly 

unlikely every item on a test will be functioning as intended. CTT item-analysis methods 

like Kelley’s D and point-biserial correlation are easy to compute and interpret, thereby 

ensuring tests undergo at least a rudimentary form of item analysis given the questionable 

validity of the raw-score method. 

In contexts where IRT analysis is a possibility, a whole range of item-analysis 

methods emerges. For polytomous items (e.g., items that employ partial-credit scoring or 

items whose answers are plotted along a continuum, like a Likert scale), polytomous IRT 

(PIRT) is the best choice.21 For dichotomous data, like those analyzed in this study, 

dichotomous IRT (DIRT) would be more appropriate. 

The next two decision points relate to the assumptions of IRT modeling, 

unidimensionality and local item independence. If the data are multidimensional, then 

multidimensional IRT (MIRT) analysis should be employed. If, however, the data are 

sufficiently unidimensional, as they are in this study, then unidimensionality IRT (UIRT) 

analysis should be employed. Furthermore, if local item independence is violated, then 

testlet response theory (TRT) analysis should be conducted if there are sufficient data, as 

was the case in this study. If there are insufficient data, then PIRT should be employed, 

where the items of each testlet would be scored as a super-item using partial-credit 

scoring rather than treating them as individual items scored dichotomously.22  

                                                
21 Elaboration of PIRT modeling is beyond the scope of this paper. See Yen & Fitzpatrick (2006), pp. 115-8, 
for an introduction to PIRT, as well as for addition references. 
22 The decision tree is annotated with PIRT* at this point to indicate that PIRT modeling would be the only 
means of resolving local item dependence post hoc should insufficient data exist to conduct TRT analysis. 
However, a better solution, at least long-term, would be to redesign the test to eliminate the likelihood of 
LID in the first place. The best way to achieve this is through the reduction or elimination of testlets on the 
exam, or at least a reduction in the number of items in each testlet.  
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If item responses are shown to be locally independent, then the choice of UIRT 

model must be made, which often is dictated by the number of data available. Although 

there are no absolute rules for determining the number of data required by each model, 

some minimum thresholds have been suggested, as cited in Yen & Fitzpatrick (2006): 

1PL – 20 items and 200 examinees (Wright & Stone, 1979) 

2PL – 30 items and 500 examinees (Hulin, Lissak, & Drasgow, 1982) 

3PL – 60 items and 1000 examinees (Hulin et al., 1982) 

As shown, there should be no fewer than 20 items and 200 examinees for which data are 

available if IRT analysis at any level is to be employed. Otherwise, CTT analysis should 

be employed. When the number of data does not limit model selection, however, the 3PL 

model often will be the best choice unless there is reason to believe guessing will play no 

(systematic) role in the item response patterns of examinees (e.g., if guessing is penalized 

or distracter analysis indicates no distracter is more attractive to one subset of the 

examinee population than another). If this is the case, the 2PL model will likely fit the 

data as well or better than the 3PL model. Finally, the confirmatory Rasch/1PL model 

could be employed rather than either of the exploratory 2PL or 3PL models if for some 

reason there is a philosophical reason for doing so. Otherwise, the 3PL model remains the 

most theoretically defensible choice. 

Regardless of the item-analysis method ultimately chosen, it is important to 

remember that each flagged item should be evaluated to determine the reason it is 

functioning improperly. If the reason is correctable (e.g., the correct response was mis-

keyed), then the correction should be made and scores should be recalculated. If on the 

other hand the reason is uncorrectable (e.g., a negative value for Kelley’s D), then all data 
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associated with the item should be removed before final scores are calculated. That said, 

if something precludes item removal (e.g., institutional resistance due to arguments of 

valuing content validity or test-design process over internal test reliability), it is 

recommended that both the 2PL and 3PL models be applied to determine which model 

fits the data better so that item/test information can be maximized, thereby increasing the 

validity of examinee scores.  

In addition to the creation of a decision tree, the ILTA committee should develop 

a metric to determine whether the application of an item-analysis method other than the 

raw-score method is necessary, if for whatever reason the raw-score method is preferred 

by stakeholders. It is suggested here that magnitude of displacement be the metric of 

choice, where displacement is a function of only those that would be admitted via the 

raw-score method (rather than the entire population sample) because it seems to be a 

more accurate representation of the actual magnitude of displacement. Table 44 illustrates 

the outcome of such a metric with respect to the full data set analyzed in this study. 

 
Table 44.  Displacement as a function of the total number admitted 

  
Raw Score Displacement 

Admit Reject Percentage 

CTT (Kelley) 
Admit 383 50   
Reject 79 1808 27.9% 

CTT (PtBis) 
Admit 391 51   
Reject 71 1807 26.4% 

Rasch/1PL 
Admit 376 41   
Reject 86 1817 27.5% 

IRT 2PL 
Admit 369 37   
Reject 93 1821 28.1% 

IRT 3PL 
Admit 381 24   
Reject 81 1834 27.0% 
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As shown, 26-28% of the 462 examinees admitted under the raw-score method would be 

displaced if an alternate scoring method were applied to these data. Put another way, 

more than one of every four examinees offered admission would vary if an alternate 

scoring method were employed. While there is no absolute criterion by which to decide 

whether the displacement percentage is substantial enough to justify the use of an 

alternate scoring method, certainly one in four would seem to meet such a threshold. In 

this vein, perhaps the ILTA committee could revise its guidelines to state that misfitting 

items must be removed from the calculation of scores should a certain percentage of 

examinees be affected by the application of an alternate scoring method.  

If stakeholder resistance to item removal were to remain even after a substantial 

amount of displacement were identified via the suggested analysis, it is recommended the 

ILTA committee state that either the IRT 2PL or 3PL model be employed because they 

are exploratory by design, meaning they attempt to fit the data without item removal. 

Because faulty items are also given less weight in IRT estimations of person ability, the 

retention of all items, faulty or otherwise, could be justified to some degree provided 

either/both of these models fit the data reasonably well when applied to the full item set. 

 
 

In conclusion, language-assessment specialists aiming to conduct post-hoc item 

analysis may face a number of practical challenges. One involves the cultural context in 

which the testing takes place. The belief that raw scores comprise a legitimate criterion 

for rank ordering even high-stakes candidates may be entrenched over many generations 

of testing practice. The use of post-hoc item-analysis methods to identify faulty items 

therefore may be viewed with suspicion among stakeholders, so careful introduction of 
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any of the methods described above would be a wise first step before effecting any policy 

changes. A second challenge involves exploratory analyses of existing data sets derived 

from authentic high-stakes tests. As test designs and examinee populations can be 

expected to differ across contexts, both unidimensionality and local item independence 

must be examined each time before IRT modeling is applied to the data, a practical 

challenge with respect to resource constraints. These concerns duly noted, 

implementation of any of the methods outlined previously should yield benefits that far 

outweigh their costs, in the form of substantially more valid test results. 

With respect to the university under investigation in this study, it is argued that 

university administrators have an obligation to ensure classification accuracy is 

maximized, especially given how critical university entrance is in shaping the future of 

Japanese citizens. However, they need guidance in order to achieve this goal, so ILTA 

and other governing testing-bodies have an obligation to expand their guidelines to 

include advice on how to choose the item-analysis method most appropriate for this 

context (and many others). Note too that IRT and TRT modeling should be included 

among the list of choices despite their relative complexity. While IRT modeling software 

was arcane, expensive, and not readily available even just a decade ago, this is no longer 

the case. Software applications like Xcalibre 4.1 and SCORIGHT 3.0 are all relatively 

inexpensive and user-friendly enough that users with little or no experience can learn 

how to run the analyses and interpret the output simply by following the guidance 

provided in the corresponding user manual.  
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Appendix A: Entrance Exam 
 
 [I]	
  次の英文を読み、下記の設問に答えなさい。 
 

Ever since lead was linked to health risks, the U.S. government gradually phased out the use of 
lead in gasoline and household paint, but it is still present in many products.  Makers of china, water 
faucets, and food supplements have recently gone to great lengths to reduce the amount of lead they use.  
What is remarkable is that these efforts are not the usual attempts to avoid stiff penalties associated with 
new public health rules.  Instead, they are a response to a California law requiring companies to provide 
information to the public about products that remain perfectly legal.  Corporations all over the country are 
feeling the effects of an increasingly powerful but unheralded government policy tool: mandatory 
disclosure. 

In 1986 California voters approved by a margin of two to one a ballot initiative that required 
companies to give ‘clear and reasonable warning’ whenever they exposed people to cancer-causing 
chemicals or substances toxic to the reproductive system in amounts above levels set by the state.  The 
1986 law in fact prompted few such warnings.  Faced with public shame if accused of failing to warn 
consumers, many nationally known companies reduced the public’s exposure to lead and other toxic 
poisons.  Ten china companies agreed to cut the amount of lead in their glazes by half.  Fourteen major 
plumbing-supply manufacturers agreed to produce brass pipes that were virtually lead-free.  A major food 
processing company removed lead from all of its canned food products.  Many others adopted similar 
policies about potentially dangerous products. 

It is not that the companies accepted the idea that their products posed risks to consumers.   
On the contrary, they argued that the California law in many cases unfairly emphasized risks that were 
negligible.  They found support in Professor W.K. Viscusi of Harvard Law School, who studied the law 
closely and concluded that it probably did more harm than good, by giving people a false impression of the 
real risks.  But the companies changed their products anyway.  Further, because California amounts to 15 
percent of the national market for many goods, they often changed them nationwide.  Why did the 
companies make expensive – and they believed, unnecessary – changes?  They were bowing to a newly 
potent political force: regulation by shaming. 

