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GROUP 6 ‘CPAM’ COMPOUNDS     

  
 Wesley Scott Farrell, Doctor of Philosophy, 

2015 
  
Directed By: Professor Lawrence R. Sita, Department of 

Chemistry and Biochemistry 
 
 
The use of organometallic compounds to activate small molecules (e.g. CO2, N2, N2O, 

O2, etc.) has long been of significant scientific interest. Described here is the synthesis 

and characterization of mid valent group 6 compounds supported by the 

pentamethylcyclopentadienyl, amidinate (CpAm) ligand framework, along with their 

ability to not only activate small molecules that are inexpensive, abundant, and/or 

hazardous, but use them to generate many value added products under mild conditions.  

Sulfur atom transfer (SAT) was employed to catalytically prepare carbonyl sulfide and 

isothiocyanates from elemental sulfur.  In the case of carbonyl sulfide, this process was 

able to be performed in the presence of primary amines, allowing for the isolation of 

symmetric ureas, and in the case of isothiocyanates, the reaction was successful in the 

presence of benzhydrazide to allow for the isolation of aroylthiosemicarbazides in good 

yields.  Molecular oxygen was found to afford high valent dioxo species which were 



  

inactive towards oxygen atom transfer (OAT).  However, OAT was achieved for the 

catalytic deoxygenation of sulfoxides. Dinitrogen fixation has previously been discovered 

by our group to afford –ER3 (E = C, Si, Ge) derivatized isocyanates through [2+1] 

cycloaddition of CO.  Reported here is an extension of this work to include N2 fixation 

with concomitant reduction of the greenhouse gas CO2 to prepare the same isocyanates 

via [2+2] cycloaddition of CO2.  Furthermore, the completion of several efficient N2 

fixation synthetic cycles through two distinct pathways is discussed.  Additionally, given 

the tremendous impact of high valent group 6 alkylidene compounds to catalyze olefin 

metathesis reactions, the synthesis of mid valent CpAm group 6 alkylidenes was a 

challenging, yet attractive target.  Attempts to isolate such compounds are presented, 

along with descriptions of the products obtained and their reactivity towards small 

molecules. 

 

 

 

 

 

 

 

 

 

 
 
 
 



 
 
 

SMALL MOLECULE ACTIVATION AND ATOM AND GROUP TRANSFER 
REACTIONS MEDIATED BY MID VALENT GROUP 6 ‘CPAM’ COMPOUNDS     

 
 
 

By 
 
 

Wesley Scott Farrell 
 
 
 
 
 

Thesis submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2015 
 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Professor Lawrence R. Sita, Chair 
Professor Bryan W. Eichhorn 
Professor Andrei N. Vedernikov 
Professor Timothy H. Warren 
Professor Ichiro Takeuchi, Dean’s Representative 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Wesley Scott Farrell 

2015 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 ii 
  

   

 

 

  

 

 

 

 

 

 

 

Dedicated to my beautiful wife, Elise, without whom the completion of the writing of 
this thesis, and the work described herein, would not have been possible. 

 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 



 

 iii 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

  
“Nothing in the world can take the place of persistence. Talent will not; nothing is 
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Chapter 1: The Use of Organometallic Compounds in the 
‘Green’ Synthesis of Commodity Chemicals 
 
 
 
1.1 Introduction 

 At the heart of modern organometallic chemistry is the pursuit of new 

compounds which mediate the (catalytic) generation of either i) new molecules 

which, without the assistance of organometallic complexes, could not be otherwise 

synthesized, or ii) known molecules through reactions which are considerably more 

energy efficient and environmentally friendly than those currently employed.  

Accordingly, research in organometallic chemistry has enjoyed a long and rich 

history, the impacts of which are innumerable.  Today the outcomes of this field 

continue to be recognized at the highest levels of science, with three Nobel Prizes 

being awarded to researchers in the field of organometallic chemistry thus far in the 

21st century (2001, 2005, and 2010).1  

 Of particular current interest is the use of organometallic compounds to 

activate small molecules which are i) highly abundant in the atmosphere (in the case 

N N O C O O O
H
C

H HH

BDE (kcal/mol)      226 (N-N)        127.2 (C-O)      119.12 (O-O)       102.7 (C-H)

Abundance in 
Earth's Atmosphere

(%)
78                     0.04                    21                   0.00018

Structure

Small Molecule     Dinitrogen       Carbon Dioxide    Dioxygen           Methane

Figure 1. Small Molecules and their structures, bond dissociation energies,2 
and abundance in Earth’s atmosphere.  
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of gasses) or within the Earth herself (in the case of solids or liquids), and/or ii) 

threats to the long term stability of Earth’s climate, and utilize them for the generation 

of valuable chemicals of biological or commercial importance.  Examples of some of 

the most commonly targeted small molecules are depicted in Figure 1.2  Typically, 

these molecules are inert towards activation without the assistance of organometallic 

reagents given the presence of strong multiple bonds, which prevent using them in a 

productive manner.  Representative examples regarding the activation and utilization 

of several important small molecules by organometallic complexes under mild 

conditions are provided in the following sections, along with appropriate historical 

contexts, and will be the focus of the original research presented in this thesis. 

 

1.2 Activation and Fixation of Carbon Dioxide 

Carbon dioxide (CO2) is an essential component of Earth’s atmosphere, as it 

plays a key role in the carbon cycle. The impact of human activity on atmospheric 

CO2 concentration since the industrial revolution has recently come under intense 

scrutiny, however, as its role as a greenhouse gas has become more obvious.  Human 

technology which most take for granted, such as transportation, manufacturing, and 

electricity, account for nearly 85% of current global CO2 emissions.3  The expansion 

of industries which provide these and other services has lead to dramatic increases in 

atmospheric CO2 concentration (396.0 ± 0.1 ppm in 2013, 142% pre-industrial 

concentration),4 increasing the risk of negative consequences from human caused 

climate change.  The effect is accelerated as natural CO2 sinks, such as forests, are 

simultaneously diminished by human activity as well.  Although extensive efforts 
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have been undertaken by nations across the globe to develop technology that reduces 

emissions of CO2, as well as all other greenhouse gasses, another, perhaps more 

attractive approach involves using CO2 as a C1 source for the preparation of myriad 

organic molecules. The primary requirement for successful CO2 (or any other small 

molecule) fixation is first the activation, or weakening, of the inert bonds. 

Accordingly, this has driven many to investigate the ability of transition metals to 

coordinate CO2 and study subsequent reactivity, and the topic has been the subject of 

many reviews over the years.5-10 

 

1.2.1 Coordination of CO2 

 The CO2 molecule is rather simple, but its properties must be fully understood 

in order to properly address its chemistry (Figure 2).  It consists of three atoms 

oriented in a linear geometry.  The large difference in electronegativity between 

oxygen and carbon results in a significant partial positive charge on the central carbon 

atom, and partial negative charges on the oxygen atoms, however overall the 

molecule is nonpolar. It consists of two ! orbitals which are orthogonal to one 

O

C

O

-

+ Lewis Base
Reactive towards e- rich metals

Lewis Acid
Reactive towards e- poor metals

1.16 Å

A

B

Figure 2. (A) Structural and physical properties of CO2. 
(B) Diagram of CO2 LUMO. 

Wesley Farrell
Lewis Acid. Reactive towards electron rich metals.

Wesley Farrell


Wesley Farrell
Lewis Base. Reactive towards electron poor metals.
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another, and the lowest unoccupied molecular orbital (LUMO) of CO2 is the !* 

orbital. Orbital overlap and !-backbonding to the !* orbital is key in coordination of 

CO2 (and other small molecules for that matter) to transition metal centers, as will be 

seen below. Together, these properties allow for several types of coordination of CO2 

to transition metals, however for mononuclear complexes only two are commonly 

observed.8,9 

 The central carbon atom of CO2 is very Lewis acidic, however coordination 

solely through the central carbon atom in a !1 fashion is possible if the metal center is 

sufficiently Lewis basic, typically as a result of strongly electron donating ligands.  

The first structurally characterized !1-CO2 complex was reported by Herskovitz in 

1983.11  In this work, a 16 electron rhodium (I) complex bearing two o-phenylene-

bis(dimethylarsine) (diars) ligands and a chloride counter ion [(diars)2Rh]Cl (1) was 

exposed to a low pressure of CO2, which precipitated the new CO2 compound 

[(diars)2ClRh(!1-CO2)] (2) within hours (Scheme 1).  Compound 2 exhibited pseudo-

octahedral geometry about the rhodium center and re-coordination of the chloride 

Ir
P

P

P

P

Cl
CO2 (1 atm)

25 oC, benzene Ir
P

P

P

P
Cl

O O

1 eq. CH3FSO3
25 oC, toluene

Ir
P

P

P

P
Cl

O O
FSO3

Rh
As

As

As

As

Cl CO2 (5 psig)
25 oC, acetonitrile Rh

As

As

As

As
Cl

O O

X-Ray, 1983

X-Ray, 1980

1 2

3 4 5

Scheme 1 
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counter ion.  The carbon-oxygen bond lengths were observed to be increased 

significantly from those of free CO2 [i.e. d(CO) = 1.16 Å (CO2), average d(CO) = 

1.23 Å (2)] and the O-C-O bond angle was found to be decreased far from linearity 

(126°). Both observations result from significant electron density donation to the !* 

orbital of CO2, presumably from the dz
2 orbital of the rhodium center (Figure 3).   

 The heavier group 9 analog of compound 

1 bearing 1,2-bis(dimethylphosphino)ethane 

(dmpe) ligands, [(dmpe)2Ir]Cl (3), had previously 

been reported by the same researchers and was 

thought to react with CO2 in the same manner to 

yield [(dmpe)2Ir(!1-CO2)Cl] (4), but they were 

unable to confirm the !1 coordination of CO2 

through X-ray analysis.12 Given the similar 

electronics and ligand environment, it was likely that the same coordination mode 

was in fact employed.  Accordingly, the oxygen atoms on 4 were found to be 

sterically accessible and very nucleophilic, allowing for C-O bond formation on 

previously inert CO2 through the addition of methyl fluorosulfate (CH3FSO3), a 

cationic methylating reagent, thus generating the cationic iridium methoxycarbonyl 

complex [(dmpe)2Ir(CO2Me)Cl]FSO3 (5) (Scheme 1).13   

 More common than !1 coordination through the central carbon atom is the !2 

coordination mode in which the CO2 molecule bonds to the metal in a "-C,O fashion.  

This leads to donation of electron density from a filled ! orbital into an empty metal d 

orbital of appropriate symmetry with simultaneous !-backbonding to the !* orbital of 

Figure 3. Representation of 
orbital overlap resulting in 
decrease of C-O bond order in 
!1-CO2 complex 2. 



! '!

CO2 (similar to Dewar-Chatt-Duncanson model for alkene coordination).8,9  The 

result is a significant decrease in bond order.  

The first !2-CO2 complex structurally characterized was synthesized by Aresta 

and coworkers in 1975 by treatment of (PCy3)3Ni (6) with CO2 to yield 

[(PCy3)2Ni(!2-CO2)] (7) (Scheme 2).14 In 1981 the first structurally characterized 

early transition metal (i.e. group 3 – 7) !2-CO2 complex was reported by Lappert and 

coworkers.15 As will become clear in subsequent chapters and sections, early 

transition metals have played a dominant role in small molecule activation due to 

their reducing nature, allowing for significant !-backbonding. Typically, these metal 

compounds require chemical reduction of a high valent metal halide precursor to 

perform small molecule activation, and may often be supported by two derivatized 

cyclopentadienyl ligands, referred to as a metallocene.  Accordingly, the metallocene  

 

niobium (IV) chloride species {[!5-C5H4(CH3)]2[CH2Si(CH3)3]NbCl} (8) was 

reduced with excess equivalents of sodium amalgam (NaHg) in the presence of CO2 
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to yield {[!5-C5H4(CH3)]2[CH2Si(CH3)3]Nb(!2-CO2)} (9) (Scheme 2). As would be 

expected, the O-C-O bond angle in 9 is significantly smaller than 180° (132°), and 

both C-O bond lengths are longer than in free CO2 [d(CO)coord = 1.283 Å, 

d(CO)noncoord = 1.216 Å], indicative of significant !-backbonding to CO2.15 

 

1.2.2 CO2 as a Reagent 

 As a result of the seminal discoveries described in the previous section and the 

many studies which would soon follow, organometallic compounds for nearly all the 

transition metals, and even several main group metals, are now known to generate 

PdTfO

Ph2P

Si

Ph2P

ZnEt2

11

PdH

Ph2P

Si

Ph2P

10

Pd

Ph2P

Si

Ph2P

12

R'

R

Pd

Ph2P

Si

Ph2P

13

R'
R

O
O

PdO

Ph2P

Si

Ph2P

14

O
R

R'

R

R'
CO2

ZnEt2

-C2H4
-OTfZnEt

R
O

ZnEt

O

R'
H3O+

R
OH

O

R'

insertion

Scheme 3 



! )!

useful organic or macromolecular products through the fixation of CO2, often 

catalytically and with high stereoselectivity.16-19 For example, in 2008 Iwasawa 

reported the use of a palladium hydride complex supported by a silyl containing 

pincer ligand (10, Scheme 3) to catalyze the synthesis of ",#-unsaturated carboxylic 

acids from allenes, CO2, and diethyl zinc (ZnEt2) or triethyl aluminum (AlEt3).20  The 

use of a silyl group in the pincer ligand was found to be crucial as it causes the 

palladium center to be sufficiently nucleophilic to form an !2-CO2 species.  

Remarkably, the catalytic reactions were performed either at room temperature or at 

only slightly elevated temperatures.  

As shown in Scheme 3, compound 10 was generated from the palladium 

triflate precatalyst 11 through transmetallation with ZnEt2 (or AlEt3) followed by #-

hydride elimination.  Complex 10 reacts readily with the less sterically hindered end 

of the allene substrate via coordination of the allene to palladium, followed by 

insertion into the palladium hydride bond to generate intermediate 12. Compound 12 

then reacts with CO2 to form a palladium !2-CO2 species, 13, in which the CO2 ligand 

inserts into the $-allyl group to generate the carboxylate intermediate 14.  Finally, a 

second transmetallation and #-hydride elimination regenerates 10, and treatment with 

acid protonates the concomitantly formed zinc (or aluminum) carboxylate to provide 

the desired organic product in high yield.  Overall, 13 products were reported with a 

diverse array of allenes, demonstrating tolerance to various functional groups (ethers, 

ketones, acetals, esters, etc.).20,21   

In addition to the use of CO2 as a C1 source in organic synthesis, preparation 

of polymers from CO2 is another attractive method for the productive use of the 
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greenhouse gas, and has been known for over 50 years.22 Today, many 

organometallic systems have been reported for the copolymerization of CO2 and 

epoxides as a green method for the synthesis of polycarbonates.23-25  The mechanism 

of such catalytic processes is rather simple, as depicted in Scheme 4, and the largest 

obstacle to overcome has historically been the production of cyclic carbonates as by-

products. The benefits of the synthesis of polycarbonates from CO2 are twofold, in 

that the production consumes a gas that is hazardous to the environment, and the 

resulting polymeric materials are biodegradable and not derived from rapidly 

depleting petrochemical sources.  Furthermore, the physical properties of aliphatic 

polycarbonates may be easily tuned for use in many different applications through 

variation in the epoxide employed or catalyst/ligand combination used.26  
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1.3 Activation and Fixation of Dinitrogen 

! ,-.! activation and fixation of dinitrogen (N2) has been one of the most 

popular areas of research for organometallic chemists over the past half century, and 

the topic has been reviewed extensively over the past decade.27-33  The driving force 

behind these efforts has ultimately been the development of organometallic species to 

mediate the direct conversion of N2 and dihydrogen (H2) to ammonia (NH3) under 

ambient or near ambient conditions.  Presently, more than 140 million tons of NH3 

are produced annually through the energy intensive (T > 600 °C, p > 500 atm) Haber-

Bosch process.34  The reason for such high demand for NH3 is its ubiquitous use as a 

precursor for other nitrogen containing small molecules, specifically fertilizers.  

Given that the demand for NH3 and other N2-derived small molecules will only 

increase as the world population continues to grow, the development of alternative 

methods to the Haber-Bosch process are more necessary than ever.35 

 As in the case of CO2, there exist many coordination modes for N2 activation 

that are relevant to the production of commodity chemicals, which are depicted in 

Figure 4.  Both mononuclear and dinuclear complexes have been reported.  In all 

cases, electron donation from the transition metal center(s) to the LUMO !* orbital of 
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Figure 4. Common bonding motifs for N2 coordination. Bottom examples show mild 
extent of N2 activation, top examples show strong N2 activation. 
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N2 is key to coordination and activation.  Traditionally, lengthening of the N-N bond 

has been used to determine the extent of N2 activation. 

  

Catalytic N2 reduction to NH3 is known to occur in nature and is mediated by 

the nitrogenase enzyme, in a process which requires 16 equivalents of ATP (Scheme 

5).36,37  The mechanism of the reaction is still unknown, however several recent 

reports have provided evidence that the active site consists of an iron metalloprotein 

and an iron/molybdenum metalloprotein, between which exists a single carbon ligand 

(Figure 5).38,39  Knowledge of the exact structure and composition of the nitrogenase 

active site may provide valuable information for the rational design of transition 

metal N2 fixation catalysts. 

 

1.3.1 Group 4 Metallocenes 

 The chemistry of group 4 metallocenes with regard to dinitrogen fixation has 

been pursued for over 60 years, with the first major achievement reported by Vol’pin 
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and Shur in 1966, in which it was found that treatment of the titanocene compound 

(!5-C5H5)2TiCl2 (15) with various Grignard reagents under N2 atmosphere followed 

by addition of acid yielded NH3.40  Bercaw and coworkers were the first to report 

extensively on the organometallic products obtained from reaction of titanocenes with 

N2, and found that many products may be detected depending on solvent, N2 pressure, 

and titanocene concentration (Scheme 6).41  Shortly after this initial report, one of 

these compounds was isolated as a crystalline solid and the molecular structure was 

reported.42 

  

Work continued on the use of group 4 metallocenes for many years, however 

recently the area has experienced a revival through the work of Chirik, a former 

member of the Bercaw group.  Chirik had successfully undertaken a systematic study 

on the effect of substituents on the cyclopentadienyl ligand for N2 coordination in 

titanocenes.30 Encouraged by reports from Fryzuk that N2 can be partially 

hydrogentated with H2 when bound in a ‘side-on-bridged’ manner between two 

zirconium centers,43 Chirik sought to investigate the ability of zirconocenes to 

promote complete N2 hydrogenation to NH3.  It had been established by Bercaw that 

the bulky decamethylzirconocene dichloride [!5-C5(CH3)5]2ZrCl2 (20) forms the ‘end-
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on’/’end-on-bridged’ dinitrogen compound {[!5-C5(CH3)5]2Zr(!1-N2)}2(µ-!1:!1-N2) 

(21) upon reduction.44  The presence of multiple N2 ligands is unattractive for N2 

activation, as each acts as a !-acid competing for electron density.  Accordingly, 

reduction of the less sterically bulky zirconocene [!5-C5(CH3)4H]2ZrCl2 (22) under N2 

led to the coordination of only one N2 ligand in a more activated ‘side-on-bridged’ 

mode, to give {[!5-C5(CH3)4H]2Zr}2(µ-!2:!2-N2) (23) (Scheme 7).  This compound 

was found to undergo facile hydrogenation at room temperature to produce the 

dinuclear zirconium hydride complex {[!5-C5(CH3)4H]2ZrH}2(µ-!2:!2-N2H2) (24), in 

which the bridging nitrogen ligands are partially hydrogenated, which liberates small 

amounts of NH3 upon gentle heating under H2 atmosphere.45 

  

Transition metal mediated formation of nitrogen carbon bonds is also of 

scientific importance as it may allow for the preparation of nitrogen containing 

organic molecules through more energy efficient routes.  For this reason, the coupling 

of N2 and carbon monoxide (CO) is of interest as it may allow for the fixation of two 

of the most inert molecules known. Group 4 metallocenes have been shown to 
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mediate such reactions, and it was again found that the substituents on the 

cyclopentadienyl ligand play a key role in the observed chemistry. 

A notable example of nitrogen carbon bond formation within the scope of 

group 4 metallocenes is the reaction of {[!5-C5(CH3)4H]2M}2(µ-!2:!2-N2) [M = Zr 

(23), M = Hf (26)] with CO.  Upon addition of excess CO (1-4 atm) at room 

temperature, the formation of dinuclear oxamide compounds {[!5-

C5(CH3)4H]2M}2(N2C2O2) [M = Zr (27), M = Hf (28)] was observed through CO 

induced N2 cleavage with concomitant C-C bond formation. In the case of hafnocene 

26, it was found that slow diffusion of only 1.1 equivalents CO into benzene solution  

 

lead to the formation of a cyclometallated species bearing a terminal isocyanate and 

bridging imido ligand (29), in which CO induced N2 bond cleavage had occurred. 

Treatment of this compound with DCl revealed that C-H bond activation occurred 
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exclusively at a methyl group adjacent to the cyclopentadienyl hydrogen to form the 

final ‘tuck-over’ compound, and also resulted in the release of NH4Cl and HNCO 

(Scheme 8).46 

 

1.3.2 Group 6 Dinitrogen Compounds 

 Although great strides have been made in the use of dinuclear group 4 

compounds to mediate N2 activation and fixation, the ultimate use of such complexes 

is limited in that they lack the 6 electrons necessary to fully reduce N2 without the use 

of additional reagents.  For this reason, significant attention has been paid to group 6 

compounds to mediate such reactivity.  Molybdenum dinitrogen compounds were 

first reported Hidai and coworkers in 1969, in which molybdenum (0) supported by 

1,2-bis(diphenylphosphino)ethane ligands coordinates two N2 molecules in an ‘end-

on’ fashion.47,48 

 A major breakthrough in this field was reported by Cummins in 1995, in 

which it was found that a three coordinate molybdenum (III) complex Mo[N(R)Ar]3 

[R = C(CD3)2CH3, Ar = 3,5-C6H3(CH3)2] (31) reacts readily with N2 at sub-ambient 

temperature (e.g. -35 °C), yielding the 4 coordinate molybdenum (VI) terminal nitride 

complex (N)Mo[N(R)Ar]3 (32) (Scheme 9).49 Mechanistic studies indicated that the 
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cleavage of N2 occurs through the formation of a dinuclear ‘end-on-bridged’ 

intermediate, which could be detected by NMR, which then goes through a proposed 

‘zig-zag’ transition state to form the terminal nitride 32.  15N labeling was found to be 

consistent with the hypothesis that NN bond scission is the rate determining step.50 

 The utility of compound 32 for the synthesis of useful organic molecules has 

been investigated as well. Complex 32 was known to be reactive towards strong 

electrophiles, specifically (CH3)3Si+.51 It was reasoned that the presence of such a 

Lewis acid could promote the reaction between the nitride ligand of 32 and acid 

chlorides.  Indeed, in the presence of (CH3)3SiOTf (OTf = O3SCF3), benzoyl chloride, 

and a catalytic amount of pyridine, 32 was converted to the benzoylimido salt 
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{PhC(O)NMo[N(R)Ar]}(OTf) (33) in good yield. Reduction of 33 with magnesium 

anthracene followed by treatment with (CH3)3SiOTf was found to form the (CH3)3Si-

substituted ketimide Ph[(CH3)3SiO]CNMo[N(R)Ar]3 (34), which itself can be 

converted cleanly to the molybdenum (IV) chloride species ClMo[N(R)Ar]3 (35), by 

treatment with SnCl2, with concomitant release of phenyl nitrile (PhCN) as confirmed 

through 15N labeling studies.  Lastly, compound 35 could be reduced with magnesium 

(0) to generate 31, which cleaves N2 to regenerate 32 (Scheme 10).52 Although the 

yields associated with each step reported are high (> 75%), the versatility of this 

system is low. For example, for the synthesis of other nitriles (e.g. acetonitrile), 

different reagents and methods are required. 

 

1.3.3 Molybdenum Catalyzed NH3 Synthesis 

 Several researchers have reported the use of molybdenum compounds to 

catalyze the direct conversion of N2 to NH3. Nishibayashi has reported that the ‘end-

on’/’end-on-bridged’ dinitrogen compounds [(PNP)Mo(!1-N2)2]2(µ-!1:!1-N2) [PNP = 
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2,6-bis(di-tBu-phosphinomethyl)pyridine] (36) are capable of producing NH3 in 

yields up to 26 equivalents on the basis of molybdenum centers present (Figure 

6).53,54 The mechanism of this process is still unclear, however, as key intermediates 

proposed have not been isolated or observed.  In fact, it is still a matter of some 

debate whether the mechanism employs a monomeric molybdenum complex as the 

active catalyst or if the dinuclear structure stays intact.55 

 In 2003, Schrock and Yandulov demonstrated the first example of catalytic 

NH3 formation from N2 within a well defined system.56 In this work, the extremely 

bulky [HIPTN3N]3- ligand system (Figure 6), was employed to prevent the formation 

of dinuclear ‘end-on-bridged’ dinitrogen complexes, as it was thought that they would 

inhibit reaction with protons and electrons.  Accordingly, the monomeric [HIPTN3N] 

molybdenum (III) ‘end-on’ dinitrogen complex (37) was isolated (Figure 6).  

 It was found that compound 37 could be treated with protons and electrons to 

yield up to 8 equivalents of NH3 under N2 (1 atm).  The proton source chosen was 

2,6-lutidinium borate [LutH][BAr4] (Ar = 3,5-(CF3)2C6H3), which was added in a 

controlled manner by use of heptane as a solvent.  [LutH][BAr4] is sparingly soluble 

in hydrocarbon solvent, so it would only slowly react with the highly soluble 

molybdenum species in solution.  The electron source chosen was 

decamethylchromocene, which was added slowly to the solution via syringe pump.  

Unlike the catalytic systems reported by Nishibayashi, the mechanism for Schrock’s 

catalyst is relatively well understood.  Several key intermediates were independently 

synthesized and isolated which support the proposed mechanism, which is 

reminiscent of the Chatt cycle, which involves subsequent addition of protons and 
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electrons to coordinated N2 to produce diazenido, hydrazido, hydrazidium, nitride, 

imido, and amido complexes (Scheme 11).  The main difference between the 

proposed cycles is the oxidation state of the molybdenum center, which varies 

between Mo (0) and Mo (III) in the Chatt cycle,36 and between Mo (III) and Mo (VI) 

in the Schrock cycle.56 

 

1.4 CpAm Ligand Framework 

 One of the most important factors for one to consider when seeking to 

promote small molecule activation and fixation with organometallic complexes is the 

selection of a proper supporting ligand framework.  The electronic, steric, and redox 
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properties of supporting ligands are key to tuning the reactivity of a metal compound 

in virtually every manner imaginable.  Accordingly, a brief analysis of ligand 

properties is appropriate. 

 

1.4.1 Cyclopentadienyl Ligand and Metallocene Environment  

As has been seen in the previous sections, metallocenes of the early transition 

metals have played an enormous role in regard to small molecule activation.  Their 

history is even more rich when one considers the dominant role they have played in 

the field of olefin polymerization using group 4 metals.57,58  With regard to group 6 

chemistry,59 metallocenes were explored extensively by the groups of Bercaw60-62 and 

Geoffroy63,64 in the late 1980s and early 1990s, and have even appeared in the 21st 

century in reports from Parkin.65 

The cyclopentadienyl (Cp) ligand is monoanionic and, in its most common !5 

coordination mode, donates six electrons to the metal center.  Accordingly, the 

oxidation states and electron counts for the commonly observed ‘bent’ metallocene 

fragments for groups 4 – 6 are shown in Figure 7.  Variation in the electronic and 
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steric environments of transition metal centers bearing this ligand can only occur 

through substitution of one or several of the substituents on the Cp ring.  For 

example, recall that reduction of compound 20 (decamethylzirconocene dichloride) 

yields the ‘end-on’/’end-on-bridged’ complex 21, in which three N2 ligands exist in 

the dimeric product.44  However, reduction of the sterics in the similar zirconocene 22 

(octamethylzirconocene dichloride) allowed for ‘side-on-bridged’ coordination of just 

one N2 ligand (23).  By reducing the sterics about the zirconium centers, the two 

metals could exist in closer proximity to one another, thus allowing for the ‘side-on-

bridged’ activation.45  Furthermore, replacement of an electron donating methyl group 

on each Cp ligand with H made the zirconium less electron rich and, as a result, less 

likely to bind additional N2 ligands. 

