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A filtered progress variable approach is adopted for large eddy simulations

(LES) of turbulent deflagrations. The deflagration model is coupled with a non-

premixed combustion model, either an equilibrium-chemistry, mixture-fraction based

model, or an eddy dissipation model. The coupling interface uses a LES-resolved

flame index formulation and provides partially-premixed combustion (PPC) model-

ing capability. The PPC sub-model is implemented into the Fire Dynamic Simulator

(FDS) developed by the National Institute of Standards and Technology, which is

then applied to the study of explosive combustion in confined fuel vapor clouds.

Current limitations of the PPC model are identified first in two separate series

of simulations: 1) a series of simulation corresponding to laminar flame propaga-

tion across homogeneous mixtures in open or closed tunnel-like configurations; and

2) a grid refinement study corresponding to laminar flame propagation across a

vertically-stratified layer.



An experimental database previously developed by FM Global Research, fea-

turing controlled ignition followed by explosive combustion in an enclosure filled

with vertically-stratified mixtures of propane in air, is used as a test configuration

for model validation. Sealed and vented configurations are both considered, with

and without obstacles in the chamber. These pressurized combustion cases present

a particular challenge to the bulk pressure algorithm in FDS, which has robustness,

accuracy and stability issues, in particular in vented configurations. Two modified

bulk pressure models are proposed and evaluated by comparison between measured

and simulated pressure data in the Factory Mutual Global (FMG) test configura-

tion. The first model is based on a modified bulk pressure algorithm and uses a

simplified expression for pressure valid in a vented compartment under quasi-steady

conditions. The second model is based on solving an ordinary differential equa-

tion for bulk pressure (including a relaxation term proposed to stabilize possible

Helmholtz oscillations) and modified vent flow velocity boundary conditions that

are made bulk-pressure-sensitive. Comparisons with experiments are encouraging

and demonstrate the potential of the new modeling capability for simulations of low

pressure explosions in stratified fuel vapor clouds.
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Chapter 1

Introduction

1.1 Overview

Confined or partially confined gas explosions are one of the major accidents

that occur in spilling/leaking fuel tank, fuel pipe scenarios, mining accidents, or

backdraft scenarios in buildings [1, 80, 95]. Compared to stabilised flames, which

feature moderate burning intensities, large scale explosions present more hazards,

resulting from the flame acceleration caused by a wrinkled premixed flame sur-

face, whose dynamics have been reviewed previously [7] (including the developing

hydrodynamic instabilities and cellular structure). Depending on the combustion

intensity, the explosion could remain a deflagration (subsonic combustion) or lead

to a detonation (supersonic combustion). In a detonation, the shock wave com-

presses the material so to increase the temperature to the point of ignition [90], the

ignited material burns behind the shock and releases energy that supports the shock

propagation. This self-sustained shock wave generates high pressures and presents

more destructive hazards than a deflagration, which has neither shock nor signifi-

cant pressure changes. In the current study, the explosive combustion corresponds

to deflagration in low-pressure environment.

Because of the unrealistic cost to study these real-world large-scale explosion,
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small-scale experiments [81, 82] and numerical tools [46, 47, 48, 49, 50, 51] are

usually adopted to help understand the physics and characteristics of confined or

partially confined gas explosions.

One crucial problem in the study of explosions is the combustion pattern dur-

ing and after the explosion, where both premixed and non-premixed combustion are

involved. Previous CFD modeling studies typically can handle only one of these

two categories of combustion: studies in which flammable conditions are assumed

across the bulk of the fuel vapor cloud, and combustion is described as premixed

[10, 46, 59, 60, 61, 66]; and studies in which ultra-rich conditions are assumed and

combustion is described as non-premixed [47, 48, 49, 50, 51, 73]. Here a more gen-

eral formulation in which combustion can be described as both, simultaneously or

sequentially, premixed and non-premixed is required for the purpose of modeling

confined and vented gas explosions. The present study considers such a formu-

lation and focuses on specific issues resulting from the coupling of premixed and

non-premixed turbulent flame models. This coupling has received growing inter-

est in recent years, primarily driven by the need to adapt combustion formulations

for a CFD treatment of lifted turbulent diffusion flames [18, 69, 85]. The burning

regime in the stabilization region of lifted diffusion flames is usually referred to as

partially-premixed combustion (PPC), so that the combustion model used in the

present work will be referred to as a PPC model.

Another key challenge in modeling gas explosions is the hazard presented by
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pressure. Venting is known to be an effective way to relieve the pressure, so as to

prevent the facilities from being destroyed by internal explosions. A number of em-

pirical and semi-empirical methods are available that can be used for determining

the size of explosion venting [70, 76]. Bradley studied the venting of gaseous explo-

sions in spherical vessels [8, 9], in which he also reviewed the model by Fairweather

[20] that the vented gas velocity is correlated with the ratio of internal pressure

divided by ambient pressure, so that the overpressure generated in totally confined

and/or vented explosions can be predicted.

Experimental work on vented explosions also includes McCann’s gas dynam-

ics study [52], in which he concluded that “when venting occurs through large and

intermediate vent areas, Helmholtz oscillations are generated within the vessel, and

the resulting flame accelerations give rise to Taylor instabilities of the flame front.

For smaller vent areas the fundamental acoustic mode of the vessel is excited, which,

at higher breaking pressures, is usually coupled with a second pressure peak”. When

Cooper and Fairweather [15] were studying the mechanisms of pressure generation

in vented explosions, they also observed the pressure oscillation, although they did

not identify them as Helmholtz oscillation. They proposed that for ignition at the

center of a vessel the combustion process gives rise to four major pressure peaks:

1) one peak depends on the failure strength of the explosion relief installed; 2)one

peak due to either the reactivity of the fuel or induced turbulence; 3) one peak

comes from a maximum in the rate of production of burned product; 4) one peak

identified as acoustical pressure peak. It was also confirmed in their work that in

3



vessels containing obstacles, the generation of turbulence during phase of the com-

bustion process can lead to a larger third peak, while eliminating the fourth peak,

because the generation of acoustically enhanced pressure depends on the coupling

between acoustic waves and combustion dynamics, any situation in which this pro-

cess is hindered is likely to produce much smaller fourth pressure peaks. Yu et

al [94] studied low-frequency combustion instabilities, which also included pressure

and velocity oscillations. The same feature of Helmholtz oscillations presented in

the vented explosion pressure is also predicted in DeHaan’s numerical work [17],

which will therefore be explored in the present study on the simulation of vented

explosions. McCann also measured the maximum exit velocity in vented explosions

[53], and it turns out to be lower than the one predicted by theory, i.e., the model

by Fairweather [20].

There are also some CFD efforts on the modeling of vented explosions. Ferrara

et al [22] used a two-dimensional axi-symmetric computational fluid dynamic model

based on the unsteady Reynolds Averaged Navier Stokes (RANS) approach to model

gas explosions vented through relief pipes. Work by Molkov et al. [59, 60, 61, 62,

63, 64, 65, 66] recently focuses on the Large Eddy Simulation (LES) modeling of

large-scale hydrocarbon-air or hydrogen-air deflagration, with two combustion sub-

models, one based on the renormalization group (RNG) theory and another on the

fractal theory by Bradley [7]. These studies consider the acceleration of combustion

due to the displacement and compression of unburned gases ahead of the flame,

by taking into account that the laminar burning velocity depends on pressure and

4



temperature [40, 96], but there is no specific treatment for Helmholtz oscillations,

which is essential for the correct vent explosion behavior.

Motivated by previous work on premixed/non-premixed combustion and vent-

ing pressure, the interest here is first to examine the vented explosion starting from

the accidental release and possible subsequent ignition of vaporized fuel in ambient

air, which usually occurs in backdraft explosion or fuel vapor cloud accidents. For

the rest of the chapter, the mechanism of fuel vapor cloud formation is examined.

Then relevant studies of backdraft phenomena and fuel vapor cloud combustion will

be reviewed, followed by a presentation of the objectives of the present thesis.

1.2 Fuel vapor cloud formation and ignition

When fuel is released into ambient air and forms a fuel vapor cloud, depending

on the velocity of the fuel-air mixing process, the composition of the bulk of the

fuel vapor could be ultra-lean (i.e., below the lower flammability limit) in the case

of fast mixing, ultra-rich (i.e., above the upper flammability limit) in the case of

slow mixing (Fig 1.1)), or flammable (i.e., within the flammability limits) in the

intermediate case (Fig 1.2). The fast mixing case corresponds to a desirable safe

dispersion scenario in which there is no fire or explosion hazard, so the slow mixing

and intermediate cases that correspond to a hazard will be the focus here (Figs 1.1a-

1.2a). It is assumed that ignition takes place somewhere at a flammable location
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in the fuel vapor cloud (Figs 1.1b-1.2b). Following ignition, the combustion will

proceed initially as a thin deflagration or detonation wave that propagates across

the flammable portions of the fuel vapor cloud.

Figure 1.1: Illustration of (a) the formation of a large ultra-rich fuel vapor cloud,

followed by (b) ignition and (c) diffusion burning.

The deflagration scenario will be focused on in the following, in which the

premixed flame propagates at subsonic speeds and pressure remains quasi-uniform

across the combustion zone (pressure may change with time but not with spatial

location). Even with this limited scope, the combustion dynamics remain quite

complex since they depend strongly on the state of the fuel-air mixing field found at

ignition time. In the case of an ultra-rich fuel vapor cloud, combustion corresponds

predominantly to a diffusion burning mode (Fig 1.1c); in the case of a flammable fuel

vapor cloud, combustion corresponds predominantly to a premixed burning mode

(Fig 1.2c). In cases dominated by premixed burning, one may also differentiate

6



Figure 1.2: Illustration of (a) the formation of a large flammable fuel vapor cloud,

followed by (b) ignition and (c) deflagration.

between pure premixed burning modes and partially premixed burning modes. Pure

premixed burning modes are observed when the bulk of the fuel vapor cloud is

flammable and/or fuel-lean, while partially-premixed burning modes are observed

when some portions of the fuel vapor cloud are flammable and/or fuel-rich: in

that case, the combustion starts as a fuel-rich deflagration wave that propagates

across the flammable region and leaves excess fuel in the post-deflagration gases; the

residual fuel may then subsequently mix with ambient air and burn in a diffusion

flame mode.

1.3 Backdraft

According to NFPA’s definition, backdraft is “the explosive or rapid burning

of heated gases that occurs when oxygen is introduced into a building that has not

been properly ventilated and has a depleted supply of oxygen due to fire”. The de-
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velopment of a backdraft incident in a building compartment generally goes through

a succession of stages, from under-ventilated, quasi-extinguished fire conditions, to

sudden reignition triggered by an accidental or intentional change in the fire room

ventilation capacity, followed in turn by a violent deflagration and possibly fireball

formation [23, 25].

An important ingredient in backdraft scenarios is the presence of gravity-driven

flows, which are results of fuel-air mixing and determine whether a deflagration may

occur as well as its intensity. The gravity-driven flow is the flow of one fluid into

another caused by a difference in mass density. In backdraft scenarios, when a vent

is opened, due to the temperature difference between inside and outside of the fire

room, dense ambient air flows into the lighter, fuel rich, compartment gas. So the

oxygen layer will go underneath the fuel layer, and if the zone where the two layer

mix happens to meet some hot spot, it maybe ignited as a premixed flame and prop-

agates through the compartment to form a large and intense flame. Fleischmann

used salt water to study gravity-driven flow and to determine the flow speed and the

extent of the mixing region [24], using non-dimensionalization and scaling parame-

ters. Also with McGrattan, they used a buoyancy-driven flow model to study the

gravity-driven flow numerically [55] (a detailed description of this buoyancy-driven

flow model can be found in [56]).

Small scale experiments on backdraft include elaborate work from Fleischmann

[25, 26], in which a methane burner is ignited in a closed compartment of 1.2 m by
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1.2 m by 2.4 m, and burns until the initial oxygen is consumed. The gas burner

is kept on for a certain duration to form a fuel-rich mixture. Then, following the

opening of the hatch, an air gravity-driven flow comes in and travels across the

compartment, mixes with the unburned fuel, and is ignited by a spark near the

end wall of the compartment. Once the mixture ignites, a backdraft is observed to

occur as a deflagration propagates through the compartment culminating in a large

external fireball. Data are recorded, in particular the fuel flow rates, upper layer

temperatures, lower layer temperatures, and upper layer species concentrations for

O2, CO2, CO, HC, to quantify the backdraft in terms of opening gas flow veloci-

ties and compartment pressures. This work indicates that the unburned fuel mass

fractions should be larger than 10% for a backdraft to occur.

Gottuk’s experimental study of backdraft explosions [28, 29] reveals that the

critical fuel mass fraction required for the development of diesel fuel backdrafts is

Yf = 0.16 for fully vitiated conditions (to be compared to Yf = 0.10 reported by

Fleischmann for methane backdraft). This higher value of the critical fuel mass frac-

tion is attributed primarily to the oxygen concentrations within the compartments.

The average compartment oxygen concentration in Gottuk’s experiment is 1 % by

volume while in Fleischmann’s tests it takes values between 10% to 12%, and this

difference in oxygen concentration can result in a factor of 1.5 to 2 difference in the

critical fuel mass fraction (Gottuk shows that the standard flammability diagram

can be used to predict bounding limits and trends on critical fuel mass fractions with

respect to oxygen concentrations). Gottuk’s research also reveals that the injection
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of water spray is an effective mitigating tactic to completely prevent backdrafts,

mainly by means of diluting the atmosphere and reducing the fuel mass fraction,

rather than by a thermal mechanism of cooling. In Gottuk’s experiment, at the

time the door was opened to induce the gravity current for the backdraft to happen,

the average compartment temperatures are 340 to 400 �; when injecting water,

the temperature were typically between 310 to 360 �, which is still greater than

the auto-ignition temperature of diesel. Since the compartment temperatures are

high enough to evaporate all injected water, water injection will dilute the fuel mass

fraction, and when dilution levels are high enough no explosion or even external

flaming is observed.

Snegrirev studied the flame projection through openings under limited ven-

tilation conditions both experimentally and numerically [79], which should not be

confused with the deflagration in the backdraft cases. They studied the critical flow

rate of the fuel sufficient for flame projection as well as the delay between fuel ig-

nition and flame projection with subsequent establishment of external combustion.

The flame projection observed is when there is a lack of oxygen, the flame moves

from burning inside to outside, and there is no smoldering process and no reignition

of a partially premixed gas, so the flame projection speed is much less than the

deflagration speed in backdraft.

Ferraris and Wen adopted a subgrid-scale (SGS) model for partially premixed

combustion to simulate backdraft [23]. The model is based on the linear coupling of
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two independent approaches for premixed and non-premixed combustion through

the ‘flame index’ concept, which is similar to the modeling framework adopted

in the present work. A Large Eddy Laminar Flamelet Model (LELFM) is used

for non-premixed combustion and a flame surface density approach is adopted for

premixed combustion. While their results are mostly analyzed qualitatively, the

simulation gives the insight that the development of backdraft can be divided into

five phases, i.e., initial condition, free “spherical propagation”, “plane” front prop-

agation, stretching of the flame front through the opening and fireball outside the

container. Their quantitative comparison finds that the experimentally measured

and numerically predicted lapse of time between the maximum over- and under-

pressure at the opening of the container are in good agreement.

CFD work on backdraft also includes Horvat and Sinai’s preliminary work on

simulations of compartment backdraft phenomena [34], in which a Detached Eddy

Simulation (DES) turbulence model and an Eddy Dissipation Model (EDM) com-

bustion model are used to model fire spread through the mixture of methane, air

and combustion products. The DES model uses a RANS formulation near solid

walls and the Large Eddy Simulation (LES) model in the bulk of the flow to avoid

computationally expensive grid resolution that is necessary for realistic LES predic-

tions in wall layers. By validating against Gottuk’s experiment [28, 29], it is found

that the predicted ignition time agrees qualitatively with the experimental data,

while the differences between the simulations and the experiment are greater for

pressure and temperature, which are projected in their paper to be due to possible

11



shortcomings in their ignition and combustion models, as well as inaccuracies in the

gravity current predictions.

