
ABSTRACT

Title of dissertation: AUTOMATIC PARALLELIZATION OF AFFINE
LOOPS USING DEPENDENCE AND CACHE
ANALYSIS IN A BINARY REWRITER

Aparna Kotha, Doctor of Philosophy, 2013

Dissertation directed by: Professor Rajeev Barua
Department of Electrical and Computer Engineering

Today, nearly all general-purpose computers are parallel, but nearly all soft-

ware running on them is serial. Bridging this disconnect by manually rewriting

source code in parallel is prohibitively expensive. Automatic parallelization tech-

nology is therefore an attractive alternative.

We present a method to perform automatic parallelization in a binary rewriter.

The input to the binary rewriter is the serial binary executable program and the

output is a parallel binary executable. The advantages of parallelization in a binary

rewriter versus a compiler include (i) compatibility with all compilers and languages;

(ii) high economic feasibility from avoiding repeated compiler implementation; (iii)

applicability to legacy binaries; and (iv) applicability to assembly-language pro-

grams.

Adapting existing parallelizing compiler methods that work on source code to

work on binary programs instead is a significant challenge. This is primarily because

symbolic and array index information used in existing compiler parallelizers is not

available in a binary. We show how to adapt existing parallelization methods to

achieve equivalent parallelization from a binary without such information. We have

also designed a affine cache reuse model that works inside a binary rewriter building

on the parallelization techniques. It quantifies cache reuse in terms of the number

of cache lines that will be required when a loop dimension is considered for the

innermost position in a loop nest. This cache metric can be used to reason about

affine code that results when affine code is transformed using affine transformations.

Hence, it can be used to evaluate candidate transformation sequences to improve

run-time directly from a binary.

Results using our x86 binary rewriter called SecondWrite on a suite of dense-

matrix regular programs from Polybench suite of benchmarks shows an geomean

speedup of 6.81X from binary and 8.9X from source with 8 threads compared to the

input serial binary on a x86 Xeon E5530 machine; and 8.31X from binary and 9.86X

from source with 24 threads compared to the input serial binary on a x86 E7450

machine. Such regular loops are an important component of scientific and multi-

media workloads, and are even present to a limited extent in otherwise non-regular

programs.

Further in this thesis we present a novel algorithm that enhances the past

techniques significantly for loops with unknown loop bounds by guessing the loop

bounds using only the memory expressions present in a loop. It then inserts run-time

checks to see if these guesses were indeed correct and if correct executes the parallel

version of the loop, else the serial version executes. These techniques are applied

to the large affine benchmarks in SPEC2006 and OMP2001 and unlike previous

methods the speedups from binary are as good as from source. We also present

results on the number of loops parallelized directly from a binary with and without

this algorithm. Among the 8 affine benchmarks among these suites, the best existing

binary parallelization method achieves an geomean speedup of 1.33X, whereas our

method achieves a speedup of 2.96X. This is close to the speedup from source code

of 2.8X.

AUTOMATIC PARALLELIZATION OF AFFINE
LOOPS USING DEPENDENCE AND CACHE

ANALYSIS IN A BINARY REWRITER

by

Aparna Kotha

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2013

Advisory Committee:
Professor Rajeev Barua, Chair/Advisor
Professor Gang Qu
Professor Shuvra Bhattacharya
Professor Donald Yeung
Professor Alan Sussman, Deans Representative

c© Copyright by
Aparna Kotha

2013

Dedication

Dedicated to my family

To my father for the inspiration to begin

To my mother for the motivation to continue

To my sister for the long chats to keep me going

To my husband for lots of love and stability to finish

ii

Acknowledgments

I owe my gratitude to all the people who have made this thesis possible and

because of whom my graduate experience has been one that I will cherish forever.

First and foremost I’d like to thank my advisor, Dr. Rajeev Barua for giving

me an invaluable opportunity to work on challenging and extremely interesting

projects over the past six years. In times when I felt lost, he was always there to

give me a fresh perspective and look at the problem. His words have inspired me in

many ways.

I would also like to thank my committee members, Dr. Gang Qu, Dr. Shuvra

Bhattacharyya, Dr. Donald Yeung and Dr. Alan Sussmann for agreeing to be on my

committee. Your feedback during my proposal and dissertation talks is invaluable.

My labmates through the years at the SCAL lab, University of Maryland,

College Park have taught me many things related to academics and many a times

otherwise. I would specially like to thank Kapil Anand, Khaled ElWazeer, Timothy

Creech, Matthew Smithson, Greeshma Yellareddy, Mincy Mathew, Kyungjin Yoo,

Fady Ghanim and many more. Thank you for all the time we spent together and

for everything you taught me.

I would also like to acknowledge the help and support from some of the staff

members at the ECE department. Melanie Prange, Carrie Hilmer, Kristie Little,

Maria Hoo and everyone at the helpdesk and ECE graduate office for being there

to solve my non-thesis related problems that arose during the jouney, hence making

it a more enjoyable journey.

iii

I owe my deepest thanks to my parents - my mother and father who have

always stood by me and supported me all along my career. They have always

encouraged me to live my dreams. Their love for me is unparalleled.

I’d like to express my gratitude to my housemates through the years Suma

Babu, Purva Ghate, Sarah Khurian, Aparajita Bal and Khushboo Maheshwari for

their friendship and support.

Lastly the journey would not have been any fun without my friends. Thanks

all of you for all the crazy and fun times: Kapil Anand, Nitesh Shroff, Shalabh Jain,

Kaustubh Jain, Harita Tenneti, Rashi Jain, Srikanth Vishnubhotla, Jishnu Kesha-

van, Surabhi Chouhan, Ishwar Bhati, Raghuraman Gopalan, Satish C Reddy, Silpa

Billa, Anshu Sarje and many others. Special thanks goes out to my friends Vijay-

alakshmi Ethirajulu, Ashwin Rishinaramangalam, Ashwin Pejaver and Sreekanth

Annapureddy from IITM days with whom a vacation a year was compulsary and

those times are part of my best memories in the last few years.

It is impossible to remember all, and I apologize to those I’ve inadvertently

left out.

Lastly, thank you all and thank God!

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Introduction . 1
1.2 Contributions . 7
1.3 Organization of Dissertation . 8

2 Automatic Parallelization 10
2.1 Traditional methods . 10

2.1.1 Representation of dependence information 11
2.1.2 Decision algorithms to transform loops 12
2.1.3 Code Generation . 14

2.2 Polyhedral methods . 14
2.2.1 Representation of Dependence information 15
2.2.2 Decision algorithm to transform loops 16
2.2.3 Code Generation . 17

2.3 Conclusions . 17

3 Dependence Analysis 19
3.1 Calculating dependence vectors . 19

3.1.1 From source . 19
3.1.2 From Binary . 21

3.2 Examples . 32

4 Run time dependent loop bounds 37
4.1 Examples . 40
4.2 Algorithm to guess Loop Bounds . 45

4.2.1 Step 1: Divide the accesses into DGs 46
4.2.2 Step 2: Arrange DGs in ascending order 48
4.2.3 Step 3: Induce intra-group dependencies 48
4.2.4 Step 4: Create the worklist . 59
4.2.5 Step 5: Work on Inter-group constraints 60

5 Cache Analysis and Loop Transformation 67
5.1 Characterizing cache reuse . 67

5.1.1 From source . 69
5.1.1.1 Generation of reference groups 71
5.1.1.2 Calculating LoopCost(l) in terms of cache lines . . . 72
5.1.1.3 Running example . 73

5.1.2 From binary . 74
5.1.2.1 Generation of reference groups 74

v

5.1.2.2 Calculating LoopCost(l) in terms of cache lines . . . 77
5.2 Using Loop Cost in McKinley’s Algorithm 78

5.2.1 McKinley’s Algorithm . 79
5.2.1.1 Determining the Ideal Loop Order 80
5.2.1.2 Determining the Optimal Loop Order 81
5.2.1.3 Strip-mining and Interchanging for blocking 81
5.2.1.4 Running Example 83

5.3 Handling Imperfect Nests . 85

6 Infrastructure 88
6.1 Implementation-SecondWrite . 89

6.1.1 Innovations in SecondWrite 90
6.2 Affine Automatic Parallelizers . 96

6.2.1 Undoing Compiler Optimizations in a Binary Rewriter 99
6.2.1.1 Undoing LICM . 99
6.2.1.2 Undoing Complex Control flow 101
6.2.1.3 Discovering induction variables 102

6.2.2 Register dependencies . 103
6.2.2.1 Special case of scalar dependence: Reduction 106
6.2.2.2 Special case of scalar dependence: Values carried

across loop . 107
6.2.3 Deciding Partitions . 108
6.2.4 Code Generation . 111
6.2.5 Using LLVM for Implementation 113

6.3 Source Parallelizer: AESOP . 115
6.4 Implementation in the Polyhedral model 117

7 Results 121
7.1 Results for Dependence Analysis . 121
7.2 Results for cache reuse metric . 127
7.3 Results for algorithm for guessing loop bounds 137

8 Related Work 148
8.1 Static binary rewriters and their applications 148
8.2 Affine based automatic parallelizers from source 150
8.3 Linear algebriac methods to calculate distance and direction vectors . 151
8.4 Dynamic binary automatic parallelization methods 152
8.5 Static affine automatic parallelization of binaries 153
8.6 Automatic vectorization of binaries 154
8.7 Array delinearization techniques . 155
8.8 Cache optimizations using binary rewriting 156
8.9 Cache analysis and optimizations in source affine parallelizers 157

9 Conclusions and Future Work 159
9.1 Conclusions and Future Work . 159

vi

Bibliography 161

vii

List of Tables

5.1 LoopCost(l) for the loop in gemver 74

7.1 Test machines to test dependence analysis 122
7.2 Test machines used for testing the cache reuse model 129
7.3 L1 cache miss rate after applying modified McKinley algorithm . . . 134
7.4 Loop nest transformation from input to output using modified McKin-

ley’s algorithm . 134
7.5 Description of the affine benchmarks from the SPEC 2006 and OMP

2001 benchmark suites . 139
7.6 Number of loops parallelized for the affine benchmarks with and with-

out the run time loops algorithm. 142
7.7 Description of the non-affine benchmarks from the SPEC 2006 and

OMP 2001 benchmark suites . 144
7.8 Number of loops parallelized by our binary parallelizer for the non-

affine benchmarks in SPEC 2006 and OMP 2001 benchmark suites . . 146

viii

List of Figures

3.1 Loop-Carried Dependencies in Source Code 20
3.2 Example showing source code and it’s binary code 23

4.1 Code Example to motivate the algorithm to guess loop bounds for
loops with run-time dependent loop bounds 37

4.2 Example 1 & 2 to illustrate the algorithm to guess loop bounds . . . 41
4.3 Example 3 & 4 to illustrate the algorithm to guess loop bounds . . . 43

5.1 Example Loop to illustrate Cache Reuse Algorithm 70
5.2 Algorithm to obtain Optimal Order from Ideal Order 82
5.3 Example Loop to illustrate Strip Mining Algorithm 84
5.4 Imperfect nest in doitgen . 86

6.1 SecondWrite . 89
6.2 Detailed diagram of the Affine Parallelizer 96
6.3 Example to illustrate LICM Compiler Optimization undone 100
6.4 Example loop to illustrate undoing complex control flow generated

by compiler optimizations . 103
6.5 Example Loop to illustrate introducing induction variables 104
6.6 Example of a loop that carries a scalar dependence 106
6.7 Example of a loop that carries a reduction dependence 107
6.8 Example loop showing a scalar value defined before a loop and used

after it . 108
6.9 Different partitions of the iteration space 109
6.10 Arbitrarily nested affine loops to illustrate which loops will be paral-

lelized by our decision algorithm . 110

7.1 Speedup on x86 DASH for source and binary using dependence anal-
ysis techniques . 123

7.2 Speedup on x86 BUZZ for source and binary using dependence anal-
ysis techniques . 124

7.3 Speedup on SPARC T2 for source and binary using dependence anal-
ysis techniques . 125

7.4 Number of loops parallelized from source and binary using depen-
dence analysis techniques . 127

7.5 Speedup on DASH using the cache resuse metric for 8 threads 130
7.6 Cache miss rate for the original benchmarks 130
7.7 Breakup of the speedup on x86 DASH from different steps of the

decision algorithm . 131
7.8 Speedup on BUZZ using cache reuse metric for 24 threads 133
7.9 Speedup on x86 DASH for benchmarks compiled from GCC, ICC and

LLVM . 135
7.10 Speedup on x86 BUZZ for benchmarks compilers from GCC, ICC and

LLVM . 135

ix

7.11 Speedup of the affine benchmarks from SPEC 2006 and OMP 2001
benchmark suites for 8 threads . 140

7.12 Speedup of the non-affine benchmarks from SPEC 2006 and OMP
2001 benchmark suites . 143

x

List of Algorithms
1 Step 1: Algorithm to divide accesses into DGs 49
2 Step 3.1: Guesses for induction variables using one access 50
3 Step 3.2: Guesses for induction variables using pair of accesses 52
4 Step 5: Algorithm for Inter-group constraints 61
5 Algorithm to decide which loop dimensions to parallelize 109

xi

Chapter 1

Introduction

1.1 Introduction

Since about 2004, semiconductor trends show that the astonishing improve-

ments in clock speeds over the last few decades have come to end. However im-

provements in silicon area, as per Moore’s law, are still being realized. As a natural

consequence of these trends, microprocessor vendors have turned to multi-core pro-

cessors to remain competitive. For e.g., Intel Corporation has replaced its Pentium

line of uniprocessors with the Intel Core processor family, virtually all of which

have multiple cores. AMD Corporation offers the Athlon Dual-core and Phenom

Quad-core processors. By the end of 2009, multi-cores accounted for 100% of all

new desktop and notebook processors [1]. The CPU road maps of both Intel and

AMD show trends towards further multiple cores. Today even handheld devices

such as mobile phones and tablets have multiple cores in them. Embedded system

processors are being realized with multiple cores in them.

With the advent of multi-core hardware in every sphere it is essential to have

parallel software to run on them. There are three methods to obtain parallel soft-

ware:

• The first way to obtain parallel software is to use parallel language directives

such as OpenMP [2, 3] to implicitly specify parallelism using comments in

1

high-level language programs.

• The second way to obtain parallel software is to write programs in an explicitly

parallel manner. This is done using a set of APIs, such as MPI [4], posix

complaint pthreads or Intel’s TBB, to extend existing languages such as C,

C++ and Fortran.

• The third way to obtain parallel software is to use an automatic parallelizing

compiler. This is a tool that takes as input serial code and produces as output

parallel code

The first two methods need human intervention whereas the third method is

an automatic tool. Although the use of explicitly parallel programming using the

first two methods is increasing, their adoption has been slowed by the following

factors:

• Huge amounts of serial code represent most of the world’s programs.

• Rewriting code manually in parallel is time consuming and expensive.

• Dearth of engineers trained in parallel programming and algorithms.

• Parallel programming productivity per line of code is lower than for serial [5].

For this reason, except for the most performance-critical code, it is not likely

that most of the world’s existing serial code will be rewritten in parallel.

The third way to obtain parallel software using an automatically parallelizer

overcomes the above-mentioned drawbacks of explicitly parallel code. Indeed, since

2

the introduction of parallel machines in the early 1970s, many strides have been

made in parallelizing compiler technology. Most efforts to date have focused on

parallelism in loops, primarily in regular, dense-matrix codes. In particular, tech-

niques have been developed for parallelizing loops with array accesses whose indices

are affine (linear) functions of enclosing loop induction variables [6]. This work is

particularly interesting as most scientific and multi-media codes are affine and the

maximum run time is spent in these loops. Hence parallelizing these loops can result

in significant speedups. The advantages of automatic parallelization over explicit

parallel programming are:

• No need of human intervention; hence large amounts of programs can be par-

allelized

• Less prone to error since manual intervention is not there

• Can be integrated within an compiler framework since it can be constructed

to work on compiler IR

In this thesis we present methods to implement automatic parallelization inside

a binary rewriter, instead of a compiler. A binary rewriter is a software tool that

takes a binary executable program as input, and outputs an improved executable as

output. In our case, the input code will be serial, and the output will be parallel code.

As far as we know, there are no existing methods for automatic parallelization in a

static binary rewriter. Further, there are no existing binary automatic parallelization

tools (static or dynamic) that perform affine-based parallelization. Parallelization in

a binary rewriter has several advantages over parallelization in a compiler:

3

• Works for all compilers and languages A parallelizer in a binary rewriter

works for all binaries produced using any compiler from any source language.

This compatibility is a huge practical advantage versus a compiler implemen-

tation.

• No need to change software tool chains A binary rewriter is a simple

add-on to any existing software development tool chain. Developers and their

companies, typically very resistant to changing the tool chains they are most

familiar with, will not have to. This is important since many existing compilers

do not perform automatic parallelization.

• High economic feasibility A parallelizer in a binary rewriter needs to be

implemented only once for an instruction set, rather than repeatedly for each

compiler.

• Applies to legacy code Legacy binaries for which no source is available,

either because the developer is out of business, or the code is lost can be

parallelized using a binary rewriter. No compiler can do this.

• Works for assembly-language programs A binary rewriter, unlike a com-

piler can parallelize assembly code, regardless of whether it is part of the

program with inlined assembly or all of it. Assembly code is used sometimes

to write device drivers, code for multi-media extensions, memory-mapped I/O,

and time-critical code portions.

• Can perform platform-specific tuning Since a binary rewriter can tune

4

the output program for the particular platform it is executing on, it is possible

to tune the same input executable differently for different platforms which

share the same ISA, but may have widely different runtime costs. For example,

we already choose the best barrier and broadcast mechanism for the end-user

platform, and are investigating specific optimizations for the instruction set

enhancements and instruction latencies of that platform.

• Can be used by end user of software Unlike compiler-provided paral-

lelization which can only be done by the software developer, parallelization in

a binary rewriter can be done by the end user of the system depending upon

his or her specific needs, constraints and environment.

The above advantages argue that it is useful to provide automatic paralleliza-

tion in a binary rewriter, despite compiler implementation being possible. By al-

lowing automatic parallelization to be done on arbitrary binaries from any source,

we hope to make this technology universal, accessible, portable, customizable to the

end-user’s platform, and usable by any computer user, not just developers. In this

vision, our hope is that the parallelizing rewriter will be a transparent utility that

is automatically triggered for all programs at install-time.

Our approach to automatic parallelization is not to invent entirely new paral-

lelization methods, but to investigate how best to adopt ideas from existing compiler

methods to a binary rewriter. This adoption is not trivial, since binary rewriters

pose challenges not present in a compiler, including primarily, the lack of high-level

information in binaries. Parallelizing compilers rely on symbolic information, for

5

identifying arrays, affine function indices, and induction variables; for renaming to

eliminate anti and output dependencies; and for pointer analysis to prove that mem-

ory references cannot alias, allowing their parallel execution. Binaries lack symbolic

information, making all these tasks more difficult. A central contribution of this pro-

posal is parallelization methods in a binary rewriter that can work effectively without

using any symbolic or array index information.

On the flip side, binary rewriters also enjoy an advantage compared to a com-

piler: they have access to the entire program including library code. The need for

separate compilation – an important practical requirement – has meant that com-

mercial compilers typically have access to only one file at a time. For large programs

with many files, this represents a tiny sliver of the total code. Whole-program paral-

lelization is important since parallelization in one procedure may inhibit paralleliza-

tion at containing or contained procedures, and moreover, parallel code blocks may

be in different files. Currently we look at loop-level parallelism as most execution

time is spent in loops.

Of course, we recognize that parallelizing affine programs is only one step

towards the goal of parallelizing all programs, albeit an important one. Many pro-

grams have non-affine parallelism, and others have little or no parallelism. Our

techniques can be effectively combined with non-affine techniques to parallelize a

larger set of programs. This work should be seen as what it is: a first successful

attempt to parallelize binaries using affine analysis, rather than the last word. We

hope to open up a new field of research with this significant step.

6

1.2 Contributions

The main contribution of this thesis is to present an affine automatic paral-

lelizing tool inside a static binary rewriter. The main contribution of this work can

be divided into three major parts:

• The first contribution of this work is to present how dependence analysis can

be performed directly on binary code without the presence of any symbolic

information. Traditionally all automatic parallelizing compilers from source

rely on symbolic information to know the size and dimensions of arrays, the

array indices etc. However, no such information is present in a compiled bi-

nary. We present methods to still recover dependences using only binary code.

This is done by recovering array address variables in the form of linearized

multi-dimensional expressions from binary code and then solving them using

dependence tests within the loop bound regions.

• The second contribution of this thesis is to parallelize affine loops from bi-

naries even when loop bounds are run-time dependent. Using the techniques

developed in the first contribution, the parallelization of such loops is highly

limited since solving linearized multi-dimensional expressions in the infinite

region generates more dependencies limiting parallelization. Hence, we have

developed techniques to guess bounds for the loop within which it is parallel.

We then insert run-time checks to see that the actual loop bound is lower

than or equal to the one we guessed before executing the parallel version of

the loop. In this way we increase the scope of affine loops parallelized. In our

7

results we show that we can effectively parallelize the affine benchmarks from

SPEC 2006 and OMP 2001 using this techniques.

• The third contribution of this thesis is a technique by which the cache reuse of

affine loops can be calculated directly from binaries using the linearized multi-

dimensional expressions for address variables obtained directly from binary

code. Using the cache reuse metric we can reason about the loop ordering in a

loop nest and transform it to maximize cache reuse and increase coarse-grain

parallelization.

1.3 Organization of Dissertation

This thesis is further organized as follows:

In chapter 2 we introduce automatic parallelization by presenting the past lit-

erature in both the traditional and polyhedral schools of study. Chapter 3 presents

a method to parallelize affine loops directly from binary code by recovering address

expressions for the affine access followed by a method to parallelize loops when their

bounds are run-time dependent in chapter 4. In chapter 5 we present a method

to calculate the cache reuse metric directly from binary and use it to transform

the loop. The implementation details of our automatic parallelizer are presented

in chapter 6 followed by results in chapter 7 and related work in chapter 8.

Conclusions of the work and suggested future directions are presented in chapter

9.

8

9

Chapter 2

Automatic Parallelization

In this chapter we briefly describe the background of automatic parallelization

as has been described in the vast literature in this area.

An automatic parallelizer is a tool that takes as input serial code and produces

as output parallel code. Traditionally such tools have been designed for source code

with affine loops in them. Affine loops are loops that contain array indices that are

a linear combination of the induction variables of the loop nest i.e.loops contain-

ing A[i][j], A[i + 3j + 5][4i + 2j + 10], A[i][i] are all affine whereas loops containing

A[i/2] or A[i2] are not.

Existing methods in affine analysis and parallelization can be categorized into

two broad classes: traditional methods and those based on the polyhedral model.

2.1 Traditional methods

Traditional methods [7] [8] [9] [10] [11] [6] [12] are those which are based on

modeling loops as the units of consideration, where matrices are used to model most

concepts including affine indices, iteration vectors, dependence vectors and loop

transformations. Methods have been proposed for deciding what order of transfor-

mations should be applied and in what order.

The traditional methods are divided into three steps: representation of the

10

dependencies; decision algorithms to transform loop nests and then methods to

generate target code. Further we present these three steps briefly describing the

methods that have been proposed for each of them in the past. These have been

presented to describe the techniques used in parallelizing compilers that are built

on the traditional model.

2.1.1 Representation of dependence information

In this section we describe how dependence information is represented in the

traditional methods.

Traditional models predominantly represent the dependence information either

as distance or direction vectors [13] [7] [8]. Distance vectors for every loop contain

an entry for each loop nest where each entry is the step of the loop dependence in

that induction variable.

The formal definition of the distance vector from [6] is:

Suppose that there is a dependence from statement S1 on iteration i of a loop

nest of n loops to statement S2 on iteration j, then the dependence distance vector

d(i, j) is defined as a vector of length n such that d(i, j)k = jk − ik where:

− i and j are both iteration vectors of n elements

− Distance vector measures the difference between i and j in the iteration space

Direction vectors represent the same information as the distance vector when

less precision is required or available. The formal definition of dependence direction

vectors from [6] is:

11

Suppose there is a dependence from statement S1 on iteration i of a loop nest

of n loops to statement S2 on iteration j, with a distance vector d(i, j), then the

dependence direction vector D(i, j) is defined as a vector of length n such that

D(i, j)k= “ < ” if d(i, j)k > 0

= “ = ” if d(i, j)k = 0

= “ > ” if d(i, j)k < 0

(2.1)

Distance/Direction vectors are calculated using standard linear algebraic meth-

ods described in literature. These include the Greatest Common Divisor (GCD)

test [14, 15], Banerjee’s inequalities [15], Single Index and Multiple Index Tests

[13, 7], multidimensional GCD [15], the delta test [16] and the omega test [17].

Every loop nest has a set of distance or direction vectors associated with it

that represent the dependencies present in the loop nest.

2.1.2 Decision algorithms to transform loops

Most affine transformations, their legality conditions, and code generation

methods have been known for many years. However the problem of finding an

optimal order of transformations is very challenging. In this section we present

some of the decision algorithms that have been presented in traditional literature in

the past.

Most work in traditional methods, for example by M.J Wolfe [7] describes the

affine transformations independently, but does not provide a decision algorithm for

deciding when to apply which transformations, and in what order.

12

Studies from the University of Illinois from the Polaris group include [9] [18] [19]

[20]; The Polaris group extends Kap, an automatic parallelizer, and then use it to

parallelize the Perfect Benchmarks. Their target architecture is Cedar, a shared-

memory parallel machine with cluster memory and vector processors. Their work

focuses on detecting parallelism via array and scalar analysis. Their inter-procedural

analysis results de facto from inlining or is performed by hand.

Wolf & Lam’s research in Unimodular transformations [21] [8] and later work

by Kathyrn McKinley [12] describe how transformations can be traded in a tradi-

tional model. Wolf & Lam present a method to correctly model and apply multi-

ple unimodular transformations to affine code to discover coarse grain parallelism

minimizing communication. Unimodular transformations unify loop interchange,

loop skewing and loop reversal. A unimodular matrix has three important prop-

erties. First, it is a square, meaning that it maps an n-dimensional space to an

n-dimensional space. Second, it has all integral components, so it maps integer vec-

tors to integer vectors. Third, the absolute value of its determinant is one. Due

to these properties, the product of two unimodular transforms is unimodular and

the inverse of a unimodular matrix is unimodular. The work by Wolf and Lam

looks at transformations in isolation, and does not present a decision algorithm by

which multiple transformations may be applied. Later work by SUIF [22] [23] in-

cludes interprocedural transformations. McKinley’s work [12] builds on some ideas

from the unimodular transformation algorithms. This work discovers coarsest grain

parallelism and preserves data locality. McKinley’s algorithm can take advantage

of known loop bounds to more precisely compute locality and granularity of paral-

13

lelism, and is very efficient. McKinleys work uses a simple cache model to model the

reuse in a loop, whereas most earlier work do not have this. The reuse is calculated

once and then the algorithm tries to achieve it. This work integrates loop fusion,

loop fission and loop tiling.

2.1.3 Code Generation

In traditional model code generation is an immediate effect of the loop trans-

formations applied to every loop. Using any of the decision algorithm described

above, the transformation order is decided; then the loop transformations are ap-

plied to the loop in the same order generating the final code.