 

1.4.2 Amidinate Ligands and Bisamidinate Environment 

 Amidinates are another class of ligands that have experienced success in 

regard to early transition metal chemistry.  The amidinate ligand results in a 
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significant decrease in electron density placed on the metal in comparison to Cp, as it 

is a four electron donor (Figure 8).  Like Cp, it is also monoanionic.  Amidinates may 

experience a larger variety of coordination modes, either as !1, !2, or bridging !2 (A, 

B, and C, respectively, Figure 9).  Furthermore, the electronic and sterics about the 

metal center may be more easily tuned with amidinate ligands than with Cp ligands 

through the variation of R1, R2 and/or R3 (Figure 9), resulting in the ability to vary 

such factors easily, one of their signature advantages.  Bisamidinate compounds are 

known for a variety of transition metals, which has resulted in noteworthy 

reactivity.66,67 For example, bisamidinates for group 4 compounds became of interest 

when it was discovered that they may serve as alternatives to metallocenes for olefin 

polymerization in 1995 by Eisen and a coworker.68  Shortly thereafter, titanium69 and 

vanadium70 complexes supported by the bisamidinate ligand framework were 

reported to activate N2 as well.  In the case of vanadium, the activation of N2 was 

found to be reversible.70 

 

1.4.3 Cyclopentadienyl/Amidinate Ligand Framework 

 The synthesis of early metal complexes bearing both Cp and amidinate 

ligands (CpAm ligand framework) became of interest in the early 1990s as many 
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were searching for non-metallocene based initiators for Ziegler-Natta polymerization.  

One benefit of such a ligand framework is that the electronics lie between the two 

extremes of the metallocene and bisamidinate ligand environments (Figure 10), and 

the sterics may be tuned on either ligand.  For example, if one wished to increase the 

sterics generally around the metal center, addition of bulky groups to the Cp ligand 

may be attractive.  However, if one wanted to specifically increase steric bulk on one 

side of the metal to allow for asymmetric catalysis, changing the substituent R2 on the 

amidinate ligand only would allow one to do so selectively. Green and coworkers 

reported the synthesis of Cp, benzamidinate compounds (!5-

C5H5)M(Bz)2{N[Si(Me3)3]C(Ph)N[Si(CH3)3]} [M = Ti (38), Zr (39)] and their 

preliminary reactivity for olefin polymerization in 1993.71  Sita and coworkers later 

reported a method for the facile preparation of libraries of such group 4 compounds 

which are highly active as initiators for the living coordination polymerization of %-

olefins,72-75 and these compounds continue to find use today.76,77 This work has been 

extended to include the synthesis of CpAm compounds of group 5 and 6 metals, 

which have experienced remarkable success in the activation of small molecules.  For 
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Figure 10. Structure of early transition metal CpAm compounds with 
oxidation states and d electron counts. 
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example, N2 activation by early transition metal CpAm compounds has been explored 

at great length.  What is most noteworthy about such investigations is that the use of a 

(nearly) identical CpAm ligand environment has allowed for the synthesis of an 

isostructural series of dinuclear N2 compounds for groups 4,78 5,79,80 and 6.81  

Accordingly, the differences in mode of N2 coordination, extent of activation, and 

subsequent reactivity between each metal may be attributed specifically to the metal 

employed (Figure 11).  This has allowed Sita and coworkers to examine the effect of 

each metal on N2 activation, allowing for the rational design of N2 fixation catalysts, a 

topic which will be explored in the following chapters. 

 It is proper to note that in the wake of reports from Sita, others have employed 

the CpAm ligand environment as well for group 4 and 6 metal complexes.  For 

example, Mountford has reported extensively on the synthesis of CpAm titanium 

imidos and their reactivity.82-89  On the other hand, Tilley investigated the reactivity 

of group 6 chloride species with silyl hydrides.90 
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Figure 11. N2 activation within early transition metal CpAm complexes. a The only 
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Chapter 2: Oxygen Atom Transfer Reactions Mediated by 
Group 6 CpAm Compounds 
 

2.1 Introduction 

As mentioned in Section 1.4.3, our group has previously synthesized CpAm 

dinitrogen compounds for molybdenum and tungsten.  Specifically, the ‘end-on-

bridged’ dinitrogen species {Cp*M[N(iPr)C(CH3)N(iPr)]}2(µ-!1:!1-N2) [M = Mo 

(40), M = W (41)] [Cp* = !5-C5(CH3)5] may be obtained in high yields as crystalline 

solids through chemical reduction of the chloride precursors 

Cp*Mo[N(iPr)C(CH3)N(iPr)]Cl2 (42) and Cp*W[N(iPr)C(CH3)N(iPr)]Cl3 (43), 
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N
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respectively, under N2 atmosphere (Scheme 12).1  The extent of N2 activation within 

these compounds was found to be rather low, with N-N bond lengths elongated only 

slightly from that of N2 [e.g. d(NN) = 1.277(8) Å (41), d(NN) = 1.097 Å (N2)], and 

much shorter than their group 4 and 5 analogs.2-4  Accordingly, it became of interest 

to utilize compounds 40 and 41 as M(II) synthons, as the N2 ligand would likely be 

displaced quite easily as judged by its low degree of activation.  Indeed, both 40 and 

41 proved reactive towards a variety of reagents.  Addition of the !-acids CO and 

tert-butyl isonitrile resulted in the production of M(II) bis(carbonyl) and 

bis(isonitrile) compounds Cp*M[N(iPr)C(CH3)N(iPr)](CO)2 [M = Mo (44), M = W 

(45)] and Cp*M[N(iPr)C(CH3)N(iPr)](CNtBu)2 [M = Mo (46), M = W (47)], 

respectively (Scheme 12).1,5  Furthermore, oxidation of the metal center was found to 

occur through the addition of the greenhouse gasses nitrous oxide (N2O) and CO2 to 

yield the mononuclear terminal oxo compounds Cp*M[N(iPr)C(CH3)N(iPr)]O [M = 

Mo (48), M = W (49)] (Scheme 12).  Both 48 and 49 were found to mediate 

photocatalytic degenerate oxygen atom transfer (OAT) from CO2 to CO, and 48 was 

capable of mediating thermal catalytic nondegenerate OAT from N2O to tert-butyl 

isonitrile.5 

The ability to use CO2 and N2O as oxidants for the oxidation of a wider array 

of substrates did not appear promising, as 48 and 49 were not reactive towards other 

small molecules.  Therefore, we sought to expand the scope of possible oxygen atom 

sources in order to provide a more general oxidation catalyst.  Specifically, molecular 

oxygen (O2) and sulfoxides were targeted, for reasons described below. Furthermore, 

we were interested in broadening the scope of substrates for such OAT processes.  To 
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this end, sulfides, olefins, and phosphines were investigated as substrates for OAT 

reactions.  

 

2.2 CpAm M(VI) Dioxo Compounds for OAT Reactions 

2.2.1 Background 

 Every year, millions of tons of oxygen containing small molecules of 

commercial and medical significance are produced through catalytic oxidation of 

organic compounds.  Given this high demand, methods for such oxidations which are 

environmentally benign are of considerable interest.6 Accordingly, the use of O2 as an 

oxidant is an extremely attractive approach for such processes, given its large 

concentration in the atmosphere and the lack of by products associated with its use.  

In order for O2 to be utilized in such a manner, however, metal catalysts must be 

employed to promote the rate of the reaction and, when appropriate, control stereo- 

and regioselectivity.  The use of transition metals to catalyze such processes have 

been known for over 80 years,7 however the development of new catalysts continues 

to be of interest.8 

 Biological systems are known to catalyze aerobic oxidation employing 

enzymes with group 6 metals in the active site.  In all cases, these metals are in the 

highest possible oxidation states and operate via a M(IV)/M(VI) redox couple.9-11 

Accordingly, many have sought to prepare high valent molybdenum and tungsten 

dioxo and oxo-sulfido compounds which undergo OAT.12,13  Poli and coworkers have 

demonstrated that the bulky pentabenzylcyclopentadienyl group 6 dioxo species [!5-

C5(CH2Ph)5]MCl(O)2 [M = Mo (50), M = W (51)] serve as competent catalysts for 



! ""!

the epoxidation of cyclooctene, however rather than using O2 as an oxidant, tert-butyl 

hydroperoxide (tBuOOH) was employed.14  Bergman and coworkers have also shown 

that the less bulky Cp* derivative Cp*MoCl(O)2 (52) may oxidize an even larger 

array of olefins under similar conditions using tBuOOH.15 

 

2.2.2 Synthesis and Characterization of CpAm M(VI) Group 6  Dioxo Compounds 

 Looking to explore the possibility of utilizing group 6 CpAm compounds for 

OAT employing O2 as an oxidant, the reactivity of the molybdenum ‘end-on-bridged’ 

dinitrogen compound 40 with O2 was investigated.  Upon introduction of O2 (10 psi) 

into a benzene-d6 solution of 40, an immediate color change to pale yellow was 

observed.  1H NMR revealed that compound 40 had been completely consumed and 

cleanly produced a new CpAm compound. Interestingly, this new species displayed 1 

doublet in the 1H NMR spectrum integrating for 12 protons, indicating a Cs 

symmetric compound which undergoes dyanamic ‘ring-flipping’ of the amidinate 

ligand in solution on the NMR time scale (Scheme 13). Previously, Dr. Brendan 

Yonke of our group had prepared the tungsten (VI) dioxo complex 

Cp*W[N(iPr)C(CH3)N(iPr)](O)2 (53) during an investigation into ‘!-loaded’ CpAm 
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Scheme 13. Dynamic ‘ring-flipping’ of amidinate 
ligand where ‘A’ and ‘B’ represent equivalent 
methyl groups. 
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compounds.  Compound 53 and other high valent, ‘!-loaded’ species were found to 

display the same ‘ring-flipping’ behavior in solution.16  Accordingly, the analogous 

molybdenum (VI) derivatives Cp*Mo[N(iPr)C(X)N(iPr)](O)2 [X = CH3 (54), X = Ph 

(55)] were prepared through a modified method to that of Yonke.  Specifically, the 

‘end-on-bridged’ dinitrogen compounds 40 and 56 were reacted with excess 

manganese (IV) oxide (MnO2) in toluene at room temperature to provide 54 and 55, 

respectively, in moderate yields (Scheme 14).  Importantly, the isolation of 54 

allowed for the confirmation that this was in fact the product obtained from reaction 

of 40 and O2. The dinitrogen compound 56 was synthesized in an analogous fashion 

to 40 and isolated in similar yield though reduction of the chloride precursor 

Cp*Mo[N(iPr)C(Ph)N(iPr)]Cl2 (57). 

 

 Cooling a concentrated Et2O solution of 55 to -30 °C furnished crystals 

suitable for X-ray analysis, and the solid state structure is depicted in Figure 12.  

Compound 55 exhibits Mo-O bond lengths of 1.7166(16) Å and 1.7255(16) Å, 
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slightly shorter than its tungsten analog 53 [cf. W-O 1.733(3) Å and 1.749(3) Å],16 in 

keeping with the expected periodic trend.17  Interestingly, the Cp* ligand appears to 

undergo a ‘ring-slip’ in compound 55 (i.e. Cp* ligand assumes !3 coordination mode, 

see Scheme 15), which is evidenced by Mo-C bond lengths ranging between 

2.3184(19) Å and 2.5483(19) Å.  A similar observation was made for the tungsten 

derivative 53.16 Complexes 53, 54, and 55 are heavily ‘!-loaded’ species, in which 

the short M-O bond lengths are indicative of bond orders closer to 2.5 than 2.  For 

Figure 12. Molecular structure (30% thermal ellipsoids) of 55 (H atoms have been 
omitted for clarity). Selected bond lengths (Å) and angles (°): Mo1-O1 1.7166(16), 
Mo1-O2 1.7255(16), Mo1-C1 2.5323(19), Mo1-C2 2.5483(19), Mo1-C3 2.4317(19), 
Mo1-C4 2.3184(19), Mo1-C5 2.461(2), O1-Mo1-O2 102.19(9). 
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comparison, the CpAm M(IV) oxo complexes 48 and 49 have been assigned bond 

orders of 2.5, and display comparable M-O bond lengths [cf. Mo-O = 1.7033(19)  Å 

and W-O = 1.7234(17) Å].5 On the other hand, the previously mentioned Mo(VI) 

dioxo compound 50 displays much longer Mo-O bond lengths, which are more in line 

with a bond order of 2 [cf. Mo-O =1.891(4) Å and 1.748(5) Å].14 Given this increased 

bond order, the d electron counts for molybdenum and tungsten in compounds 53, 54, 

and 55 are greater than 18, as an 18 electron species would be expected if each M-O 

bond had a bond order of 2.  Therefore, the Cp* ligand may relieve this ‘extra’ 

electron density of the molybdenum center by adopting an !3 coordination mode. 

 

2.2.3 OAT Reactions of CpAm M(IV) Dioxo Compounds 

 With the dioxo compounds 53, 54, and 55 in hand, and the knowledge that 

they may be generated from O2 (for Mo), it next became of interest to test their 

reactivity towards a variety of substrates.  Of primary importance was the reactivity 

of these species towards olefins in order to assess the possible ability to utilize them 

as olefin epoxidation catalysts, given the long historical importance of such 

reactions,18-20 which have often been catalyzed by molybdenum (VI) dioxo 

compounds.14,15,21-24  
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Scheme 15. Schematic representation of conversion 
between !5 and !3 coordination modes for Cp* ligand. 
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Compounds 53 and 54 were reacted with ethene, 1-hexene, styrene, and cis-

cyclooctene within sealed NMR tubes to test their reactivity towards olefins. In each 

case, 53 showed no reaction.  The molybdenum analog 54 was found to react slowly 

over the course of two weeks at 25 °C, however in each case there was no observation 

of any oxidized organic product.  Furthermore, the same CpAm molybdenum species 

was observed in each case as judged by 1H NMR, indicating that 54 thermally 

decomposes to a new CpAm compound (58) in solution at 25 °C without any 

interaction with the olefin substrate.  Conclusive evidence for the structure of the 58 

could not be obtained through single crystal X-ray diffraction (XRD) given that the 

new species would not crystallize from common organic solvents, or mixtures 

thereof.   Luckily, the 1H NMR of 58 provides insight into its structure (Figure 13).   
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Figure 13. Crude 1H (400 MHz, benzene-d6, 25 °C) NMR spectrum of 
decomposition product 58. 
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Compound 58 does not display the characteristic singlet (15 H) for the Cp* ligand 

observed in nearly all other CpAm compounds, but rather two broadened singlets (6 

H each) and one sharp singlet (3 H), indicative of a ‘tuck-in’ complex, in which the 

Cp* ring has been activated and formed a new bond to an oxo ligand.  The fact that 

two of the singlets for the activated Cp* ligand are broadened is indicative of free 

rotation about the newly formed C-O bond on the order of the NMR time scale, and 

coordination of the rest of the Cp* ring through the remaining double bonds is not 

likely.  Bercaw and Parkin have previously demonstrated that the tungstenocene oxo 

complex Cp*2WO (59) reacts with O2 to cleanly produce such a ‘tuck-in’ species 

Cp*W(O)2[!1-OC5(CH3)5] (60) (Scheme 16).25 Accordingly, it is reasonable to 

propose that compound 58 exists in solution with structure [!1-

OC5(CH3)5][N(iPr)C(CH3)N(iPr)]Mo(O) (Scheme 16). Compound 58 likely does not 

W O

O2 (1 atm)
25 oC

W
O
O

O

59                                                 60

Mo

N
N

X

O

O

25 oC
benzene-d6

2 weeks
100% (NMR)

O

X = CH3 (54)
X = Ph (55)

Mo

N
N

X

O

X = CH3 (58)
X = Ph (61)

Scheme 16 



! "+!

bear a second terminal oxo ligand as in the case of 60, as the insertion into the Cp* 

ligand is likely driven by reduction in electron density at the metal center.  

Furthermore, the only source for the additional oxo ligand would be from a second 

equivalent of 54, which would result in the formation of the monoxo species 48, 

which was not observed by 1H NMR. Efforts to obtain conclusive evidence of the 

structure of 58 through decomposition of the analogous phenyl substituted CpAm 

dioxo species 55 were also unsuccessful, as the resulting Cp* activation product [!1-

OC5(CH3)5][N(iPr)C(Ph)N(iPr)]Mo(O) (61) also was resistant to crystallization. 

Lastly, the oxidation of other reduced substrates was examined, specifically 

dimethyl sulfide, triphenyl phosphine, and CO.  Again, 53 was found to be unreactive 

towards all reagents, and 54 displayed analogous decomposition as described above.  

Interestingly, when compound 54 was reacted with the ‘end-on-bridged’ dinitrogen 

compound 40 (the precursor for its synthesis) in a 1:1 ratio (Scheme 17), slow 

conversion to the CpAm monoxo compound 48 was observed by 1H NMR (Figure 

14), making compound 40 the only species capable of being oxidized by 54.  After 

two weeks, conversion slowed to a halt, and unrecognizable decomposition was 

observed at longer reaction times. 
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 At first glance, it may seem odd that the CpAm dioxo compounds 53, 54, and 

55 do not undergo OAT to common organic substrates, while the very similar Cp 

dioxo chloride species 50, 51, and 52 are catalytically active for such transformations.  

Likely, the difference in reactivity is a result of both the electronics and sterics of the 

metal centers.  Compounds 50, 51, and 52 are 16 electron complexes, making them 

susceptible to coordination of a substrate to the metal center to undergo OAT. On the 

other hand, compounds 53, 54, and 55 are 18 electron species (perhaps greater, vide 

supra) making them coordinatively saturated and resistant to substrate coordination.  

Furthermore, the amidinate ligand adds a significant amount of steric bulk compared 

Figure 14. 1H (400 MHz, benzene-d6, 25 °C) NMR spectra demonstrating the 
production of 48 (o) from reaction of 40 (*) and 54 (x) after 0 d (bottom), 6 d 
(middle), and 14 d (top). (Note: Cp* resonances for 40 and 54 overlap one another).  
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to a chloride ligand, making an approach to the metal of a substrate unlikely.  In the 

case of olefin epoxidation, the previously noted catalytic processes are suspected to 

require the presence of tBuOOH to generate the active catalyst, a step which was not 

desired here. Together, these factors likely contribute to the inability of these species 

to undergo OAT. 

  

2.3 Catalytic Sulfoxide Deoxygenation 

2.3.1 Background 

 Sulfoxides represent an extremely valuable functional group for asymmetric 

synthesis of organic and biologically active compounds, mostly due to the large 

differences in the nature of the substituents on the stereogenic sulfur atom (alkyl 

groups, oxygen atom, and lone pair).26 Although useful for synthesis, the presence of 

the sulfoxide functional group in a given product is not always desired.  As such, 

methods for the reduction of sulfoxides have been developed, with the goal of 

providing processes that show tolerance to a variety of functional groups, proceed 

under ambient conditions, and do not require the use of harsh reagents.  To this end, 

reports of the catalytic reduction of sulfoxides by copper,27 titanium,28 iron,29 

rhenium,30,31 and nickel32 catalysts have appeared in the literature, along with reports 

of stoichiometric sulfoxide reduction employing catecholborane33 and 2,6-

dihydroxypyridine.34     

 The group 6 oxo complexes 48 and 49 have previously been shown to react 

with CO to eliminate CO2 and generate the known bis(carbonyl) compounds 44 and 

45, respectively. Accordingly, we reasoned that OAT from sulfoxides to CO could be 
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possible using mid valent group 6 CpAm compounds through a similar catalytic cycle 

(vide infra).5  Molybdoenzymes (e.g. dimethylsulfoxide reductase) are known to exist 

in high oxidation states, and function through a Mo(IV)/Mo(VI) redox couple.10  

Accordingly, there have been several reports on the use of high valent group 6 

compounds to deoxygenate sulfoxides,30,35,36 however none that operate through a 

more reduced M(II)/M(IV) cycle. 

 

2.3.2 Reactivity of CpAm Compounds with Sulfoxides 

 To begin, the ‘end-on-bridged’ dinitrogen compounds 40 and 41 were reacted 

with methyl phenyl sulfoxide (MPSO). For the molybdenum compound 40, gentle 

heating (60 °C) lead to complete conversion to the terminal oxo compound 48 with 

concomitant formation of thioanisole.  The tungsten analog 41 reacted similarly under 

identical conditions, however the reaction was considerably slower, reaching only 

15% completion during the same time period (Scheme 18).  Cummins and coworkers 

have reported similar reactivity of the three coordinate molybdenum amido complex 

31, which reacts with dimethyl sulfoxide (DMSO) to yield a terminal oxo species 

(O)Mo[N(R)Ar]3 (62) and dimethyl sulfide.37 
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 Looking next to determine if MPSO could generate the oxo compounds 48 

and 49 from more catalytically relevant starting materials, reaction with the 

bis(carbonyl) species 44 and 45 was explored.  In the absence of ultraviolet (UV) 

light, no reaction between 44 or 45 and MPSO was observed.  However, upon 

irradiation of benzene-d6 solutions of compounds 44 and 45 with excess MPSO 

within sealed Pyrex NMR tubes with UV light, generation of the corresponding oxo 

compounds 48 and 49 was observed to occur quickly, as judged by 1H NMR.  Given 

previously observed photolytic reactivity of compounds 44 and 45,5 it is likely that 

upon photolysis, one carbonyl ligand dissociates from the metal center, presenting an 

open coordination site for a substrate.  MPSO then coordinates to the metal center in 

an !2 fashion, before cleavage of the S-O bond and dissociation of the remaining 

carbonyl ligand (Scheme 19). 

 With the observation that the terminal oxo compounds 48 and 49 could be 

produced from the bis(carbonyl) species 44 and 45, along with the knowledge that 

these  bis(carbonyl) species can be regenerated from reaction of 48 and 49 with CO,5 

a synthetic cycle had been completed.  Accordingly, it was of interest to determine if 

the process could proceed catalytically.  To this end, it was found that photolysis of a 

benzene-d6 solution of either 44 or 45 with one equivalent of MPSO and excess CO 

M

N
N

CO

CO

M = Mo (44)
M = W (45)

M

N
N

CO
25 oC, hv, Pyrex

benzene-d6
- CO

MPSO
M

N
N

CO
O

S
Ph

- CO, - MeSPh
M

N
N

O

M = Mo (48) (7 h, 100%)
M = W (49) (1.5 h, 100%)

Scheme 19 



! &&!

(initial pressure = 10 psi) within a sealed Pyrex NMR tubed produced thioanisole and 

CO2 catalytically (Scheme 20).  The reaction was complete in 5 hours in the case of 

tungsten, and 16 hours in the case of molybdenum.  During the course of the 

reactions, only the bis(carbonyl) species 44 and 45 are observed by 1H NMR (Figure 

15b). When 13C-labeled CO was employed under identical conditions, production of 

13CO2 was confirmed through 13C{1H} NMR (Figure 15a). Upon addition of excess 

MPSO (ca. 5 eq.) to identical reaction mixtures, catalysis proceeded as expected but 

quickly slowed before complete conversion to thioanisole was observed.  Eventually,  
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Figure 15. (a) 13C{1H} (125 MHz, benzene-d6, 25 °C) NMR spectra 
demonstrating the production of 13CO2 (o) from OAT from MPSO to 13CO (x) 
mediated by 44 after 0 h (bottom) and 3 h (top) UV irradiation. (b) 1H (400 MHz, 
benzene-d6, 25 °C) NMR spectra demonstrating the production of thioanisole (o) 
from MPSO (x) catalyzed by 44 (*) after 0 h (bottom) and 24 h (top) UV 
irradiation. 
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catalysis halted completely and the catalysts were found to have fully decomposed, as 

determined by a lack of any identifiable resonances in the 1H NMR and the presence 

of brown precipitates in the NMR tubes.   

In order to determine the cause of catalyst decomposition, a series of test 

reactions were performed under controlled conditions. It was found that in the case of 

tungsten,  the   oxo  complex  49  decomposes in the presence  of excess  MPSO upon 

photolysis.  Presumably, during catalysis, when an excess amount of substrate is 

present, it is in sufficient concentration to decompose the short lived intermediate 49.  

In the case of molybdenum, no such conclusion could be reached.  However, it is 

possible that during OAT from 48 to CO, the transient intermediate 

Cp*Mo[N(iPr)C(CH3)N(iPr)](CO)(!2-CO2) (depicted in Scheme 20) reacts with 

MPSO, resulting in decomposition.  However, given that such a complex cannot be 

isolated, testing this hypothesis was not possible. 

 

2.4 Conclusions 

 We have previously shown that the CpAm oxo complexes 48 and 49 may 

engage in catalytic OAT.5,38  Looking to expand upon this chemistry, the ability of the 

CpAm dioxo species 53, 54, and 55 to undergo similar reactions was investigated. 

Unfortunately, no reaction was observed with a variety of common substrates.  In the 

case of molybdenum compounds 54 and 55, decomposition to ‘tuck-in’ compounds 

58 and 61 was observed by 1H NMR, however analysis by single crystal XRD proved 

elusive due to the poor crystallinity of these compounds.  Interestingly, compound 54 
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could engage in OAT to the ‘end-on’bridged’ dinitrogen compound 40, but this 

process was found to be painfully slow and did not reach completion. 

 The first example of catalytic sulfoxide reduction by mid valent group 6 

compounds was achieved and was found to proceed through a mechanism involving 

the CpAm bis(carbonyl) compounds 44 and 45 and oxo compounds 48 and 49.  This 

process requires photolysis to proceed, as the photodissociation of a carbonyl ligand 

is critical to open a coordination site for MPSO to coordinate to the metal center.  

Unfortunately, in the case of both molybdenum and tungsten, it appears that the 

substrate reacts in a nonproductive manner with short lived catalytic intermediates. 

Accordingly, when MPSO is present in sufficiently high concentration, catalysis is 

inhibited and the intermediates decompose to unidentifiable products.  
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Chapter 3: Catalytic Sulfur Atom Transfer Reactions Employing 
Elemental Sulfur 
 
 
 
3.1 Introduction 

 Although catalytic OAT processes mediated by transition metals which 

employ O2 as an oxidant are well understood and capable of preparing important 

small molecules containing nearly all possible oxygen containing functional groups,1 

the analogous sulfur atom transfer (SAT) processes employing elemental sulfur (S8) 

are extremely scarce by comparison.  S8 is an attractive source of sulfur for SAT 

reactions as it is by far the least expensive and most abundant form of the element.  

As such, it has found use in several other types of applications, including polymer 

vulcanization, in which crosslinks composed of varying amounts of sulfur atoms lead 

to increased strength, durability, and elasticity of polymeric materials.2 

 Exactly 60 years after the first report of metal catalyzed OAT involving O2,3 

Khan and Siddiqui reported the first transition metal mediated catalytic SAT reaction, 

in which cyclohexene was transformed to cyclohexene sulfide at slightly elevated 

temperatures in water/ethanol (50/50) using a dinuclear ruthenium catalyst and S8.4  

Although this report marked a breakthrough for SAT technology, doubts have been 

cast on its success, as efforts to duplicate the reaction have failed.5 

 Since this initial report, analogous claims of catalytic SAT still remain scarce.  

Adam and coworkers have successfully utilized high valent molybdenum species to 

prepare a variety of sulfur containing small molecules.  Specifically, the oxo disulfide 

molybdenum (VI) compound (S2CNEt2)2Mo(O)(S2) (63) was found to catalyze the 
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episulfidation of (E)-cyclooctene and (E)-cyclononene in refluxing acetone to provide 

moderate yields of the corresponding trans-cycloalkene episulfides, in a process 

involving a Mo(IV)/Mo(VI) cycle.6  This process was expanded to include an even 

wider array of cyclic alkenes and allenes, however it was found that thiiranes serve as 

better sulfur atom sources for such reactions.5  Compound 63 could even be used to 

generate isothiocyanates from the corresponding isonitriles and S8, again in a process 

involving a high valent Mo(IV)/Mo(VI) cycle (Scheme 21) operating at elevated 

temperatures, however long reaction times were found to be necessary (i.e. several 

days).7 

 Conversely, catalytic desulfurization of substrates is also of interest, as such 

processes are key to refining of petroleum feed stocks.  Industrial processes for such 

reactions involve heterogeneous molybdenum or tungsten catalysts operating at high 

temperatures (> 400 °C).8  Accordingly, there has been interest in the development of 

catalysts which may provide the same reactivity under more reasonable conditions.  

Espenson and a coworker have reported such a process, in which a rhenium catalyst 
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desulfurizes a variety of thiiranes in high yield, with triphenyl phosphine present to 

accept the removed sulfur atom.9 

 Given the large disparity in reports of SAT and OAT in the literature, and our 

group’s previous success in the use of mid valent CpAm group 6 compounds to 

catalyze OAT reactions, we sought to explore the possibility of catalytic SAT 

employing S8. Carbonyl sulfide (COS) and isothiocyanates appeared to be appropriate 

targets for such reactions, in that they are the sulfur analogues of CO2 and 

isocyanates, which we have been successful in preparing catalytically via OAT.10 

 

3.2 Carbonyl Sulfide 

3.2.1 Background 

 COS is known to occur naturally on Earth through volcanic events11,12 or as a 

result of biological processes,13 and has been detected on a number of other planets as 

well, where it is considered a biosignature.14  Presently, COS is also released to the 

atmosphere from combustion processes, but these constitute only a small fraction of 

total atmospheric COS concentration (500 ppt).15  It has been shown that under mild 

conditions, COS generates oligopeptides from amino acids, indicating that it may 

have played a critical role in the origin of life.16-18  It’s sources on primordial Earth, 

however, would have been limited to volcanism, leading some to wonder if 

alternative sources could have produced COS under prebiotic conditions.  

