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Parallel machines have become more widely used. Unfor-
tunately parallel programming technologies have advanced at
a much slower pace except for regular programs. For irregu-
lar programs, this advancement is inhibited by high synchro-
nization costs, non-loop parallelism, non-array data structures,
recursively expressed parallelism and parallelism that is too
fine-grained to be exploitable.

This work introduced ICE, a new parallel programming lan-
guage that is easy-to-program, since: (i) ICE is a synchronous,
lock-step language; (ii) for a PRAM algorithm its ICE pro-
gram amounts to directly transcribing it; and (iii) the PRAM

algorithmic theory offers unique wealth of parallel algorithms



and techniques. This work suggests that ICE be a part of
an ecosystem consisting of the XMT architecture, the PRAM
algorithmic model, and ICE itself, that together deliver on the
twin goal of easy programming and efficient parallelization of
irregular programs. The XMT architecture, developed at UMD,
can exploit fine-grained parallelism in irregular programs. This
work also presents the ICE compiler which translates the ICE
language into the multithreaded XMTC language; the signifi-
cance of this is that multi-threading is a feature shared by
practically all current scalable parallel programming languages.
As one indication of ease of programming, it was observed a
reduction in code size in 11 out of 16 benchmarks vs. XMTC.
For these programs, the average reduction in number of lines
of code was 35.53% when compared to hand optimized XMTC
The remaining 4 benchmarks had the same code size. The ICE
compiler achieved comparable run-time to XMTC with a 0.48%

average gain for ICE across all benchmarks.
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Chapter 1: Introduction

Since 2005, practically all computers have become (multi-
core) parallel machines. The field of parallel computing
has made tremendous strides in exploiting parallelism for
performance. However, it is also increasingly recognized
that its trajectory is short of its general-purpose potential.

Parallel machines require partitioning the task at hand
into subtasks (threads) to be run concurrently for minimizing:
(i) memory accesses beyond local (cache) memories, and (ii)
communication and synchronization among subtasks. Other
programmers responsibilities include locking, which can be
tricky for fine-grained multi-threading needed for scaling,
work distribution and scheduling and handling concurrent
access to data structures. While parallel programming lan-
guages and parallel machines differ on how much of the
partitioning is the programmers responsibility, they all ex-
pect a significant effort from the programmer for producing

an efficient multi-threaded program. Establishing correctness



of these programs is yet another challenge, as asynchrony
may increase the number of reachable states exponentially.

The theory of general-purpose parallel algorithms assumes
an abstract computation model (known as PRAM for parallel
random-access machine, or model) that stands in sharp con-
trast to these hardships; each time step involves a plurality
of operations, all operation performed synchronously in unit
time and may include access to a large shared memory.
This PRAM computation model abstracts away opportunities
for using local memories, and minimizing computation or
synchronization, locking, work distribution, scheduling and,
in fact, any concept of threads. Also, for PRAM practi-
cally every problem has a parallel algorithm. This makes
it both desirable and much easier to specify PRAM parallel
algorithms, and the question that started out this thesis
has been: but, at what performance penalty? As explained
next, our surprising result is that it is feasible to avoid any
performance penalty.

Coupled with prior work, this thesis establishes the fol-
lowing result: (i) it is feasible to get competitive speedups
while essentially using PRAM algorithms as-is for program-

ming a parallel computer system; furthermore (ii) these



speedups are on par with multi-threaded code optimized
to minimize non-local memory accesses, communication and
synchronization. Establishing feasibility of using such ab-
stract (and much simpler) PRAM programming whose perfor-
mance is on par with the best manually optimized programs
is a specific new contribution of the current paper.

The prior work of our research group has anticipated
the above hardships. To preempt as many of them as we
deemed feasible, our starting point for the design of a many-
core architecture framework called XMT was the rich theory
of parallel algorithms, known as PRAM (for parallel random-
access machine or model) developed in the 1980s and early
1990s. XMT made big strides toward overcoming claims by
many that it would be impossible in practice to support ef-
fectively PRAM algorithms [e.g., [1]]. Its premise (in prior
work) has been that it must be the programmer who will
produce a multi-threaded program: [2] outlines a program-
mers workflow for advancing from a PRAM algorithm to an
XMT multi-threaded program. Namely, the programmer is still
responsible for producing a multi-threaded program with im-
proved locality and reduced communication and synchroniza-

tion. Hardware support that XMT provides made this effort



easier than for commercial machines, which paid off. This
workflow allowed better speedups and demonstrated easier
learning of parallel programming. Since our prior work re-
mained wedded to programmer-provided multi-threading, it
characterized XMT programming as PRAM-like, as opposed
to just PRAM.

This new work is fundamentally different. It shows for
the first time that the threading-free synchronous parallel
algorithms taught in PRAM textbooks can be used as-is
for programming without performance penalty. Namely, it
is feasible to reduce multi-threading to a compiler target,
altogether freeing the cognition of the programmer from mul-
tithreading. In fact, This thesis shows that the programmer
can essentially use the pseudo-code used in textbooks for
describing synchronous parallel algorithm as-is; this ele-
vates XMT from supporting PRAM-like programs to support-
ing PRAM programs. Note that the new result is exceeding
our research groups expectations at the beginning of the
XMT project: it was expected that the programmer will need
to make an extra effort for explicating PRAM parallelism as
multi-threaded parallelism; indeed, the name of XMT, explicit

multi-threading, reflects the original expectation. As can be



seen from the example, XMT gets only part of the way
to fine-grained multi-threading, but not to lock-step PRAM
programming.

ICE allows the same intuitive abstraction that made it
easy to reason about and program in serial. Namely, any
instruction available for execution can execute immediately.
In serial, a program provides the instructions to be executed
in the next time step. This made serial programs behave
as rudimentary inductive steps from the start of program to
its final result. Similarly, ICE describes time-steps of serial
or concurrent parallel instructions that execute immediately
each time-step (inductively), while falling back to serial ex-
ecution for the serial portion of the code. In unifying serial
and parallel code, ICE can be thought of as the natural

extension of the serial model.