2.2 Polyhedral methods

Polyhedral methods [24] [25] [26] [27] [28] [29] are the second class used for

affine analysis and automatic parallelization. They represent each statement in an

affine loop separately as a point in an iteration domain. After this is done decisions

to transform the loop are taken and parallel code is generated for the same.

Polyhedral methods have the following three advantages over traditional meth-

ods:

• First, polyhedral models handle imperfectly nested loops seamlessly in their

model.

• Second, they are able to model dependence between every dynamic instance

in the loop.

14

• Third, complex affine transformations can be modeled as scheduling functions,

which in a few instances, can discover multiple traditional transformations in

one step;

Traditional methods have the following advantages over the polyhedral meth-

ods:

• Their worst-case complexity is in the order of polynomial complexity against

the exponential complexity of polyhedral methods.

• Their implementation complexity is also lower than the polyhedral methods.

• These methods are scalable to large programs running into millions of lines of

code.

Similar to the traditional model, the polyhedral model has three steps: repre-

sentation of the program in the polyhedral model; decision algorithms to transform

the loop; and then generate target code.

2.2.1 Representation of Dependence information

Dependence information is represented differently in the polyhedral and tra-

ditional models. In this section we present the techniques used for representing

dependence information in the polyhedral methods.

In the polyhedral model, each statement in an affine loop is separately rep-

resented as a point in an iteration domain [30]. This is different from traditional

affine analysis where the loop iterations are generally considered indivisible in most

15

scenarios. The points in the iteration domain are defined by constraints arising

from loop bounds, and represented mathematically. Polyhedral model represents

this information for every dynamic instance of every statement in the loop. They

represent dependencies over the iteration space in a dependence polyhedron [29] [28]

in a d-dimensional space, where d is the nesting depth of the loop in question.

2.2.2 Decision algorithm to transform loops

In this section we present decision algorithms of polyhedral methods.

In this step, the program represented mathematically in the polyhedral model

is transformed. In the polyhedral framework, a transformation is a set of affine

scheduling functions each of which maps each run-time statement instance to a

logical execution date [28] [27] [26] [25] [24]. Transformations are applied to satisfy

some optimization need such as improved cache locality or coarser granularity of

threads, which can be added on via heuristic or other methods.

The decision algorithms in polyhedral methods are very complex in terms of

implementation and computational complexity. The computational complexity of

the decision algorithms present in polyhedral models is exponential in the order

of the number of statements present in the loop body. Further, this algorithm

are memory intensive and combined with their worst-case run-time, suffer from

scalability problems.

16

2.2.3 Code Generation

Finally code transformations map the program representation along with the

scheduling functions to output code for the target machine. Code generation relies

upon syntax tree construction schemes that consist of a recursive application of

domain projections and separations [31] [28]. The final code is deduced from the

set of constraints describing the polyhedra attached to each node in the tree.

2.3 Conclusions

In balance we decided to implement our technologies in the traditional model.

However, they can be adapted to the polyhedral model, as we will present in section

6.4 of chapter 6.

17

18

Chapter 3

Dependence Analysis

3.1 Calculating dependence vectors

The first challenge in parallelizing binaries is in calculating distance/direction

vectors. In chapter 2 we have defined distance/direction vectors. In this chapter we

first show how these are calculated from source code, and then present our method

to calculate the same directly from binary code without any source level information.

3.1.1 From source

In this we section overview the strategy to calculate dependence vectors in the

form of distance or direction vectors from affine loops (source-code loops containing

array accesses whose indices are affine (linear) functions of enclosing loop induction

variables). For example, if i and j are loop induction variables, then array accesses

A[i] and A[2i + j + 3][i− 3j + 7] are affine, whereas A[i/2] is not. We will present

the techniques first from the source and then we will adapt it from a binary in sec-

tion 3.1.2. The source-level techniques reviewed in this section are well documented

in the literature of affine loop parallelism. These are presented in chapter 8.

To understand how parallelization can be done for affine-based loops; consider

that dependencies between the instructions limit the parallelism that we can extract

in code. For loops, loop-carried dependencies are the major inhibitors of parallelism,

19

for i from lbi to ubi

for j from lbj to ubj

A[i+1,j] += A[i,j] + 1

end for

end for

(a) True-loop carried

dependence

for i from lbi to ubi

for j from lbj to ubj

A[i,j] += A[i,j+2] + 1

end for

end for

(b) Anti-loop carried

dependence

for i from lbi to ubi

for j from lbj to ubj

A[i,j] =

A[i-2,j] =

end for

end for

(c) Output-loop carried

dependence

Figure 3.1: Loop-Carried Dependencies in Source Code

and occur when the next loop iteration cannot be initiated before some previous

set of loop iterations has completed. Just like scalar dependencies, loop-carried

dependencies can be classified into three types: true, anti, and output loop-carried

dependencies. Figure 3.1 shows an example of each type.

As in existing work, based on the formulation in [15], a dependence vector(~D)

for loops is defined as an n-dimensional vector, where n is the nesting depth of the

loop. The most common formulation of a dependence vector is a distance vector,

where each entry is the step of the loop dependence in that induction variable. For

example, for the code in figure 3.1(a) the distance vector is calculated by looking for

iterations (i1, j1) and (i2, j2) such that the two array accesses in the loop A[i + 1, j]

and A[i, j] access the same memory location, then their difference (i2 − i1, j2 − j1)

is the distance vector. The memory address that A[i + 1, j] accesses in iteration

(i1, j1) is A[i1 + 1, j1] and the memory address that A[i, j] accesses in iteration

(i2, j2) is A[i1, j1]. If both the array expressions access the same memory location,

20

then i1 + 1 = i2 and j1 = j2. Rearranging the terms:

i2 − i1 = 1

j2 − j1 = 0

(3.1)

Hence, the distance vector for the loop in figure 3.1(a) is (1,0) indicating that

there is a dependence in steps of 1 along i, whereas there is no dependence along j.

Similarly, for the loop in figure 3.1(c) the distance vector is ~D = (2,0), indicating

that there is a dependence in steps of 2 along i, whereas there is no dependence

along induction variable j. Further, for the loop in figure 3.1(b) the distance vector

is ~D = (0,2), indicating that there is a dependence in steps of 2 along induction

variable j, and no dependence along induction variable i.

Linear systems of equation solvers are used to calculate distance vectors in

literature. These include the GCD and Single Index Variable (SIV) test [15]. As

shown above, the linear system of equations is obtained from the symbolic array

index expressions and array declarations present in source code. Further when the

distance cannot be found or is not deterministic, we can represent the dependence

in loops by direction vectors [7] [6], a less precise formulation of distance vectors.

Dependence vectors are vectors of loop nesting depth each entry of which are one

of { =, <, >, * }.

3.1.2 From Binary

In this section we present our method for calculating dependence analysis from

low-level code obtained from binary code, which does not contain any symbolic in-

21

formation or affine expressions. The analysis will be successful when the underlying

access patterns are affine, even when the array indices needed for traditional depen-

dence analysis for parallelization are absent, such as in binary code.

A source-code fragment and one of its possible binaries is shown in figure 3.2.

The binary is shown in pseudo-code for comprehensibility, but actually represents

machine code. Other binaries are also possible, but we will be able to illustrate the

general principles of our method with this example. The binary code assumes that

the array is laid out in row-major form, with the address of A[i, j] being computed

as:

&A[i, j] = A + i× size j + j× elem size (3.2)

where elem size is the size of an individual array element, and size j is the size

of the second array dimension, both in bytes. We assume row-major accesses to

understand our techniques, but in no way are these techniques going to be effected

if the code was arranged in a column-major format. If the code is arranged in a

column-major format then the address computed in binary code will be of the form:

&A[i, j] = A + i× elem size + j× size i (3.3)

Though our theory presently assumes row-major, it is correct for column-major

codes as well.

To see how we parallelize the binary code, the following intuition is helpful:

it is a simple proof to show that for any affine array access, its address variable is

22

Source Code

for i from lbi to ubi

for j from lbj to ubj

A[i,j] = A[i,j] + 1

end for

end for

Binary Code

1 reg lbi ← lbi

2 reg ubi ← ubj

3 i′ ← lbi ∗ size j --(E)

4 reg ub′i ← ubi ∗ size j

5 loopi:reg lbj ← lbj

6 reg ubj ← lbj

7 j′ ← lbj ∗ elem size

8 addr reg← Base+ i′ + j′ --(B)

9 reg ub addr← Base+ i′ + ubj ∗ elem size

10 loopj:load reg← [addr reg]

11 reg← reg+ 1

12 store [addr reg] ← reg

13 addr reg← addr reg+ elem size --(A)

14 CMP addr reg ≤ reg ub addr --(C)

15 Branch if true to loopj

16 i′ ← i′ + size j --(D)

17 CMP i′ ≤ reg ub′i --(F)

18 Branch if true to loopi

Figure 3.2: Example showing source code and it’s binary code

23

provably always an induction variable in it’s immediately enclosing loop. Of course,

it is a derived induction variable [32], derived from the basic induction variables like

i and j in source1.

Analyzing the control flow graph that we obtain from a binary can help us

recognize loops in a binary. Every back edge in the control flow graph defines a

loop [32]. We know that the address of every affine access in the body of the loop is

a derived induction variable. In the binary code in figure 3.2, addr reg is the address

register, which must be an induction variable since it came from an affine access in

source. It would not be an induction variable if it was not an affine access in source.

We must first check that all memory accesses in the loop are induction variables, for

this loop to have been an affine loop in source. Starting from this address induction

variable addr reg, we can define the following six special statements in the binary

((A) to (F)) for every address variable in a loop that is an induction variable. These

six statements will help us parallelize the binary, regardless of the exact binary code:

• (A) – Address variable increment: The rewriter searches for the increment

of the address induction variable in the loop, and names it (A). See the example

binary in figure 3.2 to find (A) to (F).

• (B) – Address variable lower bound: The incoming value of the address

induction variable (addr reg in the example) is its lower bound; it is marked

(B).

1Basic induction variables are those, which are incremented by a constant every loop iteration.

A derived induction variable d is of the form d = c1 × i+ c2, where i is a basic or derived induction

variable with step s; hence d too is an induction variable with step c1 × s.

24

• (C) – Address variable upper bound: The upper bound comparison of

the address variable for the loop-ending branch identifies the upper bound of

the address variable. It is searched for and marked (C).

• (D) – Outer loop induction variable increment: We check if statement

(B)’s right-hand side value contains another induction variable. If it does, it is

distinguished as the induction variable of the next-outer loop. In the example

it is i’. The increment which reveals this induction variable is marked (D).

• (E) – Outer loop induction variable lower bound: The incoming value

of the outer loop induction variable (i’ in the example) is its lower bound; it

is marked (E).

• (F) – Outer loop induction variable upper bound: The upper bound

comparison of the outer loop induction variable for the loop-ending branch

identifies the upper bound of the address variable. It is searched for and

marked (F).

Statements (A) to (C) are for the inner loop; and (D) to (F) are for the outer

loop, if present. For loops nested to depth three or more, additional statements

can be identified (e.g. (G) to (I) and so on). These special statements can be

identified from almost any binary compiled from affine accesses, regardless of its

exact form. Recognizing statements (A) to (F) in the binary relies primarily on

effective induction variable analysis, which is easy for registers in binaries. By the

definition of an induction variable, once it is recognized, its increment (or set of

25

increments) reveal the statements (A) and (D). The incoming values ((B) and (E))

immediately follow, as well as the exit conditions ((C) and (F)).

Our recognizer will recognize not only virtually all affine accesses written as

such, but also affine accesses through pointers, since the pointers themselves

will be induction variables. The only non-recognized case is when the constant

increment of the induction variable is hidden by layers of indirection, e.g. when

the constant is in a memory location, or when the induction variable is not virtual-

register-allocated in the binary rewriter’s intermediate representation, but we have

found such cases to be extraordinarily rare.

Let us now describe our procedure to derive address variable equations directly

from a binary.

For a two-dimensional loop, consider an affine memory reference in a binary

loop inside loop dimension 2, where loop dimensions are counted from outermost (1)

to innermost (2). Let addr reg be the address variable of this memory reference,

which must be an induction variable for an affine access. From the binary code

shown in figure 3.2 we can define the address variable’s lower bound value (RHS of

(B)) as Initial addr reg. Since, this is the lower bound to the induction variable

in the innermost loop, it will be a loop-invariant quantity in the innermost loop. If

the access was indeed affine in the original source code (which we do not have access

to), then from applying row-major ordering to the access, it must be the case that:

Initial addr reg = Base + i× size j + lbj × elem size (3.4)

26

In the binary, however, the above formula is not necessarily evident. What we do

know is that for induction variable addr reg, from the definition of an induction

variable with loop-entry value Initial addr reg, we get:

addr reg = Initial addr reg + num j× stepj (3.5)

where num j is the number of iteration of the j loop executed so far, and stepj is

the step of the induction variable. Substituting eq.(3.4) into eq.(3.5) we get:

addr reg = Base + i× size j + lbj × elem size + num j× stepj (3.6)

We know that the number of iterations num i = i− lbi. Hence, i = num i + lbi.

Substituting this in eq.(3.6) we get:

addr reg = Base + lbi × size j + lbj × elem size + num i× size j + num j× stepj

(3.7)

Since the first three terms of the RHS are constants, we rename their sum as

Baseouter since they are the loop-entry value of outer loop address variable. Hence:

addr reg = Baseouter + num i× size j + num j× stepj (3.8)

27

Comparing eq.(3.5) with eq.(3.8), we can now back out the value of Initial addr reg

in the binary:

Initial addr reg = Baseouter + num i× size j (3.9)

We will now prove that Initial addr reg is an induction variable in the outer i

loop. To do so, we prove that the value of Initial addr reg for num i vs (num i + 1)

is a constant value, which is the characteristic of an induction variable. Substituting

(num i + 1) in eq.(3.9), we get:

Initial addr regnum i+1 = Baseouter + (num i + 1)× size j (3.10)

subtracting eq.(3.10) - eq.(3.9) yields:

stepi = size j (3.11)

since by definition stepi = Initial addr regnum i+1 − Initial addr regnum i. Sub-

stituting eq.(3.11) in eq.(3.8) yields:

addr reg = Baseouter + num i× stepi + num j× stepj (3.12)

28

Generalizing this to an n-dimensional loop yields:

addr reg = Baseouter +
n∑

k=1

num k× stepk (3.13)

This is an important equation since it will help us derive dependence vectors

next. An equation of the form eq.(3.13) is constructed by our binary rewriter for

every memory reference for which special statements (such as (A) to (F) in the

two-dimensional loop case) can be identified. In particular, the Baseouter value is

constructed from statement (E), whereas the step values of the inner and outer loop

are found from statements (A) and (D), respectively. Memory references for which

such special statements cannot be found are assumed to be non-affine, and are not

analyzed further.

Deriving dependence vectors Next we aim to define the dependence vector

between pairs of array accesses in the loop. To do so, we consider any two derived

induction variable references in a loop (not necessarily the two in the code example

above) with addresses addr reg1 and addr reg2. Their expressions would be the

following:

addr reg1 = Baseouter1 +
n∑

k=1

num k× step1k (3.14)

addr reg2 = Baseouter2 +
n∑

k=1

num k′ × step2k (3.15)

29

After deriving these equations, the next step is to calculate the distance vector

(d1, d2, ..., dn) associated with these accesses. Say that (num 1, num 2, ..., num n) and

(num 1′, num 2′, ..., num n′) are the iterations where add reg1 and addr reg2 alias to

the same memory location, then by definition (num 1− num 1′, · · · num n− num n′) is

the distance vector associated with these accesses 2. Hence, to calculate this distance

vector we need to equate the R.H.S of eq.(3.14) and eq.(3.15). The unknowns in

the equation are num 1, num 2, ..., num n, num 1′, num 2′, ... and num n′. We now have

2n unknowns and one equation. But we also have the following bounds for these

unknowns, as they are the number of iterations of loop dimensions.

0 ≤ num k, num k′ ≤ bubk − lbk

step1k
c ∀k ∈ [1 : n] (3.16)

We derive these bounds from the special induction variable statements in the

binary (statements (B), (C), (E), (F) in the two-dimensional loop case.). For loops

nested with higher depths there will be statements (H), (I), . . . to determine the

bounds. We now solve for the distance vectors using the equation and bound con-

ditions. One of the following four conditions may happen:

• There is no solution to this equation in the given space. This means that the

two addresses do not alias with one another. We add a distance vector of (0,

0, . . .) to this loop.

2Distance vectors need to be lexicographically positive, hence if (num 1− num 1′) is negative

then the distance vector is (num 1′ − num 1, num 2′ − num 2, ..., num n′ − num n)

30

• There is a deterministic solution (d1, d2, . . ., dn). Then we add this to the

distance vectors of the loop.

• There are multiple deterministic solutions to this equation. Then we add all

the deterministic solutions to the distance vectors of this loop.

• In all other cases, when there are uncountable many solutions or when we are

unable to determine the solution, the direction vector added has elements per

loop dimension that are a combination of < , > , = and * [7]depending on the

dimension that is uncountable and the direction in which it is uncountable.

Traditional affine theory defines the (Greatest Common Divisor) GCD test [14,

15], Banerjee test [13], Delta Array tests [16] and the Single Index Variable (SIV)

and Multiple Index Variable (MIV) tests [13] [6] to solve the linear equations that

we derive from source. We use the same techniques to solve the equations from

low-level code. Multiple tests have been defined as the techniques evolved to more

precise solutions in increasing order of complexity.

If the bounds of the loop are unknown we can still say something about these

equations in the infinite space. But of course this is not always true. Hence, we

have developed techniques specific to a binary in case of unknown bounds and these

are presented in chapter 4.

The techniques presented in this section are different from source in the fol-

lowing way:

• The equations to be solved are directly derived from the binary as against the

31

symbolic array index expressions readily available from source but absent in

binaries.

• From source we derive the distance vectors by solving each dimension sepa-

rately, where as from binary we derive the equations equivalent to linearizing

the array. We do this since there is no symbolic information in the binary to

determine array bounds and dimensions. We have found that these techniques

are nearly as powerful as source techniques on the Polybench benchmark suite.

We have been able to discover the same dependence vectors from source as

well as the corresponding binaries. In extremely rare cases, the dependence

vectors from binaries are less precise than from source, but still conservative

and correct. This impact is measured in chapter 7.

3.2 Examples

In this section we briefly apply the theory described in section 3.1 to four code

examples to show how their loops will be parallelized from a binary without any

symbolic information.

int A[20,50]

int B[20,50]

for i = 0 → 19 step 1

for j = 0 → 49 step 1

B[i,j] = A[i,j] + 10

(a) Example 1

int A[20,50]

for i = 0 → 19 step 1

for j = 0 → 47 step 1

A[i,j] = A[i,j+2] + 10

(b) Example 2

32

Example 1: The memory address expressions that we recover from the binary above

will be of the form BaseA + 200i + 4j and BaseB + 200i + 4j (Assuming that the

size of an integer is 4.). BaseA and BaseB will at least differ by 4000, since the size

of each array is 4000 bytes. Without loss of generality lets assume we recover the

following equations from the binary 100 + 200i + 4j and 4100 + 200i + 4j.

When the code above is compiled to a stripped binary, symbolic information

is lost. Hence we no know longer the location or dimension sizes (20, 50) of array

A. However, we can also infer from binary code that the bounds of loop i is [0,19]

and the bounds of loop j is [0,49].

Next, we apply the standard dependence tests to the set of equations we

recovered 100 + 200i + 4j and 4100 + 200i + 4j within the ranges 0 ≤ i ≤ 19 and

0 ≤ j ≤ 49. The dependence tests reveal that both these memory expressions will

accesses different memory locations in the iteration space, i.e.in other words no two

iterations ever access the same location. Hence, the distance vector for this loop is

(0,0) directly from binary code. We can now parallelize any dimension of the loop

nest. We decide to parallelize the outer most loop dimension i.e.loop i.

Example 2: The memory address expression that we recover from the binary will be

of the form BaseA + 400i + 4j and BaseA + 8 + 400i + 4j. Without loss of gener-

ality, lets assume that BaseA is 200, then the expressions that we recover from the

binary will be 200 + 400i + 4j and 208 + 400i + 4j (assuming that the element

size is 4). The ranges we discover for i is [0,19] and j is [0,47].

Next, we apply the dependence tests to this set of equations within the ranges

discovered from the binary. Note that these were discovered directly from the binary

33

without using any symbolic information that a source compiler would use. The

dependence tests reveal that every two iteration of j accesses the same memory

location as two iterations before this one i.e.the distance vector for this loop is (0,2).

The distance vector reveals that the outer loop is parallel, hence we parallelize the

outer loop i of the loop nest.

int A[100]

for i = 0 → 49 step 1

A[i] = i;

A[i+50] = i + 50;

(a) Example 3

int A[100]

for i = 0 → 98 step 1

A[2i] = 10*i;

A[2i+1] = 10*(i+50);

(b) Example 4

Example 3: The equations we will recover from the binary will be BaseA + 4i and

BaseA + 200 + 4i. Without loss of generality lets assume that BaseA is 1000, then

the expressions for memory that we recover directly form the binary will be 1000 + 4i

and 1200 + 4i. The range for i that is discovered from the binary is [0,49]. Using

the dependence tests we discover that both these address expressions do not accesses

the same memory location in any two iterations in the given iteration space. Hence,

the distance vector associated with this loop is (0). After we have calculated the

distance vector we parallelize the i loop of the loop nest.

Example 4: The equations we will recover from the binary will be BaseA + 8i and

BaseA + 4 + 8i. Without loss of generality lets assume that BaseA is 100, then the

expressions that are recovered from the binary are 100 + 8i and 104 + 8i and the

range for i is [0,49]. Using the dependence tests we discover that no two iterations

34

every access the same memory location again. Hence, the distance vector associated

with this loop is (0). After we have calculated the distance vector we infer that loop

i does not carry a dependence and hence can be parallelized.

35

36

Chapter 4

Run time dependent loop bounds

In this chapter we first describe the best-known methods for obtaining distance

vectors from source code for affine loops with run-time determined loop bounds. We

then present the limitations of the binary method presented in chapter 3 for the same

and then describe our algorithm.

int A[20,50]

for i = 0 → ubi step 1

for j = 0 → ubj step 1

A[i,j] = A[i,j] + 10

The code shows a normalized loop,

i.e.a loop with a lower bound of zero

and a step of one. Loops can be nor-

malized using existing methods such

as the normalization pass in LLVM.

Figure 4.1: Code Example to motivate the algorithm to guess loop bounds for loops

with run-time dependent loop bounds

Distance vectors from source code for the loop in figure 4.1 are calculated as

follows. From source, existing methods make the assumption that row and column

accesses are within the bounds of the array’s dimensions. They solve for two itera-

tions that refer to the same memory location within bounds for an infinite range of

iteration values. If no solution exists, like in this example, we can conclude that no

two iterations ever access the same memory. This implies that iterations of the j

loop can execute in parallel (i.e., the component of the distance vector for this loop

37

is zero.) Such an analysis individually proves that the loop i is parallel.

To obtain distance vectors from binary for this code we cannot use the above

source method since it relies on known affine expressions for array indexes in terms

of induction variables, which are not apparent from the binary. Instead we start

with the method for binaries in chapter 3. We showed that we can recover linearized

expressions for memory accesses from a binary, and solving these multidimensional

expressions gives us dependence vectors. In the presence of loop bounds the solutions

from binaries are very powerful, and can handle most linear algebraic kernels as

presented in chapter 3. However, when loop bounds are run-time dependent, we

need to solve these multi-dimensional expressions in the infinite space (since we

need to assume that the loop bounds can take any value at run-time). This greatly

reduces the precision of the analysis.

For e.g., let us apply the binary method from chapter 3 to the loop in figure

4.1. From the binary for the code above we will recover a memory expression of

the form BaseA + 200i + 4j which corresponds to the A[i, j] access (assuming the

element size is 4). The “200” in 200i is because the size of a row is 50 elements, each

of 4 bytes. We need to reason about this access in the infinite space for i and j since

the loop bounds are unknown. In the infinite space, iterations (2,0), (1, 50) and (0,

100) refer to the same memory location. All of these iterations except (2,0) are not

possible because the legal range of j is [0,49] and if it is greater than 49 the code

accesses columns out of bounds, and thus wrapping into rows. Source code methods

assume that such iterations are not possible; hence proving the loop is parallel.

However, unlike source methods, the binary method in chapter 3 cannot make any

38

assumptions about iterations remaining within array bounds, since differentiated

array bounds are not known from binary code. As a result, without loop bounds,

the binary method from chapter 3 fails to prove the loop is parallel because of the

false loop-carried dependences that appear.

In this chapter we present a method to statically guess the most likely upper

bounds of loops with unknown loop bounds. We then check the loop bounds at

run-time, and run the parallel version of the loop if the loop bounds were indeed

with in the ranges that we guessed. For e.g.for the loop shown in figure 4.1, using

the theory presented in chapter 3 we discover the memory expression for the A[i][j]

access to be BaseA + 200i + 4j. We then look at the coefficients multiplying the

induction variables in this memory expression that we recover from the binary and

guess the likely limit of the induction variable with the smallest coefficient (i.e.j in

this example, since its coefficient 4 is smaller than the coefficient of i 200) as the

immediately higher coefficient divided by the coefficient of this induction variable;

i.e.in this example we guess the limit on j as (Coefficient of i/Coefficient of j)

(i.e.200
4

= 50). By guessing that j is less than 50 no two iterations will access the

same memory because now j has been prevented to run into i and we can parallelize

the loop. At run-time we check if j indeed does not exceed 50 and this run-time

check will always succeed and we will always execute the parallel version of the loop.

In the following section 4.1 we present more examples and briefly describe how

our algorithm would guess loop bounds for them followed by the detailed algorithm

in section 4.2. Within these bounds for the induction variables the loop is parallel

in most cases. We insert run-time checks to check that these guesses were indeed

39

correct before executing the parallel version of the loop; else, we execute the serial

version of the loop. The run-time check is necessary for binary code since our guesses

may be incorrect in some cases. We show one such example in section 4.1. However,

this does not hurt us since that loop was actually serial in the original source code

and the loop bounds we guess represent the parallel region.

4.1 Examples

In this section we first briefly describe the steps of the algorithm described in

section 4.2 and then apply it to four code examples to show how their loops can be

parallelized from a binary even though the loop bounds are run-time dependent.

First, we state the algorithm that we use to guess the upper loop bounds for a

loop directly from a binary. Only the steps are outlined here, details in section 4.2.

Step 1: Divide memory accesses (both reads and writes) in a loop into De-

pendence Groups (DGs). Intuitively, a DG is a subset of memory addresses in the

loop that are sufficiently close to one another.

Step 2: Arrange all DGs in ascending order of their base addresses, from DG1

to DGT.

Step 3: For all the DGs that have writes in them make best guesses for

the possible range for induction variables. These guesses are called intra-group

constraints, since they are obtained by working on one DG at a time.

Step 4: Initiate a worklist by all DGs with constraints remaining after step

3.

40

Step 5: Work on each DGi in the worklist and solve for the values of induction

variables such that the accesses in DGi do not overlap with those in DG(i+1). This

generates further guesses on the induction variables. Merge these new constraints

with existing constraints for the same induction variable by choosing the minimum.

