Shared Index Scans For Data Warehouses

Yannis Kotidig, Yannis Sismanfs and Nick Roussopoulés

1 AT&T Labs, 180 Park Ave, P.O. Box 971 Florham Park, NJ 0798REDUSA
koti di s@esearch. att.com
% Institute for Advanced Computer Studies, University of Mand, College Park
{i si s, nick}@s.und. edu

Abstract. Tree based indexing structures liltrees,B*-trees, Bitmap indexes anfi-trees have become
essential for getting good performance when accessinglatasets. However, most database research seems to
ignore the behavior that the disk hardware observes dumihgxiscans. In this paper we aim to refocus attention
on efficiently utilizing the underlying hardware during comrent index scans. We propose a new “transcurrent
execution model” (TEM) for concurrent user queries agéairest indexes. Our model exploits intra-parallelism
of the index scan and dynamically decomposes each querg sebof disjoint “query patches”. TEM integrates
the ideas of prefetching and shared scans in a new framesutiple for dynamic multi-user environments. It
supports time constraints in the scheduling of these patahéd introduces the notion déta flowfor achieving

a steady progress of all queries. Our experiments demasshrat the transcurrent query execution results in
high locality of 1/0 which in turn translates to substantrformance benefits in terms of query execution
time, buffer hit ratio and disk throughput. These benefitséase as the workload in the warehouse increases
and offer a highly scalable solution to the I/O problem ofedaarehouses.

1 Introduction

On Line Analytical Processing (OLAP) involves complex aatlyueries that access millions of records and per-
form interesting aggregations. The main cost in terms ofithe consumed of executing these queries is not doing
the actual arithmetic, but of retrieving the data that dff¢iee calculated items. In a relational DBMS, materialized
derived relations (views) have long been proposed to speegiery processing. In a data warehouse, these views
store redundant, aggregated information and are commefeyred to asummary table§4]. Bt -trees are used

for realizing the views, however they offer limited indegiocapability for multi-attribute queries. An alternatie i

to consider the view records as multi-dimensional points@ganize them using-trees [31,27,17]. Tree based
indexes are also exploited in multidimensional architeegias in the proprietary tree structure of Essbase [8], or
in the form of Cube Forests [16].

Another form of redundancy is to index the detailed data deoto provide fast access to individual records.
This is achieved using multiplB-trees [13] or variations oB-trees like the Log-Structured Merge TreeJM -
Tree) [24] and the recently proposkdtree [15]. Many commercial systems use variations of Byirimalices [22,

23, 3] that offer query performance improvements at a lol siigce overhead. In its simplest form a Bitmap index
is a B-tree that instead of storing at the leaf-pages a list ofne:éds for each key value, it stores a compressed
bit-map. There is one such bit-map for each value of the key.

The previous discussion shows that tree-based indicexemesively used to store and/or index large volumes
of enterprise data for decision support applications. Inutioser environment accessing these indices has the
potential of becoming a significant performance bottlen&bks is because in an unsynchronized execution model,
concurrent queries are “competing” for the shared systsaurees like memory buffers and disk bandwidth while
accessing the trees. Scheduling of disk requests and toterfg are well-studied techniques [10, 35, 2] exploited
by all modern disk controllers to maximize the performant¢he disk sub-system. However, optimizing the
execution of the 1/0O at the physical disk level does not abvegalize the potential performance benefits. This
is especially true in a highly competitive multi-user datsé environment were different access patterns from
multiple queries are interleaved and produce a noisy I/@patvith very high entropy. Figure 1 shows traces
from 40 concurrent queries against a 3-dimensional R-¥eeis represents the logical page id of a request. One
can observe some sequential patterns of requests for ofgsagies, but the overall picture is rather noisy

Even-though most commercial systems perform asynchrdfousom the buffer's perspective the interaction
with a query is a synchronous one: the query thread asks faiga, waits till the buffer manager satisfies the
request and then resumes execution. This leaves the buffieager with limited opportunities for maximizing
performance.

In [6], against aB-tree index scan, pre-fetching guided by the upPetree levels is exploited to boost 1/0
throughput for a single query . This is achieved by idemtifyihe list of leaf pages that need to be accessed and by
initiating prefetches of those pages. This is a case whergulery does not ask for one page at a time but rather
for a whole batch at once. Analogous methods are introdurcgdi 1, 32]. However, in a multi-user environment,
aggressive pre-fetching for multiple queries on disjoanttg of the index will only amplify congestion in the buffer
manager [2, 32]. In most cases, overlapping I/O among meltjperies is only exploited if it occurs within a small
time-space window. Even queries with high locality of I/Alwnly gain small benefits from the available memory
buffers. In our tests with skewed workload with high loaaliff 1/0O, the buffer hit ratio was less than 52% in alll
cases. For uncorrelated queries this number drops in gitigjls. This is due to the lack of synchronization, at the
buffer manager level, among the execution of multiple corent queries.

Recently, data warehousing products introduced the nofishared circular scange.g. RedBrick). The idea
is for a new scan to join (merge) with an existing scan on tliexftable that currently feeds a running query.
Obviously the latter scan will have to access the beginninthe index later. Microsoft SQL server supports
“merry-go-round” scans by begining each index at the cuesition, however there is no explicit synchronization
among the queries. In this paper we capitalize on, extendcanuhlize the idea of shared index scans. We propose
a new “transcurrent execution model” (TEM) for concurresg¢iuqueries against tree indices, which is based on
the notion of detached non-blocking query patches. Thishgaed by processing index pages that are cached by
the buffer manager and detaching execution of disk-resjolens of the query that we call “patches”. TEM allows
uninterrupted query processing while waiting for 1/0. @blbration among multiple queries is accomplished by
synchronizing the detached patches and exploiting oveirtgd/O among them. We use a circular scan algorithm
that dynamically merges detached requests on adjacerst @firéze tree. By doing the synchronizatibaeforethe
buffer manager, we manage to achieve a near-optimal buffeatfo and thus, minimum interaction with the disk
at the first time.