1.1 Contributions

In this work we make the following contributions:

(1) A new programming language called ICE that allows the
programmer to express the ICE abstraction easily and

directly.



(2)

To enable this much higher-level programming language,
this thesis introduces a new compiler component that
automatically translates the ICE program into an efficient

XMTC program.

The ICE compiler produces XMTC code that achieves
comparable performance to hand-optimized XMTC pro-
grams for a given PRAM algorithm, while requiring much
less effort than the hand-written optimized XMTC pro-

gram to write and implement.

Extended the compiler to translate nested parallel pro-
grams using the ICE language into hand-optimized XMTC

code

The significance of these contributions is:

(1)

(2)

The work in this thesis enables programmers to write
lock-step PRAM algorithms as programs, implement them
'as-is’, and execute them over threaded machines with-

out sacrificing performance

ICE requires programmers only to specify the paral-
lelism available in an algorithm. This reduces the effort
required to write parallel code significantly, and makes

6



it much easier for programmers to learn how to write

parallel programs.

(83) The ICE compiler is the first compiler that translates
from a language based on the lock-step execution model,
into a programming language that follows the threaded

execution model.






Chapter 2: Background

2.1 Overview

The ICE language is intended to make programming in
parallel easier by allowing programmers to write parallel
programs based on PRAM algorithms. The ICE language
compiler translates programs written in ICE into the XMTC
high level language, and is executed over the XMT proces-
sor. ICE helps programmers by saving them the effort in
converting their programs from PRAM algorithms into high
performance XMTC programs. This chapter will go over all
the background necessary for understanding the basis of
ICE and appreciating the accomplishment achieved in this

thesis.



2.2 The PRAM Ailgorithmic Models

Since ICE is grounded in the Parallel Random Access
Machine (PRAM) model, understanding PRAM is crucial to
the understanding of ICE. Developed in the 1980s and early
1990s, PRAM is the parallel equivalent of the standard ran-
dom access machine model used for serial algorithmic the-
ory. PRAM is used by algorithms designers to model the
algorithmic performance of parallel algorithms.

PRAM is intended to abstract shared memory machines;
PRAM assumes p parallel processors each of which have
symmetric access time to shared memory, and has own pri-
vate memory. There is no limit on the number of processors
or the amount of shared memory in the system. Each unit
time, a processor can read, write from shared memory or
complete a computation simultaneously with other proces-
sors as shown in figure 2.1. This results in conflicts while
accessing same shared memory locations, for that reason
certain rules have been established to resolve these con-

flicts. Some of the most common rules are:

10



time A

N W b

|
|
|
| .
p Number of operations

Figure 2.1: Representation of the standard PRAM mode. Only
p operation are executed at each t time step

e Exclusive-Read Exclusive-Write (EREW) Only one proces-
sor can access a memory location at unit time, for both

reads and writes.

e Concurrent read exclusive-write (CREW) processors can
read same memory location simultaneously at unit time,

however only one processor can write to it.

e Concurrent read Concurrent write (CRCW) Processors
can read and write simultaneously at unit time. Reads
always happen before writes. There are multiple rules for
determining which write to memory succeeds. Some of
these rules are:

11



(i) Priority CRCW: The processor with the smallest ID

wins and its write is the one that succeeds.

(i) Common CRCW: Does not allow concurrent writes un-
less all processors are attempting to write same value

to same memory location.

(iii) Arbitrary CRCW: Any processor among all the pro-
cessors trying to write to the same memory location

succeed. ICE follows this is the convention.

The PRAM model presents algorithms as a sequence of
time units, each of which contains p operations being executed
as one instruction per one processor. As such PRAM only
allows p operations to be executed concurrently, as shown
in figure 2.1. This presentation is called the standard PRAM
mode. To express operations that are performed in parallel,

the pardo (parallel do) programming construct is used.

for P,,1 <=1i <=n pardo
perform some operation

The standard PRAM model has a few disadvantages es-
pecially when compared to other forms of presenting PRAM

algorithms:

(i) It does not reveal how changing the number of processing
units will effect the speed of algorithm execution.

12



(ii) Writing a parallel algorithm requires specifying a level of
detail that might be unnecessary, due to that algorithms
are based on the number of processors available on the

platform to be used.

2.3 The Work-Depth Model for PRAM
Algorithms

The Work-Depth (WD) model is an alternative presentation
model for PRAM algorithms. In this model, algorithms are rep-
resented as a sequence of time units where each unit contains
a group of operation to be executed concurrently as shown
in figure 2.2. The main difference between this model and
the standard PRAM model, is that the number of concurrent
operation to be executed at each time step in WD model is
not bound by the number of available processing units as in
the standard PRAM model. Rules for resolving conflicts such
as arbitrary, priority and common CRCW are defined in WD
model similar to their definition in standard PRAM.

Performance of a parallel algorithm of size n that is given
in WD mode is measured in terms of worst case running time

T(n) or total number of operations or work W(n).

13



time 4

= N W b

>
Number of operations

Figure 2.2: Representation of the Work-Depth mode. Execute
as many operation as needed at each t time step

2.4 The many-core XMT Architecture

A brief review of some basic concepts of the eXplicitMulti-
Threading (XMT) on chip general-purpose computer architecture
[3, 4, 5] follows.

The XMT architecture was designed to capitalize on the huge
on-chip resources becoming available as a result of modern
fabrication technologies. The primary goal of XMT has been
to take advantage of parallelism to improve the performance

of single-tasks. Since taking advantage of the huge body of

14



knowledge available within PRAM is the goal behind XMT, it
was designed with PRAM algorithms in mind.