These guesses are called inter-group constraints because they are obtained by con-

straining DGi to not overlap DG(i+1) .

int A[20,50]

int B[20,50]

for i = 0 → ubi step 1

for j = 0 → ubj step 1

B[i,j] = A[i,j] + 10

(a) Example 1

int A[20,50]

for i = 0 → ubi step 1

for j = 0 → ubj step 1

A[2i,j] = 10*i+j

(b) Example 2

Figure 4.2: Example 1 & 2 to illustrate the algorithm to guess loop bounds

Example 1: The memory address expressions that we recover from the binary above

will be of the form BaseA + 200i + 4j and BaseB + 200i + 4j (Assuming that the

size of an integer is 4.). BaseA and BaseB will at least differ by 4000, since the size

of each array is 4000 bytes. Without loss of generality lets assume we recover the

following equations from the binary 100 + 200i + 4j and 4100 + 200i + 4j.

When the code above is compiled to a stripped binary, symbolic information

is lost. Hence we no know longer the location or dimension sizes (20, 50) of array

A. Hence we can no longer infer (as we implicitly do from source) that ubi ¡ 20 and

ubj ¡ 50. Instead maximum values of these bounds of the loops must be inferred.

41

We now show briefly how our algorithm is applied to these accesses to guess

the bounds on i and j. In Step 1, we check to see if the accesses belong to different

DGs. The heuristic we use is that the difference of the bases is greater than a fac-

tor (5 for our experiments) of the highest coefficient; i.e.BaseB − BaseA > 5× 200

i.e.(4100− 100) > 5× 200. As this is true both the accesses will belong to dif-

ferent DGs. In Step 2, we arrange the DGs in ascending order of their bases.

100 + 200i + 4j belongs to DG1 because its base is lower than the second access

which belongs to DG2. In Step 3, we solve for intra-group constraints in DG2 since it

contains a write. We guess the bound on j by dividing the co-efficient multiplying i

(the just higher co-efficient in the linearized equation) by the co-efficient of j i.e.(200
4

= 50). Hence, we guess that j must belong to [0, 49]. In step 4, we create a work-

list with all DGs that have constraints remaining. In this example both the DGs

have constraints remaining on i; hence both of them will belong to the worklist. In

step 5, we guess the bound on i by solving that DG1 i.e.100 + 200i + 4j does not

overlap with DG2 i.e.4100 + 200i + 4j given the highest possible value for j is 49;

i.e.100 + 200i + 4 ∗ 49 < 4100. Hence, i must be less than 19.02 or in the range [0,

19]. Since DG2 is the highest DG we do not solve for it overlapping with any other

DG.

After we have applied our algorithm to this loop, our guess for i is [0,19] and j

is [0,49]. We now solve for dependencies within this range for the loop and discover

that the loop can be parallelized. We also add lightweight run-time checks before

the parallel version of the loop (which will always succeed for this loop).

Example 2: The memory address expression that we recover from the binary will

42

be of the form BaseA + 400i + 4j. Since there is only one access, step 1 and 2 will

result in placing it in DG1. In step 3, we guess that the bound of j is (400
4

= 100) or

the range of j is guessed to be [0, 99]. There would be no step 4 and 5 for this loop

since there is only one DG.

Next we calculate dependencies assuming the range of j is [0,99] and i can

take any value and discover that the loop can be parallelized. In reality however

the range of j will not exceed [0, 49]. But our larger discovered bounds work well

since even if they did exceed 49 and be below 99 this loop can still be parallelized.

i.e if the programmer decided to access two rows using a column increment (which

most programmers do not do) it is still a parallel loop. From the binary this means

that we see a A[20, 50] array as a A[10, 100] array. However, this is fine as we reason

about the dependencies in the correct way and parallelize the loop only when our

run-time checks succeed.

int A[100]

for i = 0 → ubi step 1

A[i] = i;

A[i+50] = i + 50;

(a) Example 3

int A[100]

for i = 0 → ubi step 1

A[2i] = 10*i;

A[i+50] = 10*(i+50);

(b) Example 4

Figure 4.3: Example 3 & 4 to illustrate the algorithm to guess loop bounds

Example 3: The equations we will recover from the binary will be BaseA + 4i and

BaseA + 200 + 4i. After step 1, we will place them in different DGs since the differ-

ence between the bases (200) is greater than 5 times the highest co-efficient 4. After

43

arranging the DGs in ascending order in step 2, BaseA + 4i will belong to DG1 and

BaseA + 200 + 4i will belong to DG2. No intra-group guesses are calculated in step

3 since the recovered equations are single dimensional. After step 4, the worklist is

populated with both the DGs since both contain i for which there is no guess as

yet. In step 5, we solve for inter-group guesses such that DG1 does not overlap with

DG2, i.e.4i < 200 or i < 50. Hence, the range we guess for i is [0,49] which is also

the actual limit on i from source. The run-time check will always succeed in binary

code and we will execute the parallel version of this loop. This is correct because,

regardless of the value of ubi, the two array references access non-intersecting por-

tions of the array. Our method correctly treats these non-intersecting portions as

different DGs.

Example 4: The equations we will recover from the binary will be BaseA + 8i and

BaseA + 200 + 4i. After step 1, we will place them in different DGs since the differ-

ence between the bases (200) is greater than 5 times the highest coefficient 8. After

arranging the DGs in ascending order in step 2, BaseA + 8i will belong to DG1 and

BaseA + 200 + 4i will belong to DG2. No intra-group guesses are calculated in step

3 since the recovered equations are single dimensional. After step 4, the worklist

will contain both the DGs since both contain i for which there is no guess as yet.

In step 5, we solve for inter-group guesses such that DG1 does not overlap with DG2,

i.e.8i < 200 or i < 25. The range we guess for i is [0,24]. However, the actual range

of i is [0,49], so our run-time check will fail and we will execute the serial version

of the loop. This is fine since the actual loop is serial (it cannot be parallelized).

44

4.2 Algorithm to guess Loop Bounds

In this section we describe in detail the algorithm briefly presented in sec-

tion 4.1. First we describe which loops from binary code we work on and then in

subsequent subsections we describe the steps of the algorithm in detail.

First, we would like to present to you the kind of loops on which our algorithm

is applied on and the kind of loops on which our algorithm is effective. We apply

our method to every loop that has only affine accesses in them i.e.accesses of the

form A[i + 3][5j], A[i + j][k + i], A[j][j] etc are all processed by our method. Our

method is able to effectively parallelize loop nests with array accesses of the form

A[i][2j], A[3j][i + 100], and A[j][i] i.e.normalized accesses with induction variables

in any order; however affine accesses having multiple induction variables in a single

array index expression (such as A[i + j]) or having repeated induction variables

(such as A[j][j]) are not currently effectively parallelized by our method.

Since it is impossible to tell from binary code the form of the accesses in the

source it was compiled from our method is applied to all loops that contain only affine

accesses. However, the guesses may not be correct for the loops containing multiple

induction variables in a single array expression or repeated induction variables.

Hence, the run-time checks might fail for these loops and the serial version of the

code may be executed. However, these kinds of accesses are rare in real code and

hence our method is nearly as powerful from binary as from source.

Every affine memory address that we recover from the binary is a linearized

multidimensional equation of the form 3.13 as shown in chapter 3:

45

MemAddr(Base, d) = Base +
n

Σ
j=1

dj × ij (4.1)

(where Base and d’s are constants or loop invariant quantities, i’s are induction

variables, and d1 >= d2 >= >= dn). We arrange the memory expression with d’s

in this order since in the algorithm we use the immediately higher coefficient while

guessing the value of a particular induction variable, i.e.we use d(m+1) when guessing

the values of induction variable im. We will refer to memory addresses from binary

using MemAddr(Base, d) throughout this chapter. Different memory addresses from

binary will have different Base and ds. Since we work on loops with only affine

accesses in them, if we discover that a loop contains an access that is not affine

i.e.we cannot discover an linearized expression for it then we do not work on that

loop.

In the following subsections we first describe our algorithm and then present an

intuition for it. No proof can be presented that the guessed loop bounds are always

correct, since they are not always correct. However our overall method is always

correct, since we include a run-time check for the bound which executes fallback

serial code when the actual bound found at run-time is outside the guessed range

of bounds. In the common case, the check succeeds and parallel code is executed.

4.2.1 Step 1: Divide the accesses into DGs

A DG is a subset of memory references in the loop that are sufficiently close

to one another and these set of references most likely do not overlap with other

46

DGs. Intuitively, while dividing memory references into DGs we try to guess all

the references which access the same array, or a region of an array not overlapping

with other regions. This is not immediately apparent since binaries lack symbolic

information containing the locations and sizes of arrays.

We create DGs using the following method. We look at the address of each

memory reference and place it in an already present DG if it is sufficiently close

to the addresses already in that DG; else we create a new DG with this memory

address. We define that two accesses are sufficiently close to one another if the dif-

ference between the bases is within a factor of the highest coefficient in the memory

expression. The formal algorithm is presented in algorithm 1.

We now describe some of the terms used in the algorithm. DGlist is a list of

DGs. It is initialized to NULL and then populated as we consider every memory

access in the loop. d1 is the highest coefficient in the memory expression; hence, if

the difference between the base and any of the bases already in a DG is within a

factor of it, we guess that it most likely belongs to the same memory array and place

this reference in that DG. CDThres is a number that guesses the maximum difference

between references in the same DG. Currently we set CDThres to 5. With CDThres = 5,

two accesses to A[i] and A[i+4] will belong to the same DG, whereas two accesses

to A[i] and A[i+10] will belong to different DGs. Having accesses to A[i] and A[i+e]

where e > 5 in the same loop is relatively rare in affine codes; as most constants in

affine codes are less than 5. If this rare case occurs we will treat A[i] and A[i+e] as

accesses to two different arrays. Accesses to different arrays A and B will belong to

different DGs unless the highest dimension of A has size less than 5 (which is rare)

47

and B immediately follows A in the binary’s data layout. If this rare case appears

we will treat both A and B as the same array. In both the above cases, the run-time

checks will fail and the serial version of the loop will be executed. Hence, the loop

may run slower than from source, but correctness is always maintained.

4.2.2 Step 2: Arrange DGs in ascending order

In this step we reorganize the DGs in DGlist in ascending order of the bases

present in them. After arranging them in ascending order the following will be true:

All bases in DG1 < All bases in DG2 < · · · < All bases in DGT (This will be <

since if they are equal they would belong to the same DG). We call this ordering of

DGs, the FullList.

4.2.3 Step 3: Induce intra-group dependencies

In this step we make our best guesses for all array bounds, and hence induction

variables, except the array bound of the highest dimension in an array reference.

We make the guesses based on the assumption that array references accesses arrays

within the bounds of each dimension.

We apply step 3 to every DG that has a write in it. The reason we apply it

to DGs with writes in them is that even if a read accesses across bounds it does not

create dependencies that prevent parallelization and guessing bounds considering

DGs with only reads is not necessary. For e.g., if there is an affine loop that only

reads from an array, there is no need to guess bounds for such a loop, as it is parallel

48

Algorithm 1 Step 1: Algorithm to divide accesses into DGs

Input: MemAddr(Base, d) for all accesses in loop

Output: DGlist has the accesses divided into DGs

Require: Initialize DGlist to NULL

for all MemAddr(Base, d) in loop do

Initialize TmpDGlist to NULL

for all DGi in DGlist do

if |Base − Any base in DGi|<d1 × CDThres then

Put MemAddr(Base, d) in DGi

Put DGi in TmpDGlist

end if

end for

if sizeof TmpDGList > 1 then

Merge all the DGs in TmpDGList

end if

if sizeof TmpDGList == 0 then

A new DG with MemAddr in it is added to DGlist

end if

end for

49

in the infinite space as long as there is no scalar dependency in it.

Step 3 is divided into two sub steps 3.1 and 3.2. Step 3.1 is applied to every

access in a DG and step 3.2 is applied to a pair of accesses in a DG. We first present

the algorithms for both the sub steps before presenting intuitions for them.

Step 3.1: The formal algorithm for step 3.1 is presented in algorithm 2. We

are working on loop nests with induction variables say i1, i2, · · · , in and guesses

for each g1, g2, · · · , gn. First, we initialize the guesses for each of these induction

variables to TOP representing infinity which is what we know about each of the

induction variables before the start of this step. Then we look at every memory

access which is of the form MemAddr(Base, d) (from eq(4.1)) and make guesses for

each induction variable as follows.

Algorithm 2 Step 3.1: Guesses for induction variables using one access

Input: All DGs that have a write in them

Output: Initial guesses for the induction variables

Require: Initialize each of g1, g2, · · · , gn to TOP

for all DGi in FullList that has a write in it do

for all MemAddr(Base, d) in DGi do

for k = 2→ n do

g1k = bd(k−1)

dk
c

gk = min(gk, g1k)

end for

end for

end for

50

The guess on ik, g1k = bd(k−1)

dk
c ∀k ∈ [2, n] (4.2)

We then update the guess already in gk for ik using

gk = min(gk, g1k) (4.3)

Note: min(TOP, g1k) = g1k since TOP represents infinity.

We apply this to every memory access in every DG that has a write and guess

for every induction variable other than the highest dimension i1. Note that we

cannot make a guess for i1 since there is no d0 in the equation. Hence, we do not

have a guess for i1 in this step. The guess for i1 is made in step 5 and will be

described later.

Step 3.2: After we have applied step 3.1 to all DGs that have a write in them,

we work on the same DGs considering pairs of accesses in them and apply step 3.2

on them. This algorithm is presented in algorithm 3.

We now describe the algorithm briefly. We first initialize x1, x2, · · · , xn to

zeroes. These represent the adjustment we need to make to each of the induction

variable bound guesses at the end of this step. Then we consider pairs of accesses in

this DG, if the bases are different then we store the absolute difference in Basediff.

We then run a loop that checks to see which factor of this difference came from

which co-efficient and keep track of that in dks. Later these are subtracted from the

51

Algorithm 3 Step 3.2: Guesses for induction variables using pair of accesses

Input: All DGis that have a write in them and g1, g2, · · · , gn from step 3.1

Output: Refined guesses for induction variables

Require: Initialize x1, x2, · · · , xn to zeroes

for MemAddr1(Base1, d),MemAddr2(Base2, e) in DGi do

Basediff = | Base1-Base2 |

for k = 1→ n do

if
Basediff
gcd(dk,ek)

≥ 1 then

x11 = b Basediff
gcd(dk,ek)

c

xk = max(xk, x11)

Basediff = Basediff − b Basediff
gcd(dk,ek)

c × gcd(dk, ek)

end if

end for

end for

for k = 1→ n do

gk = gk − xk

end for

52

guesses for induction variables gk from step 3.1.

It is important to make this adjustment to the guesses on loop bounds from

step 3.1 since by doing so we are making sure that each of the accesses do not

run into the higher dimension of the other. After this adjustment we will not have

spurious dependencies from binary that prevent parallelization. We will present

further intuition to this step below.

Intuition for Step 3.1: Let us assume that the binary code we are accessing

came from source code where the loop nest had induction variables (say i1, i2, · · · , in)

and an array accesses A[C1 × i1 + B1][C2 × i2 + B2] · · · [Cn × in + Bn] in the loop and

the size of array A is [n1][n2] · · · [nn]. Assume that none of the induction variables

is repeated, however any ordering of the induction variables is allowed. This access

when recovered from the binary will be of the form.

(BaseA +
n

Σ
j=1

Bj ×
n

Π
m=j+1

nm) +
n

Σ
j=1

Cj ×
n

Π
m=j+1

nm × ij (4.4)

(This assumes an element size of 1; else each one of the terms will be multiplied

by the element size.) The algorithm is correct even if the compiler uses the column-

major layout; we assume the row-major layout only for presenting the intuition.

Our results also include Fortran benchmarks for which the GCC compiler uses the

column-major layout. BaseA and the terms containing B’s (shown in parenthesis

above) are rolled into the constant term when recovered from the binary. We know

that the memory address that we recover from binary is of the form MemAddr(Base, d)

53

(from eq.(4.1)).

Equating (4.4) and (4.1) we get :

Base = BaseA +
n

Σ
j=1

Bj ×
n

Π
m=j+1

nm (4.5)

and, dj = Cj ×
n

Π
m=j+1

nm (4.6)

First, let us calculate the actual upper bounds of the induction variables from

source. From source we know that the array indices do not access arrays out of

their bounds. Hence, each dimension index must be less than the actual size of that

dimension.

i.e., Ck × ik + Bk < nk (4.7)

Rearranging the terms, ik <
(nk − Bk)

Ck
(4.8)

Hence, the upper bound of ik from source is (nk−Bk)
Ck

.

Second, let us see what our guess for induction variable ik is by applying step

3.1 to this access. Our guess for induction variable ik is obtained by substituting

eq(4.6) in eq(4.2)

54

i.e., g1k = b
C(k−1) × nk

Ck
c ∀k ∈ [2, n] (4.9)

Next taking the minimum of g1k and TOP (the initialized value) we get,

gk = min(TOP, g1k) = g1k = b
C(k−1) × nk

Ck
c ∀k ∈ [2, n] (4.10)

We now show that the guesses for induction bounds are greater than or equal

to the actual loop bounds. This is important because if the guesses were lower than

the actual bounds our run-time checks would fail and we would always run the serial

version of the loop which would not serve the purpose of parallelization. We have

already seen that the guess on the induction variable ik =
C(k−1)×nk

Ck
, this is greater

than the actual limit of ik, which is (nk−Bk)
Ck

from eq.(4.8). We observe that if C(k−1)

is 1 and Bk is 0, then the value we would have guessed is the same as the actual

upper bound. Further, if Ck is 1 as well, the guess for ik is nk, which is the size of

that array dimension.

Every guess we make for the induction variables is actually higher than or

equal to its actual bound as shown above. By taking the minimum at every step we

have a guess that is at least its actual bound. However, we do acknowledge that if

the accesses had multiple induction variables or repeated ones our guesses may be

incorrect and hence we add run-time checks to make sure we run the serial version

in such cases. Further, these kind of accesses are very rare in actual code and hence

55

our method is as powerful as the source methods on real code.

Intuition for step 3.2: Let us assume that there is a second accesses to A,

A[C1 × i1 + B1 + E1] · · · [Cn × in + Bn + En] in this loop where Es are small numbers

< 5. The memory address for this access from binary will be of the form:

BaseA +
n

Σ
j=1

(Bj + Ej)×
n

Π
x=j+1

nx +
n

Σ
j=1

Cj ×
n

Π
x=j+1

nx × ij (4.11)

Recollect that this access when recovered from the binary will be of the form

MemAddr(Base2, e), from equation (4.1):

MemAddr(Base2, e) = Base2 +
n

Σ
j=1

ej × ij (4.12)

Equating eq.(4.11) and eq.(4.12), we get:

Base2 = BaseA +
n

Σ
j=1

(Bj + Ej)×
n

Π
x=j+1

nx (4.13)

and, ej = Cj ×
n

Π
x=j+1

nx (4.14)

First, let us prove that both the references belong to the same DG using step

1 since we would apply step 3.2 to them only if both of them belong to the same

DG. From step 1 we know that if the difference between the bases is < d1 × CDThres,

56

then they will belong to the same DG.

i.e., if |Base2 − Base| < d1 × CDThres (4.15)

then, both the accesses will belong to this DG.

The difference between the bases from eq.(4.13) and eq.(4.5) is

Base2 − Base =
n

Σ
j=1

Ej ×
n

Π
x=j+1

nj (4.16)

We know from eq.(4.14) and eq.(4.6) that:

d1 = e1 = C1 ×
n

Π
m=2

nm (4.17)

Now, substituting eq.(4.16) and eq.(4.17) in eq.(4.15) we get:

If
n

Σ
j=1

Ej ×
n

Π
x=j+1

nj < C1 ×
n

Π
m=2

nm × CDThres (4.18)

, then both the accesses will belong to this DG

⇒ E1

C1
+

E2

C1 × n2
+ · · ·+ En

C1 ×
n

Π
m=2

nm
< CDThres (4.19)

57

(which will be true in most cases since C1 and Es are small positive numbers

< 5 and n2 · · · nn are relatively large, and CDThres is 5 in our experiments.)

Hence, both these accesses MemAddr(Base, d) and MemAddr(Base2, e) from the

binary will belong to the same DG.

First, let us see what the bounds for the induction variable from source would

be in the presence of the second access as well. We know that accesses from source

do not access out of bounds in correct programs. We have seen that the bounds for

each induction variable (ik) only considering the first access is (nk−Bk)
Ck

as shown in

eq.(4.8). Now considering that the second access does not access out of bounds we

get:

Ck × ik + Bk + Ek < nk (4.20)

Rearranging the terms, ik <
(nk − (Bk + Ek))

Ck
(4.21)

The difference between the bounds calculated from eq.(4.8) and eq.(4.21) is Ek
Ck

Now let us apply algorithm 3 to both these accesses.

We know that Basediff =
n

Σ
j=1

Ej ×
n

Π
x=j+1

nj. By dividing it with gcd(dk, ek) = dk

(since dk = ek in our case) repeatedly in loop and keeping the remainder of it for

the next iteration we recover xks of the form bEk
Ck
c as long as Cks are factors of Eks.

By subtracting xks from the already present guesses of the induction variables we

58

get gk =
C(k−1)×nk

Ck
− Ek

Ck
. Many of the Es will be zeroes, hence we will not make ad-

justment to many bounds, however we will make adjustment to the bounds that

have small constant Es in their terms. Further, it is good to note that the term we

subtract using algorithm 3 is equivalent to the difference of the bounds as shown

above.

It is important to note at this point that by subtracting from the already

guessed bounds, we are making sure that the second access which accesses a few

extra elements in some dimensions does not run into the higher dimension of the

first access. This is very important because if we do not make this adjustment we

will have extra dependencies from binary, which will prevent parallelization, and

by subtracting the extra from bounds we will not see those spurious dependencies.

Also it is important to note that the new guess we have for the bounds is also higher

than or equal to the actual bounds of the loop.

4.2.4 Step 4: Create the worklist

In this step we create a worklist with DGs that have accesses with remaining

constraints so that we can apply step 5 on them to guess the upper bounds for

the remaining induction variables. After step 3 we have upper bound constraints

for all the induction variables in the memory addresses other than the ones that

correspond to the highest dimension in the write accesses. We need a method to

guess the upper bound on these induction variables as well. This method is step

5. Hence, we now create a worklist with all DGs in which there is an induction

59

variable for which we do not have an upper bound guess as yet. These would be the

highest dimension induction variables since we do not have guesses for those after

step 3. This worklist will enable us to work on only those DGs that have remaining

constraints.

4.2.5 Step 5: Work on Inter-group constraints

In this step we look at all DGs in the worklist created in step 4 (recall that

these DGs have induction variables for which we have no guesses as yet) and solve for

this DG not overlapping with the immediately following DG in the FullList. While

creating DGs we assumed that each DG corresponds to a non-overlapping array

region. Hence, it is required that different DGs do not overlap with each other; else

this would generate false dependencies from binaries. Solving this generates further

guesses on the remaining induction variables. These guesses are called inter-group

constraints.

The formal method for solving that DGi from worklist does not overlap with

DG(i+1) (the immediately following DG in the FullList of DGs) is presented in algo-

rithm 4; we describe it briefly here. For every DGi that has constraints remaining we

substitute the guesses for all induction variables other than the highest one in all

its memory expressions and require that this be less than the lowest base in DG(i+1).

Solving the above constraint we can obtain a higher bound for the highest induction

variable. We then choose the minimum of the present guess and the already present

minimum guess for that induction variable. This way we ensure that all our guesses

60

are respected.

Algorithm 4 Step 5: Algorithm for Inter-group constraints

Input: Worklist from step 4 and guesses g1, g2, · · · , gn from step 3.2

Output: Final guesses for bounds g1, g2, · · · , gn

for all DGi in worklist after step 4 do

for all MemAddr(Base, d) in DGi do

Baselow = Lowest Base from DG(i+1) in FullList

g11 = b
Baselow−Base−(

n
Σ

j=2
d2∗g2)

d1
c

g1 = min(g1, g11)

end for

end for

Intuition for step 5: Now that we have presented an algorithm for calculat-

ing the bounds on the highest induction variable, let us apply this to an access from

source code, to show that our method guesses the value for the highest induction

variable that is ≥ to the actual bound on that induction variable.

In step 3 we assumed we were working with loop nests whose induction vari-

ables are (say, i1, i2, · · · in) and array accesses A[C1 × i1 + B1] · · · [Cn × in + Bn] in

the loop, and the size of array A is [n1][n2] · · · [nn]. Let this access belong to DGi.

First, let us recollect the guesses for all induction variables except the highest

induction variable from step 3. One of the guesses we would have made for induction

variable ik (where k ∈ [2,n]) is
C(k−1)×nk

Ck
(eq.(4.9)). Hence, the final guess after step

4 will be equal to or lower than this guess.

Next, let us assume that there is an access to array B in the same loop be-

61

longing to DG(i+1), i.e.the immediately following DG in the FullList. If this second

array B is laid immediately after A in the binary, then BaseB will be at least:

BaseB = BaseA +
n

Π
j=1

nj (this term is the size of A) (4.22)

Let us assume that all accesses corresponding to B belong to DG(i+1). The

lowest address of DG(i+1) will be BaseB.

Next, we apply the method in algorithm 4 for solving DGi not overlapping

with DG(i+1) from source to derive the guess for i1 and then verify that this guess is

correct. For doing so we must substitute our guesses for all the induction variables

except the highest dimension induction variable in the expression of memory address

A and this must be less than BaseB. The expression for memory address A obtained

by substituting the intra-group guesses eq.(4.9) in eq.(4.4) is:

BaseA +
n

Σ
j=1

Bj ×
n

Π
x=j+1

nx + C1 ×
n

Π
x=2

nx × i1 +
n

Σ
j=2

Cj ×
n

Π
x=j+1

nx × (
Cj−1 × nj

Cj
− 1)

(4.23)

The only unknown in eq.(4.23) is i1. This must be less than BaseB (from

eq.(4.22)).

Hence,

62

BaseA +
n

Σ
j=1

Bj ×
n

Π
x=j+1

nx + C1 ×
n

Π
x=2

nx × i1+
n

Σ
j=1

Cj ×
n

Π
x=j+1

nx −
n

Σ
j=2

Cj ×
n

Π
x=j+1

nx

≤ BaseA +
n

Π
j=1

nj

(4.24)

Rearranging the terms we get,

i1 ≤

n

Π
j=1

nj − (C1 ×
n

Π
x=2

nx +
n

Σ
j=1

Bj ×
n

Π
x=j+1

nx)

C1 ×
n

Π
x=2

nx
(4.25)

Further,

i1 ≤
n1

C1
− 1− B1

C1
−

(
n

Σ
j=2

Bj ×
n

Π
x=j+1

nx)

C1 ×
n

Π
x=2

nx
(4.26)

i.e.i1 ≤
n1

C1
− 1− B1

C1
− (∆) (4.27)

The remaining values are small since the constant C’s and B’s are small and

the sizes of arrays in affine code are generally large.

Hence, the guess for i1 will be:

g1 = b(n1 −B1)

C1

− 1c (4.28)

63

As seen before from source we require that the array expression must not

exceed the size of the array dimension. Hence the highest dimension array expression

(C1 × i1 + B1) must not exceed the highest dimension (n1).

i.e.C1 × i1 + B1 < n1 (4.29)

Rearranging the terms i1 <
(n1−B1)

C1

Hence, the maximum value i1 can take is (n1−B1)
C1
− 1 and this is what we get

by solving the equations from binary.