We further exploit pre-fetching strategies, by groupindtiple accesses in a sing®mposite requegtanal-
ogous to multipage 1/0s in [6]) that reduces communicatieerbead between the query threads and the buffer
manager and permits advanced synchronization among themp&ed against shared circular scans, TEM is far
more dynamic, since merging is achieved for any type of coeoti 1/O, not just for sequential scans of the index.
TEM identifies correlated 1/0 requests among multiple qeeeand “joins” them to reduce congestion in the buffer
manager. Compared with conventional pre-fetching strasefpr B-tree indices, our framework is more generic
since it also covers Bitmap indices aRdirees and can be easily adapted to virtually any tree-betsecture used
in the data warehouse.

Another important difference is that our composite requeshsist of pages that will actually be requested
by the query. On the contrary, typical pre-fetching techeiretrieve pages that have high-probability of being
accessed in the future, but might be proven irrelevant tajtieey. Furthermore, to our knowledge we are the first
to formalize a synchronization technigue among concugesaties in a dynamic multi-user environment. Another
contribution of the TEM framework is that we address theggsifairness in the execution of the detached patches
and introduce the notion afata flowto achieve a steady flow of data pages to all query threads. diluws
efficient execution of complex query plans that pipelinerds retrieved by the index scans.

Our experiments demonstrate that transcurrent query ggaaesults in better utilization of the CPU and in
high locality of I/O, which in turn translates to substahgiarformance benefits. Compared to an unsynchronized
query execution model, it provides substantial improvetménterms of query execution time, query data flow,
buffer hit ratio and disk throughput. These benefits in@essthe workload in the data warehouse increases and
offer a highly scalable solution to the 1/0 problem of dataeteuses. Furthermore, TEM is easily integrated with
existing systems and provides no overhead regardless thdoad.

The rest of this paper is organized as follows: section 2udises the motivation behind our architecture. In
section 3 we make a detailed description of the TEM and dsscelated implementation and performance issues.
In section 4 we define data flow and show how to support timetcainss in the scheduling of the detached query
patches. Finally, section 5 contains the experiments asddtion 6 we draw the conclusions.

2 Motivation

Most commercial data warehouses maintain a pool of se¢bieads that are being allocated to serve incoming
user queries. In a data warehouse environment, the I/Odsoely and the query threads generate concurrent read
page requests. These requests are handled by the buffegenavtao will initiate an actual 1/O to disk for all the
pages not in the buffer pool.

The task of the buffer manager is to maximize the buffer hibrand therefore minimize the interaction with
the disk. In the database literature there is an abundanese@drch on buffer allocation and replacement strategies
(e.0.[30,9,7,19,5, 21]). For tree index structures, a DarBaparation Algorithm [25] introduced multiple LRU
buffer pools, one for each level of the tree. Because of thii+heuel organization, top level pages of the index
have increased probabilities for staying in memory, résglin about 8-10% better query performance than plain
LRU. A similar algorithm (OLRU) is also discussed in [29] aisdproved to be optimal under the assumption
of a uniform distribution of index page reference densitiariations of the Domain Separation algorithm are
also discussed in [9, 20]. However in [7] Chou and DeWitt pomt that for indices with large fan-out the root is
perhaps the only page worth keeping in memory. In data waisds) indices are typically created and refreshed
through bulk operations. As a result the trees tend to berathacked and shallow and the potential improvements
from a domain separation algorithm are limited. For exanmplen 1GB R-tree index, built with 16KB page size
and 100% leaf page utilization [28], non-leaf pages contabess than 0.5% of the index space. Even if LRU’s
hit ratio goes to 100% for non-leaf pages the increase invkeadl buffer hit ratio will be insignificant. Similarly
for compressed Bitmap indices most of the information isestdn the leaves of the tree that occupy most of the
index. Therefore, for compacted indices, none of the prevalgorithms is expected to behave differently than
straightforward LRU.

In a concurrent multi-user environment there is limitedgoial for improving the buffering of the leaf-level
pages. Each query thread works in pace with the buffer mahdgequests one page at a time, await till it gets the
page and then advances the index scan. Given2 concurrent queries on an 100MB index (6,400 16KB pages)
and uniform distribution of accesses, the probability thatsame data page is requested by 2 or more queries at a
given time is:

Dovertap(n) =1 — p(1/6400,0,7n) — p(1/6400,1,n) (1)
where: |
_ n: k n—k
P(a;ka”)—m*a *(1—a) (2)

is the standard binomial distribution. In Figure 2 we pigt..;,, as the number of concurrent queries increases
from 1 up to 10,000. We also plot the same probability for aenealistic 80-20 access pattern, where 20% of
the pages receive 80% of the requests. These graphs sholerth@asonable numbers of concurrent users, these
probabilities are practically zero.

The buffer pool allows the system to gain from overlappi@éten if it doesn’t occur at the same time-frame.
The more buffers we have the larger this “grace-period” canibthe unlikely event that the whole index fits in
memory, all overlapping requests will be exploited, no eratteir time-stamp. However for most cases where only
part of the index fits in memory, overlapping requests hawectur within a relatively short time-window before
the replacement strategy used flushes “idle” pages to digs.obvious solutions to the problem are: i) to increase
the size of the buffers; and ii) to use an application spec#fifacement strategy like OLRU. However, another
orthogonal optimization that, to our knowledge, has notnbeloited is to increase the amount of overlapping
I/0 within the “grace-period” provided by the buffers. Inglire 2 we see that the probability of overlapping 1/0
slowly increases with the number of queries. Of course weadevant to introduce useless queries to increase our
changes of overlap! Instead we want our existing workloagrt@luce a heavier flow of correlated requests that
will enable the buffer manager to better exploit overlaggdi®.

This is achieved by a non-blocking mechanism, in which pageests that are not in the buffers are detached
from the current execution of the query thread while the guleread advances its scan. We call this model of
executiontranscurrentbecause it detaches the processing of the requested I/Ceteghtes it as query patcho
an asynchronouservice threadThis creates the illusion of a higher number of concurremrigs and results in
increased chances of getting overlapping I/O, as demdedtiaFigure 2.