 The first laboratory preparation of COS was reported by Than in 1867, in 

which he found it to exist in equilibrium with CO(g) and S2(g) at high temperatures (> 

260 °C) (Scheme 22).19  Today, COS is prepared on a preparative scale by reaction of 
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potassium cyanate with sulfuric acid, a process which requires extensive purification 

of the product.  Specifically, CO2, hydrogen sulfide (H2S), formaldehyde, carbon 

disulfide (CS2), and hydrogen cyanide (HCN) are removed by treatment of the crude 

reaction mixture with cupric sulfate (CuSO4) and sulfuric acid, passing through 

aqueous potassium hydroxide, extracting with aniline in ethanol, and treating again 

with sulfuric acid. Consequently, COS is difficult to prepare in the laboratory and is 

extremely expensive to purchase.  Furthermore, COS is a hazardous substance to 

handle and transport, as exposure may lead to conjunctivitis, lachrymation, and 

photophobia.15   

Nicholas and coworkers have demonstrated that !2 coordinated COS may be 

CO(g) + 1/2 S2(g)                        COS(g)
> 260 oC
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generated directly from CO and S8 with group 5 metallocene complexes.  

Specifically, the niobium (III) carbonyl species [!5-

C5H4(CH3)]2Nb(CO)[CH2Si(CH3)3] (64) was treated with 1 equivalent of S8 at 20 °C 

to produce the COS species [!5-C5H4(CH3)]2Nb[!-(S,C)COS][CH2Si(CH3)3] (65),20 

and the similar tantalum (III) carbonyl species [!5-C5H4(CH3)]2Ta(CO)(H) (66) was 

found to react with one equivalent of S8 at lower temperature to produce [!5-

C5H4(CH3)]2Ta[!-(S,C)COS](SH) (67) (Scheme 23).21  In the case of compound 65, 

X-ray diffraction provided the solid state structure, thus confirming the !2 

coordination of COS.  In both cases, however, release of COS from the metal center 

was not reported.  In fact, no reports for metal mediated production of free COS from 

its most basic components (i.e. CO and S8) have appeared in the literature to provide 

a safe and low energy alternative route for its synthesis.  Accordingly, we set out to 

ascertain whether such a process is possible through the use of mid valent CpAm 

group 6 compounds. 

 

3.2.2 Synthesis and Characterization of New Compounds and SAT Reactions 

 As mentioned previously, the CpAm group 6 bis(carbonyl) compounds 44 and 

45 are capable of mediating photocatalytic OAT reactions.10  Accordingly, it 

appeared reasonable to use a similar compound to catalyze the desired SAT.  In this 

case, however, the use of a phenyl group in the distal position of the amidinate ligand 

was employed, as it has been shown by Mountford that such a substitution in group 4 

CpAm compounds may lead to increased crystallinity.22  As such, the molybdenum 

(II) bis(carbonyl) compound  Cp*Mo[N(iPr)C(Ph)N(iPr)](CO)2 (68) was prepared by 
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treatment of the ‘end-on-bridged’ dinitrogen compound 56 with CO, which itself was 

obtained in moderate yield through chemical reduction (NaHg) of the dichloride 

precursor (57) under N2 atmosphere, according to well established procedures within 

our group (Scheme 24).23  Upon photolysis of a benzene-d6 solution of compound 68 

under 13CO atmosphere (initial pressure = 10 psi) in the presence of excess S8 (10 

equivalents as a suspension) within a sealed Pyrex NMR tube at 25 °C, generation of 

13COS was observed to occur by 13C{1H} NMR at the expense of 13CO.24  After 105 

hours of photolysis, nearly complete consumption of 13CO was observed to have 

occurred, and 13COS was the only species seen in the 13C{1H} NMR spectrum 

(Figure 16), marking the first case for metal mediated synthesis of COS from CO and 

S8, and the first preparation under mild conditions which eliminates the generation of 

myriad by products. 

 We next set out to determine the mechanism for the observed reaction.  NMR 

spectra recorded at intermediate time points provided useful insight.  The most 

obvious feature we noticed from the 13C{1H} NMR spectra was the lack of the 

resonance for 13C-labeled 68 ("CO = 269 ppm) at all time points, indicating that 68 

serves as a pre-catalyst, and does not reenter the catalytic cycle at all.  Secondly, two 

new resonances appeared between 2 and 18 hours indicating that two new 13C-labeled 
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intermediate species had been generated and slowly consumed (Figure 16, labels # 

and +).  1H NMR also revealed the production and disappearance of three new CpAm 

compounds, two of Cs symmetry and one of C1 symmetry (Figure 17).  Accordingly, 

it seemed reasonable to assume three new CpAm species had been generated; one of 

Cs symmetry bearing a carbonyl ligand, one of either Cs or C1 symmetry bearing a 

carbonyl ligand, and one without a carbonyl ligand and of either Cs or C1 symmetry. 

 A series of NMR experiments were conducted to learn more about the role of 

these intermediate species in catalysis, and determine their identities.  To begin, 
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Figure 1. Partial 13C{1H} (125 MHz, benzene-d6, 25 °C) NMR spectra for the 
photolysis of 1 in the presence of 13C-labeled CO and excess S8 after different 
timed intervals.  Labelled resonances are 13C-labeled 6 (#) and 13C-labeled 7 (+). 

 The ease with which COS is photolytically generated from CO 
and S8 using 1 as a pre-catalyst prompted us to explore the synthetic 

-  and in situ generated 
delivery of COS as a chemical reagent.  In this regard, direct 
reaction of COS with amines has previously been used to prepare 
substituted ureas in a process that generates H2S as the only by-
product.[5a]  The production of substituted ureas from mixtures 
containing a starting amine, CO and S8 has also been reported to 
occur at high temperatures and pressure.[12]  As presented in Scheme 
2, photolysis of a benzene-d6 solution containing a primary amine, 
RNH2 (where R = tert-butyl, iso-propyl, n-butyl and benzyl), CO 
(10 psi), S8 (one equivalent relative to the amine) and 1 (5 mol% 
relative to the amine) for 18 h resulted in a near quantitative 
conversion to the 1,3-disubstituted urea in each case, as determined 
by isolation and spectroscopic comparison of each product against 
literature data.[11]  When conducted on a preparative scale, the 
amount of 1 could be reduced to as little as 0.5 mol%. 

Scheme 2. Coupling of primary amines to 1,3-disubstituted ureas using in situ 
generated COS.  

 Control experiments were conducted to substantiate that the 
coupling of primary amines to 1,3-disubstituted ureas was occurring 
through the intermediacy of in situ generated COS.  To begin, no 
urea product was formed when photolysis was conducted in the 
absence of either 1 or S8.  Second, when isotopically-labeled 13CO 
(98%) was used for the coupling of tert-butylamine, tBuNH2, 13C 
NMR spectra obtained at different timed intervals of photolysis 
clearly showed the co-existence of [13C]-labelled COS and [13CO]-  

Figure 2. Molecular structures (30% thermal ellipsoids) of (a) 6 and (b) 7 
Hydrogen atoms have been removed for clarity.  Selected bond lengths [Å] and 
angles [°] for 6: Mo1-S1 2.4659(4), Mo1-S2 2.4665(4), S1-S2 2.0555(6), Mo1-
C24 1.9901(17), C24-O1 1.149(2), S1-Mo1-S2 49.257(14), S1-Mo1-C24 
70.90(5) and for 7: Mo1-S1 2.3876(9), Mo1-S2 2.3954(9), S1-C24 1.784(4),  
S2-C24 1.786(4), C24-O1 1.198(4), S1-C24-S2 105.77(18).  

labelled (tBuNH)2CO.  
 While many reports of transition-metal-catalyzed oxidative 
coupling of amines with CO to produce ureas have appeared in the 
literature,[13] virtually all of these methods require elevated 
temperatures and pressures, as well as the use of co-reagents that are 
more exotic than S8 and which serve as sacrificial oxidants that 
return the transition metal back to a starting formal oxidation state 
within the catalytic cycle.  These catalytic processes are also thought 
to involve intimate bonding interactions between the transition metal 
and amine and CO substrates within the urea-product forming steps.  
In contrast, the chemical process presented in Scheme 2 proceeds 
through the far-simpler mechanism of transition-metal-catalyzed in 
situ generation of COS that is then responsible for production of the 
final urea product.  It is also important to note that the success of the 
chemistry of Scheme 2 requires that all the transition metal 
complexes that are intermediates in the photocatalytic generation of 
COS must be chemically tolerant of the protic and Brønsted basic 
nature of both the primary amine starting materials and of the urea 
products.  It can also be noted that primary amines of Scheme 2 
were degassed but not distilled from a drying agent before use. 
 In order to further establish the structural identity of the 
intermediates arising from photolysis of 1 with S8 and CO, the 
CPAM MoII mono(carbonyl), mono(acetonitrile) complex, Cp*Mo-
[N(iPr)C(Ph)N(iPr)](CO)(NCMe) (4) [IR (KBr) CO = 1767 cm-1], 
was prepared in high yield according to Scheme 3.[11]  As we have 
previously documented,[7,8] compound 4 should function as a viable 
synthetic model for the reactive transient species 5 that is presumed 
to be generated in situ through initial photodissociation of CO from 
1.  In the present work, reaction of 4 with an excess of S8 in benzene 
rapidly generated the MoIV mono(carbonyl), 2-persulfido complex 
Cp*Mo[N(iPr)C(Ph)N(iPr)](CO)( 2-S2) (6) [IR (KBr) CO = 1921 
cm-1] in high yield as an orange, crystalline solid.[11]  Figure 2a  
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NMR spectra for the photolysis of 68 in the presence of 
13CO and excess S8 at different timed intervals. Labeled 
resonances are 13C-labeled 71 (#) and 13C-labeled 75 (+). 
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compound 68 was found to be inert toward reaction with S8 in the absence of 

photolysis under Ar atmosphere.   However, when photolyzed, the unidentified C1 

symmetric species was observed by 1H NMR (Figure 17, labeled with #).  When 13C-

labeled 68 was used instead, 13C{1H} NMR revealed this new species to be the same 

as one observed during catalysis (Figure 16, labeled with #).  Based on this 

Figure 17. Partial 1H (400 MHz, benzene-d6, 25 °C) NMR 
spectra for the photolysis of 68 in the presence of 13CO and 
excess S8 at different timed intervals. Labeled resonances are 
71 (#), 75 (+), and 77 (o). (Note: Unlabeled singlet at 2.08 
ppm is durene internal standard). 
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observation and knowledge of the photoreactivity of group 6 CpAm bis(carbonyl) 

compounds,10 it seemed reasonable to assume that 68 undergoes photodissociation of 

one carbonyl ligand upon photolysis to produce the coordinatively unsaturated 

intermediate Cp*Mo[N(iPr)C(Ph)N(iPr)](CO) (69), which then reacts rapidly with S8 

to produce the new C1 symmetric product.  Seeing as 69 cannot be synthesized and 

isolated, we decided to prepare a model compound bearing a weakly coordinating 

ligand, which would be easily displaced in order to prepare large quantities of the 

new intermediate species in a non-photolytic manner.  Accordingly, the 

mono(acetonitrile), mono(carbonyl) complex 

Cp*Mo[N(iPr)C(Ph)N(iPr)](CO)(NCCH3) (70) was prepared by treatment of 56 with 

excess acetonitrile (ca. 20 equiv.) and CO (2 psi), as depicted in Scheme 25.10,25,26  In 

the solid state, compound 70 was found to display a long C-O bond length [1.183(2) 

1/2

Mo N

N
Ph

MoN

N
Ph

N

N

56

CO (2 psi)
xs NCCH3

benzene, 25 oC
72%

Mo

N
N

Ph

CO

NCCH3

70

Mo

N
N

Ph

CO

CO

68                                                      69

hv
Pyrex

benzene, 25 oC
-CO

Mo

N
N

Ph

CO

1 eq. S8

benzene, 25 oC
74%

Mo

N
N

Ph

CO

S

71

S

xs S8

Scheme 25 



! $+!

Å] (Figure 18) and a C-O bond stretching frequency of #CO = 1767 cm-1, indicative of 

substantial $-backbonding from the molybdenum (II) center to the carbonyl ligand’s 

$* orbital.  This observation is a result of CO being a much stronger $-acid than 

acetonitrile, and indicated that acetonitrile should be easily displaced as planned.  

Indeed, upon treatment of 70 with 1 equivalent of S8, immediate formation of the new 

C1 symmetric species was observed by 1H NMR, along with free acetonitrile (Figure 

19).  As Scheme 25 reveals, this method provided for the isolation of the desired 

intermediate compound as an orange crystalline solid in larger quantities and in high 

yield, which lead to complete characterization as the molybdenum (IV) 

mono(carbonyl), disulfide species Cp*Mo[N(iPr)C(Ph)N(iPr)](CO)(!2-S2) (71) by 

spectroscopic and elemental (C, H, N) analyses.   

 

Figure 18. Molecular structure of compound 70 (30% thermal 
ellipsoids). Hydrogen atoms have been omitted for clarity. Selected 
bond lengths (Å): Mo1-N3 2.1228(15), N3-C25 1.145(2), Mo1-
C24 1.9000(18), C24-O1 1.183(2). 
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Figure 19. Partial 1H (400 MHz, benzene-d6, 25 °C) NMR spectrum demonstrating 
the displacement of acetonitrile (labeled with *) from compound 70 by S8 to generate 
compound 71. 
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Figure 1. Partial 13C{1H} (125 MHz, benzene-d6, 25 °C) NMR spectra for the 
photolysis of 1 in the presence of 13C-labeled CO and excess S8 after different 
timed intervals.  Labelled resonances are 13C-labeled 6 (#) and 13C-labeled 7 (+). 

 The ease with which COS is photolytically generated from CO 
and S8 using 1 as a pre-catalyst prompted us to explore the synthetic 

-  and in situ generated 
delivery of COS as a chemical reagent.  In this regard, direct 
reaction of COS with amines has previously been used to prepare 
substituted ureas in a process that generates H2S as the only by-
product.[5a]  The production of substituted ureas from mixtures 
containing a starting amine, CO and S8 has also been reported to 
occur at high temperatures and pressure.[12]  As presented in Scheme 
2, photolysis of a benzene-d6 solution containing a primary amine, 
RNH2 (where R = tert-butyl, iso-propyl, n-butyl and benzyl), CO 
(10 psi), S8 (one equivalent relative to the amine) and 1 (5 mol% 
relative to the amine) for 18 h resulted in a near quantitative 
conversion to the 1,3-disubstituted urea in each case, as determined 
by isolation and spectroscopic comparison of each product against 
literature data.[11]  When conducted on a preparative scale, the 
amount of 1 could be reduced to as little as 0.5 mol%. 

Scheme 2. Coupling of primary amines to 1,3-disubstituted ureas using in situ 
generated COS.  

 Control experiments were conducted to substantiate that the 
coupling of primary amines to 1,3-disubstituted ureas was occurring 
through the intermediacy of in situ generated COS.  To begin, no 
urea product was formed when photolysis was conducted in the 
absence of either 1 or S8.  Second, when isotopically-labeled 13CO 
(98%) was used for the coupling of tert-butylamine, tBuNH2, 13C 
NMR spectra obtained at different timed intervals of photolysis 
clearly showed the co-existence of [13C]-labelled COS and [13CO]-  

Figure 2. Molecular structures (30% thermal ellipsoids) of (a) 6 and (b) 7 
Hydrogen atoms have been removed for clarity.  Selected bond lengths [Å] and 
angles [°] for 6: Mo1-S1 2.4659(4), Mo1-S2 2.4665(4), S1-S2 2.0555(6), Mo1-
C24 1.9901(17), C24-O1 1.149(2), S1-Mo1-S2 49.257(14), S1-Mo1-C24 
70.90(5) and for 7: Mo1-S1 2.3876(9), Mo1-S2 2.3954(9), S1-C24 1.784(4),  
S2-C24 1.786(4), C24-O1 1.198(4), S1-C24-S2 105.77(18).  

labelled (tBuNH)2CO.  
 While many reports of transition-metal-catalyzed oxidative 
coupling of amines with CO to produce ureas have appeared in the 
literature,[13] virtually all of these methods require elevated 
temperatures and pressures, as well as the use of co-reagents that are 
more exotic than S8 and which serve as sacrificial oxidants that 
return the transition metal back to a starting formal oxidation state 
within the catalytic cycle.  These catalytic processes are also thought 
to involve intimate bonding interactions between the transition metal 
and amine and CO substrates within the urea-product forming steps.  
In contrast, the chemical process presented in Scheme 2 proceeds 
through the far-simpler mechanism of transition-metal-catalyzed in 
situ generation of COS that is then responsible for production of the 
final urea product.  It is also important to note that the success of the 
chemistry of Scheme 2 requires that all the transition metal 
complexes that are intermediates in the photocatalytic generation of 
COS must be chemically tolerant of the protic and Brønsted basic 
nature of both the primary amine starting materials and of the urea 
products.  It can also be noted that primary amines of Scheme 2 
were degassed but not distilled from a drying agent before use. 
 In order to further establish the structural identity of the 
intermediates arising from photolysis of 1 with S8 and CO, the 
CPAM MoII mono(carbonyl), mono(acetonitrile) complex, Cp*Mo-
[N(iPr)C(Ph)N(iPr)](CO)(NCMe) (4) [IR (KBr) CO = 1767 cm-1], 
was prepared in high yield according to Scheme 3.[11]  As we have 
previously documented,[7,8] compound 4 should function as a viable 
synthetic model for the reactive transient species 5 that is presumed 
to be generated in situ through initial photodissociation of CO from 
1.  In the present work, reaction of 4 with an excess of S8 in benzene 
rapidly generated the MoIV mono(carbonyl), 2-persulfido complex 
Cp*Mo[N(iPr)C(Ph)N(iPr)](CO)( 2-S2) (6) [IR (KBr) CO = 1921 
cm-1] in high yield as an orange, crystalline solid.[11]  Figure 2a  
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In the solid state (Figure 20), compound 71 exhibits a short C-O bond length 

of 1.149(2) Å and an IR absorption at #CO = 1921 cm-1, indicative of only moderate $-

backbonding to the CO ligand. On the other hand, the S-S bond of 2.0555(6) Å is 

considerably longer than that in free S2 (1.887 Å).27  This phenomenon is likely the 

result of S2 acting as a better $-acceptor than CO (vide infra), resulting in the S-S 

bond order being closer to one than two, and leading to the assignment of 71 as a 

molybdenum (IV) complex. 

Although !2 disulfide complexes have been reported for molybdenum, they 

typically are high valent and/or ionic inorganic clusters.5-7,28,29  However, Parkin and 

coworkers have reported the synthesis of the molybdenum (IV) disulfide metallocene 

compound [!5-C5H4(tBu)]2Mo(!2-S2) (72) by treatment of the carbonyl precursor [!5-

C5H4(tBu)]2Mo(CO) (73) with S8 (Scheme 26).30  Compound 72 exhibited a slightly 

longer S-S bond length than 71 [d(SS) = 2.091(2) Å], indicative of more substantial 

$-backbonding to the $* orbital of S2.  This observation is not surprising, given that 

72 does not possess a carbonyl ligand, as does 71, which likely competes with S2 for 

electron density from the d2 metal center. It is interesting to note that in order for 

compound 72 to form, the carbonyl ligand of its precursor 73 must be lost.  On the 
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other hand, compound 71 is capable of maintaining a carbonyl ligand.  This is due to 

the fact that the metallocene ligand framework provides two electrons more than the 

CpAm environment.  Accordingly, compound 72 is an 18 electron species, which is 

not capable of bearing an additional ligand.  Importantly, the observation that the 

carbonyl ligand in 73 is displaced easily by treatment with S8 further demonstrates the 

greater $-acidity of the S2 ligand compared to CO, providing an explanation for the 

significant S-S bond elongation in 71 relative to the minor C-O bond elongation.  
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Figure 21. Partial 1H (400 MHz, benzene-d6, 25 °C) NMR spectra 
demonstrating the photolytic conversion of 71 to 75 at timed 
intervals. (Note: The singlet at 2.08 ppm is durene internal 
standard.) 
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Lastly, it should be noted that the (near) isostructural zirconium analog of compound 

71, Cp*2Zr(CO) (!2-S2) (74), has been reported.31 

The reactivity of compound 71 was explored next, and it was found that upon 

photolysis in dilute benzene-d6 solution for a short period of time (i.e. < 3 hours), 71 

cleanly isomerized to the Cs molybdenum (IV) dithiocarbonate species 

Cp*Mo[N(iPr)C(Ph)N(iPr)][!-(S,S)S2CO] (75) (Scheme 27) as judged by 1H NMR 

(Figure 21).  Although compound 75 is tedious to prepare in large quantities, 

crystalline material providing for satisfactory elemental (C, H, N) analysis and X-ray 

diffraction experiments was obtained, and the molecular structure is depicted in 

Figure 22.  Compound 75 exhibits a C-O bond length of 1.198(4) Å and an IR 

stretching frequency for the carbonyl group of #CO = 1673 cm-1, which is in keeping 

with reports for other metal dithiocarbonate complexes.32-38  Gratifyingly, 1H and 
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Figure 1. Partial 13C{1H} (125 MHz, benzene-d6, 25 °C) NMR spectra for the 
photolysis of 1 in the presence of 13C-labeled CO and excess S8 after different 
timed intervals.  Labelled resonances are 13C-labeled 6 (#) and 13C-labeled 7 (+). 

 The ease with which COS is photolytically generated from CO 
and S8 using 1 as a pre-catalyst prompted us to explore the synthetic 

-  and in situ generated 
delivery of COS as a chemical reagent.  In this regard, direct 
reaction of COS with amines has previously been used to prepare 
substituted ureas in a process that generates H2S as the only by-
product.[5a]  The production of substituted ureas from mixtures 
containing a starting amine, CO and S8 has also been reported to 
occur at high temperatures and pressure.[12]  As presented in Scheme 
2, photolysis of a benzene-d6 solution containing a primary amine, 
RNH2 (where R = tert-butyl, iso-propyl, n-butyl and benzyl), CO 
(10 psi), S8 (one equivalent relative to the amine) and 1 (5 mol% 
relative to the amine) for 18 h resulted in a near quantitative 
conversion to the 1,3-disubstituted urea in each case, as determined 
by isolation and spectroscopic comparison of each product against 
literature data.[11]  When conducted on a preparative scale, the 
amount of 1 could be reduced to as little as 0.5 mol%. 

Scheme 2. Coupling of primary amines to 1,3-disubstituted ureas using in situ 
generated COS.  

 Control experiments were conducted to substantiate that the 
coupling of primary amines to 1,3-disubstituted ureas was occurring 
through the intermediacy of in situ generated COS.  To begin, no 
urea product was formed when photolysis was conducted in the 
absence of either 1 or S8.  Second, when isotopically-labeled 13CO 
(98%) was used for the coupling of tert-butylamine, tBuNH2, 13C 
NMR spectra obtained at different timed intervals of photolysis 
clearly showed the co-existence of [13C]-labelled COS and [13CO]-  

Figure 2. Molecular structures (30% thermal ellipsoids) of (a) 6 and (b) 7 
Hydrogen atoms have been removed for clarity.  Selected bond lengths [Å] and 
angles [°] for 6: Mo1-S1 2.4659(4), Mo1-S2 2.4665(4), S1-S2 2.0555(6), Mo1-
C24 1.9901(17), C24-O1 1.149(2), S1-Mo1-S2 49.257(14), S1-Mo1-C24 
70.90(5) and for 7: Mo1-S1 2.3876(9), Mo1-S2 2.3954(9), S1-C24 1.784(4),  
S2-C24 1.786(4), C24-O1 1.198(4), S1-C24-S2 105.77(18).  

labelled (tBuNH)2CO.  
 While many reports of transition-metal-catalyzed oxidative 
coupling of amines with CO to produce ureas have appeared in the 
literature,[13] virtually all of these methods require elevated 
temperatures and pressures, as well as the use of co-reagents that are 
more exotic than S8 and which serve as sacrificial oxidants that 
return the transition metal back to a starting formal oxidation state 
within the catalytic cycle.  These catalytic processes are also thought 
to involve intimate bonding interactions between the transition metal 
and amine and CO substrates within the urea-product forming steps.  
In contrast, the chemical process presented in Scheme 2 proceeds 
through the far-simpler mechanism of transition-metal-catalyzed in 
situ generation of COS that is then responsible for production of the 
final urea product.  It is also important to note that the success of the 
chemistry of Scheme 2 requires that all the transition metal 
complexes that are intermediates in the photocatalytic generation of 
COS must be chemically tolerant of the protic and Brønsted basic 
nature of both the primary amine starting materials and of the urea 
products.  It can also be noted that primary amines of Scheme 2 
were degassed but not distilled from a drying agent before use. 
 In order to further establish the structural identity of the 
intermediates arising from photolysis of 1 with S8 and CO, the 
CPAM MoII mono(carbonyl), mono(acetonitrile) complex, Cp*Mo-
[N(iPr)C(Ph)N(iPr)](CO)(NCMe) (4) [IR (KBr) CO = 1767 cm-1], 
was prepared in high yield according to Scheme 3.[11]  As we have 
previously documented,[7,8] compound 4 should function as a viable 
synthetic model for the reactive transient species 5 that is presumed 
to be generated in situ through initial photodissociation of CO from 
1.  In the present work, reaction of 4 with an excess of S8 in benzene 
rapidly generated the MoIV mono(carbonyl), 2-persulfido complex 
Cp*Mo[N(iPr)C(Ph)N(iPr)](CO)( 2-S2) (6) [IR (KBr) CO = 1921 
cm-1] in high yield as an orange, crystalline solid.[11]  Figure 2a  
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13C{1H} NMR revealed 75 to be the second transient species observed during 

catalysis (Figures 16 and 17, labeled with +).  Interestingly, when the identical 

reaction depicted in Scheme 27 was performed beginning with unlabeled 71 under a 

13CO atmosphere, 13C-labeled 75 was observed by 13C{1H} NMR.  Likely, this 

reaction proceeds through an associative mechanism in which CO is exchanged for 

13CO, followed by intramolecular insertion of 13CO into the S-S bond.  Lastly, 

photolysis of compound 75 lead solely to slow photodegredation after extended 

periods of time. 

In contrast to the photochemical isomerization of 71 to the dithiocarbonate 

species 75 in the absence of other chemical reagents for short periods of time, 

photolysis of 13C-labeled 71 in the presence of excess S8 under Ar atmosphere 

produced a mixture of 13C-labeled compound 75, 13COS, and the remaining Cs 

symmetric species observed during catalysis by NMR (Figure 17, labeled with o).  

Given the Cs symmetry of this species and the lack of a carbonyl ligand, it seemed 

reasonable to tentatively assign it as a terminal sulfide complex, analogous to the 

terminal oxo complex 48.  In order to isolate such a species, an alternative method for 
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its preparation was sought out.  Cummins and coworkers have shown that treatment 

of the three coordinate molybdenum species 31 with S8 produces the four coordinate 

terminal sulfide complex  (S)Mo[N(R)Ar]3 (76) under mild conditions.39  

Accordingly, as Scheme 28 reveals, treatment of the ‘end-on-bridged’ dinitrogen 

species 56 with S8 lead to the isolation of a red, crystalline product in good yield 

which proved to be the as of yet unidentified intermediate (by 1H NMR, Figure 17, 

labeled with o).  X-ray analysis revealed the new species to be the dimer of the 

proposed molybdenum (IV) sulfide compound, specifically 

{Cp*Mo[N(iPr)C(Ph)N(iPr)]}2(µ-S)2 (77).  Both the cis and trans isomers of 77 were 

structurally characterized, however only the structure for trans-77 is depicted in 

Figure 23. Bridging sulfide species for molybdenum compounds have been reported 

previously,40 as well as for CpAm titanium complexes.41   
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Scheme 3. Synthesis of compounds 4 and 6.  

provides the solid-state molecular structure of 6 as obtained from a 
single-crystal X-ray analysis, along with selected geometric 
parameters.  Compound 6 represents a rare example of a neutral, 
MoIV persulfido complex, and the S1-S2 bond length of 2.0555(6) Å 
can be compared to the corresponding bond length value of 2.091(2) 
Å reported for Cp*2Mo( 2-S2).[14,15]  Finally, and most significantly, 
the 1H and 13C NMR spectra for 6 could now be used to confirm that 
this compound is indeed identical to the C1-symmetric complex 
(marked with a # in Figure 1) that is observed during photolysis of 1 
with S8 and CO.   
 As presented in Scheme 4, photolysis of a dilute solution of 6 in 
benzene-d6, for a short period of time (i.e., 2.5 h), provided a 
quantitative yield of the isomeric MoIV dithiocarbonate complex, 
Cp*Mo[N(iPr)C(Ph)N(iPr)][ -(S,S)S2CO)] (7) [IR (KBr) CO = 1673 
cm-1], as determined by 1H NMR spectroscopy.[11,16]  The identity of  

Scheme 4. Photolytic conversion of compound 6 to 7. 