With politicians calling for greater ‘transparency’ in business and government and complaining 
that national standards are often costly and ineffective, mandatory disclosure is being used as one way of 
addressing social problems ranging from persistent pollution to medical errors.  Informational approaches 
to disclosure are less expensive policy tools than government regulations because citizens are informed 
directly.  The Internet provides citizens access to disclosure data and a means of turning it into useful 
information.  Citizen-consumers can then put pressure on offending companies by not buying their products. 

Some familiar kinds of disclosure requirements create economic incentives for companies to 
improve their practices: nutritional labeling on food packaging, for instance, aims to influence which 
processed foods consumers buy.  On-time ranking of airlines is designed to aid travelers in making 
informed choices.  Other requirements amount to corporate shaming.  Manufacturers listed among the 
worst polluters or accused of exploiting workers in developing countries may change their ways out of fear 
of customer boycotts, increased regulation, or community hostility.  The company’s reputation, hard to 
build and easy to destroy, is at stake. 

Mandatory disclosure has now taken its rightful place beside the power of the government to tax 
and the power to define national standards as a means of carrying out public policy.  But disclosure is no 
simple solution.  It can itself be costly and ineffective.  Requirements on companies should be approached 
with care.  Disclosure requirements are just as difficult to design and enforce as any other government 
policy. 
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設問 
本文の内容に合うように英文（１－１５）を完成する場合、最も適当なものを、それぞれ下記

（a-d）の中から 1つ選んで、その記号をマークしなさい。 
 
1.	
  Ever since lead was identified as a health risk, producers have 

a. not been very concerned with the lead reduction policy. 
b. remarked that lead products are now made in China. 
c. tried to reduce the amount of lead in their products. 
d. made considerable efforts to avoid heavy fines. 

 
2.   After the enactment of the California law, many corporations 

a. are now required to make powerful tools illegal. 
b. are required to tell consumers about what they are buying. 
c. have heralded the mandatory policy of disclosure. 
d. have had to pay stiff fines for public health policies. 

 
3. The 1986 law in fact 

a. led to many warnings about dangerous chemicals. 
b. forced companies to set reproductive limitations. 
c. warned nationally known companies of toxins. 
d. did not result in many public danger warnings. 

 
4.  Faced with exposure unless they warned customers, 

a. well-known companies took action to make their products safer. 
b. many companies faced public shame by accusing the media. 
c. major Chinese companies have cut the lead in their products. 
d. less-well known companies faced the shame of lead customers. 

 
5. One major producer of processed foods 

a. replaced lead with brass in its cans. 
b. reduced the risk of toxic poisoning. 
c. created a major health risk in China. 
d. found brass cans to be poisonous. 

 
6. Although many companies disclosed product information, 

a. they argued with consumers about the unfair risks. 
b. their lawyers emphasized that risks to companies were posed. 
c. they claimed the actual risks were in fact very small. 
d. their lawyers argued with Professor Viscusi of Harvard. 

 
7. Professor Viscusi examined the law carefully, and 

a. got strong support from California lawyers. 
b. showed that it did more good than harm. 
c. was impressed that the risks were really good. 
d. concluded that the law was not a good one. 

 
 
8. Even though the law was considered faulty, 

a. companies changed their products to avoid possible public criticism. 
b. most companies did not follow the law because it was unnecessary. 
c. products were not changed because 85% of them were sold elsewhere. 
d. many companies decided to sell their products nationwide. 
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9. Policy makers want more clarity, and believe that 
a. national standards result in best practice. 
b. social problems are solved by strong national standards. 
c. standards are frequently too expensive and not very useful. 
d. mandatory disclosure creates new problems of its own. 

 
10. By relying on media to inform consumers, politicians think that 

a. information about social problems discloses expensive tools. 
b. disclosure information is more cost-effective than national standards. 
c. information disclosure policy leads to errors. 
d. government regulations are tools proven to be effective.  

 
11. Using information technology, consumers can now 

a. directly affect companies by not buying their products. 
b. solve problems with companies using the internet. 
c. offend companies by providing direct information. 
d. inform companies about the usefulness of their products. 

 
12. Companies are motivated by disclosure laws so that 

a. they eventually lead to more processed foods. 
b. the truth about the performance of airlines is hidden. 
c. shameful disclosures help companies gain attention. 
d. disclosures also influence consumer choices. 

 
13 With the risk of corporate shaming through disclosure, 

a. a company’s reputation is helped by negative disclosure information. 
b. communities may be hostile if company reputations are regulated. 
c. increased regulation is difficult to build and easy to break. 
d. many companies change their practices to avoid problems. 

 
14. Mandatory disclosure has by now become 

a. a key public policy tool in government. 
b. standard as a means of effective tax policy. 
c. a simple solution to tax and standards problems. 
d. an effective means to set national standards. 

 
15. Mandatory disclosure might be ineffective if 

a. it leads to boycotts. 
b. not designed and implemented carefully. 
c. companies don’t agree with it. 
d. approached with too much shaming. 
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[II]	
 次の英文の空所（１ー２０）に入れるのに最も適当な語を、それぞれ下記（aーd）の中か
ら１つ選んで、その記号をマークしなさい。 
 
 Being an educator, and consequently having the souls of children in one's hands, was ( 1 ) the 
Port-Royalists the noblest profession in the eyes of God and the Church.  A fundamental part of achieving 
the general education envisaged by Saint-Cyran (i.e., Jean Duvergier de Hauranne, 1581-1643) was to ( 2 ) 
judgment.  It is here that the Grammaire Générale et Raisonée (1660), by Charles Lancelot and Antoine 
Arnauld, and other Port-Royal ( 3 ) on language begin to enter the scene as a part of the Port-Royal plan to 
develop clear thinking, as shown in the prefatory remarks to the Logique (1662) by Antoine Arnauld and 
Pierre Nicole: 'the principal task that one should have is to develop one's judgment and to make it as exact 
as possible, and it is to this end that the bulk of our studies should be directed.'  This emphasis on judgment 
also implied that one ( 4 ) follow reason rather than usage in educational methods.  One should strive to 
find the quickest, ( 5 ) methods for teaching, because effort should be spent on working with the subject 
matter rather than acquiring it. This conception of education ( 6 ) in an approach to teaching languages 
which represented a significant break with ( 7 ) methods.   
 Traditionally, students in French schools had not ( 8 ) French, as this was deemed a subject 
unworthy of attention.  ( 9 ) study had been limited to Latin and perhaps Greek, both taught via the 'direct 
method,' which meant studying the target language ( 10 ) the aid of the student's native language.  Rather ( 
11 ) being the fulfillment of any philosophical approach to teaching language, the direct method had ( 12 ) 
the one most commonly used simply by habit.  Since it was the language of education, all ( 13 ) were in 
Latin, whether the subject was medicine or religion, or Hebrew or Latin itself.  Emphasis was ( 14 ) 
memorization of grammatical rules as well as passages from classical ( 15 ), and the composition of strictly 
traditional themes.  
  In contrast, Lancelot's efforts ensured that the ( 16 ) at the Port-Royal schools was considerably 
more enlightened.  A thorough ( 17 ) in French was considered important before beginning the study of a 
foreign language.  This permitted students to make use of their native language in the study of Latin or 
Greek; written translations were ( 18 ) out from the target language to French and vice versa, thereby 
improving their skills in both languages.  Moreover, students were encouraged to seek natural forms of 
expression in translations into Latin and Greek; the exact ( 19 ) of the author were not required.  Style was 
not ( 20 ), but language was seen above all as a tool of communication. 
 
1. a. at b. in c. against d. for 
2. a. dodge b. stress c. fare d. relate 
3. a. boats b. ideas c. works d. generals 
4. a. try b. keep c. should d. never 
5. a. easiest b. hardest c. unsurest d. feudalist 
6. a. found b. altered c. spawned d. resulted 
7. a. easy b. past c. hard d. salty 
8. a. called b. studied c. clarified d. experienced 
9. a. University b. Optional c. Language d. Mathematics 
10. a. without b. whence c. from d. throughout 
11. a. often b. obviously c. than d. carefully 
12. a. seen b. been c. taken d. received 
13. a. prayers b. missals c. textbooks d. films 
14. a. to b. on c. up d. at 
15. a. authors b. architecture c. era d. cities 
16. a. chairs b. weight c. kindness d. situation 
17. a. grinder b. grain c. grounding d. grove 
18. a. lied b. taking c. won d. carried 
19. a. message b. words c. natures d. communication 
20. a. unimportant b. illustration c. illegal d. everlasting 



 

     180 

[III]	
 次の英文を読み、文脈を判断しながら、文中の下線部（１ー１５）の意味に最も近いもの
を、	
 それぞれ下記（aーd）の中から１つ選んで、その記号をマークしなさい。 
 
Searching for a land of freedom and opportunity, thousands of former slaves left the United States in the 
19th century and sailed across the Atlantic to a continent their ancestors had unwillingly left. 
 
Over the (1) decades, freed blacks settled on the west coast of Africa in what is today Liberia. They 
established a nation on July 26, 1847, and also a relationship with Africans that continues to influence 
regional politics. 
 
A colony for blacks outside the United States had been proposed several times, beginning in the 1700s, but 
it was the American Colonization Society's formation in 1817 that provided the (2) impetus to make it a 
reality. 
 