1.4 Fuel spill and deflagration

Concerns on Liquefied Natural Gas (LNG) tank releases motivate research

on fuel spill, pool vaporization, turbulent dispersion and fuel-vapor mixing. Fay

has produced analytical and computer models that predict the behavior of spills of

LNG and oil from the holds of tankers [21]. Conrado and Vesovic devised a nu-

merical model estimating the vaporization rate of LNG and liquefied petroleum gas

(LPG) on unconfined water surfaces [14]. A turbulent dispersion model called DE-

GADIS model is used to study the dispersion of denser-than-air gases [30]. SLAB,

developed by Lawrence Livermore National Laboratory, the USAF Engineering and

Services Center, and the American Petroleum Institute, also models the dispersion

of denser-than-air gases [19]. McGill [54] used FDS coupled with a deflagration

model to simulate the vaporization, dispersion and deflagration of liquid methane

pools boiling on water while subjected to airflow around a prismatic body. The

research in his study is sharing the same framework of the deflagration model as the

one adopted in the present study, which will be presented in detail in Chapter 2.

Molkov and his co-workers developed a model to simulate large-scale confined

and unconfined gaseous deflagrations [59, 60, 61, 62], which adopts the reaction

progress variable (c) to simulate the propagation of turbulent premixed flame fronts
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and the gradient method to provide the mass burning rate, in which the local mass

burning rate is assumed to be proportional to the magnitude of the gradient of c

(|∇c̃|). Flame front wrinkling is partially resolved by LES, while the unresolved sub-

grid-scale (SGS) increase in flame front area is modeled by a deflagration-outflow

interaction (DOI) number. The LES model in their work is validated against vented

explosion experiments in two vessels of 0.95 m3 and 6.37 m3 volume, with different

vent diameters and vent relief pressures, and hydrogen-air mixtures of different con-

centrations.

Makhviladze and colleagues studied non-premixed combustion in fuel vapor

clouds corresponding to fuel rich conditions across the bulk of the flammable cloud

[47, 48, 49, 50]. The model solves the incompressible Navier-Stokes equations with

species equations for fuel, O2, N2, H2O and CO2. An eddy-break-up (EBU) model

is used for the reaction rate, while the reaction zone is viewed as a collection of fresh

and burned gas pockets. The model is used to study the structure of the fireball re-

sulting from the ignition of the vertical release of fuel from an axially-symmetric jet,

which is then compared to the predictions from empirical relationships for fireballs

and shows reasonable results. A correlation for the fireball lifetime as a function of

Froude number is presented. The model is then extended to a treatment of two-

phase fuel releases. Finally, the model was applied to simulate the development and

combustion of a fuel vapor cloud formed from an instantaneous fuel release, instead

of finite-time releases.
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1.5 Objective

The objective of this study is to explore the feasibility of a Large Eddy Simula-

tion (LES) approach combined with a partially-premixed combustion (PPC) model

in addressing the hazards associated with the transient combustion of fuel vapor

clouds, with a particular emphasis on the flame propagation speed, burning inten-

sity and the time evolution of pressure. The developments and tests are made in

the context of a CFD solver called the Fire Dynamics Simulator (FDS) [57].

FDS is developed by the National Institute of Standards and Technology

(NIST), and is oriented toward fire applications; it uses a Large Eddy Simulation

(LES) approach for turbulence (based on the classical Smagorinsky model) and a

fast chemistry model for non-premixed combustion (based on the Eddy Dissipation

Concept) [56, 57, 58].

A premixed combustion modeling capability has been recently incorporated

into FDS to give an enhanced PPC modeling capability [87, 88, 89, 92, 93]. An

extension to FDS Version 5 (earlier developments had been made in the context of

FDS Version 4) has also been made during the present work. The preliminary work

in Refs. [92, 93] is focused on integrating a turbulent deflagration model into FDS

and performing verification tests in configurations in which the fuel-air mixture is

uniform. In the work of Refs. [87, 88, 89], a detailed discussion of the grid reso-

lution requirement of the PPC model formulation when used in non-homogeneous
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configurations is presented, and it is found that the model is limited by the demand

that the LES premixed flame remains thin in mixture fraction space. Thus the LES

filter-to-grid length ratio is proposed to be ∆c/∆ ≥ 4. Also a modified PPC for-

mulation is proposed based on a two-speed treatment of flame speed (s∗L, s
∗∗
L ) [89].

This scheme has been shown to successfully eliminate spurious premixed burning

near the edges of the flammable cloud and provides a clean description of the burn

out phase after premixed burning is completed. These recent developments are also

adopted in the PPC model and used here as a starting point. The PPC model will

be described in Chapter 2 along with its incorporation into FDS.

In the present study, a series of verification tests are performed corresponding

to uniform mixture premixed flames propagating horizontally in tunnel configura-

tions, for further evaluating the flame speed algorithm, then a grid study in a similar

configuration, but with a vertically-stratified fuel-air mixture, is conducted since fuel

spills or flammable gas releases often form stratified fuel/air mixtures that present

explosion hazards. In the end of Chapter 3 the computational grid requirement of

the PPC model is characterized.

In Chapter 4, the bulk pressure algorithm in FDS is first reviewed and found

to be incapable of correct pressure solution in compartment with open vents, which

is a key issue in vented explosions. A modified pressure algorithm is proposed, based

on the quasi-steady Bernoulli theory, and tested in a simple compartment config-

uration for verification purposes. The comparison between the performance of the
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original FDS pressure algorithm and modified algorithm will also be shown.

In Chapter 5 a validation study is performed, aiming to examine the capability

of the PPC model and the modified pressure algorithm in simulating a real-scale

confined and vented gas explosion. The experimental database has been previously

developed by Factory Mutual (FM) Global Research [81], corresponding to a sce-

nario of controlled ignition followed by explosive combustion in an enclosure filled

with vertically-stratified mixtures of propane in air, both with and without venting,

and with and without obstacles. This database corresponds to low-pressure explo-

sions in confined fuel vapor clouds and is well-suited for a validation study of the

PPC model.

Another concern when examining the FDS performance in vented explosion

in previous chapters is that the mass outflow prediction upon vent opening is incor-

rect. In Chapter 6 a study of the vent flow velocity boundary condition in FDS is

conducted, followed by a proposed modified treatment that is sensitive to the pres-

sure difference on both sides of the vent. It is found that the new formulation helps

capture the Helmholtz oscillation phenomena, which are observed in experiments by

[15, 17, 52]. The new velocity boundary condition scheme is coupled with the FDS

pressure algorithm, and is referred to as velocity-pressure coupling (VPC) scheme.

It will be discussed in detail in Chapter 6.

Finally in Chapter 7 the VPC scheme is adopted along with the PPC model to
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simulate the FMG test configuration, mainly two cases characterized by the presence

of a vent and featuring low vent opening pressure. The simulated pressure will be

compared with the experimental data, and the ability of the FDS-based model to

simulate large scale vented explosions will also be discussed.
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Chapter 2

Partially-Premixed Combustion (PPC) Model in Fire Dynamic

Simulator (FDS)

The combustion modeling capability of FDS, including Version 4 and Version

5 (released in 2007) [57] is presented in this chapter. FDS is widely used in the

fire protection engineering field, and it features a Large Eddy Simulation (LES)

approach for turbulence modeling and either an equilibrium-chemistry, mixture-

fraction-based model (FDS version 4) or an Eddy Dissipation Concept model (FDS

version 5), for non-premixed combustion. FDS uses an incompressible flow solver,

solving low-Mach number forms of the Navier-Stokes equations, so the domain of

application of FDS is limited to scenarios that are quasi-incompressible and with

no blast wave. First the non-premixed combustion models available in the NIST

official releases of FDS versions 4 and 5 will be reviewed in the following, followed

by a presentation of the developments made at the University of Maryland over the

past few years, including a deflagration model, and a coupling interface that couples

the non-premixed and premixed combustion models.

2.1 Diffusion flame modeling with flame extinction

In FDS4, the combustion model is based on the classical Burke-Schumann

theory of diffusion flames in which fast chemistry is assumed and the flame structure
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is described in terms of a conserved mixture fraction Z̃. Consider the following

reaction:

CnHm + νO2O2 −→ (n− νCO − νsoot)CO2 +
m

2
H2O+ νCOCO+ νsootC (R1) (2.1)

where νco and νsoot are the number of moles of carbon monoxide and carbon atoms in

soot produced per unit mole of fuel consumed, and νO2 is the corresponding number

of moles of oxygen consumed. In FDS 4, νco and νsoot are prescribed by users from

empirical or experimental data, instead of being solved. More advanced models for

CO and soot formulation are presented in [35, 36]. However, in FDS 5, a different

framework of the combustion model is adopted which provides enhanced descriptions

of CO and soot. But first the combustion model in FDS4 will be reviewed, which

adopts mixture fraction as the main variable. The mixture fraction is defined as the

mass fraction of carbon mass:

Z = YCnHm + (
WCnHm

nWCO2

)YCO2 + (
WCnHm

nWCO

)YCO + (
WCnHm

nWsoot

)Ysoot (2.2)

where Yk and Wk are the mass fraction and molecular weight of species k. Mixture

fraction is a conserved scalar representing the fraction of material at a given point

that originated as fuel. All species mass fraction in the system can be derived from

the mixture fraction Z using the so-called ”state relations”, as shown in Fig 2.1.

Mixture fraction satisfies the following turbulent mixing equation:

∂

∂t
(ρ̄Z̃) +

∂

∂xi
(ρ̄ũiZ̃) =

∂

∂xi
(ρ̄

νt
Sct

∂Z̃

∂xi
) (2.3)

where νt is the turbulent viscosity, Sct the turbulent Schimdt number. In FDS4,
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Figure 2.1: State relations (with propane as fuel)

the heat release rate is calculated from a classical flamelet expression:

¯̇ωF = −(
Y ∞F

1− Zst
)(

1

2
ρ̄χ̃st)p̃(Zst)×∆HF (2.4)

where Y ∞F is the fuel mass fraction in the fuel supply stream, Zst is the stoichiomet-

ric value of mixture fraction, χ̃st is the LES-filtered scalar dissipation rate (Favre-

averaged along the subgrid-scale flame surface contour Z = Zst), ρ̄ is the LES-filtered

mass density, ∆HF is the heat of combustion per unit mass of fuel, and p̃(Zst) is the

stoichiometric value of the probability density function for subgrid-scale fluctuations

in mixture fraction Z.

Here additional information is needed to describe χ̃st and p̃(Zst). First it can

be assumed that χ̃st is approximated by the unconditional scalar dissipation rate

χ̃. χ̃st gives a measure of the turbulent rate of fuel-air mixing and a simple closure
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model for this quantity is [71]:

χ̃st = 2(
νt
Sct

)|∇Z̃|2 (2.5)

p̃(Zst) is a measure of the local probability of presence of the flame. A β-pdf model

of p̃(Zst) is explored in Ref. [37] to model non-premixed combustion in FDS4. Here

a simple δ-Pdf model is adopted:

p̃(Zst) = δ(Z̃ − Zst) (2.6)

in which the subgrid-scale variations in mixture fraction are neglected. So finally

the LES-filtered heat release rate per unit volume can be expressed as:

q̇
′′′
d = (

Y ∞F
1− Zst

)(ρ̄
νt
Sct
|∇Z̃|2)δ(Z̃ − Zst)×∆HF (2.7)

In FDS5, the framework of the combustion model is changed to a two-variable

formulation. The mixture fraction is then decomposed into two components from

the global reaction R1 (see Eq.(2.1)):

Z1 = YCnHm

Z2 = (
WCnHm

nWCO2

)YCO2 + (
WCnHm

nWCO

)YCO + (
WCnHm

nWsoot

)Ysoot

Z = Z1 + Z2 (2.8)

where Z1 represents the carbon mass fraction contained in the fuel, Z2 represents

the carbon mass fraction contained in CO2, CO and soot. Again the entire mixture

composition can be derived from the knowledge of Z1 and Z2 via state relationships.
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The governing equations for Z1 and Z2 are:

∂

∂t
(ρ̄Z̃1) +

∂

∂xi
(ρ̄ũiZ̃1) =

∂

∂xi
(ρ̄

νt
Sct

∂Z̃1

∂xi
)− ω̇′′′

R1

∂

∂t
(ρ̄Z̃2) +

∂

∂xi
(ρ̄ũiZ̃2) =

∂

∂xi
(ρ̄

νt
Sct

∂Z̃2

∂xi
) + ω̇

′′′
R1 (2.9)

where ω̇
′′′
R1 is the mass reaction rate of the global combustion reaction (R1). In FDS5,

combustion is treated using a closure expression known as the Eddy Dissipation

Concept model [45]:

ω̇
′′′
R1 = ρ̄× min(ỸF ; ỸO2/rs)

τ

q̇
′′′
d = ω̇

′′′
R1 ×∆HF (2.10)

where rs is the stoichiometric oxygen-to-fuel mass ratio, τ is a characteristic com-

bustion time scale. In recent update of FDS version 5, τ is set to be ∆2

νt
, ∆ is

FDS computational grid size, νt is turbulent viscosity. This expression assumes that

combustion is fast, so the burning rate depends on the mixing rate. Species mass

fractions are calculated directly from the solution of Z1, Z2:

YF = Z1

YN2 = (1− Z1 − Z2)Y ∞N2

YO2 = (1− Z1 − Z2)Y ∞O2
− νO2WO2

WCnHm

Z2

YCO2 =
νCO2WCO2

WCnHm

Z2

YH2O =
νH2OWH2O

WCnHm

Z2

YCO =
νCOWCO

WCnHm

Z2

Ysoot =
νsootWsoot

WCnHm

Z2

(2.11)
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An optional diffusion flame extinction model is also available in FDS4/FDS5 to

account for quenching by oxygen starvation in under-ventilated fires. The diffusion

flame extinction model starts from recognizing the importance of air vitiation ef-

fects in smoke-filling enclosure fires. The reduction in flame strength resulting from

smoke-air mixing is incorporated into the model via the introduction of a flame

extinction factor FEF, so that the above expressions for the heat release rate are

modified as:

q̇
′′′
d,ex = q̇

′′′
d × (1− FEF ) (2.12)

where FEF is the locally-defined probability of finding active flame elements in a

given LES computational grid cell: FEF = 0 corresponds to a fully burning flame,

while FEF = 1 corresponds to a fully extinguished flame.

The model formulation for FEF starts from a classical Burke-Schumann flamelet

temperature model assuming a constant cp:

Tst = T1
YO2,2

rsYF,1 + YO2,2

+ T2
rsYF,1

rsYF,1 + YO2,2

+
∆HF

cp

YF,1YO2,2

rsYF,1 + YO2,2

(2.13)

where T1 and T2 are the temperatures in the fuel and oxidizer streams feeding the

flame, YF,1 and YO2,2 the mass fractions of fuel and oxygen in those feeding streams,

rs the stoichiometric oxygen-to-fuel mass ratio, and cp the specific heat of the reac-

tive mixture at constant pressure. The first two terms on the right-hand-side (RHS)

of Eq.(2.13) accounts for mixing, while the last term accounts for combustion. As-

suming that the fuel stream temperature T1 and fuel mass fraction YF,1 are constant,

the flame temperature reduces to a function of the oxidizer stream properties YO2,2

23



and T2.

