

Man Padume of coaz Boand

BY
SOLOTON LOVE

Thesis subutted to the paoulty of the Graduate Gonool of the University of saryland in partial fulfillment of the requirements for the degree of Doctor of philosophy

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI DP70468
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author. unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Whe writer wishes to express his apreciation to Dr. N. L. Drake for many helpful suggestions in the oourse of this researoh, and to kr. a. P. Carl of the United States bureau of Aines for obtaining the X-ray diffraation patterns.
Pax
1H2NOMONLOW 1
 3
A. Aeppration and Idontifreation of hyiro- osrbons frtw natural sourcea.................. 3
B. Synthesit of atreight chain hydreaarbons... 9
 11
4. Soparetion and preliminary puritioution of the hydroearbon mixtare from the orude.... 11
A. Fraetional Aictillation of the mized hydrecarbene. 14
C. 酎uilibrism meiting of hydroomrbon fractienc 18
D. Fractional crystalilzation. 23
E. Welting sranaition, nat set-pointe 86
7. X-way opaeinge 37
a. Syntheala of hyarocertons 43
 52
swow 56
 B7

INTRODUOTIOA

Por many years, the chemiaal constitution of cork has been studed, most investigators having started their researohes wh the ground oork of commeroe. Zetzsche $\quad 26$ eviewed the literature on this subject and grave the results of his own investigations. According to Zetzsche, the constituents of cork may be divided into five fractions:

1. Substanoes extracted by boiling water.
2. Substances winch issolve in fat solvents such as ohloroform and aloohol. phis fraction contained cerin and friedelin, which Zetzsohe referred to ss the wax alcohols, and also fats and free fatty acids.
3. Compounds whioh go into solution by treatment with dilute sodium hydroxide and sodim sulfite. These inolude oork lignin, a part of the tannins, and nitrogen oontaining aubstances.
4. Substances which go into solution when the residue from the above tratment is saponified with alcoholic alkaid. These are high moleoular weight fatty acids. of which three have been reoognized: phellonic acid, melting point 96°; phloionio acid. melting point $120-121^{\circ}$; and auberic acid. whe melting point of the latter was not given.
5. The tanning, cellulose, and cellulose-similar products remain insoluble in the alkali. Additional ingredients
of the residue are nitrogen containing compounds, which are probably albumins, solored substances, ank inorgenic sompounds.
zetssane ${ }^{27}$ gave for the ompixical formulae of phezlonic,
 respeatively, Carhart ${ }^{2}$ later proved by Aegradation and aynthesis that phellonic acte is twenty two hydroxy tetracosanio aoid.

In recent years acriea of inveatigations at the Univereity of 払aryland have shown that oerin and friedelin are triterpenoids, the former being a hydroxy ketone and the latter a ketone. The amorphous materlal left in the ethyl acetate oxtract of oork after oerin and friedelin have preapitated has been shown to antaln mall quantities of a sterol ${ }^{6}$. 14.

When cork bark is trested with high presure steam, stioky, foul-smelling, brow tar atean distills out. The oork that is left is pressed and used as insulating board. It was the purpose of this investigetion to laentify som of the substanoes present in the stem astillate。

```
30040% L
HLTORIOAJ
```

4. Seqaration and iagtisloation of hyorocgebong from naturgh scurces:

Erafft ${ }^{17}$ in 1907 fractiondted the higher normal parafeins of IIgnita by distillistion, using the very high vecum of "the oathode 11ght" Ey respactionating number of times, he olatmod to have obtained every straight chat homolog from nanadeoane te hazatriacontane. H1s Adentifioation was based on the boiling polnts. melting points, and
 with these constant for smothetic compounds.

Muuti2 obtainet from coal parafin what no oonstieret to be pure atraight onain hydrocarbons containing from twenty-four to twontynine earbon atomg. The heptacosane was obtained by oryatallization from saetone, while the others mere obtainea by repeated fractionsi distillam tion of the crwie parafitns. Glumg bsed ifs identipiontion on a comparison of melting pointa, boiling points and rafractive indioos with those of aytuetio compounds under the same ocnditionse
guanler and Graves reafyatallized petroleum wax from othyene dichlorine until the molting roint and refraotive index were conatant. Diatillation gave serfoa of fractions. the gyerage molecular weight of which they seterminod oryoscopically using dichlowbengene as solvent. Shey alao detexmined the density and refreotive index of eaon fraction。 The molecular refractions obtained agread well with those aloulated: assuming the atomio refraction of carbon wa 2.501 and hyarozen 1. O5l. Phought the melting pointe mind molecular woights of their purified
 the authors stited they mere not indivikual homelogs mut mixtures. Ohannon and Chibnall ${ }^{3}$ in 1929 reported the presence of nonacomane In large quantities in the ether-soluble ratt or obbuge leaves. a comprison of qelting roint, qetmpoint, and orystal mpaing with tho onstunts for the aynthetio hywrocerbon indionted they had. solates pure nonseostie. Nhe late number of orders of reflection obtained in their x-ray diffaction pattorn algo was a sign of putity. Pron eubbege leaves thege invesm
 meohanism of wat metabolimm in the plant:

$$
\mathrm{A}^{1} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}+\mathrm{x}^{2} \mathrm{CO}_{2} \mathrm{H} \rightarrow \mathrm{R}^{4} \mathrm{OH}_{2} \mathrm{OO}^{2} \longrightarrow \mathrm{R}^{2} \mathrm{OH}_{2} \mathrm{CH}_{2} \mathrm{~A}^{2}
$$

Cnibnall and plper showed the the transition pointis wion kytroosirbons geve on howting sat cooling were reliable intioes of the degres of rurisy of mixture of paraffins, whilemelting pointa and
 moleoular welghto. The transition points apparantig involved atruotural
 2ess flass form when the first tranoition moint was reached. and this In turn onangea at the seona trangition yoint to wnother orystalline Sorm. She the forme ot the hyorocarbons oxiatine at diferent temperaturea were the a-called A, B, and O forms, whoh differed in the angle of tilt of the long ameralon of the wnit cell to the ghort site. phe A form, whioh wise the normet state for odu numbered hydrocsibons, had
 inf which in the ono referren to hereatior in this theais whenever transition point is mentioned, unleas another is specifically leacibed. was verg sensitive to impurities sinoe the quansition polnt oume for
mixtures of two parafins ned a minimum (seo fise 15, page 45). the transition point of any mixture was not the gase al thit of pure hyarocarbon of the mame mean moleoular weigat, but gomewhat lower. Ohibnall and eiper made a comprehenaive study of the tran ition points, melting points, at-points, and long oryatal gadnge of aties of known pure bydroosrbons sun known mintures. On the bseis of thelr mork, they made 4. number of generalizations, sud sade series of augeetions to aid in the eqarizion of hyaroambens from mixturea.

Firstly, they tated an experienced oye ocula tell from glanoe at an x-ray photograph wethor a sample way aprosohing purftyo As mixtures aprosched equimolar proportiona, only a few orders of reflection appared, these however atandis out more ahargiy than in plates of more nearly pure materislse f pure zarafin generally gave efgat or more oriers. The melting yointa of equimolar nixtures of two or three yarafing were shary and corresponded to the mean moleowiar welghts. thas an equimolar mixture of hoxacosane and octacosane melted at the same temperature as hoptaccsane, inoe melting point versus compoition gave a yerfecty straicht line. The melting pointa of equmolar mixtures of four or more parafifin were indstinct. but were In the resion corresponding to the mean molectar welgata.

For equinolar mixturea of three or tour parafine. the transition yoints were very inatatinct and coourred at that of the lowest member in the mixture. Kutmolar mixtures of five parafing gave no transition points at all. with eumolar mixtures of two paraffina aeparated by three or mere aarbon atome, the tranition pointa were not woll-defined, but the seaond transition point on heating were very sarked, and oocurred a agree to a segree and half below the melting
points ingtasd of the threatontha to five tonthe of aderee for pure ocmponnag Chibnall sound thet aculwolar mixturas of two or three rarafLins whose carbon ocntents a 14 not differ by more than two or threa, hat shary act-points which were nct apreciably dopressed below the act-polnts for pure parafitins with molecular weizhts the gene ag the average values for the mixtures. On slow cooling below the melting pointa. there was littie tencenoy to saperocol. vhe varafin mixtures atting oryatalline about a Helt degree below the melting polnte. jut as for pux parafent zquimolar mixtures of more than thae parafilne did not set erystalline.