7 was further established through a single-crystal X-ray analysis that 
provided the solid-state molecular structure shown in Figure 2b. 
More importantly, with 7 in hand, it was then possible to 
unequivocally verify by NMR spectroscopy that this compound 
represents the other Cs-symmetric species (marked with a + in 
Figure 1) that appears during photolytic generation of COS from CO 
and S8 using 1 as a pre-catalyst.  Finally, when photolysis of 6 was 
conducted under an atmosphere of 13CO (10 psi), 13C-labeled 7-
(S2

13CO) was produced; presumably through an associative 
mechanism for initial ligand substitution of CO by 13CO, followed 
by a formal intramolecular 1,2-insertion of 13CO into the sulfur-
sulfur bond of 6 to form 7.[16,17]    
 In contrast to the quantitative photoconversion of 6 to 7 that 
occurs at short periods of time in the absence of any other chemical 
reagents, photolysis of a solution of 6 (benzene-d6) in the presence 
of an excess of S8 for a longer period of time (e.g., 6.5 h vs. 2.5 h) 
now generated a new Cs-symmetric product at the expense of 7, as 
followed by 1H NMR spectroscopy.[11]  Furthermore, when this 
extended photolysis was repeated using 13C-labeled 6-(13CO), a 13C 
NMR spectrum confirmed that while 13C-labeled COS had been 
produced, no 13CO-enriched resonances appeared that could be tied 
to generation of the new Cs-symmetric species.  Finally, extended 
photolysis of a pure sample of 13C-labeled 7-(13CO) only led to 
photodegradation and with no evidence for either 6 or the new Cs-
symmetric species being obtained by either 1H or 13C NMR 
spectroscopy. 

Figure 3. Molecular structure (30% thermal ellipsoids) of trans-8. Hydrogen 
atoms have been removed for clarity.  Selected bond lengths [Å] and angles [°]: 
Mo1-S1 2.3408(7), S1-Mo1-S2 91.40(2), Mo1-S1-Mo2 88.60(2).  

 Working on the assumption that the new Cs-symmetric product 
obtained from photolysis of 6 with S8 might be a CPAM MoIV 
sulfide (e.g., E = S in I), an effort was made to synthesize such a 
complex through an alternative route in a more controlled manner. 
Accordingly, as Scheme 5 presents, treatment of a solution of 2 in 
diethyl ether (Et2O) with S8 yielded a red crystalline product that 
indeed proved to be the dimer of the proposed MoIV sulfide in the 
solid state, as confirmed by single-crystal X-ray analyses that were  

Scheme 5. Synthesis of compound 8.  

obtained for both the cis- and trans-isomers of {Cp*Mo[N(iPr)-
C(Ph)N(iPr)]}2( -S)2 (8).[11,18,19]  Figure 3 provides the solid-state 
molecular structure of trans-8 along with selected geometric 
parameters.  It is further important to note, however, that the 
solution structure of 8 is less clear.  More specifically, despite 
extensive efforts, we have not been able to obtain an analytically 
pure sample of 8 that provides a satisfactory elemental analysis.   
Furthermore, with variable temperature 1H NMR spectroscopy, only 
a single set of resonances for the mixture of cis and trans isomers 
for diamagnetic 8 are observed down to the limiting temperature of  
-90 C, and this observation suggests the possibility that, in solution, 
8 is engaged in a dynamic dimer  monomer exchange equilibrium 
at all temperatures.  Finally, 1H NMR spectra for crystalline samples 
of 8 always present evidence for a varying amount of a 
paramagnetic impurity that can account for up to 20% by weight of 
the material, as based on the use of an internal standard (durene).  
When further interrogated by electrospray ionization mass spectro-
metry (ESI-MS), a solution of 8 provided additional molecular ion 
(M+H) clusters that correspond to the dinuclear [MoV, MoV] 
tris(sulfide), {Cp*Mo[N(iPr)C(Ph)N(iPr)]}2(S)3, and the formal 
dinuclear [MoIV

, MoV] tris(sulfide), Cp*Mo[N(iPr)C(Ph)N(iPr)](S)3- 
Cp*Mo.[11]   
 While additional efforts to quantify sample composition and the 
dynamic solution behavior displayed by 8 remain in progress, a key 
finding regarding the possible role that this species plays in the 
photocatalytic generation of COS was that, upon introduction of 
13CO into a solution of 8 in benzene-d6, non-photolytic production 
of 6-(13CO) (57%), 7-(13CO) (29%), and an unquantified amount of 
13C-labeled COS was observed to occur at room temperature.  
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Figure 23. Molecular structure (30% thermal ellipsoids) for 
trans-77. H atoms have been omitted for clarity. Selected bond 
lengths (Å) and angles (°): Mo1-S1 2.3408(7), S1-Mo1-S2 
91.40(2), Mo1-S1-Mo2 88.60(2).  
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Although in the solid state compound 77 exists as a dimer (both cis and trans), 

its solution structure is less clear.  Specifically, only one set of CpAm resonances are 

ever observed in the 1H NMR spectrum, even down to the limiting temperature of -90 

°C in toluene-d8 solution.  This indicates that compound 77 is involved in a rapid 

dynamic monomer – dimer equilibrium at all temperatures.  Further complicating 

matters is the fact that satisfactory elemental (C, H, N) analysis for 77 could not be 

obtained, despite repeated efforts, and close examination of 1H NMR spectra for 

crystalline samples of 77 reveal the presence of paramagnetic impurities which could 

not be removed.  In one experiment, this impurity was judged to account for 20% by 

weight of the entire sample (by integration vs. durene internal standard).  

Furthermore, during catalytic production of COS, similar paramagnetic resonances 

Figure 24. Partial experimentally found (ESI+, Et2O) and simulated 
mass spectrum of the mixture of products obtained in the synthesis of 
77. Labeled resonances correspond to 79 (A), 77 (B), and 78 (C). 
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appear at longer reaction times in the 1H NMR (Figure 17).  In order to determine the 

nature of these unknown compounds, which could not be characterized by X-ray 

diffraction, electrospray ionization mass spectrometry (ESI-MS) was employed, 

which revealed the presence of two additional (M+H) clusters.  Simulations were 

carried out, and these (M+H) clusters were found to correspond to a dinuclear 

[Mo(V), Mo(V)] tris(sulfide) species {Cp*Mo[N(iPr)C(Ph)N(iPr)]}2(S)3 (78) and a 

dinuclear [Mo(IV), Mo(V)] tris(sulfide) species 

Cp*Mo[N(iPr)C(Ph)N(iPr)](S)3Cp*Mo (79), in which one amidinate ligand had been 

lost (Figure 24).   

Although 77 could not be isolated without contamination of these proposed 

species, investigations into its role in the catalytic production of COS were 

conducted.  Importantly, treatment of compound 77 with 13CO lead to the non-

photolytic production of 13C-labeled 71 (57%), 13C-labeled 75 (29%) and free 13COS 

(unquantified) at room temperature (Scheme 29).  Importantly, the quantities of 

compounds 71 and 75 observed to have been formed suggest that the paramagnetic 

tris(sulfide) species 78 and 79 must be involved in the SAT process, as they are 

required to provide sufficient amounts of sulfur to maintain proper stoichiometry.  

Together, the observation that compounds 71 and 75 and COS may be obtained from 
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77 by treatment with CO, that 77 and COS are generated from photolysis of 71 in the 

presence of S8, and that 75 appears to slowly photodegrade, lead to the determination 

that compounds 71 and 77 are intermediates in the catalytic cycle for COS 

production, but that 75 is likely a kinetic product not involved (Scheme 30).  

Compound 75 does not build up in solution, however, as it slowly degrades under 

reaction conditions. 

 

3.2.3 ‘On-Demand’ COS Production 

Compound 68 serves well to generate COS from CO and S8, which are 

themselves inexpensive and easily accessible reagents, however there remain 

considerable safety concerns associated with the use of COS (vide supra).  
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Accordingly, we set out to determine if compound 68 could mediate ‘on-demand’ 

production of COS, wherein the valuable reagent would be generated from its 

simplest components in the presence of other reactants to produce more complex 

organic molecules.  Such a process would obviate the need to store and handle the 

hazardous material, yet still allow for its use.  To this end, symmetric ureas were 

targeted to prove such a concept, as they are well known to form from the reaction of 

amines and COS, in a process which generates H2S as the only by product.19   

As depicted in Scheme 31, benzene-d6 solutions containing a primary amine, 

excess equivalents of S8, CO (initial pressure = 10 psi), and a catalytic amount of 

compound 68 (5 mol %), were photolyzed for 18 hours, at which point complete 

conversion to the corresponding 1,3-disubstituted ureas was observed.  The identity 

of each urea was confirmed by redissolving in either DMSO-d6 or chloroform-d and 

comparing against literature values.42,43  This procedure was found to function on a 

preparative scale with a catalyst loading as low as 0.5 mol % (for R = tBu, Scheme 

31).  The success of this process demonstrates the tolerance of all catalytically active 

species in the generation of COS to protic reagents.  Furthermore, it is important to 

note that the amines and solvent employed in this process were degassed, but not 

dried, indicating that the active species are immune to the presence of trace moisture 

as well. 

R NH2

hv, Pyrex
68 (5 mol %), xs CO, xs S8

18 h, benzene-d6, -H2S R N
H

O

N
H

R

R = n-butyl, isopropyl, tert-butyl, benzyl

Scheme 31 



! )#!

It is worth noting that ureas are known to form from the reaction of CO, 

amines, and S8 without the use of a metal catalyst, however these processes require 

high temperatures and pressures,44 and control reactions confirmed that no such 

transformation occurred under the conditions we sought to employ.  Specifically, 

each primary amine employed above was photolyzed in the presence of excess S8 

under CO atmosphere (10 psi) and no reaction was observed. On the other hand, 

McElwee-White and coworkers have established that group 6 carbonyl complexes 

[e.g. inexpensive and commercially available W(CO)6] serve as precatalysts for the 

synthesis of substituted ureas, however these reactions occur only at high 

temperatures and pressures, and require the use of sacrificial oxidants (e.g. I2).45-50   

This type of reaction is distinct from the ‘on-demand’ processes described here, in 

that they involve coordination of both the amine and CO substrates to the metal center 

in the product forming step, whereas the reaction presented in Scheme 31 involves a 

much simpler mechanism, in which the metal is solely responsible for the in situ 

generation of COS.  This was proven by conducting control reactions in the absence 

of excess S8, which produced no urea product, thus proving the ineffectiveness of 

compound 68 to be involved in such a complex mechanism.  Furthermore, when ‘on-

demand’ reactions were carried out using 13CO, 13C{1H} NMR spectra revealed the 

coproduction of both 13C-labeled urea and 13COS. 
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3.3 Isothiocyanates 

3.3.1 Background 

 Isothiocyanates (S=C=NR) are a class of small molecules, known to occur 

naturally on Earth in plants and marine sponges,51-55 which have gained considerable 

attention from the medical community over the past several decades as their role in 

the prevention of various forms of cancer and in the treatment of HIV, among other 

ailments, has become better understood.56,57  In terms of synthetic chemistry, 

isothiocyanates are attractive building blocks for the preparation of more complex 

molecules bearing both nitrogen and sulfur atoms, such as thioureas, which are 

themselves useful precursors for the synthesis of heterocycles and carbodiimides.58-63  

Methods for the preparation of isothiocyanates are unappealing, however, as they 

have historically required the use of hazardous or unpleasant reagents, such as CS2 or 

thiophogene (Cl2CS),62,64-68 or offer only a narrow scope of functional group 

tolerance.69,70 Accordingly, methods to avoid the use of isothiocyanates have been 

developed over the years.71,72  

 One can imagine that a simple method for the preparation of an isothiocyanate 

that exhibits high functional group tolerance would involve the direct sulfidation of 

the corresponding isonitrile (C!NR).  Ideally, such a process would involve S8 as the 

source of sulfur, as it is the most abundant and inexpensive form of the element 

known.  Accordingly, such methods were reported in the early 1990’s, however these 

processes suffered from their own drawbacks.  Specifically, they employed the toxic 

main group metals tellurium and selenium as catalysts.73,74  Only recently has the 

transition metal mediated sulfidation of isonitriles been reported, however such 
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reactions employ the use of expensive rhenium catalysts, or require long reaction 

times in the case of more Earth abundant molybdenum (vide supra).7,75  Given the 

success of the mid valent molybdenum (II) bis(carbonyl) complex 68 to catalyze SAT 

to CO from S8, we wondered if the analogous chemistry could be applied to 

isoelectronic isonitriles.   

 

3.3.2 Synthesis and Characterization of New Compounds and SAT Reactions 

 As demonstrated above, the N2 ligand of the group 6 CpAm ‘end-on-bridged’ 

dinitrogen complexes may be displaced easily through the addition of a strong $-acid.  

Accordingly, treatment of compound 56 with 4 equivalents of methyl, tert-butyl, and 

2,6-dimethylphenyl isonitrile in benzene-d6 solution lead to quantitative conversion to 

the bis(isonitrile) compounds Cp*Mo[N(iPr)C(Ph)N(iPr)](CNR)2 [R = CH3 (80), 

C(CH3)3 (81), and 2,6 dimethylphenyl (82)], respectfully, as depicted in Scheme 32.  

CpAm group 6 M(II) bis(isonitrile) complexes have been described previously by our 

group for 2,6-dimethylphenyl and tert-butyl isonitrile (although these complexes 

utilized a methyl group in the distal position of the amidinate ligand).10,23  
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Accordingly, we chose compound 80 (methyl isonitrile) to fully characterize, as it 

was the most unique compound synthesized in this study.  Single crystals of 80 were 

easily obtained from cooling of a concentrated pentane solution, and the molecular 

structure is depicted in Figure 25.  As has been observed for other bis(isonitrile) 

species reported by our group,23 one isonitrile ligand in the solid state structure of 

complex 80 is coordinated to the molybdenum center in a near linear fashion, while 

the other is distinctly non linear and features a C-N-C bond angle reminiscent of an 

sp2 hybridized nitrogen atom [cf. bond angles of C26-N4-C27 = 166.9(2)° and  C24-

N3-C25 = 129.6(2)°, respectfully, Figure 25]. This observation is consistent with a 

large degree of $-backbonding from the molybdenum (II) center to the $* orbital of 

the isonitriles, and is supported by the observed IR stretching frequencies #CN = 2086, 

1767 cm-1.  In solution, however, compounds 80 – 82 display apparent Cs symmetry, 

Figure 25. Molecular structure (30% thermal 
ellipsoids) of 80. H atoms have been removed for 
clarity.  Selected bond lengths (Å) and angles (°): 
Mo1%C24 1.9342(19), Mo1%C26 2.038(2), 
C24%N3 1.221(2), C26—N4 1.163(2), 
C24%N3%C25 129.6(2), C26%N4%C27 166.9(2). 
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indicating that the isonitrile groups are magnetically and, presumably, chemically 

equivalent. 

 Looking to determine if compounds 80 – 82 were capable of thermally 

catalyzing the direct sulfidation of the corresponding isonitriles, each was treated with 

excess equivalents of the proper isonitrile and S8.  In the case of methyl and tert-butyl 

isonitrile, catalytic production of methyl and tert-butyl isothiocyanate was observed 

by 1H NMR to occur at 25 °C in benzene-d6 solution, and faster turnover was 

observed upon gentle heating (Figure 26).  In the case of 2,6-dimethylphenyl 

isonitrile, heating was essential to observe catalytic turnover to the product 2,6-

dimethylphenyl isothiocyanate.  Importantly, as in the case of catalytic COS 

production, catalysis was not inhibited when the solvent and liquid reagents were not 

Figure 26. Partial 1H (400 MHz, benzene-d6, 50 °C) NMR spectra 
demonstrating the production of tBuNCS (singlet) from tBuNC 
(triplet) in the presence of 5 mol % 81. Spectra were recorded 
every 200 min and are vertically displayed with a horizontal offset 
of 0.02 ppm. 
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dried prior to use, indicating that this catalytic process too is immune to trace 

moisture. 

 Looking to probe the mechanism of the present catalytic cycle, it was 

observed by 1H NMR that for the sulfidation of all three isonitriles, only one CpAm 

species of apparent Cs symmetry appeared to be in solution, which were determined 

to be the catalyst resting states.  For the bulky tert-butyl derivative, however, these 

peaks were broadened, leading to the assumption that the resting state may actually be 

of C1 symmetry, but involved in dyanamic ‘ring-flipping’ of the amidinate ligand on 

the NMR time scale.  In the course of efforts to determine the nature of these catalyst 

resting states, compounds 80 – 82 were treated with 1 equivalent S8 in benzene-d6 

solution in the absence of excess isonitrile (Scheme 33), which lead to immediate 

quantitative generation of the catalyst resting state species (referred to as 83 – 85, 

respectfully) as judged by 1H NMR.  Efforts to isolate these species initially proved 

futile, as they decomposed quickly during standard work up procedures.  However, 

single crystals of 84 were obtained by treatment of compound 81 (generated in situ) 

with one equivalent of S8 in toluene solution for 10 minutes, followed by immediate 
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removal of solids by filtration, layering with pentane, and cooling to -30 °C.  The 

solid state molecular structure of 84 is depicted in Figure 27.  On the basis of the 

knowledge of the structure of 84 and the similar NMR spectra for all three observed 

catalyst resting states, it seemed reasonable to identify the resting state compounds as 

the ‘side-bound’ isothiocyanate species Cp*Mo[N(iPr)C(Ph)N(iPr)](CNR)[!-

(S,C)SCNR] [R = CH3 (83), C(CH3)3 (84), and 2,6 dimethylphenyl (85)], respectfully. 

 Compound 84 represents a rare example of a structurally characterized ‘side-

bound’ isothiocyanate complex for molybdenum and, to the best of our knowledge, is 

the only such example generated through the insertion of a sulfur atom into a metal – 

carbon bond.  It should be noted, however, that insertion of sulfur into other metal 

carbon bonds, such as Ni-Caryl, have been observed.76  Examples of ‘side-bond’ 

Figure 27. Molecular structure (30% thermal ellipsoids) 
of 84. H atoms have been removed for clarity.  Selected 
bond lengths (Å) and angles (°): Mo1%C24 2.050(2), 
Mo1%S1 2.4978(6), Mo1%C29 2.117(2), C29%N4 
1.255(3), S1%C29 1.776(2), C24%N3 1.168(2), N3%C25 
1.455(3), S1%C29%N4 136.91(18), C24%N3%C25 
159.5(2). 
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isothiocyanates have been reported for nickel,77 vanadium,78 iridium,79 and 

molybdenum (0) species,80 however in all cases these were generated through the 

addition of an isothiocyanate to the proper metal precursor.  The C-S bond length of 

1.776(2) Å for compound 84 is longer than other ‘side-bound’ isothiocyanate 

complexes reported, which leads to the formal oxidation state assignment of +4 for 

the molybdenum center. 

 Having firmly established the identity of the catalyst resting states, we were 

interested in elucidating the mechanism for the catalytic sulfidation of isonitriles.  To 

this end, variable temperature 1H NMR experiments were conducted, which allowed 

for an Eyring analysis.  Specifically, compound 81 (5 mol %) was employed to 

catalyze the sulfidation of tert-butyl isonitrile at several temperatures under pseudo-

first order conditions with respect to S8.  Most informative was the value obtained for 

the entropy of activation, &S‡ = -13(7) cal mol-1 K-1, the large negative value of 

which indicated a highly ordered transition state.  This data, along with the 

observation that the bis(isonitrile) compounds rapidly convert to the catalyst resting 

states upon addition of S8, indicate that the reaction proceeds through the mechanism 

depicted in Scheme 34.  First, one sulfur atom inserts into the Mo-C bond of 

compounds 80 – 82 to generate the catalyst resting states 83 – 85, followed by 

reductive elimination of the isothiocyanate that occurs with concomitant coordination 

of another isonitrile through an associative mechanism, forming an unobserved 

transition state, which then go on to regenerate the original catalysts. 
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3.3.3 ‘On-Demand’ Isothiocyanate Synthesis 

 With the catalytic production of isothiocyanates via molybdenum catalyzed 

SAT well established, we next became interested in determining if these reagents too 

could be produced in an ‘on-demand’ fashion, as in the case of COS production.  

Isothiocyanates are known to be flammable, toxic compounds.81  As such, a process 

for their synthesis and use that eliminates the need to isolate, purify, store, and handle 

them seemed highly appealing. Accordingly, the catalytic SAT reactions described 

above were repeated on a preparative scale in the presence of benzhydrazide 

according to the conditions of Scheme 35 in order to synthesize 1-

aroylthiosemicarbazides.  Such products were targeted as they are known to form 
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under mild conditions from the reaction of benzhydrazide and isothiocyanates, and 

they are useful precursors for triazoles, which find use in the treatment of spasticity.61 

 As revealed in Scheme 35, isonitriles, sulfur, and benzhydrazide are converted 

to the corresponding 1-aroylthiosemicarbazides in the presence of catalytic amounts 

of compounds 80 – 82 (5 mol %).  Compounds 80 – 82 serve to first generate the 

isothiocyanate from sulfur and the isonitrile, and this newly formed product then 

reacts with benzhydrazide to form the final 1-aroylthiosemicarbazide product.  The 

organic products were easily isolated in good yields simply by removal of solids by 

filtration through a plug of silica with ethyl acetate and washing with brine, and were 

characterized by 1H and 13C{1H} NMR, as well as ESI-MS. The fact that high yields 

of these products are obtained provides evidence that compounds 80 – 82, along with 

all other intermediates involved in the catalytic synthesis of isothiocyanates, are 

immune to the presence of protic and Lewis basic reagents, as in the case of ‘on-

demand’ COS production. Extension of this work to include benzhydrazides bearing 

various substituents in the para position are currently in progress.  The use of primary 

amines in order to synthesize thioureas through ‘on-demand’ isothiocyanate synthesis 

could not be performed, however, given that it has been reported recently that the 

reaction of sulfur, primary amines, and isonitriles occurs spontaneously to produce 
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these products (i.e. it is a self-catalyzed reaction).82  Control reactions were 

performed to confirm that this self-catalyzed methodology could not be applied to 

reaction with benzhydrazide(s), the reason for which may be a result of the difference 

in basicity of primary amines and benzhydrazide(s). 

 

3.4 C=S Bond Cleavage Reactions 

 During the course of the studies described thus far, it became of interest to 

investigate the activation of sulfur containing heteroallenes, as they may provide 

alternative routes to metal – sulfide compounds.39  Furthermore, it was of interest to 

explore the chemistry of such compounds with regard to mid valent CpAm species 

specifically, as they appeared unreactive towards the heteroallene products described 

above.  On the other hand, some groups have explored the activation of these sulfur 

containing small molecules as models for the activation of their less reactive analog 

CO2,83 which we have previously shown can be activated by the ‘end-on-bridged’ 

dinitrogen species 40 and 41.10
  Accordingly, the activation of CS2 and tert-butyl 

isothiocyanate was investigated, and the results are described below.84  Activation of 

COS was also explored, however no identifiable products were obtained. 
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3.4.1 CS2 Activation 

 The first major report regarding the transition metal mediated activation of 

CS2 came in 1966, when Wilkinson and Baird reported that treatment of the rhodium 

(I) complex (PPh3)RhCl (86) with CS2 lead to C-S bond cleavage to produce the 

thiocarbonyl species trans-(PPh3)2RhCl(CS) (87).85 Cummins and coworkers 

discovered that CS2 may be activated by the molybdenum (III) species 31 to generate 

the terminal sulfide compound 76, and the dinuclear thiocarbonyl complex 

{Mo[N(R)Ar]3}2(µ-CS) (88), in which the two metal centers have formal oxidation 

states of +6 and +4 (Scheme 36).39  This report was particularly noteworthy, as one 

C-S bond of CS2 had been completely cleaved, and the resulting thiocarbonyl was 

then significantly activated.86  Fryzuk later reported the ‘complete disassembly’ of 

CS2 in 2010, by reaction with the ‘side-on/end-on’ dinitrogen complex [(NPN)Ta]2(µ-

H)2(µ-!2:!1-N2) {where (NPN) = PhP[CH2Si(CH3)2NPh]2} (89), to yield 

[(NPN)Ta]2(µ-S)2(µ-CH2) (90), in which both C-S bonds were fully cleaved, the first 

time such a reaction had been reported.87 

 Here, we found that the ‘end-on-bridged’ dinitrogen compound 56 again 

served as an easily accessible Mo(II) synthon for the activation of CS2. Specifically, 

as revealed in Scheme 37, N2 was displaced upon addition of CS2 to a toluene 

solution of 56, as judged by the immediate effervescence and color change to forest 

green, which allowed for isolation of dark green crystals of the bridging thiocarbonyl, 

bridging sulfide species {Cp*Mo[N(iPr)C(Ph)N(iPr)]}2(µ-S)(µ-CS) (91) in high yield.  

Single crystals were easily obtained by cooling a concentrated pentane solution of 91 

to -30 °C, and the molecular structure is depicted in Figure 28.  Bridging thiocarbonyl 
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compounds are well known for the entire transition metal series.88 However, to the 

best of our knowledge, compound 91 is unique in that it is the first to be reported in 

which one bond of CS2 is fully cleaved in a homo-bimetallic system without loss of 

the sulfide ligand.  For instance, similar compounds have been synthesized, however 

require multiple steps and more than one metal (e.g Fe and Co) to form a hetero-

trimetallic cluster.89 

 In the solid state, compound 91 displays a very long C-S bond length of 1.697 

Å, a result of the thiocarbonyl ligand being the only $-acceptor present between two 

d3 metal centers.  1H NMR revealed that in benzene-d6 solution, compound 91 exists 

as a 1:1 mixture of cis and trans isomers.  However, unlike in the case of the bridging 

disulfide compound 77, there exists no evidence for interconversion between these 

isomers.  Based on the molecular structure of compound 91, the formal oxidation 

state of +3 was assigned to each molybdenum center.  The diamagnetic nature of 

compound 91 as judged by 1H NMR therefore likely results from the existence of a 

Mo-Mo bond [d(Mo1-Mo2) = 2.8602(8) Å]. 

 Bridging thiocarbonyl compounds are typically nucleophilic at the 

thiocarbonyl sulfur atom.88  Given this trend, and the high degree of $-backdonation 

to the $* orbital in compound 91, we sought to probe its reactivity towards 

electrophiles.  As Scheme 37 also depicts, compound 91 was easily methylated using 

Scheme 37 
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methyl triflate (CH3SO3CF3) in pentane at room temperature, resulting in the 

immediate formation of a light green precipitate, which we believe to be 

{Cp*Mo[N(iPr)C(Ph)N(iPr)]}2(µ-S)[µ-CS(CH3)](SO3CF3) (92).  Efforts to 

characterize this compound were not successful, however, given that it was found to 

be only sparingly soluble in all common organic solvents, including those which are 

polar and/or halogenated. 

 

Figure 28. Molecular structure (30% thermal ellipsoids) of 
compound 91. H atoms have been omitted for clarity.  
Selected bond lengths (Å) and angles (°): Mo1-S1 2.417(3), 
Mo2-S1 2.437(3), Mo1-C47 1.949(10), Mo2-C47 1.894(11), 
C47-S2 1.698(10), Mo1-S1-Mo2 72.20(8), Mo1-C47-Mo2 
96.2(5). 
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3.4.2 Isothiocyanate Activation 

 The reactivity of isothiocyanates towards mid valent CpAm molybdenum 

complexes was of great interest to us in order to determine if these heteroallenes 

interact at all with the molybdenum species present in catalysis, as discussed in 

Section 3.3.  In order to test such reactivity, compound 56 was again employed, and 

was found to react slowly with tert-butyl isothiocyanate at elevated temperatures to 

generate the molybdenum (IV) dithiocarbonimidate complex 

Cp*Mo[N(iPr)C(Ph)N(iPr)][!-(S,S)S2CNtBu] (93), as shown in Scheme 38.  The 

generation of dithiocarbonimidate complexes is known to occur upon reaction with 

isothiocyanates for a variety of transition metals, however these typically result in the 

generation of an isonitrile ligand as well, as the result of the initial S-C bond cleavage 

step.90,91  Compound 93 does not exhibit such a structure, and attempts to isolate an 

intermediate complex (i.e. an !2 isothiocyanate complex) through the addition of just 

two equivalents of tert-butyl isothiocyanate to 56, in order to gain mechanistic insight 

into the transformation, proved unsuccessful.  