Next, the concept of a critical flame temperature Tc and that of a lower oxygen

limit YO2,c are introduced. Tc is the minimum temperature that can sustain a flame,

here Tc ≈ 1, 700K is used from [3] as the critical stoichiometric flame temperature

in Eq.(2.13). The lower oxygen limit YO2,c is defined as the limiting value of the

oxygen mass fraction that corresponds to burning in normal temperature (T2 = T∞)

diluted air. It is shown in Refs. [67, 68] that YO2,c ≈ 0.17. The condition that

relates the critical flame temperature and lower oxygen limit can be expressed:

Tc = T∞
YO2,c

rsYF,1 + YO2,c

+ T∞
rsYF,1

rsYF,1 + YO2,c

+
∆HF

cp

YF,1YO2,c

rsYF,1 + YO2,c

(2.14)

where assuming T1 = T∞. Eq.(2.14) yields:

∆HF

cp
=
rsYF,1 + YO2,c

YF,1YO2,c

(Tc − T∞) (2.15)

Combining Eqs.(2.15) and (2.13), that gives the alternative expression of the

stoichiometric flame temperature with the combustion term expressed in terms of

Tc and YO2,c:

Tst = T∞
YO2,2

rsYF,1 + YO2,2

+ T2
rsYF,1

rsYF,1 + YO2,2

+
rsYF,1 + YO2,c

YF,1YO2,c

(Tc − T∞)
YF,1YO2,2

rsYF,1 + YO2,2

(2.16)

After some algebraic manipulation, Eq.(2.16) can be simplified to:

Tst = Tc + (Tc − T∞)
rsYF,1

rsYF,1 + YO2,2

(
YO2,2

YO2,c

− (Tc − T2)

(Tc − T∞)
) (2.17)
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This expression can be used to construct a flammability diagram in terms of

the vitiated air variables YO2,2 and T2 as shown in Fig 2.2. In this diagram, non-

flammable (flammable) conditions correspond to sub-critical (super-critical) flame

temperatures, i.e. flame temperatures such that Tst ≤ Tc (Tst ≥ Tc), or

Figure 2.2: Flammability diagram in

terms of the vitiated air properties

YO2,2 and T2

Figure 2.3: Numerical search algo-

rithm for vitiated air conditions

(Tc − T2)

(Tc − T∞)
− YO2,2

YO2,c

≥ 0 (≤ 0) (2.18)

So the following definition of the flame extinction factor FEF is proposed:

FEF = H(
(Tc − T2)

(Tc − T∞)
− YO2,2

YO2,c

) (2.19)

where H is the Heaviside function,

H(x) = 1 if x ≥ 0
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H(x) = 0 if x ≤ 0

(2.20)

Eq.(2.19) is a closure model for FEF, provided that the variables YO2,2 and T2

are known. In FDS, these two variables are determined based on a search algorithm

applied to any computational grid cell where heat release is taking place, as can be

seen in Fig 2.3. The search algorithm interrogates neighboring cells and identifies

among them the cells that are both non-reacting (q̇
′′′

d = 0) and located on the lean

side of the flame (Z̃ ≤ Zst); the LES grid-resolved oxygen mass fraction and tem-

perature in those oxidizer cells are then used to estimate the vitiated air conditions

at the LES flame location. Thus,

q̇
′′′
d,ex = q̇

′′′
d × (1− FEF ) (2.21)

provides an extended HRR model for cases with flame extinction. This flame extinc-

tion model along with FDS4 are used to model under-ventilated compartment fires

in Refs. [35, 39], and the two-variable combustion model proposed in FDS5 along

with this extinction model are adopted in Ref. [36] to study CO/soot emissions in

under-ventilated compartment fires.

2.2 Deflagration modeling for premixed combustion

A classical model for premixed combustion is based on the concept of a reaction

progress variable c: c = 0 in the fresh reactants (upstream of the flame), c = 1 in the

burnt products (downstream of the flame), and the flame is the region where c goes
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from 0 to 1 [72, 86, 91]. The c variable can be defined starting from the following

reaction:

CnHmOp + (n+
m

4
− p

2
)O2 −→ nCO2 +

m

2
H2O (2.22)

where CnHmOp represents the gaseous fuel (also noted F ). Assuming equal molec-

ular diffusion coefficients, the reaction progress variable is:

c =
(Y u

F − YF )

(Y u
F − Y b

F )
=

(Y u
O2
− YO2)

(Y u
O2
− Y b

O2
)

=
YCO2

Y b
CO2

=
YH2O

Y b
H2O

(2.23)

where Yk is the mass fraction of species k, Y u
k the value of Yk in the unburnt gas,

and Y b
k the value of Yk in the burnt gas. Y u

k is an input quantity to the combustion

problem that characterizes the initial state of the reactive mixture (prior to com-

bustion); Y b
k is a quantity that characterizes the final mixture composition and that

may be obtained from equilibrium thermodynamics.

The reaction progress variable framework is general and flexible, and it has

been adapted to a LES treatment of propagating turbulent flames [4, 5, 6, 11, 31,

32, 43, 44, 83]. The treatment is based on a transport equation for the LES-filtered

reaction progress variable c̃, and flame propagation is described via the LES-resolved

c̃-field variations. Starting from the classical balance equation for c [72, 86, 91]:

∂

∂t
(ρc) +

∂

∂xi
(ρuic) =

∂

∂xi
(ρD

∂c

∂xi
) + ω̇c (2.24)

where ρ is the mass density, ui the xi-component of the flow velocity vector, D the

mass molecular diffusion coefficient, and ω̇c the reaction rate (the mass of product

formed by combustion, per unit time and per unit volume). Applying a LES filter
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treatment to Eq.(2.24) gives:

∂

∂t
(ρ̄c̃) +

∂

∂xi
(ρ̄ũic̃) = − ∂

∂xi
(ρuic− ρ̄ũic̃) +

∂

∂xi
(ρD

∂c

∂xi
) + ¯̇ωc (2.25)

where the over-bar symbol denotes straight LES-filtered quantities, and the tilde

symbol denotes Favre-weighted LES-filtered quantities. The first term on the RHS

of Eq.(2.25) represents convective transport of c due to subgrid-scale turbulent fluc-

tuations; the second term represents transport of c due to molecular diffusion; and

the last term represents production of c due to chemical reaction. These three terms

require three closure models, which are proposed in Refs. [5, 6] and will be reviewed

herein. The convective transport terms can be described using the turbulent eddy

viscosity concept and assuming gradient-transport:

(ρuic− ρ̄ũic̃) = −ρ̄ νt
Sct

∂c̃

∂xi
(2.26)

While the contribution of molecular diffusion is expected to be small in flame

regions where the turbulence intensity is high, this contribution will be significant,

and possibly dominant, in regions where the turbulence intensity is low. The closure

model for the molecular transport of c is proposed as [5, 6]:

ρD
∂c

∂xi
=

ρusL∆c

16
√

6/π

∂c̃

∂xi
(2.27)

where ∆c is the LES filter size, sL the laminar flame speed. This model meets the

realizability requirement that under laminar flow conditions (νt = 0 and Ξ = 1

which will be described below), the flame propagates at the laminar flame speed sL.
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A classical flamelet viewpoint is also adopted in which the chemical reaction

term is written as the product of a laminar-like reaction rate per unit flame surface

area times a flame surface density:

¯̇ωc = (ρusL)× Σ (2.28)

where ρu is the unburnt gas mass density, sL the laminar flame speed, and Σ the

LES-filtered flame surface-to-volume ratio (in units of 1/m). In previous work [4, 5,

6, 11, 31, 32, 43], it is proposed to write Σ as:

Σ = Ξ×
√

6

π

c̃(1− c̃)
∆c

(2.29)

where Ξ is the subgrid-scale flame wrinkling factor (Ξ ≥ 1). While elaborate closure

model expressions have been proposed in previous work [12, 13], in current work Ξ

will be chosen as a model constant.

Adopting the previous 3 closure models, the balance equation for c features a

classical convection-diffusion-reaction structure and reduces to:

∂

∂t
(ρ̄c̃) +

∂

∂xi
(ρ̄ũic̃) =

∂

∂xi
((ρ̄

νt
Sct

+
ρusL∆c

16
√

6/π
)
∂c̃

∂xi
) + (ρusL)Ξ× 4

√
6

π

c̃(1− c̃)
∆c

+ ¯̇ωign

(2.30)

where ¯̇ωign is a spatially- and temporally-localized extra source term that will be

used to describe ignition. The corresponding expression for the LES-filtered fuel

mass reaction rate is:

ω̇′′′
p = (4ρusLΞ

√
6

π

c̃(1− c̃)
∆c

+ ¯̇ωign)× (Y u
F − Y b

F ) (2.31)
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where Y u
F is the value of the fuel mass fraction in the unburnt gas, and Y b

F its value in

the burnt gas. Y u
F is an input quantity to the combustion problem that characterizes

the pre-combustion state of the reactive mixture; Y b
F is a quantity that characterizes

the post-premixed-flame state. Upstream of the deflagration front, c̃ = 0 and the

mixture composition corresponds to the pure mixing solution, YF = Y u
F (Z̃), with

Z̃ the mixture fraction, whereas downstream of the deflagration front, c̃ = 1 and

the mixture composition may be approximated by the classical Burke-Schumann

equilibrium solution, YF = Y b
F (Z̃). Assuming that the fuel mass fraction is equal to

1 in the fuel supply stream, we can write:

(Y u
F − Y b

F ) = Z̃ if Z̃ ≤ Zst

(Y u
F − Y b

F ) = (1− Z̃)× Zst
1− Zst

if Z̃ ≥ Zst (2.32)

For FDS 5, in the case of a pure premixed combustion regime, the premixed

combustion source term given by Eq.(2.31) is simply added to the Z1 and Z2 conser-

vation equations in Eq.(2.9); in the case of a partially-premixed combustion regime,

the formulation requires additional considerations as will be described in the next

section.

2.3 Partially premixed combustion

This section describes the coupling of the above premixed and non-premixed

combustion models so that scenarios that feature both combustion modes can be

treated. For instance, if mixing is fast and/or the duration of mixing is long enough,

30



the size of the flammable cloud in the fire room will be large, and premixed com-

bustion will be the dominant mode of combustion. In contrast, if mixing is slow

and/or the duration of mixing is short, the size of the flammable cloud will remain

small, the fire room will essentially be filled with an ultra-rich fuel-air mixture;

while premixed combustion will start as the dominant mode of combustion during

the deflagration stage, a transition to non-premixed combustion will be observed

soon after. The goal here is to extend the FDS modeling capability to a treatment

of the simultaneous or sequential occurrence of both premixed and non-premixed

combustion.

First of all, an extension of the filtered-c model to the case of non-homogeneous

fuel-air mixtures is required to describe the variations of the laminar flame speed sL

with fuel-air ratio, and provide a corresponding description of the fuel-air mixture

flammability limits. The variation of sL with Z̃ may be obtained from experimental

measurements, or from numerical calculations of the inner structure of laminar pre-

mixed flames, using detailed description of chemical kinetics and molecular transport

[85, 86, 91]. Here a convenient alternative is proposed using an ad-hoc analytical

expression parametrized in terms of four input variables, ZLFL, ZUFL, Zst and sL,st.

ZLFL and ZUFL are the values of Z at the lower and upper flammability limits;

Zst and sL,st are the stoichiometric values of Z and sL. A piecewise second-order

polynomial function is presented in Fig 2.4, with the constraints that sL vanishes

at ZLFL, ZUFL, is maximum at Zst and features a peak value equal to sL,st. It is
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formulated as:

sL = sL,st × (1− (
(Zst − Z)

(Zst − ZLFL)
)2) if ZLFL ≤ Z ≤ Zst

sL = sL,st × (1− (
(Z − Zst)

(ZUFL − Zst)
)2) if Zst ≤ Z ≤ ZUFL

(2.33)

Figure 2.4: Variations of laminar flame speed with mixture fraction (methane as the

fuel)

This is an ad-hoc treatment based on experimental study by Zhu et al [96].

Furthermore, the sL algorithm can be extended by making sL a function of the

unburnt gas temperature Tu as well as bulk pressure p̄, as described in [84].

sL = sL,ref (
Tu

Tu,ref
)γ(

p̄

p̄ref
)β

γ = 2.18− 0.8(φ− 1)
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β = −0.16 + 0.22(φ− 1)

φ =
1− Zst
Zst

× Z̃

1− Z̃
(2.34)

where Tu,ref = 298 K, p̄ref = 101325 Pa, sL,ref is the value of sL that is obtained at

normal temperature and pressure conditions, and is a function of Z as shown in Fig

2.4. γ and β are model coefficients that are functions of the local equivalence ratio

φ, and φ can be derived from the local mixture fraction Z as given in Eq.(2.34). This

expression of sL is adopted in the simulation of explosive combustion in Chapters 5

and 7. A test of this modification will be shown in the 2-D tunnel flame propagation

in Appendix B.

The filtered-c model equations are now simply modified as follows:

∂

∂t
(ρ̄c̃)+

∂

∂xi
(ρ̄ũic̃) =

∂

∂xi
((ρ̄

νt
Sct

+
ρusL(Z̃, Tu, p̄)∆c

16
√

6/π
)
∂c̃

∂xi
)+(ρusL(Z̃, Tu, p̄))Ξ×4

√
6

π

c̃(1− c̃)
∆c

+¯̇ωign

(2.35)

q̇′′′
p = (Ξ× 4ρusL(Z̃, Tu, p̄)

√
6

π

c̃(1− c̃)
∆c

+ ¯̇ωign)× (Y u
F − Y b

F )×∆HF (2.36)

where the variations of sL, Y m
F and Y eq

F with fuel-air mixture composition are ac-

counted for. Note that this extended model has the capability to differentiate be-

tween cases of successful ignition and misfires. For instance, if the numerical ignitor

is located outside of the flammable region, 0 ≤ Z̃ign ≤ ZLFL or ZUFL ≤ Z̃ign ≤ 1

(Z̃ign is the value of mixture fraction at the ignitor location), the ignition source

term ¯̇ωign will succeed in establishing an ignition kernel but will fail in initiating a

propagating flame, sL(Z̃ign) = 0. Under such conditions, after ¯̇ωign is turned off,

combustion will cease and the ignition kernel will simply mix and dissipate.
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The non-premixed combustion models in FDS4 and FDS 5 are:

q̇
′′′
d = (

Y ∞F
1− Zst

)(ρ̄
νt
Sct
|∇Z̃|2)δ(Z̃ − Zst)×∆HF × (1− FEF ) (2.37)

q̇
′′′
d = ρ̄× min(ỸF ; ỸO2/rs)

τ
×∆HF × (1− FEF ) (2.38)

The premixed and non-premixed contributions to combustion will be coupled

using the concept of a flame index [18]:

FI =
1

2
(
∇ỸF · ∇ỸO2

|∇ỸF | × |∇ỸO2|
+ 1) (2.39)

where ỸF and ỸO2 are the LES grid-resolved fuel and oxygen mass fractions, which

are obtained from Fig 2.1 in FDS 4 or Eq.(2.11) in FDS 5. FI is a non-dimensional

field quantity that varies between 0 and 1; inert mixing between cross-diffusing fuel

and air corresponds to FI = 0; a diffusion flame configuration in which fuel and

air enter the chemical reaction zone from opposite directions also corresponds to

FI = 0; in contrast, a premixed flame configuration in which fuel and air enter the

chemical reaction zone from the same directions corresponds to FI = 1.

Using FI as a weight coefficient, a simple partially-premixed combustion model

can now be proposed that describes the heat release rate as a weighted average

between the premixed and non-premixed contributions [18]:

q̇′′′ = FI × q̇′′′
p + (1− FI)× fign × q̇

′′′
d (2.40)

where fign is an ad hoc ignition factor. fign is introduced in Eq. (2.40) so that the
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diffusion flame model remains inactive when inert mixing is taking place (fign = 0

when c̃ = 0), and is only activated as a post-premixed flame event (fign = 1 when

c̃ = 1). As a first step, it is proposed that:

fign =
1

2
+

1

2
tanh(

c̃− 0.6

0.05
) (2.41)

The above two equations correctly describe the two limiting cases that corre-

spond to pure premixed or non-premixed combustion: premixed flames corresponds

to FI = 1 and q̇′′′ = q̇′′′
p , while non-premixed flames correspond to FI = 0, fign = 1

and q̇′′′ = q̇
′′′
d .

In FDS 5, the fuel mass reaction rate used in the Z1 and Z2 equations (Eq.(2.9))

is given by the expressions above and ω̇
′′′
R1 = q̇′′′/∆HF . Again, Z1 and Z2 solved in

Eq.(2.9) will be used to calculate all species mass fraction as in Eq.(2.11).
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Chapter 3

Flame Propagation Velocity in Tunnel Configurations with Closed or

Open Boundaries

This chapter will discuss the performance as well as some limitations of the

deflagration model in treating different scenarios corresponding to laminar flame

propagation across a homogeneous fuel-air mixtures in 2D tunnels. Two cases are

considered: a case in which the flame propagates from an open end toward a wall,

and a case in which the flame propagates from a wall towards an open end. In the

first case, the flame should propagate with an apparent velocity equal to the laminar

flame speed sL, whereas in the second case, the flame should propagate with a much

larger apparent velocity equal to the product of sL times a density ratio, as will be

explained in detail in this chapter. In addition, extensions of the first case will also

be investigated while the flame propagates towards opposing flow instead of a wall.