The authosg gtated that in blochemionl investigations it was improbable that pure paraffing wowld cften be onoowntored. and that the isolation of paratitins of trecgnimable degree of purity was always Laborious and oftan imposaible. howover, by emparing physioal oonstantse 1. e. transition points, melting points, and sacings with line onstunta of known mixtures. the camposition of simplemitures oonld be estinated. In atterxting the estimation of tho omposition of wixture in whioh a Eaximum separation hat been obtained by fractional orystalistation, their prooedure was fintst to measure the spacirge then piok out parious binary mixtures having the same pacing Shen they selected that mixture whoae melting point sind transition point were in best acoord ith those of the unknown mixture If the transition point was 1411 too 10 by degrea or two. thoy arbitrazily atimated about five per cont of unknown impurity* Chibnali ${ }^{5}$ gemarated the ocnstituents of apple outicle wat into primary aloohols, seconisy aloohols, and parafinge Fhe primary aloohols wers converted inte the aoreaponding parsfuns by mean of phosphorua and hydriodio acid, sno fractionally oryotallized from lisht petrolewm ehner. A tudy of the relting wointis, transition pointa, ant spacinga
of the fretions obtained showed conolugively that the nommi primary alcohols containing twenty-six, twenty-eight, wnathey oarbon atows
 of the wax ahowed the rreance of heytacoasine and nontoomane and the absence of any hexacozane or octacosane. The transition points of the variows iractions were nearly 211 alightly lewer than thoge of the guge gested binaxy mixtures. shat this was aue to ine presence of freen of the lower garefing in the top frations and of the hishor parafikn in the lower frations was verified by actually maxing sever minizures oontainIns small amount of the angeestea impurity two to three per cent of aded inumeity ws not surficient to chanee themelting points or spacinga appreciably, but the tranation points were lowered sameh a two to three degroes.

The seoondary $100 h o l$ fount in 3 pio outcle wax was D-10nonacogancle the tresence of this alcohol along tith nonseosane in the anc wax sufgested to Chibnall et thet time the fallowing mehsnimm for wax metadolism:

Accorilng to this nechaniam, both the secontary sloohol and the hyarocarbon could be formed from the ketone. In Ohimnall* researoh the ketone was not found but latar work on brusel aprouts leaf wat showed 15-nonaoosanol, 15-nonscosanone, and nonacosane were all present. No clefing werefound however. In apple outicle max this meoianism would postulate the preaence of becsnolo and eioosanoic acids.

Chibnall ot al ${ }^{6}$ uncertook a comprekensive investigetion of the constitution of the primary alcohols, faty acias, and parafins in pisat and insect waxes. They found that in two oases only hat the amples of parefeine isolated from natural souroes proved to be pre products, atisPylng the reauirements of x-ray anclyaso In all cases examined they were mixtures, snd separation by fractional orystalliwation was laborious that in coly one instance, appe outiole wax, wis it uffiotently complete to sive a pure product. halysis by mesns of the physicid conatants showed the protence of oftmmbered stratigh oinin hydroearbons, and no even-numbered homolose, in all samples examined. number of the som called even-number parafitna isolated from natual sources were examined and found to be mixtures of the oda-numbered bydrocerbons. Soth the normal fatty ecida and primary alcohole in all waxes stuled contimed only the hotnologs with an ven number of oarbon atomas.

Chibnall and Piper ${ }^{7}$ aiscussed the metabcliam of plant snd inseot wayes. Ince analysis of many waz products now ahow they onsisted almost exclusively of evenmamered straight ohain primary micohols and nolds and obdnumbered paraffins, it was alear that paraffins were formed from the long ohain aoida preaent in waxss, not from the saortor gigeoride acids
 were intinily formed by oxidation at the ont of polporgzen chains formed
 and waxes oould then be obtianad from those longer unitis by process of beta oxidation. Heduotion of any of theae acids would give the correspondIng even-numbered al oonol, whle aecarboxylation of the beta kete acil would. give the ($n-1$) ketone, The ketone, in turn, was reaued to the hydrcoerbone最e following is a degram of Chibnall'a latest meohanism for wax metabolism:

markley et al ${ }^{20}$ reoently obtained by fractional orystallization of the unamponifiable fraction of graperrait peel wax a ketonic frastion and a hydrocarbon fraction. fersistent fractionation of the hydrooarbons resulted in mixtures with tranaition pointa depreased considerably, three to four degrees for the best frections. They eppeared, however, to contain principally nonaoosane and hentriacontane, with yossibly some lower and some higher merabers of the series present. X-ray spacings were used in interpreting the composition.

Whatiey, Sande, and Hendriax ${ }^{21}$ obtained from the byirocarbon fraction of grape wax fractions which indicated the oompotion was about seventy per cent nonkcoanc am thirty fer cent hentriacontane.

Gispold and Mosers ${ }^{21}$ in thes r book discuased the separation and identification of wax constituents.

8. Synthesis of atraight ofisin hyorcoarbons-

Grafft ${ }^{15}$ in lBet preparea laxrone by heating the barium salt of lauric acid at rifteen millinettrs preasure fithexceas lime fe made the corresponding hyurodarbon by converting the ketone to the dichlorite with fhosphercus rentadioride and then reduoins the diehloride with phosphorua and hydriocio add. In this way he made the twenty-three and the thirtyilve carbon hozologe. In order to make the tanty-two arbon hydrocarbon. he usect m mixture on barim palmitate and barium heptylateo grafft ${ }^{16}$ prepared severd paraffin by the aotion of sodium on the wrypoprtate slayl iodidea.

Levene. Fiat. and Soheer made a series of even-numbered
hydrocarbons by firat making the primary aloohols from the oters by mana of the Souveault-Blanc reaction, then converting the aloohols to the iodides, and treating the latter with zinc and hydrochloric acid. They also prepared tetracosane by treating the iodide in ether solution with magesium:

$$
2 \mathrm{HI}+\mathrm{Hg} \rightarrow \mathrm{H}-\mathrm{K}+\mathrm{MgI} 2
$$

Olund ${ }^{12}$ obtained good yields of the ketone from the acid by heating the barium salt spreal out on bolling chipa in an evacuated combustion tube. The ketone was treated with phosphorum pentachloride and the aickloride treated with hydriodio acid to glve the hydrocarbon in good yiela. In this way, Gima rade hexacosane, haptacosane, and ootacosane.

Strating ot 1^{24} made henelcosane and tricosane, using the Olaisen condensation. In the synthosis of heneicosane, undecylenic acid was first hydrogenated to give the saturated add. Esterifiostion, treatment of tre oster with sodium ethoxide, and saponification of the resulting product gave didecyl ketone, wilich waz then reduced by the Clemmenten methot to the hydrocsrbon. Friccane was made in a similar manner, starting with lewric acid.

EVME MENAL

from the orude.

She material under invostigntion was obtained from the Crown Corif and Seal Company of Baltimore. Haxylanc. Ebout 200 gas. of a brown waxy distillate from the orude had previousiy been obteined by another worker in this laboratory. who way looking for geod souroe of phellonic agia. He *as unacoossful in obtaining any imantity of acia From this material, and turned the ilstillate over to the rresent investigatcr. Great dipilculty had benn found in Facuma dibtilling the orude because of the large amount of water rresent. Thers was a geat desi of fodming, and the distillation had to be watchod very oarefullye In this investifetion it whe founs adviasble to remove the water by distililng with xylene or bensene. The resitual solvent oame ofe readily when a
 perature the wex alstillod withow fomming However. foul-smelling grees. probably aulum or nitrogen containing oomponda werg given off by the impuritien present, ant a high vacum coula not be maintained. congequently the boiling point of the aistillate went up to about 300,125 m

Approximately 100 gras. of the orude was freed of water by mixing oith 200 o.0. of myane and aistilling orf the solyont. This prooees ws repatad threo tines, uging ary xylene if a water trap wh placed between fissk oontaininc tho crude plus the xylene and a reflux oondenser, the water could be rmoved in about an hour with littie attentione

The restiual xylono adhoring to the orude was remoted by placing the mixture in a 500 o. 0 . sansage flest, turning on the vacum, and heating gentiy. Then the salt bath wes raised to 335° and the pressure was 25 mo (a water punp was use in the first diatillation) the marcarbon atarted to aistill. The boiling range was $230-250^{\circ}$. about 75 ger of 11 ght yellow wex being obtained.

Ethyl alcohol was found to aissolve oomparatively littie of the wax, while remoring much of the coloring matter. Alcohol was not atiam factory for rearystallization, however. since even when hot it disaclves only amall fuantity of the max. The divtlllate was found to orystallize well iron scetone and also frompropanol. Conseruently, after extraction with ethanol. it was orystalised repestedy from these two solvents antil the meltins peint was constant. The product was pure white sind aid not discolve in concentrated sulfurio acid of dimethyl suifete. it reactea nelther with bromine in ourbon tetrachiorido nor potasaium pemang nato. Whe rosults of Fiast comphor determintions of the molecular wolght sere not very satisfactory. Those obtained by the author indicated about twenty-nine oarbon atoms in the chain. while those obtained by another anslyst indicated only about twenty-cne or twentymtwo.

Solvent purification. 175 gms. of ilstillate was dissolved in 2. 5 liters of hot acetone. On cooling $8 x$ gus. of light-colored wax was obtained. On distilling the acetone from the eatrate, brow wax wa obtained. Fins wax was extraoted with oold aloohol, then recrystallized onoe from acetone and once from proyancl. The resulting product was combined with the irst preoipitate from acotone. The total yiela was 39 mas of material melting at 36°.