1 Notice that the actual I/O is in most cases performed aspnciusly.

Page #

60 T T T —T
uniform

50

a0 | 4

p (%)

30 B

P_overlal

0 ",/ 1 1 1 1
0 2000 4000 6000 8000 10000
#queries

Time

Fig. 1. Logical page requests during 40 Fig. 2. Probability of overlapping I/O for uniform
gueries against a single index and 80-20 accesses

Query
[, thread

Service Tread (ST) Buffer Manager
I Processing of |
| detached patches .
| g Disk
g » I
uen g Ty g 8
R . Bl il
[N ea 2 : i Q 3
2 | Scheduler } 5 £
Q I Qo
gl n =%
[<

bmPageLookUp

Query
-_— thread

Fig. 3. System overview

3 Transcurrent Execution Model (TEM)

In this section we propose an architecture for the TEM. Oat fwoughout the design was to require the least
amount of modifications for integration into existing syste The architecture introduces a new “Service Thread”
(ST) for each active index, i.e. an index that is accesseddueay. Depending on the number of indices and disks
in the system, the administrator may modify the configuratind assign multiple indices to each ST.

The ST accepts page requests generated from the queryshineddcan the index. This is shown in Figure 3,
where multiple query threads are communicating with the Sfie@same index. This thread is interjected between
the buffer manager and the query threads. Since concurpemtiol and locking in a database system are imple-
mented at the buffer manager level, the ST does not need tavithdocking for concurrency control. Therefore,
although TEM is mainly intended for data warehousing envinents, it can also be adopted by OLTP systems.

The ST accepts all read-page requests for its correspoirdiegy. Requests for pages that are in memory are
immediately passed to the buffer manager and ST acts asspéaant gateway between the query thread and the
buffer manager, as seen in the Figéreor pages that are not in the buffer pool their requests ageepiwithin
the ST. The query thread that issued the request can eitbek bhtil the page is actually read, or in some cases
advance the index scan. In the later case the processing pétie is detached and performed internally, as a query
patch, by ST when the page is actually fetched from disk. Veéea@ueryPatclclass to describe detached requests.
This class contains among others:

— alogicalpageldof the index page that needs to be retrieved.

2 \We assume that the manager providésr®agelL ook Up(pageld function for determining if the requested page is in the
buffers.

— afuncldof the function that should be called by ST when the page besawailable along with necessary
arguments in order to process the page.

— anoutFuncldpointer to a function that redirects the output of the preedspage. This can either go to the
screen or another thread that processes the data retriewedtfe index (e.g. in a join).

— thequeryThreadldf the session thread initiated the request.

Our goal is to optimize the execution order of the requesds dhe queued in ST (see Figure 3) in order to
achieve higher buffer hit ratio. Assuming that the buffen@ager is using a variant of the LRU replacement policy,
an optimal execution strategy for ST would be to put requessthe same page together, so that subsequent reads
would be serviced immediately from the pool. If I/O requestsn all queries were known a-priori, we could
simply sort them, merge overlapping requests and execate th any order. In a dynamic scenario, where new
gueries arrive asynchronously, we can use a circular sgamitim [10, 35] that is frequently used for scheduling
I/O at the disk controller level. For these system, the kegait to align adjacent page requests and smooth-out
costly random seeks on the disk. By using the same type ofitdgofor our synchronization step, we not only
achieve our goal, which is to maximize hit ratio, but we alsograte an I/O stream that is bread-and-butter for a
modern disk controller.

3.1 Index Scans for TEM

TEM is used for querying hierarchical tree indexes likgrees andR-trees. For simplicity in the notation we will
be using as reference the stand&ree structure. Sinc&-trees generalize thB-tree index for multiple keys,
our technique is also applicable By treesBT-trees and Bitmap indexes.

As a running example we will be referring to a sample data awmee that is built for analyzing supermarket
transactions. A materialized view is used to store the tpti@nt i t y of everypr oduct that eackcust omer
is buying. Table 1 provides some sample data for this vieve iibw is stored in a single 2-dimensioraltree
as proposed in [27,17]. Each record is realized as a two+thinnal point where thpr oduct value defines the
x-coordinate of the point and theust oner value the y-coordinate respectively. The aggregate valstored as
the content of the point. For instance the first row of thedabmapped into poirltc = 1,y = 1, value = 26).

|productcustomelsum(quantity)

1 1 26
1 2 24
1 4 41
1 5 9
2 2 6
2 3 5
3 1 3
3 2 27
3 4 7
3 5 15
4 1 6
4 2 10
4 3 1
4 4 21

Table 1. An aggregate view opr oduct & cust oner attributes

Using this mapping the resulting-tree index is shown in Figure 4. The buckét®,3,...,8 in the Figure
represent nodes of the-tree. Each node is stored in a different page on the disktélpage number shown on
the top-left hand side of the node. The point-data of the vgestored at the leaf pages, as in a traditiaBattree.

An intermediate node holds a list of entries that containiMimm Bounding Rectangles for indexing the space of
the children nodes as well as pointers to the children ndtiés [

8

[(1135731457 | Level 2
6 / \
[(L114%.12257.(3134 | [(3145143447 | Level 1
1 2 3 4 X_
[1.1,26),(1,2.24),1441) | [159.226.235 || 136220647 | | 3515.1416.4210 | [431).44.21) | Level 0

Fig. 4. R-tree for sample view

Query Output

Query Thread (QT)

Service Tread (ST)

(e.g screen)

} Processingof ———F——F————»
processing leaf-page | detached patches} 1 }
(non-leaves) request | (leaves) ! |
5l | B
8 } ! o |
=] | = I Buffer Manager
o| () |
non-leaf pages |+« | ["7 i o
pag 153 | Scheduler | 5
| |
S Il =5
I | ! 2
LT LR
o >

bmPageLookUp
(non-leaves)

Fig. 5. Processing of detached I/O in TEM

Compared to &7 -tree representation, thiz-tree can be efficiently used for answering arbitranmyge queries
on bothcust ormer andpr oduct attributes. Such a query is depicted as a two-dimensioamgtg in the ¢us-
tomer, productattribute space. For instance a query that retrieves saf@educts with id 1 through 3 to customer
1 can be encoded using rectan@e= (z,in, = 1, Ymin = L, Traz = 3, Ymaz = 1).