"Colonization was supposed to be sort of a (3) remedy for slavery and racial inequality in the country," said 
Claude Clegg, author of "The Price of Liberty: African Americans and the Making of Liberia." 
"Colonization was believed to be a middle ground -- you rid the nation of slavery but also rid the country of 
African Americans and the whole issue of race altogether." 
 
The Colonization Society attracted a (4) mixed bag of supporters, Clegg said. Anti-slavery Quakers 
believed blacks would only find true freedom away from the United States; many slaveholders did not want 
free blacks in the country; and some freed blacks who wished to live in their ancestral homeland supported 
the group. 
 
Still, many other freed slaves and anti-slavery activists opposed the idea of colonization, believing that 
those wishing to go to Africa should stay and fight for freedom in the United States. 
 
"Many blacks said: 'We were born here and we have every right to be here as much as any group' and 
criticized those who wanted to leave," explained Wynfred Russell, who was born in Liberia and teaches 
classes on African-American and African studies at the University of Minnesota. 
 
Five years after its formation, the American Colonization Society launched its first ship to Liberia, (5) 
founding a settlement named Monrovia, after U.S. President James Monroe. Over the decades, the number 
of blacks sailing to Liberia steadily increased. Settlers built schools, churches and roads and formed a 
government modeled on the United States. 
 
By the 1840s, many European countries had established colonies surrounding Liberia and were pressuring 
the colony, the American Colonization Society and even the United States to clarify Liberia's role and 
identity: Could it (6) broker treaties and trade agreements? Could it (7) levy taxes? And could England or 
France annex the area if it was not claimed by any other country? 
 
In response, Joseph Jenkins Roberts, who had immigrated to Liberia in 1829, publicly declared the colony 
an independent republic on July 26, 1847, and was elected president the next year. The declaration created 
the first black-ruled republic in Africa. 
 
But tensions between the settlers and the (8) indigenous people grew within the new nation. When the first 
settlers came ashore, they were not completely welcomed, according to Clegg. The new immigrants' 
takeover of land and the injection of U.S. customs and religion into the culture was (9) resented. 
 
"It was the same issue as this country and any other settler society in which you have a native people and 
then others who have come to settle," said Clegg, a history professor at Indiana University. "Liberia is a 
mirror image of the United States and its settlement. 
 
"You have immigrants ... who are settling along the coast and seizing the lands and the labor -- and 
sometimes the lives -- of African people. They weren't particularly pleased to see the settlers arrive." 
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This (10) discord, vulnerability to African diseases, and the hardship of creating a Westernized nation 
disilllusioned many immigrants. 
 
"There was a certain amount of romantic (11) sentiment that comes through some of the letters" (from 
immigrants), Clegg said. "There are those who believed they had a sort of long-standing connection with 
Africa. 
 
"Maybe that (12) facilitated the willingness of some people to project upon Africa their hopes and desires. 
Once they get there, many of them are shocked into a realization that they were very wrong about what 
Africa was about." 
 
But some did find what they were looking for. William Burke and his family sailed to Liberia in 1853 after 
they were freed by owner Robert E. Lee, later a (13) celebrated Confederate general, and were enthusiastic 
about their new home. 
 
 "I bless God that ever my lot was cast in this part of the earth," Burke wrote after five years in Liberia, 
where he became a minister and educator. "God has blessed me abundantly since my residence in Africa, 
for which I feel that I can never be sufficiently thankful." 
 
"I love Africa and would not exchange it for America," agreed Burke's wife, Rosabella, in a letter to the 
wife of her former owner Lee. 
 
By 1867, the American Colonization Society had sent more than 13,000 people, according to the Library of 
Congress. In these immigrants' (14) quest to escape oppression in the United States, they created the same 
exclusive practices they left behind and sowed the seeds for future civil conflict. 
 
 "They took a completely new political system that natives didn't know about and (15) dominated the 
political system for 150 years," Russell said. 
 
1. a. obstacles  b. objections c. seas  d. years 
2. a. financing  b. force  c. structure d. truth 
3. a. reason  b. protection c. cure  d. symptom 
4. a. variety  b. minimum c. maximum d. bunch 
5. a. discovering b. establishing c. invading d. borrowing 
6. a. break  b. understand c. arrange d. obey 
7. a. pay  b. lower  c. avoid  d. collect  
8. a. native  b. poor  c. unfriendly d. hard-working 
9. a. appreciated b. disliked c. completed d. repeated 
10. a. conflict  b. illness  c. reason  d. agreement 
11. a. logic  b. insistence c. history d. feeling 
12. a. distorted  b. erased  c. strengthened d. weakened 
13. a. famous  b. simple c. dangerous d. generous 
14. a. duty  b. hurry  c. search  d. failure 
15. a. destroyed  b. avoided c. explained d. controlled 
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[IV]	
 次の各文の（a〜d）の中で誤っている箇所があれば、その記号を１つマークしなさい。も
し誤っている箇所がなければ、（e）をマークしなさい。 
 
1. The (a) term automobile is commonly (b) applies to a four-wheeled vehicle designed (c) to carry two 

to six passengers and a limited amount of cargo, as (d) contrasted with a truck.   (e) no error 

2. The (a) processes of nuclear fission (b) was discovered in 1938 (c) by Otto Hahn and Fritz Strassmann 

and was (d) explained in early 1939 by Lise Meitner and Otto Frisch.   (e) no error 

3. After (a) Toyotomi Hideyoshi death (1598), Tokugawa Ieyasu (b) became the most powerful daimyo 

by (c) defeating rival barons (d) in the battle of Sekigahara (1600).   (e) no error 

4. In the USA, each state (a) issues fishing licenses and sets (b) regulations as to the season (c) of which 

certain fish may be caught, the minimum size, and the number that may be (d) taken per day.  (e) no 

error 

5. Sally (a) or Betty were very (b) late for class because they had (c) stayed up late (d) studying the night 

before.   (e) no error 

6. When you (a) try to repair a car by (b) oneself, it is important to have all the (c) tools and parts at hand 

(d) before you begin.   (e) no error 

7. Summer is an important time (a) for families to go (b) always together on vacation and enjoy some (c) 

special time together without the (d) stress of everyday life.   (e) no error 

8. If you are (a) doing the laundry, you (b) should try to wash white things and bright colored things (c) 

separate, or the colors might (d) ruin the white clothes.   (e) no error 

9. As the plane (a) began to move (b) from the terminal, the attendants gave a brief (c) safety 

demonstration and the passengers fastened (d) their seat belts.   (e) no error 

10. Since the start of the Internet in 1993, the world has become more (a) connect than (b) ever before (c) 

with e-mail and web pages (d) linking people in almost all nations.   (e) no error 

11. (a) During the Ashikaga period, the town now named Kobe (b) was an important port in Japan for 

trading with (c) much countries (d) in Asia.   (e) no error 

12. (a) If the (b) purpose of the war was to (c) bring world peace, then it was (d) complete unsuccessful.   

(e) no error 

13. The boy rode (a) his bike through the park and (b) onto the street (c) which there were many cars and 

(d) trucks.   (e) no error 

14. (a) Driving a car can be very (b) convenience, (c) but it can be very expensive, (d) too.   (e) no error 

15. When Bill (a) put the steaks (b) on the grill, Mary put the (c) potato salad (d) and drinks on the picnic 

table.   (e) no error 

16. As the clouds (a) cover the sun, the weather started (b) to turn cold and Kenji wished he (c) had 

brought (d) a jacket.   (e) no error 

17. Before (a) you start to answer the questions (b) in the test, you (c) must put your bag under the desk 

and (d) turn off your cell phone.   (e) no error 
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18. There (a) seems to be a problem with the video (b) because every time the movie starts, (c) we can’t 

hear (d) anything.   (e) no error 

19. The sun is the (a) center of the solar system (b) with nine planets (c) revolving around (d) it.   (e) no 

error 

20. This is the (a) last exam (b) for the day (c) after you can go home and (d) relax for the evening.   (e) no 

error 
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Appendix B: Item-Analysis Tables (Full Data Set) 
 
Appendix B.1. CTT (Kelley’s Discrimination Index) 

Item UG LG Total p D Flag 
1 486 383 1592 69% 20% F 
2 391 142 958 41% 41%   
3 352 141 903 39% 35%   
4 355 160 930 40% 33%   
5 320 205 938 40% 20% F 
6 398 152 979 42% 41%   
7 495 277 1478 64% 37%   
8 432 148 1013 44% 47%   
9 443 201 1198 52% 41%   