Ansigsis: Carbon 85.01. 84.85. Aycrogen: 15.07, 14.99. since it was evident that fractionation prooedures would have to be used, conaldersbla quantity of the hydrocsrbon mixture was puriwied. hn attenpt wism made to purify the substance by ohromatographing with siumina. The bydrocarbons were not sasorbec at all and a great deal of the Impurities were removed. However, the procesa was slow ana required large amount of alumine to purify any quantity of bydrooarbons. sagnesium oxide ant ten parts by wejgt of "ByFlo tuper Cel", which is vade by the cohns-kisnville Compang, also took the solor out of a diute benzene solution of the hydroosrbons, Nether of these chromatographic methode was thowgh suifsble for the prification of large quantities of the orvae wax. she procedure finally adopted wes tho extraction of benzen solution of the hyuroarbons with cold eoncentrated aulfuric acid until addition of fresh acia no longer removed color from the solutione A total of bout 300 gens. was thus furified. In the sulfuric acid-scilible fraction there was present acnsiderable quantity of aiseolved solins which were thrown ou by pouring into cold weter. kepeated arystallization and oharocaling of the dari-colored material realtea in amall anantity of a light-colorea solta whioh ahrank in a arpillary tube at 220° and melted at 239-240. It waparenty a mixture of oerin and riviedelin which had beon carried over in the distillation, and nothing further was done with it. A cooling curve and carbon and hydrogen analyses indiated the mixture obtained by acid parifloation was about the ame as that cbtained by repeated orymallization of the crude wax.
guriflogtion with sulfurio acis. 300 mma - of the waxy
distillate was dissolved in benzene, ans shaken with cola ocnoentrated
sulfurio aoid in a sopasatory funnel. the acid colorea consider ably and frean molit was aded in amull portions until it no longer bacaue oolored. whe benzene solution was allowed to stand overnight with anhydrous sodium carbonte. a smell anougt of gelatincus material formed win the mixture was centrifuged. On rexoving the solvent by alatiliation on the steam
 material wa obtained. two reorystallizetions from acetone gave 125 gma. of product molting at 55°.

Qoolink aurve on the hydrogavbon siyture The bsth oonalsted of a battory jur of about ten litera oapacity, plaoad in an oramary onameled tub. Ground corit was placed below and around the jar in order to give slow oooling Q o the bath. Using a Varisc, constant rate of heating or cooling was easily obtalasble. the sumple of about 10 ghe was placed in an ordhary fytex teat tube whion was fitted with whort fiece of large bere rubber titing adiscent the lip: This served as a connecting riece between the smaller test tube and larger one, oreating dead sif gace between the bath and the semple, to lag the bating or coolna ofect of the bath on the sample, A spiraled metal stirrer was used and operatea by hend. A Bureain of Standarda osilibrated 0-100 thermoneter was placed in the midde of the melt. She initial temperature of the bath was 54° with the molt at 56.50. The bath we mate to col lowly at a controlledrate. The ourve ctialned is हifen in fig. 1 . page 15.

B. Eracticnal diatillation of the mixed hadrocarbong-

slow fractional diatillation at ax millimetors pressure asing a colum about foot and half long, paoked qith glabs belices and electrically heated, realted in a series of fractions ranging from the

2owest. which consisted of meterial bosilng up to 145° to the higheat whioh boiled from $200-207^{\circ}$, an wall as the uskill brown still rasidue nefraotive indices of mot of the frations wre obtained and omparison of these with Gluud's ${ }^{12}$ values for pure hydrocarbons inalowted rowghly the men number of arbon atocs. Thus, the sverage oarbon oontent of the fration bolling from 165-170 wab atout rwenty-fovr, and inoreased steadily to about twenty-nine In the frastion boiling from 195-2000. Fhe raractive indices of the highest ane lowest bolling fractions were not detormined. A sumary of the resulta cotained by fractionsl distillation ia given in the rollowing table:

TASLE 1

Boiling point $\ln \mathrm{O}_{\mathrm{C}}$	mount in ges.	Merrantive index at 65°
Still residue	10. 2	
200-207	13.1	-memem
195-200	19.9	1.4367
188-195	19.2	1.4344
180-185	28.4	1.4538
180-200	5.5	---
175-180	45.4	1.4823
165-173	42.3	1.43 ec
up to 155	4.4	1.4311
148-165	39.9	--m-*-
un to 14 E	33.3	-mmom

The apparatus used ocnsisted of $3 / 4^{\prime \prime}$ column about $18^{\prime \prime}$ long
aealed to a boc ce. flad and gurrowned by an electrically hested air jacket. $\%$ go gaas tubes were sosled to the flasi, one for soding mample, the other to hold boiling tube. No air was ran into the flask from the ontgiae, but the slow evolution of the air from the ma boillng tube Wha auficient to prevent bumping che colvan was facked mith isas halfoes, the sherwoter being attached by mean of a piece of rubber tubing in the watal fushion "he arm conaucting the distillate to the recolver was about a 100 long and served as an alf oondenser. The receiver was a 200 co. distillzne lusk the arm of which was connectod to manometer, which in tarn was connecter to a Cenco in-Vio puap. It was found necessary to surround the outlet tube with hot niohrome wire to prevent the paraifina from solidirying betore they reached the receiver. It was conveniont merely to oxtend the wire maed in the foket exround the exit tube To prevent flooaing in the coivm it was neoessary to keep the jacket temperature $20-30^{\circ}$ above the distilling temperature. It was endeavorea to have the liquid rofux about two thirds the leneth
 geconds with the bath temperature about 90° above the distilling temperim ture. 310 gma of the paratiens was diatilled, the whele appasatus being cooled each time 5 raction wad out.

The indices were determined by uing a Vientine rafractoneter 4498. made by the industro-ideientiric Col. Phila., Pa. The temperature was kept at 65° by oiroulating through it water from a constunt tomperature bath. With the assembly used it was poseible to hold the temperature oonstant to 0.1°.

0. Equilibrinm sithing of hxiscospbon fraction

 sttempt further seywiation by manc of eguilibriwn melting ghis metnot wat Le日 by Hilcks ${ }^{25}$ and by Hair 19 and was founs wey oonvoalent and

 held at any desirectempergture for a ocnaiderable length of thme mhe
 Erlonmeyer risax, the whole veine placed in constant terperstura batho It mas found more convonient to use the hyirocarbon mixture itgelperather than an ether or petroleum ther solution it was only neoessary to ralse tno tmaperature of the bath to any anatrea lavel allow the contenta of the
 attached Mrlenweser Plask.

Each of the eraction obtained by fractional aistillation was cut into erom three to pive narts. On most or these amil iraotions the capillary meltina points, set-points, and rerwative indices wero determined. Lt was noted thet the melting yojnta of the mucessive fractions increased as oxpected in regular fadaton but the rearactive indices secreased. It whs also noted that the hitaor fractions were 1ightor in color than the lower ones. The conclusion wat obviowe that impuritias mere lresent mad were ocnoentrating in the lower fractions the presence of non-hydrocarbon impurities explained the unexpectady large diference In the melting points of the hishest and lowest cuta from oach boiling fraction.
 alumina was inst tried. This raised the melting point acwowhat, but the
hydrocarbons obtained still colored warm sulfurio acid. gince it was found that other investigetor ${ }^{4}$ hea purified solid hydrooarbons by treating them with concentrited sulfurio acia at 120° until freah acid no longer was dolored, enoh of the ractions obained from the equilibrium melting was treated with atheric acid at $120-130^{\circ}$, the mixture being atiryed by an electical strrer. One thee hour treatment in this mancer removed practically all of the materisls that colered mot gulfuric acla. \%hemolting points were reasad considarably, fraction aight, for inatanoe, changing from $49-50^{\circ}$ to 5l. 0°. In mathe 11 the melting points and setpoints given are for the frationa after the soid traatmont.
 the acid treatment, part of the lose being due to the solubility of the nyarooarbons themgalyes in the aoid. partiy to mochanioni losaes. partiy to the reaction with the oxpgen-contaiming or wnsturated substances present.
 190425 mon with anote plece of 5 me tubing gealed on to the botton. rais was inserted in a rubber stopper and attached to an inverted ive pound ether csu with the bottom off, which made a convenient water bath. A copyer coil in thig bsth through which water ciroulated, after having boen run throwgi an ioe bath by means of owroulating purapg gave faxly conotsint low temperstures. Ether olutions of the mixed parafin fractions were frozen solid anc placed in the funcl over a pat of shas wool. k the bath fratually heated up, fractions were draned ofe by preasing the
 Low temperatures could not be obtaned.

The next apyaratha used was an eleotrioally heated amy dry 1 oe cooled tunnol (fig. 2 b) similar to the one wed in the first apparatua.