For querying we assume a stand@dree search algorithm [14] that descends the tree fromabiefollowing
subtrees that overlap the query rectangle. For the pregjoeasy the search path will be (numbers correspond to
page-numbersg -6 -1 —-2—>3 -7 —> 4.

In an traditional index scan, each page request will bloekghery thread until the page is brought in the
buffers. In the TEM if the page is not in the buffer pool, thae tequest is queued and will be executed at a later
time according to the scheduling algorithm described innéet subsection. We then have the option to stop the
query thread, until the page is actually fetched from thk didet it scan the rest of the tree structure. However, the
potential benefits for doing that depend on how far the allyorihas proceeded in traversing the tree. For instance
at the root-level the index scan can not resume until the iofetitched from the disk. However, if we defer the
processing of the left-most level-1 page of Figure 4, we ¢élnvsrk with its sibling page. Even more options
are available when accessing a leaf data page. In such caseannalways advance the search until the tree is
exhausted.

For indexes that are created using bulk-load operationslatawarehouse, non-leaf pages are typically a very
small fraction of the overall index space. For an 1@Bduct , cust oner view of our example, only about 5MB
of disk space is consumed by the non-leaf node pages of thespanding?-tree® Assuming relatively frequent
gueries on the view, most of these pages will be buffered imorg. As a result there is no evidence in getting
any improvement by advancing the search for non-leaf pai&s in most cases the page will be available in the

3 we assume a 16KB page size and 4-byte integer attributes

buffers anyway and the scan will not be blocked. Thereforeeda not consider detaching execution of non-leaf
page requests and the query thread is blocked whenever saghest is not immediately satisfied from the buffer
pool. On the contrary, for the remaining 99.5% of leaf (d@@)es, because of the asynchronous execution, the
probability that the page is in the pool at the exact timetiatequest is made is very small, see Figure 2. Therefore
for leaf pages it is faster to detach their requests withbatking the buffers with thenPagelLook Up(pageld)
function, otherwise a lot a thread congestion is happerifripese pages happen to be in memory, the ST will
immediately pool them from the queue as described in thegestion and process them as a query patch.

Figure 5 depicts the proposed transcurrent execution mathel query thread (QT) initiates page requests
while searching the index. These requests are schedulksthaty by the ST. Execution of leaf page requests is
always detached and performed by the service thtédoh-leaf pages that are in the pool are handled by the QT.
Otherwise, the QT is blocked until the page is fetched in nmgrby the ST. Therefore, processing of non-leaf
pages is only performed by the query thread.

3.2 Synchronization of Detached Query Patches

ST reorganizes queued requests in a way that maximizes tf@rmpance of the buffer manager. This can
be achieved by dynamically merging requests on adjaceasakethe tree through a circular scan or elevator
algorithm. This family of algorithms has been shown [35]¢ofprm well for I/O with significant read sequentiality.
This is the case for index scansBftrees, Bitmap indices anél-trees, at least when leaf pages are being scanned.
As we mentioned earlier, these algorithms also result itebgerformance by the underlying disk controllers.
This is because scheduling based on logical block (pagepatsrhas been shown to work well [35, 2], even if
the underlying mapping to physical block numbers is unkndzren in the case of a RAID-box that re-shuffles
requests to different disks, a primary sequential accessrpagenerated by ST will give the best performance. This
is because most partitioning schemes used in RAID have besigred for applications with primary sequential
I/O (e.g. video streams). However, ST does not aim to do thejpor replace disk controllers. It is only used as a
mean to synchronize requests before the buffer managepanilbtv deferred query execution, so that concurrent
gueries will share and not compete for memory buffers.

The ST maintains the current position on the file of the latisfiad disk 1/0. Query threads continuously
generate new requests, either as a result of a newly safisfgrequest, or because of the non-blocking execution
model that allows the search algorithm to advance, evemikespage-reads are pending. Incoming page requests
are split into two distinct sets. The first called “left” camis requests for pages before the last satisfied page of the
index and the set called “right” (assuming a file scan frortiefight) contains requests for pages in-front of the
last page accessed. These are actually multi-sets sinckowedaiplicates, i.e multiple requests for the same page
by different threads. The next request to satisfy is theestarequest to the current position from thieght set
that is realized as a heap. When tligght set gets empty, the current position is initialized to thakest request
inthel ef t setandthé eft set becomes thei ght set.

An extension that we have implemented but not include inghjger is to permit pages in the right set, even if
they are within some small threshold on the left of the curpesition. The intuition is that these pages are likely to
be in the cache of the disk controller. This allows bettercbyanization of queries that are slightly “misaligned”.
However, picking the right threshold requires knowledgthefhardware platform used.

We also experimented with an elevator algorithm that sweisatiirection when reaching the end/start of the file.
We did not expect better performance, but to our surprisedlgorithm was much slower than the circular scan
algorithm that we described, probably due to conflicts withgcheduling algorithm implemented at the hardware
of our disk controller. We plan to investigate this matterdifferent hardware platforms.

3.3 Composite Requests for Increased Overlapping I/O

Assume a query that descends the tree of Figure 6 followiag#ths denoted by the thick arrows. The working
set for this query is:
13-10-122=23—=11-=5

4 The spinning arrows in the Figure denote processing of iqueithin the threads.

Fig. 6. DFS Index Scan

The query traverses two sub-trees generating one requasina¢. An opportunity for optimization arrives when
processing level-1 nodes; i.e nodes just above the leavdeedfee. When such a node is processed we know
which of the underlying leaf pages the query will request.iRstance after page 10 is read, we can group requests
for leaf pages 1,2,3 into a single composite multi-page estjdenoted a§l, 2,3}. We do not want to apply the
same technigue when accessing intermediate nodes higtier iree structure, otherwise the search is reduced to
a Breadth First Search algorithm that requires memory ptapal to the width of the index.

