
Shared Index Scans For Data Warehouses

Yannis Kotidis1, Yannis Sismanis2, and Nick Roussopoulos21 AT&T Labs, 180 Park Ave, P.O. Box 971 Florham Park, NJ 07932-0000 USA
kotidis@research.att.com2 Institute for Advanced Computer Studies, University of Maryland, College Parkfisis,nickg@cs.umd.edu

Abstract. Tree based indexing structures likeB-trees,B+-trees, Bitmap indexes andR-trees have become
essential for getting good performance when accessing vastdatasets. However, most database research seems to
ignore the behavior that the disk hardware observes during index scans. In this paper we aim to refocus attention
on efficiently utilizing the underlying hardware during concurrent index scans. We propose a new “transcurrent
execution model” (TEM) for concurrent user queries againsttree indexes. Our model exploits intra-parallelism
of the index scan and dynamically decomposes each query intoa set of disjoint “query patches”. TEM integrates
the ideas of prefetching and shared scans in a new framework,suitable for dynamic multi-user environments. It
supports time constraints in the scheduling of these patches and introduces the notion ofdata flowfor achieving
a steady progress of all queries. Our experiments demonstrate that the transcurrent query execution results in
high locality of I/O which in turn translates to substantialperformance benefits in terms of query execution
time, buffer hit ratio and disk throughput. These benefits increase as the workload in the warehouse increases
and offer a highly scalable solution to the I/O problem of data warehouses.

1 Introduction

On Line Analytical Processing (OLAP) involves complex ad-hoc queries that access millions of records and per-
form interesting aggregations. The main cost in terms of thetime consumed of executing these queries is not doing
the actual arithmetic, but of retrieving the data that affects the calculated items. In a relational DBMS, materialized
derived relations (views) have long been proposed to speed up query processing. In a data warehouse, these views
store redundant, aggregated information and are commonly referred to assummary tables[4]. B+-trees are used
for realizing the views, however they offer limited indexing capability for multi-attribute queries. An alternative is
to consider the view records as multi-dimensional points and organize them usingR-trees [31, 27, 17]. Tree based
indexes are also exploited in multidimensional architectures as in the proprietary tree structure of Essbase [8], or
in the form of Cube Forests [16].

Another form of redundancy is to index the detailed data in order to provide fast access to individual records.
This is achieved using multipleB-trees [13] or variations ofB-trees like the Log-Structured Merge Tree (LSM -
Tree) [24] and the recently proposedY -tree [15]. Many commercial systems use variations of Bitmap indices [22,
23, 3] that offer query performance improvements at a low disk space overhead. In its simplest form a Bitmap index
is aB-tree that instead of storing at the leaf-pages a list of record-ids for each key value, it stores a compressed
bit-map. There is one such bit-map for each value of the key.

The previous discussion shows that tree-based indices are extensively used to store and/or index large volumes
of enterprise data for decision support applications. In a multiuser environment accessing these indices has the
potential of becoming a significant performance bottleneck. This is because in an unsynchronized execution model,
concurrent queries are “competing” for the shared system resources like memory buffers and disk bandwidth while
accessing the trees. Scheduling of disk requests and pre-fetching are well-studied techniques [10, 35, 2] exploited
by all modern disk controllers to maximize the performance of the disk sub-system. However, optimizing the
execution of the I/O at the physical disk level does not always realize the potential performance benefits. This
is especially true in a highly competitive multi-user database environment were different access patterns from
multiple queries are interleaved and produce a noisy I/O pattern with very high entropy. Figure 1 shows traces
from 40 concurrent queries against a 3-dimensional R-tree.Y-axis represents the logical page id of a request. One
can observe some sequential patterns of requests for close by pages, but the overall picture is rather noisy

Even-though most commercial systems perform asynchronousI/O, from the buffer’s perspective the interaction
with a query is a synchronous one: the query thread asks for a page, waits till the buffer manager satisfies the
request and then resumes execution. This leaves the buffer manager with limited opportunities for maximizing
performance.

In [6], against aB-tree index scan, pre-fetching guided by the upperB-tree levels is exploited to boost I/O
throughput for a single query . This is achieved by identifying the list of leaf pages that need to be accessed and by
initiating prefetches of those pages. This is a case where the query does not ask for one page at a time but rather
for a whole batch at once. Analogous methods are introduced in [18, 1, 32]. However, in a multi-user environment,
aggressive pre-fetching for multiple queries on disjoint parts of the index will only amplify congestion in the buffer
manager [2, 32]. In most cases, overlapping I/O among multiple queries is only exploited if it occurs within a small
time-space window. Even queries with high locality of I/O will only gain small benefits from the available memory
buffers. In our tests with skewed workload with high locality of I/O, the buffer hit ratio was less than 52% in all
cases. For uncorrelated queries this number drops in singledigits. This is due to the lack of synchronization, at the
buffer manager level, among the execution of multiple concurrent queries.

Recently, data warehousing products introduced the notionof shared circular scans(e.g. RedBrick). The idea
is for a new scan to join (merge) with an existing scan on the index/table that currently feeds a running query.
Obviously the latter scan will have to access the beginning of the index later. Microsoft SQL server supports
“merry-go-round”scans by begining each index at the current position, however there is no explicit synchronization
among the queries. In this paper we capitalize on, extend andformalize the idea of shared index scans. We propose
a new “transcurrent execution model” (TEM) for concurrent user queries against tree indices, which is based on
the notion of detached non-blocking query patches. This is achieved by processing index pages that are cached by
the buffer manager and detaching execution of disk-resident parts of the query that we call “patches”. TEM allows
uninterrupted query processing while waiting for I/O. Collaboration among multiple queries is accomplished by
synchronizing the detached patches and exploiting overlapping I/O among them. We use a circular scan algorithm
that dynamically merges detached requests on adjacent areas of the tree. By doing the synchronizationbeforethe
buffer manager, we manage to achieve a near-optimal buffer hit ratio and thus, minimum interaction with the disk
at the first time.