The XMT framework uses an arbitrary CRCW (concurrent
read concurrent write) SPMD (single program multiple data)
programming model. An arbitrary number of virtual threads,
initiated by a spawn instruction and terminated by a join in-
struction, share the same code [6]. The arbitrary CRCW aspect
dictates that concurrent writes to the same memory location
result in an arbitrary one committing. No assumption needs to
be made beforehand about which will succeed. An algorithm
designed with this property in mind permits each thread to
progress at its own speed from its initiating spawn to its termi-
nating, join, without ever having to wait for other threads; that
is, it exhibits “independence of order semantics” (I0S) [5, 6],
such that no thread busy-waits for another thread. See Figure
2.4(b).

The XMT processor, shown in Figure 2.3a, implements the
above programming model efficiently. It includes a master
thread control unit (MTCU), processing clusters (C0...Cn) each
comprising several thread control units (TCUs), a high-bandwidth
low-latency interconnection network (an essential component

presented in [7, 8]) between clusters and memory modules, a

15



global register file (GRF), a prefix-sum unit explained below,
and memory modules (MMs) each comprising on-chip cache
and off-chip memory, with several MMs possibly sharing a mem-
ory controller. The MTCU has a standard private data cache,
used only in serial mode, and a standard instruction cache,
while sharing the MMs with all the TCUs.

Since the prefix-sum (ps) operation described above is a
central component of XMT, it must be executed very efficiently.
The hardware implementation of the prefix-sum unit [6, 9] can
accept binary input from multiple TCUs and the execution time
does not depend on the number of TCUs that are sending
requests to it. It enables constant time, low-overhead coor-
dination between tasks, a key requirement for implementing
efficient

fine-grained parallelism. As such, It also can be used for
implementing efficient and scalable inter-thread synchronization,
by arbitrating an ordering between the threads.

The XMT programming model allows programmers to spec-
ify an arbitrary degree of parallelism in their code. Clearly,
real hardware has finite execution resources, so in general all
threads cannot execute simultaneously. A hardware scheduler,

which extends the stored-program-plus-program-counter appa-

16



ratus at the MTCU to the TCUs [9], allocates the individual
virtual threads to the physical thread control units (TCU). It
relies heavily on hardware support and the prefix-sum unit,
which allow for a very efficient implementation. Before the
parallel execution starts, two global registers (grLO and grHI)
are initialized with the thread IDs of the first and last thread.
Then the spawn instruction signals the beginning of the par-
allel execution, which wakes up the TCUs in a way that each
TCU knows immediately its thread ID (TID) and makes the
MTCU broadcast the parallel code to the TCUs. When a TCU
completes a thread and is ready to execute another thread,
it performs a ps operation on grLO with an increment of 1
to get its new thread ID (TID). The hardware combines these
ps operations and all requesting TCUs receive their TIDs in
a few cycles. Then each TCU executes the powerful chkid
instruction that compares its TID against grHIl: if TID < grHI
the TID is valid and the TCU proceeds to execute the thread;
otherwise it blocks until either the TID becomes valid (grHI got
incremented), or all TCUs are blocked signaling the end of the
parallel execution. The end of the parallel section is marked

by the join instruction.

17



(a) (b)

Figure 2.3: XMT hardware. (a) Block diagram. (b) Memory
Hierarchy in parallel mode. The left side of (b) shows the
estimated latency to each memory hierarchy level from the
processing core for a 1024 TCU configuration (64 clusters x
16 TCUs). Some elements are omitted for simplicity, such as
the Master TCU, which operates in serial mode, the global
register file and the prefix-sum unit.

Figure 2.3b gives an overview of the XMT memory hierar-
chy while operating in parallel mode. The XMT TCUs/clusters
has no private caches, since scalable cache coherence pro-
tocols are very complicated for hardware implementation and
inefficient for certain types of memory access patterns, typi-
cally for fine-grained parallelism. For the fine-grained paral-
lelism, the cache coherent private cache is also not efficient
in terms of power, due to the large granularity of the data
movement between caches, extra cache coherence message

exchange and complicated hardware. The downside of our

18



int A[N],B[N], base=0;

spawn(0,N-1){

int inc=1;

it (A[$]!=0){
ps(inc,base);
Blinc]=A[S$];

} join

}

(a) (b)

Figure 2.4: XMT Programming. (a) Array Compaction example.
Array A’s non-zero elements are copied into B. The order is
not necessarily preserved. After executing ps(inc,base), the
base variable is increased by inc and the inc variable gets the
original value of base, as an atomic operation. (b) The XMT
execution model: switching between serial and parallel modes.

approach is the relative long latency in memory accesses
that require round trip to shared parallel cache through an
interconnection network. Several techniques have been de-
signed to reduce this latency or overlap with computation,
most notably prefetching customized for XMT [10].

A first commitment to silicon of XMT is reported in [3,
11]: a 64-processor, 75MHz computer prototype based on
FPGA technology was built at the University of Maryland
(UMD)'. This milestone contributes towards advancing the
perception of PRAM implementability from impossible to avail-

able.

'Following an international naming contest with close to 6000 submis-
sions, the name Paraleap was given to the prototype.

19



2.5 The XMTC language

To deepen the understanding of the XMT architecture,
an examination of how it is programmed is required. Ar-
chitectures that support parallel execution has programming
frameworks that encourage the programmer to express all
the parallelism available in the applications, and XMT is no
different. In XMT, a scheduler allocates parallel threads to
the physical thread control units, and the execution consists
of alternating sequences of serial and parallel code. To
allow such paradigm, XMT uses a programming language,
XMTC, which was designed to provide programmers with low
level operations supported by the hardware, as well as easy
mapping of the structures of the PRAM algorithms.