We have now seen that the algorithm 4 to calculate the bounds on the highest

dimension induction variable yields a limit on it that is the true limit on it even

when the method is applied to source code.

At the end of step 5, we now have made best guesses for all induction variables

in the loop that appear in a memory address. If there is an induction variable that

does not appear in any memory access, then we just assume that it can take any

value since we have no way of determining its bounds. This does not hurt our

method and is reasonable since even from source if an induction variable does not

appear in any of the memory addresses present in the loop it could take any value

at run-time and this would be legal.

For array accesses that came from dynamically allocated memory we ap-

ply the algorithm described above. It is important to note that all ds in the

MemAddr(Base, d) expression would be loop invariant symbols rather than constants.

64

In many cases the memory expression we recover from binary code for these accesses

will be of the form

Base + x1 × x2 · · · xn × i1 + x2 × x3 · · · xn × i2 + · · ·+ xn × in (4.30)

where all the xs and Base are loop invariant quantities. By applying the

algorithm to such an access we guess that the bound on ik is x(n−1). We then check

that the actual bounds are less than this loop invariant quantity (this check would

succeed) before executing the parallel version of the loop.

Now that we have constraints on all the induction variables, we calculate the

distance vectors and take parallelizing decisions for this loop assuming these as loop

bounds. We then clone this loop and run the parallel version of the loop when the

run-time checks for all induction variables succeed; else we run the serial version of

the loop. Since we check at run-time that the loop bounds that we have guessed are

actually correct we will always be conservatively correct. Please note that using the

distance vector method to parallelize is our implementation method, one may use

any parallelizing decision algorithm including polyhedral methods.

65

66

Chapter 5

Cache Analysis and Loop Transformation

In this chapter we present techniques to calculate cache reuse metric directly

from binary code and then use it to take decisions about transforming the loop using

an algorithm adopted from McKinley’s [12] algorithm.

5.1 Characterizing cache reuse

To increase the performance of affine loops it is extremely important to study

the cache access patterns in the loop and optimize so that the cache is accessed

efficiently. Interchanging loop dimensions in a loop nest changes the access patterns

of the arrays. Different interchanged orders of loop dimensions generally have very

different run-times and hence it is important to choose the correct ordering of loops.

Further, fusing different loop nests may increase the reuse across memory accesses

and decrease the run-time of the loop. Hence, it is important to study the cache

behavior in affine loops and take decisions about the loop transformations that need

to be applied to a particular loop nest.

Existing source-level cache reuse estimation techniques do not work on bina-

ries, and in this chapter we derive binary-level techniques for the same. In any

search strategy for deciding loop transformations to optimize for cache, it is very

useful (and often necessary) to have a cache reuse estimation module that can eval-

67

uate the cache access cost of any proposed transformation order. We will also

evaluate the solution in a concrete implementation of cache optimization based on

McKinley’s algorithm presented in [12], which is meant for parallelizing compilers

enhanced with additional cache optimization search methods that will be described

in section 5.2. However our cache reuse model is not restricted to [12] and can be

applied to any cache optimization strategy, both in parallelizing and non-parallelizing

compilers.

For every loop dimension containing affine accesses, we define LoopCost(l)

as the total number of cache lines that will be accessed by the affine accesses in

the loop nest when the dimension l is interchanged to the innermost position. It

is worthy noting that LoopCost(l) does not measure the reuse directly. Instead

reuse = Cache access cost assuming all misses - LoopCost(l). The goal is that

the final loop ordering should maximize reuse, which is the same as to minimize

LoopCost(l). In this chapter we first describe the existing method to calculate the

LoopCost(l) from source in affine literature, and then show our new method to

adapt the source method to a binary.

In section 5.2 we describe how the LoopCost(l) values for each dimension l

can be used to decide an ideal ordering of loops in a loop nest. Further, this ideal

order may not always be achievable given dependencies that prevent interchange;

hence, we use an algorithm to achieve the best possible order, which we call optimal

order. This algorithm has been described in [12] and will be reproduced in section

5.2.

68

5.1.1 From source

This section overviews the strategy used to calculate LoopCost(l) in terms

of the cache lines accessed from source. This formulation has been described by

McKinley in [12], but is widely used in all types of affine analysis such as [33] in

traditional affine literature and [34] in the polyhedral framework.

First, let us describe the two kinds of data reuse that are present in affine

loops.

• Temporal reuse: is present when multiple accesses are made to the same

memory location. When a single array reference in different iterations access

the same location it is called self-temporal-reuse. When multiple array ref-

erences (in same or different iterations) access the same location it is called

group-temporal-reuse.

• Spatial reuse: is present when accesses to nearby memory locations that

share a cache line at some level of the memory hierarchy. Spatial reuse may

result from self-spatial-reuse – consecutive accesses by the same array reference

to the same cache line; or from group-spatial-reuse – multiple array references

accessing the same cache line.

Without loss of generality, we assume C has row-major storage when calculat-

ing the LoopCost(l) from source. We then show that from a binary we do not need

this assumption.

The example in figure 5.1 presents a loop code from gemver.c (a part of the

polybench benchmark suite). We will use this as a running example in this section

69

for i from lbi to ubi

for j from lbj to ubj

X[i] = X[i] + beta * A[j,i] * Y[j]

end for

end for

(a) Original - Loop in gemver

for j from lbj to ubj

for i from lbi to ubi

X[i] = X[i] + beta * A[j,i] * Y[j]

end for

end for

(b) Interchanged Loop to maximize reuse

Figure 5.1: Example Loop to illustrate Cache Reuse Algorithm

and the next to calculate LoopCost(l) both from source and binary.

Figure 5.1 shows how loop interchange can help cache performance. We will

show that figure 5.1(a), which shows the original code, has higher LoopCost(l);

whereas figure 5.1(b) after interchange has lower LoopCost(l). We observe that in

the original loop presented in figure 5.1(a) the accesses to A stride along columns

whereas the memory placement in C is row-major. Hence, we need to fetch a new

element of A into cache for every iteration of j. Each element of Y is fetched into

the cache for each iteration of i and this is not an optimal way to access Y. Each

element of X is fetched into the cache only once for the loop nest and this is the

optimal way to access X. Hence, two (i.e. A and Y) of the three arrays accessed

in this loop are not accessed efficiently where as one (i.e. X) is accessed efficiently.

If the two loops are interchanged as shown in figure 5.1(b), two (i.e. A and Y) of

the three arrays accessed will be accessed efficiently and one of them (i.e X) is not

accessed efficiently. Hence, a faster way to execute this loop is to interchange the

two loops.

In this section we present a mathematical method to characterize the num-

70

ber of cache lines accessed by affine accesses and call this the LoopCost(l). This

LoopCost(l) can be adapted to any search strategy. We adopt it to McKinley’s

search strategy and this will be presented in section 5.2.

The steps for calculating LoopCost(l) are (a) generation of reference groups

followed by (b) calculating cache lines for each of these reference groups. In the

sections that follow we present each of these steps. The binary adoptions of these

algorithms are presented in section 5.1.2.

5.1.1.1 Generation of reference groups

References Ref1 and Ref2 are said to belong to the same reference group with

respect to a loop nesting level if there is either temporal or spatial reuse between

them, detected as follows:

• There is a temporal reuse between Ref1 and Ref2, if (a) they have a non-

loop-carried dependence (i.e., a dependence within the same loop iteration);

or (b) they have a loop-carried dependence which at this nesting depth has a

distance vector component which is a small constant d (we have found d < 10

to work well), and all other entries in the distance vector are zero.

• There is spatial reuse between Ref1 and Ref2 if they refer to the same array

and differ by at most d0 in the first subscript dimension of the array indices,

where d0 is less than or equal to the cache line size in terms of array elements.

All other subscripts must be identical.

71

Few observations with respect to the reference groups are (i) each data refer-

ence belongs to only one reference group; and (ii) any one reference in the reference

group can be used to calculate the cache lines, as it completely characterizes the

cache behavior of that reference group.

5.1.1.2 Calculating LoopCost(l) in terms of cache lines

In this section we describe how the LoopCost(l, Refk) in terms of cache lines

is calculated for each reference group Refk at each nesting level l. We take one

data reference from each reference group (as we have already described any ref-

erence in the reference group is representative of its cache behavior) and calcu-

late the contribution towards LoopCost(l). Assume that we are working with a

loop nest of the form L = {l1,, ln} and R = {Ref1,,Refm} contains rep-

resentatives from each of the reference groups. Each Refk has array indices of the

form {fk1(i1, ..., in),, fkn(i1, ..., in)} and its contribution to LoopCost(l) is decided

based on the category it belongs to. The three categories it can belong to are listed

below:

• Loop invariant - if the subscripts of the reference do not vary with this loop

nesting level l, then it requires only one cache line for all iterations of this loop

dimension. These references are loop invariant and have temporal locality.

Mathematically: LoopCost(l, Refk) = 1, if none of the fk values vary with

il, where il is the induction variable associated with loop dimension l

• Consecutive - if only the last subscript dimension (the column) varies with

72

this loop nest , then it requires a new cache line every cls iterations (cls is the

cache line size, expressed as the number of elements of this type that fit in a

cache line), resulting in tripl/cls (tripl is the trip count of this loop dimension

l) number of cache lines accessed for this loop nest. These references are

consecutive and have spatial locality. Mathematically: LoopCost(l, Refk) =

tripl/cls, if only fkn varies with il and all other fk values do not vary in il

• No Reuse - if the subscripts vary with in any other manner, then the array

reference is assumed to require a different cache line in every iteration, yielding

a total of tripl number of cache lines. Mathematically: LoopCost(l, Refk) =

tripl, otherwise

Next LoopCost(l) is calculated as follows:

LoopCost(l) = (
m∑
k=1

LoopCost(l, Refk))
∏
h6=l

triph (l ∈ [1 : n])

Then this would be representative of the total cache lines accessed by this loop

when it is the inner most loop in this loop nest.

5.1.1.3 Running example

In this section we see how the LoopCost(l) algorithm performs on the example

presented in Figure 5.1(a). Table 5.1 shows the LoopCost(l) that is calculated for

this loop where n1 is the trip count of i (outer loop in program order) and n2 is the

trip count of j (inner loop in program order).

The LoopCost(l) that is calculated is used in the literature in source-based

search strategies to optimize the loop. We will present one such search strategy in

73

reference group Candidate Inner Loop (i) Candidate Inner Loop (j)

Y[j] 1/4*n2*n1 1*n2

X[i] 1*n1 1/4*n1*n2

A[j,i] n2*n1 1/4*n1*n2

loop cost 5/4*n1*n2 + n1 1/2*n1*n2 + n2

Table 5.1: LoopCost(l) for the loop in gemver

section 5.2. However, before that we present the calculation of LoopCost(l) from

a binary in the next section. We will then be able to use the same search strategy

from a binary.

5.1.2 From binary

In this section we describe the calculation of LoopCost(l) algorithm directly

from a binary. The steps for calculating LoopCost(l) are (a) generation of reference

groups followed by (b) calculating cache lines for each of these reference groups

using a representative memory reference from each of the reference groups. In the

following sections we will describe the algorithms applied directly to a binary.

5.1.2.1 Generation of reference groups

In this section, we describe how the reference groups are generated from a

binary. Unfortunately affine array index expressions fk (such as 2i + 3 in A[2i + 3])

that are available in source are not available in a binary. Hence, the source tech-

74

niques cannot be applied directly since the array indices are needed for calculating

reuse above in each of the three cases (loop invariant, consecutive and no reuse). Let

us assume that there are two references Ref1 and Ref2 in a binary in a loop. Then

we can recover the following affine expressions for these references as described in

chapter 3 directly from a binary without any symbolic information, where Baseouter1,

Baseouter2, step1k and step2k values are all constants.

addr reg1 = Baseouter1 +
n∑

k=1

num k ∗ step1k (5.1)

addr reg2 = Baseouter2 +
n∑

k=1

num k ∗ step2k (5.2)

For any two references Ref1 and Ref2 the following two conditions must be

checked to decide if they belong to the same reference group:

• There is a temporal reuse between Ref1 and Ref2 and they belong to the same

reference group if

– (a) the coefficients multiplying all the induction variables is the same for

both the accesses; {Mathematically: The following condition should

be true (i) ∀l ∈ [1 : n] step1l = step2l } and

– (b) the bases of both the accesses differ by a small multiple of the coeffi-

cient of the induction variable of the loop nesting level we are considering.

75

{Mathematically: For e.g., if it is loop nest k, then the following two

conditions should be true (i) (Baseouter1 − Baseouter2)%step1k = 0 and

(ii) (Baseouter1−Baseouter2)
step1k

≤ d , where d is a small number (heuristically set

at less than ten).} If the above conditions are true then Ref1 and Ref2

belong to the same reference group and there is temporal locality between

them.

• There is a spatial reuse between Ref1 and Ref2 and they belong to the same

reference group if

– (a) the coefficients multiplying all the induction variables is the same for

both the accesses; {Mathematically: The following condition should

be true (i) ∀l ∈ [1 : n] step1l = step2l } and

– (b) the bases differ by less than the cache line size. {Mathematically:

The following condition should be true (i) (Baseouter1 − Baseouter2) <

CACHE LINE SIZE }

If this is the case, both the accesses lie on the same cache line. Hence, there

is spatial reuse and they should be placed in the same reference group.

In all other cases Ref1 and Ref2 belong to different reference groups.

Two observations with respect to the reference groups that are formed are

(i) each data reference belongs to only one reference group; and (ii) any reference

in the reference group can be used to calculate the cache lines, since it completely

characterizes the cache lines. These observations remain true from a binary as well.

76

5.1.2.2 Calculating LoopCost(l) in terms of cache lines

In this section we describe how the LoopCost(l, Refk) in terms of cache lines

is calculated for each reference group at each nesting level and then LoopCost(l) is

calculated from it directly from a binary. The intuitions are similar to that from

source, but the precise conditions are different in a binary. We take one data refer-

ence from each reference group (as we have already described any reference in the

reference group is representative of its cache behavior) and calculate the contribu-

tion towards LoopCost(l). Assume that we are working with a loop nest of the

form L = {l1, · · · , ln} and R = {Ref1, · · · , Refm} contains representatives from each

of the reference groups. Each Refk is of the form {Baseouterk, stepk1, · · · , stepkn}

and similar to the source formulation its contribution to LoopCost(l) is decided

based on the category it belongs to. The three categories it can belong to are listed

below:

• Loop invariant - if the address expression that we obtain from the binary does

not contain a term for this loop nest, then it requires only one cache line

for all iterations of this loop dimension. These references are loop invariant

references and have temporal locality.

Mathematically: LoopCost(l, Refk) = 1, if stepkl = 0

• Consecutive - if the address expression obtained from a binary has a multiplica-

tive factor stepkl associated with this loop nest level and stepkl is less than the

cache line size, then a new cache line is required every ITERS IN CACHE LINE

iterations (where ITERS IN CACHE LINE is CACHE LINE SIZE
stepkl

), resulting in a total

77

of tripl
ITERS IN CACHE LINE

number of cache lines accessed for this loop nest. These

references are consecutive and have spatial locality.

Mathematically: LoopCost(l, Refk) = tripl/ITERS IN CACHE LINE, if

stepkl < CACHE LINE SIZE and ITERS IN CACHE LINE = CACHE LINE SIZE
stepkl

• No Reuse - if the affine expression is of any other form, then the array reference

is assumed to require a different cache line every iteration, yielding a total of

tripl number of cache lines accessed.

Mathematically: LoopCost(l, Refk) = tripl, otherwise

Next similar to the source formulation LoopCost(l) is calculated as follows:

LoopCost(l) = (
m∑
k=1

LoopCost(l, Refk))
∏
h6=l

triph (l ∈ [1 : n])

Then this would be representative of the total cache lines accessed by this loop

when it is the inner most loop in this loop nest.

5.2 Using Loop Cost in McKinley’s Algorithm

In this section we describe how the LoopCost(l) calculated in section 5.1 from

either source or binary can be used in Mckinley’s search strategy [12]. We choose

McKinley’s search strategy (from traditional affine literature) for implementing and

testing the cache reuse model. We can use it in any other decision algorithm as

well. We chose the decision algorithm in traditional literature over the one used in

the Polyhedral model because of the following.

• Polyhedral models have exponential worst-case performance for their depen-

78

dence analysis , search strategy and code generation.

• Polyhedral models are very complex to implement.

Of course, the polyhedral model is a powerful compilation framework that

works well when compiling purely affine programs from source code. We do not

mean to suggest otherwise. We did not choose it for implementation in a binary

rewriter for the reasons above, and do not believe we lose much from that choice

in this first attempt at cache-based affine transformation of binary code. Further,

the contribution of this chapter is to present a cache reuse model from binaries; the

decision algorithm is only to test it and is not the major contribution of this thesis.

5.2.1 McKinley’s Algorithm

McKinley’s algorithm uses LoopCost(l) to determine the ideal loop order for

the different loop dimensions present in a particular loop nest. It then uses de-

pendence information that we calculated in chapter 3 to obtain the loop ordering

(called Optimal order) closest to the ideal order. These steps are further described

below. First, we present the main steps of the algorithm and then we describe these

in detail in the sections that follow. This algorithm is as presented in [12] and our

variation is to perform multi-level blocking. We outline the parts of the algorithm

common with McKinley’s here to help understand our search strategy; explanations

are in subsequent sections.

• Calculate the LoopCost(l) associated with each loop dimension in the loop

nest as described in section 5.1.

79

• While disregarding loop-carried dependencies, calculate the ideal order of loop

dimensions that yields the best data locality in terms of the fewest cache lines

accessed.

• Analyze the loop-carried dependencies in the loop and determine the order of

loops closest to the ideal order that can be achieved. This loop ordering is

called the optimal order.

• Strip-mine each loop level in the nesting depth and use a strategy to maximize

parallelism.

This algorithm is our improvement on the algorithm presented in [12] since

it blocks each level of the nesting loop whereas McKinley’s algorithm blocks only

one level. This algorithm achieves an ordering of loops that improves data locality

and also increases parallelism as we try to interchange the parallel outer strip-mined

loop to the outer most position possible. The same decision strategy is used from

source and binary.

5.2.1.1 Determining the Ideal Loop Order

Even though LoopCost(l) does not directly measure reuse across outer loops,

McKinley’s algorithm can use it to determine the loop permutation for the entire

nest which accesses the fewest cache lines by relying on the following observation:

If loop i promotes more reuse than loop j when both are considered for the

innermost loop, i will promote more reuse than j at any outer loop position. [12]

80

We therefore simply rank the loops dimensions using their LoopCost(l) order-

ing the loops from outermost to innermost in increasing LoopCost(l). This order is

the best theoretical order for this loop nesting which we call the ideal order.

5.2.1.2 Determining the Optimal Loop Order

In this section we describe the algorithm used to obtain the optimal order

from the ideal order and the dependencies present in a loop nest. The optimal order

of the loops is calculated using the following method. Start from the loop that is

outer-most in the ideal order and check if it is legal to position this loop at the outer

most position. If yes, place it and examine the next loop in the ideal order. If not

examine the next outer-most loop and check if it can be placed in the outer-most

position. Repeat until all loops have been placed. This algorithm is presented in

figure 5.2.

5.2.1.3 Strip-mining and Interchanging for blocking

In this section we will describe the strip mining and blocking strategy we

use. McKinley’s algorithm does not use this strategy and we have developed it to

enhance the performance. We prefer strip-mining every loop in the nest to increase

locality of data accesses. Strip-mining each loop and interchanging the outer of the

strip-mined loops decreases the overall footprint of the loop, hence decreasing the

run-time. The algorithm that is followed in this part is that we assume the new nest

of the loop is (1, 2, ,3 , 4 ...) where even numbers represent the original loops and

81

INPUT:

L = {l1,, ln} the original loop nest

M = {m1,,mn} a permutation of loop nests, in this case the ideal order

OUTPUT:

P = {p1,, pn}, the legal permutation of loops closest to ideal order,

called the optimal order here

ALGORITHM:

P = φ; k = 0; m = n

while L 6= φ

for j = 1,m

l = mj working with the jth loop in M

if direction vectors for {p1, ..., pk, l} are legal

P = {p1,, pk, l}

M = M − {l}; k = k + 1; m = m− 1

break for

endif

endfor

endwhile

Figure 5.2: Algorithm to obtain Optimal Order from Ideal Order

82

the odd numbers represent the outer of strip-mined loops. The ideal order for this

nest will then be (1, 3, ... 2, 4...) representing the fact that the outer-strip need to

moved to the outer most position and the original loops need to be as inner-most as

possible. We then pass this ideal-order and new direction/distance vectors through

the optimal loop order calculation algorithm presented in figure 5.2 to determine

the optimal order for this strip-mined nest.

The last step is to determine which of the outer strip-mined loops to paral-

lelize. The algorithm followed here is to look for the outer-most strip that can be

parallelized and to bring it to the outer-most level possible. This will help increase

parallelism and decrease synchronization.

5.2.1.4 Running Example

Now let us apply the strategy described in section 5.2 to the loop in figure

5.1 using the LoopCost(l) calculated in section 5.1.1.3. The LoopCost(l) of loop

(i) is greater than the LoopCost(l) of loop (j). Hence, the ideal order is (j, i).

This order can be achievable as the interchange is legal for this loop. The original

distance vector for this loop nest is (0, 1). Interchanging the two loops transforms

the distance vector to (1, 0). One may assume this is sub-optimal since the outer

loop cannot be parallelized anymore. However, this is not the complete picture.

We still need to perform the strip-mine and interchange step before the algorithm

terminates.

Figure 5.3 shows the code of the loop in gemver in the various steps of the

83

for j1 from 1 to num tilesj step tile sizej

for j from j1 to j1 + tile sizej

for i1 from 1 to num tilesi step tile sizei

for i from i1 to i1 + tile sizei

X[i] = X[i] + beta * A[j,i] * Y[j]

end for

end for

end for

end for

(a) Each loop dimension strip-mined

for j1 from 1 to num tilesj step tile sizej

for i1 from 1 to num tilesi step tile sizei

for j from j1 to j1 + tile sizej

for i from i1 to i1 + tile sizei

X[i] = X[i] + beta * A[j,i] * Y[j]

end for

end for

end for

end for

(b) Loops Interchanged to achieve ideal order

for i1 from 1 to num tilesi step tile sizei

for j1 from 1 to num tilesj step tile sizej

for j from j1 to j1 + tile sizej

for i from i1 to i1 + tile sizei

X[i] = X[i] + beta * A[j,i] * Y[j]

end for

end for

end for

end for

(c) Loops Interchanged to maximize parallelism

for i1 from 1 to num tilesi step tile sizei

for j from lbj to ubj

for i from i1 to i1 + tile sizei

X[i] = X[i] + beta * A[j,i] * Y[j]

end for

end for

end for

(d) Loop j rolled back

Figure 5.3: Example Loop to illustrate Strip Mining Algorithm

84

strip-mine and interchange algorithm. We will explain each step referencing the

corresponding code. When we strip mine this loops we generate the following nest

(j1, j, i1, i) where j1 and i1 are the outer stripped loops and j and i are the

original loops. The code is shown in figure 5.3(a). After interchanging to bring the

stripped loops to the outer positions the order obtained is (j1, i1, j, i) as shown in

figure 5.3(b). We observe that the i1 loop can be parallelized where as the j1 loop

cannot be. Hence, we interchange to obtain the following final nest (i1, j1, j, i)

shown in figure 5.3(c). This maximizes parallelism since (i1) the outer loop of this

new nest can be parallelized. Further, this increases cache performance as the inner

loops are in the order that maximizes data reuse. Finally we observe that j1 and

j are next to each other in the program and hence it is wise to combine them back

into the original j loop. This code is shown in figure 5.3(d).

5.3 Handling Imperfect Nests

In this section we describe our method to handle imperfectly nested loops, like

the one present in doitgen (from Polybench benchmark suite) shown in figure 5.4.

McKinley’s decision algorithm and the calculation of the cache reuse metric are

applicable only to perfectly nested loops. Hence, we apply them on the perfectly

nested portions of the imperfect nests. For example, in doitgen, we apply McKin-

ley’s decision algorithm on loop nests (loopr, loopq) and (loopp, loops) separately

since they are the perfectly nested portions of the imperfect nest. We observe that

loopcost(s) > loopcost(p). Hence, loopp should ideally be the innermost loop

85

if legal. We check and find that interchange is legal. Hence, loopp and loops are

interchanged. Similarly, loopr and loopq can be interchanged if profitable.

for r from lbr to ubr

for q from lbq to ubq {

for p from lbp to ubp {

for s from lbs to ubs

sum[r][q][p] += A[r][q][s] * C4[s][p];

}

for p1 from lbp1 to ubp1

A[r][q][p1] = sum[r][q][p1];

}

Figure 5.4: Imperfect nest in doitgen

86

87

Chapter 6

Infrastructure

This chapter provides a detailed description of the infrastructure used for this

research. We built an affine automatic parallelizer as part of the thesis. This affine

automatic parallelizer can be used in two ways (i) within a static binary rewriting

tool, SecondWrite and (ii) as a source parallelizer. When used within SecondWrite

it is able to automatically parallelize binary code without any high-level source

information.

First, in section 6.1 we describe the static binary rewriting tool, SecondWrite

used for this research, which was developed by our research lab @University of

Maryland, College Park to implement various binary rewriting projects under one

common infrastructure. Automatic parallelization is one of the areas of research

that has been developed by me. Others include security addition to binaries, stack

variable recovery and variable type recovery to name a few.

Second, in section 6.2 we describe in detail the affine automatic parallelizer de-

veloped to test the dependence analysis theory and cache analysis methods described

in chapters 3, 4 and 5. We also describe how it interacts with the SecondWrite in-

frastructure.

Third, in section 6.3 we describe how the same affine automatic parallelizer

module can be called independently to work on source code.

88

Last, we show you how the theory presented in chapters 3 and 4 can be im-

plemented in the polyhedral model.

6.1 Implementation-SecondWrite

In this section we describe the binary rewriting infrastructure, SecondWrite [35,

36, 37] used for this research and how the automatic parallelizer interacts with it.

!"#$%#&'())*+(,-+.#)!/

))*+(

01234(536
))*+(#/(

274898:;4823<

-=/(&!>(,-?!

@83;1A(15;651(

B(

68<;<<59CD51

EFG(#$H(

"+)

!I8JK(#/(53K;3L59534<

M$4;LN(<7D84483JO(

$A9C2D(L23P51<823Q

!-74898:;4823<

M.;1;DD5D8:;4823O($5LR184AQ

""#$%&'

""#$%&'

""#$%&' ()*+,+-./ 012%34567.8/
9
9::
;/4

<=>*>48

&8)?*%
3+84>@

(?*)?*%
3+84>@

S(S(S

9%34567.8/ (?*)?*%
9%5=/.

Figure 6.1: SecondWrite

Architecture of Binary Rewriter called SecondWrite is presented in fig-

ure 6.1. SecondWrite’s custom binary reader and de-compiler modules translate

the input x86 binary into the intermediate representation (IR) of the LLVM com-

piler. LLVM is a well-known open-source compiler [38] developed at the University

of Illinois, and is now maintained by Apple Inc. LLVM IR is language and ma-

chine independent. Thereafter the LLVM IR produced is optimized using LLVM’s

pre-existing optimizations, as well as our enhancements, including automatic paral-

89

lelization. Finally, the LLVM IR is code generated to output x86 code using LLVM’s

existing x86 code generator.