We further exploit pre-fetching strategies, by grouping multiple accesses in a singlecomposite request(anal-
ogous to multipage I/Os in [6]) that reduces communication overhead between the query threads and the buffer
manager and permits advanced synchronization among them. Compared against shared circular scans, TEM is far
more dynamic, since merging is achieved for any type of concurrent I/O, not just for sequential scans of the index.
TEM identifies correlated I/O requests among multiple queries and “joins” them to reduce congestion in the buffer
manager. Compared with conventional pre-fetching strategies forB-tree indices, our framework is more generic
since it also covers Bitmap indices andR-trees and can be easily adapted to virtually any tree-basedstructure used
in the data warehouse.

Another important difference is that our composite requests consist of pages that will actually be requested
by the query. On the contrary, typical pre-fetching techniques retrieve pages that have high-probability of being
accessed in the future, but might be proven irrelevant to thequery. Furthermore, to our knowledge we are the first
to formalize a synchronization technique among concurrentqueries in a dynamic multi-user environment. Another
contribution of the TEM framework is that we address the issue of fairness in the execution of the detached patches
and introduce the notion ofdata flowto achieve a steady flow of data pages to all query threads. This allows
efficient execution of complex query plans that pipeline records retrieved by the index scans.

Our experiments demonstrate that transcurrent query execution results in better utilization of the CPU and in
high locality of I/O, which in turn translates to substantial performance benefits. Compared to an unsynchronized
query execution model, it provides substantial improvements in terms of query execution time, query data flow,
buffer hit ratio and disk throughput. These benefits increase as the workload in the data warehouse increases and
offer a highly scalable solution to the I/O problem of data warehouses. Furthermore, TEM is easily integrated with
existing systems and provides no overhead regardless the workload.

The rest of this paper is organized as follows: section 2 discusses the motivation behind our architecture. In
section 3 we make a detailed description of the TEM and discuss related implementation and performance issues.
In section 4 we define data flow and show how to support time constraints in the scheduling of the detached query
patches. Finally, section 5 contains the experiments and insection 6 we draw the conclusions.

2

2 Motivation

Most commercial data warehouses maintain a pool of session-threads that are being allocated to serve incoming
user queries. In a data warehouse environment, the I/O is read-only and the query threads generate concurrent read
page requests. These requests are handled by the buffer manager who will initiate an actual I/O to disk for all the
pages not in the buffer pool.

The task of the buffer manager is to maximize the buffer hit ratio and therefore minimize the interaction with
the disk. In the database literature there is an abundance ofresearch on buffer allocation and replacement strategies
(e.g. [30, 9, 7, 19, 5, 21]). For tree index structures, a Domain Separation Algorithm [25] introduced multiple LRU
buffer pools, one for each level of the tree. Because of the multi-level organization, top level pages of the index
have increased probabilities for staying in memory, resulting in about 8-10% better query performance than plain
LRU. A similar algorithm (OLRU) is also discussed in [29] andis proved to be optimal under the assumption
of a uniform distribution of index page reference densities. Variations of the Domain Separation algorithm are
also discussed in [9, 20]. However in [7] Chou and DeWitt point out that for indices with large fan-out the root is
perhaps the only page worth keeping in memory. In data warehouses, indices are typically created and refreshed
through bulk operations. As a result the trees tend to be rather packed and shallow and the potential improvements
from a domain separation algorithm are limited. For examplein an 1GB R-tree index, built with 16KB page size
and 100% leaf page utilization [28], non-leaf pages contribute less than 0.5% of the index space. Even if LRU’s
hit ratio goes to 100% for non-leaf pages the increase in the overall buffer hit ratio will be insignificant. Similarly
for compressed Bitmap indices most of the information is stored in the leaves of the tree that occupy most of the
index. Therefore, for compacted indices, none of the previous algorithms is expected to behave differently than
straightforward LRU.

In a concurrent multi-user environment there is limited potential for improving the buffering of the leaf-level
pages. Each query thread works in pace with the buffer manager1: it requests one page at a time, await till it gets the
page and then advances the index scan. Givenn > 2 concurrent queries on an 100MB index (6,400 16KB pages)
and uniform distribution of accesses, the probability thatthe same data page is requested by 2 or more queries at a
given time is: poverlap(n) = 1� p(1=6400; 0; n)� p(1=6400; 1; n) (1)

where: p(a; k; n) = n!k! � (n� k)! � ak � (1� a)n�k (2)

is the standard binomial distribution. In Figure 2 we plotpoverlap as the number of concurrent queries increases
from 1 up to 10,000. We also plot the same probability for a more realistic 80-20 access pattern, where 20% of
the pages receive 80% of the requests. These graphs show thatfor reasonable numbers of concurrent users, these
probabilities are practically zero.

The buffer pool allows the system to gain from overlapping I/O even if it doesn’t occur at the same time-frame.
The more buffers we have the larger this “grace-period” can be. In the unlikely event that the whole index fits in
memory, all overlapping requests will be exploited, no matter their time-stamp. However for most cases where only
part of the index fits in memory, overlapping requests have tooccur within a relatively short time-window before
the replacement strategy used flushes “idle” pages to disk. Two obvious solutions to the problem are: i) to increase
the size of the buffers; and ii) to use an application specificreplacement strategy like OLRU. However, another
orthogonal optimization that, to our knowledge, has not been exploited is to increase the amount of overlapping
I/O within the “grace-period” provided by the buffers. In Figure 2 we see that the probability of overlapping I/O
slowly increases with the number of queries. Of course we do not want to introduce useless queries to increase our
changes of overlap! Instead we want our existing workload toproduce a heavier flow of correlated requests that
will enable the buffer manager to better exploit overlapping I/O.

This is achieved by a non-blocking mechanism, in which page requests that are not in the buffers are detached
from the current execution of the query thread while the query thread advances its scan. We call this model of
executiontranscurrentbecause it detaches the processing of the requested I/O and delegates it as aquery patchto
an asynchronousservice thread. This creates the illusion of a higher number of concurrent queries and results in
increased chances of getting overlapping I/O, as demonstrated in Figure 2.