For handling multi-page requests tQeieryPatclclass is extended to contain a (sorted) list of page numbers:
r = {p1,p2,...,Pn}. When testing a composite request against the currentqosit the file, we use the smallest
page number of the groyp. If it is smaller, the multi-page request is added toltkeé t set, otherwise it is added
to ther i ght set. Using composite requests the query shown in Figurel @&rilerate the following requests:

13 - 10 - {1,2,3} —» 11 — {5}

Composite requests are more efficient because of the loveehead required for the communication between the
qguery-thread and the ST. However, an even more importaetefféct of using composite requests it that the ST
is given more information at every interaction with the guéiireads and is able to provide better synchronization.
For instance, 10 concurrent single-page requests provideyagiven point 10 “hints” to the scheduler (ST) on
what the future I/O will be. In comparison composite reqae$t100 pages eachprovide a hundred times more

information at any given point. Looking back at Figure 2 thenerates the illusion of havirg x 100 = 1000

concurrent queries for which now the probability of overiaf:’;::ij’:“((l)gg)) = L0998e=2 — 9998 times (i.e four

orders of magnitude) higher! Furthermore, due to the nackihg execution of the index scan, the query threads
are constantly feeding the ST with more information, résglin even higher gains. In this sense, even-though
transcurrent query execution and dynamic synchronizationbe seen as two orthogonal optimizations they are
very naturally combined with each other. Due to the non-kilugexecution the ST gets more input from the query
threads and, therefore makes more informed decisionsuhief allow the query threads to process the index,

and generate new requests, at a higher pace.

3.4 Scheduling v.s. Cache Management

In the context of tertiary storage management an idea siteilBEM has recently been deployed in STACS [33] to
optimize the use of disk cache for files read from tapes andmiie the number of tape mounts. A difference is that
for each query, STACS using a combination of bit-sliced@éediknows in advance the files that are needed. Thus
the main concern is about cache admission/release pohefge in TEM the focus is not on cache management
but on exploiting intra parallelism of index scans and awepling I/O before reaching the cache. TEM should
impose no overhead while scheduling the requests. Thixause disk accesses are in the orders of milliseconds,
while for tertiary storage the latency of mounting a tape loaiseveral minutes.

In our initial designs we also though of exploiting the largember of pending requested queued in ST for
better cache management. We tested an implementation odifi@dd_RU policy that avoids replacing pages that
have pending requests on the right set of ST. Even thoughahidted in a slightly higher buffer hit ratio than plain
TEM, the gains did not show up in query execution times bezafishe per-request overhead of synchronizing
ST’s structures with the buffer manager. Our current imgetation is cleaner, easier to integrate with existing
systems and reorders the requests in a way that is ideal fdrds=shown in Figures 9, 10.

® the fan out of a 2-dim R-tree with 16KB page size is 819. We m&sthat one in 8 leaves under a visited level-1 page are
relevant to the query

4 Flow Control Extensions

Deferred requests are used in TEM as a mean to identify gvanteong concurrent queries. A potential drawback is
that a request thatis diverted to thef t set (see section 3.2) can be delayed while incoming regkespspushing
the request flow to thei ght set. Starvation is not possible, because the current filgigoss monotonically
increasing up to the point that the last page of the indexad oe ther i ght set is exhausted, or both. When this
occurs, thd ef t andri ght sets will be swapped and therefore, in the worst case, tlayeelrequest will be
satisfied after a full scan of the file.

From the user point of view, an index scan produces resulysvamen leaf pages are processed. These pages
in R-trees andB* -trees hold the actual values while in Bitmap indices &httees contain compressed bit-maps
and pointers where the records are stored respectivelysdroe queries a delayed delivery of data (leaf) pages
might be unacceptable. This is the case for queries whogeibisgtconsumed by another thread, like a sub-query
in a pipelined execution model; a delayed delivery of databock the consuming thread.

In TEM, the query thread continues execution even-thougt requests for leaf pages are “delayed” by the
scheduler. This means that internally, the scan advanedigiates. This is demonstrated in Figure 5. The spinning
arrows within the query thread and the ST denote internal@spnous processing of index pages. The ST executes
detached leaf page requests while the query thread QT m@xesquests for non-leaf pages. Assuming that QT
processe$’,r non-leaf pages per second and the ST procd3sgseaf pages per second the aggregate processing
for the query isiPyyeranr = Por + Pst. Since output is only produced when scanning leaf pages fhe user
point of view the effective progress of his querthat we denote agata flow(DF) is:

DF(q) = Pst 3)

Intuitively the larger this number is, the more bursty thgpotiof the query gets. In the presence of many concurrent
gueries, a steady data flow for all of them can be achieved bgdiag thedle timet; ;. Of their leaf page requests.
This idle time is defined as the period between two conseegtitisfied leaf page requests. The ST maintains a
time-stamp information for each query that is running ingjstem and uses the index. This time-stamp is updated
every time a leaf-page request is satisfied for the queryatinenistrator defines a “hint” for the maximum time
W that a detached leaf-request is allowed to be delayed. Oplementation uses Blow Control Threadthat
periodically checks foexpiredrequests. Assuming that this thread awakes e¥eigne-units and checks all time-
stamps, then a query’s output might block, waiting for a ¢letge for a period of; ;. = W + T and therefore the
minimum data flow for the query will be:

DFy, = pages/sec (4)

1
wW+T
Leaf page requests that have expired are inserted in atgropreue that uses the delay information for sorting
them. As long as the ST finds expired requests in this quepepdéesses them before those in theght set. A
minimum idle time can not be fully guaranteed because it ddpen other parameters such as the load on the CPU,
the disk subsystem etc, and in addition a delayed requddtavié to wait other delayed requests that have longer
idle times. However, the number of page requests in theipriqueue is bounded by the number of concurrent
queries in the system. This is because we only need at mosixpired request per query to lower-bound the data
flow. This also prevents the data flow mechanism to becomentoosive if very small values for” and7" are
chosen.