Currently SecondWrite rewrites x86 binaries. SecondWrite currently success-

fully rewrites binaries coming from source code totaling over 2 million lines of code,

including all of the SPEC2006 benchmarks. The apache web server real-world appli-

cation (230K+ LOC) is also successfully rewritten. Rewritten benchmark binaries

run on average 10% faster than highly optimized input binaries, and 45% faster

than unoptimized input binaries because of the existing optimizations in LLVM not

including parallelization.

6.1.1 Innovations in SecondWrite

Automatic parallelization takes complex decisions and hence must be static

since dynamic rewriters would not be able to pay the cost of complex decisions

and transformations at run-time. Unlike existing static rewriters, SecondWrite has

the following three functionalities that make it an effective platform for applying

advanced program optimizations such as automatic parallelization. First, it rewrites

stripped binaries (i.e., those without relocation information) since most real-world

binaries are stripped. Second, it rewrites the entire code, not just discoverable parts

of it, thus achieving 100% code coverage. Third, it converts the code to compiler IR,

since this will enable application of many existing compiler optimizations directly to

a binary and some custom optimizations such as automatic parallelization can also

be applied to a binary. Below we describe why existing static rewriters do not provide

90

any of these three capabilities, but SecondWrite does. We note that SecondWrite

(and any similar tool) does not work with software that is either self-modifying or

performs integrity self-checks. Many recent OS do not support self-modifying code

and hence we feel that this is not a limitation of SecondWrite.

Rewriting without relocation information: A key innovation in Sec-

ondWrite is that it can rewrite stripped binaries, i.e., those without relocation or

symbolic information, unlike existing rewriters such as ATOM [39], PLTO [40], Dia-

blo [41], and Vulcan [42] which cannot. The compiler to help the linker in resolving

addresses that can change when files are linked generates relocation information.

Symbolic information is inserted for debugging. However, production binaries al-

most never contain such information since linkers delete relocation information by

default. Corporations almost never release binaries with relocation information since

they are unnecessary for execution.

The requirement for relocation information in existing rewriters arises from

the need to update the target addresses of control-transfer instructions (CTIs) such

as branches and calls. When rewriting binaries, code may move to new locations

because instructions may be added, deleted or changed compared to the original

code. Hence the targets of CTIs must be changed to their new locations. Doing so

is easy for direct CTIs, since their targets are available in the CTI itself; the target

can be changed to its new address in the output binary. However for indirect CTIs,

the target may be computed many instructions before at an address creation point

(ACP). It is impossible to find all possible ACPs for each CTI using dataflow anal-

ysis since they may be in different functions and/or propagated through memory

91

(memory is not tracked by dataflow analysis.) Hence existing rewriters require re-

location information to identify all possible ACPs. Relocation information contains

since ACPs are precisely the list of addresses that need relocation during linking.

SecondWrite has devised techniques to rewrite binaries without relocation

information. Details are in [43]; here we briefly summarize the intuition of our

method. Rather than trying to discover ACPs, SecondWrite relies on inserting run-

time checks at indirect CTIs that translate the old target to its new address using

metadata tables that store such translations for all possible old branches and call

targets. Aggressive alias analysis on the indirect CTI target is used to prune the

list of such possible targets to a small number. Further, compile-time optimizations

are applied when possible to reduce the number of run-time checks. The result is a

method than can rewrite arbitrary binaries without relocation or symbolic informa-

tion with very low overhead.

Since SecondWrite rewrites binaries without relocation information, it provides

a platform to rewrite and parallelize real world binaries that do not have relocation

information.

Achieving 100% speculative code coverage: A key challenge in binary

rewriters is discovering which parts of the code section in the input binary are

definitely code, and thus should be rewritten. This is complicated since code sections

often contain embedded data such as literal tables and jump tables which if rewritten

by mistake will result in an incorrect program. The only way to be sure a portion of

the code section is indeed code is to find a control flow path from the entry point of

execution to that portion. However portions of code may be reachable only through

92

indirect CTIs. Unfortunately the possible values of CTI targets cannot be discovered

statically in all cases; hence not all code may be discovered. Existing rewriters

may not discover all the code, yielding incomplete code coverage undiscovered code

cannot be rewritten.

SecondWrite overcomes this problem by doing the following: (i) speculatively

rewriting portions of the code segment which cannot be determined to be surely

code, thus achieving 100% speculative code coverage; (ii) maintaining a copy of

the original code to access the data segment. The detailed scheme is in [43]; but

the intuition is that portions of the code segment, which cannot be proven to be

code, are speculatively disassembled as if they are code anyway. If the speculative

code turns out to indeed be code at run-time, then it is executed, achieving 100%

speculative code coverage. Instead, if the speculative code arose from disassembling

data bytes, that incorrect speculative code will never be executed since control will

never transfer to it at run-time; preserving correctness. Instead the data is accessed

from a copy of the original binary maintained in the rewritten binary. Maintaining

this code copy increases code-size, but not the I-cache footprint since only the data

portions of it are actually accessed, thus run-time is not affected. Since machines

today have vastly more resources than even a few years ago, an increase in code size

without increasing run-time is tolerable, especially given the payoff of being able to

rewrite any binary.

The affine automatic parallelizer within SecondWrite parallelizes every loop in

the speculatively disassembled code. If this was indeed code, the parallel versions of

these loops will be executed. Further, the control flow graph (CFG) obtained from

93

binary code will be conservative, since any edges from speculative code to real code

will be represented. CFG is important since they are analyzed to recognize loops

for affine parallelization.

Rewriting to compiler IR: Unlike existing rewriters, which represent code

in low-level IR, Secondwrite employs high IR, making the program easier to ana-

lyze and modify. The high-level IR in SecondWrite contains features like function

arguments, return values, symbols, types, high-level control flow, and an abstract

stack frame. In contrast low-level IR has registers and memory locations instead

of symbols, no type information, no argument and return value information, and a

physical stack frame with an explicit stack pointer.

Low IR has several downsides: (i) low-level code has registers and memory

locations instead of symbols, making dataflow analysis much less effective. Hence

low-level code requires custom transformations for binaries even for relatively simple

dataflow tasks such as the load-store forwarding implemented in PLTO [40] which is

equivalent to constant propagation on compiler IR; (ii) low-level code has a physical

stack with a precise, fixed layout that is not easy to change. Having a physical

stack is problematic since it forces the layout of memory to be retained exactly

in the rewritten binary, preventing modifications and optimizations of the stack

and global segments, and additions to the stack segment. This is inconvenient for

automatic parallelization since some transformations may allocate stack variables.

SecondWrite overcomes these problems by representing the binary code in

compiler IR. This makes it easy to run mature compiler transformations already

present in LLVM. Many of these compiler transformations make implementing an

94

automatic parallelizer and cache analyzer much easier in SecondWrite than an earlier

rewriter. Further, SecondWrite decouples the physical stack to an abstract stack,

which makes modifications to the stack possible. This method is described in [37]

and it primarily relies on three technologies. First, high-level program features such

as functions, and their arguments and return values are discovered from the binary

using deep static analysis. Second, registers and memory locations are replaced

by symbols as in high-level programs, allowing easy compiler modification of the

memory allocation. Third, type information is recovered when possible by analyzing

the uses of each symbol.

The advantages of compiler IR for automatic parallelization are the follow-

ing: (i) Induction variables of affine loops can be reliably recognized even when

they are allocated in memory since high-IR promotion converts them to symbols.

Dataflow analysis only works for symbols, not memory locations. Induction vari-

ables are allocated to memory either due to register pressure or since basic induction

variables have been eliminated by the compiler and the derived induction variables

are present in memory; (ii) Scalar variables in loops are now symbols in the IR;

hence dataflow analysis on symbols reveals inter-iteration dependencies accurately,

rather than the overly conservative dependence analysis on memory locations; (iii)

Types recovered from binaries facilitate using induction variable analysis directly

from LLVM, instead of writing custom induction variable recognizers; (iv) Layout

restrictions are not present; hence new stack variables can be added as required by

some loop transformations such as reduction, array privatization etc.; (v) Rigorous

inter-procedural data flow analysis can be performed that help take parallelization

95

decisions.

6.2 Affine Automatic Parallelizers

The block diagram of the affine automatic parallelizer developed by us is shown

in figure 6.2. We describe these blocks and flow briefly first followed by their detailed

description in the following subsections.

System
Characterization

effective
hardware
contexts

Best Barrier

Best Broadcast

Cache Line size

SPMD Parallel Code in LLVM IR

Serial LLVM IR

Distance/Direction Vectors

Parallelism Specification

Parallelization Module

Distance Vector
Generator

Alias
Analysis

Array Dependence
Information

Register Dependence
Information

Interchange

Blocking

Reduction

Clone Loop

Block the Loop Dimension

Add Synchronization Overheads

Apply
Transformations

Parallelism
Feedback

Detect
Parallelism

Loop Dependence Analysis

Parallelizer

Parallel Code Generator

I

D
e
ci

si
o
n

A
lg

o

Undoing Compiler
optimizations

New Serial LLVM IR

Figure 6.2: Detailed diagram of the Affine Parallelizer

First, the serial llvm IR is fed into the undoing compiler optimizations mod-

ule. The details of the module are presented in subsection 6.2.1. The LLVM IR

obtained after this module is still serial, however many of the compiler optimiza-

tions are undone and perfectly nested loops are recovered from non-perfectly nested

96

loops. Many of the affine loop transformation algorithms such as McKinley’s [12]

are effective only on perfectly nested loops. However, when perfectly nested loops

from source are compiled using the highest optimizations such as “-O3”, then the

recovered loop IR from binary code is not perfectly nested any more. Hence, McKin-

ley’s algorithm that was effective on the loop from source code is no more effective

on the recovered loop from binary code. By using the undoing compiler optimiza-

tions module these compiler optimizations are undone and perfectly nested loops

are recovered from these non-perfectly nested loops making decision algorithms such

as McKinley’s effective again. The details of the methods used to undo compiler

optimizations along with some examples are presented in subsection 6.2.1.

Second, this new serial LLVM IR is then passed into the loop dependence

analysis block, which consists of the alias analysis module and the distance vector

generator. Every pair of memory accesses in a loop are passed into the alias analysis

module and the distance vector generator. The alias analysis passes that are called

in our parallelizer are the standard ones present in LLVM. We did not write any

new alias analysis passes. If using the standard alias analysis passes from LLVM we

discover that the two references do not alias, we can say that there is no dependence

between them and that the distance vector associated with this pair of references

is (0, 0, · · · , 0) consisting of as many zeroes as the loop nesting depth. If alias

analysis is unable to prove that the two references do not alias with one another

we pass them onto the distance vector module. This module consists of all the

theory developed by us in this thesis and presented in chapters 3 and 4. It helps

us discover distance/direction vectors for this pair of memory references. After we

97

have analyzed every pair of accesses in the loop we would have generated all the

distance/direction vectors associated with this loop. Hence, the output of the loop

dependence analysis block is all distance/direction vectors associated with each loop.

Third, the distance/direction vectors and the new serial LLVM IR are passed

into the parallelizer block that talks to the decision algorithm block. The decision

algorithm used in our parallelizer is modified McKinley’s algorithm that has been

described in detail in section 5.2 of chapter 5. This decision algorithm talks to

the interchange and blocking loop transformations. The details of which have been

presented in section 5.2. Once, the ordering of loops in a loop nest has been de-

cided using modified McKinley’s algorithm, the parallelizer makes its parallelization

decision based on the register dependence information and array dependence infor-

mation. Subsection 6.2.2 presents the method used to collect register dependence

information. Registers in binary code are scalars in source code terminology. It is

important to analyze the register or scalar dependences in a loop since if there is

a loop carried scalar dependence in a loop it may prevent parallelization of that

dimension. However, some loop carried dependences such as the ones that perform

reduction operations do not prevent parallelization. These will also be discussed in

detail in section 6.2.2. The paralleizer considers the register dependences present

in loops along with the array dependence information (i.e.the distance/direction

vectors) to make the parallelization decision. The details on how we make the par-

allelization decision is presented in section 6.2.3. The output of the parallelizer

block called the parallelization decision is a list of loops that we have decided to

parallelize.

98

Finally, after the parallelization decision is taken and we have decided which

loops to parallelize we pass this information along with the new serial LLVM IR to

the parallel code generator block which generates SPMD parallel code for each of the

parallel loops. The details of the parallel code generator are described in subsection

6.2.4.

LLVM plays a central role in our work as our entire infrastructure is built

using LLVM. In subsection 6.2.5 we summarize and present the features of LLVM

that helped us build the infrastructure.

6.2.1 Undoing Compiler Optimizations in a Binary Rewriter

A binary rewriter runs on code that most likely has been optimized by a com-

piler. This can be problematic for affine analysis since certain compiler optimizations

convert perfectly nested loops to imperfectly nested loops, thereby making many

affine decision algorithms such as McKinley’s not generally applicable and more re-

strictive, as we saw in section 5.3. We show in the following three sections certain

compiler optimizations that convert perfectly nested loops in source to non-perfectly

nested loops when reconstructed from a binary and hence preventing standard affine

technologies to be applied to them and how we handle these cases.

6.2.1.1 Undoing LICM

Loop invariant code motion(LICM) can convert a perfectly nested loop in

source to a non-perfectly nested loop when recovered from a binary. In figure 6.3(a)

99

for i from lbi to ubi

for j from lbj to ubj

for k from lbk to ubk

C[i,j] += A[i,k] * B[k,j]

end for

end for

end for

(a) Original loop in matrix multiply

Loopi :

Loopj :

tmp = load &C[i,j]

LoopK :

tmp += &A[i,k] * &B[k,j]

end LoopK

store tmp to &C[i,j]

end Loopj

end Loopi

(b) Equivalent O3 Binary

Loopi :

Loopj :

LoopK :

tmp = load &C[i,j]

tmp += &A[i,k] * &B[k,j]

store tmp to &C[i,j]

end LoopK

end Loopj

end Loopi

(c) Compiler LICM undone

Figure 6.3: Example to illustrate LICM Compiler Optimization undone

100

we show the C code of a matrix multiply kernel and in figure 6.3(b) its corresponding

pseudo binary code from “-O3” optimizations of gcc. The load of C[i, j] is moved

to the loop nest j thereby making it an imperfectly nest. We recognize these cases

and perform what we call “undoing compiler optimizations”, where we transform

the code in figure 6.3(b) to that in figure 6.3(c). The transformation undoes the

effects of LICM by using the well-known forward propagation compiler pass on affine

accesses that are not in the inner most loops, to forward propagate them to the inner-

most loop. Thereafter the loop becomes perfectly nested and cache analysis and

McKinley’s decision algorithm can be applied on it. After we take decisions about

interchanging loops and perform the transformations, we apply standard compiler

optimizations including LICM to regain its performance advantages.

An added bonus is that since we use “undoing compiler optimizations” on IR,

we convert non-perfectly nested loops even in source code to perfectly nested loops,

which increases the scope of loop interchange. Such ideas are not novel [33], but the

need for conversion of imperfectly to perfectly nested loops is greater in a binary,

since compilers often do LICM which needs to be undone.

6.2.1.2 Undoing Complex Control flow

Compiler optimizations convert perfectly nested loops in source to non-perfectly

nested loops in a binary to reduce the total number of actual branches executed.

One such example code is presented in figure 6.4(a) and the recovered CFG from

a highly optimized binary is present in figure 6.4(b). The optimized control flow

101

ensures that only two branch instructions are executed for every iteration of the

loop; however the loop is no longer a perfectly nested. We perform what LLVM

calls “loop simplification” on this loop to obtain the control flow shown in figure

6.4(c) by merging the multiple basic blocks with back edges whenever legal. This

loop is now perfectly nested and affine analysis can be applied on it. We apply the

standard set of optimizations present in LLVM when we convert high IR back to

the binary and we regain any transformation that does control flow simplification on

loops. Hence, we obtain the most optimal transformed loop in the rewritten binary.

“Loop Simplification” is a standard pass in the LLVM compiler that we run

on the raw IR we obtain from binary. It performs the following two transformations:

(i) merges multiple exit basic blocks from a loop into one exit basic block whenever

legal; (ii) merges multiple back edges of a loop into one back edge whenever legal.

“Loop Simplification” or any such equivalent pass needs to be applied to compiler

IR obtained from binaries to enable affine transformations on binary code.

6.2.1.3 Discovering induction variables

Sometimes the compiler decides to place the address calculation in registers

in such a way that we cannot use the induction variable analysis of compiler theory

directly on the reconstructed high compiler-IR. For example figure 6.5(a) shows the

source code of an affine loop and figure 6.5(b) shows the pseudo binary code for it.

The compiler has used Reg1 as the increment to the addr A; and it is equivalent to

Base A in the first iteration and elem size thereafter. When this is reconstructed

102

for i from lbi to ubi

BB1: if(A[i] mod 3)

BB2: A[i] = func1(A[i]);

else

BB3: A[i] = func2(A[i]);

end for

BB4: Outside the loop

(a) Original loop in Source Code

BB1

BB2 BB3

BB4

BB3 BB2

BB1

BBN

BB4
(b) CFG recovered

from Binary

BB1

BB2 BB3

BB4

BB3 BB2

BB1

BBN

BB4

(b) CFG after loop

simplification

Figure 6.4: Example loop to illustrate undoing complex control flow

generated by compiler optimizations

in compiler IR (shown in figure 6.5(c)), addr A is no longer an induction variable

that can be recognized by the standard compiler induction variable analysis, since

there is an phi instruction to represent the different increments to addr A. We

recognize all such cases and transform figure 6.5(c) to figure 6.5(d) by adjusting the

increment of the induction variable to elem size in every iteration. This can be

done by initializing addr A to Base A - elem size before the loop, thereby making

it an induction variable that can be recognized by the standard compiler analysis.

6.2.2 Register dependencies

A register or scalar dependence is present in a loop if a location is defined in

an iteration of the loop and used in another iteration of the loop. Conceptually,

detecting and handling scalar dependencies is similar in source code and binaries.

One minor difference is that whereas the possibly dependent locations in source

103

for i from lbi to ubi

A[i] = 8;

end for

(a) Original loop in Source Code

Reg1 = Base A;

addr A = 0;

Loopi:

addr A += Reg1;

&addr A = 8;

Reg1 = elem size;

(b) Loop from Binary

Reg1 1 = Base A;

addr A = 0;

Loopi:

Reg1 3 = φ(Reg1 1, Reg1 2);

addr A += Reg1;

&addr A = 8;

Reg1 2 = elem size;

(c) Loop in compiler IR

Reg1 = elem size;

addr A = Base A - elem size;

Loopi:

addr A += Reg1

&addr A = 8;

(d)Loop with induction variable

Figure 6.5: Example Loop to illustrate introducing induction

variables

104

code are variables, in binaries they are registers and memory locations. Our scalar

dependence analysis for binaries is outlined below.

We recognize register/scalar dependencies from a binary by analyzing def-use

chains. All registers are checked to see if they are defined in an iteration and used in

a later iteration. This is a check on def-use chains of registers, to see if the register

is live at the exit block of the loop. Traditional data flow can be run on low-level

code from binaries. We leverage this to check the presence of loop-carried register

dependencies. We check for the presence of register dependencies at every loop

depth, as certain dependence may be present at one depth and not at another loop

depth. For example in the code in figure 6.6 tmp has a scalar dependence on Loopj,

however there is no scalar dependence on Loopi. Hence Loopi can be parallelized

in this code. Variable tmp may be register allocated in a binary (say to tmp r) and

data flow will tell us that it is live across the Loopj but not live across Loopi.

Some variables in the source code may be allocated to memory; these will be

analyzed as memory references by theory presented in chapter 3. They will likely

appear as addresses with a constant base and no offset. The theory will handle

their dependencies in a simple, degenerate case. However the dependencies get

analyzed, every dependency that is present in a binary is analyzed and its effect on

parallelization is accounted for.

105

for i from lbi to ubi

tmp = 0;

for j from lbj to ubj

A[i,j] = A[i,j] + tmp;

tmp = B[j] + 10;

end for

end for

(a) Source code with scalar

dependence

Loopi :

tmp r = 0;

Loopj :

adr1 r = *addr1

*addr1 = adr1 r + tmp r

adr2 r = *addr2

tmp r = adr2 r + 10

end for

end for

(b) Binary Code with scalar dependence

Figure 6.6: Example of a loop that carries a scalar dependence

6.2.2.1 Special case of scalar dependence: Reduction

Certain scalar loop carried dependencies such as reduction do not prevent

parallelization as known in affine literature [6]. One example loop that contains

a reduction on the variable sum is presented in figure 6.7. Figure 6.7(a) shows

the source code with a reduction and figure 6.7(b) shows the binary code for the

same. For every scalar variable that is live across the loop, we check to see if this is

due to a reduction operation. Reduction operations known and implemented from

traditional affine technologies are sum, product and min/max operations. Once such

scalar values are recognized using the standard rules of reduction, this scalar value

is marked as reduction and no more prevents parallelization. For e.g., the variable

sum is marked as a reduction on Loopj. If this loop level is chosen for parallelization

then code is generated such that each parallel thread accumulates a part of sum

106

and after all the parallel loops have executed they are all added up. Reduction is a

standard transformation and has been explained in detail in [6].

for i from lbi to ubi

sum = 0;

for j from lbj to ubj

sum = sum + A[i,j]

end for

end for

(a) Source code with scalar

dependence

Loopi :

sum r = 0;

Loopj :

tmp r = *addr1

sum r = sum r + tmp r

end for

end for

(b) Binary Code with scalar dependence

Figure 6.7: Example of a loop that carries a reduction dependence

6.2.2.2 Special case of scalar dependence: Values carried across loop

Sometimes when high IR is generated from binaries using SecondWrite we

observe some spurious φ instructions that carry values across the loop when they

are defined before the loop and used after it. One such example source code is shown

in figure 6.8(a) and the binary code for it is presented in figure 6.8(b). Here the

variable tmp has been defined before the loop and the actual use of this variable is

after the loop. However, in binary the register for it tmpr has been passed across the

loop using a φ instruction without any real use of it in the loop. We have seen such

code in IR generated from large benchmarks such as SPEC2006 and OMP2001. This

is an artifact of our binary rewriter, SecondWrite. We recognize these spurious loop

107

tmp =

for lbi to ubi, step 1

Body of Loopi

end for

.... = tmp

(a) Source code

tmpr =

Loopi:

tmp1r = φ(tmpr, tmp2r)

tmp2r = tmp1r;

end Loopi

.... = tmp1r

(b) Binary code

Figure 6.8: Example loop showing a scalar value defined before a loop and used

after it

carried dependences from binary and mark them as not hampering parallelization.

If we parallelize these loop levels we do not do any special code generation for these

since the value in the first thread is the one that can be used after the loop as well.

6.2.3 Deciding Partitions

As we have shown in chapter 3 section 3.1 for the code in figure 3.1(a) the

dependence vector vecD = (1,0) and for the code in 3.1(c) the dependence vector

is ~D = (2,0), indicating that there is a dependence along i, whereas there is no

dependence along induction variable j. So, if we execute all iterations of i on one

processor then we can parallelize the iterations along j among all the processors.

Pictorially, this is represented as partition 1 in figure 6.9, which shows the iteration

space as a 2-D matrix of i and j values. Conversely, in figure 3.1(b) the dependence

vector is ~D = (0,2), indicating that there is a dependence in steps of two along

induction variable j, and no dependence along induction variable i. So, if we execute

108

↓

j

−→ i

.

.

.

(a) Partition 1

↓

j

−→ i

. . .

(b) Partition 2

↓

j

−→ i

.

. . .

.

(c) Partition 3

Figure 6.9: Different partitions of the iteration space

all iterations of j on one processor then we can parallelize the iterations along i

among all the processors. Pictorially, this is represented as partition 2 in figure 6.9.

Partition 3 in that figure can be used when there is no loop-carried dependence on

either loop dimension (i.e. ~D = (0,0)).

Algorithm 5 Algorithm to decide which loop dimensions to parallelize

Input: All loops in the program

Input: Register dependence information, Array dependence information

Output: Loop dimensions to parallelize

for all Loopi in the program do

if Loopi is parallel based on register & array dependence information then

if None of the parent loops of Loopi are parallel then

Loopi is added to list of loops to be parallelized

end if

end if

end for

109

However, it is not always this simple when dealing with arbitrarily nested loop

dimensions. It is essential to have a algorithm to effectively decide which loops

to parallelize to maximize speedup from parallelization. Since we have already

applied a decision algorithm to transform loops to maximize cache reuse, we would

gain maximum from parallelizing the outer most dimensions that is parallel in loop

nests. The algorithm used to determine the outer most dimensions to parallelize

in arbitrarily nested affine loops is presented in algorithm 5. Essentially, using the

algorithm we choose all loops that can be parallelized for which none of the parent

loops is parallel. These loops are added for parallelization. A loop level is considered

parallel if all distance/direction vectors associated with this loop have a 0 component

for it and there is no parallelization preventing loop carried scalar dependence on it.

!!!!!!!!!!"##$%&!!!!!!!!!!'()! ! ! "##$%&!!!!!!!!!!!!!!'()!!!!!!!! ! !!!!!!!!!"##$%&!!!!!!!!!!!!!!'*)!

!!! "##$+&!! !!'*)! ! ! !!!!!"##$+&!!!!!!!!!'()! ! ! "##$+&!!!!!!!!!'()!

! !!!"##$,&!!!'*)! ! ! !!!!!!!!!!"##$,&!!!!'*)! ! ! "##$,&!!!!!!!!!'*)!

! "##$-&! !!'*)! ! ! !!!!!!!!!!"##$-&!!!!'*)! ! ! !!!!"##$-&!!!!'*)!

!!!!!!!!!./0"##$%! ! ! ! ./0"##$%!!!!!!!!! ! ! !!!!!!!!./0"##$%! ! !

!"# $$$$$$$$$$$$$$$$$$$ $ $ $$$$$$!%#$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $!&#$

Figure 6.10: Arbitrarily nested affine loops to illustrate which loops will be paral-

lelized by our decision algorithm

We now illustrate which loops our algorithm will parallelize for the three ar-

bitrarily nested loops shown in figure 6.10. In each of the example loops, Loopi is

the outermost loop and for each loop level we have marked (X) to indicate that the

110

loop is not parallel and (
√

) to indicate that the loop level is parallel. For the loop

structure shown in figure 6.10(a) we parallelize loop dimensions Loopj and Loopk.

We do not recommend Loopl for parallelization since one of its parent loop Loopj

can be parallelized and has been recommended for parallelization. Next, for the loop

structure in figure 6.10(b) we recommend loops Loopl and Loopk for parallelization

since none of the parent loops of these two loops Loopi and Loopj are not parallel.

Finally, for the loop structure in figure 6.10(c) only Loopi is recommended for par-

allelization since it is the outermost loop and is parallel. Loopl and Loopk are both

parallel, but are not recommended for parallelization since one of their parent loops

Loopi is parallel.

6.2.4 Code Generation

After the distance/direction vectors are calculated, transformations done, par-

allelization decision taken, and the loop dimensions to be parallelized are decided,

code needs to be generated for each parallel loop dimension. Since the body of the

loop is executed on all parallel threads, the most convenient and efficient code gen-

eration model is the Single Program Multiple Data (SPMD) model. The underlying

idea is that the iterations of the loop are divided among threads; hence to keep the

code-size increase to a minimum, the same code is executed on all threads using

different loop bounds.