1 Notice that the actual I/O is in most cases performed asynchronously.

3

0

2000

4000

6000

8000

10000

12000

P
ag

e
#

Time

Fig. 1. Logical page requests during 40
queries against a single index

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000

P
_o

ve
rla

p
(%

)

#queries

uniform
80-20

Fig. 2. Probability of overlapping I/O for uniform
and 80-20 accesses

Service Tread (ST)

ac
ce

pt
-r

eq
ue

st

 b
uf

fe
r

pa
ge

 r
ea

d

Buffer Manager

 b

uf
fe

r
po

ol

Disk

Query
thread

Query
thread

Query
thread

Processing of
detached patches

Scheduler

bmPageLookUp

Fig. 3. System overview

3 Transcurrent Execution Model (TEM)

In this section we propose an architecture for the TEM. Our goal throughout the design was to require the least
amount of modifications for integration into existing systems. The architecture introduces a new “Service Thread”
(ST) for each active index, i.e. an index that is accessed by aquery. Depending on the number of indices and disks
in the system, the administrator may modify the configuration and assign multiple indices to each ST.

The ST accepts page requests generated from the query threads that scan the index. This is shown in Figure 3,
where multiple query threads are communicating with the ST of the same index. This thread is interjected between
the buffer manager and the query threads. Since concurrencycontrol and locking in a database system are imple-
mented at the buffer manager level, the ST does not need to deal with locking for concurrency control. Therefore,
although TEM is mainly intended for data warehousing environments, it can also be adopted by OLTP systems.

The ST accepts all read-page requests for its correspondingindex. Requests for pages that are in memory are
immediately passed to the buffer manager and ST acts as a transparent gateway between the query thread and the
buffer manager, as seen in the Figure.2 For pages that are not in the buffer pool their requests are queued within
the ST. The query thread that issued the request can either block until the page is actually read, or in some cases
advance the index scan. In the later case the processing of the page is detached and performed internally, as a query
patch, by ST when the page is actually fetched from disk. We use aQueryPatchclass to describe detached requests.
This class contains among others:

– a logicalpageIdof the index page that needs to be retrieved.
2 We assume that the manager provides abmPageLookUp(pageId) function for determining if the requested page is in the

buffers.

4

– a funcIdof the function that should be called by ST when the page becomes available along with necessary
arguments in order to process the page.

– an outFuncIdpointer to a function that redirects the output of the processed page. This can either go to the
screen or another thread that processes the data retrieved from the index (e.g. in a join).

– thequeryThreadIdof the session thread initiated the request.

Our goal is to optimize the execution order of the requests that are queued in ST (see Figure 3) in order to
achieve higher buffer hit ratio. Assuming that the buffer manager is using a variant of the LRU replacement policy,
an optimal execution strategy for ST would be to put requestson the same page together, so that subsequent reads
would be serviced immediately from the pool. If I/O requestsfrom all queries were known a-priori, we could
simply sort them, merge overlapping requests and execute them in any order. In a dynamic scenario, where new
queries arrive asynchronously, we can use a circular scan algorithm [10, 35] that is frequently used for scheduling
I/O at the disk controller level. For these system, the key idea is to align adjacent page requests and smooth-out
costly random seeks on the disk. By using the same type of algorithm for our synchronization step, we not only
achieve our goal, which is to maximize hit ratio, but we also generate an I/O stream that is bread-and-butter for a
modern disk controller.

3.1 Index Scans for TEM

TEM is used for querying hierarchical tree indexes likeB-trees andR-trees. For simplicity in the notation we will
be using as reference the standardR-tree structure. SinceR-trees generalize theB-tree index for multiple keys,
our technique is also applicable toB-trees/B+-trees and Bitmap indexes.

As a running example we will be referring to a sample data warehouse that is built for analyzing supermarket
transactions. A materialized view is used to store the totalquantity of everyproduct that eachcustomer
is buying. Table 1 provides some sample data for this view. The view is stored in a single 2-dimensionalR-tree
as proposed in [27, 17]. Each record is realized as a two-dimensional point where theproduct value defines the
x-coordinate of the point and thecustomer value the y-coordinate respectively. The aggregate value is stored as
the content of the point. For instance the first row of the table is mapped into point(x = 1; y = 1; value = 26).

productcustomersum(quantity)

1 1 26
1 2 24
1 4 41
1 5 9
2 2 6
2 3 5
3 1 3
3 2 27
3 4 7
3 5 15
4 1 6
4 2 10
4 3 1
4 4 21

Table 1.An aggregate view onproduct & customer attributes

Using this mapping the resultingR-tree index is shown in Figure 4. The buckets1; 2; 3; : : : ; 8 in the Figure
represent nodes of theR-tree. Each node is stored in a different page on the disk withthe page number shown on
the top-left hand side of the node. The point-data of the viewis stored at the leaf pages, as in a traditionalB+-tree.
An intermediate node holds a list of entries that contain Minimum Bounding Rectangles for indexing the space of
the children nodes as well as pointers to the children nodes [14].

5

(1,1,26),(1,2,24),(1,4,41) (1,5,9),(2,2,6),(2,3,5)

(1,1,1,4,*),(1,2,2,5,*),(3,1,3,4,*)

(3,1,3),(3,2,27),(3,4,7) (3,5,15),(4,1,6),(4,2,10) (4,3,1),(4,4,21)

(3,1,4,5,*),(4,3,4,4,*)

(1,1,3,5,*),(3,1,4,5,*)

1 2 3 4 5

6 7

8

Level 0

Level 1

Level 2

Fig. 4.R-tree for sample view

Query Thread (QT)

processing
(non-leaves)

non-leaf pages

Query Output
(e.g screen)

leaf-page
request

Buffer Manager

Service Tread (ST)

ac
ce

pt
-r

eq
ue

st

 b
uf

fe
r

pa
ge

 r
ea

d

Processing of
detached patches

(leaves)

Scheduler

bmPageLookUp
(non-leaves)

Fig. 5. Processing of detached I/O in TEM

Compared to aB+-tree representation, thisR-tree can be efficiently used for answering arbitraryrange queries
on bothcustomer andproduct attributes. Such a query is depicted as a two-dimension rectangle in the (cus-
tomer, product) attribute space. For instance a query that retrieves salesof products with id 1 through 3 to customer
1 can be encoded using rectangleQ = (xmin = 1; ymin = 1; xmax = 3; ymax = 1).