Compound 93 displays C1 symmetry in benzene-d6 solution as judged by 1H 

NMR, which is consistent with the structural parameters provided through the X-ray 

structure in Figure 29.  Specifically, the C-N bond length observed for the 

dithiocarbonimidate ligand (C24-N3) of 1.2631(15) Å is within the range of a C-N 

Mo

N
N

Ph

Mo

N
N

Ph

N N toluene, 3 d, 65 oC
52%

xs SCNtBu Mo

N
N

Ph

S

S
C N

93

tBu

56

CH3SO3CF3

pentane, 25 oC
42%

Mo

N
N

Ph

S

S
C N

94

tBu
SO3CF3

Scheme 38 



! +"!

double bond, preventing any free rotation about this bond in solution, resulting in 

overall C1 symmetry.  Such ligands are known to be quite nucleophilic at the nitrogen 

atom, and prone to methylation and protonation.90,92  Accordingly, as Scheme 38 

further reveals, treatment of 93 with methyl triflate in pentane lead to the immediate 

precipitation of an orange powder.  Redissolving in benzene followed by slow 

diffusion of pentane at room temperature lead to the isolation of the methylated 

product, Cp*Mo[N(iPr)C(Ph)N(iPr)][!-(S,S)S2CN(CH3)tBu](SO3CF3) (94) in 

moderate yield.  The molecular structure of compound 94 was confirmed through 

single crystal X-ray diffraction, revealing the C-N bond length of the 

dithiocarbonimidate ligand to be elongated only slightly, implying that the positive 

Figure 29. Molecular structures (30% thermal ellipsoids) of compounds 93 (left) and 
94 (right). H atoms and counter ion have been omitted for clarity. Selected bond 
lengths (Å) and angles (°) for 93: Mo1-S1 2.3694(4), Mo1-S2 2.3763(3), S1-C24 
1.7832(12), S2-C24 1.7963(12), C24-N3 1.2631(15), C24-N3-C25 123.26(10); for 
94: Mo1-S1 2.4155(10), Mo1-S2 2.4038(11), S1-C24 1.744(4), S2-C24 1.750(4), 
C24-N3 1.309(5), C24-N3-C26 124.3(3), C24-N3-C25 118.0(3), C26-N3-C25 
117.7(3). 
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charge of compound 94 is localized to the methylated sp2 hybridized nitrogen atom 

(N3, Figure 29).  

 Characterization of compound 93 was key in regard to the catalytic production 

of isothiocyanates.  Specifically, the fact that 93 is not observed at all during catalysis 

(for catalyst 81) lead to the determination that such a species is not formed, therefore 

eliminating the possibility that such compounds are involved in the catalytic cycle. 

 

3.5 Conclusion 

 We have found that two catalytic SAT transfer reactions may be mediated by 

mid valent CpAm molybdenum species.  Specifically, the first case for the sulfidation 

of CO to generate COS under ambient conditions has been developed.  This process 

is remarkably tolerant to protic reagents and trace amounts of moisture, allowing for 

the ‘on-demand’ generation of COS for the preparation of more complex organic 

molecules in a facile, inexpensive manner.  Furthermore, given the reducing 

atmosphere of primordial Earth, the process described, involving mid valent 

molybdenum species, provides insight into the possible metal catalyzed generation of 

COS for the generation of the first oligopeptides billions of years ago.18 

 On the other hand, only the third method for the direct sulfidation of 

isonitriles mediated by a transition metal has been developed.  This process stands out 

among others that have been reported, however, as it i) involves the use of 

inexpensive molybdenum catalysts, ii) requires short reaction times under reasonable 

conditions, and iii) is tolerant to the presence of trace moisture.  Importantly, this 
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process allows for the ‘on-demand’ synthesis of isothiocyanates for the preparation of 

more complex compounds of pharmaceutical relevance in good yields. 

 Lastly, activation of sulfur containing heteroallenes was observed to occur 

cleanly in the case of CS2 and tert-butyl isothiocyanate.  In the former case, a unique 

activation mode was discovered, resulting in the formation of a nucleophilic 

thiocarbonyl complex.  On the other hand, the activation of tert-butyl isothiocyanate 

gave a more well known type of product. The characterization of this species was 

critical in excluding such a complex from the mechanism involved in the catalytic 

generation of isothiocyanates.   
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Chapter 4: Complete Synthetic Cycles for the Generation of –
ER3 Derivatized Isocyanates through Dinitrogen Fixation 
 
 
 
4.1 Introduction 

 As discussed in Section 1.3, the synthesis of nitrogen containing organic 

products directly from N2 is a longstanding scientific challenge.  The first step to 

overcoming this hurdle is the activation and/or cleavage of the inert N2 molecule, a 

notoriously difficult task given the molecule’s extremely strong triple bond (BDE = 

226 kcal/mol).1  To this end, following the foundational work by Cummins and 

coworkers on the thermal cleavage on N2 using the three coordinate molybdenum 

species 31,2,3 several reports regarding the formation of mononuclear and dinuclear 

metal nitride complexes derived directly from N2 quickly appeared in the literature,4-6 

and continue to be of interest today.7,8  Sita has previously described the activation 

and cleavage of dinitrogen using early transition metals supported by the CpAm 

ligand environment for all group 4 – 6 metals, save chromium (see Figure 11, Chapter 

1).9-12 Within these reports, several noteworthy discoveries standout.  In the case of 

the ‘side-on-bridged’ hafnium compound {Cp*[N(Et)C(CH3)N(Et)]Hf}2(µ-!2:!2-N2) 

(95), the longest reported N-N bond length within an organometallic N2 compound 

was observed.11  In regard to group 5 metals, it was found that the ‘end-on-bridged’ 

tantalum (IV) compound {Cp*[N(iPr)C(CH3)N(iPr)]Ta}2(µ-!1:!1-N2) (96) readily 

cleaves N2 when warmed above 0 °C in hydrocarbon solvent to cleanly yield the 

tantalum (V) bridging nitride species {Cp*[N(iPr)C(CH3)N(iPr)]Ta(µ-N)}2 (97), 

marking the first example for the well defined thermal cleavage of N2 to produce such 
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a compound.9  Remarkably, in the course of mechanistic investigations into whether 

the observed N2 cleavage proceeds through an intermolecular or intramolecular 

pathway, it was discovered by Andrew Keane that the barrier for N2 cleavage within 

such group 5 (Ta and Nb) complexes may be finely tuned simply through varying the 

steric nature of the amidinate ligand through the facile substitution of different groups 

in the distal position.  Accordingly, a series of kinetic studies revealed that as the 

steric bulk of the amidinate ligand increased, the observed rate of N2 cleavage 

slowed.  Ultimately, it was proven that the observed N2 cleavage occurs through an 

intramolecular mechanism.12 

 Although N2 cleavage under mild conditions has been a topic of considerable 

interest and has been employed successfully for the generation of useful organic 

compounds derived directly from N2,13 many bimetallic N2 complexes do not give 

rise to thermal N-N bond scission; rather, significant reduction of the N-N bond order 

is observed without the final cleavage step.14,15  This inactivity towards complete N-N 

bond scission greatly limits the ability of many organometallic systems to allow for 

the functionalization of N2 and, ultimately, the generation of useful nitrogen 

containing organic compounds.  Such limitations remain a key hurdle to overcome in 

the quest for catalytic N2 fixation processes. 

 In 2001, Floriani reported a possible solution to this problem.  The 

molybdenum ‘end-on-bridged’ dinitrogen complex [(Mes)3Mo]2(µ-!1:!1-N2) [Mes = 

2,4,6-(CH3)3C6H2] (98) was prepared and isolated, however it was found that 

although the bond order of the N2 ligand was greatly reduced, the final cleavage step 

had not occurred, and could not be induced through heating.  However, photolysis of 
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a benzene solution of 98 at room temperature yielded the bridging nitride compound 

[(Mes)3Mo]2(µ-N) (99).  Likely, the existence of only one nitrogen atom bridging the 

two molybdenum centers is a result of the generation of mononuclear nitride species 

in solution which then act as Lewis bases on as of yet unreacted 98, generating an 

intermediate species which then releases N2, a hypothesis which was supported by the 

observation that 0.5 equivalents of N2 were measured to have been released during 

photolysis (Scheme 39).16  

 Since this seminal work, Cummins has shown that similar photoreactivity is 

observed employing the same three coordinate species which thermally cleaves N2, 

but such chemistry must be done at low temperatures to prevent the known thermal 

cleavage from occurring.17  Also, Vogler demonstrated that in aqueous solution, the 

cationic, ‘end-on-bridged’ dinuclear osmium species [(NH3)5Os]2(µ-!1:!1-N2) (100), 

which possesses a very short N-N bond length for the N2 ligand, undergoes N2 bond 

cleavage to produce two equivalents of an osmium (VI) nitride complex 

[(NH3)4Os(N)] (101).18   
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 More recently, Nishibayashi reported that the ‘end-on-bridged’ molybdenum 

compound 102 supported by ferrocenyldiphosphine ligands may photolytically cleave 

N2 to produce the corresponding molybdenum nitride species 103 (Scheme 40). 

Oxidation of the newly formed nitride was found to reform the N-N bond to produce 

a cationic species (104), which has not been previously observed in molybdenum 

dinitrogen chemistry.19  Most importantly, addition of 1,4 cyclohexadiene at room 

temperature to 103 in the presence of an oxidizing agent lead to hydrogen atom 

transfer (HAT) to the nitride ligand, yielding the parent imido 105 and benzene.  

Furthermore, addition of a proton source and reductant to 103 lead to the formation of 

small amounts of ammonia (Scheme 40).20 

 Within the scope of the CpAm ligand environment, it was previously found by 

Dr. Brendan Yonke that the group 6 ‘end-on-bridged’ N2 complexes 40 and 41 are 

Fe

P

P

Mo

Et2

Et2

N

N

Fe

P

P

Mo

Et2

Et2
102

Fe

P

P

Mo

Et2

Et2

N

2hv
benzene

103

Fe

P

P

Mo

Et2

Et2

N

N

Fe

P

P

Mo

Et2

Et2

104

1 eq. FcBArF
4

2 FcBArF
4

Fe

P

P

Mo

Et2

Et2

NH

1 eq. FcBArF
4

105

THF

Scheme 40 



! "'!

thermally inert, even at elevated temperatures.10  However, upon photolysis of these 

compounds in benzene-d6 solution within a sealed Pyrex tube, slow disappearance of 

the diamagnetic resonances for 40 and 41 was observed by 1H NMR, while giving 

rise to new species (paramagnetic for 40, diamagnetic for 41).  Believing these to 

possibly be the corresponding M(V) nitride species as a result of photolytic N2 

cleavage, an alternative route was developed for their synthesis as summarized in 

Scheme 41, which lead to the generation of large amounts of what were determined to 

be the bridging nitride species {Cp*[N(iPr)C(CH3)N(iPr)]M(µ-N)}2 [M = Mo (106), 

M = W (107)] by X-ray crystallography (although a photolytic N2 extrusion product 

has also been crystallographically identified in the case of compound 40).21  

 With the structure of these N2 cleavage species firmly established, Keane 

began investigating the possible role they may play in N2 fixation. Interestingly, it 
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was found that when the photolysis of the ‘end-on-bridged’ compounds 40 and 41 

was repeated in the presence of excess equivalents of trimethylsilyl chloride (TMS-

Cl), drastically different reactivity was observed as judged by 1H NMR.  Specifically, 

generation of the previously reported M(IV) TMS imido complexes 

Cp*[N(iPr)C(CH3)N(iPr)]M(N-TMS) [M = Mo (111), M = W (112)]22 was observed, 

along with the M(IV) dichloride species 42 and 108, which are themselves precursors 

for the generation of 40 and 41 (Scheme 42).  The preparation of these group 6 imido 

complexes directly from N2 was an exceptional discovery, as it has been well 

established that they react with CO quantitatively to generate the bis(carbonyl) 

compounds 44 and 45, with concomitant release of TMS isocyanate (O=C=N-TMS) 

under ambient conditions.22  Keane then further generalized this chemistry to allow 

for the direct formation of five different –ER3 derivatized isocyanates directly from 

N2, which was proven through the use of 15N-labeled precursors and both one and two 

dimensional NMR (E = group 14 element). Furthermore, isoelectronic isonitriles were 

found to react similarly with these imido compounds, and produced the corresponding 

carbodiimides and M(II) bis(isonitrile) species.23 
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 Together, the combined findings of Yonke and Keane presented a firm 

foundation for our group’s N2 fixation project in that they provided for a simple route 

to a wide array of –ER3 derivatized isocyanates and carbodiimides derived directly 

from N2.  Accordingly, such a process would be extremely valuable for the generation 

of small amounts of doubly-labeled (i.e. 13C/15N) isocyanate and carbodiimide 

reagents, which may not be easily obtained otherwise.  However, given our desire to 

develop a complete synthetic cycle for N2 fixation, ideally one which presents a 

promising future for catalysis, we next turned towards the chemistry of the 
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bis(carbonyl) compounds 44 and 45 for investigation.  Specifically, the regeneration 

of the ‘end-on-bridged’ N2 compounds 40 and 41 from these thermally inert carbonyl 

species was targeted, as this remained the final roadblock to completion of the desired 

N2 fixation cycle (Scheme 43). 

 

4.2 Synthesis of CpAm Mono(Carbonyl) Complexes Bearing Labile Ligands 

4.2.1 Background 

 It has been well established in the literature that the bis(carbonyl) compounds 

44 and 45 are easily generated by treatment of a toluene solution of the ‘end-on-

bridged’ dinitrogen species 40 and 41, respectively, with CO (10 psi).10  Less clear, 

however, was the mechanism through which this transformation occurs.  Specifically, 

do the first two equivalents of CO displace the bridging N2 ligand to produce two 

equivalents of a CpAm mono(carbonyl) species, which then quickly bonds an 

additional two equivalents, or do they add to the metal centers to create a dinuclear 

intermediate, in which the CO ligands add in a 1,4 manner across the M-N-N-M core, 

from which N2 is then displaced by the second equivalents of CO?  In the case of 

molybdenum, charging a benzene-d6 solution of 40 with CO leads to an immediate 

color charge to deep, forest green, which persists for only several seconds before 

becoming red.  Analysis of this mixture by 1H NMR before the reaction is allowed to 

reach completion reveals only the presence of 40 and the expected bis(carbonyl) 

product 44.  However, in the case of tungsten, the benzene-d6 solution remains green 

(which, coincidentally, is the color of compound 41 as well) over the course of long 

time periods (i.e. > 24 h) before the characteristic orange color of 45 is observed, and 
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three days are needed for the reaction to reach completion.  During the period when 

the solution is still green, 1H NMR confirms the existence of a new C1 symmetric 

product, which supports the hypothesis that an intermediate 1,4-bis(carbonyl) 

compound likely exists before complete conversion to 45.  Fortunately, it was found 

that this intermediate species (113) could be isolated in analytically pure form as a 

green, crystalline solid, for which single crystals suitable for X-ray diffraction were 

obtained, confirming it to be the dinuclear carbonyl, ‘end-on-bridged’ compound 

{Cp*[N(iPr)C(CH3)N(iPr)]W(CO)}2(µ-!1:!1-N2) (113).21 Presumably, the analogous 

molybdenum species {Cp*[N(iPr)C(CH3)N(iPr)]Mo(CO)}2(µ-!1:!1-N2) (114) exists 

as well, however in this case it is extremely short lived and unable to be observed by 

1H NMR.   

 The knowledge that such carbonyl/‘end-on-bridged’ dinitrogen species exist 

was very encouraging.  We reasoned that if these compounds are intermediates in the 

generation of 44 and 45 from 40 and 41, respectively, that they may also be 

intermediates for the reverse reaction under the proper conditions (Scheme 44).  

Seeking to probe the possibility of such a transformation, we first decided to 

investigate the photoreactivity of 113, as it can be isolated and handled at room 

temperature without significant decomposition.  Interestingly, photolysis of a 
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benzene-d6 solution of 113 within a Pyrex tube generated 41 and 45 in a 1:1 ratio, as 

judged by 1H NMR, after only one hour (Scheme 45).  We reasoned that if the 

molybdenum analog could be isolated, it would likely behave in the same fashion.  

Accordingly, the only challenge remaining was the formation of these intermediate 

compounds 114 and 113 directly from the bis(carbonyl) species 44 and 45, 

respectively.  Given the observed reactivity of 113, we assumed we would more 

likely observe direct formation of either the ‘end-on-bridged’ N2 compounds 40 and 

41, or their cleavage products 106 and 107.  Unfortunately, even though 44 and 45 

have been shown to be photoreactive compounds, the direct transformation to 114 

and 113 was found to be impossible under N2 atmosphere upon photolysis.  

Specifically, even when quartz tubes were employed rather than Pyrex, and the 

solvent used was UV-transparent THF-d8, none of the desired products (40, 41, 113, 

nor 114) were able to be detected.  Specifically, in the case of molybdenum, the 

formation of unidentifiable paramagnetic species was observed, and in the case of 

tungsten no reaction was observed. 

We reasoned that the presence of CO in the reaction mixtures described above 

may prohibit the coordination of N2, even upon photolysis, given the fact that CO is 

such a strong !-acceptor.  For instance, once CO is lost as a result of UV irradiation, 

allowing for coordination of N2, it could easily displace the more labile N2 ligand 
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before dimerization occurs, even if N2 is present in large excess. The barrier to 

overcome this issue is worsened by the fact that a significant entropic penalty must be 

paid in order to push the reaction depicted in Scheme 44 to the left.  To circumvent 

this problem, we sought to prepare a library of compounds of general formula 

Cp*[N(iPr)C(CH3)N(iPr)]M(CO)(L) (M = Mo, W), where L is a more labile, less !- 

acidic ligand capable of being displaced by N2.  Ideally, once L is displaced by N2, it 

will not inhibit dimerization, allowing for the reaction to proceed as desired.  Even if 

an equilibrium is established in which only a small amount of the desired 

intermediate compounds 114 and 113 are formed, under photolytic conditions the 

remaining carbonyl ligands should dissociate rapidly and irreversibly.  Thus, 

according to Le Chatelier’s Principle, the reaction will continue to proceed to the 

right (Scheme 46) regardless of the equilibrium given the fact that 114 and 113 would 

be immediately consumed. In order to test this hypothesis, compounds where L = 

sulfides and olefins were targeted. 
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4.2.2 L = Sulfide 

 An attractive class of ligand for the synthesis of the type of complex described 

above was sulfides, as they are known to coordinate to organometallic compounds 

easily, and are not overly competitive for !-backbonding, as is CO.  However, given 

the presence of two lone pairs on the central sulfur atom, it was recognized from the 

start of this study that a combination of both "- and !-donation to the metal center 

could result in resistance to displacement by N2.  On the other hand, however, it has 

been shown that once coordinated, sulfide ligands may be alkylated to yield 

complexes bearing sulfonium ions as cationic ligands.24,25  Despite the positive 

charge, these ligands still possess one lone pair of electrons on the sulfur.  

Accordingly, they are still capable of "-donation to the metal center.26  At first 

glance, it would appear that such a ligand would be displaced readily, simply due to 

the electrostatic repulsion between the cationic sulfur and metal center, however it 

must be realized that upon alkylation, the sulfonium ligand becomes a viable !-

acceptor. With this all in mind, we set out to prepare mono(carbonyl), mono(sulfide) 

complexes and, if need be, their sulfonium counterparts, and determine if such 

ligands may be displaced by N2. 

 Initially, we aimed to prepare compounds with sulfide ligands in which the 

substituents on the sulfur were large and electron withdrawing.  The reason for this 

was that the larger the substituents were on the sulfide, the more steric repulsion 

would be experienced around the metal center, making displacement by the small N2 

ligand favorable.  On the other hand, an electron withdrawing substituent would 

likely make the sulfur atom more electron poor, thus limiting the extent to which it 
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may engage in undesirable !-donation, again making the sulfide overall more easily 

displaced.  Given these two criteria, we reasoned phenyl substituted sulfides would 

best suit our needs.  Accordingly, the reactivity of the bis(carbonyl) tungsten 

compound 45 was first investigated.  Upon photolysis in benzene-d6 solution of 45 

within a Pyrex tube, only slow decomposition was observed by 1H NMR in the 

presence of thioanisole and p-fluorothioanisole.  Small amounts of what were 

believed to be the desired CpAm species were able to be detected, but only in 

extremely low concentration, and efforts to isolate these species were unsuccessful.   

 Believing that perhaps phenyl substituted sulfides were in fact too sterically 

encumbering to coordinate to the tungsten center, the reactivity of dimethyl sulfide 

was investigated instead.  In this case, it was found that photolysis of 45 under 

Figure 30. 1H (400 MHz, benzene-d6, 25 °C) NMR spectra demonstrating the 
photolytic conversion of 45 to 115 in the presence of excess dimethyl sulfide (labeled 
with *) at two time points. 
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identical conditions in the presence of excess (ca. 10 equivalents) dimethyl sulfide 

lead to quantitative conversion to a new C1 symmetric species (115) over the course 

of 16 hours, as judged by 1H NMR (Figure 30).  When the reaction was performed 

under N2 atmosphere (10 psi), no generation of the ‘end-on-bridged’ N2 compounds 

41 nor 113 was observed, however. 

 On the basis of 1H NMR, it was initially believed that compound 115 was the 

desired mono(carbonyl), mono(sulfide) species  

Cp*[N(iPr)C(CH3)N(iPr)]W(CO)[(CH3)2S], and attempts to confirm this proposed 

structure were made.  Fortunately, 115 was found to be extremely crystalline, 

allowing for isolation in moderate yield (59%) (Scheme 47).  Preparation of 13C-

labeled 115 was accomplished beginning with 13C-labeled 45, and the 13C{1H} NMR 

spectrum revealed a single resonance at 276 ppm (1JWC = 72 Hz).  This chemical shift 

was the first indication we had that compound 115 may in fact not be the species we 

W

N
N

CO

CO

45                                                                                                     115

hv
- CO

W

N
N

CO + S(CH3)2 W

N
N

CO

S
W

N
N

CO

S

116

W

N
N

S

O10 eq. S(CH3)2
hv, benzene-d6

Pyrex, 16 h
59% (isolated)

Scheme 47 



! $#'!

had envisioned preparing.  Legzdins and coworkers have shown that tungsten !2-acyl 

complexes typically display chemical shifts between 280 and 296 ppm, with similar 

W-C coupling.27  Indeed, upon isolation of single crystals of 115 by cooling a 

concentrated Et2O solution to -30 °C, XRD revealed this compound to in fact be the 

tungsten (IV) structural isomer of the desired product, namely 

Cp*[N(iPr)C(CH3)N(iPr)]W[!2-C(O)CH3)(SCH3), and the molecular structure is 

depicted in Figure 31.  The assignment of the carbonyl group as an !2-acyl ligand is 

supported by the short W-O bond length of 2.209(2) Å, which is nearly identical to 

that reported by Legzdins [cf. 2.202(3) Å],27 and a C-O bond length within the range 

of a C-O double bond of 1.282(4) Å.  Presumably, as Scheme 47 also reveals, the 

envisioned mono(carbonyl), mono(sulfide) compound does in fact form upon 

photolysis and loss of a carbonyl ligand from 45, however the resulting sulfide is then 

activated, producing an intermediate tungsten (IV) methyl compound (116), followed 

by insertion of the carbonyl group into the newly formed W-C bond. 

 Hoping that this new species could serve as a viable precursor for the 

regeneration of the ‘end-on-bridged’ N2 complex 41, compound 115 was treated with 

excess N2 under higher pressures (ca. 90 psi).  Still, no reaction was observed, and 

upon photolysis of this same reaction mixture only decomposition was observed by 

1H NMR, thereby confirming that compound 115 cannot serve as a precursor for 41. 

 Before the molecular structure of 115 was confirmed by X-ray analysis, we 

had become interested in observing its reactivity with N2 in the presence of 

methylating agents. Addition of a slight excess of methyl triflate to a benzene-d6 

solution of 115 in the presence of N2 (Scheme 48) lead to the immediate observation 
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of a new C1 symmetric product (117) by 1H NMR, along with free dimethyl sulfide.  

This new species exhibited a nearly identical resonance in the 13C{1H} NMR 

spectrum as 115 when the reaction was performed beginning with 13C-labeled 115 

(#117 = 275 ppm, 1JWC = 73 Hz) (Figure 32), and a resonance in the 19F NMR spectrum 

Figure 31. Molecular structure (30% thermal ellipsoids) of compound 
115. H atoms have been omitted for clarity. Selected bond lengths (Å) 
and angles (°): W1-S1 2.4708(8), S1-C19 1.818(4), W1-C20 1.973(3), 
W1-O1 2.209(2), C20-O1 1.282(4), C20-C21 1.484(5), W1-S1-C19 
109.98(12), W1-C20-C21 156.4(3), W1-C20-O1 82.54(19). 
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at -78.3 ppm.  Given these observations and the now known molecular structure of 

the starting compound 115, the most logical structure for 117 was assigned as the 

tungsten (IV) !2-acyl, triflate species Cp*[N(iPr)C(CH3)N(iPr)]W[!2-

C(O)CH3)(O3SCF3).  Unfortunately, single crystals suitable for X-ray diffraction of 

117 could not be obtained. 

 Given the observed reactivity of the tungsten bis(carbonyl) compound 45 

towards sulfides upon photolysis, the analogous chemistry of the molybdenum 

derivative was not explored in depth.  Upon photolysis of 44 in the presence of excess 

dimethyl sulfide, new paramagnetic resonances were observed by 1H NMR.  Initial 

efforts to characterize the product(s) of this reaction were unsuccessful, as only the 

starting material 44 could be recovered from the reaction mixture, despite being 

completely consumed as judged by 1H NMR during photolysis.   

Figure 32. Partial 13C{1H} (125 MHz, benzene-d6, 25 °C) NMR spectra 
demonstrating the conversion of 13C-labeled 115 (a) to 13C-labeled 117 (b) upon 
addition of methyl triflate. 
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4.2.3 L = Olefin – Part 1 

 We next targeted the synthesis of compounds in which the labile ligand 

present on the metal center is a coordinated olefin.  Although olefins are known to be 

!-acceptors,28 it was reasoned that the degree to which they compete for electron 

density with N2 could be tuned easily through the addition of various substituents 

which are electron donating (e.g. alkyl groups), making them less !-acidic.  Also, the 

sterics about the olefin can easily be tuned, allowing for the placement of large 

olefins which would be sterically demanding at the metal center, and more likely to 

be displaced by smaller N2.  Although such transformations are not common, it has 

been shown that olefins may be displaced by N2 in the preparation of ‘end-on-

(bridged)’ N2 compounds.10,29  Accordingly, we set out to synthesize a library of 

mono(carbonyl), mono(olefin) compounds, and to determine their ability to serve as 

precursors for the regeneration of the ‘end-on-bridged’ N2 compounds 40 and 41. 

 The photolytic reactivity of the bis(carbonyl) compounds 44 and 45 with 

ethene and norbornene will be presented first.  Photolysis of 44 and 45 in benzene-d6 

solution within a Pyrex tube with excess ethene or norbornene for time periods of less 

than 24 hours generated the desired mono(carbonyl), mono(olefin) species 

Cp*[N(iPr)C(CH3)N(iPr)]M(CO)(olefin) [M = Mo, olefin = ethene (118); M = Mo, 

olefin = norbornene (119), M = W, olefin = ethene (120); M = W, olefin = 

norbornene (121)] in near quantitative yield as judged by 1H NMR (Scheme 49).  

These products could be isolated easily in analytically pure form in yields ranging 

from 67 – 97%.  In the case of molybdenum, it was found that the same 

mono(carbonyl), mono(olefin) compounds could be generated thermally by addition 
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of the desired olefin to the mono(carbonyl), mono(acetonitrile) compound 122 

(Scheme 49), the synthesis of which has been described previously by our group.22   

  Compound 122 allowed for the generation of another mono(carbonyl), 

mono(olefin) species, which was not accessible from the bis(carbonyl) compound 44.  

Specifically, photolysis of 44 in the presence of cyclopentene gave no evidence for 

the generation of the desired product. However, the mono(carbonyl), 

mono(cyclopentene) compound Cp*[N(iPr)C(CH3)N(iPr)]Mo(CO)(C5H8) (123) could 

be isolated in fair yield by treatment of 122 with cyclopentene at room temperature 

(Scheme 49).  Unfortunately, although the analogous tungsten compound was 

observed to form by 1H NMR through photolysis of 45 in the presence of excess 

cyclopentene, it could not be characterized as it existed exclusively as an oil.  

 It is worth noting here that many other olefins (e.g. 1-butene, cis-2-butene, 

trans-2-butene, propene, cyclohexene, tetramethylethene) were employed in efforts to 

broaden the scope of mono(carbonyl), mono(olefin) compounds in our library. 

M

N
N

CO

CO

M = Mo (44)
M = W (45)

hv, Pyrex
benzene-d6

xs ethene or norbornene
< 24 h

~100% (NMR)

M

N
N

CO

M = Mo (118) (75%)
M = W (120) (67%)

M = Mo (119) (83%)
M = W (121) (97%)

M

N
N

CO
or

Mo

N
N

CO

NCCH3
xs ethene, cyclopentene, or norbornene

- NCCH3

benzene-d6, 25 oC, 2 h

122

or

123
54%

Mo

N
N

CO

Scheme 49 



! $#"!