5 Experiments

The experiments that we describe in this section use an mgieation of TEM on top of the ADMS [26] database
management system. For these experiments we have used @® Bieénchmark [11] for setting up a demon-
stration database. TPC-D models a business data warehdgse e business is buyimy oduct s from a
suppl i er and sells them to aust oner . The measure attribute is tigeiant i ty of pr oduct s that are in-
volved in a transaction. For the first set of experiments, arcentrate on an aggregate view for this dataset that
aggregates thguant i t y measure on these three dimensions. The SQL descriptiohdati¢w is®

6 fact table is used to store all sales data.

create view Viewl as

sel ect product, customer, supplier,
sun{quantity) as total quant

fromfact_table

group by product, custoner, supplier

This view was materialized in the disk using a single 3-disiemal R-tree stored in a raw disk device. We
did not use regular Unix files in order to disable OS bufferiflgis is a common technique recommended by all
commercial-strength database systems since they prowier buffering techniques for database applications
than the OS [34]. The buffer manager of ADMS, as in most conciaktlatabase systems, uses LRU replacement
policy for tree indices. As we already mentioned in sectipfoRindices that were bulk-loaded we do not expect
any differences between the performance of plain LRU andwado separation algorithm.

We used a SUN Ultra-60 workstation with a 360MHz UltraSPARCPU and an 18GB SEAGATE Cheetah
hard drive connected through an ultra wide SCSI bus. The dantroller operates at a lower level than the DBMS
(or the OS) buffering and thus all optimizations for redgcéeeks or pre-fetching are performed for raw-devices
also. This drive is able to provide a sustained data tramsféB.11MB/sec for serial reads from the raw device.
We created a 2GB TPC-D dataset (scale factor=2). The totabeu of records in the view was 11,997,772 and
the overall size of th&-tree was 183.8MB. The number of distinct values per atteilouas 400,000, 300,000 and
20,000 forpr oduct , cust ormer andsuppl i er respectively.

5.1 Query Description

For searching the view we used queries with ranges on thepgrgattributegpr oduct , cust oner andsup-
pl i er. These queries are formulated in SQL using the templatecqufrEi7.

SELECT product, customer, supplier, total_quant

FROMView1

WHERE product > minproduct andproduct < mazproduct
AND customer > mincustomer aNdcustomer < maTcustomer
AND supplier > minsuppiier andsupplier < mazsupplier

Fig. 7. Query template for Viewl

We used two different sets of queries:

Uniform Set: For these queries, the minimum value for each attributelesctel uniformly from the attribute’s
domain. The upper value is then chosen to create a randora tlaagcovers up to 25% of the attribute’s values.
For the three dimensional dataset that we used the maximlentisity of an uniform query i9.25% = 1.56%.

80-20 Set: For this query-set the lower value for each attribute is ehassing the 80-20 self-similar distribu-
tion [12] and the upper value as in the previous set.

5.2 Comparison of TEM Against an Unsynchronized Execution

For the first experiment, we used thimiform Setof queries and varied the number of concurrent queries in the
system from 10 up to 200. Each of these queries was executadifierent thread. We used three different
configurations. The first, which is denoted as “CEM” in thepdrs, refers to the “conventional” execution model,
where all queries are unsynchronized. The second confignnaged the transcurrent execution model with single
page requests while the last one used composite requestsasbed in section 3.3. These configurations are
denoted as TEM and TEM+ respectively. The ST maintains aaffoeated pool of request (QueryPatch) objects
that are used in thieef t andri ght sets. For the TEM/TEM+ configurations we set the request piaelto be

10

600

500 |

400 |

300

200

Execution Time (sec)

100 +

0 T T T T T T T T T T T T T T T T T T T
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

#Queries

Fig. 8. Total execution time for 10-200 concurrent queries

12000 >

10000

8000 [

6000

Page #

4000

oT S

2000 |s

0

Time

Fig. 9. Requests made from the ST to the Buffer Manager (TEM+)

1MB and the buffer pool size of ADMS to 15MB. Since CEM does us# the ST, we gave the extra 1MB worth
of memory to the buffer manager and set its pool size to be 16MB

Figure 8 depicts the overall execution time for all quermglie three configurations, as the number of concur-
rent queries increases from 10 to 200. For relatively ligbtkload (10 concurrent queries), the overall execution
time is reduced by 13.9% in TEM and 16.9% in TEM+. As the nundfequeries increases, the differences be-
tween the three configurations become even more clear. Fbc@fcurrent queries the system with the TEM+
reduces the overall execution time from 500.4sec down to4324, a 35.2% reduction over the unsynchronized
execution. The effective disk I/O bandwidth, which is corgalfrom the number of page requests serviced per
second was 8.67MB/sec for the CEM and 13.38MB/sec for the ¥EBbmpared to the raw bandwidth of the disk,
the TEM+ utilizes 74% of the disk serial transfer rate with28l0 query threads and the service thread running in
a single CPU workstation.

In Figure 9 we plot the (logical) page requests for 40 quexits they are reordered by the ST and passed to the
buffer manager. The ST dynamically aligns requests at thght set to exploit spatial locality. These groups are
further stacked as shown in the Figure. This I/O patternaslifior the LRU policy because of its high time-space
locality.

Figure 10 shows the buffer hit ratio as the number of quene®iases. Because of the noisy query 1/O (similar
to that of Figure 1) the unsynchronized execution achievesyapoor hit ratio. For the TEM+ the hit ratio increases
with the number of concurrent queries up to 92.4% for 200igseT his is because the more the queries the higher
the probability of having overlapping I/O gets, see FigurtnZ-igure 10 we also plot the optimal buffer hit ratio.
This was computed by examining the 1/O traces of the queridseordering the requests in a way that maximizes
the buffer hits. Notice that the TEM+ provides a near-optipgaformance.

Table 2 shows the results of a second experiment using 40@hddhcurrent queries of the second query set
(80—-20 Set). This query set is very skewed with high locaft{/O. The execution time column shows the time to
execute all queries. The effective disk I/O was computeti@®verall I/O generated by all queries divided by the
total execution time.