In the last section the same configuration will both ends open will be used to evaluate

the grid size requirement of the PPC model by conducting simulations of horizontal

laminar flame propagation through vertically stratified flammable mixture, so as to

provide insight into the grid requirement of the PPC model.
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3.1 Overview

A series of simple tests are conducted here in configurations corresponding to

1-dimensional, plane, laminar, premixed flames that propagate along the x-direction,

through a uniform methane-air stoichiometric mixture. The 2-D tunnel is 5 m × 1

m. In case 1 and case 2, the numerical boundary condition at x = 0 is a wall and it

is open at x = 5, while in case 3 and 4 the boundary at x = 0 and x = 5 are both

open. Case 1 corresponds to a scenario in which the flame propagates into quiescent

gas towards a wall (Fig 3.1); case 2 corresponds to a scenario in which the flame

propagates from a wall (Fig 3.2). In case 3, air is blown at x = 0 into the tunnel at

the laminar flame speed sL,st to push against the incoming flame (Fig 3.3), while in

case 4, the air flow is half of the laminar flame speed sL,st/2. The air flow in case

3 and 4 is only blown after t = 2 s, and the first 2 seconds of the simulations are

similar to case 1.

Figure 3.1: Tunnel configuration in case 1

The computational domain is the size of the tunnel (5 × 1)m2, while the

computational grid corresponds to a uniform rectangular mesh of (250× 50) grids,

with a grid cell size ∆ = 0.02 m. At initial time, the methane-air mixture is at its
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Figure 3.2: Tunnel configuration in case 2

stoichiometric ratio, assumed to be at rest and in a chemically frozen state (c̃ = 0).

Flame initiation is triggered by a numerical ignitor located at x = 0 m (case 2) or x

= 5 m (case 1,3,4); this numerical ignitor is modeled as a spatially- and temporally-

localized extra source term introduced into Eq.(2.30). The laminar flame speed is

set to sL = sL,st = 0.4 m/s.

Figure 3.3: Tunnel configuration in case 3

Figure 3.4: Tunnel configuration in case 4
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3.2 Theoretical analysis

The diagnostic that will be used to interpret the numerical results is the ap-

parent flame velocity fpv, defined as the velocity at which the flame propagates

relative to the wall. In case 1 (Fig 3.5), uu is the gas velocity in the unburnt stream,

ub the gas velocity in the burnt gas field, ρu is the density of cold unburnt gas, ρb is

the density of hot burnt gas. fpv can be expressed as:

fpv = uu − sL (3.1)

Also from mass conservation:

ρusL = ρb(ub − fpv) (3.2)

Recognize that here uu = 0 because of wall, sL = −fpv applies considering

that fpv points to negative direction, while sL is the given laminar flame speed

in terms of positive constant. ub is in the positive direction as in Fig 3.5, so that

Eq.(3.2) gives:

ub = sL(
ρu
ρb
− 1) (3.3)

Figure 3.5: Illustration of theoretical velocity distribution in case 1
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Figure 3.6: Flow velocity distribution in simulation of case 1

From the ideal gas law:

ρu
ρb

=
Tb
Tu

(3.4)

in which Tb is the post-flame temperature, which for methane is 2232 K, Tu is the

fresh gas temperature, equals to 300 K

ub = (
Tb
Tu
− 1)sL (3.5)

for methane, the laminar flame speed sL = 0.4 m/s. So ub is calculated to be about

2.576 m/s, which agrees with what the value of the flow velocity in the post-flame

gas as seen in Fig 3.6 (2.7 m/s), with a 10% discrepancy, which is attributed to

numerical errors accumulated during the flame propagation.

In case 2 (Fig 3.7), the relationship between the apparent flame velocity and

laminar flame speed is

fpv = sL + uu (3.6)
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Figure 3.7: Illustration of theoretical velocity distribution in case 2

From the mass conservation upstream and downstream of flame:

ρusL = ρbfpv (3.7)

which gives the apparent flame velocity

fpv =
ρu
ρb
sL =

Tb
Tu
sL (3.8)

Eq.(3.8) predicts the apparent flame velocity to be around 2.976 m/s.

3.3 Numerical results

In the calculation, the apparent flame velocity is extracted from the simulation

by recording the time variations of the total burned gas volume Vb:

Vb(t) =
∫∫∫

V
c̃(x, y, z, t)dxdydz (3.9)

where spatial integration is performed over the whole computational volume V . For

case 1 in Fig 3.5, from mass conservation, one can write:

ρb
dVb
dt

= ρusLS − ρbubS (3.10)
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where S is the cross section area of the tunnel. Consider Eq.(3.2), the above equation

can be expressed as:

dVb
dt

= S × (−fpv) (3.11)

Note that fpv is negative in this case, as from Eq.(3.1). In case 2 when the

flame is propagating away from the wall (Fig 3.7), the mass conservation can be

written:

ρb
dVb
dt

= ρb × fpv × S (3.12)

which also gives Eq.(3.11). This suggests that the apparent flame propagation ve-

locity fpv can be calculated from the time derivative of the volume of burnt gas:

fpv =
1

S

dVb
dt

(3.13)

In case 1 the apparent flame propagation velocity should be equal to the laminar

flame speed, and here it is found that fpv = 0.44 m/s (Fig 3.8), which corresponds

to a 10% over-estimate, which may due to numerical errors which tend to accelerate

the flame. Fig 3.8 also shows that fpv remains constant after the initial transient

time, indicating that the flame is moving steadily. In contrast, for case 2, while

the apparent flame propagation velocity is calculated theoretically to be 2.9 m/s,

Fig 3.9 shows that although the flame starts propagating at around 2 m/s, it is

accelerating and by the time that the flame goes out of the tunnel, it still has not

reach the steady state. Here the flame goes out of the tunnel in less than 3 s. This

result suggest a weakness in the model formulation that will need to be revised in

future work.

42



Figure 3.8: Time variations of the ap-

parent flame propagation velocity fpv

in case 1

Figure 3.9: Time variations of the ap-

parent flame propagation velocity fpv

in case 2

In case 3 (Fig 3.10), the apparent flame propagation velocity jumps from

fpv ≈ sL at initial times to fpv ≈ 0 after an opposing air flow has been activated.

The peak in Fig 3.10 maybe explained by the noise generated when the entire flame

is put to frozen (the delay of peak from flame propagation velocity dropped to zero

is due to the certain thickness of flame). In case 4 (Fig 3.11), because the air flow

velocity is half the laminar flame speed after 2 s, the flame is slowing down, and

fpv drops to about 0.2 m/s, as expected.

3.4 Numerical requirement of grid size in PPC model

It has been determined in preliminary studies [87, 88, 89] that the thickness of

the LES premixed flame needs to be resolved on the grid for a correct description of
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Figure 3.10: Time variations of the

apparent flame propagation velocity

fpv in case 3

Figure 3.11: Time variations of the

apparent flame propagation velocity

fpv in case 4

deflagrations, and the requirement ∆c/∆ ≥ 4 has been established. Here grid res-

olution requirements are further studied in a two-dimensional configuration where

the flame propagates perpendicular to a frozen vertical mixture fraction gradient.

Here both ends of the tunnel are open, and the premixed flame propagates from one

end to the other.

The initial mixture fraction distribution of methane and air is illustrated in

Fig 3.12, from below the lower flammability limit of methane to above its upper

flammability limit, and is prescribed as a simple function of elevation, as in Fig

3.13. The faint vertical white lines in Fig 3.12 are due to plots constructed from

multi-processor data.
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Figure 3.12: Vertically stratified mixture of methane and air in the tunnel

Figure 3.13: Prescribed mixture fraction distribution in the tunnel
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A dimensionless number Lz/∆c is identified as the main parameters for the

grid study here, Lz is the vertical thickness of the flammable gas layer, ∆c is the

LES filter size, ∆c/∆ = 5. Five simulations are conducted with different values of

the Lz/∆c parameter. The steady state values of the premixed combustion heat

release rate are plotted in Fig 3.14 as a function of Lz/∆c.

Figure 3.14: Grid requirement of PPC model in solving width/height of premixed

flame

It is concluded from Fig 3.14 that the dimensionless number Lz/∆c needs to

be at least 2 to achieve values of the burning intensity that are approximately grid-

independent. This requirement is considered in Chapters 5 and 7 for the validation

study of the PPC model. Fig 3.15 describes the flame shape and its propagation

through the stratified mixture layer, this calculation corresponds to Lz/∆c = 3.6 .

Since the gas now in the tunnel has mixture fraction ranging from below the lower

flammability limit to above the upper flammability limit, and laminar flame speed
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depends on mixture fraction in the deflagration model, the flame shape corresponds

to a classical edge flame structure. 5 successive snapshots of the flame are shown

from t = 1 to 9 seconds. By measuring the flame location as a function of time, the

apparent flame is found to propagate steadily at 0.4 m/s.

Figure 3.15: Instantaneous snapshots of the flame as it propagates from right to left

through the stratified mixture - Lz/∆c = 3.6
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Chapter 4

Bulk Pressure Modeling

This chapter describes verification tests of the pressure algorithm available

in FDS to calculate the averaged pressure in sealed or vented compartment fire

configurations. It is found that an improved bulk pressure model is desired in

vented compartment fire cases for the correct treatment. The bulk pressure model

available in FDS currently (as derived in Appendix A1) has shown success in solving

problems in sealed compartments. However, for compartments with open vents, or

scenarios in which vents change from closed to open, this model is not correct. The

calculation of the compartment bulk pressure is challenging because of numerical

stiffness issues. A modified bulk pressure model is introduced in this chapter to

help simulate compartments with open vents, that are initially open or are open at

a prescribed time. A series of verification tests are performed to assess the original

bulk pressure model in FDS and the modified model.

4.1 Model description

Start from the bulk pressure equation [57]:

dP̄

dt
=
− ◦

∫∫
CS ũjnjdS +

∫∫∫
CV

γ−1
γp

( ∂
∂xi

(ρ̄ νt

Sct
cp

∂T̃
∂xi

)− ∂q̇
′′
R,j

∂xi
+ q̇′′′

c )dV∫∫∫
CV

dV
γP

(4.1)

which is equivalent to the equation in Appendix A1. Here cp is the specific heat

(at constant pressure), γ the ratio of specific heats, T̃ the temperature, q̇
′′
R,j the xj-
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component of the radiation heat flux vector (in units of W/m2), q̇′′′
c the combustion

heat release rate (W/m3). The integral terms are calculated as volume integrals over

the arbitrary control volume (CV , here the fire compartment), or surface integrals

over its control surface (CS, nj is the xj-component of the unit vector normal to

CS and pointing outward).

In the above equation, the term − ◦
∫∫
CS ũjnjdS represents the effects of con-

vective transport across vents; an inflow of mass ( ũjnj < 0 ) tends to increase the

compartment pressure, whereas an outflow ( ũjnj > 0) decreases it. The second term

in the numerator of Eq.(4.1) denotes the effects of convective/radiative heat transfer

across CS (predominantly wall losses) as well as those of combustion: wall losses

tend to decrease the compartment pressure whereas combustion tends to increase it.

Because it is numerically stiff, Eq.(4.1) does not provide a suitable expression

to calculate pressure in the case of vented compartments as will be discussed below.

However, this dilemma can be bypassed by adopting a classical zone model strategy.

Assuming steady state and using a Bernoulli expression for the outflow velocities,

ũj = (
2∆P̄eq
ρ̄

)1/2 (4.2)

wherever ũjnj > 0, with ∆P̄eq = (P̄ − P∞) the compartment over-pressure and P∞

the external atmospheric pressure, one obtains:

∆P̄eq =
− ◦

∫∫
CS,ũjnj<0 ũjnjdS +

∫∫∫
CV

γ−1

γP
( ∂
∂xi

(ρ̄ νt

Sct
cp

∂T̃
∂xi

)− ∂q̇
′′
R,j

∂xi
+ q̇′′′

c )dV

◦
∫∫
CS,ũjnj>0(2

ρ̄
)1/2dS

(4.3)
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where the surface integrals over the vent openings of CS are conditioned on inflow

or outflow state. In scenarios where the compartment is first sealed, then a vent

bursts open due to overpressure at time t = t0, the following scheme is proposed:

(1) When 0 ≤ t ≤ t0, the bulk pressure P̄ (t) is calculated according to Eq. (4.1);

(2) Store the value P̄ (t = t0) at the time of vent opening;

(3) For t > t0, a ramp function is used to calculate the bulk pressure:

(P̄−P∞) = (P̄ (t = t0)−P∞)×exp(−(t−t0)/τ)+∆P̄eq×(1−exp(−(t−t0)/τ)) (4.4)

where τ is a relaxation time scale assumed to be fast (here we adopt τ = ∆t, the

initial computational time step in FDS). It will be seen in the following section that

this scheme provides a smooth transition from the ordinary differential equation

model in Eq. (4.1) to the quasi-steady algebraic expression in Eq. (4.3) without

numerical instabilities.

4.2 Evaluation of the modified pressure model

A verification test is done here to evaluate the performance of the proposed

pressure model from the above section, along with the comparison with the perfor-

mance of the original pressure model in FDS. The configuration is a 0.4 × 0.4 ×

0.4m3 cubic box, with a vent size 0.4 m × 0.1 m located at the base of one vertical

wall, which can be closed or open, as shown in Fig 4.1. A square vent is located

in the middle of the floor to blow air in at the rate of 2 g/s. The numerical grid is

40× 40× 40, and the grid size is ∆ = 1 cm. The quantities of interest here include

the vent flow rates and the bulk pressure.
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Figure 4.1: Compartment configuration for bulk pressure tests

In the following, 3 cases are considered: the first case has the outflow vent

open from the beginning of the simulation; the second case has the outflow vent

sealed during the entire simulation; the third case has the outflow vent open a few

seconds after the start of the simulation; individually they are labeled as the open-

vent case, the sealed-vent case and the shift-vent case. In the open-vent case, Fig

4.2 shows the calculated mass flow rates using the FDS pressure algorithm while Fig

4.3 shows the mass flow rates using the modified pressure algorithm; the inflow rate

is the prescribed mass injected from the floor, the outflow rate is the mass going

through the vertical vent (if the compartment is sealed, the outflow will be zero).

In both figures, the rates of mass inflow and outflow balanced out. A slight delay

with larger fluctuations before reaching steady state is observed in the mass outflow

curve in Fig 4.2.
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Figure 4.2: Mass inflow and out-

flow rates in the open-vent case using

the FDS pressure algorithm: Inflow

(solid), outflow (dashdot)

Figure 4.3: Mass inflow and outflow

rates in the open-vent case using the

modified pressure algorithm: Inflow

(solid), outflow (dashdot)

Figs (4.4-4.5) show the corresponding time evolution of the bulk compartment

pressure (P̄ − P∞) versus time. While the original FDS pressure algorithm gives

a steady state over-pressure of 600 Pa, the modified algorithm calculates a much

smaller steady state over-pressure. Considering that the vent is open from the very

beginning of the simulation that the vent size is large and inflow rate is moderate,

it is expected that the compartment over-pressure will be a fraction of 1 Pa. The

results in Fig 4.4 are clearly incorrect.

The second case correspond to a case in which the outflow vent is closed, so

in Fig 4.6 there is not outflow curve. The pressure evolution given by the FDS

algorithm is in that case working correctly and predicts a linear increase of pressure
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Figure 4.4: Time evolution of the bulk

pressure in the open-vent case using

the FDS pressure algorithm

Figure 4.5: Time evolution of the bulk

pressure in the open-vent case using

the modified pressure algorithm

with time (see Fig 4.7). In this case, there is no modification from the original FDS

pressure model.

In the third case the outflow vent is initially closed and becomes open after

a time delay arbitrarily set at t = 1 s. This case features mass and pressure build

up in the initial phase, followed by a transition to a constant mass and slight over-

pressure regime.