RESULTS OF ETLIBLIUM MELTLNG

$\begin{aligned} & \text { Doiling } \\ & \text { nange } \\ & \text { oc } \end{aligned}$	Irection	$\begin{aligned} & \text { Wt. Gms. } \\ & \text { arter } \\ & \text { has }_{3} \mathrm{SO}_{4} \\ & \text { wreatment }^{2} \end{aligned}$	$\begin{aligned} & \text { Temp of } \\ & \text { Dath oog } \end{aligned}$	Nefr - Ind.	
200-207	18	0.5	47.6	1.4415	57, 57
	19	0.4	51.8	1.4410	57, 56.8
	20	2. 2	55.4	1.4370	57. 56.8
	21	4.4	33.0	1.4345	58.5,58.2
	22	2.0	over 58	1.4342	59.5,58.0
195-200	3	2.1	50.6	1.4416	66.5, 56.0
	4	1.6	54.0	1.4380	56.3. 56.0
	5	2.7	56.0	1.4360	58.0, 67.5
	6	3.9	58.0	1.4345	59.8, 58.3
	7	4.3	60.0	1.4335	$59.3,58.8$
188-195	23	0.6	52.0	1.4599	54.8.54.5
	24	2.6	54.0	1.4348	55.8, 55.5
	25	$7 \cdot 5$	56.0	1.4330	56.5, 56.0
	26	4.4	over 56	1.4329	57.0, 56.8
180-185	27	2.6	B2.0	1.4360	54.0, 53.7
	28	6.1	53.0		54.5,54.0
	29	16.2	55.0		35.0, 54. 5
100-200	2	2.8	53.4	1.4360	55.0, 54.5
	1	1.4	over 53.4	1.4324	$55.8,55.2$
175-190	B	2.3	48.0	1.4360	51.8, 51.3
	9	2.0	49.6	1.4327	52.0, 51.5
	10	4.0	51.0	1.4315	52.0, 52.5
	11	13.1	52.0	1.4308	52.4, 52.0
	12	9.9	53.0	1.4312	52.8. 52.0
165-175	30	3.6	46.0		$49.5,49.0$
	31	10.2	48.5		49.5, 49.0
	32	22.7	50.5		50.3, 49.8
up to 165	33	7.3	43.6		46.3, 45.9
	34	16.0	46.0		47.0, 46.5
	35	17.5	48.0		47.2.46.8
148-165	36	5.9	44.0		46.2, 45.8
	37	24.0	46.0		46.2, 45.9
	38	3.2	over 46		47.0, 46.4
up to 145	13	2.3	28	1.4392	40.5, 40.0
	14	1.7	32	1.4307	39.0, 38.2
	15	$2 \cdot 4$	37.2	1.4310	40.8, 40.6
	176	4.5 12.6	39.6	1.4274	42.1, 40.8
	17	12.6	42.5	1.4264	41.8,41.3

FIG. 2
APPARATUS FOR
EQUILIBRIUM MELTING

a.

b. $\forall A \therefore \subset \in E$ BONDMHMGLP!

ICE

C.
momperatures arcund 0° could radity he obtainei bit were not very constant.
The apparatua finally abopted for use on all the fractiona obtained
 type of funcl ubed in the other net-ip3, but hal a afoferent type of a filter pad. fiece of linen was sewed on to a horr extaction plate ac that the tow of tac plate mam octare with a mooth surface of innen. About 4-5" of copper fire was solaered on to the attached pin, and the plate fitted
 tube to prevent the plate from movinge This tae of eister fad was foud to be vory atiaractory, no solika getting through and the lifuid pasing through easily Soreover, the holdup wis very small. A piece of heavy niohrome wire passod trough ahort length of gless tubing ingerted in a oorfat the mowth of the funnel. and bent in the shape of circle at the end served tis a stirrer.
diter placing 5-30 gra. of a partioular eraotion in the funnel, It and the attachod sidemrmed Jrienmeger flesk wore placed in oonstant temperature batho the Eamener has side-arm ion enough to extend out of the bati. She funnel was attabid to the Erlenmeyer by a tizinty fitting rubber atopper. The thermeregilator used was propiled itit a stopeock which won open allowed the bath to heat ug. Man any desired tenperatire was remone the atoyocot was closed and the trmperature was maintainea as closely as covid be read on an Anschütz thermoneter. In beginaing the fractionation of ample, the tempersture wo first raised to the point at which the hydroctrbon man softenta ocnalderably, and then maintained for lis-E0 minute with atirring. ft the ond of this time, the Iiquid which his not already filterea through was sucked tionomin by

Abstract

 Was then allowed to stay in the batn marther ton minutea to zaame getsing wil the nyirocsrbens out that wowla 11 iuesy at that temptature" gis blom on the rwber stopper to weppater chito the flam when it apparatus wat agin oonnestea and the temper aur allowed to rise untul the nixture began to ecften againe it was gentine to come to eguilim brium ag before and xnother faction arswa orf pach of the ractiona aysteno

Each of the fractions obtsinca by equilibriun melting was phaced in a 2250.0 . Ir 1 enmeyor, wixed with $30-60$ o.c. of concentrated mituric aotu, and heated mt $120-130^{\circ}$ fox three hour by immersion in an O11 bath heted by a Bungen burner. The neck of the flask was olamped to ming atsna and bne cixtare electrionily gtirred. After the thr ge hcura were over the mixture ors ocoleg in ice, fiteredthroushefted
 wotone, twhen u in petroleum ether. wna fiteredo Fhe golvent was equporated off and the parafin wecrywtallized rrom moctone.

At ixgt he oxysen-frec fractions obtained by tho experimenta with equilibrlum neiting were owbinod on the bisis ot melting polnt.

at about 410. Lach of these nine fractions was then fraotionally erystalliaod from ethyl ether, and the fractions thus obtained combined on the basis of melting point.

After the fractionation of these nine fractions, it was realiaet that the best ohanoe for getting anything reoognazabo out of this obviously complicated mixthre was to ooncentrate on the highest and lowest melting fractiont fopestet rractionation of one of the higher melting fractions, first from ether, then from thirty to ixty tegree petroleumether, gave a proket whose myshas conatanta dic not ohange on further fraotionation.

 electriosily gtirced bath wer found to be too high by about threg degreea. Thim difference wat fairly oonstant, and wan unioubtediy due to insufficient 1ifuid in whe bath whioh cavaed poor olroulation aigh molting points have been observed by sando ${ }^{23}$ and otvers on this type of bathe as aon as it Was discovered that the melting polnts were too high. the beth was aiganded and all firther melting, set, ana transtiton pointa were taisen on the beakex bath. The resulti obtainga on this apparatus are belleved to be very reliable sinoe a calibrated lnachitz thermometew was used, ana the rate of nedititg was slow.

From the lowest melting fraction "I" there was finally obtsined, after fractional oxystallization from scetone ana petroleum other (1:1). frations m_{3} snd m_{4}. The former ralted st 41.4 . set at 4.1 , and exhibited transition points at bout 35 and 40.6 . whemeltug point of the latter was 40.0 and it underwent transitiona at $35-36$ snd 39.4 . Whe

 prookhure for the fredtionations:

Heactions 3_{1} and b_{2} ware genern $11 y$ tound to have slmost oxitoty the sume melting pointa and wore ormbined. similatiy 3_{4} and 5 were the

 anc the filtrate on the ritht. Tho filtrate z_{2} from the orystalitagtion of L_{1} was combined with the reciritute obtainca by cooling or concentrating 22. In theqe sractionations the ve of 125 o. o. Iarlenweyorg with intor-
 condenser with fround joint could be oongoted directly to the flasir for concentration yurposes. 2he use of ground joints siso avoided ontaminstion of the fractions, which is important in arooess moh as this.

In the following report of the actual eryatallizationa vialob were osiriea owt. the letter in any fraction is the lettef given to the gtarting prodwot of any acries of eractionstions, ant the number and subnumersis show the poestion in a Alagram like that on this paste shus, the name of a fraction $\mathbb{S E}_{4}$ will indicate that fraotion has bon arystallizea aocording to the acheme outilned until the place indicetea by ge has beon reached.
 general oheme The large numbex aiwhys indiontes the level of the fraotionation triangle, while the stomumer indicatea the number of the fration at that leval.

Frations 18, 29, 2-, and 20, melting at 57°, wioh were obtained From the experimenta with equilibrium meltiag, were combined, and given the designation "A." aieresfter, fraction numbers given without letters will be fractions obtained from quilibrium melting fractionation from ther gave Cour prsetions with the following melting em set-points:

Fraction	$\mathrm{A}_{3}{ }_{2}$	43_{2}	$\mathrm{A3}_{3}$	AB_{4}
\%.t.	$59 . \theta$	58.0	67.5	55.0
3. ${ }^{\text {¢ }}$	88.3	67. 5	57.0	-m-

The two fractions Δz_{1} and ΔS_{2} were not combined, but were fractionated ma part of the general schome dean to the fifth level, juat wa 3_{2} and 33 were treated in the general diagration the preceaing page this process of taking only two of the fraction from one level to lower one will be referred to hereafter as "aud irsctionation".

The meling and get-points of the four fractions thum ostinined are given in the followins table:

Praction	A_{6}	45_{2}	${ }^{4} 5$	A_{4}
3. P .	59.5	59.	57.1	35.
3.15	59.	$58 \cdot 5$	56. 9	---

A_{3} was duded to A 5 y and HC_{4} was added to fraction 2.
Fractions $A S_{1}$ and $A S_{2}$ were Practionated as follows:

 the preapitateg from those same two fractions were conbined to give $A G_{1}$.

Wext. the most inacluble fraction $A A_{1}$ was orgstallized a number

filtrates $\mathrm{Ag}_{2}, \mathrm{Al}_{2}, \mathrm{All}_{2}$, and $\mathrm{Al} \mathrm{Z}_{2}$
The constants for All_{1} and $\mathrm{El2}_{1}$ were as rollows:

Fraction	\$111	A121
W. P.	60.7	60.8
S. B.	60.2	60.3

Two more orjatallizations of A12 1 gate A14 1 melting at 61.1.
The two filtrates wore ombined with $12 \mathbb{R}^{*}$
She constant for the filtrate ottained were as follows:

Fraction
M. ${ }^{3}$ 。

Fraction
角. ${ }^{2}$.