10 346 182 920 40% 28%   
11 513 248 1457 63% 45%   
12 484 273 1405 61% 36%   
13 347 151 829 36% 33%   
14 273 135 743 32% 23%   
15 444 248 1271 55% 34%   
16 309 206 923 40% 18% F 
17 164 57 352 15% 18% F 
18 319 219 1001 43% 18% F 
19 562 386 1755 76% 31%   
20 487 271 1444 62% 37%   
21 523 405 1777 77% 22%   
22 311 172 944 41% 24%   
23 590 469 1977 85% 23% F 
24 545 433 1812 78% 21%   
25 450 288 1352 58% 28%   
26 518 395 1727 74% 23%   
27 347 133 845 36% 36%   
28 586 432 1915 83% 28% F 
29 484 275 1371 59% 36%   
30 279 131 726 31% 25%   
31 449 296 1379 59% 27%   
32 345 217 1010 44% 22%   
33 497 434 1728 74% 13% F 
34 345 250 1062 46% 17% F 
35 307 237 1034 45% 13% F 
36 605 498 2112 91% 21% F 
37 306 258 1056 46% 10% F 
38 330 171 904 39% 27%   
39 562 468 1928 83% 19% F 
40 521 350 1661 72% 30%   
41 209 151 634 27% 11% F 
42 175 97 489 21% 13% F 
43 509 292 1512 65% 37%   
44 509 243 1417 61% 45%   
45 414 194 1081 47% 37%   
46 556 421 1812 78% 25%   
47 364 228 1107 48% 24%   
48 435 277 1288 56% 28%   
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49 456 320 1423 61% 24%   
50 586 420 1916 83% 30% F 
51 425 233 1251 54% 33%   
52 453 268 1345 58% 32%   
53 215 41 397 17% 29% F 
54 444 275 1357 58% 30%   
55 544 383 1728 74% 29%   
56 522 295 1536 66% 39%   
57 379 245 1203 52% 24%   
58 268 170 803 35% 17% F 
59 450 146 1096 47% 50%   
60 453 151 1072 46% 50%   
61 576 419 1855 80% 29%   
62 472 241 1264 54% 39%   
63 397 223 1133 49% 30%   
64 318 107 755 33% 35%   
65 425 268 1284 55% 28%   
66 349 202 1042 45% 25%   
67 540 363 1701 73% 31%   
68 406 204 1125 48% 34%   
69 211 103 573 25% 18% F 
70 387 138 936 40% 41%   

 
 
Appendix B.2. CTT (Point-Biserial Correlations) 

Item b  rpb  Flag 
1 -0.84  0.18  F 
2 0.37  0.34    
3 0.48  0.30    
4 0.43  0.26    
5 0.41  0.17  F 
6 0.33  0.33    
7 -0.61  0.32    
8 0.27  0.38    
9 -0.08  0.32    

10 0.45  0.21    
11 -0.57  0.38    
12 -0.47  0.30    
13 0.62  0.28    
14 0.8  0.21    
15 -0.21  0.26    
16 0.44  0.17  F 
17 1.83  0.21    
18 0.29  0.15  F 
19 -1.22  0.31    
20 -0.54  0.31    
21 -1.27  0.23    
22 0.4  0.19  F 
23 -1.87  0.28    
24 -1.36  0.24    
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25 -0.36  0.25    
26 -1.15  0.21    
27 0.6  0.30    
28 -1.67  0.31    
29 -0.4  0.30    
30 0.84  0.23    
31 -0.42  0.23    
32 0.28  0.18  F 
33 -1.15  0.13  F 
34 0.18  0.14  F 
35 0.23  0.12  F 
36 -2.45  0.31    
37 0.19  0.11  F 
38 0.48  0.22    
39 -1.71  0.23    
40 -0.99  0.29    
41 1.04  0.11  F 
42 1.41  0.15  F 
43 -0.68  0.32    
44 -0.49  0.36    
45 0.14  0.30    
46 -1.37  0.25    
47 0.09  0.21    
48 -0.24  0.23    
49 -0.5  0.20    
50 -1.68  0.34    
51 -0.18  0.26    
52 -0.35  0.26    
53 1.68  0.29    
54 -0.38  0.24    
55 -1.16  0.28    
56 -0.73  0.32    
57 -0.09  0.18  F 
58 0.68  0.15  F 
59 0.11  0.39    
60 0.15  0.40    
61 -1.49  0.29    
62 -0.2  0.30    
63 0.04  0.25    
64 0.78  0.29    
65 -0.24  0.21    
66 0.21  0.20    
67 -1.11  0.29    
68 0.05  0.27    
69 1.18  0.17  F 
70 0.41  0.33    
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Appendix B.3. Rasch/1PL 

Item  b  
 Infit   Exact Match  

Flag  IN.MSQ   IN.ZSTD   Obs%   Exp%  
1 -0.84 1.04 2.18  68.2   69.6  F 
2 0.37 0.95 -3.75  65.8   63.0    
3 0.48 0.98 -1.73  65.0   64.3    
4 0.43 1.00 0.04  64.0   63.6    
5 0.41 1.05 3.82  61.6   63.4  F 
6 0.33 0.96 -3.24  65.6   62.6    
7 -0.61 0.97 -2.20  67.2   65.9    
8 0.27 0.93 -5.94  66.9   62.0    
9 -0.08 0.97 -3.15  63.8   60.9    

10 0.45 1.03 2.05  62.8   63.8  F 
11 -0.57 0.93 -4.85  68.4   65.3    
12 -0.47 0.98 -1.37  64.4   64.0    
13 0.62 0.98 -1.21  69.6   66.2    
14 0.80 1.02 1.28  69.1   69.0    
15 -0.21 1.00 0.02  62.2   61.5    
16 0.44 1.06 4.16  60.8   63.8  F 
17 1.83 0.99 -0.26  84.8   84.8    
18 0.29 1.07 5.46  57.1   62.2  F 
19 -1.22 0.96 -1.51  76.6   75.9    
20 -0.54 0.97 -2.05  66.8   65.0    
21 -1.27 0.99 -0.32  77.3   76.8    
22 0.40 1.04 3.16  59.7   63.3  F 
23 -1.87 0.96 -1.10  85.4   85.3    
24 -1.36 0.99 -0.20  78.6   78.3    
25 -0.36 1.01 0.78  61.4   62.8    
26 -1.15 1.01 0.54  74.9   74.8    
27 0.60 0.98 -1.65  67.9   65.8    
28 -1.67 0.95 -1.53  82.8   82.7    
29 -0.40 0.98 -1.56  63.4   63.1    
30 0.84 1.01 0.63  69.1   69.6    
31 -0.42 1.02 1.48  62.3   63.4    
32 0.28 1.05 3.99  59.3   62.0  F 
33 -1.15 1.05 2.16  75.0   74.9  F 
34 0.18 1.07 6.20  57.5   61.3  F 
35 0.23 1.09 7.38  55.5   61.7  F 
36 -2.45 0.93 -1.18  91.1   91.0    
37 0.19 1.09 7.97  54.9   61.4  F 
38 0.48 1.02 1.72  63.4   64.2    
39 -1.71 0.98 -0.45  83.4   83.3    
40 -0.99 0.97 -1.25  73.4   72.2    
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41 1.04 1.07 3.04  72.3   73.0  F 
42 1.41 1.03 1.08  79.2   79.0    
43 -0.68 0.97 -2.16  68.3   67.0    
44 -0.49 0.94 -4.15  67.3   64.3    
45 0.14 0.98 -1.82  63.8   61.1    
46 -1.37 0.98 -0.52  78.6   78.4    
47 0.09 1.04 3.22  59.5   60.9  F 
48 -0.24 1.02 1.79  59.8   61.7    
49 -0.50 1.04 2.61  62.5   64.4  F 
50 -1.68 0.93 -1.89  83.1   82.8    
51 -0.18 1.00 0.14  61.9   61.3    
52 -0.35 1.00 0.15  62.8   62.7    
53 1.68 0.96 -1.16  82.9   82.9    
54 -0.38 1.01 1.03  62.5   62.9    
55 -1.16 0.98 -0.93  75.1   74.9    
56 -0.73 0.96 -2.25  69.0   67.8    
57 -0.09 1.05 4.36  57.8   60.9  F 
58 0.68 1.06 3.58  64.7   67.0  F 
59 0.11 0.93 -6.77  66.1   61.0    
60 0.15 0.92 -7.13  68.0   61.2    
61 -1.49 0.97 -0.96  80.2   80.2    
62 -0.20 0.98 -1.77  62.9   61.4    
63 0.04 1.01 0.86  60.7   60.8    
64 0.78 0.98 -1.41  69.5   68.6    
65 -0.24 1.03 2.64  59.8   61.7  F 
66 0.21 1.04 3.32  58.9   61.5  F 
67 -1.11 0.97 -1.21  74.8   74.2    
68 0.05 1.00 -0.05  60.0   60.9    
69 1.18 1.03 1.32  74.9   75.4    
70 0.41 0.96 -3.07  66.2   63.3    

 
 
 
Appendix B.4. IRT 2PL 

Item a b Flag 
1 0.242 -1.947 F 
2 0.472 0.475   
3 0.390 0.725   
4 0.313 0.778   
5 0.208 1.091 F 
6 0.439 0.449   
7 0.437 -0.845   
8 0.534 0.305   
9 0.423 -0.121   
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10 0.254 0.979 F 
11 0.564 -0.651   
12 0.394 -0.714   
13 0.371 0.978   
14 0.269 1.675 F 
15 0.328 -0.384   
16 0.192 1.264 F 
17 0.373 2.852   
18 0.176 0.899 F 
19 0.482 -1.550   
20 0.413 -0.790   
21 0.338 -2.173   
22 0.223 0.991 F 
23 0.531 -2.185   
24 0.361 -2.203   
25 0.304 -0.691   
26 0.303 -2.170   
27 0.400 0.873   
28 0.563 -1.867   
29 0.391 -0.608   
30 0.293 1.625 F 
31 0.272 -0.879 F 
32 0.203 0.742 F 
33 0.209 -3.034 F 
34 0.165 0.584 F 
35 0.146 0.846 F 
36 0.809 -2.096   
37 0.139 0.709 F 
38 0.258 1.037 F 
39 0.413 -2.455   
40 0.423 -1.408   
41 0.187 3.037 F 
42 0.264 2.983 F 
43 0.451 -0.918   
44 0.500 -0.613   
45 0.375 0.212   
46 0.395 -2.047   
47 0.238 0.207 F 
48 0.270 -0.515 F 
49 0.238 -1.186 F 
50 0.637 -1.715   
51 0.372 -0.584   
52 0.570 -1.655   
53 0.627 1.270   
54 0.422 -1.211   
55 0.448 -1.780   
56 0.455 -0.978   
57 0.201 -0.240 F 
58 0.195 1.893 F 
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59 0.561 0.117   
60 0.590 0.159   
61 0.485 -1.881   
62 0.391 -0.312   
63 0.305 0.069   
64 0.396 1.150   
65 0.245 -0.563 F 
66 0.227 0.501 F 
67 0.426 -1.562   
68 0.336 0.082   
69 0.259 2.555 F 
70 0.444 0.548   