In Fig 4.8 and 4.9, both algorithms predict a sharp increase of the mass outflow

rate when the vent is open, followed by a relaxation to a mass balanced regime. The

modified algorithm has a higher peak for the mass outflow rate. At transition, the

original FDS pressure algorithm takes about 4 seconds for the pressure to drop from
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Figure 4.6: Mass inflow rate in the

sealed-vent case using the FDS pres-

sure algorithm: Inflow (solid)

Figure 4.7: Time evolution of the bulk

pressure in the sealed-vent case using

the FDS pressure algorithm

Figure 4.8: Mass inflow and out-

flow rates in the shift-vent case using

the FDS pressure algorithm: Inflow

(solid), outflow (dashdot)

Figure 4.9: Mass inflow and outflow

rates in the shift-vent case using the

modified pressure algorithm: Inflow

(solid), outflow (dashdot)
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its peak value to steady state (Fig 4.10), which is still at a high value of 1000 Pa.

In contrast, the modified pressure algorithm predicts a faster transition to steady

state (about 0.5 s) and the overpressure level is very low.

Figure 4.10: Time evolution of the

bulk pressure in the shift-vent case us-

ing the FDS pressure algorithm

Figure 4.11: Time evolution of the

bulk pressure in the shift-vent case us-

ing the modified pressure algorithm

In general, the modified pressure algorithm provides correct value of the pres-

sure in open-vent cases; while when the vent is burst open, the modified pressure

algorithm also allows a faster transition to steady state, as well as predict a stronger

mass flow upon vent opening compared to the original FDS pressure algorithm. This

suggested algorithm will then be adopted to simulate large-scale vented explosions

in the next chapter.
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Chapter 5

Simulation of Low-Pressure Explosive Combustion in Compartment

Fires

The in-house version of FDS version 5, enhanced by both a partially-premixed

combustion model and a modified bulk pressure algorithm, is now evaluated via

detailed comparisons with an experimental database previously developed by FM

Global Research. The configuration corresponds to controlled ignition followed by

explosive combustion in an enclosure filled with vertically-stratified mixtures of

propane in air, both with and without venting, and with and without obstacles

[81, 82]. The database was originally developed for vent sizing studies in explo-

sion hazards scenarios associated with flammable liquid spills or releases of heavy

flammable vapors in enclosures, and here it is well-suited to test the PPC model

since it includes cases in which combustion is predominantly premixed and cases in

which it is primarily non-premixed.

5.1 Configuration

The FM Global explosion chamber (FMRC 2250-ft3 Chamber) is a rectangular-

shaped 63.7 m3 enclosure with a 4.57 × 4.57 m2 (15 × 15 ft2) square base and a

3.05 m (10 ft) height, as shown in Fig 5.1. It has an entry door for the operator,

but it is closed and treated as sealed during the experiments. Ten rectangular open-
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ings (0.51 × 1.12 m2 or 20 × 44 in2) are available on the roof of the chamber for

explosion venting, covered with a sheet of polyethylene, and in some tests, one or

two ceiling vents will burst open due to over-pressure. In the present study, 4 cases

are considered: two are sealed and two others are vented. Other than the vents,

the enclosure is made as tight as possible by covering all the joints with a coat of

silicone sealant.

Figure 5.1: Configuration of the FM Global test chamber

The walls of the enclosure are made of 38 mm (1.5 in) plywood panels that

are steel-faced (0.41 mm, or 0.016 in), while the floor is made of concrete material.

Particular care is done to make the floor surface flat and smooth, and a coat of

sealant is also applied as a finish. In addition, a significant number of tests are
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conducted with obstacles that are introduced to study the effects of blockage; the

obstacles array corresponds to 0.76 × 0.76 m2 (2.5 × 2.5 ft2) steel plates installed

horizontally in a checked pattern 0.46 m (1.5 ft) above the floor, as can be seen in

Fig 5.2, the array provides a 50% blockage to vertical flow/flame expansion (but less

resistance to horizontal motions).

Figure 5.2: FM test chamber with obstacles in checked pattern

Four experimental cases are studied in more detail in the present work: case 6

that is unvented and without obstacle; case 26 that is unvented and with obstacles;

case 7 that is vented (1 roof vent) and without obstacle; case 14 that is vented (1

roof vent) and with obstacles. Propane is injected prior to ignition into the chamber

through a regulated-pressure, floor-level, low-velocity source that mimics the vapor

diffusion process, to provide a quasi-one-dimensional, vertically-stratified layer of

flammable gas. The mixture composition is monitored in time by a gas analysis
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system. Ignition is triggered in the center of the chamber using an arrangement

known as a “Jacob’s ladder” [81].

The list of experimental diagnostics include visual observations and video

recording of the flames and measurements of the time history of the chamber pres-

sure. Because of the presence of uncontrolled leaks, the pressure measurements are

corrected to provide an estimate of the pressure that would have been obtained in

the absence of leaks and wall heat losses. The corrected pressure versus time will

be the main diagnostic used for comparison with FDS results in unvented cases.

In the numerical calculation, the computational domain corresponds to the

test chamber and the simulation starts at ignition and uses the case-dependent ex-

perimentally measured initial mixture composition. Fig 5.3 shows the prescribed

initial mixture fraction distributions in the FDS simulations and the measured dis-

tributions in the experiments. The computational grid corresponds to a uniform

rectangular mesh; the mesh size differs from case to case, according to the grid

study in the next section. Simulations are performed on a multi-processor Linux

cluster available at the University of Maryland, using the parallel MPI-based version

of FDS.
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(a) (b)

(c) (d)

Figure 5.3: Initial mixture fraction distribution before ignition, experimental mea-

surement (solid line with solid symbols) and numerical approximations (dash line

with circles). (a) case 6; (b) case 26; (c) case 7; (d) case 14.

60



5.2 Characterization of flame structure and combustion mode

For case 6, flame is seen to expand from the ignition point location in both

horizontal and (upward) vertical directions. The horizontal spread is associated

with a premixed flame (i.e. the deflagration or flash fire), as seen in Fig 5.4; while

the vertical spread is associated with the buoyancy-driven diffusion flame (i.e. the

fireball) (Fig 5.5). Since the premixed flame propagates into a fuel-rich mixture,

products of premixed combustion are carbon dioxide and water vapor, mixed with

nitrogen and (unburned) excess fuel. The excess fuel found in post-premixed-flame

gases subsequently mixes with upper-layer air and burns in a diffusion flame mode.

Thus the intensity of the diffusion flame is initially much smaller than that of the

deflagration, but its relative weight may change as the fire develops. Generally the

relative intensity of both flames depends strongly on the state of the propane-air

mixing field found at ignition time. [81, 82]

A quantitative effort to characterize the mixture composition for the 4 cases

is to calculate the filled fractions for the premixed and rich layers, which can be

done by dividing the initial distribution of mixture fraction in Fig 5.3 into two

parts, the fuel with a mass fraction between the lower flammability limit of propane

(Yf = 0.03) and 80% above stoichiometry (Yf = 0.108) is predicted to burn in a

premixed combustion mode, while the fuel with a mass fraction richer than 0.108 is

predicted to burn in a diffusion flame mode. The definition of the premixed layer

does not go all the way up to the upper flammability limit of propane (Yf = 0.15),
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Figure 5.4: Horizontal propagation of

the premixed flame 0.5 seconds after

ignition in case 6 (Contour of mixture

fraction at stoichiometric surface)

Figure 5.5: Vertical propagation of

the diffusion flame 0.7 seconds after

ignition in case 6 (Contour of mixture

fraction at stoichiometric surface)

in recognition of the fact that, under very fuel-rich conditions, the flame speed is

very low and the mixtures would be unlikely to burn in a premixed mode. Although

this cut-off of 80% is somewhat arbitrary, the approach provides a simple estimate

of the relative weight of premixed versus non-premixed combustion for arbitrary

initial compositions of fuel vapor clouds.

The initial estimates of the relative weight of premixed and diffusion burning

is shown in Table 5.1. In case 6, the propane cloud is flammable fuel-lean and

combustion is predominantly premixed, while in cases 7, 14 and 26, the bulk of the

propane cloud is flammable fuel-rich/fuel-lean and combustion is partially-premixed.
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Table 5.1: Relative weight of premixed and diffusion combustion modes

Case [82] Premixed Diffusion

6 1 0

7 0.6986 0.3014

14 0.3249 0.6751

26 0.2279 0.7721

5.3 Grid sensitivity study

Following the discussion of the grid size requirement of premixed combustion

in vertically-stratified layers in Chapter 3.4, a limited study is performed here for

the larger scale FM test. Case 6 is chosen for this study, with 5 different values of

Lz/∆c ranging from 2 to 6. Again the height of gas layer in the flammable range

is fixed, and the 5 tests are made possible by varying the numerical grid size. The

simulation with Lz/∆c = 2 corresponds to a mesh of 5 million cells, and the trial

with Lz/∆c = 6 corresponds to a mesh of 130 million cells, so the calculation cost

is a factor that has to be considered.

Fig 5.6 and 5.7 present the simulated premixed and diffusion combustion heat

release rate, they sum up to be the total heat release rate in Fig 5.8, while the bulk

pressure curve is presented in Fig 5.9 including comparisons with the experimental

data. It can be seen that the Lz/∆c = 2 case has a 20% under-estimation of

premixed combustion and about 20% over-estimation of the diffusion combustion
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Figure 5.6: Comparison of the time

evolution of the premixed combustion

heat release rate in case 6 for 5 differ-

ent grid sizes

Figure 5.7: Comparison of the time

evolution of the diffusion combustion

heat release rate in case 6 for 5 differ-

ent grid sizes

compared to Lz/∆c = 6. All cases under-estimate the bulk pressure when compared

to the experimental results, and the most refined simulation (Lz/∆c = 6) still under-

estimates the pressure by more than 10%. If comparing the calculated total heat

release rate from Fig. 5.6-5.7, Lz/∆c = 2 and Lz/∆c = 3 case calculate a 10 MW

gap of difference in the peak HRR, while Lz/∆c = 3 and Lz/∆c = 6 case calculate

another 10 MW gap of difference in the peak HRR. Considering the calculation cost,

it would be suggested that Lz/∆c = 3 be used. However, in the following, we select

the grid size so that Lz/∆c = 2 because of relative difference of grid requirement

between each case, and Lz/∆c = 2 is affordable for cases while Lz/∆c = 3 is too

expensive in terms of the calculation cost for some cases.
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Figure 5.8: Comparison of total heat

release rate in case 6 for 5 different

grid sizes

Figure 5.9: Evolution of bulk pressure

in case 6 for 5 different grid sizes and

comparison to (corrected) experimen-

tal pressure data

5.4 Numerical results

Based on the grid sensitivity study above and the consideration of affordable

calculation cost, the grid spacing is determined so that Lz/∆c = 2 for all four case

simulated cases. This corresponds to ∆ = 2.5 cm in case 6 and 14, ∆ = 1.25

cm in case 7 and ∆ = 0.8 cm in case 26. The flame speed model parameters are:

ZLFL = 0.032, ZUFL = 0.153, Zst = 0.06 and sL,st = 0.44 m/s [91]. The filter-to-grid

length scale ratio is equal to 5, (∆c/∆) = 5. Based on the initial trial, the flame

wrinkling factor is fixed at a relatively high value, Ξ = 4 ,however, the premixed

combustion are found to be too fast in some cases, and a lower value of Ξ = 2 is

tested for some cases in Appendix C to illustrate the effect of the wrinkling factor
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on the premixed combustion speed in the PPC model. Appendix C reveals that a

correct simulation of explosion combustion must involve a more elaborate treatment

of the wrinkling factor, which is beyond the scope of the discussion in this study.

We analyse in the following the time evolution of the heat release rate and

bulk pressure. The simulated pressure will be compared to the experimental data,

adiabatic pressure in sealed cases and actual pressure in vented case, for reasons

that are explained in section 5.1. The heat release rate is maximum shortly after

ignition (at t = 0.5 s in case 6, at t = 1.2 s in case 26) and reaches a peak value that

ranges from 15 MW (case 7 and 26) to more than 25 MW (case 6 and 14) (Fig 5.10).

In all cases, the combustion phase is short and lasts between 1.5 and 2 s; combus-

tion ceases because of fuel depletion. By integrating the total premixed heat release

rate and diffusion heat release rate, the relative contribution of premixed and non-

premixed burning can be quantified, as shown in table 5.2, which can be compared

to the categorization of all cases in terms of the initial fuel mass distribution in table

5.1. This comparison is illustrated in Fig 5.10, that the x-axis represents the relative

weights of premixed and diffusion combustion predicted from the fuel filled fraction,

and the y-axis is the one concluded by numerical calculation as in table 5.2. It can be

seen that the numerical calculation provides the correct dominant combustion mode.

Case 6 is calculated to be premixed-combustion dominated (Fig 5.11(a)), a

result that is consistent with prediction in Table 5.1. In contrast, the propane

cloud in Case 26 features a large ultra-rich layer, and the combustion is dominated
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Figure 5.10: Relative weights of premixed and diffusion combustion: From initial

fuel fill fraction (upper subplot); From calculated heat release rate (lower subplot)

by diffusion combustion (Fig 5.11(d)). Finally, in cases 7 and 14, the bulk of the

propane cloud is flammable fuel-rich/fuel-lean and combustion is partially-premixed

(Fig 5.11(c)-(d)). In all cases, premixed burning peaks when the deflagration im-

pinges on the vertical side walls of the chamber, while diffusion burning peaks when

fuel depletion effects become dominant.

Table 5.2: Relative weights of premixed and diffusion combustion modes

Case Qpremix Qdiffusion

6 0.7290 0.2710

7 0.5177 0.4823

14 0.4181 0.5819

26 0.2066 0.7934
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(a) (b)

(c) (d)

Figure 5.11: Time variations of the global heat release rate (HRR): total HRR

(circles) as well as its premixed flame (dashed line) and diffusion flame (solid line)

components. (a) case 6; (b) case 7; (c) case 14; (d) case 26.

68



Figure 5.12 compares the experimental and simulated time histories of bulk

pressure. As mentioned earlier, the experimental data are corrected for the presence

of leaks and wall heat losses. In cases 6 and 26 (sealed), the pressure increases to

more than 60 Kpa and remains at a high level once the combustion is completed

(Fig. 5.12(a),(d)). The good agreement between experimental data and numerical

results, suggesting that the rate of combustion is reasonably well predicted in Ref.

[81, 82], the turbulent flame speed that characterizes the burning intensity of the

deflagration wave is estimated to be 1.75 ± 0.25 m/s). The fair agreement when

comparing the post-combustion pressure level suggests that the total amount of fuel

mass consumed is predicted less accurately (within 20% - 30%).

In case 7 and 14 (vented), the pressure variations feature two peaks (Fig 5.12(b-

c)): the first peak is associated with the sudden opening of the roof when the bulk

pressure reach the failure pressure of the polyethylene sheet at the ceiling vent(at

p̄ ≈ 3 Kpa); the second peak corresponds to the timing of maximum heat release

rate (Fig 5.11 (b-c)). The magnitude of the second peak is under-predicted in both

cases, which can be explained by the grid resolution here that tends to under-predict

the combustion intensity, recognizing that Lz/∆c = 2 is adopted here in all cases,

which predicts a heat release rate of 20% lower than Lz/∆c = 6 trials, from the grid

study of case 6 presented in the previous section.
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(a) (b)

(c) (d)

Figure 5.12: Time variations of the bulk compartment pressure: experimental data

(circles) and computational results (solid line). (a) case 6; (b) case 7; (c) case 14;

(d) case 26.
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Chapter 6

Velocity-Pressure Coupling (VPC) Scheme

In this chapter an alternative method to simulate the pressure development

in FMG experiments is investigated, by correcting the velocity boundary condition

at the open vent in FDS. It has been pointed out that the coupling between the

momentum and mass conservation equations for incompressible flows is often the

major cause of the slow convergence of iterative solution techniques [74], which

makes it crucial to treat correctly the velocity-pressure coupling that exists between

the mass and momentum conservation equations. For clarity, the treatment of

pressure boundary condition in FDS will be first reviewed. Then a new model

for the velocity boundary condition at open vent is introduced, which constitutes

a velocity-pressure coupling (VPC) scheme. This scheme will be evaluated and

tailored through a series of verificaiton tests and finally be used for simulating vented

gas explosions in the FMG experiments in Chapter 7.

6.1 Pressure boundary conditions at open vents

Consider the simple scenario of compartment with a vent as in Fig 6.1-6.2, the

pressure treatment on the vent boundary is usually differed in inflow and outflow

condition. For outflow (Fig 6.1), the flow moves from the left side with high pressure

P̄ to the right side with low pressure P∞, while the vent section can be considered
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as an elongated tube, the inlet of the tube connects to the compartment, while the

outlet of the tube connects to the outside atmosphere [41].