11

Hit Ratio (%)

A Optimal

O—— I — T T T (— T T T
10 20 30 40 50 60 70 8 90 100 110 120 130 140 150 160 170 180 190 200

#Queries

Fig. 10.Buffer hits

[#QueriesExecution ModeExecution TiméHit Ratio| Effective 1/0

40 CEM 92.87 sec | 43.11%|10.21 MB/se¢

queries| TEM+ 74.29 sec | 79.48%|12.76 MB/se¢

200 | CEM 445.69 sec | 51.76%|10.28 MB/se¢

queries| TEM+ 344.67 sec | 92.13%/13.29 MB/se¢
Table 2. Performance data for the 80-20 Query Set

5.3 Experiments with Flow Control

For the following experiments, we implemented the flow-cohéxtensions described in section 4. This new
configuration is denoted as TEM+/FC. For the analysis we asset of 50 concurrent queries from the uniform
set. For each query we computed the average idle time, taeiime between two satisfied consecutive leaf
page requests, see subsection 4. Notice that this timeratkales the overhead of processing the data page. For
the TEM+/FC we set the time-out peridtl to be 1sec and the sampling period of the Flow Control Thi&al
0.1sec. Figure 11 shows the average idle time for each ohaiiquery, for the three execution models. For the
CEMthisidle time is 1.7sec on the average for all queriescamdbe justified from the heavy congestion in the disk
for 50 concurrent queries. For TEM+ the average idle timaghér at 5.8sec on the average and 21sec in the worst
case for query #50. Notice that the total execution time ishmower for TEM+ : 91.35sec, vs. 134.96 sec, i.e.
32.3% lower. The reason that the idle time is higher is bexafidetached query patches of leaf page requests that
are being delayed in theef t set as described in subsection 4. Figure 11 shows that therif/Ebarchitecture
outperformed the other two. On the average the idle time ustslj.09sec over all queries resulting idata flow

of 938 processed records per second to each thread. In Higuve plot the average idle time for all queries along
with the computed standard deviation. This graph showsTteM+/FC provides the lowest idle time and has the
smallest standard deviation, which means that it treatpugties fairly. On the contrary the deviation in the CEM
is higher due to the thrashing in the buffer pool and the disle price for this performance is rather small. The
total execution time for all 50 queries was 103.88 sec for HHRC, about 13.7% slower than the TEM+, but still
23% faster than CEM.

5.4 Experiments with Bt-trees

TEM provides benefits when used with one dimensional indikesB-trees and Bitmap indices. For demonstra-
tion we used a 10MB3 " -tree. TheBT-tree record consisted of a integer key and a float measuegotdl number
of tuples indexed was 1,264,626. The distribution of keys waiform. For the first run we used thimiform set
and varied the number of concurrent queries from 10 to 2@urEi13 shows the increased buffer hits (for 2MB of
buffers) compared to the conventional model. The respamsereduction was about 15% regardless of the load.
In a final experiment we tested TEM against random range @si@rith varying selectivity. Figure 14 shows
the hit ratio for 10 up to 100 concurrent queries with selgibtis from 1%, up to 40%. As the selectivity and/or
the number of queries increase, TEM's performance geteibdtis worth pointing out that in most cases, TEM
has a near-optimal performance. For example for 10 quelithssalectivity 1% TEM achieves hit ratio of 6.94%
while the optimal hit ratio for this workload was 7.04%

12

225

. CEM
., TEM+
175+ |\ TEM«/FC

N
3
I

[,
o o
L

N N o
o & o o S
TR R

Average Idle Time Per Query (sec)

Fig. 11. Average idle time per query

o2 mw s mo N ® o 3

Average Idle Time (sec)

222227

CEM TEM+ TEM+/FC

Architecture

Fig. 12.1dle time comparison

6 Conclusions

In this paper we argued that conventional index scans aridring techniques are inadequate for utilizing modern
disk hardware and thus fail to support a highly concurrernkiead against tree indexes. We showed analytically
and through experiments that in an unsynchronized exagui@rlapping I/O is only exploited if it occurs within

a small time-window. We then introduced the transcurreataton model (TEM) that exploits intra-parallelism of
index scans and dynamically decomposes each query int@médisjoint query patches. This allows uninterrupted
processing of the index, while the disk is serving other léQuests. Pending requests are dynamically merged
for adjacent areas of the tree. We further proposed the useultifpage (composite) requests that allow smaller
synchronization overhead and higher probability of oyaslag I/0O among the detached query patches. For queries
that require a steady flow of processed tuples we introducddised thelata flowas a metric of the pace of each
query’s progress.

Our experiments demonstrate that the transcurrent queguérn results in substantial performance benefits
in terms of query execution time, buffer hit ratio and diskotilghput. These benefits increase as the workload in
the warehouse increases and offer a highly scalable soltdithe I/O problem of data warehouses. In addition,
TEM can be easily integrated into existing systems; our @m@ntation of ST using posix-threads showed no
measurable overhead from the synchronization algorithardaita structures, for 2 up to 500 concurrent queries in
a single CPU workstation.

References

1. G. Antoshenkov. Dynamic Query Optimization in Rdb/VM®.RAroceedings of ICDEpages 538-547, Vienna, Austria,
1993.

2. P.Cao, E. W. Felten, A. R. Karlin, and K. Li. Implementati@and Performance of Integrated Application-Controllel@ Fi
Caching, Prefetching, and Disk SchedulidgM Transactions on Computer Systei(4):311-343, 1996.

3. C. Y. Chan and Y. loannidis. Bitmap Index Design and Ev@dna In Proceedings of ACM SIGMOD International
Conference on Management of Dapmges 355-366, Seattle, Washington, USA, June 1998.

4. S. Chaudhuri and U. Dayal. An Overview of Data Warehousimg) OLAP TechnologySIGMOD Record26(1), Septem-
ber 1997.

13

10.

11.

12.

13.

14.

15.

16.

Hit Ratio (%)

r o @ N
e e 2 °

w
?

20

m CEM [

Hit Ratio (%)

oO——————T T 7T T T T T T T T T T T T T
10 20 30 40 50 60 70 80 90 100110120 130140150 160170 180 190200

#Queries

Fig. 13. Buffer hits

i 1% —+—
10% ---x---
20% ---%---
| 30% o |
100 2 e
.7—,,.,_//‘Q"**'f—',,ﬂi_/»!_,/»»;
80 - o Tk e . —
g ——— a e R
60 : - |
x* L L o
aw0F % .) 7
%
20
0

#queries

Fig. 14.Varying selectivities/#queries

. C.M. Chen and N. Roussopoulos. Adaptive Database Buffecdtion Using Query Feedback. Rrocs. of the 19th Intl.