Fractiona All $2,41 \theta_{2}, A 9, A 8_{2}, 412_{2}$, and 22 were oombined.

A122
60.3
40_{2}
58. 9
All_{2}
60.0
${ }^{4} 72$
59.

492
$5 \geqslant .9$
${ }^{4} 6_{2}$
58. Thas, from these fractionation of "A", the following oix
fractions were left:

Fraotion	$\Delta 3_{4}$	$A 5_{3}$	$A 14_{1}$	$A \theta_{2}$	$A 7_{2}$	$A 6_{2}$
mop.	55.	57.1	61.1	Ca. 60	59.0	58.0

The next atep was to acmbin fractions 1, 3. 4, 24, and 25. These fractions melting at 56-56.6 were called "a". Fractionation from ether yielded the followin frastions:

Fraction	$B 3_{1}$	$83{ }_{2}$	BH_{3}	33_{4}
M.P.	58.5	57.0	57.0	Бě.

Praction 45_{3} and $B 3_{3}$ were added to 83_{2}. Fractions $B 3_{1}$ and 03_{2} wore ther "dually fractionated" as was "A". The following frations were obtainod:
Fraction
M. P.

$$
\Delta 6_{1}
$$

$B 6_{2}$
58.
${ }^{86} 3$
57.
80_{4}
35.3
36_{5}
E2.
$B 6_{1}$ was added to ${ }^{47} 2^{B} 6_{2}$ was added to $A 6_{2}$ and $B 6_{5}$ was wded to fraction 10.

Thus, fram "BM. fractione $B 6_{3}$ and $B 6_{4}$ were lept.

Next．Iraction＂C＂melting at about 55° was formed irom fractions 20．29．F．and BG_{4} ．The ubual fractionation from ether reanltod in the followng four frations：

maction	03_{2}	03_{2}	03_{3}	03_{4}
3.3	56.3	56.0	54.7	52.5

Dual frationation of CH_{2} and O_{3} gave the following fractions：
Praction
整。点。
66．
06.3
56.0
$0_{4}{ }_{4}$
55.3
CG_{6}
58.8
$0 \epsilon_{6}$
52.2
EG_{g} and 03_{1} were combined with $0 G_{2}$ and $A 3_{4}$ wamaded to $0 \theta_{4}$ ．

27．2g，and 06_{6} ．The woun fractionition down to tho tisird level and dual． fractionation of $D s_{2}$ and $D s_{3}$ to the letel of fowr geve the following：

Praction	D31	DA_{2}	${ }^{24} 3$	DA_{4}	DS_{4}
E．3．	S6．	S\％． 5	54.	132	－mm

 Wext，＊melting 5t 51．8－59．5 was formed from tie ombination of
 with dual frectionation of $E \xi_{2}$ and wave gave following：

Fraction	ESO_{2}	2620	EC_{3}	SC_{4}	${ }^{2} 6_{5}$	${ }^{26} 6$	HES_{4}
M． P 。	54．0	54.0	53．0	82．2	51.0	50.0	

$\mathrm{H} 3_{1}$ and $\mathrm{H} G_{2}$ were gided to D4 g
Next，＂F＊melting at $49.5-30 \cdot 3$ ，was formed ircm fractions $30,51$.
 gave the following：

Prection	33_{1}	16_{2}	${ }^{6} 6$	Fe_{4}	$\%_{5}$	766	${ }^{5} 3_{4}$
新．${ }^{\text {P }}$	51.5	52．0	51.5	80.5	50.0	48.5	49.5

FB_{1} and 76_{2} were added to $\mathrm{HC}_{4}{ }^{\circ}$
Fraction FG_{A} wes the first fration in which trangition points were observed．The tranaition pointa on heating were 36 and 50° ．

Fraction "a", welting at 47°, was next formed from fractions 34, 35, and se. The followine fraction were obtained in the usual way:

Prastion	05_{1}	05_{2}	05	3
Her.	45.	40.	47.	46.0

Dual fractionation of GB_{2} and $0 z_{z}$ ramited in the following:

Frastion	as_{2}	CO_{3}	954	\square_{5}
	49.	48.	47.	46.
and $5 \cdot{ }^{\circ}$	48.2	47.	---	45.

on hesting
Fractions $\mathrm{Fb}_{4}, \mathrm{Fb}_{6}, \mathrm{Ce}_{1}$, and Gb_{2} were ocrabined.
Next, fraction "f", melting at 46°, whem formea from fractions 33. $36,37,034$, and 055° Tractionation of'it'and cual fractionation of HS_{2} and HS_{3} gave the following:

Fraction	HH_{1}	${ }^{4} 5$	HO_{3}	45_{4}	${ }^{1505}$	HLS_{4}
Stip.	48.	47.5	47.	46.	45.	45.6
and t. P.	47.	47.	46.	450	--m	4会。

$H 3_{2}$. H2 z_{2}, and $\mathrm{H} 5_{3}$ wer combined with 05_{4} and $H 5_{5}$ and $H 3_{4}$ were combined.
Fine next stap wan to combine fractiona 1.2 .15 , and 16 to give "I", melting at 41\%. Fractionation gava the Pollowing:

Praction	13_{1}	13_{2}	13_{3}	13_{4}
3.P.	43_{0}	42.	41.2	39.8
$2 n a r$	$42 \cdot$	41.	40.	39.
on heating				

10 13_{2} was sided fraction 17 , and fraction 14 wam added to 13_{4}.
The next atep consisted of refractionstion of suitable frictions already obtained. Eraction 48_{2} melting at 57 was remaved "e" for the aato of onvenience, and refractionated to the level of three, and then $t z_{2}$ and J3g were aumily fractionated giving the following:

Eraction	2_{1}	${ }^{15}$	${ }^{3} 3_{3}$	J_{4}	d5	3
nopo	60.3	60.	69.	38.	56.	56.

 "hes with dual fractionation of K_{2} and the 3 geve the followng:

Fraction	$R 31$	82	${ }^{14} 8$	BH_{4}	${ }^{12} 3$
V. $\mathrm{P}^{\text {。 }}$	60.5	60.5	59.5	57.5	57.

सtil was re-named "ur" and frationatea to give the following:

Fraction	${ }^{13}$	${ }^{\text {a }}$	${ }^{4} 3$	${ }^{4} 23$
2.2.	61.7	61.	60.	39.

 sive the iollowing:

maction	${ }^{16} 1$	${ }^{46}$	176	nl_{4}
2. ${ }^{\text {P }}$	6\%.	61.5	60.5	60

Next $4 \sigma_{2}$. ronamed "L" and melting at 59° was Nactonated and

Fraction	$L_{3} 1$	LS_{2}	1.45	154	E5	13_{4}
	60.	80.			57.	67.

LSy and $4 G_{6}$ were fractionated acoording to the following soheme (tho melting points are given sojacent the fraotions):

$L 3_{2}, L 5_{2}, L 7_{3}, L G_{4}, L 11_{5}$, and $L 1 z_{6}$ were now combined and called "y". On carrying ont a series of zraotionations like the previous series, the following fractions were obtained:

Praction 新. ${ }^{\text {P }}$.	$\mathrm{NH2}_{2}$	H34	NS_{2}	${ }^{15} 5$	47 61.	N76.
Mrection	NO_{4}	495	${ }^{16} 6$	49		
4.p.	01.	69.5	59.	--		

 were ombined and called "O". hefractionation of mo" to the level of three and then dual frationtion of 03_{2} and 03_{3} gave:

Fraction	03_{1}	03_{2}	00_{3}	00_{4}	00_{3}	03_{4}
$3.2 \cdot$	61.	62.	60	60.	-	59.8

Practions 06z and 00_{4} wer atace to 03_{4}.
 accoring to the sume sobene the lat saries of fractionations gavo:

Eraction	$P 3_{1}$	$P 02$	$P 53$	$P 5_{4}$	$P 5$	$P 3_{4}$
$M .2$.	61.	61.	60.5	60.	60.	60.

PB_{3} slac underment a tranaition at about 55°.
PH_{1} and H_{2} were ocablaed, called "e", and fractionsted again
In the tane ramer sis the ronegoing to give:

Praction	43_{1} and $4 L_{2}$	$4{ }_{3}$	45_{4}	858 and 3_{4}
Fisp.	61.	61.	61.	61.
S. P.	61.	60.3	ca. 52	-
T.p. (1at)	50.	52	-	ca. 52
\%.P. (2nd)	61.	-	-	---

After treating ψ_{2} and 45_{2} with anifuric aoid the following conatenta

The next step was to change the solvent. ctes, 45, and sh were combined, oalled $n a^{\prime \prime}$, and fractionated from $30-60^{\circ}$ petrolewn ether. aocording to the ame scheme sa the last sories of fractions. the
following frations were obthined:

Praction		HE_{3}	$\mathrm{S}^{5} 5_{4}$	d 1
M.P.	61.2	61.	60.6-60.8	60.2
So ${ }^{\text {che }}$	60.9	--m	60.2	---m
(2.). (1st)	53.	53.	52.	52.
T. $2 \cdot($ 2na $)$	01.	--	60.4	-

Bince it appeared that apreainble changes in the ocnstantg were no longer taking place, further frectiontion of this material was abandoned.