From source code, simply replacing the symbolic values of the lower and upper

bounds of loop induction variables by new values can generate SPMD code. These

111

methods are fairly straight forward as the symbolic information is readily available

in source.

From binary code, code generation is conceptually similar to that from source.

For each loop dimension to parallelize we calculate the new lower and upper bound

using the formula below.

new lbaddr reg = Base+lbi ∗ size j + lbj ∗ elem size

+
PROC ID ∗ (ubj − lbj) ∗ elem size

NPROC

(6.1)

new ubaddr reg = min(ub j, new lbaddr reg +
(ubj − lbj) ∗ elem size

NPROC
) (6.2)

Replacing the bounds in (B) and (C) generates the parallel code to be executed

on all NPROC processors. If the outer loop is partitioned, then statements (E)

and (F) are similarly modified. Unlike loop partitioning, data partitioning is not

necessary since we target shared memory platforms common in multi-cores.

Generating parallel code requires the use of some parallel thread library. We

implement POSIX-compliant pthreads calls, given that POSIX is a widely used

portable industry standard, although any library can be used. POSIX-complaint

parallel threads are created once at the start of main() in the binary, rather than

at each loop to avoid paying the steep thread-creation cost multiple times. Only

the main thread executes serial code between parallel loops. Parallel threads only

execute loop code. When a parallel thread finishes one loop it waits for the main

thread to inform it which loop to execute next in a broadcast. The broadcast also

112

contains the values of registers calculated by the main thread that are needed by

the parallel loop threads. A barrier is inserted into the binary at the end of every

loop.

We are also using the barrier most profitable for the machine we are working

on. We have implemented a central, tree and butterfly barrier implemented. We

also compare these to the platform specific barrier present on any systems (such as

pthreads barrier). Our collaborator in the past has provided us with micro bench-

marks that tells us, which is the best broadcast or barrier to use. It also tells us

the maximum number of threads that can run on a particular machine. We use

this information to make sure we do not run more threads than the maximum avail-

able to parallelize the loop using the barrier and broadcast most profitable for this

machine.

6.2.5 Using LLVM for Implementation

Our binary rewriter translates the input x86 binary to the intermediate format

of the LLVM Compiler [38], and then uses the x86 back-end LLVM to write the

output binary. LLVM, which stands for Low-Level Virtual Machine, is a well-known,

open-source compiler developed at the University of Illinois; it is now maintained

by Apple Inc. This conversion back to compiler IR is not a necessity for the work

we present in this thesis; any binary rewriter can use our theory. However using

LLVM IR enables us to use LLVM’s rich infrastructure, such as control-flow analysis,

dataflow analysis, and optimization passes, so that we did not have to write our own

113

for the rewriter. Each instruction in the binary is converted to its equivalent LLVM

IR instruction. The pushes and pops are analyzed to determine function arguments,

caller and callee saves and stack accesses. Each stack frame present in the original

binary is converted to an stack array in the intermediate IR. These techniques

enable the addition of new stack variables in functions, which are required for loop

transformations such as reduction. The globals are accessed from their original

addresses as we retain the original segments. Register allocated variables in the

binary are converted to virtual registers.

The “Loop Simplify”, “Loop Unswitch” and “Induction Variable Simplifica-

tion” passes in LLVM are run to help the scalar evolution and induction variables on

our code. Scalar evolution within induction variable analysis in LLVM [38] helps us

in identifying the induction and derived induction variables in code. This helps us

determine (A) to (F) required for distance vector calculation as described in chapter

3. We also use the control flow and data flow information present in LLVM to our

leverage to identify scalar dependencies, affine loops and shared/private variables

for each loop that will be broadcasted to the parallel threads.

An important side benefit of using LLVM is that it enabled us to do cross-ISA

translation of code. We used LLVM’s C backend to convert an input x86 binary

to equivalent functional C code. This code (which is parallel using pthreads in our

case) was then compiled using GCC on a 64-threaded SPARC T2 machine, and

speedup was measured (see results section). The reason we did this was because

SecondWrite presently implements only an X86 front-end. Of course this cross-ISA

translation will not work in the general case when the code uses machine-specific

114

library calls. However it worked for our programs since they only used only the

platform-independent C and pthreads libraries.

To be clear, our LLVM’s output C code generated from binaries is quite low-

level and lacks array declarations and index expressions. Hence source parallelism

methods will not work on it, necessitating our method.

6.3 Source Parallelizer: AESOP

We also have a stand-alone version of the affine automatic parallelizer that

works on the source code of programs. This is called AESOP. It is open source and

can be downloaded from @aesop.ece.umd.edu. It has been developed by Timothy

Creech who is a PhD student at University of Maryland, College Park and I. Two

versions of it are available for download: (i) source files for it can be downloaded

and built on your machine. It reliably works on 32-bit x86 Linux, however parts of

AESOP may work wherever LLVM works; and (ii) binary version of it is available

which can be directly used on any 32-bit Linux box.

The source affine parallelizer contains all the blocks described in section 6.2,

i.e.the undoing compiler optimizations block, the loop dependence analysis block,

the parallelizer and the code generator. The serial LLVM IR from source code is

first passed through the compiler deoptimizations passes, this is not essential for

source code, however a good idea to have since it may convert any non-perfectly

nested loops from source code to perfectly nested ones in IR. Then the new serial

LLVM IR is passed into the loop dependence block where distance/direction vectors

115

are generated, then a parallelization decision is taken and parallel code generated

for it.

We now explain briefly how AESOP works. We know that by feeding serial

LLVM IR to the standalone version of the affine parallelizer we can obtain SPMD

parallel LLVM IR. We have three scripts that help us do this as part of AESOP

for source code: (i) aesopcc which uses clang [44] (a C language front-end for llvm)

to generate LLVM IR for source code written in C and then feeds it to the affine

parallelizer; (ii) aesopgcc that uses dragonegg [45] plugin (a plugin that integrates the

LLVM optimizers and code generator with GCC) to generate LLVM IR from C/C++

source code programs and feeds it into the affine parallelizer and (iii) aesopgfort that

uses dragonegg [45] plugin to generate LLVM IR from fortran programs and feeds

it to the affine parallelizer. All the three scripts use the x86 back-end of LLVM to

obtain parallel executable for the source code fed to them.

We have tested AESOP on benchmarks whose source code exceeds 2 million

lines of code. The testing infrastructure is available for download along with AESOP

and contains benchmarks from polybench, SPEC2006, OMP2001, NPB and hpcc.

There is also a very easy method to add new benchmarks to AESOP. The barriers

used for generating parallel code are in a library and is also available for download

with AESOP.

116

6.4 Implementation in the Polyhedral model

In this section we consider whether we can apply the polyhedral model and

its decision algorithm strengths to the theory presented in this thesis. We currently

use the traditional techniques to present our implementation and results.

The polyhedral model requires array indices to be able to represent every

dynamic iteration of the loop it in the polyhedron space. However, we recover

linearized multi-dimensional expressions for every memory address from binary code

of the form 3.13:

addr reg = Baseouter +
n∑

k=1

num k× stepk (6.3)

where, Baseouter and stepks are loop invariant constants and numk represents

induction variables.

If we view the entire memory system as one unit (M), then the address ex-

pression we recover can be looked at as:

addr reg = M[Baseouter +
n∑

k=1

num k× stepk] (6.4)

“S” can replace “M” if it is the stack segment, “G” if it is the global segment

and “H” if it is heap allocated since these can be viewed as three different arrays with

Baseouter and stepks representing the affine indices to be fed into the polyhedral

system.

117

There has been some prior work that has tried this in the polyhedral sys-

tem [46] [47]. They show that just using these recovered equations as indices to

the PLUTO system does not work since it is not able to handle the large numbers

present as Baseouter and some of the stepks. They have proposed that limited ar-

ray delinearization techniques be applied to reduce the coefficients in the memory

expressions. In general we think that this is only practical for small kernels from

polybench, - however, will not scale well to larger benchmarks. Their results are also

primarily limited to the polybench benchmark suite. Further, they show that the

scalar variables created when source code is compiled to binaries limited the use of

PLUTO. It is well understood that many scalar variables are created from binaries

since registers are used to store temporaries, stack variables etc. They say that one

must perform scalar variable merging and removal to make PLUTO applicable on

the benchmark. Again, we see this as very limiting since scalar variables can easily

be studied in the traditional literature and do not generally prevent parallelization

unless they are loop carried which actually makes the loop non-parallel. Further,

their results on the benchmarks swim and mgrid (the only benchmarks not from

polybench) show that the binary speedup is half that of the source since they have

not been able to completely remove the scalar dependencies in the loops whereas

using the traditional techniques we have been able to scale as well from binaries as

from source since we study all the scalar dependencies using data-flow algorithms.

In general we have to believe that one can implement the polyhedral decision

algorithm in our system but it poses significant challenges (which have atleast so far

been surpassed by small non-reliable fixes) and even then not provided significant

118

speedups like from source for the larger benchmarks.

119

120

Chapter 7

Results

Results for this thesis were collected in three stages during the progress of the

thesis. First, results were collected after the basic dependence analysis presented in

chapter 3 was implemented. These results were collected on polybench-1.0 the dense

matrix benchmark suite. Second, results were collected after the cache reuse metric

was generated from binaries and used within the McKinley algorithm as shown in

chapter 5. The results for this were collected on polybench-1.0 as well. Third,

results were collected on the SPEC2006 and OMP2001 benchmark suites after the

algorithm to guess loop bounds was implemented. The reason this was so is that the

algorithm to guess loop bounds was implemented to test larger benchmarks coming

from SPEC2006 and OMP2001. These three sets of results are presented in the

following three sections.

7.1 Results for Dependence Analysis

In this section, we present the results for the dependence analysis mechanisms

presented in chapter 3.

The input to our binary parallelizer is highly optimized (-O3) binaries compiled

by GCC. These binaries don’t contain any relocation or symbolic information. We

have tested our parallelizer on benchmarks from Polybench (the Polyhedral Bench-

121

mark suite) and Stream(from the HPCC suite). We used three different machines

to test our benchmarks. The machine descriptions are provided in table 7.1. The

benchmarks represent heavily used kernels in scientific and multi-media workloads.

Name CPUs Cores/CPU Threads/Core Total Threads Manufacturer Model

DASH 1 4 2 8 Intel Xeon E5530

BUZZ 4 6 1 24 Intel Xeon E7450

T2 1 8 8 64 Sun Ultra SPARC T2

Table 7.1: Test machines to test dependence analysis

Our source parallelizer is implemented by feeding the parallelizer with the

symbolic information present in a source. We then apply the same dependence

analysis, partition techniques and code generation methodologies we have presented

and used for binaries. As the symbolic information is exploited to the fullest, we

compare to state of the art affine parallelizers.

The speedups when parallelizing source and when parallelizing binaries with in-

creasing number of threads on the different machines are presented in tables 7.1,7.2,

and 7.3; one figure per machine. Table 7.1 shows the geomean of the speedup av-

erages 5.57X when parallelizing from source code versus 4.61X when parallelizing

from the x86 binary on the x86 DASH machine with 8 threads. This shows that (a)

the speedups are nearly as effective from binaries as from source code, validating

our theory; and (b) the speedups scale well. Table 7.2 shows the geomean of the

speedups from source and binary on 24 threads on the x86 BUZZ machine are 6.27X

and 5.15X respectively. The speedups on BUZZ scale less well than DASH beyond

4 cores since the communication is out of the chip beyond 6 threads.

122

Benchmark 1 2 4 8
Source 1 1.85 3.75 4.78
Binary 0.98 1.76 3.59 4.85
Source 1 1.42 2.01 3.54
Binary 0.75 1.19 1.91 3.05

Source 1 1.29 2.3 3.98

Binary 0.98 0.94 0.97 0.91

Source 1 1.73 3.14 7.53
Binary 0.9 1.64 3.03 7.25
Source 1 1.9 3.4 7.4
Binary 0.94 1.43 2.82 5.64
Source 1 1.8 3.64 5.01
Binary 0.99 1.75 3.6 4.89
Source 1 1.93 3.53 6.47
Binary 1.1 1.63 2.99 5.73
Source 1 1.8 3.56 7.65
Binary 0.99 1.76 3.36 7.85
Source 1 1.67 2.82 6.86
Binary 0.93 1.31 2.36 5.68
Source 1 1.31 2.21 4.19

Binary 0.96 1.31 2.1 3.77

Source 1 1.84 3.67 5.6

Binary 1.01 1.77 3.65 5.19

Source 1 1.89 3.61 5.91
Binary 1.01 2 3.77 6.77
Source 1.00 1.69 3.07 5.57
Binary 0.96 1.51 2.68 4.61

2mm

atax

covariance

gemver

jacobi-2d

3mm

bicg

doitgen

gesummv

correlation

gemm

stream

!"#$%"&'

Figure 7.1: Speedup on x86 DASH for source and binary using dependence analysis

techniques

123

Benchmark 1 2 4 8 16 24
Source 1 1.97 3.83 6.32 11.79 15.6
Binary 1 1.96 3.75 5.96 10.52 13.53
Source 1 1.57 2.42 3.27 3.5 3.09
Binary 0.75 1.01 1.72 2.47 2.9 2.73
Source 1 1.31 2.22 4.08 7.49 10.05
Binary 1 1.89 3.42 4.85 4.23 2.8

Source 1 1.48 2.56 3.81 4.18 4.08
Binary 0.93 1.43 2.42 3.8 4.34 4.02
Source 1 1.89 3.29 5.02 5.01 4.56
Binary 0.63 1.24 2.16 3.61 4 4.02
Source 1 1.97 3.82 6.34 11.85 15.82
Binary 1 1.98 3.83 6.35 11.6 15.23
Source 1 2.1 3.55 4.59 4.31 3.97
Binary 0.83 1.76 3.08 3.88 3.36 3.01
Source 1 1.99 3.98 6.58 12.59 15.7
Binary 0.99 1.98 3.95 6.6 12.53 16.12
Source 1 1.54 2.35 3.38 2.87 2.73
Binary 0.74 1.11 1.8 2.49 2.89 2.18
Source 1 1.32 2.24 3.96 7.17 9.86
Binary 1 1.29 2.12 3.51 5.74 7.46
Source 1 1.97 3.89 6.59 11.29 15.67
Binary 1 1.95 3.8 6.28 11.52 15.11
Source 1 2.29 3.14 3.47 1.87 0.98
Binary 0.95 1.99 2.97 3.12 2.02 1.16
Source 1 1.76 3.03 4.62 5.91 6.27
Binary 0.89 1.59 2.80 4.17 5.23 5.15

stream

!"#$%"&'

bicg

doitgen

gesummv

correlation

gemm

2mm

atax

covariance

gemver

jacobi-2d

3mm

Figure 7.2: Speedup on x86 BUZZ for source and binary using dependence analysis

techniques

124

Benchmark 1 2 4 8 16 32 64
Source 1 1.99 3.99 7.96 15.21 26.31 36.95
Binary 1.03 2.05 4.09 8.14 15.65 27.44 39.62
Source 1 1.4 1.74 2 1.97 1.65 0.83
Binary 1.04 1.44 1.79 2.01 1.85 1.85 0.86
Source 1 1.34 2.29 4.26 8.12 15.3 23.25
Binary 1 1 1 1 0.99 0.93 0.81
Source 1 1.99 3.92 7.42 11.97 14.84 9.65
Binary 0.99 1.97 3.74 7.12 12.1 15.53 7.63
Source 1 1.83 3.46 5.82 7.81 8.63 2.65
Binary 0.91 1.79 3.1 5.6 8.07 8.12 2.34
Source 1 2 4 7.95 15.2 26.45 40.58
Binary 1.03 2.05 4.09 8.16 15.63 27.2 40.22
Source 1 1.95 3.88 6.7 9.44 5.01 1.62
Binary 1.04 2.08 4.07 7.3 9.28 7.89 1.15
Source 1 2 3.99 7.96 15.66 26.57 24.2
Binary 1.03 2.05 4.09 8.13 16.2 28.01 21.05
Source 1 1.97 3.91 7.56 11.69 10.06 3.26
Binary 0.99 1.96 3.83 7.49 11.14 10.03 3.63
Source 1 1.95 3.83 7.03 10.77 9.77 2.29
Binary 0.98 1.96 3.84 7.04 10.89 9.86 1.52
Source 1 1.34 2.29 4.24 8 14.88 23.62
Binary 0.9 1.23 2.12 3.94 7.37 13.15 20.98
Source 1 1.98 3.97 7.93 15.37 24.99 33.9
Binary 0.99 1.99 3.96 7.9 14.98 26.41 35.58
!"#$%& 1 1.79 3.32 6.01 9.81 12.21 8.64
'()*$+ 0.99 1.76 3.07 5.32 8.17 10.17 5.95

gemm

,&"-.&*)

bicg

doitgen

gesummv

stream

correlation

2mm

atax

covariance

gemver

jacobi-2d

3mm

Figure 7.3: Speedup on SPARC T2 for source and binary using dependence analysis

techniques

125

Table 7.3 shows the geomean of the speedups on a SPARC T2 machine average

8.64X when parallelizing from source code and 5.95X when parallelizing an x86

binary and using our rewriter to convert it to a SPARC binary. This cross-ISA-

translation is done as described in section 6.2.5.

Further performance-related observations are as follows. On T2 beyond 8

threads the communication costs increase as we need to communicate between dif-

ferent cores. Also for some benchmarks (e.g. gemver) we observed that 64 threads

run slower than 32 threads. The reasons for this could include the high communi-

cation costs between different cores or resource sharing (such as ALUs) between the

8 hardware-supported hyperthreads-like threads per core.

Some benchmarks do not scale as well as others (such as atax). The reason

for this is that we parallelize the inner loop, and the resulting fine-grained threads

for the comparatively small data set are not able to overcome barrier and broadcast

latencies for the loop. The covariance benchmark parallelizes well from source but

poorly from a binary. From source, the compiler can detect that different memory

operations in the loop access different portions of the same array (upper triangle and

lower triangle of a 2-D array), and hence are independent allowing parallelization.

From a binary, the array’s linearization prevents such discovery, so the accesses are

conservatively deemed dependent. However we expect such cases to be very rare,

and also with further linear algebraic techniques we will be able to correctly derive

dependence vectors for most of these cases.

We present the statistical count of number of loops present in each benchmark

and the number of loops parallelized successfully from source and binary in table

126

7.4. The total number of loops counted are the outer loops present in benchmarks.

Each outer loop may contain several nesting levels. Loops parallelized refers to one

nesting level of the loop being parallelized.

Benchmark Total Number
of Loops

Number of Loops
parallelized from

source

Number of Loops
parallelized from

binary
Benchmark Total Number

of Loops

Number of Loops
parallelized from

source

Number of Loops
parallelized from

binary
2mm 7 7 7 bicg 3 3 3
atax 3 3 3 doitgen 3 3 3

covariance 4 4 3 gesummv 2 2 2
gemver 5 5 5 correlation 5 5 4

jacobi-2d 2 2 2 gemm 4 4 4
3mm 10 10 10 stream 3 3 3

Figure 7.4: Number of loops parallelized from source and binary using dependence

analysis techniques

When numbers were collected for this work we used timers at the beginning

and end of the benchmarks to measure the time it had taken to execute and then used

these numbers to calculate the speedup. This way we had accounted for initialization

loops and thread creation times.

7.2 Results for cache reuse metric

In this section we present the results testing the cache reuse metric within the

McKinley’s decision algorithm within SecondWrite, our binary rewriter.

We use “-O3” optimized binaries from gcc-4.4.1 as input to SecondWrite, which

includes our cache reuse model and McKinley’s decision algorithm. The output of

the decision algorithm is passed on to the parallel code generator which analyzes

the dependencies in the loop using analysis presented in chapter 3 and parallelizes

the outer most loop dimension. The source automatic parallelizer works on LLVM

127

IR. Hence, we use LLVM IR generated from “llvm-gcc -O3” as the input to our

source parallelizer. During the implementation and testing of this research neither

clang nor dragonegg were fully developed and standard, hence we used “llvm-gcc”

the then standard.

In this section we present the results of our cache analysis techniques on bi-

naries in a binary automatic parallelizer. First, we present the L1 cache miss rates

of the original benchmarks from Polybench benchmark suite (a research benchmark

suite with dense affine matrix codes) in figure 7.6. We use the Cachegrind tool, a

part of the Valgrind tool to collect our cache numbers. We observe that five bench-

marks (3mm, gemm, doitgen, 2mm and gemver) have significant L1 cache miss

rates, with an average of 27.64% L1 cache misses in the original loops, and hence

are candidates for improvement in cache reuse from our method. Our reuse model

applies to all binaries, but the remaining benchmarks already have good cache reuse

from their favorable loop structure. As a result our method automatically deter-

mines that they should not be transformed. In the rest of this section, although we

present numbers for all benchmarks, average improvements quoted are for the five

benchmarks that had significant miss rates.

We test our system on two machines, the names of which are DASH and BUZZ.

We repeat the configurations of both of them in table 7.2. DASH has 4 cores with 2

threads/core, totaling to 8 threads. BUZZ has 4 CPUs with 6 cores/CPU, totalling

to 24 threads. When we collected the results for this work we did not have access

to T2, which was placed at Univ. of Michigan. Hence, we do not have results on

T2 in this section.

128

Name CPUs Cores/ Threads/ Total Manufacturer Model

CPU Core Threads

DASH 1 4 2 8 Intel Xeon E5530

BUZZ 4 6 1 24 Intel Xeon E7450

Table 7.2: Test machines used for testing the cache reuse model

The six goals of our results are: (i) to show that our binary reuse methods can

significantly improve performance compared to a basic binary parallelizer; (ii) to

show that our binary methods can perform nearly as well as source-level cache reuse

methods; (iii) to compare our results with parallelization performed by PLUTO;

(iv) to show a detailed analysis of the benefit from McKinley’s algorithm, compiler

deoptimizations, imperfectly nested techniques and strip-mining; (v) to study the

improvement in L1 cache miss rates with our cache optimizations and (vi) to present

results showing the benefit of McKinley’s algorithm on binaries compiled from three

compilers (GCC, ICC and LLVM).

We present our speedup numbers both from source and binary with and with-

out cache analysis through our automatic parallelizer in tables 7.5 and 7.8 for DASH

and BUZZ respectively. The benchmarks that benefit from cache analysis are pre-

sented on the left side and the average for them is presented at the bottom right

corner. The benchmarks that do not need cache analysis are presented on the right.

First, we show that our binary reuse methods can significantly improve per-

formance compared to a basic binary parallelizer. Looking at the binary results

(shaded in light gray) of benchmarks that benefit from cache analysis in tables 7.5

129

Benchmark 1 2 4 8 Benchmark 1 2 4 8
Source w/o cache opt 1.00 1.89 3.84 7.10 Source 1.00 1.75 3.36 5.22
Binary w/o cache opt 1.19 2.34 4.60 7.24 Binary 1.16 1.93 4.05 5.88
Source with cache opt 2.50 4.84 9.35 18.75 Source with PLUTO 1.28 2.14 3.91 6.51
Binary with cache opt 2.26 4.44 8.52 18.17 Source 1.00 1.64 3.19 8.51
Source with PLUTO 1.62 3.16 6.16 10.86 Binary 0.90 1.61 3.16 7.89
Source w/o cache opt 1.00 1.98 3.91 7.04 Source with PLUTO 0.85 0.93 0.99 1.05
Binary w/o cache opt 1.09 2.16 4.26 7.03 Source 1.00 1.61 2.38 5.26
Source with cache opt 2.61 4.81 9.48 19.16 Binary 1.12 1.64 2.35 4.35
Binary with cache opt 2.20 4.39 8.53 17.28 Source with PLUTO 0.63 1.10 1.98 2.15
Source with PLUTO 0.57 0.62 0.62 0.62 Source 1.00 1.84 3.42 5.78
Source w/o cache opt 1.00 1.91 3.78 7.58 Binary 0.73 1.37 2.65 5.02
Binary w/o cache opt 1.08 1.93 3.75 8.40 Source with PLUTO 0.68 1.37 2.57 4.12
Source with cache opt 2.21 3.72 6.84 13.90 Source 1.00 1.40 2.39 4.87
Binary with cache opt 2.96 4.53 8.05 15.17 Binary 1.00 0.99 0.99 0.99
Source with PLUTO 1.35 2.61 5.01 10.25 Source with PLUTO 1.01 1.38 2.29 4.52
Source w/o cache opt 1.00 1.94 3.81 6.74 Source 1.00 1.28 2.12 3.52
Binary w/o cache opt 0.99 1.92 3.72 6.74 Binary 0.99 0.98 0.98 1.40
Source with cache opt 2.39 4.36 8.19 18.00 Source with PLUTO 0.99 1.25 2.02 3.34
Binary with cache opt 2.05 3.88 7.39 16.21 Source 1.46 2.47 4.49 8.90
Source with PLUTO 1.25 2.17 4.30 6.70 Binary 1.41 2.26 3.77 6.81
Source w/o cache opt 1.00 1.97 3.90 7.87 Source with PLUTO 0.99 1.57 2.59 4.00
Binary w/o cache opt 1.11 2.19 4.30 8.75 Source w/o cache opt 1.00 1.94 3.85 7.25
Source with cache opt 1.91 3.56 6.80 13.39 Binary w/o cache opt 1.09 2.10 4.11 7.59
Binary with cache opt 1.72 3.35 6.52 13.44 Source with cache opt 2.31 4.22 8.05 16.45
Source with PLUTO 1.29 2.5 4.77 9.79 Binary with cache opt 2.20 4.09 7.76 15.97

3mm

gemver

gemm

BENCHMARKS THAT BENEFIT FROM CACHE ANALYSIS BENCHMARKS THAT DO NOT NEED CACHE ANALYSIS

doitgen

atax

jacobi

bicg

gesummv

correlation

covariance

Geo Mean
(all benchmarks)

Geo Mean
(benchmarks that
benefit from cache

analysis)

2mm

Figure 7.5: Speedup on DASH using the cache resuse metric for 8 threads

 (b) Cache miss rate for the original benchmarks

 (c) Speedup on x86 DASH for source and binary

Figure 7.6: Cache miss rate for the original benchmarks

130

 (b) Cache miss rate for the original benchmarks

 (c) Speedup on x86 DASH for source and binary

Figure 7.7: Breakup of the speedup on x86 DASH from different steps of the decision

algorithm

and 7.8, we observe that: (i) the geomean speedup with cache analysis was 15.97X

for 8 threads on DASH whereas the geomean speedup without cache analysis was

7.59X (2.1X better); (ii) the geomean speedup with cache analysis was 36.87X for 24

threads on BUZZ whereas the geomean speedup without cache analysis was 14.66X

(2.52X better); (iii) even for one thread on DASH and BUZZ the speedups with

cache analysis are 2.2X and 3.08X respectively. From these observations we con-

clude that cache analysis on binaries with significant cache miss rates improves their

performance by factors of 2.1X-3.08X.

Second, we show that our binary methods can perform nearly as well as source-

level cache reuse methods. Comparing the source and binary speedup numbers in

tables 7.5 and 7.8, we observe that the speedups from binary are nearly identical to

those from source code with equivalent optimization.