However, for a variety of reasons, the desired products were not observed or could 

not be isolated.  Accordingly, they will not be discussed here.  On the other hand, 

several other olefins (e.g. neo-hexene, iso-butene) lead to the clean formation and 

isolation of rather surprising products.  A discussion of these compounds is provided 

in the following section (4.2.4).   

The main features we wished to study for each of these new compounds were 

the relative C-O bond lengths observed, the C-O bond stretching frequencies, and the 

C-C bond lengths of the coordinated olefins relative to the free C-C bond length.30-32  

In order to accomplish this, single crystals for each compound described above were 

analyzed by XRD to provide the molecular structures, which are shown in Figures 33 

– 35, and IR spectroscopy was employed to determine the C-O bond stretching 

frequencies.  These data are summarized in Table 1.  In general, the CO bond order is 

more significantly reduced in the tungsten complexes than it is in molybdenum as 

determined by the C-O bond lengths and IR stretching frequencies, a trend which is in 

keeping with the observed physical data for compounds 44 and 45.10  Similarly, more 

C-C bond lengthening is observed within the tungsten compounds than their 

molybdenum counterparts.  In all cases, however, the olefin ligands display a 

significant amount of !-backbonding from the metal centers as evidenced by rather 

extensive bond lengthening, which we feared may inhibit their ability to be displaced 

by N2 (vide infra).  It is worth noting that many group 6 compounds bearing ethene 

(and other olefin) ligands have appeared in the literature, however these compounds 

are generally in higher oxidation states and, not surprisingly, typically possess C-C 

bond lengths of the coordinated ethene molecule shorter than those exhibited by  
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compounds 118 and 120, as a result of the fact that they contain less electron density 

at the metal center to donate to the olefin !* orbitals.33-35 On the other hand, the C-C 

bond lengths observed in the mono(carbonyl), mono(ethene) compounds 118 and 120 

are in keeping with reported values for other mid and low valent group 6 ethene 

compounds.36-38 

Figure 33. Molecular structures (30% thermal 
ellipsoids) of compounds 118 (a) and 120 (b). 
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It is interesting to note that for the molybdenum compounds 118 and 119, a 

rather unintuitive trend was observed.  Specifically, given the fact that norbornene is 

a highly strained cyclic olefin, we imagined that 119 would display a shorter C-O 

bond length than in 118.  The reason for the expected observation would be that 

Figure 34. Molecular structures  (30% thermal 
ellipsoids) of compounds 119 (a) and 121 (b). 
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norbornene would act as a stronger !-acid than ethene, and therefore the carbonyl 

ligand in 119 would experience less !-backbonding than in 118.  However, the 

opposite trend was observed, with 118 displaying the shorter C-O bond length of 

1.1595(15) Å compared to 1.172(4) Å in 119.  Furthermore, the C-C bond for the 

norbornene ligand in 119 was found to be elongated by only 0.097 Å from that in the 

free molecule, while the C-C bond length in 118 was 0.1025 Å longer than in free 

ethene.  Together, these data indicate that ethene acts as a better !-acceptor than 

norbornene.  Presently, the most obvious rationale for this counterintuitive 

observation is that the norbornene ligand in 119 is much more sterically demanding 

than the small ethene ligand in 118.  Accordingly, ethene may exist closer to the  

Figure 35. Molecular structure (30% thermal ellipsoids) of 
compound 123. 
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molybdenum center than norbornene, allowing for greater overlap of the necessary 

orbitals to allow for !-backbonding.  This hypothesis is supported by the fact that the 

average Mo-C bond length in 118 is 2.226 Å, while in 119 it is slightly longer (2.254 

Å).   

With compounds 118 – 121 in hand, each of which could be prepared directly 

from the bis(carbonyl) species 44 and 45, we next sought to investigate their 

reactivity towards N2.  In the case of the molybdenum compounds 118 and 119, 

pressurizing benzene-d6 solutions with N2 up to 90 psi lead to no observable reaction 

by 1H NMR.  Upon photolysis within a quartz tube, only slow decomposition was 

observed, and no generation of either the ‘end-on-bridged’ or cleaved N2 species 40 

or 106 could be detected.  Repeating the reactions with the tungsten analogs 120 and 

121, again it was found that no thermal reaction was observed by 1H NMR.  Upon 

photolysis, however, more interesting reactivity was discovered.  Specifically, in the 

case of the mono(carbonyl), mono(ethene) compound 120, photolysis lead to the 

observation of small amounts of the tungsten (VI) ethylidyne hydride complex 124 

(Scheme 50).  The preparation and characterization of compound 124 will be 

presented in the following chapter.  However, in the present case, this species likely 

forms as the result of photodissociation of the carbonyl ligand in 120 to provide a 

Compound d(CO) (Å) vCO (cm-1) d(C-C) (Å) ! d(C-C) (Å)a 

118 1.1595(15) 1867.0 1.433(2) 0.1025 
119 1.172(4) 1859.2 1.433(5) 0.097 
123 1.165(3) 1861.0 1.449(3) 0.126 
120 1.161(5) 1858.1 1.452(8) 0.122 
121 1.171(3) 1844.2 1.478(3) 0.142 

!
!
!
!
!
!
"#$%&%!'!()**+!
,-./-.&%&%!'!()**0!
1234-5%&#%&%!'!()*6*!

Table 1. Selected structural and spectral data for compounds 118 – 121 and 
123.  aSee references 30 – 32 for bond lengths of free olefins. 
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mono(ethene) intermediate 125, which then isomerizes to the ethylidene compound 

126, followed by the final step of $-hydride elimination to yield the final product 124 

(Scheme 50).39 

  More interesting was the reaction of the mono(carbonyl), mono(norbornene)  

compound 121 which, upon photolysis under a high pressure of N2 (90 psi) within a 
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quartz tube lead to the formation of small amounts of the ‘end-on-bridged’ N2 

compound 41 as judged by 1H NMR (Scheme 51).  Possibly, the second 

isomerization step that is proposed to occur upon loss of a carbonyl ligand from 120 

is not able to occur in compound 121, preventing such a decomposition path from 

being followed.  Rather, then, N2 is able to compete with norbornene for electron 

density from the tungsten center.  This then allows for the formation of a very small 

amount of the ‘end-on-bridged’ N2, mono(carbonyl) compound 113 to form which, 

when photolyzed, undergoes rapid dissociation of the remaining carbonyl ligands 

(vide supra).  Unfortunately, the observed reaction is sluggish, and decomposition of 

121 was also observed by 1H NMR to occur at a much faster rate than the generation 

of 41.  Accordingly, even though the observation of small amounts of 41 marked the 

completion of a synthetic cycle for N2 fixation, the ability to utilize such a process for 

the generation of N2-derived organic products did not seem plausible. 

 

4.2.4 L = Olefin – Part 2 

 In the course of studies into the synthesis of group 6 CpAm mono(carbonyl), 

mono(olefin) complexes, several surprising discoveries were made in regard to 

tungsten, which are presented here.  First, we were interested in preparing such a 

complex in which the coordinated olefin bore alkyl groups, with the hope that it 

would make the olefin less !-acidic.  Cyclic olefins had been unsuccessful with the 

exception of norbornene, and no clean reaction was observed with propene, 1-butene, 

cis-2-butene, trans-2-butene, or tetramethylethene.  However, photolysis of the 

bis(carbonyl) compound 45 in the presence of iso-butene (10 psi) in benzene-d6  
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solution within a sealed Pyrex tube lead to the formation of a new C1 symmetric 

species.  The most striking feature of this new compound was the presence of a new 

upfield triplet of triplets in the 1H NMR at -0.88 ppm (1JWH = 55 Hz, 2JHH = 3 Hz), 

indicating the presence of a hydride ligand which experiences coupling to both the 

183W center and another proton. 13C{1H} NMR revealed no resonance which could be 

assigned to a carbonyl ligand, but did display two resonances at 45.7 and 53.2 ppm 

Figure 36. a) 1H (400 MHz) and b) 13C{1H} (125 MHz) 
(benzene-d6, 25 °C) NMR spectra of compound 127 (* 
marks pentane solvent impurity). 



! $$*!

with coupling to the 183W center (1JWC = 19 Hz and 12 Hz, respectively) (Figure 36).  

Together, these observations suggested that both carbonyl ligands had been lost from 

compound 45 during photolysis, and C-H bond activation at one of the iso-butene 

methyl groups had occurred to produce the tungsten (IV) allyl hydride complex 

Cp*[N(iPr)C(CH3)N(iPr)]W(H)(!3-C4H7) (127) (Scheme 52).  This prediction was 

confirmed by single crystal X-ray diffraction, which provided the molecular structure 

of compound 127 depicted in Figure 37.  Specifically, the designation of 127 as an !3-

allyl complex is supported by the fact that the C19-C20 and C20-C21 bond lengths 

(Figure 37) are nearly identical [1.411(7) Å and1.409(7) Å, respectfully], and these 

values are in keeping with other tungsten (IV) allyl hydride compounds.40,41  

Compound 127 was found to be stable in solution over the course of several days, 

even at elevated temperatures.  Given this observation, further reactivity of this 

species was not explored as it did not appear to be a viable precursor for the synthesis 

of 41.  
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 The reactivity of neo-hexene was explored next, as it was believed that an 

olefin lacking %-hydrogens would be immune to the decomposition observed in the 

formation of 127.  Furthermore, this olefin should be electron rich and sterically 

bulky due to the presence of the tert-butyl group, which in theory should make it easy 

to displace from the tungsten center.  Accordingly, as Scheme 52 further reveals, 45 

was photolyzed in the presence of excess equivalents of neo-hexene, which lead to 

the formation of the new species 128, which also displayed a hydride resonance in the 

1H NMR (6.69 ppm, 1JWH = 95 Hz).  Compound 128 was noticeably different in 

Figure 37. Molecular structure (30% thermal ellipsoids) of compound 
127.  Selected bond lengths (Å) and angles (°): W1-H1 1.94(5), W1-C19 
2.250(5), W1-C20 2.187(4), W1-C21 2.235(4), C19-C20 1.411(7), C20-
C21 1.409(7), C20-C22 1.520(6), C19-C20-C21 111.5(4).  
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nature from 127, as it appeared to undergo dynamic ring flipping of the amidinate 

ligand on the NMR time scale, as evidenced by broadening of the resonances for the 

isopropyl group protons.  Variable temperature 1H NMR allowed for the sharpening 

of these peaks upon heating (Figure 38), at which point apparent Cs symmetry was 

observed for 128, which in actuality is of C1 symmetry.  Given the lack of %-

hydrogens in neo-hexene, we inferred that compound 128 could not be an allyl 

hydride such as 127.  The fact that the amidinate ligand is involved in dynamic ring 

flipping instead lead us to believe that 128 is a heavily ‘!-loaded’ complex.  

Accordingly, compound 128 is likely the alkylidyne hydride species depicted in 

Scheme 52, however single crystals could not be obtained to confirm this assignment.  

The mechanism for the formation of compound 128 is believed to be analogous to 

that for 124, as depicted in Scheme 50. 

  

Figure 38. 1H (400 MHz, benzene-d6) NMR spectra of compound 128 at 
25 °C (bottom) and 70 °C (top) with inset showing tungsten hydride 
resonance.  
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4.3 Tandem Dinitrogen and Carbon Dioxide Fixation 

4.3.1 Background 

 Looking for alternative methods to complete the synthetic cycle depicted in 

Scheme 43, we decided to revisit known chemistry with regard to the bis(carbonyl) 

compounds 44 and 45.  Most notably, these complexes have been shown previously 

to react photolytically with CO2 to generate the M(IV) terminal oxo species 48 and 49 

quantitatively through the mechanism in Scheme 53.42 Given this well established 

transformation, we next turned to investigate the chemistry of these oxo compounds 

to determine if they may serve as viable precursors for the ‘end-on-bridged’ 

dinitrogen compounds 40 and 41, respectfully.  If successful, such a transformation 

would be noteworthy in that it would couple two of the most important challenges 

that face synthetic chemists today, namely the fixation of N2 and CO2, the reasons for 

which have been described in Chapter 1. 

 

4.3.2 Reactivity of Terminal Oxo Compounds 

 It has been shown by Marks,43 Parkin,44 and Geoffroy45 that group 6 terminal 

oxo complexes supported by the metallocene ligand framework react with TMSCl to 

provide the corresponding dichloride complexes in high yields, along with 

concomitant formation of hexamethyldisiloxane {[(CH3)3Si]2O, HMDSO}, as shown 
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in Scheme 54.  On the other hand, the CpAm group 6 dichloride compounds 42 and 

108 may be reduced with NaHg under N2 atmosphere to provide the ‘end-on-bridged’ 

N2 complexes 40 and 41 in high yield as well.10  Accordingly, we sought to determine 

if the CpAm oxo compounds 48 and 49 followed similar reactivity to their 

metallocene counterparts to produce the dichloride compounds 42 and 108, as such a 

transformation would allow for the completion of the desired synthetic cycle.  Indeed, 

as shown in Scheme 55, treatment of the molybdenum oxo compound 48 with excess 

equivalents of TMSCl in benzene-d6 solution at room temperature lead to immediate 

formation of the paramagnetic dichloride complex 42, as evidenced by the 

observation of HMDSO and diagnostic broad resonances in the 1H NMR spectrum.  

In the case of tungsten, immediate generation of the W(IV) siloxy chloride 

intermediate complex Cp*[N(iPr)C(CH3)N(iPr)]W[OSi(CH3)3]Cl 130 was observed 

by 1H NMR, and heating to 80 °C for 16 hours lead to quantitative conversion to the 

dichloride compound 108 (Scheme 55). 

 Having successfully demonstrated that the dichloride compounds 42 and 108 

may be generated from the oxo complexes 48 and 49, we were next interested in 

determining if such a process could be repeated successfully beginning with the 

bis(carbonyl) compounds 44 and 45.  In doing so, we hoped that we could reduce the 
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overall process for the complete synthetic cycle by one step, and remove the need to 

isolate the oxo species.  In the case of molybdenum, this process worked as planned.  

Specifically, as revealed in Scheme 56, photolysis of compound 44 in benzene-d6 

solution in the presence of excess equivalents of TMSCl and CO2 for 20 hours lead to 

complete conversion to the paramagnetic dichloride complex 42 and HMDSO as 

judged by 1H NMR (Figure 39).  In the case of the analogous tungsten complex 45, 

this one pot process was not successful, likely due to the fact that the siloxy chloride 

intermediate 130 does not go on to form the dichloride compound without heating.  

Accordingly, it may decompose upon long exposure to UV irradiation in the presence 

of TMSCl at ambient temperature. 
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4.3.3 Synthetic Cycle for N2 Fixation  

 With every step in the desired synthetic cycle for N2 fixation complete 

(Scheme 57), we next sought to determine the overall yield of the process from 

beginning to end.  Rather than simply calculate the yields observed for each step, we 

instead began with a set amount of the ‘end-on-bridged’ dinitrogen compounds 40 

and 41 and subjected them to the entire series of transformations depicted in Scheme 

57, using TMSCl as the –ER3 source.  In this way, we hoped to gain a more realistic 

representation of the process’ efficacy.  

Figure 39. 1H (400 MHz, benzene-d6, 25 °C) NMR spectra demonstrating the 
photolytic reaction of compound 44 with excess TMSCl and CO2 (10 psi) after 0 h 
(bottom) and 20 h (top) with inset showing downfield paramagnetic resonances for 
compound 42. Labeled resonances are compound 44 (o) and HMDSO (*). The 
unlabeled resonance at 2.08 ppm is durene internal standard. 
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 To begin, 3 mL of a benzene-d6 solution consisting of the molybdenum ‘end-

on-bridged’ N2 complex 40 (19 mM), excess TMSCl (55 mM), and durene internal 

standard was prepared and transferred evenly between three Pyrex J Young NMR 

tubes.  The solutions were photolyzed for 28 hours, at which point complete 

conversion to the molybdenum (IV) TMS imido and dichloride complexes (111 and 

42, respectfully) was observed by 1H NMR.  The headspace of each tube was then 

evacuated and charged with CO (10 psi), which lead to the production of TMS 

Scheme 57 
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isocyanate (49% based on initial concentration of 40, 88% based on concentration of 

111) and the bis(carbonyl) compound 44 after two days at room temperature.  

Volatiles were then removed in vacuo, and fresh benzene-d6 solutions of TMSCl (131 

mM) were added to each tube.  The headspaces were evacuated and charged with 

CO2 (10 psi) and photolyzed for 20 hours, at which point paramagnetic 42 and 

HMDSO were observed by 1H NMR.  Compound 42 was isolated from this mixture 

and reduced with 3 equivalents of NaHg under N2 atmosphere, which lead to the 

isolation of the starting material 40 in 44% yield after recrystallization (Figure 40).  

The analogous sequence of reactions was carried out with the tungsten derivative 41, 

with the exception that Step 3 (Scheme 57) was performed step-wise.  Specifically, 

the bis(carbonyl) compound 45 was photolyzed in the presence of CO2 (10 psi) until 

complete conversion to the oxo compound 49 was observed by 1H NMR.  At this 

point, excess TMSCl was added, and the solution was heated to 80 °C for 18 hours to 

produce the dichloride compound 108, which was then reduced under N2 to provide 

the starting material 41 in 52% yield.  Thus, for both molybdenum and tungsten, 

complete synthetic cycles for N2 and CO2 fixation to produce isocyanates and 

HMDSO have been achieved, and in both cases the starting material may be isolated 

in moderate yields. 
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Figure 40. 1H (400 MHz, benzene-d6, 25 °C) NMR spectra 
demonstrating the synthetic cycle in Scheme 57 for M = Mo and –
ER3 = TMS. (a) initial; (b) after complete conversion to 
compounds 111 and 42; (c) after reaction with CO to produce 
compound 44 and TMS isocyanate; (d) after photolysis in the 
presence of CO2 and TMSCl to produce compound 42 and 
HMDSO; (e) after reduction to regenerate 40.  Labeled resonances 
are 40 (+), 111 (o), 44 (x), TMS isocyanate (*), and HMDSO (^). 
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4.3.4 [2+2] Cycloaddions of CpAm Imido Complexes 

 Given the success of the newly developed cycles for tandem N2/CO2 fixation, 

we became interested in reducing the number of overall steps involved even further.  

Specifically, seeing as the N2 derived imido complexes are sufficiently nucleophilic to 

react under mild conditions with CO, we wondered if they would react directly with 

CO2 via [2+2] cycloaddition pathways to generate the terminal oxo complexes 48 and 

49 and the corresponding isocyanates, thus eliminating the need to generate the 

bis(carbonyl) compounds 44 and 45 in the overall synthetic cycle. 

  In general, such processes tend to occur in reverse.  Specifically, it has been 

well established that terminal oxo compounds react with isocyanates to generate CO2 

and the corresponding imido compounds for tungsten,46,47 molybdenum,48-50 

rhenium,51 and vanadium,52 as depicted in Scheme 58.  Although the reaction exists in 

equilibrium, it generally proceeds to the right when performed in an open system, as 

CO2 is slowly removed from the reaction as it diffuses out of solution.   Several 

examples have appeared in the literature, however, which describe systems that favor 

the reverse reaction, however nearly all examples are confined to titanium.  

Specifically, Mountford demonstrated that the CpAm titanium tert-butyl imido 

complex Cp*[N(iPr)C(CH3)N(iPr)]Ti[NC(CH3)3] (131) reacts with CO2 at 25 °C to 

quickly produce the bridging oxo complex {Cp*[N(iPr)C(CH3)N(iPr)]Ti}2(µ-O)2 

LnM O
LnM O

N C

R O

LnM NR
+ OCNR - CO2

+ CO2- OCNR

Scheme 58 
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(132) with concomitant production of tert-butyl isocyanate.53  Changing the 

substituents of the imido ligand lead to the extension of this work to include proposed 

[2+2] cycloaddition reactions with various benzaldehydes and even 

dimethylformamide (DMF), along with more examples of CO2 cycloaddition.54,55  

Mindiola later reported that titanium imido complexes bearing ‘nacnac’ ligands may 

produce aryl isocyanates from reaction with CO2,56 and Anderson has demonstrated 

that 12 electron tris(pyridine) titanium imido complexes react with CO2 to provide 

symmetrical ureas upon treatment with strong acid, a process which is believed to go 

through intermediate generation of isocyanates.57  In addition to these examples, other 

reports for titanium compounds may be found in the literature, including one example 

for a group 5 compound (tantalum).58-60   Analogous chemistry with regard to group 6 

metals has not yet been observed, although Schrock has reported spectroscopic 

evidence for the [2+2] cycloaddition of CO2 to an anionic molybdenum (VI) imido 

species, however no generation of an isocyanate was detected.61  Mountford has 

reported similar reactivity with a cationic tungsten (VI) species, but this compound 

too did not yield any isocyanate.62  

 In order to test whether or not our desired transformations were possible, the 

molybdenum imido complexes Cp*[N(iPr)C(CH3)N(iPr)]Mo[N-E(CH3)3] [E = Si 

(111); E = Ge (133)]22,23 were reacted with CO2 under near ambient conditions.  

Similar reactions were performed with the tungsten imido complex 112 as well, 

however initial results indicated that these transformations are much slower than 

those observed for molybdenum, therefore further investigations were not prioritized 

and are not presented here. 
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 Upon treatment of the molybdenum TMS imido compound 111 with a modest 

pressure of CO2 (20 psi) in benzene-d6 solution, no reaction was detected by 1H NMR 

after several days at 25 °C.  Upon heating to 75 °C, however, slow generation of the 

terminal oxo complex 48 and TMS isocyanate was observed.  After 26 days of 

reaction, complete consumption of the starting material was observed, and 48 and 

TMS isocyanate had been generated in 60% and 47% yield, respectively.  Increasing 

the pressure of CO2 within the reaction tube lead to an increase in the observed rate 

and yield; specifically, after 3 days of heating under 70 psi CO2, 48 and TMS 

isocyanate were observed in 16% and 15% yield, respectively.  The reaction was then 

allowed to react for a total of 14 days at 75 °C, at which point complete consumption 

of the TMS imido compound 111 had occurred, and 48 and TMS isocyanate were 

present in 76% and 73% yield, respectively (Scheme 59). 

  The reactivity of the trimethylgermyl (TMG) imido complex 133 towards 

CO2 was examined next (Scheme 59).  Again, no reaction was observed at room 

temperature, however upon heating to 75 °C under 20 psi CO2 in benzene-d6, faster 

conversion to compound 48 and TMG isocyanate was observed by 1H NMR than in 

the case of compound 111. After 2 days, these species were observed in 61% and 

58% yield, respectively, and after extended reaction time (14 days total) were present 
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in 82% and 80% yield, thus demonstrating that the TMG substituted imido complex 

reacts significantly more quickly than the TMS derivative with CO2 and under more 

reasonable pressures, and that the products are stable after prolonged heating in 

benzene-d6 solution under CO2 atmosphere.  

 [2+2] cycloaddition of CO2 to an early transition metal imido is a rare 

occurrence, for which little precedent exists.  More specifically, no such examples for 

group 6 metals have appeared in the literature to date.  Likely, however, many have 

simply overlooked such reactions, as the reverse process is known to occur readily.  

The driving force for the transformations described here is likely the oxophilicity of 

the molybdenum compounds.  Group 6 CpAm compounds have proven to be very 

oxophilic species,42,63 and the M-O bonds formed through the addition of CO2 are 

believed to be stronger than the M-N bonds broken in the corresponding imido 

compounds.  This belief is supported by the observation that the M-O bonds of 

compounds 48 and 49 are noticeably shorter than the M-N bonds in the TMS imido 

compounds for both tungsten and molybdenum, and the TMG imido compound for 

molybdenum [cf. for 48, d(Mo-O) = 1.7033(19) Å; for 111, d(Mo-N) = 1.7428(12) Å; 

for 133, d(Mo-N) = 1.751(2) Å].22,23,42 
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E = Si (64%)
E = Ge (69%)

Mo

N
N N

E(CH3)3

E = Si (111)
E = Ge (133)

benzene-d6, 75 oC, 3 d
xs ClE(CH3)3, CO2 

(70 psi for E = Si, 20 psi for E = Ge)
Mo

N
N

Cl

Cl

42

O
C

N

E(CH3)3

+ + E(CH3)3

O
E(CH3)3

E = Si (94%)
E = Ge (79%)



! $&$!

 In order to determine if the transformation from the imido compounds 111 and 

133 to the dichloride complex 42 could occur in one step, the reactions described 

above were repeated in the presence of excess equivalents of Cl-E(CH3)3 (E = Si, Ge) 

(Scheme 60).  Again, a higher pressure of CO2 (70 psi) was employed for 111 than 

for 133 (20 psi).  In both cases, complete consumption of the starting imido species 

was observed after 3 days at 75 °C, along with concomitant formation of the 

dichloride complex 42 (paramagnetic), and the corresponding isocyanates and 

ethereal products in good yields (Scheme 60).  Likely, the reactions proceed with 

notably faster rates in the presence of Cl-E(CH3)3 because as the molybdenum oxo 

compound 48 is formed it is immediately consumed.  Thus, any equilibrium which 

would otherwise be established upon formation of 48 is diminished, because 48 is not 

allowed to remain in solution long enough to reach an equilibrium concentration.  

Most importantly, the observation that TMS and TMG isocyanate may be 

generated in high yields with concomitant formation of the dichloride complex 42 

implies that the previously described synthetic cycle (Scheme 57) may be shortened, 

and that CO2 reduction may occur directly with N2 fixation (i.e. the use of CO is not 

required) (Scheme 61).  In order to demonstrate this concept, a larger scale reaction 

was performed in which the ‘end-on-bridged’ N2 compound 40 was photolyzed in the 

presence of excess TMGCl until complete conversion to 42 and 133 was observed by 

1H NMR.  This mixture was then charged with CO2 (20 psi) and heated to 75 °C for 3 

days, at which point 1H NMR revealed the production of TMG isocyanate in modest 

yield (36% with respect to initial concentration of 40) along with paramagnetic 42, 

which could be recovered in 82% yield as a pure, crystalline material.  Thus, the 
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group 6 CpAm complexes described herein present a rare case for the simultaneous 

fixation of both CO2 and N2 to produce a value added product within a complete 

synthetic cycle.64,65    

 

4.4 Conclusion 

 Several methods for the completion of the desired synthetic cycle for N2 

fixation have been explored.  The first strategy examined was the attempted synthesis 
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of mono(carbonyl) complexes bearing labile ligands which we hoped would be 

displaced easily by N2. In the case of dimethyl sulfide, C-S bond activation was found 

to occur, which lead to the formation of a tungsten !2-acyl complex, similar to those 

reported by Legzdins previously,27 and methylation resulted in the regeneration and 

loss of dimethyl sulfide.  Olefins were found to add to both molybdenum and 

tungsten to yield the desired compounds, however the generation of the ‘end-on-

bridged’ dinitrogen compounds from these precursors was not successful in any 

meaningful way.  Furthermore, in the case of tungsten, olefins with accessible $- or %-

hydrogens lead to the production of decomposition products, which were able to be 

identified on the basis of NMR spectroscopy, and fully characterized in the case of 

iso-butene. 

 The discovery that the known terminal oxo compounds 48 and 49 are viable 

precursors for the regeneration of the ‘end-on-bridged’ N2 compounds 40 and 41 was 

paramount to success in completing the desired synthetic cycle. Accordingly, it has 

been unequivocally established that these compounds may be used to produce a 

variety of isocyanates and subsequently be regenerated in moderate yields.  Notably, 

the process couples two fundamental challenges posed to the chemical community, 

the fixation of CO2 and N2, in one process.  The discoveries presented here have laid 

the foundation for future exploration into the operation of this synthetic cycle in a 

catalytic manner, likely invoking an electrochemical means for the final reduction 

step. Furthermore, investigations into the [2+2] cycloaddition reaction of CO2 

warrants further mechanistic studies.  Specifically, a key hurdle to overcome will be 

the spectroscopic identification and, if possible, isolation of the transition state 
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species.  Interrogation of the reaction kinetics by UV-vis and IR spectroscopies will 

be critical for such investigations. 
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Chapter 5: Synthesis, Stability, and Reactivity of Mid Valent 
Group 6 Alkyl, Alkylidene, and Alkylidyne Complexes 
 
 
 
5.1 Introduction 

 The synthesis and reactivity of transition metal compounds containing metal-

carbon multiple bonds has long attracted the attention of the chemical community.  In 

particular, alkylidenes, which are compounds containing formal metal carbon double 

bonds, have gained significant fame for their role in olefin metathesis reactions, for 

which Schrock, Grubbs, and Chauvin shared the Nobel Prize in 2005.1-4  Fischer first 

reported the synthesis of such a compound in 1964 by treatment of tungsten carbonyl 

[W(CO)6] (134) with methyllithium, followed by addition of a cationic methylating 

agent, to yield {[(CO)5W[C(OCH3)CH3} (135).5  Several years later, Schrock 

prepared the first member of a different and distinct class of alkylidene complexes, 

which have since been named for him, through the addition of 2 equivalents of neo-

pentyllithium to the tantalum (V) precursor [(CH3)3CCH2]3TaCl2 (136), to generate 

the penta-neo-pentyl complex [(CH3)3CCH2]5Ta (137), which then undergoes !-

hydrogen abstraction to provide the alkylidene product 

[(CH3)3CCH2]3Ta[CHC(CH3)3] (138) (Scheme 62).6  
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 In regard group 6 chemistry since these foundational discoveries, an 

innumerable amount of high valent [i.e. M(VI)] Schrock-type alkylidene complexes 

have been synthesized and appeared in the literature.  Most commonly, these 

compounds serve to catalyze olefin metathesis reactions, and the topic has been 

reviewed extensively.7-11  What is far less common, however, is the preparation of  

group 6 alkylidene complexes in which the metal exists in a lower oxidation state.   