Next, the fractiona $13_{1}, 13_{2}, 13_{3}$, and 13_{4} were purified with sulfuric acid, and their physiosi oonstants oarofilly determined:

Praotion	13_{1}	132	133	$13{ }_{4}$
	42.7	41.6	41.2	39.5
3.8	42.4	41.0	40.4	$3 \mathrm{e} \cdot \mathrm{E}$
T.P. (1at)	$\begin{gathered} \text { below } \\ 31 \end{gathered}$	6s.35.	34.	ca. 30
T. P. (2na	42.0	40.6	40.6	---

Fraction ISk was renmed "g" and fraotionatod from petroloum ether-acetone (1:1) acoording to the acheme used in the lagt several serieg. The Pollowing frections wers obtained:

Praction	33_{1} and 85	353	85_{4}	S5 man SJ_{3}
H.z.	43.4	42.0	41.0	39.
S.p.	42.8	41.8	---	38.8
T.P. (1st)	35.	under 30	36.5	----
T. P. (2nd	43.2	ca. 41.5	---	---

Next, SE_{4} wan oalled m" and oarried through acrieg of fractionations fron soetono-petroleum ethor (1:1) with the following reanits:

Praction	T3 ${ }_{1}$ and TS_{2}	TS_{3}	45_{4}	${ }^{55} 5$ and ${ }^{3} 3_{4}$
	42.5	41.6	40.0	38.8
g. ${ }^{\text {co. }}$	--mo	41.1	---	
7. P. (13t)	36.	0a. 35.	35.-36.	33.
F.p. (2nd)	42.	40.6	35.4	--

 determination of its conatants geve for the moltire point $50 . \%$, setpoint 49.4 ; and transition roints $37-38$ and 49.6. The following
fraction were cbtained from retroleum ether－acetone（1：1）：

Fraction	U35	U32	U82	C_{4}
	31．0	50.6	49.2	47.8
3．${ }^{\text {P }}$	50.6	49.5	48.9	47.4
7．3．（1st）	39.	\％7．4	cate 390	03．39．－39．
2．${ }^{\text {m－}}$（2na）	560	49.8	48．2	47．8．

 and SA．S．Fractionction fron motone－petrolewnethex gave the following：

Frsction	V31	132	$\mathrm{V} \mathrm{F}_{3}$	V34
縕这。	50.6	56．2	55．2－55．4	－m－
3．2．	36.2	55．9	E5．0	－－－－
7．9．（2at）	45。	44.6	43.0	below 39
2．i．（2na）	－－m＊	55.2	54.8	－en－

V多 whe renamed mo and further racotionated to stve the COL10wing：

Fraotion	${ }^{3} 3_{2}$	${ }^{3} 2$	${ }^{4} 33$	$W_{4}{ }_{4}$
㫛•P。	56.8	$5 \mathrm{E} \cdot 4-46.6$	55.6	53.8
3．${ }^{2}$ ．	58.3	54.9	55．2	53.4
3．2．	（1at） $44.4-45 \cdot 6$	$4{ }^{4} 82$	44．7	02．45
？${ }^{\text {P }}$	（2nd）56．0	56.0	55．2	53.0

W2．was renmed＂xt，and eurther frectionstea to the hevel of
 Tollowing：

Preation	xHy_{1} and x_{5}	Y． 5_{3}	Xb_{4}	X 5_{g} and XB_{4}
成。	60．60－36．7	35．8	50.6	55．0－65．2
3．2．	56． 3	55.4	55.1	$54.40-84.6$
	46.0	44．6－44．9	43.8	$4{ }^{6}$
7＊${ }^{\text {a }}$（2nd）	56．4	35．6	55．0	54．6

Eractionation of the gtill regitue The still reasdue was csiled＂R＂and irtationeted fron petroleum ether．It will be noted that
 differsnt fractione the two different ns may be aistinguighed by the numbera whish follow the letter．In the fraetion ierived from the stil
residue, no subnumerals are wised, wille in the "in" which appeared pre viouels in the thesis, one number to represent the fractionation level, and a abnumeral to represent the nomber or the fraction in the level were used. In the following diagram the melting points appes adaoent the fraction numbers:

$R 12$ was combined with R11; and R28, R29, and R22 were oombined with R16. Careful determinations of the oonstants for h16 and $\pi 11$ gave the following resulte:

Fraction	H.P.	S.P.	T. $5 .(1 s t)$	sap. (2nd)
11.6	65.2	65.0	56.2	65.0
n11	64.2	63.8	54.0	68.0

carried out acoording to the following diagram:

The anstants for the fractions obtained were ac follows:

Fraction	Y_{5}	$\mathrm{Xb}_{2} \mathrm{mma} \mathrm{X}_{2}$	13_{2}	${ }_{13}^{3}$
	65.6	64.4	63.7-63.6	ca. 65.4
3. 3^{3}	66.2	63.6	6%.	--m-m
5. $\mathrm{m}_{\text {- ((at) }}$	530-56.	540-55.	$55 .-54$.	indef.
5.2. (2na)	65.?	65.8	83.0	-----

2he bath used foz the eareful determination of the and onanta

 In 0. 2° aiviaicna wat riaced in tio conter ot the bath, and resu with the
 per cent. In order to oool the dathrapitly iac mas placed on the wire guix around the beaker. In this wat it was orat to oneok the trangition

 milifmeters. zhe tube was then nlaced on the stem buth for a minute

 of the ample and allowen to oool slowly until it olialfiene and then ocoled rith iae below the twanstion rointo she bathwas then heatea
 a polnt abowt two agrea below the meling rolnt whe parafin underwant snother irantition abut mat degree below the delting mojnt and finalig nalted harply to a olear liquja. On

2he transition points for the loway maxatins were not ao

 At the tranition point, the ontire materinl beoame alear exoept for a smooth, longoted alr buble in the aentor in soxe onges. ospeosally if
 sonother the ar bubble yez inted whon tho amy wiss sooled below the transition point, but farged eage awteared in it. On raising the tompersm ture to the transition point the edgen smocthem out. The secomutrasition point on heotinc mes marked by a aisaryearance of the afr gap, and the charging of the material from s slas ay to an opaque tate. The set-voint
 values rovorted ior the transition point set points, snatmeling pointa are believed to beod to 0.2°.

galibrition of neltine noint bath.

```
zound for nonasemane*:
```



```
    3.2. 63.1
    T.8."* 56.6,63.4
Cnibnal1': values:
    #.4. 63.4-63.6
    S.%. 03.E
    7. %.'s 57.3-57.5,6%.2
```


7. 范-c|

 tube, asting a copeor tariget. The tube was whtormooled and operated at

[^0]

 the aparage values that wera olear encurg to meanwre acourstelye rhe overm 411 acchrocy of the determinations of "d the interplanar spacirg was about
 spacing , i. © lareer anglas, was of ocursmanh better.

 gonterion factor for degraeg to railans.
$$
\theta=\frac{4}{2} \times 67.30
$$
 Manar spacing "d".

2he actual photographs obtanau in this resoarch are given in fiss. 3 to 14.


```
Souns for nomanoasne \({ }^{-k}\)
```



```
                                    \(=11^{\circ} 8^{\circ} 53^{n}\)
    a \(=38.4 \mathrm{~A}^{\circ}\)
Onibmall's value for nonacosane :
    a \(=\$ 8.68 A^{\circ}\)
```

[^1]

Fig. 3 X-ray Diffraction Pattern of Nonacosane

IIIIIII

Fig. 4 X-ray Diffraction Pattern of Fraction R 16

Fig. 5 X-ray Diffraction Pattern of Fraction R54

Fig. 9 X-ray Diffraction Pattern of Fraction TF_{4} (Melted).

Fig. 10 X-ray Diffraction Pattern of Fraction $T 5_{4}$ (Pressed).

Fig. 11 X-ray Diffraction Pattern of Nonadecane.

Fig. 13 X-ray Diffraction Pattern of Tricosane

Fig. 14 X-ray Diffraction Pattern of a Mixture of 50% Heneicosane and 50% Tricosane

Sample calculation of macing.

Sample HE_{4}			
$\begin{aligned} & \text { Order } \\ & \text { tumber } \end{aligned}$		Distance from 1st Order Line.	
2	1	0.23	Average $\mathrm{S}=10.31=.287 \mathrm{~cm}$.
3	2	0.57	36
4	3	0.80	
5	4	1.14	$\theta=57.30 \times 0.287=1.184^{\circ}$
6	5	1.43	$2 \times 6.94=1^{\circ} 11.2^{\prime \prime}$
7	6	1.72	
8	7	2.01	
9	8	2.30	$0=12.539 \times \ln 1^{\circ} 11^{\circ} 2^{*}$
50tal	36	10.31	$=37.2{ }^{\circ}$

Sumerary of fienultg of X-ray Determationa.