For querying we assume a standardR-tree search algorithm [14] that descends the tree from the root following
subtrees that overlap the query rectangle. For the previousquery the search path will be (numbers correspond to
page-numbers):8! 6! 1! 2! 3! 7! 4.

In an traditional index scan, each page request will block the query thread until the page is brought in the
buffers. In the TEM if the page is not in the buffer pool, then the request is queued and will be executed at a later
time according to the scheduling algorithm described in thenext subsection. We then have the option to stop the
query thread, until the page is actually fetched from the disk or let it scan the rest of the tree structure. However, the
potential benefits for doing that depend on how far the algorithm has proceeded in traversing the tree. For instance
at the root-level the index scan can not resume until the rootis fetched from the disk. However, if we defer the
processing of the left-most level-1 page of Figure 4, we can still work with its sibling page. Even more options
are available when accessing a leaf data page. In such cases we can always advance the search until the tree is
exhausted.

For indexes that are created using bulk-load operations in adata warehouse, non-leaf pages are typically a very
small fraction of the overall index space. For an 1GBproduct,customer view of our example, only about 5MB
of disk space is consumed by the non-leaf node pages of the correspondingR-tree.3 Assuming relatively frequent
queries on the view, most of these pages will be buffered in memory. As a result there is no evidence in getting
any improvement by advancing the search for non-leaf pages,since in most cases the page will be available in the

3 we assume a 16KB page size and 4-byte integer attributes

6

buffers anyway and the scan will not be blocked. Therefore, we do not consider detaching execution of non-leaf
page requests and the query thread is blocked whenever such arequest is not immediately satisfied from the buffer
pool. On the contrary, for the remaining 99.5% of leaf (data)pages, because of the asynchronous execution, the
probability that the page is in the pool at the exact time thatthe request is made is very small, see Figure 2. Therefore
for leaf pages it is faster to detach their requests without checking the buffers with thebmPageLookUp(pageId)
function, otherwise a lot a thread congestion is happening.If these pages happen to be in memory, the ST will
immediately pool them from the queue as described in the nextsection and process them as a query patch.

Figure 5 depicts the proposed transcurrent execution model. The query thread (QT) initiates page requests
while searching the index. These requests are scheduled internally by the ST. Execution of leaf page requests is
always detached and performed by the service thread.4 Non-leaf pages that are in the pool are handled by the QT.
Otherwise, the QT is blocked until the page is fetched in memory by the ST. Therefore, processing of non-leaf
pages is only performed by the query thread.

3.2 Synchronization of Detached Query Patches

ST reorganizes queued requests in a way that maximizes the performance of the buffer manager. This can
be achieved by dynamically merging requests on adjacent areas of the tree through a circular scan or elevator
algorithm. This family of algorithms has been shown [35] to perform well for I/O with significant read sequentiality.
This is the case for index scans ofB-trees, Bitmap indices andR-trees, at least when leaf pages are being scanned.
As we mentioned earlier, these algorithms also result in better performance by the underlying disk controllers.
This is because scheduling based on logical block (page) numbers has been shown to work well [35, 2], even if
the underlying mapping to physical block numbers is unknown. Even in the case of a RAID-box that re-shuffles
requests to different disks, a primary sequential access pattern generated by ST will give the best performance. This
is because most partitioning schemes used in RAID have been designed for applications with primary sequential
I/O (e.g. video streams). However, ST does not aim to do the job of, or replace disk controllers. It is only used as a
mean to synchronize requests before the buffer manager and to allow deferred query execution, so that concurrent
queries will share and not compete for memory buffers.

The ST maintains the current position on the file of the last satisfied disk I/O. Query threads continuously
generate new requests, either as a result of a newly satisfiedpage request, or because of the non-blocking execution
model that allows the search algorithm to advance, even if some page-reads are pending. Incoming page requests
are split into two distinct sets. The first called “left” contains requests for pages before the last satisfied page of the
index and the set called “right” (assuming a file scan from left to right) contains requests for pages in-front of the
last page accessed. These are actually multi-sets since we allow duplicates, i.e multiple requests for the same page
by different threads. The next request to satisfy is the nearest request to the current position from theright set
that is realized as a heap. When theright set gets empty, the current position is initialized to the smallest request
in theleft set and theleft set becomes theright set.

An extension that we have implemented but not include in thispaper is to permit pages in the right set, even if
they are within some small threshold on the left of the current position. The intuition is that these pages are likely to
be in the cache of the disk controller. This allows better synchronization of queries that are slightly “misaligned”.
However, picking the right threshold requires knowledge ofthe hardware platform used.

We also experimented with an elevator algorithm that switches direction when reaching the end/start of the file.
We did not expect better performance, but to our surprise this algorithm was much slower than the circular scan
algorithm that we described, probably due to conflicts with the scheduling algorithm implemented at the hardware
of our disk controller. We plan to investigate this matter ondifferent hardware platforms.