Figure 6.1: Pressure boundary condi-

tion for outflow at the vent

Figure 6.2: Pressure boundary cond-

tion for inflow at the vent

The flow in the vent section can be considered as a free jet through a tube,

which dissipates its kinetic energy due to viscous action. The static pressure over

the outlet of the tube PR is then close to the outside atmospheric pressure P∞, and

the flow accelerates from the inside compartment pressure P̄ to a low static pressure

PL at the inlet of the tube. The decrease of pressure at the inlet of tube from P̄ is

depending on the flow velocity, and the Bernoulli equation can be applied to relate

the static pressure and the velocity at the inlet of the tube to the compartment

pressure P̄ . Therefore the relations of the pressure at the both ends of the tube can

be expressed as:

P̄ = PL + ρ∞
u2
L

2
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P∞ = PR

(6.1)

Similarly, for inflow (Fig 6.2), the pressure at both ends of the tube can be

written:

P∞ = PR + ρ∞
u2
R

2

P̄ = PL

(6.2)

uL and uR can be treated to be the velocity at vent u in both cases for convenience.

In FDS, the pressure at the boundary of the vent P is treated as the pressure

at the outlet of the imaginary tube, which can be summarized as:

P + ρ∞
u2

2
= P∞ (constant stagnation pressure for inflow)

P = P∞ (constant static pressure for outflow)

(6.3)

where u is the velocity at the vent.

An experiment on explosion development in linked vessels by Razus [77] mea-

sured the pressure development in two vessels connected by a cylindrical tube, which

shows a difference of pressure level in the two vessels, with a synchronization in time.

The results for the difference of the pressure level in the vessels on both sides of the
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tube support the treatment of pressure boundary condtions at open boundaries

described above.

6.2 Velocity boundary conditions at open vents

Inspired by the experimental study of vented explosion in Refs. [17, 52, 53],

it is clear that an improved description of the velocity boundary condtion at open

vents is desired in FDS. The formulation of velocity boundary conditions at open

boundaries must be sensitive to the difference between the bulk pressure inside the

compartment and the external ambient pressure. One way of adding this pressure

effect is by adding a term in the momentum equation of FDS at open vent location.

To illustrate this, we use the configuration in Chapter 4 where the vent is in the

positive x-direction of the compartment, as in Fig 6.3.

Figure 6.3: Schematic of the vented compartment showing coordinate system
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For the selected coordinate system using u,v,w as the velocity in the x,y,z

direction, the mass and momentum equations can be written as:

Conservation of Mass:

∂ρ

∂t
+ u · ∇ρ = −ρ∇ · u (6.4)

Conservation of Momentum:

∂u

∂t
+ u× ω +∇H =

1

ρ
((ρ− ρ0)g + fb +∇ · τij) +

∆P̄

ρL
(6.5)

in which ∆P̄ = P̄ − P∞ + ερu
2

2
ρ is the gas density in the field, ṁ

′′′
b is the

mass injected in, µ the viscosity, gx, gy, gz the gravity force, fx, fy, fz the external

forces such as the drag exerted by liquid droplets, the total pressure P = P̄ + p̃

where P̄ is the bulk pressure, which is of interest in this section, p̃ is the pressure

perturbation solved by the poisson equation in FDS [57]. Notice that in the x-

momentum equation the term ∂P̄ /∂x cannot be neglected at the open vent, since

this term scales like P̄ − P∞ and may take very large values in explosion scenarios.

Currently this term is not included in the momentum equation at the open vent

boundary in FDS. To formulate a model expression for this term, we first consider a

zero-dimensional problem corresponding to a pressurized tank open at initial time to

the ambient atmosphere. This problem is studied with MATLAB. The bulk pressure

equation is a simplified version of Eq. (4.1) assuming no combustion:

dP̄

dt
=

(γ − 1)

V
(−εṁvcpTv) (6.6)

where V is the compartment volume, cp is the heat capacity at constant pressure,

ṁv is the mass flow rate through the vent (ṁv ≥ 0), Tv is gas temperature at the
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vent, ε = +1 for outflow, ε = −1 for inflow. Assuming ideal gas behavior, Tv and

ṁv can be written as:

Tv = T0(P̄ /P0)(γ−1)/γ for ε = +1(outflow)

= T0 for ε = −1(inflow)

ṁv = CdAvρv|uv|

ρv = ρ0(P̄ /P0)1/γ for ε = +1(outflow)

= ρ0 for ε = −1(inflow)

(6.7)

where ρ0, T0 are the ambient gas density and temperature, ρv is the gas density at

the vent. Av is the vent area, Cd is an empirical flow (or discharge) coefficient.

Figure 6.4: Vented compartment configuration of velocity-pressure coupling
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The vent flow velocity equation may be formulated as follows:

duv
dt

=
(P̄ − P∞)

ρL
(6.8)

where L is the effective length of the vent neck proposed by Kinsler [42] and is also

used by Bauwens et al [2] in their most recent study of numerical simulation of

methane-air deflagrations in vented enclosures, empirically L = 0.8
√
Av + l [2, 42],

with l the actual length of the vent.

Combining Eq. (6.6) and (6.8), a velocity-pressure coupling (VPC) scheme

can be formulated, designated as Scheme 1 (S1):

dP̄

dt
=

(γ − 1)

V
(−εṁvcpTv)

duv
dt

=
(P̄ − P∞)

ρL

(6.9)

This scheme is unstable and corresponds to a Helmholtz resonance system,

with a characteristic frequency

fH =
1

2π

√
γP0

ρ0

√
CdAv
V L

(6.10)

Additional details on the Helmholtz system can be found in Refs. [16, 33].

Fig 6.5 and 6.6 present results obtained from a MATLAB solution of Eq.(6.9) for a

case corresponds to a pressurized tank, pressure at 1000 Pa, and open at t = 0 to
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ambient atmosphere.

Figure 6.5: Pressure evolution with

VPC scheme S1 (At t = 0,P̄ =

1000Pa)

Figure 6.6: Vent velocity evolution

with VPC scheme S1

Slow convergence is observed in this case, and the initial velocity when gas

bursts out of the vent is predicted to be about 10 m/s. The period of the oscilla-

tion is about 0.01s, which agrees with the calculation from the frequency formula in

Eq.(6.10): given γ = 1.4, P0 = 101325 Pa, ρ0 = 1.2 kg/m3, Cd = 0.6, Av = 0.04 m2,

V = 0.4 × 0.4 × 0.4 = 0.064 m3, L = 0.8
√
Av = 0.16 m neglecting the actual vent

length, fH = 1
2π

√
γP0

ρ0

√
CdAv

V L
= 83, which corresponds to a period of about 0.01s.

Note that Helmholtz oscillations have been observed in pressurized vented sstem,

the oscillations are typically damped within a few cycles and the results in Figs

6.5-6.6 are incorrect.
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The second model is suggested by reexamining the velocity boundary condition

as in Fig 6.1 and 6.2. Instead of using P̄ and P∞ to calculate the pressure difference

at the vent, PL and PR are adopted instead as the pressure at both ends of the vent.

Thus for inflow:

duv
dt

=
PL − PR
ρL

=
P̄ − P∞
ρL

+
ρu2

v/2

ρL
(6.11)

For outflow:

duv
dt

=
PL − PR
ρL

=
P̄ − P∞
ρL

− ρu2
v/2

ρL
(6.12)

Eqs. (6.11) and (6.12) together with the pressure Eq. (6.6), form the second

VPC scheme S2, which can be summarized here:

dP̄

dt
=

(γ − 1)

V
(−εṁvcpTv)

duv
dt

=
PL − PR
ρL

=
P̄ − P∞
ρL

− ερu2
v/2

ρL

(6.13)

with ε = +1 for outflow (uv > 0), ε = −1 for inflow (uv < 0). The pressure and

vent velocity evolution calculated using this scheme is shown in Figs 6.7 and 6.8.

The pressure and velocity oscillations are much more damped with this modi-

fication, with the frequency still the same as when using S1. After 0.5 seconds, the

amplitude of the oscillation is about 200 Pa, a value that seems unrealistically high.

In a third scheme, an artificial term 2fHuv is added to the velocity equation to ac-

celerate the damping, where fH is the characteristic Helmholtz frequency calculated
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Figure 6.7: Pressure evolution with

VPC scheme S2

Figure 6.8: Vent velocity evolution

with VPC scheme S2

from Eq. (6.10). The VPC scheme S3 in as follows:

dP̄

dt
=

(γ − 1)

V
(−εṁvcpTv)− 2fH(∆P̄eq)

duv
dt

=
PL − PR
ρL

=
P̄ − P∞
ρL

− ερu2
v/2

ρL

(6.14)

The MATLAB results are presented in Figs 6.9 and 6.10. The pressure is

damped to the ambient level in less than 0.05 seconds, while the initial velocity

peaks after the vent opening, at around 8 m/s, which meets the modeling objective

that high peak velocities are described, while the compartment bulk pressure drops

to the ambient level quickly after a few periods of Helmholtz oscillation.

6.3 Verification of VPC scheme in a small compartment

We now implement the VPC scheme S3 in FDS and simulate one of the test

cases considered in Chapter 4. In this case, air is pumped into a 0.4m×0.4m×0.4m
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Figure 6.9: Pressure evolution with

the VPC scheme S3

Figure 6.10: Vent velocity evolution

with the VPC scheme S3

cubic compartment at 2g/s, the compartment is initially sealed, followed by a vent

opening (vent sizes 0.4m × 0.1m) at t = 1s. The evolutions of the pressure, mass

flow and gas velocity through the vent are shown in Figs 6.11-6.13.

Compared to Fig 4.10-4.11, bulk pressure in the room drops much faster to an

ambient level, also with a Helmholtz oscillation that was not observed before. The

mass flow and velocity results in Fig 6.12-6.13 illustrate a much stronger burst of

vent outflow. In Chapter 4, a mass outflow through the vent upon its opening is

calculated to be 6 g/s with the improved pressure model, which corresponds to a

vent outflow velocity of 0.1 m/s, and that is much lower than the maximum velocity

described in Fig 6.10 (MATLAB) and Fig 6.13 (FDS), which is about 6 m/s.
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Figure 6.11: Bulk pressure evolution in the compartment with VPC scheme S3

implemented in FDS

Figure 6.12: Mass flow through vent

with VPC scheme S3 in FDS

Figure 6.13: Vent velocity at vent

with VPC scheme S3 in FDS
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Chapter 7

Simulation of Vented Gas Explosions Using the VPC Scheme

It is reported by DeHaan et al.[17] that in a vented explosion experiment in a

3.6m×2.4m×2.4m chamber, a negative pressure of 2 Kpa is observed following the

opening of the relief vent at a failure pressure of 6 Kpa, and that Helmholtz oscil-

lations of the pressure are also observed after the vent opening. Because the VPC

scheme S3 allows for high transient vent flow velocities and Helmholtz oscillations,

new FDS simulations of the FMG test configuration using the VPC scheme S3 are

performed. In contrast to tests performed in Chapter 6, the simulations discussed

in the following correspond to violent combustion events and feature strong outflow

velocities.

Cases 7 and 14 are re-simulated here, with the same configuration as in Fig

5.1, i.e., 4.57 × 4.57 × 3.05 m3. The initial fuel gas (vaporized propane) distribution

is the same as in Fig 5.3(c,d). Grid size is chosen so that Lz/∆c = 2.

Fig 7.1 and 7.2 show the calculated heat release rate in case 7 and 14, which

is almost identical to Fig 5.11 (b,c). The total HRR, premixed HRR and diffusion

HRR are plotted; the total HRR features two peaks corresponding to maximum

premixed combustion and maximum diffusion combustion. In case 7, the premixed
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Figure 7.1: Time variations of heat re-

lease rate (HRR) in FMG case 7 sim-

ulated with the VPC scheme S3: to-

tal HRR (circles) as well as its pre-

mixed flame (dashed line) and diffu-

sion flame (solid line) components.

Figure 7.2: Time variations of heat

release rate (HRR) in FMG case 14

simulated with the VPC scheme S3:

total HRR (circles) as well as its pre-

mixed flame (dashed line) and diffu-

sion flame (solid line) components.
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combustion fraction is 0.52, while in case 14, it is 0.42, so both cases still feature

partial-premixed combustion. The difference between the simulations presented here

and those of chapter 5 is the treatment of bulk pressure as well as the gas velocity

at the vent.

Figure 7.3: Time variations of bulk

pressure in FMG case 7 simulated

with the VPC scheme S3: experiment

(dotted line), simulation (solid line)

Figure 7.4: Gas velocity at vent in

FMG case 7 simulated with the VPC

scheme S3

Fig 7.3 presents the calculated bulk pressure in case 7. The vent is forced to

open when the pressure reaches a critical level of about 3 Kpa (0.4 psi), as measured

from the experiment. The pressure drops to 0 in less than 0.1 s. It is then followed

by a few oscillations, which takes about 1 s before stabilizing. The oscillations fea-

ture a second pressure peak of 400 Pa. This second peak is much lower than that

observed in the experiment (which is due to peak diffusion burning), mostly because
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the VPC scheme has a strong effect of damping the pressure variations. No negative

pressure is observed here, although it is reported by DeHaan [17] in vented explosion

experiment.

Fig 7.4 shows the gas velocity at vent in case 7. When the vent breaks open,

the gas bursts out to a maximum velocity of 20 m/s, which lasts for about 1 s, cor-

responding to the stage when the bulk pressure oscillates before relaxing to ambient

pressure. The oscillation behavior of the velocity is more pronounced than in the

pressure signal in Fig 7.3. Slight negative velocity is observed, indicating a shifting

behavior of flow movement at vent after the pressure relaxes to ambient.

Figure 7.5: Time variations of bulk

pressure in FMG case 14 simulated

with the VPC scheme S3: experiment

(dotted line), simulation (solid line)

Figure 7.6: Gas velocity at vent in

FMG case 14 simulated with the VPC

scheme S3
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Fig 7.5-7.6 present the calculated bulk pressure and the gas velocity at vent in

case 14. The vent is forced to open at a critical pressure level of about 3 Kpa (0.4

psi), as measured from the experiment. Due to a stronger combustion compared to

case 7, the pressure signal features a higher second peak that is closer to the second

peak measured in the experiment. Gas velocity at the vent reaches a maximum level

of 50 m/s upon vent opening. After the pressure is stabilized, the velocity falls to

a negative level as low as -8 m/s, similar to the behavior observed in experiments

when the bulk pressure is below atmospheric pressure.

In conclusion, the VPC S3 scheme is proposed to simulate vented explosions

and is successful at predicting strong outflow velocities and a large pressure drop

upon vent opening, as well as Helmholtz oscillations of the pressure and vent velocity.

Flow reversal at the vent is observed when pressure relaxes to ambient conditions,

which mimics the phenomena in experiments when the internal pressure is below

ambient pressure, although here the internal bulk pressure is not calculated to be

below outside ambient pressure. The results are encouraging, since it shows that

with the VPC scheme in FDS, no artificial treatment of the bulk pressure needs to

be done as was initially proposed in chapter 5. While predictions remain qualitative

rather than quantitative, important features of the dynamics are correctly predicted

(the presence of two pressure peaks, high vent flow velocities, possible Helmholtz

oscillations, flow reversal when combustion stops).
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Chapter 8

Conclusion

The present study is aimed at adapting current large eddy simulation capa-

bilities to a description of low-pressure explosions in fuel vapor clouds, with an em-

phasis on scenarios featuring delayed ignition followed by coupled deflagration and

diffusion burning. The proposed model formulation is based on a filtered reaction

progress variable approach to treat premixed combustion, mixture-fraction-based

model (FDS version 4) or an Eddy Dissipation Concept model (FDS version 5) for

non-premixed combustion, and the flame index concept to provide a coupling inter-

face. The partially-premixed combustion (PPC) model is implemented in the Fire

Dynamics Simulator (Version 5) developed by the National Institute of Standards

and Technology.

Its performance is first evaluated in a 2-D tunnel configuration for flame speed

verification tests, with different boundary conditions. It is concluded that the model

gives satisfactory results when the flame is propagating towards the wall or an op-

posed flow, but is inaccurate when the flame is propagating away from the wall.