Sample Orders iversize hengres in amp.			$a \ln 4^{\circ}$	
Synthetic $\mathrm{O}_{22} \mathrm{H}_{44}$ (molted)	5	0.380	$2^{\circ} 34^{\prime \prime}{ }^{\prime \prime}$	28.1
TS_{4} (welted)	5	0.369	Same as	-essed ample
T3 ${ }_{4}$ (pressed riakes)	5	0.370	$1^{\circ} 31^{\prime} 30^{\prime \prime}$	28.9
HS_{4} (presses)	8	0.287	$1^{\circ} 11^{\prime 2}{ }^{\prime \prime}$	37.24
XB_{1} (pressod)	7	0.301	$1^{\circ} 14^{\prime} 24 \prime$	35. 56
VB_{3} (pressed)	6	0.330	$1^{\circ} 21^{\prime} 32^{\prime \prime}$	32.45
T5 3 (meitea)	4	0.372	$2^{0} 32^{\prime \prime \prime}$	28.75
$\begin{aligned} & 50-50 \mathrm{C}_{21} \mathrm{H}_{44} \text { and } \\ & \mathrm{C}_{23} \mathrm{H}_{48} \text { (melted) } \end{aligned}$	4	0.356	$1^{\circ} 28^{\prime \prime}{ }^{\prime \prime}$	30.0
416 (preasea)	4	0.263	$1^{\circ} 5^{\prime} 6^{\prime \prime}$	40.64
9ynthetic $\mathrm{C}_{19} \mathrm{H}_{40}$ (meltea)	5	0.410	$1^{\circ} 41^{\prime} 28{ }^{\prime \prime}$	26.1
Synthetic $\mathrm{O}_{23} \mathrm{H}_{48}$ (melted)	7	0.345	$1^{\circ} 25^{\prime} 16^{\prime \prime}$	31.0

G. Buntheade ot hydrogarbons.

It was found that Chibnall and his co-worisers had determined phyaical oonstante for a number of hydrocarbons and their mixturea, from bexasosane to pentetriacontane, but had done nothing with the lower members of the sories. Shey aid show, hozever, that the ourve ror transition points

Versus acmpositions, could be oalculated for one eisture, proviad the ourve for a similar efxture, containing longer or shortar chains, hod been determinedThua, the tranation point-ocmponition durvefor a buture of meptacostone and nenacosane would nave the sane bage as the nonacosane-hentriacontane ourve, but would merely have a lower series of ordinstes (see fig. 15). inewerer, it was not known how far tuia process of oalculation of ocnstent coula be arried, kn sinoe om of the miturso obtaned in this reaearch were considerably removed in carber ocntent frow the lowest yith whici Cabnall worsed, it wa thought adviable to ratre weval of the lower parafing shet fetmine their physical constants sin the ocnatants of several of their mixtarea. Honafecane, henelcosene, ant tricosine were synthesisod by a method similar to that used by Chibnall and othera, with ocveral nolifications. The proper long ohain acida wers pyrolymed in the presence of reduced irca to give exoellent yields of the ketone wher porfortat iron plato suoh as that used by Chibnall was trind, poor yielda weqe obtained. fhis may heve been due to the diference in the kind of iron used. Ohibnall ais not specify any partioular mind of iron, but the materim uged in this work was semalvanized shoet iron. In the reduotion of the keton to the hyiroasbon, the bet yielas
 were used, sult the minte was bated and meohanically atirred pigercasly during the reation period. The hydroadrbon wer ixead of any unceacted ketone by treatment with hot sulfuric ncid until adation of fresh andin no longer removed color, and ware further purified by reorystellizinis aeveral times from acetone. The phystcal conatnets of the sththetio hydrooarbons and of several mixtures. which were made up in maner glollar to thet sesoribed by Ohtmall, are

3ample	$\begin{gathered} \mathrm{Ni}_{\mathrm{O}} \mathrm{O} \end{gathered}$	$\begin{aligned} & 0_{0}^{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { lot } \mathrm{m} \cdot \mathrm{z} \\ & \text { heatine } \end{aligned}$	2nd 5. henting C	$\underset{a^{c}}{\operatorname{Spag}}$
$\mathrm{C}_{19 \mathrm{H}}{ }^{\text {do }}$	$\begin{aligned} & 2 E \cdot 0- \\ & 32.2 \end{aligned}$	31.5	27.0	31.6	26.2
$\mathrm{O}_{21} \mathrm{H}_{44}$	40.2	39.8	34.6	40.0	28.1
$0_{254}{ }^{48}$	47.4	47.0	$\begin{aligned} & 41.6- \\ & 41.8 \end{aligned}$	47.2	n.0
$\begin{aligned} & 50,40_{21} \\ & 50, c_{23} \end{aligned}$	43.8	43.0	36.6	43.0	30.0
$\begin{aligned} & 30 \% \mathrm{c}_{21} \\ & \text { and } \\ & 10 \mathrm{o}_{23} \end{aligned}$	40.9	40.4	24.0	10.2	-

It is seen from fis. 16 that the melting points of the mure synthetic hymrocarbons check very cloaely the "beat" values given by wiofs ${ }^{10}$. Whioh are thirtymbw, forty snd four-tentha, and forty-seven and four-tenthe degrees for nonadesene, heneisosane, shi triccourf, respootively it is scen from this ourvo that though atraght line oan be dram throwg the relthag tomeraturea of the hydrocarbons oontaining from nineteato twenty-three arbon atoms. or throug the melting points of the homolag oontaining twan y-neven to thit ty-one carbon atom, there it a derinite arvatore. Conaquently, mirapolation of a straisht ilne throuda the top points will give erroneow welfing points for the lowex nombers of the ariea. finta aems to be true of the transition points of the lowar members alsc. Extrapolation of stpicht line throwg the transition rioints of the nigher members obtained by chibnall ${ }^{4}$ give values for the
 Fersut number of arbens, on the other hant, seon to be perfectiy gtraight
 the lows members it clogely to the stratigh line drawn tarcoch the spasing of the hicher members.

48.

Fractionation of ethyl laveate. Sastman ethyl laurato pas purified by fractional distillation through three foot oolum paned with glasa helices. An electrically beated air jaciet nad to be keyt about $35-40^{\circ}$ abovo the aistilling temperture to give smooth distillation without flooding- Eraotions were out by means of a "pig". The midale fraction boiled at 135.7-133.9\%/6 no

Haponffagtion of athyl lanyate. 44 gose of the best iraction of the ethyi lumate was aponifiod by refluxing with a miture of 250 a.0. of aleohol, 50 o.c. of water, and E grs. of sodium for several hours. doidification to Conco paper fith hydrogen chloride, and soveral reorgstallizations from alconol gave 20 grs. or 1 aurio aoid melting at 44°.
 pyrex teat tube with 0.0 gwa of reduced iron for 3.5 hours at 285° in a salt bath, with cocasional stirring. The melt was then extracted several time with boiling alcohol, the solution charcosied, concentrated, and cooled, whereupon the ketone orystallized in nearly pure form. hiter several recrystallizations the material melted at $69.0-69.2^{\circ}$. 2. 1 ge of lawrone, representing 750 yield was obteined. Gellbron ${ }^{13}$ gives 69° as the melting point for this compound. Anglybis. Theory: 0 81.55 日 13.69 Found: 0 31.33, 4 13.85. 81.1013 .70

Trieosane from laurone Zino mal gam vas propared by the wartin 22 method. A round-bot tomed flask cuipled witit a ground glass joint ma connected to a reflux condenser, at the top of which wat a tube through which the hydrogen onloride was led into a running watar. 15 gus of the anslgam was first placed in the flask, then 1 ge of laurone and 200 o.c. of an aoja mixture containine equal volumea of concontrated nydrochioric wata and alconol
 vigorously for twenty hours, when sll the minc was anolved. 學he mixture
 wixture were then fuded to the mixtwe of ketone and hydrconven, fint the
 ticn from a mature of aloobol and petrolew other avo product melting at
 Q121 fresh acia wa no longer ocloran. Fasaing with water an orystallization from acetone gave a protuct melting at 47.4°. which oerpared well wh
 outained.

Angingla	Wheory:	080.08	114.90
	\%cund:	0 36.01.	14.800.
		64.61	14.86

gurifiontion of unieonlle aote Hatillstion through the same oclum used for the ethyl lauste geve four fractions. all of whioh diatlided betwesn 150 and 151°. Frsction 3 distilling $450.0-151^{\circ}$ wan selected for use in ayntheaining the ketone.
 b gma of reduced 1 gron wer heated in a gass twbe 40×230 nss. at $285-300^{\circ}$ with ocoaional stirying by mens of a gissa rod. morking up the melt gave

 rotonc ae $64.3-64 \cdot 5^{\circ}$.

nnalyala.	Pheory:		81.20	[1813.68
	Pound:		90.70.	413.72.
			80.39	$13 \cdot 64$

 acia aclution. D. 5 gme of paratifinmelting at we was obtsined. Sreatment
 as the melting point of heneicosane.