 
 
Appendix B.5 IRT 3PL 

Item ID a b c Flag 
1 0.278 -0.895 0.214 F 
2 0.704 0.888 0.173   
3 0.583 1.189 0.174   
4 0.580 1.333 0.210   
5 0.405 1.893 0.227   
6 0.748 0.913 0.197   
7 0.539 -0.242 0.202   
8 0.872 0.715 0.188   
9 0.584 0.470 0.198   

10 0.553 1.575 0.232   
11 0.687 -0.196 0.190   
12 0.507 -0.030 0.208   
13 1.052 1.265 0.227   
14 0.535 2.023 0.192   
15 0.457 0.400 0.210   
16 0.355 2.162 0.223   
17 0.938 2.345 0.118   
18 0.278 2.030 0.209 F 
19 0.534 -1.045 0.204   
20 0.488 -0.189 0.196   
21 0.366 -1.512 0.204   
22 0.345 1.858 0.199   
23 0.564 -1.788 0.203   
24 0.393 -1.565 0.207   
25 0.383 0.152 0.206   
26 0.339 -1.362 0.211   
27 0.744 1.257 0.191   
28 0.605 -1.472 0.203   
29 0.515 0.105 0.215   
30 0.606 1.910 0.191   
31 0.336 0.054 0.206   
32 0.351 1.707 0.220   
33 0.225 -1.920 0.218 F 
34 0.262 1.858 0.216 F 
35 0.236 2.177 0.212 F 
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36 0.835 -1.881 0.200   
37 0.221 2.157 0.213 F 
38 0.455 1.686 0.206   
39 0.439 -1.938 0.206   
40 0.472 -0.846 0.200   
41 0.710 2.762 0.230 K 
42 0.791 2.575 0.171   
43 0.537 -0.354 0.198   
44 0.627 -0.086 0.197   
45 0.545 0.810 0.194   
46 0.434 -1.454 0.205   
47 0.343 1.168 0.206   
48 0.358 0.425 0.209   
49 0.295 -0.101 0.211 F 
50 0.676 -1.379 0.199   
51 0.457 0.090 0.198   
52 0.630 -1.226 0.204   
53 1.097 1.346 0.123   
54 0.496 -0.600 0.204   
55 0.504 -1.210 0.211   
56 0.551 -0.386 0.206   
57 0.267 0.955 0.205 F 
58 0.407 2.521 0.220 K 
59 0.715 0.511 0.164   
60 0.860 0.553 0.178   
61 0.539 -1.362 0.211   
62 0.546 0.376 0.212   
63 0.422 0.832 0.198   
64 0.665 1.465 0.165   
65 0.314 0.439 0.203   
66 0.328 1.458 0.201   
67 0.476 -0.988 0.204   
68 0.475 0.786 0.201   
69 0.637 2.478 0.180   
70 0.667 0.985 0.176   

 
 
Appendix B.6.  TRT 

Item a b c Flag 
1 0.343 -1.209 0.206  
2 0.669 0.899 0.059  
3 0.524 1.251 0.049  
4 0.550 1.657 0.127  
5 0.826 2.976 0.304  
6 0.954 1.167 0.163  
7 0.665 -0.824 0.066  
8 1.007 0.746 0.109  
9 0.642 0.107 0.060  

10 0.756 2.294 0.240  
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11 0.899 -0.620 0.060  
12 0.723 -0.309 0.133  
13 1.723 1.776 0.238  
14 0.475 2.572 0.090  
15 0.445 -0.180 0.060  
16 0.491 2.883 0.202  
17 1.164 2.895 0.085  
18 0.300 1.896 0.099  
19 0.759 -1.627 0.051  
20 0.617 -0.769 0.046  
21 0.500 -2.447 0.036  
22 0.323 2.011 0.085  
23 0.822 -2.423 0.043  
24 0.547 -2.452 0.037  
25 0.508 -0.406 0.081  
26 0.462 -2.327 0.045  
27 0.997 1.396 0.147  
28 0.916 -1.955 0.057  
29 1.203 0.400 0.291  
30 0.665 2.258 0.125  
31 0.381 -0.837 0.047  
32 0.711 2.282 0.248  
33 0.468 -1.299 0.291  
34 0.248 1.543 0.081 F 
35 0.208 1.735 0.059 F 
36 1.201 -2.558 0.047  
37 0.303 3.167 0.166 F 
38 0.503 1.772 0.111  
39 0.564 -3.032 0.037 F 
40 0.666 -1.488 0.044  
41 1.579 3.323 0.246 F 
42 0.956 3.459 0.134 F 
43 0.646 -0.980 0.044  
44 0.889 -0.334 0.117  
45 0.639 0.549 0.072  
46 0.651 -2.070 0.065  
47 0.371 0.991 0.104  
48 0.386 -0.223 0.071  
49 0.308 -1.277 0.053  
50 0.961 -1.965 0.050  
51 0.593 -0.038 0.066  
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52 0.578 -0.369 0.068  
53 1.091 2.034 0.038  
54 0.499 -0.536 0.052  
55 0.732 -1.481 0.074  
56 0.819 -0.784 0.070  
57 0.319 0.091 0.051  
58 0.412 3.358 0.139 F 
59 1.055 0.247 0.046  
60 1.421 0.457 0.123  
61 0.947 -1.452 0.162  
62 0.981 0.293 0.181  
63 0.557 0.384 0.068  
64 0.909 1.347 0.086  
65 0.388 -0.347 0.046  
66 0.409 0.904 0.061  
67 0.768 -1.367 0.058  
68 0.610 0.440 0.080  
69 0.797 2.826 0.136  
70 0.908 0.753 0.069  
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Appendix C: Item-Analysis Tables (Random 80%) 
 
Appendix C.1. CTT (Kelley’s Discrimination Index) 

Item UG LG Total p D Flag 
1 380 300 1273 69% 19% F 
2 306 119 767 41% 39%   
3 276 114 730 39% 34%   
4 272 130 750 40% 30%   
5 248 160 748 40% 20%   
6 317 124 797 43% 41%   
7 385 220 1181 64% 36%   
8 343 121 817 44% 47%   
9 339 164 968 52% 37%   

10 261 149 750 40% 24%   
11 394 199 1173 63% 42%   
12 371 212 1124 61% 35%   
13 280 124 676 36% 33%   
14 201 104 589 32% 21%   
15 345 200 1016 55% 32%   
16 234 163 741 40% 16% F 
17 122 45 281 15% 16% F 
18 249 180 808 44% 16% F 
19 436 305 1403 76% 30%   
20 374 218 1148 62% 34%   
21 393 330 1422 77% 16% F 
22 237 137 760 41% 22%   
23 450 376 1580 85% 19% F 
24 413 346 1445 78% 17% F 
25 351 224 1071 58% 28%   
26 393 318 1381 74% 18% F 
27 266 111 673 36% 33%   
28 451 348 1536 83% 24% F 
29 369 222 1089 59% 32%   
30 212 105 584 31% 23%   
31 348 233 1101 59% 26%   
32 269 175 815 44% 21%   
33 380 342 1391 75% 11% F 
34 266 206 852 46% 14% F 
35 238 187 832 45% 12% F 
36 462 392 1682 91% 18% F 
37 233 208 844 45% 7% F 
38 253 148 726 39% 23%   
39 432 371 1544 83% 16% F 
40 392 276 1326 71% 26%   
41 168 122 519 28% 11% F 
42 140 74 392 21% 14% F 
43 386 239 1216 66% 32%   
44 392 194 1137 61% 42%   
45 326 153 861 46% 37%   
46 422 338 1440 78% 20%   
47 275 179 886 48% 21%   
48 330 212 1022 55% 26%   
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49 342 259 1123 61% 19% F 
50 447 339 1530 82% 25% F 
51 327 187 996 54% 30%   
52 341 211 1067 57% 29%   
53 162 35 312 17% 26%   
54 341 225 1092 59% 26%   
55 415 312 1381 74% 24%   
56 402 240 1244 67% 35%   
57 291 205 979 53% 20%   
58 206 139 643 35% 15% F 
59 349 118 880 47% 48%   
60 343 119 859 46% 47%   
61 439 336 1483 80% 24%   
62 368 192 1014 55% 38%   
63 297 182 895 48% 25%   
64 247 83 612 33% 34%   
65 329 213 1031 56% 26%   
66 272 167 840 45% 23%   
67 410 298 1371 74% 26%   
68 312 149 889 48% 35%   
69 167 78 461 25% 19% F 
70 298 109 736 40% 40%   

 
 
Appendix C.2. CTT (Point-Biserial Correlations) 

Item b  rpb  Flag 
1 -0.84 0.20   
2 0.37 0.34   
3 0.46 0.30   
4 0.41 0.26   
5 0.42 0.18 F 
6 0.30 0.33   
7 -0.60 0.31   
8 0.25 0.38   
9 -0.10 0.32   