This suggests that future work need to be done to clarify this issue. A grid sen-

sitivity study is also performed in a similar configuration, where a premixed flame

propagates horizontally through a vertically-stratified flammable mixture layer. The
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study suggests that Lz/∆c ≥ 2 is required for quasi grid-independent predictions

of the premixed combustion rate, where Lz is the thickness of the flammable layer,

and ∆c is the LES filter size.

The bulk pressure algorithm in FDS is then tested in a small HVAC-like com-

partment configuration. It is found that the current pressure algorithm is not ca-

pable of predicting the pressure in the presence of an open vent. This problem is

addressed by using an algebraic quasi-steady pressure model. While this model pro-

vides a qualitatively correct behavior of pressure, it does not address the problem of

the vent flow velocities which are independent of over/under-pressurization in FDS

and are consequently severely under-estimated.

The experimental database used for validation is a database previously devel-

oped by FM Global Research; the database corresponds to explosive combustion

tests in an enclosure filled with vertically-stratified mixtures of propane in air, both

with and without venting, and with and without obstacles.

The experimental database is well-suited to test the PPC model since it in-

cludes some cases in which combustion is predominantly premixed and other cases

in which it is essentially non-premixed. The unvented compartment cases develop

bulk over-pressures up to approximately 60 Kpa (9 psi); the vented cases develop

over-pressures up to 3 Kpa (0.4 psi). Using the modified pressure algorithm, the

comparison between numerical results and experimental data ranges from fair to
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good and confirms the feasibility of a numerical treatment of explosive combustion.

Another approach to model vented explosions is also explored in the current

study. This approach considers the effect of pressure on vent flow velocities. The

model is developed by considering the velocity-pressure coupling that occurs in pres-

surized vented compartments using a zero-dimensional approach and MATLAB as

the solution framework. The model features pressure-driven vent flow velocities and

Helmholtz oscillations. The presence of Helmholtz oscillations in vented explosions

is reported by several studies (experimental and numerical).

The proposed velocity-pressure coupling scheme is used to simulate the vented

explosion cases from FMG experimental database. The simulated pressure features

two peaks corresponding to maximum premixed combustion and maximum diffusion

combustion; while the magnitude of the second peak is under predicted compared

to experimental data, the main global features of the bulk pressure variations seem

to be correctly captured. The results are encouraging and confirm the potential of

the proposed modeling capability for simulations of low pressure fuel vapor cloud

explosions.
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Chapter A

Derivation of Pressure Algorithm in the Original FDS Version

Start from the energy equation:

∂

∂t
(ρh) +∇ · ρhu =

Dp

Dt
+ q̇

′′′ −∇ · q (A.1)

in which h is the enthalpy, ρ is the density, u is the velocity, p is the pressure, q̇
′′′

is

the density, ∇ · q is the heat loss (conduction, convection, radiation). Focus on the

LHS of Eq.(A.1), the first term on LHS can be written as:

∂

∂t
(ρh) = ρ

∂h

∂t
+ h

∂ρ

∂t
= ρcp

∂T

∂t
+ h

∂ρ

∂t

The second term on LHS of Eq.(A.1) can be written as:

∇ · ρhu = ∇h · ρu + h(∇ · ρu)

Combine the above two expressions, Eq.(A.1) becomes:

ρcp
∂T

∂t
+ h(

∂ρ

∂t
+∇ · ρu) +∇h · ρu =

Dp

Dt
+ q̇

′′′ −∇ · q (A.2)

Since ∂ρ
∂t

+∇ · ρu = 0 (Conservation of Mass), Eq.(A.2) simplifies to

ρcp
∂T

∂t
+∇h · ρu =

Dp

Dt
+ q̇

′′′ −∇ · q (A.3)

Expand ∇h · ρu:

∇h · ρu = cp∇T · ρu = ρcp(u · ∇T )
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So the LHS of Eq.(A.3) becomes:

ρcp
∂T

∂t
+ ρcp(u · ∇T ) = ρcp(

DT

Dt
)

Now we have the form of Eq.(A.3) to be changed to:

ρcp(
DT

Dt
) =

Dp

Dt
+ q̇

′′′ −∇ · q (A.4)

From the ideal gas law:

T =
pM

ρR
⇒ lnT = lnp+ lnM − lnρ− lnR

Take the material derivative of both sides, considering that R is gas constant:

d(lnT )

dt
=
d(lnp)

dt
+
d(lnM)

dt
− d(lnρ)

dt
− d(lnR)

dt

1

T

DT

Dt
=

1

p

Dp

Dt
+

1

M

DM

Dt
− 1

ρ

Dρ

Dt

Multiply by ρcpT on both sides:

ρcpT (
1

T

DT

Dt
) =

ρcpT

p

Dp

Dt
+
ρcpT

M

DM

Dt
− cpT

Dρ

Dt
(A.5)

while

cp =
R

M

γ

γ − 1
⇒ ρcpT

p
=
ρTR

pM

γ

γ − 1
=

γ

γ − 1
(A.6)

From the conservation of mass:

∂ρ

∂t
+∇ · ρu = 0 =

∂ρ

∂t
+∇ρ · u + ρ(∇ · u) =

Dρ

Dt
+ ρ(∇ · u)

⇒ Dρ

Dt
= −ρ(∇ · u)

Substitute the above expressions into Eq.(A.5), assuming DM
Dt

is small, we have:

ρcp(
DT

Dt
) =

γ

γ − 1

Dp

Dt
+ ρcpT (∇ · u) (A.7)
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Combine Eq.(A.7) and Eq.(A.4):

1

γ − 1

Dp

Dt
= −ρcpT (∇ · u) + q̇

′′′ −∇ · q

Dp

Dt
= −γp(∇ · u) + (γ − 1)(q̇

′′′ −∇ · q) (A.8)

The heat loss term here can be split into the conduction, convection and radiation

loss, and write using Einstein notation:

∇ · q =
∂

∂xj
(λ
∂T

∂xj
− qR,j − qc,j)

Expand the whole Eq.(A.8) using Einstein notation:

Dp

Dt
=
∂p

∂t
+ uj

∂p

∂xj
= −γp∂uj

∂xj
+ (γ − 1)[

∂

∂xj
(λ
∂T

∂xj
− qR,j − qc,j) + q̇

′′′

j ] (A.9)

With low Mach number assumption: ∂p
∂xj

is small, we have:

∂p

∂t
= −γp∂uj

∂xj
+ (γ − 1)[

∂

∂xj
(λ
∂T

∂xj
− qR,j − qc,j) + q̇

′′′

j ]

or:

1

γ − 1

∂p

∂t
= − γp

γ − 1

∂uj
∂xj

+
∂

∂xj
(λ
∂T

∂xj
− qR,j − qc,j) + q̇

′′′

j (A.10)

Spatially integrate this equation to get the global pressure:

∫∫∫
CV

1

γ − 1

∂p

∂t
dV =

∫∫∫
CV
− γp

γ − 1

∂uj
∂xj

dV+
∫∫∫

CV

∂

∂xj
(λ
∂T

∂xj
−qR,j−qc,j)dV+

∫∫∫
CV

q̇jdV

Using divergence theorem:

∫∫∫
CV

1

γ − 1

∂p

∂t
dV =

dp̄

dt

∫∫∫
CV

dV

γ − 1
= −p̄

∫∫∫
CV
− γ

γ − 1

∂uj
∂xj

dV+
∮
CS

(λ
∂T

∂xj
−qR,j−qc,j)njdS+Q̇

We get:

dp0

dt
=
−p0

∫∫∫
CV

γ
γ−1

∂uj

∂xj
dV +

∮
CS(λ ∂T

∂xj
− qR,j − qc,j)njdS + Q̇∫∫∫

CV
dV
γ−1

(A.11)
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Considering Eq.(A.6), the Eq.(A.11) is equivalent to

dp0

dt
=

∫∫∫
CV

1
ρcpT

(q̇
′′′ −∇ · q)dV −

∮
CS(u · n)dS∫∫∫

CV ( 1
p0
− 1

ρcpT
)dV

(A.12)

which is the one used in the formulation of bulk pressure in FDS.
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Chapter B

Verification of the Modified sL Algorithm as Function of Pressure

and Temperature

The modification of the sL with regard to pressure p and temperature T is

verified here by redo the flame propagation in tunnel configuration (case1). The

modification of sL algorithm is in Chapter 2, for convenience, it is shown here

again:

sL = sL,ref (
Tu

Tu,ref
)γ(

p̄

p̄ref
)β

ρusL = ρasL,ref (
Tu

Tu,ref
)γ−1(

p̄

p̄ref
)β+1

γ = 2.18− 0.8(φ− 1)

β = −0.16 + 0.22(φ− 1)

φ =
1− Zst
Zst

× Z̃

1− Z̃
(B.1)

In the tunnel of case 1, the pressure would remain constant since there is open-end,

so the goal here is to see the effect of temperature in the unburnt gas. Since the

pressure and temperature are in similar position in the above formulation, we believe

that if we see effect from the temperature modification, we would see effect from

pressure modification as well (if the pressure is varied).

The difference in prescription of Fig B.1 and B.2 is that for Fig B.1, the

ambient temperature in the unburnt fuel-air mixtures is 20◦C, while in Fig B.2, the
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Figure B.1: Time variations of the ap-

parent flame propagation velocity fpv

in case 1

Figure B.2: Time variations of the ap-

parent flame propagation velocity fpv

in case 1 with modified sL algorithm

ambient temperature is 200◦C. Since the mixture here is stoichiometric, Z = Zst, so

according to Eq. (B.1), we would expect to see the flame propagation velocity to be

ρusL = 0.4× (
273 + 200

273 + 20
)2.18−1 = 0.7038 (B.2)

which agrees with the numerical results in Fig B.2.
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Chapter C

Effect of Wrinkling Factor in PPC Model

In previous work by [12, 13] elaborate closure model for the subgrid-scale flame

wrinkling factor Ξ is proposed, however in Chapter 5 when the FMG cases are sim-

ulated Ξ is set to be a constant value Ξ = 4. In Fig 5.11, case 6 and 14 calculates

resembling pressure building up speed, indicating that the combustion which is back-

ing the pressure build up is at the same speed as in the experiment, but case 7 and

26 calculate faster combustion. Here in this section a lower subgrid-scale wrinkling

factor Ξ = 2 is chosen for case 7 and 14, so that the effect of Ξ on the flame speed

can be illustrated.

In Fig C.1-C.2, the time evolution of heat release rate and bulk pressure in

case 7 is shown, when adopting Ξ = 2. Compared to Fig 5.10(b), the combustion

occurs slower now, with a lower peak of heat release rate of about 10 MW. The

pressure reach the first peak a little later than the experimental measure pressure,

instead of much more ahead in Fig 5.11(b). This indicates that choosing a wrinkling

factor lower than Ξ = 4 in Chapter 5 will give a better simulation of case 7.

However, for case 14, the story is different. In Fig 5.11(c), the first peak of

pressure coincides with the one in the experimental curve, which indicates an agree-
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Figure C.1: Time variations of heat

release rate(HRR) in FMG case 7 us-

ing wrinkling factor at 2.0: total HRR

(circles); premixed HRR(dashed line);

diffusion HRR(solid line)

Figure C.2: Time variations of bulk

pressure in FMG case 7 using wrin-

kling factor at 2.0: experimental

pressure (circles); simulated pres-

sure(solid line)
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ing combustion speed modeling. Here in Fig C.3-C.4, the combustion occurs slower,

resulting in a lower heat release peak, and a slower pressure build up, due to the

effect of lower wrinkling factor.

Figure C.3: Time variations of heat

release rate(HRR) in FMG case 14 us-

ing wrinkling factor at 2.0: total HRR

(circles); premixed HRR(dashed line);

diffusion HRR(solid line)

Figure C.4: Time variations of bulk

pressure in FMG case 14 using wrin-

kling factor at 2.0: experimental

pressure (circles); simulated pres-

sure(solid line)

Summarized by above, different wrinkling factors should be adopted for a

correct modeling of combustion, depending on different cases, suggesting that an

elaborate model for wrinkling factor is still needed in PPC model for successful

simulation of partially-premixed combustion. Here in current study uniform subgrid-

scale wrinkling factor is assumed for preliminary study,

99



Bibliography

[1] W.Baker, M.Tang, Gas, Dust and Hybrid Explosions, Elsevier (1991)

[2] C.Bauwens, J.Chaffee, S.Dorofeev, “Experimental and Numerical Study of
Methane-air Deflagrations in a Vented Enclosure”,Fire Safety Science, Pro-
ceedings of the Ninth International Symposium (2008)

[3] C.Beyler, “Flammability Limits of Premixed and Diffusion Flames”, SFPE
Handbook of Fire Protection Engineering, NFPA(3rd Ed.), 2, 172-187 (2002)

[4] M.Boger, D.Veynante, H.Boughanem, A.Trouve, “Direct Numerical Simulation
Analysis of Flame Surface Density Concept for Large Eddy Simulation of Tur-
bulent Premixed Combustion”, Proceedings of the Combustion Institute, 27,
917-925 (1998)

[5] M.Boger, D.Veynante, “Large Eddy Simulation of a Turbulent Premixed V-
Shaped Flame”, Advances in Turbulence, Dopazo C. (ed.), Cimne, Barcelona,
449-452 (2000)

[6] M.Boger, “Modelisation de Sous-Maille pour la Simulation aux Grandes
Echelles de la Combustion Turbulente Premelangee”, Ph.D. Thesis, Ecole Cen-
trale Paris, France (2000)

[7] D.Bradley, T.Cresswell, J.Puttock, “Flame Acceleration due to Flame-Induced
Instabilities in Large-Scale Explosions”, Combustion and Flame, 124, 551-559
(2001)

[8] D.Bradley, A.Mitcheson, “The Venting of Gaseous Explosions in Spherical Ves-
sels. I-Theory”, Combustion and Flame, 32, 221-236 (1978)

[9] D.Bradley, A.Mitcheson, “The Venting of Gaseous Explosions in Spherical Ves-
sels. II-Theory and Experiment”, Combustion and Flame, 32, 237-255 (1978)

[10] R.Cant, W.Dawes, A.Savill, “Advanced CFD and Modeling of Accidental Ex-
plosions”, Annual Review Fluid Mechanics, 36, 97-119 (2004)

[11] F.Charlette, A.Trouve, M.Boger, D.Veynante, “A Flame Surface Density Model
for Large Eddy Simulations of Turbulent Premixed Flames”, Joint Meet-
ing of the British, German and French Sections of the Combustion Insti-
tute,Combustion Institute, Nancy, France (1999)

100



[12] F.Charlette, C.Meneveau, D.Veynante, “A Power-Law Flame Wrinkling Model
for LES of Premixed Turbulent Combustion Part I: Non-Dynamic Formulation
and Initial Tests”, Combustion and Flame, 131, 159-180 (2002)

[13] F.Charlette, C.Meneveau, D.Veynante, “A Power-Law Flame Wrinkling Model
for LES of Premixed Turbulent Combustion Part II: Dynamic Formulation”,
Combustion and Flame, 131, 181-197 (2002)

[14] C.Conrado, V.Vesovic, “The Influence of Chemical Composition on Vaporiza-
tion of LNG and LPG on Unconfined Water Surfaces”, Chemical Engineering
Science, 55, 4549-4562 (2000)

[15] M.Cooper, M.Fairweather, J.Tite, “On the Mechanisms of Pressure Generation
in Vented Explosion”, Combustion and Flame, 65, 1-14 (1986)

[16] J.Coudert, V.Rat, D.Rigot, “Influence of Helmholtz Oscillations on Arc Voltage
Fluctuations in a Dc Plasma Spraying Torch”, Journal of Physics D: Applied
Physics, 40, 7357-7366 (2007)

[17] J.DeHaan, D.Crowhurst, D.Hoare, M.Bensilum, M.Shipp, “Deflagrations in-
volving Stratified Heavier-than-air Vapor/Air Mixtures”, Fire Safety Journal,
36, 693-710 (2001)

[18] P.Domingo, L.Vervisch and K.Bray, “Partially Premixed Flamelets in LES of
Nonpremixed Turbulent Combustion”, Combustion Theory and Modeling, 6,
529-551 (2002)