The XMTC high-level language is a modest extension of
standard C language detailed in [12]. Figure 2.5 shows the
general syntax of the XMTC language, while figure 2.4(a)
presents an example of XMTC code. The XMTC language ex-
tends the C programming language by adding few keywords
to allow programmers to write parallel code and access the

XMT processor’s different features. The most notable are
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(i)

(ii)

(iii)

The spawn (low,high) statement. Accepts the number of
threads to create as its parameter, as a spawn creates
(high—low+1) threads. Similar to the XMT spawn instruc-
tion, it specifies a code region that is to be executed
in parallel by the created threads, and also serves as
a directive to XMT to "spawn” the threads. The number
of threads created is independent from the number of
TCUs available in an XMT processor, often exceeding it
significantly. The threads are usually short and the ex-
ecution switches frequently between serial and parallel
modes, as pictured in Figure 2.4(b). The threads ter-
minate at an implicit join at the closing bracket of the
spawn block. All tasks must complete before proceeding

beyond the spawn block.

Thread-id $. is a reserved identifier inside the parallel
region, and evaluates to a thread’s unique ID, which
allows the SPMD programming style of XMTC. Uses the
$ to designate thread ID, which takes integer values

within the range low < $ < high

Prefix-sum statements ps/psm (base,increment). Defines

an atomic prefix-sum operation similar in function to the
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atomic Fetch-and-Add of the NYU Ultracomputer [13].
It gives programmers access to XMT’s powerful prefix
sum unit. The way prefix sum operates is by taking
a base and an increment as parameters, and value of
increment is atomically added to base, and the original
value of base is returned in variable used for increment.
The increment has to be a thread private variable that
is usually allocated in a TCU’s local register. There are

two versions of prefix sum available.

e ps (base,increment) which takes only global XMT
registers as the base parameters, and the increment
variable can only have a value of either 1 or 0.
Uses XMT’s prefix-sum hardware, which combines
multiple concurrent requests and execute all fo them

in constant time.

e psm (base,increment) It takes memory locations as
the base parameter, and the increment value can be
any integer value. More expensive than the ps vari-
ant, since it requires a round trip to memory. Mul-
tiple psm requests arriving simultaneously to cache

will be queued.
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serial code
shared variables declaration

spawn (low; high) {

private variables declaration

threaded parallel code

} //implicit join

Figure 2.5: XMTC language syntax. low and high represent the
IDs of the first and last threads. The join is implicit in the
closing bracket of the spawn block. variable declared outside
the spawn block are shared while variables declared inside are
thread private.

The XMT language follows a fork-join model for the cre-
ation and termination of threads. It also follows a conven-
tion where shared variables are declared outside the spawn
block, while thread private variables are declared inside the
spawn block.

To summarize how parallel programming in XMT/XMTC
works; a parallel region is delineated by spawn and join
statements, as shown figure 2.4(a). Every thread executing
the parallel code is assigned a unique thread ID, designated
$. The threads proceed with independent control, synchro-
nizing at the implicit join which terminates the threads. The

spawn Statement takes as parameters the IDs of the first and
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last thread to create. Synchronization is achieved through
the prefix-sum (ps)and join commands.

Figure 2.4(a) demonstrates XMTC’s power by showing how
it can be used to assign a unique index in array B when
compacting an array A. The order is not necessarily pre-
served. the ps operation is used to acquire the next available
location in array B, where the non-zero elements of array
A will be stored. This example exhibits how each thread
progresses at its own pace due to XMT’s Independence of
Semantics 10S property which is accomplished by using the
ps operation to obtain next available location in array B.
Since ps provides answers in constant time, threads can
execute at their own pace without having to wait for one
another.

Nested parallelism in XMTC. The XMTC Language allows
programmers to nest spawn regions to create nested parallel
code. However, when writing nested parallel code using
the XMTC language, attention must be paid to how thread
IDs are handled in this situation. The XMTC language has
only one way to access a thread’s ID (i.e., $), and has no
variation of it for situations when nested is involved. In

those situations the $ will act as an identifier for the thread
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IDs of the innermost spawn block. This can be handled by
an XMTC programmer by manually creating a local variable
to store the thread ID of a spawn block before starting a

new spawn block nested inside of it.

2.6 The Programmer Workflow for
Writing PRAM-Based Programs

The ICE language provides programmers with savings in
translating their programs from a PRAM algorithm, to an ef-
ficient XMT parallel program. The steps programmers should
take to translate an algorithm into a parallel program is
known as The Programmer Workflow. This methodology links
a PRAM algorithm to the XMT platform toolchain (i.e., com-
piler + hardware implementation). A discussion of the effort
involved in this translation is crucial for understanding an
important benefit of ICE.

The XMT platform provides programmers with a workflow
for deriving efficient programs from PRAM algorithms. It also
allows them to reason about these algorithm’s correctness
and execution time [14]. This programmer workflow provides
a ’recipe” to programmers in converting PRAM algorithms
to high-performance XMTC programs. It also provides steps
programmers can take to incrementally optimize the pro-
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Figure 2.6: The program flow for translating PRAM algorithm
into XMT algorithm.

grams’ performance without having to redesign the original
algorithm, which allows them to avoid many of the parallel

programming pitfalls.
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The steps involved in the programmer workflow for devel-
oping an XMT implementation for a PRAM algorithm are as

follows.

e Starting from a specific problem, a design stage for
an algorithm will produce a sequence of steps each
has a set of concurrent operation that should execute
in parallel, forming a high level WD description of the

parallel algorithm of interest.

e This draft is further refined and optimized for work and
depth to form a sequence of rounds each consisting
of concurrent operations. It also specifies the steps
required to advance in a given step. These rounds form

a formal work-depth description of the algorithm.

e The programmer writes their program by translating the
WD description into an SPMD program using the XMTC
programming language, and fine tunes the program for

best performance.

e The program is then compiled into an XMT executable

binary optimized for the best performance

Figure 2.6 gives an overview of the discussed steps in-
volved in the programmer workflow. The figure starts from

27



a PRAM algorithm which programmers will use to write a
high-level work-depth description of the algorithm. Then pro-
grammers translate the work-depth model into its equivalent
XMTC code, and then it is further fine tuned for best perfor-
mance. This XMTC code is then compiled using the XMTC

compiler and executed using the XMT hardware.