3.3 Composite Requests for Increased Overlapping I/O

Assume a query that descends the tree of Figure 6 following the paths denoted by the thick arrows. The working
set for this query is: 13! 10! 1! 2! 3! 11! 5

4 The spinning arrows in the Figure denote processing of requests within the threads.

7

1 2 3

10

4 5 6 7 8 9

12

13

11

Fig. 6. DFS Index Scan

The query traverses two sub-trees generating one request ata time. An opportunity for optimization arrives when
processing level-1 nodes; i.e nodes just above the leaves ofthe tree. When such a node is processed we know
which of the underlying leaf pages the query will request. For instance after page 10 is read, we can group requests
for leaf pages 1,2,3 into a single composite multi-page request denoted asf1; 2; 3g. We do not want to apply the
same technique when accessing intermediate nodes higher inthe tree structure, otherwise the search is reduced to
a Breadth First Search algorithm that requires memory proportional to the width of the index.

For handling multi-page requests theQueryPatchclass is extended to contain a (sorted) list of page numbers:r = fp1; p2; : : : ; png. When testing a composite request against the current position on the file, we use the smallest
page number of the groupp1. If it is smaller, the multi-page request is added to theleft set, otherwise it is added
to theright set. Using composite requests the query shown in Figure 6 will generate the following requests:13! 10! f1; 2; 3g ! 11! f5g
Composite requests are more efficient because of the lower overhead required for the communication between the
query-thread and the ST. However, an even more important side-effect of using composite requests it that the ST
is given more information at every interaction with the query threads and is able to provide better synchronization.
For instance, 10 concurrent single-page requests provide at any given point 10 “hints” to the scheduler (ST) on
what the future I/O will be. In comparison composite requests of 100 pages each,5 provide a hundred times more
information at any given point. Looking back at Figure 2 thisgenerates the illusion of having10 � 100 = 1000
concurrent queries for which now the probability of overlapis poverlap(1000)poverlap(10) = 1:0998e�21:1e�6 = 9998 times (i.e four
orders of magnitude) higher! Furthermore, due to the non-blocking execution of the index scan, the query threads
are constantly feeding the ST with more information, resulting in even higher gains. In this sense, even-though
transcurrent query execution and dynamic synchronizationcan be seen as two orthogonal optimizations they are
very naturally combined with each other. Due to the non-blocking execution the ST gets more input from the query
threads and, therefore makes more informed decisions that further allow the query threads to process the index,
and generate new requests, at a higher pace.

3.4 Scheduling v.s. Cache Management

In the context of tertiary storage management an idea similar to TEM has recently been deployed in STACS [33] to
optimize the use of disk cache for files read from tapes and minimize the number of tape mounts. A difference is that
for each query, STACS using a combination of bit-sliced indices knows in advance the files that are needed. Thus
the main concern is about cache admission/release policies, while in TEM the focus is not on cache management
but on exploiting intra parallelism of index scans and overlapping I/O before reaching the cache. TEM should
impose no overhead while scheduling the requests. This is because disk accesses are in the orders of milliseconds,
while for tertiary storage the latency of mounting a tape canbe several minutes.

In our initial designs we also though of exploiting the largenumber of pending requested queued in ST for
better cache management. We tested an implementation of a modified LRU policy that avoids replacing pages that
have pending requests on the right set of ST. Even though thisresulted in a slightly higher buffer hit ratio than plain
TEM, the gains did not show up in query execution times because of the per-request overhead of synchronizing
ST’s structures with the buffer manager. Our current implementation is cleaner, easier to integrate with existing
systems and reorders the requests in a way that is ideal for LRU as shown in Figures 9, 10.

5 the fan out of a 2-dim R-tree with 16KB page size is 819. We assume that one in 8 leaves under a visited level-1 page are
relevant to the query

8

4 Flow Control Extensions

Deferred requests are used in TEM as a mean to identify overlap among concurrent queries. A potential drawback is
that a request that is diverted to theleft set (see section 3.2) can be delayed while incoming requestskeep pushing
the request flow to theright set. Starvation is not possible, because the current file position is monotonically
increasing up to the point that the last page of the index is read or theright set is exhausted, or both. When this
occurs, theleft andright sets will be swapped and therefore, in the worst case, the delayed request will be
satisfied after a full scan of the file.

From the user point of view, an index scan produces results only when leaf pages are processed. These pages
in R-trees andB+-trees hold the actual values while in Bitmap indices andB-trees contain compressed bit-maps
and pointers where the records are stored respectively. Forsome queries a delayed delivery of data (leaf) pages
might be unacceptable. This is the case for queries whose output is consumed by another thread, like a sub-query
in a pipelined execution model; a delayed delivery of data will block the consuming thread.

In TEM, the query thread continues execution even-though read requests for leaf pages are “delayed” by the
scheduler. This means that internally, the scan advances atall times. This is demonstrated in Figure 5. The spinning
arrows within the query thread and the ST denote internal asynchronous processing of index pages. The ST executes
detached leaf page requests while the query thread QT processes requests for non-leaf pages. Assuming that QT
processesPQT non-leaf pages per second and the ST processesPST leaf pages per second the aggregate processing
for the query is:Poverall = PQT + PST . Since output is only produced when scanning leaf pages, from the user
point of view the effective progress of his queryq that we denote asdata flow(DF) is:DF (q) = PST (3)

Intuitively the larger this number is, the more bursty the output of the query gets. In the presence of many concurrent
queries, a steady data flow for all of them can be achieved by bounding theidle timetidle of their leaf page requests.
This idle time is defined as the period between two consecutive satisfied leaf page requests. The ST maintains a
time-stamp information for each query that is running in thesystem and uses the index. This time-stamp is updated
every time a leaf-page request is satisfied for the query. Theadministrator defines a “hint” for the maximum timeW that a detached leaf-request is allowed to be delayed. Our implementation uses aFlow Control Threadthat
periodically checks forexpiredrequests. Assuming that this thread awakes everyT time-units and checks all time-
stamps, then a query’s output might block, waiting for a datapage for a period oftidle = W + T and therefore the
minimum data flow for the query will be:DFlow = 1W + T pages=se
 (4)

Leaf page requests that have expired are inserted in a priority queue that uses the delay information for sorting
them. As long as the ST finds expired requests in this queue, itprocesses them before those in theright set. A
minimum idle time can not be fully guaranteed because it depends on other parameters such as the load on the CPU,
the disk subsystem etc, and in addition a delayed request will have to wait other delayed requests that have longer
idle times. However, the number of page requests in the priority queue is bounded by the number of concurrent
queries in the system. This is because we only need at most oneexpired request per query to lower-bound the data
flow. This also prevents the data flow mechanism to become too intrusive if very small values forW andT are
chosen.