10 0.41 0.20   
11 -0.59 0.38   
12 -0.47 0.30   
13 0.59 0.28   
14 0.81 0.20   
15 -0.21 0.27   
16 0.44 0.16 F 
17 1.83 0.21   
18 0.27 0.14 F 
19 -1.21 0.31   
20 -0.52 0.30   
21 -1.27 0.20   
22 0.39 0.20   
23 -1.86 0.27   
24 -1.35 0.23   
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25 -0.34 0.26   
26 -1.15 0.20   
27 0.60 0.29   
28 -1.68 0.31   
29 -0.38 0.29   
30 0.83 0.22   
31 -0.41 0.24   
32 0.26 0.19 F 
33 -1.17 0.14 F 
34 0.18 0.14 F 
35 0.22 0.12 F 
36 -2.40 0.32   
37 0.19 0.10 F 
38 0.47 0.20   
39 -1.72 0.24   
40 -0.98 0.29   
41 1.01 0.12 F 
42 1.40 0.17 F 
43 -0.70 0.30   
44 -0.50 0.36   
45 0.15 0.31   
46 -1.33 0.24   
47 0.09 0.20   
48 -0.22 0.24   
49 -0.47 0.19 F 
50 -1.66 0.32   
51 -0.17 0.26   
52 -0.33 0.26   
53 1.70 0.28   
54 -0.40 0.22   
55 -1.15 0.27   
56 -0.77 0.32   
57 -0.12 0.17 F 
58 0.67 0.15 F 
59 0.10 0.40   
60 0.15 0.39   
61 -1.49 0.28   
62 -0.21 0.31   
63 0.07 0.24   
64 0.75 0.29   
65 -0.25 0.21   
66 0.19 0.19 F 
67 -1.13 0.27   
68 0.08 0.29   
69 1.18 0.18 F 
70 0.44 0.33   
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Appendix C.3. Rasch/1PL 

Item  b  
 Infit   Exact Match  

Flag  IN.MSQ   IN.ZSTD   Obs%   Exp%  
1 -0.84 1.03 1.33  68.4   69.5    
2 0.37 0.95 -3.35  65.9   62.9    
3 0.46 0.98 -1.56  64.7   64.0    
4 0.41 1.00 -0.09  63.5   63.4    
5 0.42 1.05 3.19  61.6   63.5  F 
6 0.30 0.96 -3.24  66.2   62.2    
7 -0.60 0.97 -1.90  67.2   65.7    
8 0.25 0.93 -5.57  67.2   61.8    
9 -0.10 0.97 -2.76  64.1   60.8    

10 0.41 1.03 2.01  62.2   63.4  F 
11 -0.59 0.93 -4.46  69.1   65.5    
12 -0.47 0.98 -1.57  64.7   63.9    
13 0.59 0.98 -1.20  69.3   65.7    
14 0.81 1.03 1.32  69.1   69.2    
15 -0.21 1.00 -0.08  61.4   61.4    
16 0.44 1.06 3.83  59.5   63.7  F 
17 1.83 0.99 -0.17  84.7   84.9    
18 0.27 1.07 5.35  56.9   62.0  F 
19 -1.21 0.96 -1.53  76.7   75.8    
20 -0.52 0.97 -1.67  65.8   64.6    
21 -1.27 1.01 0.21  77.1   76.8    
22 0.39 1.04 2.61  59.4   63.1    
23 -1.86 0.96 -0.83  85.3   85.2    
24 -1.35 1.00 -0.08  78.4   78.0    
25 -0.34 1.00 0.03  61.5   62.4    
26 -1.15 1.01 0.55  75.0   74.8    
27 0.60 0.98 -1.04  67.6   65.9    
28 -1.68 0.95 -1.29  83.0   82.9    
29 -0.38 0.98 -1.20  62.7   62.8    
30 0.83 1.02 0.73  68.9   69.5    
31 -0.41 1.01 0.78  62.5   63.2    
32 0.26 1.04 3.19  59.6   61.9    
33 -1.17 1.05 1.71  75.3   75.2    
34 0.18 1.07 5.73  57.4   61.2    
35 0.22 1.08 6.35  55.2   61.5    
36 -2.40 0.93 -1.11  90.6   90.6    
37 0.19 1.09 7.21  54.6   61.3    
38 0.47 1.03 2.18  63.1   64.1    
39 -1.72 0.98 -0.47  83.4   83.4    
40 -0.98 0.97 -1.23  73.2   72.0    
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41 1.01 1.06 2.62  71.7   72.4    
42 1.40 1.02 0.75  79.1   78.9    
43 -0.70 0.97 -1.54  68.5   67.1    
44 -0.50 0.94 -3.68  67.2   64.3    
45 0.15 0.97 -2.23  64.4   61.1    
46 -1.33 0.99 -0.32  78.2   77.8    
47 0.09 1.04 2.89  58.8   60.8    
48 -0.22 1.01 0.90  60.2   61.4    
49 -0.47 1.04 2.76  61.9   63.8    
50 -1.66 0.94 -1.53  82.9   82.7    
51 -0.17 1.00 0.08  61.7   61.1    
52 -0.33 1.00 0.14  62.5   62.3    
53 1.70 0.96 -0.95  83.2   83.2    
54 -0.40 1.02 1.33  62.0   63.0    
55 -1.15 0.99 -0.51  74.9   74.8    
56 -0.77 0.96 -1.88  70.0   68.3    
57 -0.12 1.05 4.34  57.6   60.9    
58 0.67 1.06 3.26  65.0   66.9    
59 0.10 0.92 -6.40  66.3   60.9    
60 0.15 0.92 -6.26  67.8   61.1    
61 -1.49 0.97 -0.80  80.0   80.2    
62 -0.21 0.97 -2.06  63.2   61.3    
63 0.07 1.02 1.43  60.1   60.8    
64 0.75 0.98 -1.12  68.7   68.2    
65 -0.25 1.03 2.24  59.8   61.7    
66 0.19 1.04 3.41  58.9   61.4    
67 -1.13 0.98 -0.75  74.8   74.6    
68 0.08 0.99 -0.97  60.3   60.8    
69 1.18 1.03 1.00  74.8   75.2    
70 0.44 0.96 -2.89  66.7   63.7    

 
 
 
Appendix C.4. IRT 2PL 

Item a b Flag 
1 0.273 -1.736 F 
2 0.470 0.472   
3 0.382 0.705   
4 0.317 0.741   
5 0.217 1.056 F 
6 0.450 0.391   
7 0.431 -0.849   
8 0.547 0.277   
9 0.420 -0.157   

10 0.253 0.899 F 
11 0.576 -0.662   
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12 0.407 -0.697   
13 0.375 0.911   
14 0.265 1.717 F 
15 0.331 -0.380   
16 0.195 1.219 F 
17 0.381 2.796   
18 0.172 0.854 F 
19 0.497 -1.504   
20 0.402 -0.780   
21 0.302 -2.397   
22 0.234 0.911 F 
23 0.505 -2.261   
24 0.354 -2.214   
25 0.328 -0.603   
26 0.299 -2.185 F 
27 0.381 0.916   
28 0.557 -1.897   
29 0.377 -0.601   
30 0.287 1.631 F 
31 0.289 -0.817 F 
32 0.217 0.657 F 
33 0.222 -2.927 F 
34 0.165 0.561 F 
35 0.155 0.754 F 
36 0.816 -2.039   
37 0.143 0.686 F 
38 0.238 1.091 F 
39 0.426 -2.396   
40 0.432 -1.372   
41 0.198 2.767 F 
42 0.287 2.746 F 
43 0.433 -0.972   
44 0.496 -0.630   
45 0.394 0.213   
46 0.376 -2.080   
47 0.239 0.199 F 
48 0.291 -0.443 F 
49 0.225 -1.151 F 
50 0.601 -1.775   
51 0.374 -0.570   
52 0.551 -1.678   
53 0.608 1.315   
54 0.405 -1.265   
55 0.420 -1.872   
56 0.443 -1.052   
57 0.193 -0.360 F 
58 0.198 1.847 F 
59 0.567 0.105   
60 0.582 0.153   
61 0.478 -1.897   
62 0.401 -0.316   
63 0.285 0.124 F 
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64 0.389 1.131   
65 0.250 -0.571 F 
66 0.220 0.476 F 
67 0.401 -1.675   
68 0.365 0.117   
69 0.275 2.395 F 
70 0.444 0.587   

 
 
 
Appendix C.5 IRT 3PL 

Item a b c Flag 
1 0.32 -0.75 0.22   
2 0.73 0.91 0.19   
3 0.59 1.21 0.19   
4 0.58 1.32 0.21   
5 0.41 1.88 0.23   
6 0.78 0.88 0.20   
7 0.54 -0.20 0.21   
8 0.91 0.70 0.19   
9 0.59 0.47 0.21   