2.7 Advantages of the XMT Platform

2.7.1 The Performance of the XMT Platform

ICE uses the XMT platform due to XMT’s ability at ex-
ploiting parallelism in irregular programs which is a result of
designing XMT with PRAM algorithms in mind. XMT retains
good performance for serial and regular parallel programs
as well. Below is a list of experiments that show XMT’s per-
formance as compared to other commodity architectures. All
XMT’s speedups listed below were achieved over the best
serial implementation on the state-of-the-art vendor’s plat-
form; hence they represent real improvements in processing

time.
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Graph Connectivity 1024-core XMT processor achieves
a speedup of 99.8X, while the NVidia GTX480 had a

speedup of 27.1X for graph connectivity [15].

Graph Biconnectivity 1024-core XMT achieves speedups
up to 33X, while GPU/CPU hybrid achieved only a 4X

speedup [15].

Graph Triconnectivity 1024-core XMT got a speedup of

129X against serial on a core i7 920 processor [16].

Finding maximum flow The best speed up for this algo-
rithm on a hybrid NVedia Fermi GPU/CPU was 2.5X [17].
In contrast, a speedup of 108X was attained on a
1000-core XMT that uses the same silicon area as the

GPU [18].

Burrows-Wheeler transform - BZIP2 XMT reaches up
to 13X/25X Speedup for de/compression [19]. In com-
parison, there was a slowdown of 2.8 for compression

and a speedup of 1.1 for decompression on GPU.

2-D FFT XMT reached 20.4X speed up, whereas a 16-

core AMD opteron got less than 4X [20].
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o Gate-level Simulation Benchmark Suite XMT obtained

100X speedups versus serial for [21].

2.7.2 The XMT Teachability and Ease of Use

Programmer’s productivity and ease of programming are
central focal points for the XMT platform. A Platform that is
easy to learn is a necessary condition for it to be an easy
to program platform, thus, demonstrating how XMT is easy
to teach and learn has been one of the central objectives

of the project.

e Since 2007, more than 300 high-school students have
been taught to program the XMT platform, including
two exemplary cases: Montgomery Blair High School,
Silver Spring MD, and Thomas Jefferson High School
for Science and Technology, Alexandria VA. At Thomas
Jefferson, Torbert [22] has incorporated XMT into their
classes, and advocates using it in the education of
Computer Science. Tolbert reports that, when compared
to MPI, The XMT platform spurred students creativity to

invent their own personal programs to solve a variety of
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problem instead of chasing the same canonical solution

as was the case with MPI.

In a study supported by DARPA HPCS program, it was
shown that the development time of XMTC is about half

that of MPI, under circumstances favoring MPI [23].

A joint experiment between the University of Illinois
and the University of Maryland compared programming
in both OpenMP and XMTC [24]. This study included 42
students who were asked to achieve speedups for BFS
using OpenMP over an 8-core SMP, and using the XMT
platform. The students could not achieve a speed up
higher than 1 when they used OpenMP. However, they
were able to obtain 7x to 25x speedups on the 64-TCU
XMT FPGA. In addition, the PRAM/XMT part of the joint
course were able to write more advanced algorithms as

compared to the OpenMP part.
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Chapter 3: The ICE Programming Language

3.1 Overview

This thesis presents methods to write synchronous par-
allel code based on PRAM algorithms ’as-is’ and obtain
comparable performance when executed. This chapter will
go over the details of the ICE programming language and
its different features. The chapter will discuss the ICE syn-
tax and the lock-step model that ICE follows, as well as

the advantages that ICE gains by following that model.

3.2 The ICE language

The Immediate Concurrent Execution (ICE) language, a
modest extension of the C programming language, is a par-
allel programming language that is intended for ease of
programming and development of high-performance paral-

lel programs based on the PRAM algorithmic model. ICE
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is based on the WD-model of PRAM that describes a se-
quence of time steps, each containing multiple concurrent
operations. ICE enables that through following the lock-step
execution model. ICE requires the programmer to simply
express all available parallelism and nothing else. ICE is
unique in being the only language that can take the PRAM
lock-step and translates it to a threaded program.

A lock-step parallel programming model is one where
each statement in a parallel loop has all its iterations
appear to execute exactly in the same cycle to the pro-
grammer. This appearance is enforced by the ICE compiler
(discussed in 4), usually without enforcing same-cycle exe-
cution in hardware. Figure 2.2 shows the lock-step nature of
ICE. Lock-step execution contrasts with the threaded execu-
tion followed by virtually all parallel programming languages,
where all the functional units execute independent threads
of control which proceed at their own unpredictable pace,
and where synchronization with other threads only happens
if the program explicitly requests it. Lock-step execution
is common in hardware — for example in VLIWs or GPUs.

However we are not aware of a higher level programming
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language meant for general purpose, irregular programming
that uses lock-step execution.

The advantages of lock-step programming are that many
explicit synchronizations become unnecessary and in-place
concurrent updates to aggregate data structures becomes
possible without introducing non-determinism (these will be
explained in section 3.5 )

ICE provides a shortcut to programmers following the pro-
grammer workflow discussed in 2.6, which started from an
ICE abstraction of an algorithm and advanced to threaded
implementation. ICE allows programmers immediately write
programs using the ICE abstraction of an algorithm ’as-is’.