Conf. on Very Large Data Basgsages 342—353, Dublin, Ireland, August 1993.

DB2 Prototype. IrProceedings of ICDEpages 171-180, Kobe, Japan, April 1991.

92, 1987.

J. Gray.The Benchmark Handbook for Database and Transaction PsingSystems- 2nd editioMorgan Kaufmann,

San Franscisco, 1993.

J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and dtbafger.

. H. Chou and D. DeWitt. An Evaluation of Buffer Managemetraggies for Relational Database System$2roceedings
of the 11th International Conference on VLDiages 127-141, Stockholm, Sweden, August 1985.

. Robert J. Earle. Arbor Software Corporation, US pateB68%24, Oct 1994. "http://www.arborsoft.com”.

. W. Effelsberg and T. Haerder. Principles of Databased3iffanagementACM TODS 9(4):560-595, 1984.

R. Geist and S. Daniel. A Continuum of Disk Schedulingokithms. ACM Transactions on Computer Syste&d):77—

Databases. IRroc. of the ACM SIGMODpages 243-252, Minneapolis, May 1994.

H. Gupta, V. Harinarayan, A. Rajaraman, and J. UllmardexinSelection for OLAP. IProceedings of ICDEpages

208-219, Burmingham, UK, April 1997.
A. Guttman. R-Trees: A Dynamic Index Structure for Sgdeiearching. IfProceedings of the ACM SIGMOD Interna-
tional Conference on Management of Dgpages 47-57, Boston, MA, June 1984.

C. Jermaine, A. Datta, and E. Omiecinski. A Novel Indeputing High Volume Data Warehouse Insertions.

. J. Cheng, D. Haderle, R. Hedges, B. lyer, T. Messinger, Ghav, and Y. Wang. An Efficient Hybrid Join Algorithm: A

Quickly Generating Billion-Record Synthetic

In

Proceedings of 25th International Conference on Very Ldbgea Basespages 235-246, Edinburgh, Scotland, U.K.,

September 1999.

T. Johnson and D. Shasha. Hierarchically Split Cubedt®fer Decision Support: description and tuned design.Kiligr

Paper, 1996.

14

17.

18.

19.

20.
21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Y. Kotidis and N. Roussopoulos. An Alternative Storaggabization for ROLAP Aggregate Views Based on Cubetrees. |
Proceedings of the ACM SIGMOD International Conference am&yiement of Datgages 249-258, Seattle, Washington,
June 1998.

C. Mohan, D. Haderle, Y. Wang, and J. Cheng. Single Tabiesgs Using Multiple Indexes: Optimization, Execution and
Concurrency Control Techniques. Rroceedings of the EDBPpages 29-43, Venice, Italy, 1990.

R. T. Ng, C. Faloutsos, and T. Sellis. Flexible Buffero&ttion Based on Marginal Gains. Rrocs. of ACM SIGMOD
Intl. Conf. on Management of Datpages 387—-396, Denver, Colorado, May 1991.

C. Nyberg. Disk Scheduling and Cache Replacement fotabiaae Machine. Master’s thesis, UC Berkeley, July 1984.
E. J. O'Neil, P. E. O'Neil, and G. Weikum. The LRU-K PagepReement Algorithm for Database Disk Buffering. In
Proceedings of ACM SIGMOD Intl. Conf. on Management of Dpéges 297-306, Washington D.C., May 26—28 1993.
P. O'Neil and G. Graefe. Multi-Table Joins Through Bippad Join IndicesSIGMOD Recorg24(3):8-11, Sept 1995.

P. O'Neil and D. Quass. Improved Query Performance widhiant Indexes. IrProceedings of the ACM SIGMOD
International Conference on Management of Datages 38—49, Tucson, Arizona, May 1997.

P. E. O'Neil, E. Cheng, D. Gawlick, and E. J. O'Neil. ThegtStructured Merge-Tree (LSM-Treefcta Informatica
33(4):351-385, 1996.

A. Reiter. A Study of Buffer Management Policies for Distanagement Systems. Technical Report TR-1619, Mathemat-
ics Research Center, University of Wisconsin-Madison 6197

N. Roussopoulos and H. Kang. Principles and Techniquései Design ofADM S+. IEEE Computer19(12):19-25,
December 1986.

N. Roussopoulos, Y. Kotidis, and M. Roussopoulos. GekeOrganization of and Bulk Incremental Updates on theDat
Cube. InProceedings of the ACM SIGMOD International Conference andfiement of Datgpages 89-99, Tucson,
Arizona, May 1997.

N. Roussopoulos and D. Leifker. Direct Spatial SearcPiotorial Databases Using Packed R-treesPiocs. of 1985
ACM SIGMOD pages 17-31, Austin, 1985.

G. M. Sacco. Index Access with a Finite BufferFroceedings of 13th International Conference on VI, p&yes 301-309,
Brighton, England, September 1987.

G. M. Sacco and M. Schkolnick. A Mechanism for ManagirgBluffer Pool in a Relational Databas System Using the Hot
Set Model. InProceedings of 8th International Conference on VLI[PBges 257-262, Mexico City, Mexico, September
1982.

S. Sarawagi. Indexing OLAP Dati=EE Bulletin on Data Engineering0(1):36—43, March 1997.

S. Sarawagi and M. Stonebraker. Reordering Query Execiut Tertiary Memory Databases. Rroceedings of the 22nd
VLDB Conferencgpages 156-167, Mumbai(Bombay), India, September 1996.

A. Shoshani, L.M. Bernardo, H. Nordberg, D. Rotem, ané&in. Multidimensional Indexing and Query Coordination
for Tertiary Storage Management. Rroceedings of SSDBNpages 214-225, Cleveland, Ohio, July 1999.

M. Stonebraker. Operating System Support for Databas®lyjementCommunications of the ACN4(7):412—-418, July
1981.

B. L. Worthington, G. R. Ganger, and Y. N. Patt. Scheduffgorithms for Modern Disk Drives. ISIGMETRICSpages
241-251, Santa Clara, CA, May 1994,

15