[19] D.Ermack, “User’s Manual for SLAB: An Atmospheric Dispersion Model for
Denser-Than-Air Releases”, A.a.G.S.D Physics Department, Lawrence Liver-
more National Laboratory (1990)

[20] M.Fairweather, “A Mathematical Model for the Prediction of Overpressures
Generated in Totally Confined and Vented Explosions”, Proceedings of the
Combustion Institute, 19, 645-653 (1982)

[21] J.Fay, “Model of Spills and Fires from LNG and Oil Tankers”, Journal of
Hazardous Materials, 96, 171-188 (2003)

[22] G.Ferrara, A.Benedetto, E.Salzano, G.Russo, “CFD Analysis of Gas Explosions
Vented through Relief Pipes”, Journal of Hazardous Materials, 137, 654-665
(2006)

[23] S.Ferraris, J.Wen, S.Dembele, “Large Eddy Simulation of the Backdraft Phe-
nomena”, Fire Safety Journal, 43, 205-225 (2008)

101



[24] C.Fleischmann, P.Pagni, R.Williamson, “Salt Water Modeling of Fire Com-
partment Gravity Currents”,Fire Safety Science, Proceedings of the Fourth In-
ternational Symposim, 253-264 (1994)

[25] C.Fleischmann, “Backdraft Phenomena”, Ph.D. Thesis, University of Califor-
nia, Berkeley (1993)

[26] C.Fleischmann, P.Pagni, R.Williamson, “Quantitative Backdraft Experi-
ments”, Fire Safety Science, Proceedings of the Fourth International Sympo-
sium, 337-348 (1994)

[27] G.Forney, W.Moss, “Analyzing and Exploiting Numerical Characteristics of
Zone Fire Models”, Fire Science and Technology, 14, 49-60 (1994)

[28] D.Gottuk, M.Peatross, J.Farley, F.Williams, “The Development and Mitigation
of Backdraft: A Real-Scale Shipboard Study”, Fire Safety Journal, 33, 261-282
(1999)

[29] D.Gottuk, F.Williams, J.Farley, “The Development and Mitigation of Back-
drafts: a Full-scale Experimental Study”, Fire Safety Science, Proceedings of
the Fifth International Symposium, 935-946 (1997)

[30] J.Havens, “A Dispersion Model for Elevated Dense Gas Jet Chemical Release:
Volume 2, User’s Guide”, Environmental Protection Agency: Research Triangle
Park, North Carolina (1988)

[31] E.Hawkes, R.Cant, “A Flame Surface Density Approach to Large-Eddy Simu-
lation of Premixed Turbulent Combustion”,Proceedings of the Combustion In-
stitute, 28, 51-58 (2000)

[32] E.Hawkes, R.Cant, “Implications of a Flame Surface Density Approach to
Large Eddy Simulation of a Premixed Turbulent Combustion”, Combustion
and Flame, 126, 1617-1629 (2001)

[33] A.Hersh, B.Walker, J.Celano, “Helmholtz Resonator Impedance Model”, AIAA
Journal, 51, 795-820 (2003)

[34] A.Horvat, Y.Sinai, “Numerical Simulation of Backdraft Phenomena”, Fire
Safety Journal, 42, 200-209 (2007)

[35] Z.Hu, Y.Utiskul, J.G.Quintiere, A.Trouve, “A Comparison Between Observed
and Simulated Flame Structures in Poorly Ventilated Compartment Fires”,
Fire Safety Science, Proceedings of the Eighth International Symposium (2005)

102



[36] Z.Hu, Y.Utiskul, J.G.Quintiere, A.Trouve, “Towards Large Eddy Simulations
of Flame Extinction and Carbon Monoxide Emission in Compartment Fires”,
Proceedings of the Combustion Institute, 31, 2537-2545 (2007)

[37] Z.Hu, G.Panafieu, J.Stauder, A.Trouve, “A Presumed PDF Approach to Model
Turbulent Non-premixed Combustion in FDS”, Intl. Tech. Congress on Com-
putational Simulation Models in Fire Engr. and Res., Ed. J.A. Capote Abreu,
Gidai, Univ. Cantabria, Santander, Spain, 281-295 (2004)

[38] Z.Hu, A.Trouve, “Numerical Simulation of Explosive Combustion Following
Ignition of a Fuel Vapor Cloud”, Fire Safety Science, Proceedings of the Ninth
International Symposium (2008)

[39] Z.Hu, Flame Extinction and Air Vitiation Effects in FDS in Poorly Venti-
lated Compartment Fires, Master Thesis, University of Maryland, College Park
(2005)

[40] T.Iijima, “Effects of Temperature and Pressure on Burning Velocity”, Combus-
tion and Flame, 65, 35-43 (1986)

[41] K.Kelkar, D.Choudhury, “Numerical Method for the Prediction of Incompress-
ible Flow and Heat Transfer in Domains with Specified Pressure Boundary
Conditions”, Numerical Heat Transfer, 38, 15-36 (2000)

[42] L.Kinsler, A.Frey, “Fundamentals of Acoustics”, John Wiley.

[43] M.Kirkpatrick, S.Armfield, A.Masri, S.Ibrahim, “Large Eddy Simulation of a
Propagating Turbulent Premixed Flame”, Flow, Turbulence and Combustion,
70, 1-19 (2003)

[44] R.Knikker, D.Veynante, C.Meneveau, “A Priori Testing of a Similarity Model
for Large Eddy Simulations of Turbulent Premixed Combustion”, Proceedings
of the Combustion Institute, 29, 2105-2111 (2002)

[45] B.Magnussen, B.Hjertager, “On Mathematical Modeling of Turbulent Combus-
tion With Special Emphasis on Soot Formation and Combustion”, Proceedings
of the Combustion Institute, 16, 719-729 (1976)

[46] D.Makarov, V.Molkov, Y.Gostintsev, “Comparison Between RNG and Fractal
Combustion Models for LES of Unconfined Explosions”, Combustion Science
and Technology, 179, 401-416 (2007)

[47] G.Makhviladze, J.Roberts, S.Yakush, “Modeling the Fireballs from Methane
Releases”, Proceedings of the Fifth International Symposium, 213-224 (1997)

103



[48] G.Makhviladze, J.Roberts, S.Yakush, “Numerical Modeling of Fireballs from
Vertical Releases of Fuel Gases”, Combustion Science and Technology, 132,
199-223 (1998)

[49] G.Makhviladze, J.Roberts, S.Yakush, “Combustion of Two-Phase Hydrocarbon
Fuel Clouds Released into the Atmosphere”, Combustion and Flame, 118, 583-
605 (1999)

[50] G.Makhviladze, J.Roberts, S.Yakush, “Modeling and Scaling of Fireballs from
Single-and Two-Phase Hydrocarbon Release”, Proceedings of the Sixth Inter-
national Symposium, 1125-1136 (2000)

[51] G.Makhviladze, S.Yakush, “Modeling of Fires Following Bursts of Pressurized
Fuel Tanks”, Fire Safety Science – Proceedings of the Seventh International
Symposium, International Association for Fire Safety Science, 643-654 (2003)

[52] D.McCann, G.Thomas, D.Edwards,“Gasdynamics of Vented Explosions. Part
I:Experimental Studies”, Combustion and Flame, 59, 233-250 (1985)

[53] D.McCann, G.Thomas, D.Edwards,“Gasdynamics of Vented Explosions. Part
II:One-Dimensional Wave Interaction Model”, Combustion and Flame, 60, 63-
70 (1985)

[54] J.McGill, Simulation of Vaporization and Combustion of a Large-Scale Cryo-
genic Liquid Methane Pool, M.S. Thesis, University of Maryland, College Park
(2006)

[55] C.Fleischmann, K.McGrattan,“Numerical and Experimental Gravity Currents
Related to Backdraft”, Fire Safety Journal, 33, 21-34 (1999)

[56] K.McGrattan, R.Rehm, H.Baum, “Fire-Driven Flows in Enclosures”, Journal
of Computational Physics, 110, 285-291 (1994)

[57] K.McGrattan, H.Baum, R.Rehm, A.Hamins, G.Forney, J.Floyd, S.Hostikka,
“Fire Dynamics Simulator (Version 5) - Technical Reference Guide”, National
Institute of Standards and Technology Report NIST Special Publication 1018-5,
Gaithersburg, MD, USA (2007)

[58] K.McGrattan, J.Floyd, G.Forney, H.Baum, S.Hostikka, “Improved Radiation
and Combustion Routines for a Large Eddy Simulation Fire Model”, Fire Safety
Science – Proceedings of the Seventh International Symposium, International
Association for Fire Safety Science, 827-838 (2003)

104



[59] V.Molkov, D.Makarov, A.Ryzhov, A.Duval, “Modeling and Simulations
of Large-Scale Accidental Combustion”, Proceedings of the Technical
Congress on “Computational Simulation Models in Fire Engineering and Re-
search”,University of Cantabria, Santander, Spain, 315-341 (2004)

[60] V.Molkov, D.Makarov, A.Grigorash, “Cellular Structure of Explosion Flames:
Modeling and Large-Eddy Simulation”,Combustion Science and Technology,
176, 851-865 (2004)

[61] V.Molkov, D.Makarov, F.Verbecke, Z.Mansurov, M.Zhumabaev, “LES Model
of Vented Explosion:Hydrogen-Air Mixtures”, 5th International Seminar on
Fire and Explosion Hazards (2007)

[62] V.Molkov, “Hydrogen Safety Research: State-of-the-art”, 5th International
Seminar on Fire and Explosion Hazards (2007)

[63] V.Molkov, R.Dobashi, M.Suzuki, T.Hirano, “Venting of Deflagrations:
Hydrocarbon-Air and Hydrogen-Air Systems”, Journal of Loss Prevention in
the Process Industries, 13, 397-409 (2000)

[64] V.Molkov, R.Dobashi, M.Suzuki, T.Hirano, “Modeling of Vented Hydrogen-Air
Deflagrations and Correlations for Vent Sizing”, Journal of Loss Prevention in
the Process Industries, 12, 147-156 (1999)

[65] V.Molkov, A.Grigorash, R.Eber, “Vented Gaseous Deflagrations: Modeling of
Spring-Loaded Inertial Vent Covers”, Fire Safety Journal, 40, 307-319 (2005)

[66] V.Molkov, D.Makarov, H.Schneider, “LES Modeling of an Unconfined Large-
scale Hydrogen-air Deflagration”, Journal of Physics D: Applied Physics, 39,
4366-4376 (2006)

[67] J.Morehart, E.Zukoski, “Chemical Species Produced in Fires Near the Limit of
Flammability”, Fire Safety Journal, 19, 177-188 (1992)

[68] G.Mulholland, “The Effect of Oxygen Concentration on CO and Smoke Pro-
duced by Flames”, Fire Safety Science, Proceedings of the Third International
Symposium, 585-594 (1991)

[69] C.Muller, H.Breitbach, N.Peters, “Partially Premixed Turbulent Flame Propa-
gation in Jet Flames”, Proceedings of the Combustion Institute, 25, 1099-1106
(1994)

[70] D.Park, Y.Lee, A.Green, “Prediction for Vented Explosions in Chambers with
Multiple Obstacles”, Journal of Hazardous Materials (2007)

105



[71] C.Pierce, P.Moin, “A Dynamic Model for Subgrid-Scale Variance and Dissipa-
tion Rate of a Conserved Scalar”, Physics of Fluids, 10, 3041-3044 (1998)

[72] T.Poinsot, D.Veynante,Theoretical and Numerical Combustion, Edwards (2001)

[73] B.Porterie, J.Loraud, The Prediction of Some Compartment Fires. Part 1:
Mathematical Model and Numerical Method, 39, 139-153 (2001)

[74] G.Raithby, G.Schneider, “ Numerical Solution of Problems in Incompressible
Fluid Flow: Treatment of the Velocity-Pressure Coupling”,Numerical Heat
Transfer, 2, 417-440 (1979)

[75] J.Quintiere, “Fundamentals of Enclosure Fire Zone Models”, Journal of Fire
Protection Engineering, 1, 99-119 (1984)

[76] D.Razus, U.Krause, “Comparison of Empirical and Semi-Empirical Calculation
Methods for Venting of Gas Explosions”, Fire Safety Journal, 36, 1-23 (2001)

[77] D.Razus, D.Oancea, F.Chirila, N.Ionescu, “Transmission of an Explosion Be-
tween Linked Vessels”, Fire Safety Journal, 38, 147-163 (2003)

[78] R.Rehm, G.Forney, “The Pressure Equations in Zone-Fire Modeling”, Fire Sci-
ence and Technology, 14, 61-73 (1994)

[79] A.Snegirev, G.Makhviladze, V.Talalov, A.Shamshin, “Turbulent Diffusion
Combustion Under Conditions of Limited Ventilation: Flame Projection
Through an Opening”, Combustion, Explosion, and Shock Waves, 39, 1-10
(2003)

[80] R.Strehlow, “Unconfined Vapor Cloud Explosions - an Overview”, Proceedings
of the Combustion Institute, 14, 1189-1200 (1973)

[81] F.Tamanini, J.Chaffee, “Mixture Reactivity in Explosions of Stratified Fuel/Air
Layers”, Process Safety Progress, 19, 219-227 (2000)

[82] F.Tamanini, “Partial-Volume Deflagrations – Characteristics of Explosion in
Layered Fuel/Air Mixtures”, Proceedings of 3rd Intl. Seminar on Fire and Ex-
plosion Hazards, Edinburgh, U.K., p.103 (2001)

[83] S.Tullis, R.Cant, “Scalar Transport Modeling in Large Eddy Simulation of Tur-
bulent Premixed Flames”, Proceedings of the Combustion Institute, 29, 2097-
2104 (2002)

106



[84] S.Turns, “A Introduction to Combustion – Concepts and Applications (2nd
ed)”, McGraw-Hill (2000)

[85] L.Vervisch, R.Hauguel, P.Domingo, and M.Rullaud, “Three Facets of Turbulent
Combustion Modeling: DNS of Premixed V-Flame, LES of Lifted Nonpremixed
Flame and RANS of Jet-Flame”, Journal of Turbulence, 5, 004 (2004)

[86] D.Veynante, L.Vervisch, “Turbulent Combustion Modeling”, Progress in En-
ergy and Combustion Science, 28, 193-266 (2002)

[87] J.Wiley, A.Trouve, “Large Eddy Simulations of Flash Fires Following Ignition
of A Fuel Vapor Cloud”, 5th US Combustion Meeting, University of California,
San Diego (2007)

[88] J.Wiley, A.Trouve, “Large Eddy Simulation of Ignition and Transient Combus-
tion in Fuel Vapor Clouds”, 5th International Seminar on Fire and Explosion
Hazards (2007)

[89] J.Wiley, Numerical Simulation of Ignition and Transient Combustion in Fuel
Vapor Clouds, Master Thesis, University of Maryland, College Park (2007)

[90] D.William, “The detonation of explosive”, Scientific American, 256, 106-112
(1987)

[91] F.Williams, Combustion Theory, Benjamin/Cummings(2nd Ed.) (1985)

[92] J.Williamson, J.McGill, A.Trouve, “A Filtered Progress Variable Approach to
Model Turbulent Premixed Combustion in FDS”, Intl. Tech. Congress on Com-
putational Simulation Models in Fire Engr. and Res., Ed.J.A.Capote Abreu,
GIDAI,Univ.Cantabria, Santander, Spain, 7-16 (2004)

[93] J.Williamson, J.McGill, A.Trouve, “Large Eddy Simulation Modeling of Turbu-
lent Deflagrations”, Fire Safety Science, Proceedings of the Eighth International
Symposium (2005)

[94] K.Yu, A.Trouve, J.Daily, “Low-Frequency Pressure Oscillations in a Model
Ramjet Combustor”, The Journal of Fluid Mechanics, 232, 47-72 (1991)

[95] R.Zalosh, “Explosion Protection”, The SFPE Handbook of Fire Protection En-
gineering (3rd ed), National Fire Protection Association

[96] D.Zhu, F.Egolfopoulos, C.Law, “Experimental and Numerical Determination of
Laminar Flame Speeds of Methane-Air Mixtures as Function of Stoichiometry,

107



Pressure, and Flame Temperature”, Proceedings of the Combustion Institute”,
22, 1537-1545 (1988)

108