The intention behind designing ICE is not advocating a
lock-step model of hardware execution. Indeed lock-step
parallel hardware has mostly been explored in the past in
the context of SIMD machines, which have not met wide
success. SIMD machines can only exploit vector and dense-
matrix parallel codes well, but so can MIMD machines. This
work is primarily motivated by parallelism in irregular pro-
grams in graph-traversal and divide-and-conquer algorithms,
which do not parallelize well on any existing parallel ma-

chine (either traditional MIMD multi-cores or SIMD). Hence
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It does not further consider translation of ICE to either of
those machine types; instead we focus on translating ICE
to XMT code.

ICE is not meant to replace any of the current program-
ming models either, it is meant to work along side them
instead. ICE is generally better suited for applications based
on PRAM algorithms when compared to threaded model. In
contrast, the threaded model is likely to be better suited to
task parallel applications. ICE is orthogonal to the threaded
model, and can be included along side a language like
XMTC, thus enabling programmers to choose and mix either
lock-step (ICE) or threaded (XMTC) models, whichever is
more natural for each parallel section. Hence the same pro-
gram can have some parallel loops implemented in XMTC,

and others in ICE.

3.3 The Syntax of the ICE Language

The ICE language enable programmers to write parallel
programs using lock-step execution model. The ICE language
extends the C programming language by introducing new
keyword, pardo , to allow programmers to specify where
parallelism lies in the algorithm they intend to implement.
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pardo is inspired by the construct pardo , short for PARallel
DO, used in many PRAM texts [25, 26, 27]. pardo creates
a number of concurrent virtual lock-step parallel contexts.
Figure 3.1 provides the ICE syntax, and the generic
structure of the new pardo keyword. The pardo keyword
requires programmers to specify four parameters; a parallel
context control variable used to refer to a parallel context
ID, the ID of the first parallel context l1ow, the ID of the
last parallel contexthigh, and the stride step. A pardo cre-
ates (high —low)/step + 1 parallel contexts that execute the
instructions specified inside the pardo region based on the
lock-step model. Concurrent writes performed by multiple
parallel contexts to the same memory location are handled
using arbitrary CRCW. ICE follow the convention of having
parallel context local variables declared inside the parallel
region, while shared variables are declared in serial regions.
The ICE language allows programmers to specify nested
parallelism by using the pardo keyword from within a pardo
region. Each parallel context created by the outer pardo
creates multiple parallel contexts as specified by the inner
pardo . Lockstep execution extends to the newly created

parallel contexts. As such, they advance synchronously with
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serial code
shared variables declaration

pardo (pid = low; high; step) {

private variables declaration

lockstep parallel code

Figure 3.1: ICE language Syntax.

all parallel contexts of the same level created by any ’par-
ent’ parallel contexts.

Variable locality for nested ICE follows the same princi-
ple that was discussed earlier, namely; variables declared
inside a pardo region are private to each individual context,
and variables declared outside a pardo region are shared
between all the parallel contexts created by that pardo
The implication of this is that variables that are private to
a context, are shared between all parallel contexts created
by that context, not across all contexts of the same level
of nesting.

Table 3.1 provides a comparison between the syntax of

the lock-stepped pardo and the threaded spawn . ICE and
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Table 3.1: Comparison of the pardo and spawn constructs.

pardo spawn
(lock-step) (threaded)
pardo spawn
Syntax (CID=LB;UB:ST) |(LB,UB)
ﬁﬁrr:exjtvs (UB—LB)/ST+1|UB~LB+1
First—last IDs LB — LB+STxN | -8B — UB
Stride ST 1
MYPID CID $

(user defined)

Each instruction
is executed over | Instructions

all parallel within a thread
contexts before | progress at their
the next one is|own pace.
initiated.
After every
Instruction

Execution Model

Synchronization join or (ps)

XMTC follow the same convention of how local and shared

variables are declared.

3.4 Example Showcasing the ICE
Language

To see the features and advantages of the ICE pro-
gramming language, consider the example in figure 3.2.

Fig 3.2(a) shows the problem specification for pointer jump-
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ing, a well-known and useful task in tree and graph algo-
rithms. The input shown consists of array S containing the
specification of a forest of trees, and array W containing an
initial weight at each node. The output “flattens” the tree
by directly pointing each node to the root of its tree, and
computes the sum of weights (or distance) from the node to
the parent in the input tree. The example shows a specific
assignment of weights which will compute the distance to
the root in the output; however, any input assignment of
weights can be chosen. The pointer jumping algorithm is
widely used, for example in the disjoint-set (union-find) data
structure for efficiently maintaining sets and supporting set
union and find operations. In the case that the input trees
degenerate to linked lists, computing the output becomes
the well-known /ist ranking problem, a key component of
many algorithms, so called because it calculates the posi-
tion (or rank) of every element in a linked list. List ranking
also computes a prefix sum operation for any input weights
in W, and stores the result in W. List ranking is also used
to solve many problems on trees and graphs via an Euler