Legzdins has reported the synthesis of molybdenum (II) and tungsten (II) di-neo-

pentyl species which are mildly stable in solution.  Upon thermal activation, !-

hydrogen abstraction yields very reactive 16 electron M(II) alkylidene complexes, 

which may be trapped in the presence of a coordinating ligand (e.g. trimethyl 

phosphine) or, more commonly, undergo a variety of C-H activation reactions.12-14  

Within the scope of the CpAm ligand environment, Dr. Jonathan Reeds has 

previously prepared one molybdenum (IV) alkylidene complex, however could only 

do so in the presence of a carbonyl ligand to generate the (presumably) more stable 

18 electron species Cp*[N(iPr)C(CH3)N(iPr)]Mo(CHCHCPh2)(CO) (139). 

 Given the lack of reports regarding group 6 alkylidene complexes which exist 

in low to mid oxidation states with electron counts less than 18, we became interested 

in determining whether or not such species could exist when supported by the CpAm 

ligand framework.  To explore this, the reactivity of the CpAm M(IV) dichloride 

complexes Cp*[N(iPr)C(CH3)N(iPr)]MCl2 [M = Mo (42), M = W (108)] towards 

alkylating agents was explored, with the hope of generating dialkyl complexes which 

would then undergo !-hydrogen abstraction to provide the desired alkylidene 

products. 
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5.2 Molybdenum 

   

We first elected to explore the reaction of the dichloride compound 42 with 

two equivalents of ethyllithium.  As shown in Scheme 63, treatment of 42 with 

ethyllithum at -30 °C in Et2O followed by slow warming to room temperature lead to 

the isolation of the molybdenum ethene hydride complex 

Cp*[N(iPr)C(CH3)N(iPr)]Mo(C2H4)(H) 140 in low yield.  The presence of the 

hydride ligand was initially inferred from the high degree of asymmetry of the ethene 

ligand, as depicted in Figure 41a.  Attempts to independently refine the hydrogen 

atom at the molybdenum center through XRD were unsuccessful, however, and its 

existence could not be confirmed by 1H NMR spectroscopy given the paramagnetic 

nature of compound 140.   

 Given the previously demonstrated success of the use of a phenyl group in the 

distal position of the amidinate ligand to provide molybdenum complexes that are 

highly crystalline, the reaction was repeated beginning from the dichloride compound 

57 to provide the analogous ethene hydride species 

Cp*[N(iPr)C(Ph)N(iPr)]Mo(C2H4)(H) (141) in much higher yield.  Gratifyingly, 
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compound 141 allowed for the unequivocal identification of a hydride ligand at the 

metal center by X-ray diffraction, and the structure is depicted in Figure 41b. 

In the solid state, 140 and 141 display C-C bond lengths of the ethene ligand 

of 1.463(11) Å and 1.412(5) Å, respectively, noticeably longer than that in free 

Figure 41. Molecular structures (30% thermal ellipsoids) of 
compounds 140 (a) and 141 (b). H atoms have been omitted for clarity 
except for H1 in 141 which is depicted as a small white sphere. 
Selected bond lengths (Å) for 140: C19-C20 1.463(11), Mo1-C19 
2.083(4), Mo1-C20 2.202(3); for 141: C24-C25 1.412(5), Mo1-C24 
2.161(3), Mo1-C25 2.196(3). 
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ethene (1.330 Å),15 indicative of significant "-backbonding from the molybdenum 

center to the "* orbital of ethene.  This is supported by a significant decrease in the 

sum of all angles about each carbon atom of the ethene ligand (e.g. 345.0° for C19 in 

140), indicating substantial deviation from the geometry expected for a trigonal 

planar olefin experiencing little to no "-backbonding of 360°. Accordingly, in both 

compounds 140 and 141, the molybdenum can be regarded as lying close to the 

middle between the two extreme resonance structures of a metallocyclopropane type 

species in which the formal oxidation state of the metal is +5, and an olefin complex 

in which the formal oxidation state of the metal is +3 (depicted schematically in 

Scheme 63).16 

  We hypothesize that the formation of 140 and 141 proceeds through the 

rather simple mechanism depicted in Scheme 64.  The first equivalent of ethyllithium 

serves to reduce the metal by one electron to form a molybdenum (III) monochloride 

intermediate, which then undergoes salt metathesis to provide a 15 electron 

molybdenum (III) ethyl species.  From here, #-hydride elimination occurs to generate 

the final products 140 and 141.  Previously, we have reported that CpAm compounds 

of tantalum, titanium, zirconium, and hafnium bearing alkyl ligands with #-hydrogens 
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are immune to such decomposition pathways, even at elevated temperatures in some 

instances.17-20  In these cases, however, the metal center is of five coordinate piano 

stool geometry (save titanium), whereas in the present case the molybdenum ethyl 

species are (presumably) four coordinate pseudo-tetrahedral, which may allow for the 

proper syn-coplanar geometry necessary to allow for #-hydride elimination to occur.  

On the other hand, the proposed molybdenum (III) ethyl intermediates are d3 species, 

whereas those reported previously for group 4 and 5 compounds are either d1 or d0 

complexes, which also likely contributes to their stability with regard to #-hydride 

elimination.  Efforts were undertaken to circumvent the observed #-hydride 

elimination to obtain a four coordinate molybdenum (III) alkyl species.   First, we 

switched to an alkylating agent that lacks #-hydrogens, benzyl magnesium chloride, 

however no molybdenum benzyl complex could be isolated.  Furthermore, we 

employed alkylating agents that possess C#-H bonds more resistant to #-hydride 

elimination,21 such as iso-butyl magnesium chloride, however in these cases #-

hydride elimination was in fact observed, and the resulting bulky olefin was displaced 

by N2 to provide the molybdenum (III) ‘end-on-bridged’ dinitrogen species 

{Cp*[N(iPr)C(CH3)N(iPr)]Mo(H)}2(µ-!1:!1-N2) (142).22 

 Initially, no interesting reactivity was observed with these new ethene hydride 

species.  Specifically, we were interested in inducing the microscopic reverse reaction 

of #-hydride elimination, olefin insertion, to regenerate the proposed molybdenum 

(III) ethyl intermediate, with the hopes of observing olefin oligomerization or, ideally, 

ethene trimerization, given the tremendous importance of this process.23-28  Heating a 

benzene-d6 solution of compound 140 for several days under ethene or propene 
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atmosphere (10 psi) lead to no observable reaction nor the production of any higher 

!-olefins as judged by 1H NMR.  However, simply increasing the pressure of ethene 

in the reaction to 80 psi did in fact lead to the formation of a mixture of 1-butene and 

2-butene after several days, with the latter appearing in noticeably higher 

concentration.  No higher olefins (hexene, octane, etc.) nor oligomers were observed 

by 1H NMR, and the use of a cocatalyst only lead to the slowing of the observed 

reaction rate.  Presumably, rather than inducing olefin insertion into the Mo-H bond, 

ethene coordinates to the metal and forms a metallocyclopentane structure, which 

then undergoes #-hydride elimination followed by reductive elimination to produce a 
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1-butene hydride species.  The fact that 2-butene is observed in larger amounts than 

1-butene suggests that the newly formed olefin ligand inserts into the Mo-H bond 

followed by another #-hydride elimination to finally produce 2-butene (Scheme 65).  

To test this hypothesis, the ‘end-on-bridged’ dinitrogen complex 40 was treated with 

ethene under identical conditions, and in this case 1-butene was the major isomer 

observed due to the lack of the initial hydride ligand at the molybdenum center which 

is essential for the metal mediated isomerization process. 

 

5.3 Tungsten 

 Given the observation that the preparation of a molybdenum alkylidene 

through !-hydrogen abstraction may not be possible due to the fact that the first 

addition of alkylating agent serves only to reduce the metal, we next targeted the 
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analogous reaction with tungsten.  Accordingly, as shown in Scheme 66, the tungsten  

(IV) dichloride compound 108 was treated with two equivalents of ethyllithium under 

similar conditions, which lead to the isolation of the ethylidyne hydride species 

Cp*[N(iPr)C(CH3)N(iPr)]W(CCH3)(H) (124) in moderate yield.  In benzene-d6 

solution, compound 124 exhibits ‘ring-flipping’ of the amidinate ligand on the NMR 

timescale, as evidenced by broad peaks which suggest apparent Cs symmetry.  

Furthermore, a diagnostic resonance for the hydride ligand appears in the 1H NMR 

spectrum at 6.77 ppm (1JWH = 94 Hz), nearly identical to the hydride resonance of 

compound 128, and long range coupling for the protons of the ethylidyne ligand to 

183W (2JWH = 9 Hz) and the hydride ligand (3JHH = 1 Hz) was also observed.  Single 

crystals were obtained for compound 124 and the solid state molecular structure is 

depicted in Figure 42.29  The W1-C19 bond length of 1.7940(9) Å is in keeping with 

others reported for tungsten (VI) alkylidyne complexes.30-32 

 In regard to the mechanism through which compound 124 is produced, the 

most logical proposal is that the desired tungsten (IV) bis(ethyl) species 143 is 

generated through salt metathesis from the dichloride complex 108.  From here, !-

hydrogen abstraction readily occurs to liberate ethane and produce the tungsten (IV) 

ethylidene complex 126.  Unfortunately, compound 126 likely is not stable, and !-

hydrogen elimination occurs to yield the final product 124 (Scheme 66). Tungsten 

alkylidene complexes in which the metal is not in its highest oxidation state and have 

electron counts of less than 18 are known to be susceptible to such !-hydrogen 

elimination processes.33,34   
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The microscopic reverse of this undesired elimination reaction could not be 

observed to have occurred by heating in benzene-d6 solution, even in the presence of 

olefins.33  However, upon heating in the presence of various nitriles (NCR, R = CH3, 

Ph, tBu, Naph) in benzene-d6 solution, slow formation of new compounds of C1 

symmetry (designated 144 – 147, respectively, Scheme 67) was observed by 1H 

NMR, which were determined to be Fischer alkylidene complexes in which C-H bond 

activation of the Cp* ligand had occurred.  The mechanism through which these new 

compounds form is believed to involve initial isomerization to a tungsten (IV) 

alkylidene upon coordination of a nitrile, followed by isomerization and elimination 

of ethene (observed by 1H NMR), which occurs as the nitrile assumes an !2 

coordination mode, followed by C-H bond activation and formation of the new 

Figure 42. Molecular structure (30% thermal ellipsoids) of 
compound 124. H atoms have been omitted for clarity except 
for H1 which is depicted as a small white sphere. Selected 
bond lengths (Å) and angles (°): W1-C19 1.7940(9), C19-C20 
1.4790(15), W1-C19-C20 167.86(9). 
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alkylidene.  When 13C-labeled acetonitrile was employed (N13CCH3), the formation 

of the proposed new tungsten-carbon bond was confirmed by the observation of a 

new resonance in the 13C{1H} NMR spectrum at 83.2 ppm which displayed the 

expected coupling to the 183W center (1JWC = 35 Hz).  Unfortunately, these new 

species were extremely resistant to crystallization from all solvents employed, and 

thus confirmation of the structures through single crystal XRD could not be obtained.   

 

5.4 Conclusion 

 For both tungsten and molybdenum, the targeted alkylidene complexes could 

not be isolated.  Specifically, in the case of molybdenum, initial reduction of the 

metal center occurs to provide mono(chloride) species, which prevents the generation 
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of the desired bis(alkyl) complexes which we hoped would go on to generate 

alkylidene ligands through an !-hydrogen abstraction mechanism.  In the case of 

tungsten, such a reaction was able to be observed, however the product was not 

immune to !-hydride elimination, which lead to the isolation of an ethylidyne hydride 

complex.  Unfortunately, the only successful method for inducing the reverse reaction 

involved the liberation of ethene and the formation of new Fischer alkylidene 

complexes in which the alkylidene moiety is tethered to the Cp* ligand.  These 

compounds could not be structurally characterized, despite extensive efforts.  The 

instability of desired ethylidene intermediate complex 126 likely arises from the fact 

that !-hydrogens are known to possess significant amounts of positive charge in early 

transition metal complexes.  Accordingly, the presence of a d2 tungsten center in such 

close proximity to this !-hydrogen results in the rapid abstraction observed.  Likely, 

as in the case of the molybdenum complex 139 described above, this decomposition 

within a d2 group 6 compound may only be prevented by the presence of an 

additional ligand to increase the electron count to 18, however in doing so further 

reactivity could be inhibited.  
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Chapter 6: Summary and Outlook 
 
 
 
 The inclusion of small, highly abundant molecules into the synthesis of 

commodity chemicals is a challenge which will continue to grow in importance as the 

Earth’s population and market demands continue to steadily increase and pressure to 

reduce the environmental impact of such processes intensifies.  To this end, 

organometallic complexes have played, and will continue to play, a key role in 

catalyzing the production of such value added products.  One of the most inviting 

aspects of the use of transition metals complexes for the activation of small molecules 

is their ability to activate and cleave strong multiple bonds under ambient conditions, 

however this typically results in the formation of equally strong metal-heteroatom 

bonds, which themselves too are inert.  Therefore, future research must focus on fine-

tuning metal species through the appropriate selection of ligands, such that they may 

sufficiently activate inert bonds under reasonable conditions, yet go on to react in a 

productive manner to produce a useful product.   

 In this regard, mid valent group 6 complexes supported by the CpAm ligand 

environment have proven quite effective, and have been detailed extensively in this 

thesis.  It has been shown that M(IV) oxo complexes form under mild conditions 

through the activation of sulfoxides, and that these oxo complexes are reactive 

towards CO to allow for the photocatalytic OAT from sulfoxides to CO. In a similar 

fashion, several M(IV) imido complexes (in which the nitrogen atom is derived from 

N2) react not only with CO but also the greenhouse gas CO2 in an unprecedented 

manner (within group 6) to produce the M(IV) oxo complexes and isocyanates.  The 



! "#$!

unusual reactivity observed may be attributed to both the sterics and electronics of 

these CpAm compounds. The amidinate ligand offers a relatively small bite angle, 

which decreases steric demand of the supporting ligands around the metal-heteroatom 

bonds of interest and allows for the binding of multiple !-acids, which may be key for 

productive substrate oxidation.  Furthermore, these systems operate either in a 

M(II)/M(IV) redox couple, or exclusively in the M(IV) oxidation state, which are 

more reduced than biological and biomimetic systems which have historically been 

very popular.  These oxidation states may in fact be of great importance to explaining 

the observed reactions.  In order to gain a better understanding of these complexes 

and truly assess the reasons for their reactivity, computational studies will be 

required.  Furthermore, investigations into the mechanism and thermodynamics 

associated with these transformations have yet to be undertaken, but are currently a 

top priority for our group.  Specifically, kinetics experiments will be performed in 

order to gain details regarding the reaction rates and mechanisms for the [2+1] 

cycloaddition of CO to the tungsten and molybdenum imido complexes available to 

our group, as well as the novel [2+2] cycloaddition of CO2.  Ideally, spectroscopic 

evidence for key intermediates for this latter reaction will be observed. 

When extended to sulfur, molybdenum CpAm complexes were found to 

activate S8, an incredibly inexpensive and abundant resource that has not yet been 

thoroughly explored as a reagent, in manners that avoid the formation of strong 

molybdenum-sulfur multiple bonds, therefore allowing for the facile catalytic 

synthesis of several sulfur containing small molecules under mild conditions.  Aside 

from these processes utilizing a plentiful reagent in an environmentally sound 
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manner, what truly sets the technology reported in this thesis apart from that in other 

work in this field is the fact that these reactions proceed uninhibited when performed 

in the presence of other reactants, which has allowed for several ‘one-pot’ procedures 

which efficiently incorporate sulfur atoms, derived from plentiful S8, or CO into 

valuable organic products.  In doing so, these catalysts provide alternatives to the use 

of phosgene and thiophosgene to install carbonyl and thiocarbonyl groups into 

organic molecules, which are extremely hazardous reagents.  It is typical to assume 

that organometallic complexes such as those described within this thesis are highly 

reactive, and the addition of Lewis basic (or other reactive) reagents will inhibit or 

prevent catalysis.  Here, we have detailed several examples where this is not the case, 

and in doing so have circumvented the need to isolate and purify dangerous, difficult 

to handle products.  We believe that this methodology should be able to be extended 

to many more catalytic systems, and hope to discover more processes within our 

group as well. 

Lastly, a major goal for organometallic chemists is to transform small olefinic 

molecules, such as ethene, selectively into higher olefins under reasonable conditions.  

To this end, molybdenum complexes supported by the CpAm ligand environment are 

capable of selectively dimerizing ethene to either 1- or 2-butene, depending on the 

precatalyst employed.  Although the sterics provided by the CpAm ligand set are 

sufficiently unencumbering to allow for the binding of multiple additional ligands, the 

reason why butenes are formed selectively by these compounds rather than hexenes is 

likely due to the fact that the metallocycloheptane intermediate which is necessary to 

form in the trimerization of ethene is unable to form due to the bulkiness of the 
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supporting ligand framework.  Accordingly, the sterics of these molybdenum species 

should be able to be easily tuned to allow for the production of hexenes through the 

installation of smaller groups on either (or both) the cyclopentadienyl and amidinate 

ligands.  Furthermore, such reduction in sterics may also allow for an increase in the 

rate of reaction between the molybdenum and tungsten imido complexes with CO and 

CO2, and as such warrants investigation as well. 
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Appendix: Experimental Procedures 

 

General Procedures. All manipulations with air and moisture sensitive compounds 

were carried out under N2 or Ar atmospheres with standard Schlenk or glovebox 

techniques. Et2O and THF were dried over Na/benzophenone and distilled under N2 

prior to use.  Toluene and pentane were dried and deoxygenated by passage over 

activated alumina and GetterMax®  135 catalyst (purchased from Research Catalysts, 

Inc.) within a PureSolv solvent purification system manufactured by Innovative 

Technologies (model number PS-400-4-MD) and collected under N2 prior to use. 

Benzene-d6, toluene-d8, and THF-d8 were dried over Na/K alloy and isolated by 

vacuum-transfer prior to use, except when otherwise stated. CeliteTM was oven dried 

(150 °C for several days) before use in the glovebox.  Cooling was performed in the 

internal freezer of a glovebox maintained at -30 °C. tert-Butyl isocyanide and all 

amines were purchased from Sigma-Aldrich and degassed by three “freeze-pump-

thaw” cycles prior to use. tert-Butyl isothiocyanate, carbon disulfide, 

hexamethyldisiloxane, acetonitrile, tert-butylnitrile, and benzylnitrile were dried over 

CaH2 and isolated by vacuum transfer prior to use.  2,6-Dimethylphenyl isocyanide, 

methyl triflate, activated manganese (IV) oxide, sulfur, ethyllithium, iso-butyl 

magnesium chloride, n-butyllithium, methyllithium, trimethylsilyl chloride, 

trimethylgermyl chloride, N,N-diisopropylcarbodiimide, and naphthalene-2-

carbonitrile were used as received. All gaseous reagents were purchased from Sigma-

Aldrich or Matheson and used as received.  Chloroform-d and DMSO-d6 were used as 

received. Liquid olefins were distilled from molten Na or Na/benzophenone under N2 
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or vacuum prior to use. Sulfoxides and sulfides were distilled from CaH2 under N2 or 

vacuum.  Methyl isocyanide, Cp*MoCl4, and compounds 40, 41, 42, 43, 44, 45, 48, 

49, 108, 111, 112, 113, 122, and 133 were prepared according to the literature in 

similar yield and purity.1-6  1H NMR spectra were recorded at 400 or 500 MHz.  13C 

NMR spectra were recorded at 125 MHz.  19F NMR spectra were recorded at 376 

MHz and referenced externally to !,!,!-trifluorotoluene. Photolysis reactions were 

performed using a Rayonet® Photochemical Reactor containing a carousel of 

ultraviolet lamps (catalogue number: RPR-3500A) borrowed from Prof. P. DeShong. 

Elemental analyses were carried out by Midwest Microlab LLC. 

 

Synthesis of Cp*Mo[N(iPr)C(CH3)N(iPr)](O)2 (54). MnO2 (0.195 g, 2.24 mmol) 

was added to a solution of 40 (0.173 g, 0.22 mmol) in 10 mL toluene and stirred for 

20 m.  The solution was filtered through Celite, and additional MnO2 (0.162 g, 1.87 

mmol) was added and stirred for 3 hours. The solution was filtered through Celite, 

pumped down to dryness, and the resulting yellow oil was dissolved in minimal Et2O 

and cooled to -30 °C, yielding 54 as yellow crystals (0.100 g, yield = 58%). 1H NMR 

(400 MHz, benzene-d6): 1.20 (12 H, d, J = 6.6 Hz), 1.51 (3H, s), 1.88 (15H, s), 3.61 

(2H, sp, J = 6.6 Hz). 

 

Synthesis of Cp*Mo[N(iPr)C(Ph)N(iPr)](O)2 (55).  MnO2 (0.106 g, 1.21 mmol) was 

added to a solution of 56 (0.104 g, 0.12 mmol) in 10 mL toluene and stirred for 20 m.  

The solution was filtered, and additional MnO2 (0.111 g, 1.27 mmol) was added and 

the solution was stirred for 30 m.  The solution was filtered and additional MnO2 
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(0.076 g, 0.87 mmol) was added and the solution was stirred for 20 m.  The solution 

was filtered through Celite and volatiles were removed in vacuo. The crude material 

was dissolved in minimal Et2O and cooled to -30 °C, yielding 55 as yellow crystals 

(0.058 g, yield = 56%). 1H NMR (400 MHz, benzene-d6): 1.24 (12H, d, J = 6.5 Hz), 

1.95 (12H, s), 3.53 (2H, sp, J = 6.5 Hz), 7.02 (5H, br). 

 

Synthesis of Cp*Mo[N(iPr)C(Ph)N(iPr)]Cl2 (57). A solution of Cp*MoCl4 (0.500 g, 

1.34 mmol) in 100 mL Et2O was cooled to -30 °C, at which point a solution of 

Li[N(iPr)C(Ph)N(iPr)] (0.722 g, 2.77 mmol) in 30 mL Et2O, precooled to -30 °C,  was 

added dropwise over a period of 5 min.  The resulting solution was allowed to warm 

to room temperature and stirred overnight.  The brown solution was then pumped 

down to dryness, extracted in toluene, filtered through Celite, and pumped down to 

dryness.  The residue was recrystallized from toluene at -30 °C, and then washed with 

pentane (2 " 10 mL), furnishing brown crystals of 57 (0.527 g, yield = 78%).  For 3: 

Anal. Calcd. for C23H34Cl2N2Mo: C, 54.64; H, 6.78; N, 5.54; Found: C, 54.54; H, 

6.74; N, 5.39. 1H NMR (400 MHz, benzene-d6): 2.5 (br), 6.4 (br), 9.1 (br), 11.8 (br), 

13.6 (br), 20.5 (br). 

 

Synthesis of {Cp*M[N(iPr)C(Ph)N(iPr)]}2(µ-!1:!1-N2) (56).  In a dinitrogen filled 

glovebox, a 250 mL Schlenk flask charged with a solution of 57 (0.253 g, 0.50 mmol) 

in 20 mL THF was cooled to -30 °C, at which point 0.5% (w/w) of NaHg (6.932 g, 

1.51 mmol) was added, and the solution was allowed to warm to room temperature.  

The reaction mixture was stirred for 2 h to yield an orange-brown colored solution, at 
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which time volatiles were removed in vacuo and the solid residue was extracted in 

pentane, filtered through Celite, and pumped down to dryness.  The resulting solid 

was dissolved in a small amount of pentane and cooled to -30 °C to afford orange-

brown crystals of 56 (0.098 g, yield = 44%).  For 56: Anal. Calcd. for C46H68N6Mo2: 

C, 61.58; H, 7.64; N, 9.37; Found: C, 61.74; H, 7.53; N, 9.39.  1H NMR (400 MHz, 

benzene-d6): 0.85 (12H, d, J = 6.3 Hz), 1.18 (12H, d, J = 6.3 Hz), 1.93 (30H, s), 3.45 

(4H, sp, J = 6.3 Hz), 7.14 (8H, br), 7.98 (2H, br). 

 

Synthesis of Cp*Mo[N(iPr)C(Ph)N(iPr)](CO)2 (68).  A solution of 56 (0.052 g, 

0.06 mmol) in 5 mL toluene was prepared in a vial and transferred to a 50 mL storage 

tube equipped with a Teflon seal.  The headspace was evacuated and charged with 

carbon monoxide (10 psi).  The resulting dark red solution was then stirred overnight 

at room temperature.  Volatiles were removed in vacuo, and the resulting red crystals 

were extracted in toluene, filtered through a pad of Celite, and pumped down to 

dryness. The resulting solid was then cooled to -30 °C in 3 mL pentane to afford red 

crystals of 68 (0.043 g, yield = 76%).  For 68: Anal. Calcd. for C25H34N2O2Mo: C, 

61.20; H, 6.99; N, 5.71; Found: C, 61.30; H, 6.93; N, 5.68. 1H NMR (400 MHz, 

benzene-d6): 0.93 (6H, d, J = 6.4 Hz), 1.03 (6H, d, J = 6.4 Hz), 1.79 (15H, s), 3.41 

(2H, sp, J = 6.4 Hz), 7.03 (5H, m). IR (KBr) !C=O = 1910 and 1810 cm-1.  13C-

Labeled-68 was prepared by an identical procedure using 13C-labeled carbon 

monoxide. 13C{1H} NMR (125.6 MHz, benzene-d6): "CO= 269.2. 
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Synthesis of Cp*Mo[N(iPr)C(Ph)N(iPr)](CO)(NCCH3) (70).  A solution of 56 

(0.033 g, 0.04 mmol) and acetonitrile (38 µL, 0.73 mmol) in 1 mL benzene-d6 was 

transferred to a Pyrex J-Young NMR tube equipped with a Teflon seal.  The 

headspace was evacuated and charged with carbon monoxide (2 psi).  The mixture 

quickly turned red, and was allowed to react at room temperature for 1 h with 

periodic agitation, at which point the reaction was observed to be complete by 1H 

NMR.  Volatiles were then removed in vacuo.  The resulting crude material was 

extracted in toluene, filtered through a pad of Celite, and pumped down to dryness.  

The residue was cooled to -30 °C in 5 mL pentane to afford orange crystals of 70 

(0.027 g, yield = 72%). For 70: Anal. Calcd. for C26H37N3OMo: C, 62.00; H, 7.41; N, 

8.35; Found: C, 62.20; H, 7.23; N, 8.39. 1H NMR (400 MHz, benzene-d6): 0.94 (3H, 

d, J = 6.5 Hz), 1.05 (3H, d, J = 6.5 Hz), 1.13 (3H, d, J = 6.5 Hz), 1.26 (3H, d, J = 6.5 

Hz) 1.40 (3H, s), 1.82 (15H, s), 3.59 (1H, sp, J = 6.5 Hz), 3.67 (1H, sp, J = 6.5 Hz), 

7.12 (3H, m), 7.28 (2H, m). IR (KBr) !C=O = 1767 cm-1. 13C-Labeled-70 was prepared 

by an identical procedure using 13C-labeled carbon monoxide. 13C{1H} NMR (125.6 

MHz, benzene-d6): "CO = 281.7. 

 

Synthesis of Cp*Mo[N(iPr)C(Ph)N(iPr)](CO)(!2-S2) (71) (from 56). A solution of 

56 (0.040g, 0.04 mmol) and acetonitrile (40 µL, 0.77 mmol) in 0.6 mL benzene-d6 

was transferred to a Pyrex J Young NMR tube equipped with a Teflon seal.  The 

headspace was evacuated and charged with carbon monoxide (3 psi). The tube was 

shaken periodically over the course of 2 h, at which point complete conversion to 70 

was observed.  Volatiles were removed in vacuo, and the resulting orange solid was 
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redissolved in 2 mL toluene and excess S8 (0.023 g, 0.09 mmol) was added.  The 

resulting mixture was agitated for 2 m, filtered through a pad of Celite, and pumped 

down to dryness.  The resulting solid was dissolved in minimal toluene layered with 

pentane and cooled to -30 °C to afford orange crystals of 71 (0.028 g, yield = 56%).  