5 Experiments

The experiments that we describe in this section use an implementation of TEM on top of the ADMS [26] database
management system. For these experiments we have used the TPC-D benchmark [11] for setting up a demon-
stration database. TPC-D models a business data warehouse where the business is buyingproducts from a
supplier and sells them to acustomer. The measure attribute is thequantity of products that are in-
volved in a transaction. For the first set of experiments, we concentrate on an aggregate view for this dataset that
aggregates thequantity measure on these three dimensions. The SQL description for the view is:6

6 fact table is used to store all sales data.

9

create view View1 as
select product, customer, supplier,

sum(quantity) as total quant
from fact table
group by product, customer, supplier

This view was materialized in the disk using a single 3-dimensionalR-tree stored in a raw disk device. We
did not use regular Unix files in order to disable OS buffering. This is a common technique recommended by all
commercial-strength database systems since they provide superior buffering techniques for database applications
than the OS [34]. The buffer manager of ADMS, as in most commercial database systems, uses LRU replacement
policy for tree indices. As we already mentioned in section 2, for indices that were bulk-loaded we do not expect
any differences between the performance of plain LRU and a domain separation algorithm.

We used a SUN Ultra-60 workstation with a 360MHz UltraSPARC-II CPU and an 18GB SEAGATE Cheetah
hard drive connected through an ultra wide SCSI bus. The drive controller operates at a lower level than the DBMS
(or the OS) buffering and thus all optimizations for reducing seeks or pre-fetching are performed for raw-devices
also. This drive is able to provide a sustained data transferof 18.11MB/sec for serial reads from the raw device.
We created a 2GB TPC-D dataset (scale factor=2). The total number of records in the view was 11,997,772 and
the overall size of theR-tree was 183.8MB. The number of distinct values per attribute was 400,000, 300,000 and
20,000 forproduct, customer andsupplier respectively.

5.1 Query Description

For searching the view we used queries with ranges on the grouping attributesproduct, customer andsup-
plier. These queries are formulated in SQL using the template of Figure 7.

SELECT produ
t;
ustomer; supplier; total quant
FROM View1
WHERE produ
t � minprodu
t andprodu
t � maxprodu
t
AND
ustomer � min
ustomer and
ustomer � max
ustomer
AND supplier � minsupplier andsupplier � maxsupplier

Fig. 7.Query template for View1

We used two different sets of queries:

Uniform Set: For these queries, the minimum value for each attribute is selected uniformly from the attribute’s
domain. The upper value is then chosen to create a random range that covers up to 25% of the attribute’s values.
For the three dimensional dataset that we used the maximum selectivity of an uniform query is0:253 = 1:56%.

80–20 Set:For this query-set the lower value for each attribute is chosen using the 80-20 self-similar distribu-
tion [12] and the upper value as in the previous set.

5.2 Comparison of TEM Against an Unsynchronized Execution

For the first experiment, we used theUniform Setof queries and varied the number of concurrent queries in the
system from 10 up to 200. Each of these queries was executed ina different thread. We used three different
configurations. The first, which is denoted as “CEM” in the graphs, refers to the “conventional” execution model,
where all queries are unsynchronized. The second configuration used the transcurrent execution model with single
page requests while the last one used composite requests as described in section 3.3. These configurations are
denoted as TEM and TEM+ respectively. The ST maintains a pre-allocated pool of request (QueryPatch) objects
that are used in theleft andright sets. For the TEM/TEM+ configurations we set the request poolsize to be

10

Fig. 8. Total execution time for 10-200 concurrent queries

0

2000

4000

6000

8000

10000

12000

P
ag

e
#

Time

Fig. 9. Requests made from the ST to the Buffer Manager (TEM+)

1MB and the buffer pool size of ADMS to 15MB. Since CEM does notuse the ST, we gave the extra 1MB worth
of memory to the buffer manager and set its pool size to be 16MB.

Figure 8 depicts the overall execution time for all queries for the three configurations, as the number of concur-
rent queries increases from 10 to 200. For relatively light workload (10 concurrent queries), the overall execution
time is reduced by 13.9% in TEM and 16.9% in TEM+. As the numberof queries increases, the differences be-
tween the three configurations become even more clear. For 200 concurrent queries the system with the TEM+
reduces the overall execution time from 500.4sec down to 324.4sec, a 35.2% reduction over the unsynchronized
execution. The effective disk I/O bandwidth, which is computed from the number of page requests serviced per
second was 8.67MB/sec for the CEM and 13.38MB/sec for the TEM+. Compared to the raw bandwidth of the disk,
the TEM+ utilizes 74% of the disk serial transfer rate with all 200 query threads and the service thread running in
a single CPU workstation.

In Figure 9 we plot the (logical) page requests for 40 queriesafter they are reordered by the ST and passed to the
buffer manager. The ST dynamically aligns requests at theright set to exploit spatial locality. These groups are
further stacked as shown in the Figure. This I/O pattern is ideal for the LRU policy because of its high time-space
locality.

Figure 10 shows the buffer hit ratio as the number of queries increases. Because of the noisy query I/O (similar
to that of Figure 1) the unsynchronized execution achieves avery poor hit ratio. For the TEM+ the hit ratio increases
with the number of concurrent queries up to 92.4% for 200 queries. This is because the more the queries the higher
the probability of having overlapping I/O gets, see Figure 2. In Figure 10 we also plot the optimal buffer hit ratio.
This was computed by examining the I/O traces of the queries and reordering the requests in a way that maximizes
the buffer hits. Notice that the TEM+ provides a near-optimal performance.