tour technique (Tarjan and Vishkin [28]).
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Problem
Given a linked list with n elements, find for every
elements its distance from the last element. void pointer_jump (int S[n], int W(n], int n) {
pardo (unsigned i = 0; n-1;1) {
Input while (S[i] = S[S[i]]) {
WIi] = Wil + WIS[il];
e Array S(1...n): S(i) contains the index of the S[il = SISLill:
successor of element i. The successor of the last
element is the element itself. 1
o W(1...n): W(i) contains the weight of element i. }
Initially W(i)=0 for the last element in the list and
W(i)=1 for all other elements.
Output
e S(i) is the index of the last element of the list.
W(i) is the distance of element i from this last element.
(a) Problem specification (b) ICE program
psBaseReg flag; // number of threads that require void pointer_jump (int S[n], int W[n], int n) {
another loop iteration int W_tmpl[n];
void pointer_jump (int S[n], int W[n], int n) { int S_tmpl[n];
int W_tmp|[n]; int *W_rd = W, *W_wt = W_tmp;
int S_tmpl[n]; int *S_rd = S, *S_wt = S_tmp;
do { int *tmp_ptr;
spawn (0, n-1) { int crs_size = n/P + ((n%P) > 0);
if (S[$]!= S[S[$1N) { int flag = 1;
W_tmp[$] = W[$] + W[S[$]]; while (flag 1= 0) {
S_tmp[$] = S[S[$]); flag = 0;
} else { #pragma omp parallel num_threads(P) {
W_tmp[$] = W[$]; #pragma omp parallel for reduction(+,flag) schedule(static, crs_size)
S_tmp[$] = S[$]; for (inti=0; i <n;i++){
} if (S[i] = S[S[iT) {
} intx=1;
flag = 0; flag += x;
spawn (0, n-1) { W_wt [i] = W_rd[i] + W_rd[S_rd[i]];
if (S_tmp[$] != S_tmp[S_tmp[$]]) { S_wt [i] = S_rd[S_rd[il];
inti=1; }else {
ps(i, flag); W_wi[i] = W_rd[i];
WI$] = W_tmp[$] + W_tmp[S_tmp[$]]; S_wi[i] = S_rd[i];
S[$] = S_tmp[S_tmp[$]]; }
}else { }
WIS] = W_tmpl[$]; }
S[$] = S_tmp[$]; tmp_ptr = W_rd; W_rd = W_wt; W_wt = tmp_ptr;
} tmp_ptr = S_rd; S_rd =S_wt; S_wt = tmp_ptr;
} }
} while (flag != 0);
}
(c) XMTC program (d) OpenMP Program

Figure 3.2: Pointer jumping example showing simplicity of ICE
code. (a) provides a description of the pointer jumping problem.
This problem is then solved using ICE programming language
(b), XMTC programming language (c), and OpenMP (d)
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Figure 3.2(b) shows the ICE code to solve the pointer jump-
ing problem defined in figure 3.2(a). From this figure it can be
seen how the ICE programming language is loosely based on
the PRAM algorithmic model. It has serial regions, and parallel
regions inside pardo constructs. As can be seen in the figure,
the ICE code for pointer jumping is indeed very simple. The
in-place updates of S and W are possible because of the lock-
step nature of execution, where, for example, the right-hand
side (RHS) of the first statement in the loop (W (i) + W (S(i)))
is read and computed on all the parallel units before the LHS
writes the new value of W(i).

Although the code in figure 3.2 uses arrays to implement
trees, pointer jumping can be implemented in ICE with struc-
tures and pointers just as easily. The code will be conceptually
similar.

Figure 3.2(c) shows the XMTC code to solve the same
pointer jumping problem. XMTC, as discussed in 2.5, has
parallel constructs such as spawn (z,y) which starts y —x + 1
parallel threads numbered x to y. Since the parallel threads
are independent, they proceed at their own pace, synchronizing
only at the implicit join at the end of the spawn block, or at

the prefix sum (ps) operation shown.
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As can be seen in the figure, the XMTC code is longer
and much more complicated than the ICE code. The underlying
cause is the unpredictable pace of parallel threads, which
prohibits in-place updates, such as those of arrays S and
W. Instead the threaded code must use temporaries S_temp
and W_temp. In the first part of the code, the program reads
from the original arrays and writes to the temporary arrays;
roles are reversed in the second part. The first and second
part alternate until the computation is completed. Additional
synchronization is needed to count the number of incomplete
threads remaining in the flag variable; counting is done using
the prefix sum (ps) construct described in section 2.5'.

Figure 3.2(d) shows an OpenMP code to solve the same
pointer jumping problem. The OpenMP code in figure 3.2(d)
essentially executes similarly to the XMTC version. However,
there are two main differences. 1. The ps operation in XMTC
version is replaced by a reduction operation in OpenMP. 2.
Unlike the XMTC version, the loop was not unrolled in the
OpenMP version. Instead, two sets of pointers were used to

alternate the source and destination of copying between the

'The ps operation could have been avoided by multiple writes of true
to a boolean variable called threads-remaining in the loop, but that would
create a hot-spot in memory. The XMT ps operation uses registers, avoiding
the hot spot.
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original and temporary S and W arrays. It is imporant to un-
derstand that implementations in figures 3.2(c) and (d) are fully
interchangeable between XMTC and OpenMP. Namely, the im-
plementations will work very similarly regardless of the platform
used. However, when implemented on a similar platform, the
implementation in figure 3.2(c) will have a slight performance
advantage over the implementation in figure 3.2(d), while the
later is slightly shorter and easier to write.

The ICE compiler translates lock-step ICE programs into
multi-threaded parallel software. Methods for this translation
will be discussed in section 4.3. This compiler translates ICE
programs to XMTC; thus leveraging XMT’s ability to execute
irregular programs efficiently.

The code in figure 3.2(c) gives good speedup on XMT de-
spite the code being very fine grained (i.e., having short par-
allel sections). Pointer jumping on XMT gives a speedup of
50X over the best serial algorithm on an Intel Core i7-920.
Despite the many more cores of XMT, these are comparable
in area since XMT cores are extremely lightweight. This is
despite the parallel version performing O(n log n) work while
the serial algorithm is O(n), so the parallel code is not work

efficient compared to the serial algorithm. Parallel code on
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traditional multi-cores is unlikely to get any speedup at all be-
cause of the high cost barriers, poor load balancing in coars-
ened versions (where multiple parallel sections are combined
into longer-running parallel sections to reduce barrier costs),
and the work-inefficiency of the parallel algorithm.

The example in fig 3.2 shows many of the strengths of the

ICE programming model, which will be discussed in section 3.5.