10 0.54 1.57 0.23   
11 0.70 -0.20 0.20   
12 0.53 -0.01 0.21   
13 1.05 1.24 0.23   
14 0.54 2.10 0.20   
15 0.46 0.42 0.22   
16 0.36 2.16 0.23   
17 0.93 2.40 0.12   
18 0.29 2.05 0.22 F 
19 0.56 -0.98 0.21   
20 0.49 -0.12 0.21   
21 0.33 -1.60 0.22   
22 0.36 1.81 0.21   
23 0.55 -1.80 0.21   
24 0.39 -1.53 0.22   
25 0.43 0.23 0.22   
26 0.34 -1.33 0.22   
27 0.74 1.32 0.20   
28 0.61 -1.46 0.21   
29 0.51 0.16 0.22   
30 0.62 1.94 0.20   
31 0.36 0.09 0.21   
32 0.38 1.62 0.23   
33 0.24 -1.82 0.22 F 
34 0.27 1.88 0.23 F 
35 0.26 2.07 0.22 F 
36 0.85 -1.80 0.21   
37 0.24 2.14 0.22 F 
38 0.45 1.80 0.22   
39 0.46 -1.84 0.21   
40 0.49 -0.79 0.21   
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41 0.75 2.62 0.24 K 
42 0.80 2.50 0.17   
43 0.52 -0.35 0.21   
44 0.62 -0.08 0.20   
45 0.59 0.81 0.20   
46 0.42 -1.41 0.21   
47 0.35 1.19 0.21   
48 0.39 0.45 0.21   
49 0.29 0.04 0.22 F 
50 0.65 -1.39 0.21   
51 0.47 0.14 0.21   
52 0.62 -1.20 0.21   
53 1.16 1.39 0.13   
54 0.48 -0.59 0.21   
55 0.48 -1.23 0.22   
56 0.54 -0.42 0.21   
57 0.26 0.95 0.22 F 
58 0.43 2.51 0.23 K 
59 0.75 0.53 0.18   
60 0.86 0.57 0.18   
61 0.54 -1.34 0.22   
62 0.59 0.40 0.22   
63 0.41 0.97 0.21   
64 0.64 1.51 0.17   
65 0.33 0.46 0.21   
66 0.33 1.50 0.21   
67 0.46 -1.02 0.21   
68 0.53 0.79 0.21   
69 0.67 2.41 0.18   
70 0.71 1.04 0.19   
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Appendix D: Item-Analysis Tables (Middle 80%) 
 
Appendix D.1. CTT (Kelley’s Discrimination Index) 

Item UG LG Total p D Flag 
1 352 321 1271 68% 12% F 
2 277 133 750 40% 33%   
3 250 136 720 39% 27%   
4 242 134 715 39% 25%   
5 226 175 737 40% 14% F 
6 263 126 746 40% 31%   
7 358 253 1190 64% 27%   
8 281 130 773 42% 34%   
9 304 191 953 51% 27%   

10 236 150 708 38% 21%   
11 381 232 1186 64% 36%   
12 343 245 1118 60% 25%   
13 201 134 610 33% 17% F 
14 175 126 577 31% 13% F 
15 316 211 1016 55% 26%   
16 232 180 742 40% 14% F 
17 93 46 250 13% 11% F 
18 231 197 813 44% 11% F 
19 421 350 1425 77% 21%   
20 356 251 1179 64% 27%   
21 406 366 1467 79% 15% F 
22 229 163 766 41% 17% F 
23 447 406 1611 87% 16% F 
24 405 368 1465 79% 15% F 
25 321 250 1087 59% 20%   
26 388 339 1399 75% 17% F 
27 215 124 644 35% 22%   
28 443 383 1564 84% 20% F 
29 338 246 1090 59% 24%   
30 199 107 570 31% 21%   
31 323 275 1113 60% 15% F 
32 235 172 784 42% 16% F 
33 366 366 1394 75% 7% F 
34 256 221 848 46% 11% F 
35 234 212 850 46% 9% F 
36 459 443 1730 93% 11% F 
37 228 222 859 46% 5% F 
38 229 144 703 38% 21%   
39 427 407 1568 84% 12% F 
40 378 324 1350 73% 17% F 
41 127 121 484 26% 3% F 
42 107 84 372 20% 6% F 
43 375 268 1229 66% 28%   
44 375 221 1145 62% 37%   
45 301 170 858 46% 31%   
46 413 370 1469 79% 16% F 
47 261 189 877 47% 19% F 
48 316 245 1035 56% 20%   
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49 327 280 1139 61% 15% F 
50 437 379 1571 85% 19% F 
51 306 220 1015 55% 22%   
52 321 237 1077 58% 22%   
53 134 41 282 15% 20%   
54 331 248 1108 60% 22%   
55 399 346 1394 75% 18% F 
56 384 272 1242 67% 29%   
57 271 223 977 53% 14% F 
58 193 158 644 35% 10% F 
59 323 164 896 48% 37%   
60 312 151 843 45% 37%   
61 422 360 1496 81% 20% F 
62 323 212 993 54% 27%   
63 289 200 918 49% 23%   
64 207 107 586 32% 23%   
65 312 244 1048 56% 19% F 
66 258 182 838 45% 19% F 
67 397 329 1383 75% 20%   
68 285 189 892 48% 24%   
69 137 79 439 24% 14% F 
70 256 136 731 39% 28%   

 
 
Appendix D.2. CTT (Point-Biserial Correlations) 

Item b  rpb  Flag 
1 -0.80 0.10 F 
2 0.40 0.27   
3 0.47 0.22   
4 0.48 0.19 F 
5 0.43 0.10 F 
6 0.40 0.23   
7 -0.61 0.21   
8 0.34 0.28   
9 -0.07 0.21   

10 0.49 0.16 F 
11 -0.60 0.29   
12 -0.44 0.20   
13 0.73 0.14 F 
14 0.82 0.11 F 
15 -0.20 0.21   
16 0.42 0.11 F 
17 1.91 0.13 F 
18 0.25 0.09 F 
19 -1.24 0.19 F 
20 -0.58 0.23   
21 -1.37 0.16 F 
22 0.36 0.13 F 
23 -1.94 0.18 F 
24 -1.36 0.16 F 
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25 -0.36 0.14 F 
26 -1.16 0.15 F 
27 0.65 0.18 F 
28 -1.74 0.21   
29 -0.37 0.19 F 
30 0.84 0.19 F 
31 -0.43 0.12 F 
32 0.32 0.12 F 
33 -1.14 0.06 F 
34 0.18 0.08 F 
35 0.17 0.07 F 
36 -2.68 0.17 F 
37 0.15 0.06 F 
38 0.51 0.17 F 
39 -1.75 0.13 F 
40 -1.01 0.16 F 
41 1.07 0.04 F 
42 1.42 0.06 F 
43 -0.70 0.22   
44 -0.50 0.27   
45 0.15 0.24   
46 -1.38 0.14 F 
47 0.11 0.15 F 
48 -0.24 0.16 F 
49 -0.48 0.13 F 
50 -1.77 0.20   
51 -0.21 0.18 F 
52 -0.34 0.18 F 
53 1.77 0.22   
54 -0.41 0.17 F 
55 -1.14 0.17 F 
56 -0.73 0.24   
57 -0.11 0.12 F 
58 0.65 0.09 F 
59 0.06 0.30   
60 0.18 0.29   
61 -1.48 0.22   
62 -0.15 0.22   
63 0.01 0.19 F 
64 0.79 0.21   
65 -0.28 0.16 F 
66 0.19 0.15 F 
67 -1.13 0.20   
68 0.07 0.17 F 
69 1.20 0.13 F 
70 0.43 0.23   
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Appendix D.3. Rasch/1PL 

Item b 
Infit Exact Match 

Flag MnSq Zstd Obs% Exp% 
1 -0.80 1.02 1.21 68.5 68.5   
2 0.40 0.97 -2.83 62.8 60.9   
3 0.47 0.98 -1.26 62.6 62.0   
4 0.48 1.00 -0.36 61.9 62.2   
5 0.43 1.03 2.20 60.4 61.4 F 
6 0.40 0.98 -1.60 62.2 61.0   
7 -0.61 0.99 -0.94 64.8 64.4   
8 0.34 0.96 -3.48 63.4 60.1   
9 -0.07 0.99 -1.11 59.6 57.8   

10 0.49 1.01 0.54 61.7 62.4   
11 -0.60 0.96 -2.89 65.6 64.2   
12 -0.44 0.99 -0.47 61.5 61.4   
13 0.73 1.01 0.69 67.0 67.0   
14 0.82 1.02 1.04 68.8 68.8   
15 -0.20 0.99 -1.06 59.9 58.6   
16 0.42 1.02 1.99 59.4 61.2   
17 1.91 1.00 -0.01 86.5 86.5   
18 0.25 1.03 3.31 55.4 59.1 F 
19 -1.24 0.99 -0.38 76.9 76.8   
20 -0.58 0.98 -1.30 64.9 63.9   
21 -1.37 0.99 -0.16 79.1 79.1   
22 0.36 1.02 1.75 57.5 60.4   
23 -1.94 0.99 -0.28 86.9 86.9   
24 -1.36 1.00 -0.06 78.9 78.9   
25 -0.36 1.01 1.22 58.4 60.3   
26 -1.16 1.00 0.09 75.4 75.4   
27 0.65 1.00 -0.16 65.9 65.3   
28 -1.74 0.98 -0.46 84.4 84.4   
29 -0.37 1.00 -0.20 59.8 60.4   
30 0.84 0.99 -0.36 69.3 69.2   
31 -0.43 1.02 1.73 59.9 61.2   
32 0.32 1.02 2.08 58.1 59.8 F 
33 -1.14 1.03 1.21 75.1 75.1   
34 0.18 1.04 4.05 56.1 58.4 F 
35 0.17 1.04 4.58 54.4 58.3 F 
36 -2.68 0.98 -0.20 93.2 93.2   
37 0.15 1.05 4.92 53.5 58.2 F 
38 0.51 1.00 0.21 62.6 62.7   
39 -1.75 1.00 0.05 84.6 84.6   
40 -1.01 1.00 -0.03 72.7 72.7   
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41 1.07 1.04 1.62 73.9 73.9   
42 1.42 1.03 0.80 79.9 79.9   
43 -0.70 0.98 -1.09 66.6 66.3   
44 -0.50 0.96 -2.65 64.3 62.4   
45 0.15 0.98 -2.42 61.3 58.2   
46 -1.38 1.00 0.04 79.3 79.3   
47 0.11 1.01 1.34 57.1 58.0   
48 -0.24 1.01 1.02 57.2 58.9   
49 -0.48 1.02 1.29 61.9 62.2   
50 -1.77 0.98 -0.42 84.8 84.8   
51 -0.21 1.00 0.00 59.2 58.6   
52 -0.34 1.00 0.07 60.4 60.0   
53 1.77 0.97 -0.58 84.8 84.8   
54 -0.41 1.00 0.37 60.6 61.0   
55 -1.14 1.00 -0.14 75.2 75.2   
56 -0.73 0.98 -1.25 67.0 67.0   
57 -0.11 1.02 2.75 55.9 58.0 F 
58 0.65 1.03 1.74 65.0 65.3   
59 0.06 0.96 -5.14 62.6 57.8   
60 0.18 0.96 -4.33 63.7 58.4   
61 -1.48 0.98 -0.62 80.8 80.8   
62 -0.15 0.99 -1.48 60.0 58.2   
63 0.01 1.00 -0.42 59.1 57.7   
64 0.79 0.99 -0.71 68.3 68.3   
65 -0.28 1.01 0.98 58.1 59.3   
66 0.19 1.01 1.46 57.1 58.5   
67 -1.13 0.99 -0.50 74.9 74.9   
68 0.07 1.00 0.45 56.6 57.8   
69 1.20 1.01 0.27 76.2 76.2   
70 0.43 0.98 -1.53 63.2 61.4   