Analysid.	Thoory: 085.01	H 14.95	
	Found:	084.70,	1510.04,
		84.79	15.11

Syathosis of dinonvl yetone. Euatman ospric moid melting st

 30° was used witheut further purification. $16 \cdot 2$ cms. of the acid ant $7 \cdot 5$ gra. of reduced iron were heatea at $255-295^{\circ}$ for row houra. 7.1 mat of White solia waie obtained melting at 64°. Fecryatallization from methancl to aonstant melting point gave 3.7 gma. melting at $3.0-53.2^{\circ}$. Hellbron LIats the melting point as 60°.

Hequdenne from Ginonvhketons 2 whe of the kotone, 30 gro of aralemated ainc, and 100 o.c. of alcohol asturatea with hydrogen ohloride were plaoed in a one-liter threo-necked flam, equpped with reflux condenser and mechanical stircer. The mixture was stirred and heated vigorously for twenty-five bowrs with addtion of three 50 c.c. portions of zold and 20 . of zinc. 1.5 gms. of hydrocarbon melting at 32° was obtained, representing sield of 79 per cent. Prepiliation with sulfuric aciugare a product melting at $32.0-32.20$. Kgiof gives 32° for the melting point of nonadecane.

$$
\begin{array}{ccc}
\text { Gnglygite } & \text { Fheory: } & 085.60 \\
& \text { Found: } 85.43 . & H 15.02 \\
& 85.20 & 15.20 . \\
& 15.15
\end{array}
$$

COHOLUSLONS

Since the paraffin mixtue seacted neither with bromine in carbon tetrachloride nor potassium permanganate, it wss evident that no double bonds were present. Carbon and hydrogen analyses shomed the substance was a nydrcorbon, and moreover, belonged to the aliphatio serieg. The percentage composition for all the higher members of the series are approximately the same. Since the two and grougs de not affect the analyses to any extent, and the carbon and hytrogen contents of these compounds are roaghly that of a methylene group in each case. To shov whether the substance was pure compound or a mixture, a cooling ourve was obtained. As was evident from fig. 1, page 15, the material wes quite definitely a mixturee mhere wra a break in the curve at about fifty degrees, indiosting he substance had started to erystallize, but horizontel plateau ws not obtained, the approximately fat portion of the curve coverlng a ranse of abcut a degree and a half.

As was expeoted from the cooling curve of the original hydrocarbon mixture, the separtion of individual homologs was extremely difficult, and in fact, imosgible. Jespite the fact that arairly large fuantity of the starting mixthie wes subjected to syatematio separation by fractional distillation, equilibrium melting, and finally by soot three hundred orystallizations in a scheme of fractional orygallization only a partial separation oould be conieved. It wa possible, however, to obtain a number of fractions which were essentially binary mixtures with probably small quantities of a thira component present. Using the methods of Onibnall
and Piper. the compositions of these srations wer interpreted with
 hypothesif that only oda-numery bydrocarbon are preact in natural

 very alose to those of cotacosane. anc bafore Enibnall'a work wignt have

 the transition noint was depreated about threa degrees belov tiat of the pure oompound. 解oceover tho x-ray liffraction pattorn was not that of a pare compound but exhibited fewer orgers of retection ine homologe in
 of the ombination of gharpness of welting roint, na nearnesm of sat-point and second traneltion on hextin楽 to the welting point. also ano only ono set of lines appeared on the photographio plate the homolose ooula not bep aratated by four or more arbon atoms.
 obthined are siven. couether with the anstants for subgeated mixtures.
 dovbt Gbout whioh homoloes were present nanly in tie ruations selectea
 wat eisat to selget mixtur wa with the pacing witin one gercent of thet obtainea for the conik fractione Then that wixture was ohoan mhoge waiting
 the unknown.

 -gree well with the mixture suscostud. Fraction va and 55 howevor, had melting points somewt lower than the apacing mould indioate. Sais probably denotes the presence of s small quantity of branched chain hydrom carbona, althcugh the difference may be within the limat of error of the melting point and aracine determinations. The presonce of oxicenated compound or of unsmturated componds is not beliered likely, alnge the asmplea were purified by long trextmant wh a fraxic ado at on handrod and twenty to one hundred ant toirty acgred. Transition pointa of mixtures not actually detarmined were obtained fromgraphamilar in ghave to those which bave ween rua, but mith difforeat ackes of ordinates.

MaBLE 17

Semple	H.P.	3.3	$\begin{aligned} & \text { lgt } \mathrm{m} . \mathrm{p} . \\ & \text { heating } \end{aligned}$	2nd s. Po beating	matng
i 16	65.2	65.0	56. 2	65.0	40.6
$\begin{aligned} & 60, \mathrm{C}_{2} 9^{\mathrm{H}} 60 \\ & 40 \% \mathrm{O} 3^{3} \mathrm{H}_{64} \end{aligned}$	$\begin{aligned} & 64.8= \\ & 65.0 \end{aligned}$	64.4	$\begin{aligned} & 56.8-1 \\ & 57.0 \end{aligned}$	--	40.9
4.84	$\begin{aligned} & 60.6- \\ & 60.8 \end{aligned}$	60.2	52.0	60.4	37.2
$\begin{aligned} & 60, \mathrm{CO}_{27} \mathrm{H}_{56} \\ & 40 \operatorname{tag} \mathrm{H}_{69} \end{aligned}$	60.8	----	52. ${ }^{\text {a }}$	--m-	37.3
ns_{1}	$\begin{aligned} & 56.6- \\ & 56.7 \end{aligned}$	66.3	46.0	56.4	35. 55
$\begin{aligned} & 60, \mathrm{C}_{27} \mathrm{H}^{56} \\ & 40, \mathrm{C}_{26} \mathrm{H}_{52} \end{aligned}$	56.8	--m	48.0	----	35.3
US $_{3}$	49.2	48.9	ca. 38	48.2	32.45
$\begin{aligned} & 60, \mathrm{C} 23^{H} \\ & 40,0{ }_{20} \mathrm{H}_{02} \end{aligned}$	49.8	--	ca.41.2	-	3\%83
253	41.4	41.1	Ca. 35	40.6	28.75
$\begin{array}{ll} 20,0 & 0_{23} \mathrm{H}_{48} \\ 80,0 & \mathrm{C}_{21} \mathrm{H}_{42} \end{array}$	41.6	--	ف\%. 30	---	28.7
第4	40.0	--	$\begin{aligned} & 35.0- \\ & 36.0 \end{aligned}$	39.4	28.9

The reaults are believed to thow fulte definitely the presenoe of

 all the odd-numbered hyaroambons oontainime frow twenty-one to thirtymone earbon atoms in the moleale.```
3Nomige IV
```



1. The literature ooncerning the iaclation and identification of long stralght chain hydrcearbon from natural sourcea has been reviewed.
2. The literature conceraing the aynthesin of atrafisht ohain hyarocarbons has been reviewed.
3. Nondecane, henaicosene, wn tricosune have been ynthosized. Their physical oonstants and the oonstants of geveral or their mixture were determined.
4. A new apparatus for equlibrium welting has been developed.
5. The hydrocarbon eixture fre a distillate cbtainea during the preparam tion of aork bosra has been apparated into a number of fraotions which werg identified by mean of molting rointa, trandition points, and long aryatal apactage. All the odd numberea atraigit ehain hyarcomrbona containing from twenty-one to thirty-one carbon atoms were found.


（2）．Carhart， $3 \cdot$ ，Doctor＇s theais，University of hargland，college Park， 90．， 1939.
（3）．Cumnon and Onimall，Eiochem．Journal，2美，169（1999）．
（4）．Chibnall and piper，E．d＊，25，2072（1931）．
（5）．Ohibnall et $\mathrm{nl}, \mathrm{B}, 7 \cdot$ ，25，2095（1931）．

（7）．Chibnall ana piper， $2.2 \cdot$ 29，2208（19：4）．
 College jurk，紋。
（9）．Drake mal rolfe，3．A．C．3．．68，\＄018（184日）．
（10）．Lgioff．O．，Pazsiosi Constants of dyarcoarbons．Vol．1． Feinhold Publishing 6o．．H．Y．1939．
（11）Garold， 0 ．and Kogars，O．A．，Ohemistry of Plant Constituento． Buress rubliming Coo．Anteapolis． 1938 ．
（12）．Gluud．B．E2， 1039 （1919）．
（13）．Liellbron，Dictionary or organic Compouns．Vol．2．，Oxford tinipersity preas，N．Y．． 1931.
（14）．Zacobsen，a．Doctor ${ }^{\circ}$ Thenis，University of Maryland，colloge park，Ke．， 1935.

（16）．Graft．B．19．2210（1886）．
（17）．Kisift，B．SO． 4775 （1907）．
 20． 581 （1915）．
（19）．＊air．3．Eur．Btrand．J．Ees．，2． 459 （1932）．
（20）．Warkley et al．t．3iel．Ohem．118． 433 （1937）．

(22). Hartin. E, J. A. 8.8 , 基, 1488 (1986).
(23). sande, ©.E. J. E1o2. Onem. 101, 481 (1985).
(24). strating ot 2. Eec. Trat. Ohitu. T. 90s (1936).


 Ontionlarmbetantea. Wione 19 Ez.

[^0]:    ininiy firnshed by C. E. Bando of the United states Department of Agrisulture

[^1]:    