Table 2 shows the results of a second experiment using 40 and 200 concurrent queries of the second query set
(80–20 Set). This query set is very skewed with high localityof I/O. The execution time column shows the time to
execute all queries. The effective disk I/O was computed as the overall I/O generated by all queries divided by the
total execution time.

11

Fig. 10.Buffer hits

#QueriesExecution ModelExecution TimeHit Ratio Effective I/O

40 CEM 92.87 sec 43.11% 10.21 MB/sec
queries TEM+ 74.29 sec 79.48% 12.76 MB/sec

200 CEM 445.69 sec 51.76% 10.28 MB/sec
queries TEM+ 344.67 sec 92.13% 13.29 MB/sec

Table 2.Performance data for the 80–20 Query Set

5.3 Experiments with Flow Control

For the following experiments, we implemented the flow-control extensions described in section 4. This new
configuration is denoted as TEM+/FC. For the analysis we useda set of 50 concurrent queries from the uniform
set. For each query we computed the average idle time, that isthe time between two satisfied consecutive leaf
page requests, see subsection 4. Notice that this time also includes the overhead of processing the data page. For
the TEM+/FC we set the time-out periodW to be 1sec and the sampling period of the Flow Control ThreadT to
0.1sec. Figure 11 shows the average idle time for each individual query, for the three execution models. For the
CEM this idle time is 1.7sec on the average for all queries andcan be justified from the heavy congestion in the disk
for 50 concurrent queries. For TEM+ the average idle time is higher at 5.8sec on the average and 21sec in the worst
case for query #50. Notice that the total execution time is much lower for TEM+ : 91.35sec, vs. 134.96 sec, i.e.
32.3% lower. The reason that the idle time is higher is because of detached query patches of leaf page requests that
are being delayed in theleft set as described in subsection 4. Figure 11 shows that the TEM+/FC architecture
outperformed the other two. On the average the idle time was just 1.09sec over all queries resulting in adata flow
of 938 processed records per second to each thread. In Figure12 we plot the average idle time for all queries along
with the computed standard deviation. This graph shows thatTEM+/FC provides the lowest idle time and has the
smallest standard deviation, which means that it treats allqueries fairly. On the contrary the deviation in the CEM
is higher due to the thrashing in the buffer pool and the disk.The price for this performance is rather small. The
total execution time for all 50 queries was 103.88 sec for TEM+/FC, about 13.7% slower than the TEM+, but still
23% faster than CEM.

5.4 Experiments withB+-trees

TEM provides benefits when used with one dimensional indiceslike B-trees and Bitmap indices. For demonstra-
tion we used a 10MBB+-tree. TheB+-tree record consisted of a integer key and a float measure. The total number
of tuples indexed was 1,264,626. The distribution of keys was uniform. For the first run we used theUniform set
and varied the number of concurrent queries from 10 to 200. Figure 13 shows the increased buffer hits (for 2MB of
buffers) compared to the conventional model. The response time reduction was about 15% regardless of the load.

In a final experiment we tested TEM against random range queries with varying selectivity. Figure 14 shows
the hit ratio for 10 up to 100 concurrent queries with selectivities from 1%, up to 40%. As the selectivity and/or
the number of queries increase, TEM’s performance gets better. It is worth pointing out that in most cases, TEM
has a near-optimal performance. For example for 10 queries with selectivity 1% TEM achieves hit ratio of 6.94%
while the optimal hit ratio for this workload was 7.04%

12

Fig. 11.Average idle time per query

Fig. 12. Idle time comparison

6 Conclusions

In this paper we argued that conventional index scans and buffering techniques are inadequate for utilizing modern
disk hardware and thus fail to support a highly concurrent workload against tree indexes. We showed analytically
and through experiments that in an unsynchronized execution, overlapping I/O is only exploited if it occurs within
a small time-window. We then introduced the transcurrent execution model (TEM) that exploits intra-parallelism of
index scans and dynamically decomposes each query into a setof disjoint query patches. This allows uninterrupted
processing of the index, while the disk is serving other I/O requests. Pending requests are dynamically merged
for adjacent areas of the tree. We further proposed the use ofmulti-page (composite) requests that allow smaller
synchronization overhead and higher probability of overlapping I/O among the detached query patches. For queries
that require a steady flow of processed tuples we introduced and used thedata flowas a metric of the pace of each
query’s progress.

Our experiments demonstrate that the transcurrent query execution results in substantial performance benefits
in terms of query execution time, buffer hit ratio and disk throughput. These benefits increase as the workload in
the warehouse increases and offer a highly scalable solution to the I/O problem of data warehouses. In addition,
TEM can be easily integrated into existing systems; our implementation of ST using posix-threads showed no
measurable overhead from the synchronization algorithm and data structures, for 2 up to 500 concurrent queries in
a single CPU workstation.

References

1. G. Antoshenkov. Dynamic Query Optimization in Rdb/VMS. In Proceedings of ICDE, pages 538–547, Vienna, Austria,
1993.

2. P. Cao, E. W. Felten, A. R. Karlin, and K. Li. Implementation and Performance of Integrated Application-Controlled File
Caching, Prefetching, and Disk Scheduling.ACM Transactions on Computer Systems, 14(4):311–343, 1996.

3. C. Y. Chan and Y. Ioannidis. Bitmap Index Design and Evaluation. In Proceedings of ACM SIGMOD International
Conference on Management of Data, pages 355–366, Seattle, Washington, USA, June 1998.

4. S. Chaudhuri and U. Dayal. An Overview of Data Warehousingand OLAP Technology.SIGMOD Record, 26(1), Septem-
ber 1997.

13

10
 20
 30
 40
 50
 60
 70
 80
 90
 100
110
120
130
140
150
160
170
180
190
200

0
0

10

20

30

40

50

60

70
 CEM

TEM+

#Queries

H

it
 R

a
ti
o
 (

%
)

Fig. 13.Buffer hits

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

H
it

R
at

io
 (

%
)

#queries

1%
10%
20%
30%
40%

Fig. 14.Varying selectivities/#queries

5. C.M. Chen and N. Roussopoulos. Adaptive Database Buffer Allocation Using Query Feedback. InProcs. of the 19th Intl.
Conf. on Very Large Data Bases, pages 342–353, Dublin, Ireland, August 1993.