For 71: Anal. Calcd. for C24H34N2S2OMo: C, 54.74; H, 6.51; N, 5.32; Found: C, 

54.32; H, 6.64; N, 5.18. 1H NMR (400 MHz, benzene-d6): 0.73 (3H, d, J = 6.8 Hz), 

0.75 (3H, d, J = 6.5 Hz), 1.21 (3H, d, J = 6.5 Hz), 1.28 (3H, d, J = 6.7 Hz), 1.65 (15H, 

s), 3.28 (1H, sp, J = 6.5 Hz), 3.55 (1H, sp, J = 6.8 Hz), 6.91 (1H, m), 7.03 (3H, m), 

7.47 (1H, m).  IR (KBr) !C=O = 1921 cm-1.   

 

Synthesis of Cp*Mo[N(iPr)C(Ph)N(iPr)](CO)(!2-S2) (71) (from 70).  A solution of 

70 (0.016 g, 0.03 mmol) and S8 (0.008 g, 0.03 mmol) in 1 mL benzene-d6 was 

transferred to a Pyrex J Young NMR tube equipped with a Teflon seal.  1H NMR 

recorded immediately confirmed that the reaction was complete within minutes to 

produce 71.Volatiles were removed in vacuo and the orange residue was extracted in 

toluene and filtered through a pad of Celite.  The filtrate was pumped down to 

dryness to furnish orange crystals of 71 (0.012 g, yield = 74%).  13C-Labeled-71 was 

prepared by an identical procedure using 13C-labeled-70.  13C{1H} NMR (125.6 MHz, 

benzene-d6): "CO = 246.9. 

 

Synthesis of Cp*Mo[N(iPr)C(Ph)N(iPr)][!-(S,S)S2CO] (75). A solution of 71 

(0.020 g, 0.04 mmol) in 1.2 mL benzene-d6 was distributed between two Pyrex J 

Young tubes equipped with Teflon seals, and irradiated with UV light, with 1H NMR 
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spectra recorded periodically, until 100% formation of 75 was observed (150 m).  The 

solution was pumped down to dryness, extracted in toluene, filtered through Celite, 

and pumped down to dryness.  The resulting residue was dissolved in minimal 

toluene layered with pentane and cooled to -30 °C to furnish orange crystals of 75 

(0.013 g, yield = 66%). For 75: Anal. Calcd. for C24H34N2S2OMo: C, 54.74; H, 6.51; 

N, 5.32; Found: C, 54.49; H, 6.48; N, 5.31. 1H NMR (400 MHz, benzene-d6): 0.85 

(6H, d, J = 6.5 Hz), 1.22 (6H, d, J = 6.5 Hz), 1.75 (15H, s), 3.37 (2H, sp, 6.5 Hz), 

6.76 (1H, m), 6.93 (2H, m), 7.03 (1H, d, J = 7.7 Hz), 7.11 (1H, d, J = 7.2 Hz). 

13C{1H} NMR (125.6 MHz, benzene-d6): "CO = 205.5.  IR (KBr) !C=O = 1673 cm-1.   

 

Synthesis of {Cp*Mo[N(iPr)C(Ph)N(iPr)]}2(µ-S)2 (77).  In a 100 mL schlenk flask, 

a solution of 56 (0.042 g, 0.05 mmol) in 25 mL Et2O was cooled to -30 °C. A slurry 

of S8 (0.005 g, 0.02 mmol) in 15 mL Et2O precooled to -30 °C was then added 

dropwise.  The solution was allowed to warm to room temperature and stirred 

overnight.  The resulting red solution was then pumped down to dryness.  The 

resulting residue was extracted in pentane and filtered through a pad of Celite, and 

pumped down to dryness.  The crude, red residue was dissolved in a minimal volume 

of pentane and cooled to -30 °C to afford red crystals of 77 (0.037 g, yield = 85 %). 

1H NMR (400 MHz, benzene-d6): 0.96 (6H, d, J = 6.6 Hz), 1.07 (6H, d, J = 6.6 Hz), 

1.82 (15H, s), 3.45 (2H, sp, J = 6.6 Hz), 7.02 (4H, m), 7.31 (1H, m). 

 

NMR scale “On-Demand” Synthesis of 1,3-di(R) ureas.  A representative 

procedure is given.  To a solution of 68 (0.0038 g, 8 µmol) in 0.6 mL benzene-d6 in a 
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J Young NMR tube equipped with a Teflon seal was added S8 (0.0398 g, 155 µmol) 

and n-butyl amine (15 µL, 152 µmol). The headspace was evacuated and charged CO 

(10 psi). The solution was photolyzed for 18 h, at which point consumption of n-butyl 

amine was confirmed by 1H NMR.  Volatiles were removed in vacuo and the 

resulting crude material was filtered through silica gel with Et2O to remove solids.  

The resulting crude material was pumped down to dryness, redissolved in 

chloroform-d, analyzed by 1H and 13C{1H} NMR, and compared against literature 

reports to confirm the proposed structure. 

 

Preparative Scale “On-Demand” Synthesis of 1,3-di(R) ureas. A representative 

procedure is given. To a solution of 68 (0.0049 g, 10 µmol) in 2 mL toluene in a J 

Young NMR tube equipped with a Teflon seal was added S8 (0.5231 g, 2.039 mmol) 

and tert-butyl amine (210 µL, 1.998 mmol). The headspace was evacuated and 

charged with CO (20 psi).  The solution was photolyzed for 72 h, at which point 

volatiles were removed in vacuo and the resulting residue was extracted with 

dichloromethane, filtered through a plug of silica gel, and pumped down to dryness.  

The resulting solid was recrystallized from Et2O to afford 1,3-di(tert-butyl) urea as 

off white crystals (0.052 g, yield = 29.6%). 1H NMR (500 MHz, chloroform-d): 1.35 

(18H, s). 13C{1H} NMR (125.6 MHz, chloroform-d): 29.7, 50.4, 157.0. IR (KBr): 

3344, 2960, 1636, 1560 cm-1. ESI-MS: m/z 172.99 (M+H). 

 

Synthesis of Cp*Mo[N(iPr)C(Ph)N(iPr)](CNCH3)2 (80).  Methyl isocyanide (0.01 

mL, 0.19 mmol) was added via microsyringe to a solution of 56 (0.038 g, 0.04 mmol) 



! "$*!

in 3 mL of toluene at room temperature.  The resulting red solution was stirred for 1 

h, at which point volatiles were removed in vacuo.  The resulting red solid was 

extracted in pentane and filtered through a pad of Celite, the volume was reduced in 

vacuo, and the resulting solution was cooled to -30 °C overnight furnishing red 

crystals of 80 (0.037 g, yield = 85%). For 80: Anal. Calcd. for C27H40N4Mo C, 62.76; 

N, 7.81; H, 10.85; Found C, 63.09; N, 7.57; H, 10.79. 1H NMR (400 MHz, benzene-

d6): 1.07 (6H, d, J = 6.4 Hz), 1.15 (6H, d, J = 6.4 Hz), 1.95 (15H, s), 3.41 (6H, s), 

3.55 (2H, sp, J = 6.4 Hz), 7.05 (2H, m), 7.16 (2H, m), 7.23 (1H, d, J = 7.4 Hz). IR 

(KBr) !CN = 2086, 1767 cm-1. 

 

Preparative Scale “On-Demand” Synthesis of 1-aroylthiosemicarbazides.  A 

representative procedure is given.  S8 (0.0666 g, 0.26 mmol), 2,6-dimethylphenyl 

isonitrile (0.033 g, 0.25 mmol), benzhydrazide (0.033 g, 0.25 mmol), and compound 

80 (0.006 g, 0.01 mmol) were combined in 10 mL THF and heated to reflux for 18 h.  

Volatiles were removed in vacuo, and the resulting crude solid was extracted in ethyl 

acetate, washed with brine, filtered through a pad of silica gel and pumped down to 

dryness to furnish 1-benzoyl-4-(2,6-dimethylphenyl)thiosemicarbazide as an off 

white crystalline solid (0.049 g, yield = 67%). 1H NMR (400 MHz, 25 °C. DMSO-

d6): 2.17 (6H, s), 7.05 (3H, m), 7.49 (2H, t, J = 7.4 Hz), 7.57 (1H, t, J = 7.4 Hz), 7.97 

(2H, d, J = 7.4 Hz), 9.42 (1H, br), 9.58 (1H, br), 10.56 (1H, br). 13C{1H} NMR (125 

MHz, 25 °C. DMSO-d6): 17.9, 126.6, 127.3, 127.9, 128.0, 131.6, 132.7, 136.5, 137.0, 

166.1, 181.5.  ESI-MS m/z: 300.11 (M+H). 
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Synthesis of Cp*Mo[N(iPr)C(Ph)N(iPr)](CNtBu)[!-(S,C)SCNtBu] (84).  To a 

solution of 81 (0.06 mmol generated in situ) in 2 mL toluene was added S8 (0.014 g, 

0.06 mmol) at room temperature.  The resulting red solution was stirred for 10 m, at 

which point solids were removed by filtration through Celite, and volatiles were 

removed in vacuo to leave a red oil, which was analyzed by 1H NMR (confirming it 

to be analogous to the catalyst resting state) before being cooled to -30 °C in toluene 

layered with pentane to yield single crystals of 85 suitable for X-ray analysis. 

 

Synthesis of {Cp*Mo[N(iPr)C(Ph)N(iPr)]}2(µ-S)(µ-CS) (91).  Carbon disulfide 

(0.08 mL, 0.13 mmol) was added to a solution of 56 (0.057 g, 0.06 mmol) in 10 mL 

toluene at room temperature.  The mixture was stirred for 30 m to give a forest green 

solution, at which point volatiles were removed in vacuo.  The residue extracted in 

pentane, pumped down to dryness, and then dissolved in minimal pentane and cooled 

to -30 °C to yield forest green crystals of 91 (0.046 g, yield = 76%).  For 91: Anal. 

Calcd for Mo2C47H68N4S2 C, 59.72; H, 7.26; N, 5.93; Found C, 60.08; H, 7.45; N 

5.89. 1H NMR (400 MHz, benzene-d6): 1.10 (6H, d, J = 6.6 Hz), 1.16 (3H, d, J = 6.9 

Hz), 1.19 (6H, d, J = 6.6 Hz), 1.23 (3H, d, J = 6.6 Hz), 1.31 (3H, d, J = 6.2 Hz), 1.38 

(3H, d, J = 6.6 Hz), 1.93 (15H, s), 2.08 (15H, s), 3.35 (1H, sp, J = 6.6 Hz), 3.61 (1H, 

sp, J = 6.2 Hz), 3.70 (1H, sp, J = 6.2 Hz), 4.28 (1H, sp, J = 6.6 Hz), 7.09 (7H, m), 

7.25 (1H, d, J = 6.7 Hz), 7.29 (1H, d, J = 7.3 Hz), 7.48 (1H, d, J = 6.7 Hz).  13C{1H} 

NMR (125.6 MHz, benzene-d6): #C=S = 387.   
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Synthesis of Cp*Mo[N(iPr)C(Ph)N(iPr)][!-(S,S)S2CNtBu] (93).  To a solution of 

56 (0.042 g, 0.05 mmol) in 10 mL toluene in a 100 mL Schlenk tube was added tert-

butyl isothiocyanate (0.06 mL, 0.47 mmol). The tube was sealed and the solution was 

stirred at 65 °C for 3 d, at which point volatiles were removed in vacuo.  The 

resulting orange/red oil was extracted in pentane, filtered through Celite, concentrated 

and cooled to -30 °C to yield orange/red crystals of 93 (0.028 g, yield = 52%). For 93: 

Anal. Calcd. for C28H43N3S2Mo C, 57.81; N, 7.23; H, 7.46; Found C, 58.17; N, 7.29; 

H, 7.39. 1H NMR (400 MHz, benzene-d6): 0.93 (3H, d, J = 6.4 Hz), 0.95 (3H, d, J = 

6.4 Hz), 1.27 (3H, d, J = 6.4 Hz), 1.27 (3H, d, J = 6.4 Hz), 1.83 (15H, s), 1.84 (9H, s), 

3.37 (1H, sp, J = 6.4 Hz), 3.38 (1H, sp, J = 6.4 Hz), 6.94 (4H, m), 7.11 (1H, m). 

 

Synthesis of Cp*Mo[N(iPr)C(Ph)N(iPr)][!-(S,S)S2CN(CH3)tBu](SO3CF3) (94).  

Methyl triflate (0.01 mL, 0.08 mmol) was added to a solution of 93 (0.046 g, 0.08 

mmol) in 5 mL pentane at room temperature and stirred for 15 m.  The resulting 

orange powder was allowed to settle, at which point the supernatant was decanted.  

The resulting orange crystals were washed with pentane (2 X 10 mL), dissolved in 

benzene, and left at room temperature with slow diffusion of pentane into the solution 

to yield orange crystals of 94 (0.025 g, yield = 42%). For 94: Anal. Calcd. for 

C30H46N3S3O3F3Mo C, 48.33; N, 5.63; H, 6.22; Found C, 48.15; N, 5.59; H, 6.21. 1H 

NMR (400 MHz, benzene-d6):  0.80 (3H, d, J = 6.7 Hz), 0.83 (3H, d, J = 6.7 Hz), 

0.95 (3H, d, J = 6.7 Hz), 1.02 (3H, d, J = 6.7 Hz), 1.61 (9H, s), 1.71 (15H, s), 3.33 

(1H, sp, J = 6.7 Hz), 3.41 (1H, sp, 6.7 Hz), 3.65 (3H, s), 7.11 (2H, m), 7.22 (1H, d, J 
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= 7.7 Hz), 7.37 (1H, d, J = 8.1 Hz), 7.85 (1H, m). 19F NMR (376 MHz, benzene-d6): -

78.5. 

 

Synthesis of Cp*[N(iPr)C(CH3)N(iPr)]W[!2-C(O)CH3)(SCH3) (115).  A solution 

of 45 (0.075 g, 0.15 mmol) and dimethyl sulfide (65 µL, 0.89 mmol) in 4 mL toluene 

was prepared and transferred to a Pyrex J-Young NMR tube equipped with a Teflon 

seal. The solution was photolyzed for 24 h, at which point volatiles were removed in 

vacuo, and the resulting orange/red oil was extracted in pentane, filtered through a 

pad of Celite, and pumped down to dryness.  The crude material was dissolved in 

minimal Et2O and cooled to -30 °C to furnish 115 as an orange crystalline material 

(0.047 g, yield = 59%).  For 115: Anal. Calcd. for C21H38N2OSMo C, 45.83; H, 6.96; 

N, 5.09; Found C, 45.82; H, 6.82; N, 5.06. 1H NMR (400 MHz, benzene-d6):  0.88 

(3H, d, J = 7.2 Hz), 1.15 (3H, d, J = 7.2 Hz), 1.41 (3H, d, J = 6.5 Hz), 1.63 (3H, d, J = 

6.5 Hz), 1.74 (3H, s), 1.91 (15H, s), 2.41 (3H, s), 2.43 (3H, s, JWH = 2.8 Hz), 3.03 

(1H, sp, J = 6.9 Hz), 4.13 (1H, sp, J = 6.9 Hz). 13C-Labeled-115 was prepared by an 

identical procedure using 13C-labeled-45.  13C{1H} NMR (125.6 MHz, benzene-d6): 

"C=O = 275.7, 1JWC = 72 Hz. 

 

Synthesis of Cp*[N(iPr)C(CH3)N(iPr)]Mo(CO)(C2H4) (118). A solution of 122 

(0.060 g, 0.14 mmol) in benzene-d6 was prepared in a Pyrex J-Young NMR tube 

equipped with a Teflon seal.  The headspace was evacuated and charged with ethene 

(15 psi), shaken vigorously, and allowed to react for 16 h, at which point complete 

consumption of 122 was observed by 1H NMR.  Volatiles were removed in vacuo, the 
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crude material was extracted in pentane and filtered through a pad of Celite, and 

pumped down to dryness.  The resulting red crystals were dissolved in minimal 

pentane and cooled to -30 °C to furnish 118 as red crystals (0.043 g, yield = 75%). 

For 118: Anal. Calcd. for C21H36N2OMo C, 58.86; H, 8.43; N, 6.57; Found C, 58.87; 

H, 8.47; N, 6.54.  1H NMR (400 MHz, benzene-d6):  0.94 (3H, d, J = 6.9 Hz), 1.00 

(3H, d, J = 6.9 Hz), 1.02 (1H, m), 1.10 (3H, d, J = 6.5 Hz), 1.26 (3H, d, J = 6.4 Hz), 

1.31 (1H, m), 1.46 (3H, s), 1.64 (15H, s), 2.15 (1H, m), 3.07 (1H, sp, J = 6.9 Hz), 

3.32 (1H, m), 3.61 (1H, sp, J = 6.4 Hz).  IR (KBr) !C=O = 1867 cm-1. 

 

Synthesis of Cp*[N(iPr)C(CH3)N(iPr)]Mo(CO)(C7H10) (119).  A solution of 122 

(0.035 g, 0.08 mmol) and norbornene (0.021 g, 0.22 mmol) in benzene-d6 was 

prepared an transferred to a Pyrex J-Young NMR tube equipped with a Teflon seal.  

After 2 h complete consumption of 122 was observed by 1H NMR.  Volatiles were 

removed in vacuo and the crude material was extracted in pentane, filtered through a 

pad of Celite, and the filtrate was concentrated and cooled to -30 °C to furnish 119 as 

red/orange crystals (0.026 g, yield = 66%). For 119: Anal. Calcd. for C26H42N2OMo 

C, 63.14; H, 8.56; N, 5.66; Found C, 63.04; H, 8.55; N, 5.53.  1H NMR (400 MHz, 

benzene-d6):  0.89 (3H, d, J = 7.0 Hz), 0.99 (1H, d, J = 9.5 Hz), 1.04 (3H, d, J = 7.0 

Hz), 1.14 (1H, m), 1.21 (3H, d, J = 6.3 Hz), 1.34 (3H, d, J = 6.3 Hz), 1.42 (2H, m), 

1.50 (3H, s), 1.66 (15H, s), 1.87 (1H, d, J = 5.6 Hz), 2.04 (2H, m), 2.28 (1H, br), 2.35 

(1H, d, J = 5.6 Hz), 3.14 (1H, sp, J = 7.0 Hz), 3.31 (1H, br), 3.70 (1H, sp, J = 6.3 Hz). 

IR (KBr) !C=O = 1859 cm-1. 
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Synthesis of Cp*[N(iPr)C(CH3)N(iPr)]W(CO)(C2H4) (120).  A solution of 45 

(0.060 g, 0.12 mmol) in 1 mL benzene-d6 was prepared in a Pyrex J-Young NMR 

tube equipped with a Teflon seal.  The headspace was evacuated and charged with 

ethene (15 psi), at which point the tube was shaken vigorously and photolyzed for 16 

h.  The headspace was evacuated and charged with ethene again, and the solution was 

photolyzed for 9 h longer, at which point complete consumption of 45 was observed 

by 1H NMR.  Volatiles were removed in vacuo, the resulting crude material was 

extracted in pentane and filtered through a pad of Celite, and the filtrate was 

concentrated and cooled to -30 °C to furnish 120 as orange crystals (0.041 g, yield = 

67%). For 120: Anal. Calcd. for C21H36N2OW C, 48.85; H, 7.03; N, 5.42; Found C, 

48.91; H, 6.67; N, 5.44.  1H NMR (400 MHz, benzene-d6): 0.95 (3H, d, J = 6.7 Hz), 

0.98 (3H, d, J = 6.9 Hz), 0.99 (1H, m), 1.07 (3H, d, J = 6.5 Hz), 1.23 (3H, d, J = 6.3 

Hz), 1.27 (1H, m), 1.41 (3H, s), 1.74 (15H, s), 1.84 (1H, m), 3.00 (1H, sp, J = 6.8 

Hz), 3.01 (1H, m), 3.48 (1H, sp, J = 6.3 Hz). IR (KBr) !C=O = 1858 cm-1.  

 

Synthesis of Cp*[N(iPr)C(CH3)N(iPr)]W(CO)(C7H10) (121). A solution of 45 

(0.052 g, 0.10 mmol) and norbornene (0.103 g, 1.10 mmol) in 1 mL benzene-d6 was 

prepared and transferred to a Pyrex J-Young NMR tube equipped with a Teflon seal 

and photolyzed for 20 h, at which point complete consumption of 45 was observed by 

1H NMR.  Volatiles were removed in vacuo and the crude material was extracted in 

pentane, filtered through a pad of Celite, and pumped down to dryness to furnish 121 

as orange crystals (0.057 g, yield = 97%). For 121: Anal. Calcd. for C26H42N2OW C, 

53.61; H, 7.27; N, 4.81; Found C, 53.63; H, 7.00; N, 4.73.  1H NMR (400 MHz, 
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benzene-d6): 0.92 (3H, d, J = 6.8 Hz), 1.00 (3H, d, J = 6.8 Hz), 1.11 (1H, d, J = 9.8 

Hz), 1.17 (3H, d, J = 6.6 Hz), 1.28 (3H, d, J = 6.6 Hz), 1.36 (1H, m), 1.46 (3H, s), 

1.51 (2H, m), 1.75 (15H, s), 1.91 (1H, d, J = 6.5 Hz),  2.21 (2H, m), 2.28 (2H, m), 

3.06 (1H, sp, J = 6.8 Hz), 3.24 (1H, br), 3.60 (1H, sp, J = 6.6 Hz). IR (KBr) !C=O = 

1844 cm-1. 

 

Synthesis of Cp*[N(iPr)C(CH3)N(iPr)]Mo(CO)(C5H8) (123).  A solution of 122 

(0.035 g, 0.08 mmol) and cyclopentene (35 µL, 0.38 mmol) in 0.6 mL benzene-d6 

was prepared in a Pyrex J-Young NMR tube equipped with a Teflon seal and allowed 

to react for 2 h, at which point complete consumption of 122 was observed by 1H 

NMR.  Volatiles were removed in vacuo and the crude material was extracted in 

pentane and filtered through a pad of Celite.  The filtrate was concentrated and cooled 

to -30 °C to furnish 123 as red crystals (0.020 g, yield = 54%). For 123: Anal. Calcd. 

for C24H40N2OMo C, 61.53; H, 8.60; N, 5.98; Found C, 61.21; H, 8.31; N, 6.09.  1H 

NMR (400 MHz, benzene-d6): 0.96 (3H, d, J = 6.8 Hz), 1.05 (3H, d, J = 6.8 Hz), 1.12 

(3H, d, J = 6.5 Hz), 1.24 (3H, d, J = 6.4 Hz), 1.47 (3H, s), 1.65 (15H, s), 1.82 (2H, 

m), 1.98 (1H, m), 2.56 (1H, t, J = 5.4 Hz), 2.83 (2H, m), 3.18 (3H, m), 3.65 (1H, sp, J 

= 6.5 Hz).  IR (KBr) !C=O = 1861 cm-1.  

 

Synthesis of Cp*[N(iPr)C(CH3)N(iPr)]W(CCH3)(H) (124). A solution of 

ethyllithium (0.45 mL, 1.47 M) was added dropwise to a solution of 108 (0.175 g, 

0.33 mmol) in 75 mL Et2O at -30°C.  The resulting solution was allowed to warm to 

room temperature and stir overnight.  The solution was then pumped down to 
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dryness, extracted in pentane, and filtered through Celite.  The volume was reduced in 

vacuo and the solution was cooled to -30 °C to furnish dark yellow/brown crystals of 

124 (0.086 g, yield = 54%).  1H NMR (400 MHz, benzene-d6):  1.20 (12H, br), 1.44 

(3H, s), 2.10 (15H, s), 3.32 (3H, d, 3JHH = 1.3 Hz, 2JWH = 8.5 Hz), 3.46 (2H, br), 6.77 

(1H, s, 1JWH = 93.6 Hz). 

 

Synthesis of Cp*[N(iPr)C(CH3)N(iPr)]W(H)(!3-C4H7) (127).  A solution of 45 

(0.047 g, 0.09 mmol) in 0.6 mL benzene-d6 was prepared and transferred to a Pyrex J-

Young NMR tube equipped with a Teflon seal.  The headspace was evacuated and 

charged with iso-butene (15 psi) and the solution was photolyzed for 17 h.  Again the 

headspace was evacuated and charged with iso-butene, and the solution was 

photolyzed for 20 h.  This process was repeated once more, at which point nearly 

complete consumption of 45 was observed by 1H NMR.  Volatiles were removed in 

vacuo and the crude material was extracted in pentane, filtered through a pad of 

Celite, concentrated and cooled to -30 °C to furnish 127 as yellow crystals (0.032 g, 

yield = 68%). For 127: Anal. Calcd. for C22H40N2W C, 51.17; H, 7.81; N, 5.42; 

Found C, 50.64; H, 7.05; N, 5.03.  1H NMR (400 MHz, benzene-d6): -0.87 (1H, t, 

3JHH = 3.5 Hz, 1JWH = 54.7 Hz), 0.57 (1H, dd, J = 5.08 Hz, J = 1.8 Hz), 1.09 (3H, d, J 

= 6.9 Hz), 1.14 (3H, d, J = 6.9 Hz), 1.26 (3H, d, J = 6.7 Hz), 1.33 (3H, d, J = 6.9 Hz), 

1.36 (1H, br), 1.47 (1H, d, J = 3.2 Hz), 1.59 (3H, s), 1.73 (15H, s), 2.36 (1H, dd, J = 

5.2 Hz, J = 5.0 Hz), 3.05 (3H, s), 3.50 (1H, sp, J = 7.0 Hz), 3.68 (1H, sp, J = 6.8 Hz).   

13C{1H} NMR (125 MHz, benzene-d6): 11.2, 21.1, 24.2, 25.2, 26.0, 26.7, 30.5, 45.7, 

47.6, 52.8, 53.3, 79.0, 100.4, 165.3. 
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Synthesis of Cp*[N(iPr)C(CH3)N(iPr)]Mo(C2H4)(H) (140).  A solution of 

ethyllithium (2.4 mL, 0.34 M) in benzene/cyclohexane (90/10) was added dropwise to 

a solution of 42 (0.184 g, 0.41 mmol) in 80 mL of Et2O at -30 °C.  The resulting 

solution was allowed to warm to room temperature and stir overnight.  The solution 

was then pumped down to dryness, extracted in pentane, and filtered through Celite.  

The volume was reduced in vacuo, and the solution was cooled to -30 °C to afford 

140 as orange/brown crystals (0.055 g, yield = 33%).  For 140: Anal. Calcd. for 

C20H37MoN2 C, 59.82; H, 9.29; N, 6.98; Found C, 59.59; H, 9.26; N, 6.69. 

 

Synthesis of Cp*[N(iPr)C(Ph)N(iPr)]Mo(C2H4)(H) (141).  A solution of 

ethyllithium (0.8 mL, 0.32 M) in benzene/cyclohexane (90/10) was added dropwise to 

a solution of 57 (0.062 g, 0.12 mmol) in 15 mL Et2O at -30 °C.  The resulting 

solution was allowed to warm to room temperature and stir overnight.  The solution 

was then pumped down to dryness, extracted in pentane, filtered through Celite, and 

pumped down to dryness.  The resulting brown/red oil was dissolved in minimal 

pentane and cooled to -30 °C to afford 141 as orange/red crystals (0.047 g, yield = 

83%). For 141: Anal Calcd. for C25H39MoN2 C, 64.76; H, 8.48; N, 6.05; Found C, 

64.51; H, 8.41; N, 5.93. 

 

Synthesis of 144 – 147. A representative procedure is given. Naphthalene-2-

carbonitrile (0.018 g, 0.12 mmol) was added to a solution of 124 (0.041 g, 0.08 

mmol) in 2 mL benzene-d6 in a Pyrex NMR tube equipped with a Teflon seal, and 
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heated to 60 °C for 16 h, at which point complete consumption of 124 was observed 

by 1H NMR.  The solution was pumped down to dryness, extracted in pentane, 

filtered through Celite, and pumped down to dryness again to furnish 147 as an oil 

(0.049 g, yield = 96%).  Recrystallization did not afford pure, crystalline material 

suitable for further characterization.  1H NMR (400 MHz, benzene-d6): 1.02 (3H, d, J 

= 6.3 Hz), 1.06 (3H, d, J = 6.3 Hz), 1.26 (3H, d, J = 6.3 Hz), 1.43 (3H, d, J = 6.3 Hz), 

1.50 (3H, s), 1.53 (3H, s), 1.62 (3H, s), 2.59 (1H, dd, J = 7.3, 6.4 Hz), 2.91 (3H, s), 

2.97 (3H, s), 3.11 (1H, dd, J = 8.3, 5.5 Hz), 3.39 (1H, sp, J = 6.3 Hz), 3.45 (1H, sp, J 

= 6.3 Hz), 5.42 (1H, t, J = 7.5 Hz), 7.26 (3H, comp), 7.66 (1H, d, J = 8.1 Hz), 7.70 

(1H, s), 7.80 (1H, d, J = 8.1 Hz), 8.01 (1H, s). 
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