 
 
 
Appendix D.4. IRT 2PL 

Item a b Flag 
1 0.177 -2.559 F 
2 0.340 0.680   
3 0.261 1.028 F 
4 0.206 1.306 F 
5 0.149 1.560 F 
6 0.280 0.826 F 
7 0.264 -1.351 F 
8 0.348 0.571   
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9 0.228 -0.185 F 
10 0.194 1.417 F 
11 0.393 -0.942   
12 0.238 -1.083 F 
13 0.206 1.994 F 
14 0.185 2.448 F 
15 0.235 -0.518 F 
16 0.147 1.545 F 
17 0.303 3.644 F 
18 0.130 1.024 F 
19 0.313 -2.342   
20 0.285 -1.210 F 
21 0.265 -3.002 F 
22 0.157 1.248 F 
23 0.388 -3.011 F 
24 0.267 -2.964 F 
25 0.169 -1.223 F 
26 0.240 -2.783 F 
27 0.241 1.533 F 
28 0.387 -2.711   
29 0.215 -0.992 F 
30 0.240 1.989 F 
31 0.151 -1.584 F 
32 0.145 1.188 F 
36 0.539 -3.110 F 
38 0.203 1.397 F 
39 0.302 -3.397 F 
40 0.248 -2.375 F 
43 0.312 -1.342   
44 0.343 -0.885   
45 0.274 0.302 F 
46 0.274 -2.945 F 
47 0.173 0.322 F 
48 0.170 -0.825 F 
49 0.169 -1.623 F 
50 0.404 -2.659   
51 0.239 -0.943 F 
52 0.427 -2.227   
53 0.481 1.734   
54 0.314 -1.680   
55 0.297 -2.580 F 
56 0.315 -1.390   
57 0.133 -0.496 F 



 

     208 

58 0.158 2.252 F 
59 0.398 0.082   
60 0.398 0.260   
61 0.393 -2.288   
62 0.258 -0.358 F 
63 0.230 0.011 F 
64 0.275 1.656 F 
65 0.185 -0.880 F 
66 0.163 0.621 F 
67 0.302 -2.210   
68 0.212 0.160 F 
69 0.252 2.714 F 
70 0.286 0.870 F 

 
 
Appendix D.5 IRT 3PL 

Item a b c Flag 
1 0.207 -0.696 0.275 F 
2 0.604 1.312 0.225   
3 0.483 1.814 0.235   
4 0.440 2.162 0.250   
5 0.405 2.636 0.287 K 
6 0.505 1.600 0.234   
7 0.357 -0.110 0.259   
8 0.581 1.250 0.225   
9 0.356 1.071 0.254   

10 0.444 2.255 0.257   
11 0.515 -0.115 0.248   
12 0.331 0.269 0.261   
13 0.544 2.515 0.250   
14 0.510 3.060 0.254 F 
15 0.369 0.737 0.257   
16 0.377 2.745 0.285 F 
17 0.838 3.359 0.138 F 
18 0.279 2.624 0.271 F 
19 0.374 -1.272 0.266   
20 0.370 -0.054 0.259   
21 0.302 -1.798 0.270   
22 0.317 2.604 0.263 K 
23 0.460 -2.094 0.263   
24 0.308 -1.750 0.269   
25 0.240 0.640 0.264 F 
26 0.275 -1.444 0.271 F 
27 0.509 2.193 0.235   
28 0.455 -1.826 0.263   
29 0.307 0.496 0.264   
30 0.588 2.367 0.228   
31 0.199 0.547 0.266 F 
32 0.303 2.601 0.265   



 

     209 

36 0.616 -2.445 0.259   
38 0.413 2.351 0.249   
39 0.343 -2.323 0.269   
40 0.290 -1.068 0.267 F 
43 0.409 -0.292 0.255   
44 0.454 0.057 0.251   
45 0.471 1.221 0.245   
46 0.315 -1.761 0.269   
47 0.296 1.800 0.256 F 
48 0.253 0.967 0.263 F 
49 0.220 0.307 0.267 F 
50 0.463 -1.847 0.262   
51 0.326 0.396 0.259   
52 0.514 -1.410 0.259   
53 0.918 1.861 0.151   
54 0.394 -0.618 0.259   
55 0.352 -1.459 0.266   
56 0.410 -0.322 0.261   
57 0.209 1.628 0.261 F 
58 0.496 3.014 0.284 F 
59 0.658 0.782 0.240   
60 0.670 0.909 0.232   
61 0.466 -1.427 0.261   
62 0.398 0.800 0.256   
63 0.361 1.228 0.251   
64 0.587 2.106 0.217   
65 0.269 0.806 0.263 F 
66 0.298 2.083 0.258 F 
67 0.359 -1.128 0.263   
68 0.358 1.410 0.255   
69 0.668 2.836 0.202 K 
70 0.543 1.575 0.235   
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Appendix E: Xcalibre 4.0 Input & Output Specifications 
 
File specifications 
Specification Value Specification Value 
Number of examinees 2320 Total Items 70 
Calibrated Items 70 Pretest Items 0 
Excluded Items 0 Number of domains 1 
Classic Data Header Yes Delimited input No 
Delimiter for input N/A Number of ID columns 17 
ID begins in column 1 Responses begin in column 18 
Omit character N Not Admin character N 
Save item parameters Yes Item parameter format N/A 
Save data matrix Yes Include omit codes in matrix No 
Include Not Admin codes in matrix No Score Not Admin as omits No 
Plot the IRFs Yes Save the IRFs and IIFs No 
Produce the fit line Yes # Groups for Plot 15 
Type of score groups Equally sized Max score group size 200 
# Groups for Chi-square 15 Perform classification No 
Classify using N/A Two-group cutpoint N/A 
Low group label N/A High group label N/A 
 
 
IRT Calibration Specifications 
Specification Value Specification Value 
IRT Specification Dichotomous Model constant 1.0 
Polytomous IRT Model N/A Dichotomous IRT Model 1-parameter 
Center the boundary locations No Centered value N/A 
Floating priors Yes a parameter prior mean (sd) 1.000 (0.300) 
b parameter prior mean (sd) 0.000 (1.000) c parameter prior mean (sd) 0.250 (0.030) 
Theta estimation method MLE Bayesian prior mean (sd) N/A 
Maximum E-M loops 50 Convergence criterion 0.010 
Quadrature points 25 Center dich item parameters on b 
Acceptable P range 0.00 to 1.00 Acceptable item-corr range 0.00 to 1.00 
Acceptable item mean range 0.00 to 15.00 Correct for spuriousness Yes 
Fit statistic critical alpha 0.050 Minimum a 0.05 
Maximum a 4.00 Minimum b -4.00 
Maximum b 4.00 Minimum c 0.00 
Maximum c 0.70 Minimum theta -7.00 
Maximum theta 7.00 Treat scored items as poly No 
Center poly parameters on theta No Test for DIF No 
Group status column N/A Ability levels for DIF Test N/A 
Group 1 code N/A Group 2 code N/A 
Group 1 label N/A Group 2 label N/A 
Exclude items with low N No Minimum valid N N/A 
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Compute scaled scores No Mean (SD) of scaled scores N/A 
Save delimited output Yes Delimiter Comma 
Save scores output Yes Delimiter Comma 
Save delimited output Yes Delimiter Comma 
 
 
Flag Specifications 
Specification Value Specification Value 
Low a Flag Bound 0.30 High a Flag Bound 4.00 
Low b Flag Bound -3.00 High b Flag Bound 3.00 
Low c Flag Bound 0.00 High c Flag Bound 0.40 
Key Flag K Fit Flag F 
Low a Flag La High a Flag Ha 
Low b Flag Lb High b Flag Hb 
Low c Flag Lc High c Flag Hc 
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