6. J. Cheng, D. Haderle, R. Hedges, B. Iyer, T. Messinger, C. Mohan, and Y. Wang. An Efficient Hybrid Join Algorithm: A
DB2 Prototype. InProceedings of ICDE, pages 171–180, Kobe, Japan, April 1991.

7. H. Chou and D. DeWitt. An Evaluation of Buffer Management Strategies for Relational Database Systems. InProceedings
of the 11th International Conference on VLDB, pages 127–141, Stockholm, Sweden, August 1985.

8. Robert J. Earle. Arbor Software Corporation, US patent #5359724, Oct 1994. ”http://www.arborsoft.com”.
9. W. Effelsberg and T. Haerder. Principles of Database Buffer Management.ACM TODS, 9(4):560–595, 1984.

10. R. Geist and S. Daniel. A Continuum of Disk Scheduling Algorithms.ACM Transactions on Computer Systems, 5(1):77–
92, 1987.

11. J. Gray.The Benchmark Handbook for Database and Transaction Processing Systems- 2nd edition. Morgan Kaufmann,
San Franscisco, 1993.

12. J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. Weiberger. Quickly Generating Billion-Record Synthetic
Databases. InProc. of the ACM SIGMOD, pages 243–252, Minneapolis, May 1994.

13. H. Gupta, V. Harinarayan, A. Rajaraman, and J. Ullman. Index Selection for OLAP. InProceedings of ICDE, pages
208–219, Burmingham, UK, April 1997.

14. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. InProceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pages 47–57, Boston, MA, June 1984.

15. C. Jermaine, A. Datta, and E. Omiecinski. A Novel Index Supporting High Volume Data Warehouse Insertions. In
Proceedings of 25th International Conference on Very LargeData Bases, pages 235–246, Edinburgh, Scotland, U.K.,
September 1999.

16. T. Johnson and D. Shasha. Hierarchically Split Cube Forests for Decision Support: description and tuned design. Working
Paper, 1996.

14

17. Y. Kotidis and N. Roussopoulos. An Alternative Storage Organization for ROLAP Aggregate Views Based on Cubetrees. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 249–258, Seattle, Washington,
June 1998.

18. C. Mohan, D. Haderle, Y. Wang, and J. Cheng. Single Table Access Using Multiple Indexes: Optimization, Execution and
Concurrency Control Techniques. InProceedings of the EDBT, pages 29–43, Venice, Italy, 1990.

19. R. T. Ng, C. Faloutsos, and T. Sellis. Flexible Buffer Allocation Based on Marginal Gains. InProcs. of ACM SIGMOD
Intl. Conf. on Management of Data, pages 387–396, Denver, Colorado, May 1991.

20. C. Nyberg. Disk Scheduling and Cache Replacement for a Database Machine. Master’s thesis, UC Berkeley, July 1984.
21. E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K Page Replacement Algorithm for Database Disk Buffering. In

Proceedings of ACM SIGMOD Intl. Conf. on Management of Data, pages 297–306, Washington D.C., May 26–28 1993.
22. P. O’Neil and G. Graefe. Multi-Table Joins Through Bitmapped Join Indices.SIGMOD Record, 24(3):8–11, Sept 1995.
23. P. O’Neil and D. Quass. Improved Query Performance with Variant Indexes. InProceedings of the ACM SIGMOD

International Conference on Management of Data, pages 38–49, Tucson, Arizona, May 1997.
24. P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The Log-Structured Merge-Tree (LSM-Tree).Acta Informatica,

33(4):351–385, 1996.
25. A. Reiter. A Study of Buffer Management Policies for DataManagement Systems. Technical Report TR-1619, Mathemat-

ics Research Center, University of Wisconsin-Madison, 1976.
26. N. Roussopoulos and H. Kang. Principles and Techniques in the Design ofADMS�. IEEE Computer, 19(12):19–25,

December 1986.
27. N. Roussopoulos, Y. Kotidis, and M. Roussopoulos. Cubetree: Organization of and Bulk Incremental Updates on the Data

Cube. InProceedings of the ACM SIGMOD International Conference on Management of Data, pages 89–99, Tucson,
Arizona, May 1997.

28. N. Roussopoulos and D. Leifker. Direct Spatial Search onPictorial Databases Using Packed R-trees. InProcs. of 1985
ACM SIGMOD, pages 17–31, Austin, 1985.

29. G. M. Sacco. Index Access with a Finite Buffer. InProceedings of 13th International Conference on VLDB, pages 301–309,
Brighton, England, September 1987.

30. G. M. Sacco and M. Schkolnick. A Mechanism for Managing the Buffer Pool in a Relational Databas System Using the Hot
Set Model. InProceedings of 8th International Conference on VLDB, pages 257–262, Mexico City, Mexico, September
1982.

31. S. Sarawagi. Indexing OLAP Data.IEEE Bulletin on Data Engineering, 20(1):36–43, March 1997.
32. S. Sarawagi and M. Stonebraker. Reordering Query Execution in Tertiary Memory Databases. InProceedings of the 22nd

VLDB Conference, pages 156–167, Mumbai(Bombay), India, September 1996.
33. A. Shoshani, L.M. Bernardo, H. Nordberg, D. Rotem, and A.Sim. Multidimensional Indexing and Query Coordination

for Tertiary Storage Management. InProceedings of SSDBM, pages 214–225, Cleveland, Ohio, July 1999.
34. M. Stonebraker. Operating System Support for Database Management.Communications of the ACM, 24(7):412–418, July

1981.
35. B. L. Worthington, G. R. Ganger, and Y. N. Patt. Scheduling Algorithms for Modern Disk Drives. InSIGMETRICS, pages

241–251, Santa Clara, CA, May 1994.

15