Third, we compare the results of our parallelizing compiler with PLUTO. The

131

geomean speedup of our benchmarks with PLUTO is 4X on DASH and 3.95X on

BUZZ whereas the speedup from our automatic parallelizer with cache analysis is

6.81X on DASH and 8.31X on BUZZ. The reason for better performance by us is

that PLUTO is optimizing for maximizing parallelism and our benchmarks need

to be improved for cache in addition. The power of the polyhedral model is in

code transformation for parallelism. Generally speaking, cache optimization is a

secondary concern in the polyhedral model, often retrofitted using heuristics based

on a cache model. Hence the polyhedral model too can use our cache model from

binaries. We do not suggest that PLUTO or the polyhedral model is less powerful,

we merely wish to present results from PLUTO to show that our speedups are

comparable to the best publicly available academic polyhedral compiler.

Fourth, figure 7.7 shows the breakup of run-time improvement between McKin-

ley’s algorithm, compiler deoptimizations, our handling of imperfectly nested loops

and strip-mining. We observe that: (i) source benchmarks do not benefit from com-

piler deoptimizations, since our benchmarks were perfectly nested from source; (ii)

binaries (such as 2mm, 3mm and gemm) benefit from compiler deoptimizations,

since it acts as an enabler for McKinley’s algorithm; (iii) gemver benefits from strip

mining both from source and binary since it exposes coarse-grain parallelism against

inner-loop parallelization; (iv) doitgen benefits from imperfectly nested techniques

since McKinley’s algorithm is otherwise not fully applicable to it; (v) the gain from

strip-mining on our platforms for our benchmarks is limited mainly to exposing

coarse-grain parallelism such as in gemver ; all other benchmarks gain only mini-

mally from strip-mining.

132

Benchmark 1 2 4 8 16 24 Benchmark 1 2 4 8 16 24
Source w/o cache opt 1.00 2.09 3.94 7.95 14.34 22.98 Source 1.00 2.20 4.36 4.21 4.01 3.36
Binary w/o cache opt 1.21 2.42 4.64 9.13 17.63 26.01 Binary 0.97 1.95 3.92 3.52 4.20 3.87
Source with cache opt 4.86 9.83 19.14 37.53 73.08 103 Source with PLUTO 1.37 2.51 4.31 4.21 3.98 3.99
Binary with cache opt 4.92 9.73 18.42 37.37 73.38 104.2 Source 1.00 2.31 4.36 7.14 10.97 9.28
Source with PLUTO 3.06 6.24 12.37 21.56 41.85 59.37 Binary 1.07 2.42 4.85 7.68 8.62 6.98
Source w/o cache opt 1.00 1.92 3.81 7.20 14.05 20.82 Source with PLUTO 0.35 0.35 0.35 0.35 0.35 0.35
Binary w/o cache opt 0.68 1.35 2.71 5.36 10.59 14.98 Source 1.00 2.29 4.44 5.06 8.08 7.16
Source with cache opt 3.99 7.62 15.84 30.88 60.03 85.09 Binary 0.94 1.96 3.60 4.61 4.67 6.45
Binary with cache opt 3.99 7.97 15.50 31.16 59.84 85.34 Source with PLUTO 1.01 1.70 2.82 2.47 2.42 2.37
Source with PLUTO 0.66 0.85 0.86 0.85 0.84 0.84 Source 1.00 1.67 2.61 3.44 1.82 1.71
Source w/o cache opt 1.00 1.95 3.55 3.88 4.85 5.75 Binary 1.30 1.93 2.64 3.28 2.01 1.63
Binary w/o cache opt 0.97 1.76 2.81 3.68 3.90 4.64 Source with PLUTO 1.92 4.90 8.09 9.84 7.76 4.63
Source with cache opt 1.90 4.09 6.71 8.15 7.13 3.99 Source 1.00 1.15 1.87 2.85 2.54 1.85
Binary with cache opt 2.12 3.37 5.46 6.30 5.00 3.58 Binary 1.08 1.04 1 1.04 0.97 0.9
Source with PLUTO 2.20 3.48 5.87 8.86 9.01 8.34 Source with PLUTO 1.27 1.25 1.91 2.49 2.31 1.76
Source w/o cache opt 1.00 1.98 3.82 6.99 13.40 19.7 Source 1.00 1.06 1.53 2.37 2.20 1.64
Binary w/o cache opt 1.08 2.16 3.92 7.45 14.27 20.74 Binary 0.99 0.89 0.88 0.9 0.83 0.75
Source with cache opt 2.61 5.21 10.37 20.23 38.49 54.32 Source with PLUTO 1.33 1.04 1.33 1.62 1.25 0.93
Binary with cache opt 2.61 5.22 9.97 20.29 38.49 54.42 Source 1.65 3.03 5.49 8.33 10.31 9.86
Source with PLUTO 1.32 2.32 4.31 8.24 15.60 22.12 Binary 1.72 2.88 4.69 6.60 7.94 8.31
Source w/o cache opt 1.00 1.98 3.86 7.28 13.35 17.13 Source with PLUTO 1.25 1.87 2.89 3.64 4.06 3.95
Binary w/o cache opt 1.12 2.22 4.21 7.55 14.33 18.05 Source w/o cache opt 1.00 1.98 3.80 6.47 11.18 15.62
Source with cache opt 2.62 5.19 10.18 19.78 32.22 39.01 Binary w/o cache opt 0.99 1.94 3.57 6.32 10.83 14.66
Binary with cache opt 2.55 5.07 9.83 18.32 34.04 39.31 Source with cache opt 3.02 6.08 11.65 20.68 32.94 37.49
Source with PLUTO 1.21 2.44 5.03 7.78 13.28 16.01 Binary with cache opt 3.08 5.86 10.88 19.37 31.03 36.87

covariance

correlation

BENCHMARKS THAT BENEFIT FROM CACHE ANALYSIS BENCHMARKS THAT DO NOT NEED CACHE ANALYSIS

2mm

3mm

gemver

gemm

doitgen

atax

jacobi

bicg

gesummv

Geo Mean
(all benchmarks)

Geo Mean
(benchmarks that

benefit from
cache analysis)

Figure 7.8: Speedup on BUZZ using cache reuse metric for 24 threads

Fifth, we present a study of the improvement in L1 cache miss rates with

our cache optimizations in table 7.3. We observe that the L1 cache misses are

significantly reduced after our techniques are applied to candidate loops.

We also present a detailed account of the change in loop structure for the five

benchmarks in table 7.4. i, j, k, s, p etc represent the original loop, i1, s1, p1 etc.

represent the outer strip-mined loop and i2, j2, s2 etc. represent the inner strip-

mined loop. In gemver strip-mining is performed to achieve coarse grain parallelism.

In doitgen we use non-perfectly nested techniques to achieve better cache locality.

Last, we want to show that our binary automatic parallelizer works efficiently

on binaries compiled from different compilers for x86 code. For this, we compiled

the benchmarks from polybench using three different compilers, GCC, ICC and

LLVM all targeting the x86 ISA. The binaries were compiled using the highest level

133

Benchmark Baseline + cache Baseline + cache

Source opt Binary opt

2mm 28.6% 3.2% 33.3% 2.1%

3mm 33.3% 3.2% 33.3% 2.1%

gemver 9.9% 2.2% 10.8% 2.7%

gemm 33.2% 4.6% 24.9% 3%

doitgen 33.2% 3% 24.9% 2%

Average 27.64% 3.24% 25.44% 2.38%

Table 7.3: L1 cache miss rate after applying modified McKinley algorithm

Benchmark Input loop structure Output loop structure

gemver (i, j) (i1, j, i2)

doitgen (r, q, p, s) (r, q, s1, p1, s2, p2)

2mm, 3mm, gemm (i, j, k) (i1, k1, j1, i2, k2, j2)

Table 7.4: Loop nest transformation from input to output using modified McKinley’s

algorithm

134

2mm 3mm gemm doitgen gemver
Geo
Mean 2mm

source 4.95 5.12 5.62 7.87 7.00 6.01 source 12.47
gcc 5.05 4.97 5.45 7.67 7.80 6.06 gcc 12.40
icc 5.05 5.15 5.53 7.87 9.31 6.38 icc 12.79
llvm 5.08 5.05 5.60 7.54 8.52 6.21 llvm 12.90

source with
cache opt 15.34 14.90 15.60 10.63 13.49 13.86

source with cache
opt 31.25

gcc with
cache opt 14.87 15.26 14.43 10.59 11.50 13.18 gcc with cache opt 30.72
icc with
cache opt 15.13 15.22 14.30 11.16 13.01 13.67 icc with cache opt 30.72
llvm with
cache opt 15.04 14.56 14.66 10.53 15.02 13.84 llvm with cache opt 30.94

0.00

!"!!#
$"!!#
%"!!#
&"!!#
'"!!#
(!"!!#
($"!!#
(%"!!#
(&"!!#
('"!!#

$))# *))# +,))# -./0+,1#+,)2,3# 4,.#
5,61#

!"##$%"&'(&)*!+&,'-&.&/0-#1$2&

7.839,#

+99#

/99#

::2)#

7.839,#;/0<#969<,#.=0#

+99#;/0<#969<,#.=0#

/99#;/0<#969<,#.=0#

::2)#;/0<#969<,#.=0#

!"!!#
>"!!#
(!"!!#
(>"!!#
$!"!!#
$>"!!#
*!"!!#
*>"!!#

$))# *))# +,))# -./0+,1##+,)2,3# 4,.#
5,61#

!"##$%"&'(&3455&,'-&67&/0-#1$2&

7.839,#

+99#

/99#

::2)#

7.839,#;/0<#969<,#.=0#

+99#;/0<#969<,#.=0#

/99#;/0<#969<,#.=0#

::2)#;/0<#969<,#.=0#

Figure 7.9: Speedup on x86 DASH for benchmarks compiled from GCC, ICC and

LLVM

2mm 3mm gemm doitgen gemver
Geo
Mean 2mm

source 4.95 5.12 5.62 7.87 7.00 6.01 source 12.47
gcc 5.05 4.97 5.45 7.67 7.80 6.06 gcc 12.40
icc 5.05 5.15 5.53 7.87 9.31 6.38 icc 12.79
llvm 5.08 5.05 5.60 7.54 8.52 6.21 llvm 12.90

source with
cache opt 15.34 14.90 15.60 10.63 13.49 13.86

source with cache
opt 31.25

gcc with
cache opt 14.87 15.26 14.43 10.59 11.50 13.18 gcc with cache opt 30.72
icc with
cache opt 15.13 15.22 14.30 11.16 13.01 13.67 icc with cache opt 30.72
llvm with
cache opt 15.04 14.56 14.66 10.53 15.02 13.84 llvm with cache opt 30.94

0.00

!"!!#
$"!!#
%"!!#
&"!!#
'"!!#
(!"!!#
($"!!#
(%"!!#
(&"!!#
('"!!#

$))# *))# +,))# -./0+,1#+,)2,3# 4,.#
5,61#

!"##$%"&'(&)*!+&,'-&.&/0-#1$2&

7.839,#

+99#

/99#

::2)#

7.839,#;/0<#969<,#.=0#

+99#;/0<#969<,#.=0#

/99#;/0<#969<,#.=0#

::2)#;/0<#969<,#.=0#

!"!!#
>"!!#
(!"!!#
(>"!!#
$!"!!#
$>"!!#
*!"!!#
*>"!!#

$))# *))# +,))# -./0+,1##+,)2,3# 4,.#
5,61#

!"##$%"&'(&3455&,'-&67&/0-#1$2&

7.839,#

+99#

/99#

::2)#

7.839,#;/0<#969<,#.=0#

+99#;/0<#969<,#.=0#

/99#;/0<#969<,#.=0#

::2)#;/0<#969<,#.=0#

Figure 7.10: Speedup on x86 BUZZ for benchmarks compilers from GCC, ICC and

LLVM

135

of optimization in these compilers without using vectorization. We then use these

binaries as input to SecondWrite with the affine automatic parallelizer containing

the cache reuse model within the McKinley’s decision algorithm. We present results

in figures 7.9 and 7.10 for the benchmarks that have high cache miss rate on both

the test machines DASH and BUZZ for 8 threads and 16 threads respectively. The

first four bars for each of the benchmarks in each of the graphs presents speedups

from source, GCC compiled binary, ICC compiled binary and LLVM compiled bi-

nary with just the basic parallelizer. The next four bars for each of the benchmarks

show the speedup from source, GCC compiled binary, ICC compiled binary and

LLVM compiled binary with the parallelizer including modified McKinley’s algo-

rithm and strip-mining as well. We observe that (i) irrespective of the compiler that

was used to compile the binary each one was parallelized effectively using our de-

pendence analysis techniques. The geomean of the speedups on DASH for 8 threads

from source was 6.01X, from GCC compiled binaries was 6.06X, from ICC compiled

binaries was 6.38X and LLVM compiled binaries was 6.21X. Similarly, on an aver-

age the geomean of the speedups on BUZZ for 16 threads from source was 9.58X,

from GCC compiled binaries was 9.4X, from ICC compiled binaries was 9.42X, from

LLVM compiled binaries was 9.78X. This shows that we are able to effectively par-

allelize binaries compiled from any compiler. It is good to note that the LLVM IR

generated from each of the compiled binary code is very different from the other

and we are correctly able to use induction variable analysis to recover the linearized

multi-dimension equations from each of them and then apply linear algebraic tech-

niques to them and recover similar distance vectors from them and parallelize them

136

in the same way. The reason I say similar and not same is that sometimes cer-

tain scalar dependences from one binary compiled using one compiler for the same

benchmark manifests itself as a memory dependence from a binary from a different

compiler; (ii) irrespective of the compiler each of the benchmarks gained from the

McKinley algorithm. This again proves that our McKinley formulation is compiler

independent and we are able to correctly take loop order decisions irrespective of

the compiler used to compile the input binary. Stating this in numbers the geomean

of the speedups on DASH for 8 threads using McKinley’s decision algorithm from

source was 13.86X (2.31X faster than basic), from GCC compiled binary was 13.18X

(2.17X faster than base), from ICC binary was 13.67X (2.14X faster than basic),

from LLVM binary was 13.84X (2.23X faster than basic). Similarly, the geomean

of the speedup on BUZZ for 16 threads from source was 19.66X (2.05X faster than

basic), from GCC compiled binary was 18.82X (2X faster than basic), from ICC

compiled binary was 18.99X (2.02X faster than basic), from LLVM compiled binary

was 20.54X (2.1X faster than basic).

7.3 Results for algorithm for guessing loop bounds

In this section we present results for our algorithm to guess loop bounds when

the loop bounds are not statically known and then insert run-time checks to check

that these guesses are actually correct before running the parallel version of the loop.

The benchmarks in this section are from the SPEC2006 and OMP2001 benchmark

suite as against the affine kernels from the polybench benchmark suite since for all

137

the benchmarks in polybench the loop bounds are statically known. By testing our

affine parallelizer on the larger benchmarks we show that our parallelizer is scalable.

We want to note at this stage that we have not found any polyhedral papers that

present results on the SPEC or OMP benchmark suites. Further, we downloaded

PLUTO the research polyhedral compiler and tried running lbm (one of the smaller

benchmarks from SPEC2006) through it and found that it crashes. Hence, in this

section we have not been able to test our results against PLUTO as we did in the

previous section.

We use “-O3” optimized binaries from gcc-4.3 and gfortran-4.3 as input to

SecondWrite, which includes the new algorithm proposed in chapter 4 to guess loop

bounds when they are statically unknown. The affine automatic parallelizer from

source works on LLVM IR. Hence, we use LLVM IR generated from clang [44] (a

C language front-end for LLVM) for the ‘C’ benchmarks and LLVM IR generated

using the dragonegg [45] plugin (a plugin that integrates the LLVM optimizers and

code generator with GCC) for the Fortran benchmarks as the input to our source

parallelizer. We run all the binaries on the AMD Opteron(TM) processor 6212 and

present results. The reason we chose to run it on this AMD processor as against

the earlier DASH and BUZZ machines is that this machine was a new addition

to our lab and was more powerful than either of the DASH and BUZZ machines.

It was also convenient to run SecondWrite and the binaries on the same machine

as against transferring binaries between machines, as both DASH and BUZZ are

remotely located.

In this section we present our results on parallelizing binaries from SPEC2006

138

and OMP2001 using our new algorithm to guess loop bounds. First, we introduce

our benchmarks. Second, we present the speedups we have from source and binary.

For the binary numbers, we present results for speedups both with and without the

new algorithm. Third, we present the actual number of affine loops that are paral-

lelized from the binary with and without the algorithm. We measure speedups by

measuring the clock time to run the programs on 1 thread and 8 threads. Fourth,

we introduce the non-affine benchmarks in the SPEC2006 and OMP2001 bench-

mark suites. Fifth, we present the speedup of these benchmarks using our source

and binary automatic parallelizers and also present the number of loops that were

parallelized in these benchmarks.

Benchmark Language Lines of code Suite

swim Fortran 275 OMP2001

bwaves Fortran 680 SPEC2006

mgrid Fortran 789 OMP2001

lbm C 908 SPEC2006

quake C 1151 OMP2001

libquantum C 2605 SPEC2006

milc C 9575 SPEC2006

cactus Fortran + C 59827 SPEC2006

Table 7.5: Description of the affine benchmarks from the SPEC 2006 and OMP 2001

benchmark suites

First, table 7.5 lists the 8 affine benchmarks that we present our results on.

139

The remaining benchmarks are not affine rich and the results for those are pre-

sented later in the section. We have first picked only the affine rich benchmarks

from the SPEC2006 and OMP2001 benchmark suites. We manually profiled every

benchmark belonging to both the benchmark suites and after examining the hot

regions classified benchmarks as affine or not affine. We present our results on all

the affine benchmarks first discovered from both the benchmark suites. The bench-

marks swim, mgrid and quake belong to the OMP2001 benchmark suite and bwaves,

lbm, libquantum, milc and cactus belong to the SPEC2006 benchmark suite. These

benchmarks range from 275 to 59,827 lines of code as shown in table 7.5.

Language Lines of code
swim fortran 275 OMP2001
stream ansic 290 HPCC
bwaves fortran 680 SPEC2006
mgrid fortran 789 OMP2001
lbm ansic 908 SPEC2006
quake ansic 1151 OMP2001
libquantum ansic 2605 SPEC2006
milc ansic 9575 SPEC2006
cactus fortran + C 59827 SPEC2006

swim 3.45 0.89 3.94
bwaves 1.57 1.00 2.20
mgrid 4.93 1.00 5.53
lbm 5.03 5.12 5.12
quake 1.63 0.78 1.59
libquant 3.91 3.46 3.46
um milc 1.30 0.93 1.05
cactus 3.35 0.84 4.11
Geo Mean 2.80 1.33 2.96

!"!!#

$"!!#

%"!!#

&"!!#

'"!!#

("!!#

)"!!#

+,-# .+/01# -23,4# 5.-# 67/81## 5,.67/9:#7-##-,5;### ;/;:7*#<1=#>1/9#

!"
##
$%

"&
'(
&)
&*+

,#
-$

.& ?=73;1#

@,9/3A#+B=#
/52=#

@,9/3A#+,:C#
/52=#

Figure 7.11: Speedup of the affine benchmarks from SPEC 2006 and OMP 2001

benchmark suites for 8 threads

Second, figure 7.11 presents the speedup for 8 threads from source and binary

for each of the benchmarks w.r.t the GCC “-O3” compiled single thread version of

the benchmark. There are three bars for each benchmark; (i) the first bar is the

speedup of the benchmark from source code for 8 threads; (ii) the second bar is

the speedup of the binary for 8 threads without the new algorithm using only the

theory presented in chapter 3 and (iii) the third bar is the speedup of the binary

140

for 8 threads using the new algorithm presented in the chapter 4. We observe

that swim, bwaves, mgrid, quake, milc and cactus gain significant speedups when

the new algorithm from chapter 4 is present in the static affine binary parallelizer.

The significant affine loops in these benchmarks have run-time determined loop

bounds and hence using our new algorithm we are able to parallelize these loops

that were not parallelized using the theory developed before. The benchmarks lbm

and libquantum do not have any difference in the speedups with and without the

algorithm. The reason being; (i) in lbm, the loops bounds are statically known and

hence the theory from chapter 3 is sufficient to parallelize the affine loops in it and (ii)

in libquantum the loops are single dimensional with a write to one single dimensional

memory accesses. These loops can be parallelized without the new algorithm and

hence we see a speedup in libquantum even without the new algorithm. Overall the

geomean speedup for 8 threads for the 8 benchmarks from binaries increases from

1.33X to 2.96X with the addition of the new algorithm. Our binaries run slightly

faster than source since SecondWrite is able to rewrite “-O3” binaries to run 10%

faster than the input binaries.

Third, table 7.6 presents the number of loops that are parallelized from the

binary with and without the new algorithm. We observe that in the benchmarks lbm

and libquantum the number of loops parallelized with and without the algorithm do

not change. The reasons for this have been explained earlier. In swim, quake, milc

and cactus, a number of loops are parallelized even when the new algorithm is not

present in the static affine binary parallelizer; however, these loops are small and do

not contribute to the run-time of the benchmark. Hence, these loops do not result

141

Benchmark No. of loops w/o algo No. of loops with algo

swim 6 18

bwaves 0 1

mgrid 0 6

lbm 4 4

quake 7 9

libquantum 18 18

milc 37 43

cactus 112 126

Table 7.6: Number of loops parallelized for the affine benchmarks with and without

the run time loops algorithm.

142

Source Binary
art 0.6800 0.0863
bzip2 0.8924 0.8859
h264 0.0245 0.0610
mcf 0.9535 0.9440
sjeng 0.3663 0.8187
gobmk 0.0797 0.3017
hmmer 0.7266 0.9145
sphinx 0.5913 1.1923
applu 0.6148 0.9268
leslie 0.8055 1.0210
wupwise 0.0145 0.0180
gafort 0.7982 0.2582
gromacs 1.2819 0.6154
astar 0.9784 0.8458
namd 0.9750 0.9263
omnetpp 1.1802 0.5359
povray 1.4204 0.6864
Geo Mean 0.4633 0.4416

!"!!!!#
!"$!!!#
!"%!!!#
!"&!!!#
!"'!!!#
("!!!!#
("$!!!#
("%!!!#
("&!!!#

!"##$%"&'(&)')*+,)#&-#)./0+123&')&4&5/1#+$3&

)*+,-.#

/012,3#

Figure 7.12: Speedup of the non-affine benchmarks from SPEC 2006 and OMP 2001

benchmark suites

in a speedup from 8 threads for these benchmarks. We make this comparison to

show that it is not the number of loops that are parallelized that matter, but it is

important to parallelize the run-time intensive loops that can be parallelized by our

new algorithm.

Fourth, we would like to introduce the non-affine benchmarks from SPEC2006

and OMP2001 that we present results on in table 7.7. The non-affine benchmarks

include art, bzip2, h264, mcf, sjeng, gobmk, hmmer and sphinx written in C. The

non-affine Fortran benchmarks include applu, leslie, wupwise and gafort. Gromacs

is a benchmark that is written in parts in C and in parts in Fortran. The non-affine

C++ benchmarks include astar, namd, omnetpp and povray. All the benchmarks

total to 629,908 lines of code.

Finally, we present the speedup from parallelizing these benchmarks using the

source and binary automatic parallelizer containing the new algorithm to guess loop

143

Benchmark Language Lines of code Suite

art C 1914 OMP2001

bzip2 C 8293 SPEC2006

h264 C 51578 SPEC2006

mcf C 2685 SPEC2006

sjeng C 13847 SPEC2006

gobmk C 197215 SPEC2006

hmmer C 35992 SPEC2006

sphinx C 23373 SPEC2006

applu F 3808 OMP2001

leslie F 3807 SPEC2006

wupwise F 2468 OMP2001

gafort F 1344 OMP2001

gromacs C/F 105992 SPEC2006

astar C++ 5842 SPEC2006

namd C++ 3188 SPEC2006

omnetpp C++ 15313 SPEC2006

povray C++ 155163 SPEC2006

Total lines of code 629908

Table 7.7: Description of the non-affine benchmarks from the SPEC 2006 and OMP

2001 benchmark suites

144

bounds. These results are presented in figure 7.12. The first bar presents the speedup

from source and the second bar presents the speedup from binary. We observe that

the average geomean speedup from source is 0.46X for 8 threads and the average

speedup from binary is 0.44X. In most of these benchmarks we parallelize only small

loops as all these benchmarks are not affine in the hot regions. Since we parallelize

small loops there is a slowdown in the program as against a speedup. Using a better

decision algorithm, which is able to take run-time decisions for running the serial

version of the loop as against the parallel one for small short running loops, can avoid

this slowdown. We leave this to future work since the static decision algorithm we

use is good for the affine benchmarks. Next in table 7.8 we present the number of

loops that were parallelized in each of the benchmarks using the binary automatic

parallelizer including the algorithm to guess loop bounds for statically unknown loop

bounds. The reason we present just the number of loops using the algorithm is that

in these benchmarks all the loops that are parallelized are small loops mostly single

dimension hence the number of loops parallelized with and without the algorithm

is not different.

145

Benchmark No. of loops parallelized

art 31

bzip2 18

h264 112

mcf 2

sjeng 1

gobmk 58

hmmer 74

sphinx 57

applu 5

leslie 37

wupwise 9

gafort 22

gromacs 93

astar 9

namd 11

omnetpp 9

povray 89

Table 7.8: Number of loops parallelized by our binary parallelizer for the non-affine

benchmarks in SPEC 2006 and OMP 2001 benchmark suites

146

147

Chapter 8

Related Work

Supporting related work is listed throughout the thesis as appropriate. Fur-

ther, in chapter 2 we have presented in detail the previous work on source affine

parallelization. This chapter is divided into the following sections each presenting

one potential aspect of related work: (i) Static binary rewriters and their applica-

tions; (ii) Affine based automatic parallelizers from source; (iii) Methods to calculate

distance and direction vectors; (iv) Dynamic binary automatic parallelization meth-

ods; (v) Static binary automatic affine parallelizers; (vi) Automatic vectorization

of binaries; (vii) Array delinearization techniques; (viii) Cache optimizations using

binary rewriting and (ix) Cache analysis and optimizations in source affine paral-

lelizers.

8.1 Static binary rewriters and their applications

In this section we briefly present the static binary rewriters that have been

built and why we choose SecondWrite among others. Existing binary and object-

code rewriters include Etch [48], squeeze and squeeze++ [49, 50], PLTO [40], DIA-

BLO [41], ALTO [51], ATOM [39], spike [52, 53] and SecondWrite [54] [43] [37] [35].

Most of these binary rewriters except SecondWrite use low level IR to represent

the program and are mostly link-time optimizers for instrumentation and code com-

148

paction.

DIABLO [41] is a link time optimizer that has access to relocation informa-

tion. The advantage Diablo has over traditional compilers is that it has a whole

program view because it operates at link time. It is able to optimize the program for

performance by reducing code size. ATOM [39] provides a infrastructure in which

an user can define different instrumentation tools. At link-time, ATOM instruments

the program correctly without interfering with the program itself with low overhead.

Squeeze and squeeze++ [49, 50] are link-time tools essentially for embedded software

for code compaction since code size can be a huge overhead on embedded machines.

They demonstrate that using just the information present at link-time, one can per-

form whole program analysis with an end goal of code compaction. PLTO [40] is

a link-time optimization tool for the IA-32 architecture to improve performance of

binaries. ALTO [51] is a link-time optimizer that is even able to optimize library

calls to specific calling contexts; this way it is further able to efficiently optimize

even highly optimized binaries. All the above tools are link-time optimizers and

we wanted to implement our affine parallelizer on binary code without relocation

information. Hence, we did not choose any of the above binary rewriters for im-

plementing our affine parallelizer. Spike [52, 53] is a profile-guided optimizer. Its

framework is able to efficiently manage the profile information of binaries and then

optimize programs predominantly consisting of loops spanning multiple functions

with complex control flow. We did not implement our affine parallelizer within

spike since we wanted a system that is able to represent the code as IR which spike

does not do. Etch [48] is a general purpose tool to give an user a platform to write

149

their own transformation for binaries for both measurement and optimization. It

can however not be used for a program transformation as complex as automatic

parallelization. On the other hand SecondWrite [54] [43] [37] [35] is a static binary

rewriter that is able to represent any binary code as intermediate compiler IR and

also recover high level information such as function arguments, stack variables, type

information etc. Such information can highly aid the implementation of complex

code transformations such as automatic parallelization. We have described the de-

tails of SecondWrite and how it interacts with our affine automatic parallelizer in

chapter 6.

8.2 Affine based automatic parallelizers from source

We have dedicated the entire chapter 2 to describe in detail different affine

automatic parallelization techniques from source. They are presented here to com-

plete this section. As acknowledged throughout this paper, our method builds on

existing methods, but has significant differences allowing it to work on binaries for

the first time.

Affine automatic parallelizers built on traditional techniques from compilers

include Polaris [55], SUIF [56, 57, 23], and pHPF [58], PROMIS [59], Parafrase-

2 [60] and McKinley’s algorithm [12]. All these automatic parallelizing compilers

parallelize code from source, unlike our method built for binary code. These methods

also use distance vectors to characterize dependences in affine loops like we do. We

build on these methods and adapt them for binaries.

150

The other school of parallelizing affine programs is using the polyhedral model

like in [24] [25] [26] [27] [28] [29] [30]. These methods represent every dynamic

instance of the program in a polyhedron space. Scheduling functions are used to

transform loops. Details have been presented in chapter 2.

8.3 Linear algebriac methods to calculate distance and direction vec-

tors

Affine loop parallelism has required solving systems of linear Diophantine equa-

tions [13] to calculate distance vectors. Various techniques have been proposed in

literature to solve these equations. These include the Greatest Common Divisor

(GCD) test [14, 15], Banerjee’s inequalities [15], Single Index and Multiple Index

Tests [13, 7], Multidimensional GCD [15], the delta test [16] and the omega test [17].

The GCD [14, 15] test concludes that there is a dependence between statements

X[ai+b] and X[ci+d] if GCD(c,a) divides (d-b). It has been used traditionally

along with Banerjee’s inequalities. Both these are approximate methods. Multi-

dimensional GCD [15] looks for an integer solution for multi-dimensional arrays by

representing them as a system of Diophantine equations. Delta test [16] presents an

efficient method of determining dependence in most common cases of affine indices

by classifying pairs of array indices. They show that these array indices dominate

scientific codes. Omega test [17] formulates the problem of finding dependence

vectors as an integer-programming model and shows that it is fast enough to be

used in production quality compilers. Knowledge before the omega test believed

151

that integer programming was very expensive.

We adopt these tests from the source to our binary automatic parallelizer. We

have presently implemented the Greatest Common Denominator (GCD), Single and

Multiple Index tests and Delta test to solve the linear Diophantine equations that

we recover directly from a binary. All the other tests also can be implemented in

our system. We have not implemented them because our benchmarks did not need

them.

8.4 Dynamic binary automatic parallelization methods

The existing dynamic binary automatic parallelization techniques are limited

to non-affine techniques and do not perform sophisticated affine analysis like we do.

Yardimci and Franz [61] present a method to dynamically compile a sequential

binary to a parallelized or vectorized code. Their techniques are mostly complemen-

tary to ours; in that instead of affine parallelism, their techniques include control

speculation, loop distribution and automatic parallelization of recursive techniques.

They parallelize loops that do not have loop carried dependencies, which limits the

scope of loops parallelized drastically. As, we are able to perform sophisticated affine

analysis on memory strides present in loops; the scope of loops parallelized by us

is higher. Further, their techniques are dynamic preventing them from integrating

sophisticated decision algorithm into their system.

Hertzberg et.al. [62] presents a method to extract speculative threads from

a running executable. The system is called RASP which uses the idle cores of a

152

multi-processor to analyze the running executable and then execute it in parallel.

Wang et.al. [63] presents a dynamic method to parallelize binaries using spec-

ulative slicing to extract both instruction level parallelism (ILP) and thread level

parallelism (TLP). These techniques are primarily targeted towards irregular appli-

cations.

Yang et.al. [64] presents a system in which a running benchmark is monitored

at run-time and the hot regions are parallelized and cached so that the parallel

version can be executed when the hot region is repeated. Their techniques can

be used on any third party binary including library codes. However, they do not

present any sophisticated affine analysis like we do.

All the four methods are dynamic. Hence, they suffer from run-time over-

heads from analysis. Our method being static does not suffer from any run-time

overhead. Most importantly, they do not optimize affine loops using sophisticated

affine analysis and loop transformation whereas our method does.

8.5 Static affine automatic parallelization of binaries

We were the first ever to publish work in this area at [35]. This work presents

the first main contribution in this thesis, i.e.how every memory access in a affine

loop can be represented as a linearized multi-dimensional expression and then dis-

tance/direction vectors calculated for the same. Our second publication on guessing

loop bounds for loops whose bounds are run-time dependent is under review at [65].

The third contribution on calculating the cache reuse metric directly from binaries

153

and using it to decide loop nest transformation is under review at [66].

The only other work we are aware of that parallelizes affine binaries using

static analysis of binary code is by Pradelle et.al [46] [47]. This work leverages

the source to source PLUTO polyhedral compiler by transforming some parts of

the affine kernels from binaries in polybench to C. Further, they have had to use

many tricks on the recovered C code to feed it to the polyhedral model such as

de-linearization of array accesses and scalar variable removal. In general we believe

that their approach is not scalable to large benchmarks where as our methods are.

8.6 Automatic vectorization of binaries

Nakamura et.al. [67] and Dasgupta et.al. [68] present techniques to analyze

binaries and vectorize them. [67] presents a technique to do a linear search on binary

code at run-time and then generate SIMD instructions for the hot regions when data

parallelism exists. SIMD instructions can help increase the performance of binary

code since they can perform multiple regular instructions in one instruction. [68]

presents the Vizer framework that analyzes binary code to identify instructions that

can be replaced by SIMD instructions to increase performance. Both these methods

are limited to vectorization of binaries and do not attempt to parallelize them using

threads as we do.

154

8.7 Array delinearization techniques

Array delinearization methods [69] [70] take source code with linearized multi-

dimensional accesses as input, and convert those accesses to multi-dimensional ac-

cesses when possible. Ideally if we delinearize array accesses in a binary we could

take parallelizing decisions on them just as we would from source. However, source-

level methods to delinearize array accesses cannot be adapted to binaries easily. This

is because delinearization methods such as [69], [70] require high level intermediate

C like representation equivalent to symbolic information in compilers which is not

available when analyzing binary code. Such symbolic information is crucial because

it contains information about the number, location, and dimension sizes of arrays,

which the delinearization methods use. Finding this information in the general case

from stripped binaries (i.e.those without symbolic information) is hard, and there

are no existing methods for it. Hence delinearization methods cannot be adapted

for binary code.

The method in the chapter 4 circumvents the problem of missing array infor-

mation in binaries by not attempting to recover guaranteed information about array

locations and dimension sizes. Instead it guesses the bounds of loops. When the

guesses are correct, the code can be parallelized. Run-time checks ensure that when

the guessed bounds are wrong, fallback serial code ensures correct execution. No

previous method guesses loop bounds from binaries, or uses run-time checks like our

method. The result is that our method is the first to parallelize binary code with

unknown loop bounds.

155

8.8 Cache optimizations using binary rewriting

There has been some prior work in studying cache behavior directly from

binaries and applying optimizations to decrease their runtime. However, these

transformations are limited and do not include affine loop transformations such

as interchange. Nethercote et.al [71] does dynamic binary instrumentation and uses

hardware counters to measure the miss rate of caches. Using cache miss rate in-

formation, they insert prefetch instructions to fetch the memory into cache few

instructions before their actual use into binaries and this improves the cache per-

formance of binaries since the memory location is in the cache when it is used and

there will be no fetch overhead. Weidendorfer et.al [72] builds on [71] and uses the

dynamic cache profile information to perform optimizations such as array padding

and blocking. Our method is different from these methods in two ways: (i) our

method uses affine methods to analyze and transform binary whereas [71] [72] do

not; They use hardware counters instead our cache reuse metric calculation method

and (ii) the methods in [71] [72] are dynamic and incur run-time overhead from

instrumentation, analysis and transformation, whereas our method, which is static,

has no such overheads.

We do not know of any prior work that uses static techniques to estimate cache

performance and use that information to improve the binaries. We claim novelty

for the static techniques used to calculate the cache reuse metric.

156

8.9 Cache analysis and optimizations in source affine parallelizers

Many source affine parallelizers such as [34] [12] [33] use a cache reuse metric

to take decisions about loop nest transformation. Wolf et.al. [33] presents a method

to do an ad-hoc search of loop transformations and calculates the cache reuse metric

for each sequence of loop transformations and selects the best transformation order.

We believe that this model is lacking since an exhaustive search is expensive. Bond-

hugula et.al. [34] uses the cache reuse metric in the polyhedral framework to reason

about loop transformations. We have stated our reasons for not using the polyhedral

model in section 5.2. We use the decision algorithm presented by McKinley in [12]

since it does not perform an exhaustive search of transformations, instead presents

a method to intelligently build the most efficient loop structure using the results

of cache reuse metric calculation. We extend McKinley’s algorithm to use strip-

mining (well studied in affine literature) to further improve the results presented by

McKinley.

157

158

Chapter 9

Conclusions and Future Work

9.1 Conclusions and Future Work

In this thesis we have developed techniques to parallelize x86 binaries using

static affine analysis techniques when binary programs do not contain any relocation

information, i.e.binary code without any symbolic information about arrays, their

sizes etc. in them. We have shown that not only can we parallelize such binaries but

also take decisions about loop nest transformation using the three main contributions

of this work: (i) to obtain linearized multi-dimensional expressions for each memory

accesses in the loop and use linear algebraic techniques on them to obtain distance

vectors; (ii) use these linearized multi-dimensional expressions to guess the loop

bounds of loops whose bounds are run-time dependent and then run the parallel

version of the loop if indeed the bounds were within these guesses; and (iii) use

the linearized multi-dimensional expressions to calculate the cache reuse metric and

then take decisions to transform the loop nest.

We present results on dense affine matrix code from the polybench benchmark

suite and the affine benchmarks from the SPEC2006 and OMP2001 benchmark

suites. In all the cases our results from binary show that they can scale as well

source code. This shows that (i) the techniques we have developed from binaries

are very powerful and equivalent to source code techniques; (ii) our methods are

159

very scalable to large benchmarks very well since we show results on all the affine

benchmarks from SPEC2006 and OMP2001.

In future I think this work will benefit from the following directions:

(i) Integrate the affine parallelizer with non-affine parallelization techniques to

increase the scope of benchmarks parallelized.

(ii) Integrate a more sophisticated decision algorithm to combine many more

loop transformations. Many such algorithms have been presented in the source

literature and can be adapted to binaries.

(iii) A polyhedral compiler called Polly is under development within the LLVM

infrastructure. It would be interesting to see if we can use our techniques to feed

Polly directly from binary code using the techniques we have presented in chapter

6.

160

Bibliography

[1] Lyle. Cpu trends. http://techtalk.pcpitstop.com/

research-charts-cpu/, May 2008.

[2] OpenMP Architecture Review Board. OpenMP C and C++ application pro-
gram interface, version 1.0. http://www.openmp.org, 1998.

[3] OpenMP Review Board. OpenMP Fortran application program interface, ver-
sion 2.0. http://www.openmp.org, 2000.

[4] The Message Passing Interface (MPI) standard. http://www-unix.mcs.anl.

gov/mpi/, 2007.

[5] Lorin Hochstein, Jeff Carver, Forrest Shull, Sima Asgari, and Victor Basili.
Parallel programmer productivity: A case study of novice parallel programmers.
In SC ’05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing,
page 35, Washington, DC, USA, 2005. IEEE Computer Society.

[6] Ken Kennedy and John R. Allen. Optimizing compilers for modern architec-
tures: a dependence-based approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2002.

[7] Michael Joseph Wolfe. Optimizing supercompilers for supercomputers. PhD
thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 1982.

[8] M. E. Wolf and M. S. Lam. A loop transformation theory and an algorithm to
maximize parallelism. IEEE Trans. Parallel Distrib. Syst., 2(4):452–471, 1991.

[9] Bill Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jay Hoeflinger,
David Padua, Paul Petersen, Bill Pottenger, Lawrence Rauchwerger, Peng Tu,
and Stephen Weatherford. Polaris: The next generation in parallelizing com-
pilers. In Proceedings of the workshop on languages and compilers for parallel
computing, pages 10–1. Springer-Verlag, Berlin/Heidelberg, 1994.

[10] Utpal K. Banerjee. Unimodular transformations of double loops. In In proceed-
ings of the third Workshop on Languages and Compilers for Parallel Computing,
pages 192–219, August 1990.

[11] Utpal K. Banerjee. Loop Transformations for Restructuring Compilers: The
Foundations. Kluwer Academic Publishers, Norwell, MA, USA, 1993.

[12] Kathryn S. McKinley. A compiler optimization algorithm for shared-memory
multiprocessors. IEEE Trans. Parallel Distrib. Syst., 1998.

[13] Utpal Banerjee. Speedup of ordinary programs. PhD thesis, University of Illinois
at Urbana-Champaign, Champaign, IL, USA, 1979.

161

[14] Ross Albert Towle. Control and data dependence for program transformations.
PhD thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA,
1976.

[15] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Pub-
lishers, Boston, 1988.

[16] Gina Goff, Ken Kennedy, and Chau-Wen Tseng. Practical dependence test-
ing. In Proceedings of the ACM SIGPLAN 1991 conference on Programming
language design and implementation, pages 15–29, New York, NY, USA, 1991.
ACM Press.

[17] William Pugh. The omega test: a fast and practical integer programming
algorithm for dependence analysis. In Supercomputing ’91: Proceedings of the
1991 ACM/IEEE conference on Supercomputing, pages 4–13, New York, NY,
USA, 1991. ACM.

[18] Rudolf Eigenmann, Jay Hoeflinger, Greg Jaxon, Zhiyuan Li, and David A.
Padua. Restructuring fortran programs for cedar. Concurrency - Practice and
Experience, 5:553–573, 1993.

[19] D. Kuck, E. Davidson, D. Lawrie, A. Sameh, C. Q. Zhu, A. Veidenbaum,
J. Konicek, P. Yew, K. Gallivan, W. Jalby, H. Wijshoff, R. Bramley, U. M.
Yang, P. Emrath, D. Padua, R. Eigenmann, J. Hoeflinger, G. Jaxon, Z. Li,
T. Murphy, and J. Andrews. The cedar system and an initial performance
study. SIGARCH Comput. Archit. News, 21(2):213–223, May 1993.

[20] Rudolf Eigenmann, Jay Hoeflinger, and David Padua. On the automatic par-
allelization of the perfect benchmarks®. IEEE Trans. Parallel Distrib.
Syst., 9(1):5–23, January 1998.

[21] Michael Edward Wolf. Improving locality and parallelism in nested loops. PhD
thesis, Stanford University, Stanford, CA, USA, 1992.

[22] Jennifer Anderson, Saman P. Amarasinghe, and Monica S. Lam. Data and
computation transformations for multiprocessors. In In Proceedings of the Fifth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, pages 166–178, 1995.

[23] Mary H. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei Liao, and
Monica S. Lam. Detecting coarse-grain parallelism using an interprocedu-
ral parallelizing compiler. In Supercomputing ’95: Proceedings of the 1995
ACM/IEEE conference on Supercomputing (CDROM), page 49, New York, NY,
USA, 1995. ACM Press.

[24] Amy W. Lim, Gerald I. Cheong, and Monica S. Lam. An affine partitioning
algorithm to maximize parallelism and minimize communication. In ICS ’99:
Proceedings of the 13th international conference on Supercomputing, pages 228–
237, New York, NY, USA, 1999. ACM.

162

[25] Martin Griebl. Automatic parallelization of loop programs for distributed mem-
ory architectures, 2004.

[26] Pierre Boulet, Alain Darte, and Georges andr Silber. Loop parallelization al-
gorithms: From parallelism extraction to code generation. Parallel Computing,
24, 1997.

[27] Cédric Bastoul and Paul Feautrier. Improving data locality by chunking. In Pro-
ceedings of the 12th international conference on Compiler construction, CC’03,
pages 320–334, Berlin, Heidelberg, 2003. Springer-Verlag.

[28] Cedric Bastoul. Code generation in the polyhedral model is easier than you
think. In Proceedings of the 13th International Conference on Parallel Archi-
tectures and Compilation Techniques, PACT ’04, pages 7–16, Washington, DC,
USA, 2004. IEEE Computer Society.

[29] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A
practical automatic polyhedral parallelizer and locality optimizer. In Proceed-
ings of the 2008 ACM SIGPLAN conference on Programming language design
and implementation, PLDI ’08, pages 101–113, New York, NY, USA, 2008.
ACM.

[30] David L. Kuck. Structure of Computers and Computations. John Wiley &
Sons, Inc., New York, NY, USA, 1978.

[31] Fabien Quilleré, Sanjay Rajopadhye, and Doran Wilde. Generation of efficient
nested loops from polyhedra. Int. J. Parallel Program., 28(5):469–498, October
2000.

[32] Andrew W. Appel and Maia Ginsburg. Modern Compiler Implementation in
C. Cambridge University Press, January 1998.

[33] Michael E. Wolf, Dror E. Maydan, and Ding-Kai Chen. Combining loop trans-
formations considering caches and scheduling. In Proceedings of the 29th annual
ACM/IEEE international symposium on Microarchitecture, MICRO 29, pages
274–286, Washington, DC, USA, 1996. IEEE Computer Society.

[34] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A
practical automatic polyhedral parallelizer and locality optimizer. In Proceed-
ings of the 2008 ACM SIGPLAN conference on Programming language design
and implementation, PLDI ’08, pages 101–113, New York, NY, USA, 2008.
ACM.

[35] A Kotha K Anand M Smithson G Yellareddy R Barua. Automatic paral-
lelization in a binary rewriter. In MICRO 43: Proceedings of the 43rd annual
ACM/IEEE international symposium on Microarchitecture. IEEE Computer
Society Press, 2010.

163

[36] P O’Sullivan, K Anand, A Kotha, M Smithson, R Barua, and A D. Keromytis.
Retrofitting security in cots software with binary rewriting. In Proceedings of
the 26th International Information Security Conference, 2011.

[37] Kapil Anand, Matthew Smithson, Khaled ElWazeer, Aparna Kotha, Jim
Gruen, Nathan Giles, and Rajeev Barua. A compiler level intermediate repre-
sentation based binary analysis and rewriting system. In To Appear in European
Conference on Computer Systems, 2013.

[38] Chris Lattner and Vikram Adve. LLVM: A compilation framework for life-
long program analysis & transformation. In Proceedings of the International
Symposium on Code Generation and Optimization (GCO), pages 75–87, 2004.

[39] Alan Eustace and Amitabh Srivastava. Atom: a flexible interface for build-
ing high performance program analysis tools. In TCON’95: Proceedings of
the USENIX 1995 Technical Conference Proceedings on USENIX 1995 Techni-
cal Conference Proceedings, pages 25–25, Berkeley, CA, USA, 1995. USENIX
Association.

[40] B. Schwarz, S. Debray, and G. Andrews. Plto: A link-time optimizer for the
intel ia-32 architecture. In Proc. 2001. Workshop on Binary Rewriting (WBT),
2001. citeseer.ist.psu.edu/schwarz01plto.html.

[41] Van Put L, Chanet D, De Sutler B De Bus B, and De Bosschere K. Diablo:
a reliable , retargetable and extensible link-time rewriting framework. In Pro-
ceedings of the Fifth IEEE International Symposium on Signal Processing and
Information Technology, 2005, pages 7–12. IEEE, 2005.

[42] Andrew Edwards, Amitabh Srivastava, and Hoi Vo. Vulcan: Binary trans-
formation in a distributed environment. Technical Report MSR-TR-2001-50,
Microsoft Research, April 2001.

[43] M Smithson, K Anand, A Kotha, K Elwazeer, N Giles, and R Barua. Bi-
nary rewriting without relocation information. Technical report, University of
Maryland, College Park, November 2010.

[44] clang: a C language family frontend for LLVM. http://clang.llvm.org/.

[45] DragonEgg - Using LLVM as a GCC backend. http://dragonegg.llvm.org/.

[46] Benoit Pradelle, Alain Ketterlin, and Philippe Clauss. Polyhedral paralleliza-
tion of binary code. ACM Trans. Archit. Code Optim., 8(4):39:1–39:21, January
2012.

[47] Benôıt Pradelle. Static and dynamic methods of polyhedral compilation for an
efficient execution in multicore environments. PhD thesis, Intel, 2011.

164

[48] Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolmen, Wayne Wong, Hank
Levy, and Brian N Bershad. Instrumentation and optimization of win32/intel
executables. USENIX Windows NT Workshop, August 1997.

[49] Bjorn De Sutter, Bruno De Bus, and Koen De Bosschere. Link-time binary
rewriting techniques for program compaction. ACM Trans. Program. Lang.
Syst., 27(5):882–945, 2005.

[50] Saumya Debray, William Evans, and Robert Muth. Compiler techniques for
code compression. Technical report, University of Arizona, Tucson, AZ 85721,
USA, April 1999. http://citeseer.ist.psu.edu/243038.html.

[51] Robert Muth, Saumya K. Debray, Scott Watterson, and Koen De Bosschere.
Alto: a link-time optimizer for the compaq alpha. Softw. Pract. Exper.,
31(1):67–101, 2001.

[52] Robert Cohn, David Goodwin, P. Geoffrey Lowney, and Norman Rubin. Spike:
an optimizer for alpha/nt executables. In NT’97: Proceedings of the USENIX
Windows NT Workshop on The USENIX Windows NT Workshop 1997, pages
3–3, Berkeley, CA, USA, 1997. USENIX Association.

[53] Robert S. Cohn, David W. Goodwin, and P. Geoffrey Lowney. Optimizing
alpha executables on windows nt with spike. Digital Tech. J., 9(4):3–20, 1998.

[54] Anand K and et. al. Decompilation to compiler high ir in a binary rewriter.
Technical report, University of Maryland, College Park, November 2010.

[55] William Blume, Ramon Doallo, Rudolf Eigenmann, John Grout, Jay Hoe-
flinger, Thomas Lawrence, Jaejin Lee, David Padua, Yunheung Paek, Bill
Pottenger, Lawrence Rauchwerger, and Peng Tu. Parallel programming with
polaris. Computer, 29(12):78–82, 1996.

[56] Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Amaras-
inghe, Jennifer M. Anderson, Steve W. K. Tjiang, Shih-Wei Liao, Chau-Wen
Tseng, Mary W. Hall, Monica S. Lam, and John L. Hennessy. Suif: an in-
frastructure for research on parallelizing and optimizing compilers. SIGPLAN
Not., 29(12):31–37, 1994.

[57] Mary W. Hall, Jennifer M. Anderson, Saman P. Amarasinghe, Brian R. Mur-
phy, Shih-Wei Liao, Edouard Bugnion, and Monica S. Lam. Maximizing mul-
tiprocessor performance with the suif compiler. Computer, 29(12):84–89, 1996.

[58] Manish Gupta, Sam Midkiff, Edith Schonberg, Ven Seshadri, David Shields,
Ko-Yang Wang, Wai-Mee Ching, and Ton Ngo. An hpf compiler for the ibm
sp2. In Supercomputing ’95: Proceedings of the 1995 ACM/IEEE conference on
Supercomputing (CDROM), page 71, New York, NY, USA, 1995. ACM Press.

165

[59] Hideki Saito, Nicholas Stavrakos, Steven Carroll, Constantine D. Poly-
chronopoulos, and Alexandru Nicolau. The design of the promis compiler.
In CC ’99: Proceedings of the 8th International Conference on Compiler Con-
struction, Held as Part of the European Joint Conferences on the Theory and
Practice of Software, ETAPS’99, pages 214–228, London, UK, 1999. Springer-
Verlag.

[60] Constantine D. Polychronopoulos, Milind B. Girkar, Mohammad Reza
Haghighat, Chia Ling Lee, Bruce Leung, and Dale Schouten. Parafrase-2:
an environment for parallelizing, partitioning, synchronizing, and scheduling
programs on multiprocessors. Int. J. High Speed Comput., 1(1):45–72, 1989.

[61] Efe Yardimci and Michael Franz. Dynamic parallelization and mapping of
binary executables on hierarchical platforms. In CF ’06: Proceedings of the 3rd
conference on Computing frontiers, pages 127–138, New York, NY, USA, 2006.
ACM.

[62] Ben Hertzberg. Runtime Automatic Speculative Parallelization of Sequential
Programs. PhD thesis, Stanford University, 2009.

[63] Cheng Wang, Youfeng Wu, Edson Borin, Shiliang Hu, Wei Liu, Dave Sager,
Tin-fook Ngai, and Jesse Fang. Dynamic parallelization of single-threaded bi-
nary programs using speculative slicing. In Proceedings of the 23rd international
conference on Supercomputing, ICS ’09, pages 158–168, New York, NY, USA,
2009. ACM.

[64] Yang J, Skadron K, Soffa M, L, , and Whitehouse K. Feasibility of dynamic
binary parallelization. In In Proceedings of the Workshop on Hot Topics in
Parallelism, 2011.

[65] Aparna Kotha, Kapil Anand, Timothy Creech, Khaled ElWazeer, Matthew
Smithson, and Rajeev Barua. Affine parallelization of loops with run-time
dependent bounds from binaries. In Under review at International Conference
on Supercomputing, 2013.

[66] Aparna Kotha, Kapil Anand, Timothy Creech, Khaled ElWazeer, Matthew
Smithson, Greeshma Yellareddy, and Rajeev Barua. Affine parallelization using
dependence and cache analysis in a binary rewriter. In Under review at IEEE
transactions on parallel and distributed systems, 2013.

[67] Takashi Nakamura, Satoshi Miki, and Shuichi Oikawa. Automatic vectorization
by runtime binary translation. In Proceedings of the 2011 Second International
Conference on Networking and Computing, ICNC ’11, 2011.

[68] Anshuman Dasgupta. Vizer: A Framework to Analyze and Vectorize. PhD
thesis, Rice University, 2002.

166

[69] Vadim Maslov. Delinearization: an efficient way to break multiloop dependence
equations. In In Proc. the SIGPLAN’92 Conference on Programming Language
Design and Implementation, pages 152–161, 1992.

[70] Björn Franke and Michael O’boyle. Array recovery and high-level transforma-
tions for dsp applications. ACM Trans. Embed. Comput. Syst., 2(2):132–162,
May 2003.

[71] Nethercote and et.al. The cache behaviour of large lazy functional programs
on stock hardware. In Proceedings of the 2002 workshop on Memory system
performance, 2002.

[72] J Weidendorfer and et.al. A tool suite for simulation based analysis of memory
access behavior. In In Proceedings of International Conference on Computa-
tional Science, 2004.

167