3.5 The ICE language Advantages

The ICE language was designed to be easy to use, and
to leverage the scientific wealth in PRAM algorithms. The
ICE language follows the lock-step model which allows it to
have many advantages when compared to the threaded model
followed by many other parallel programming languages. These

advantages are:

e Easier translation from PRAM algorithms. The ICE ab-
straction has been used as the first stage in the design
and analysis of PRAM algorithms. PRAM algorithms readily
fit into the ICE programming model whereas extra effort is
needed to fit them into a threaded model. This is illus-

trated by the great difference between figures 3.2(b) and
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(c) - manually translating the first to the second can be
a significant effort. Thus ICE makes parallel programming

easier, fulfilling one of our primary goals.

No need to think about synchronization. Thinking about
synchronization is a major contributor to making parallel
programming difficult. ICE greatly reduces this problem
by assuming a maximum degree of synchronization: there
is an implied barrier between every statement in a paral-
lel region. Thus in ICE, synchronization comes “for free”
in terms of programmer effort. This is unlike threaded
languages, where the programmer must decide when syn-
chronization is needed and when it is not, and explicitly
request it when needed. This is illustrated by figure 3.2(c),
where the programmer has to decide the location of syn-
chronization at the end of spawn blocks, and the locations
of any needed ps operations. In ICE the compiler would
decide when synchronization is needed when translating to

a threaded model, relieving the programmer of that burden.

No need to introduce intermediate variables. The lack
of assumed synchronization in threaded programming mod-

els often results in the need for intermediate variables to
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avoid race conditions. For example, the in-place parallel
update of a data structure often requires copying to an
intermediate data structure to avoid race conditions. The
code in figure 3.2(c) has S_temp, W_temp, and flag as in-
termediate variables. This duplicating and copying of data
structures must be managed by the programmer, increasing
his or her burden. In contrast the ICE programming model
makes intermediate variables unnecessary in most cases
because of its assumed lock-step synchronization, mak-
ing parallel programming easier (with a convention such
as: ’'all reads complete before writes’). Of course, such
intermediate variables may be re-introduced by the com-
piler when it translates ICE to a threaded language. In
effect, the ICE compiler takes over the management of

intermediate variables instead of the programmer.

Avoids unintended race conditions. Threaded program-
ming models allow the programmer to express unintended
race conditions. To eliminate them, the programmer must
be proactive. In particular, the programmer must know

about and rely on consistency models.

The threaded code in figure 3.3 illustrates race condi-
tions and consistency models. It shows a classic exam-
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Figure 3.3: Threaded code with race condition

ple from Hennessy and Patterson textbook (HP:AQA,4th
ed,pp 243), where two parallel processes P1 and P2
running on different cores are shown side-by-side. As-
sume both cores have locations A and B cached with
initial value 0. The question here is: is it possible for
the if statements in both threads to evaluate to true?
At first glance it seems impossible. Hypothetically, if
writes are seen on remote processors immediately, then
it is not possible for both to evaluate to true. How-
ever writes are often delayed on real machines; hence
real machines use consistency models to define allowed
behaviors. For example on machines with sequential
consistency both if statements cannot evaluate to true.
However some computers implement weaker consistency
models for efficiency, where the anomalous behavior is
allowed. Unfortunately threaded programming models

usually expose the consistency model to the program-
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mer, who must understand it well to avoid introducing

unintended race conditions.

In contrast the lock-step parallel behavior of the ICE
programming model makes it impossible for the pro-
grammer to express such unintended race conditions.
With ICE, a programmer never needs to consider race
conditions or consistency models. Instead the compiler
manages race conditions when translating ICE code to
threaded code in a platform-specific way; thus relieving

the programmer of this burden.

e No need to think about scheduling or coarsening.
Although declarative (pre-scheduling) threaded models
such as XMTC have been proposed, several threaded
models in common use such as MPI| and pthreads are
post-scheduling, thus requiring the programmer to manu-
ally schedule available parallelism into N threads, where
N is the number of hardware contexts available on the
target hardware? The programmer is also responsible for
coarsening if the available parallelism exceeds N. In

contrast ICE is a declarative programming model where

2The number of hardware contexts is the number of threads that the
hardware can actually run at any one instant. This equals the number
of cores x the hyper-threading factor for multi-cores, and equals the
number of TCUs on XMT.
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the programmer simply expresses all available paral-
lelism without regard to the number of hardware con-
texts, or the scheduling of the code to those contexts.
Scheduling and coarsening is performed automatically
by the compiler and/or run-time system. This signifi-
cantly reduces the burden on the programmer since he
or she no longer needs to do scheduling/coarsening,
and it also makes the code more portable across XMT
computers with different numbers of hardware contexts.
This feature is already available in the XMTC compiler,

and the ICE compiler takes advantage of that.

No need to think about data decomposition or locality.
The uniform-memory access (UMA) design of XMT re-
lies on a high bandwidth low latency interconnection
network between TCUs and shared memory. Thus all
functional units see the same latency to all regions of
memory, except for registers local to their TCUs, and
prefetch buffers. This led to a situation (supported by
our experimental results) where the XMTC programmer
does not need to consider data decomposition or locality
as a first-order consideration. The XMTC programmer’s

workflow [2, 29] instructs to first produce a handwrit-

50



ten ICE-like algorithm with no data decomposition or
locality; the programmer is then expected to develop
XMTC code in which every spawn command comprises
its own scoping (cf. Figure 2.4(a)); this scoping al-
lows designation of local variables that, in turn, the
XMTC compiler translates into local registers. For ICE,
even this designation of local variables will be left to
the (ICE) compiler. Since not needing decomposition
is inherited from XMT, both ICE and XMTC have this
advantage, but not threaded programming models for

NUMA machines.

Given the advantages above, ICE represents a significant
leap in the ease of programming compared to threaded pro-
gramming models. In addition, execution on XMT will deliver

unmatched speedups for irregular programs written in ICE.

51



52



Chapter 4: The ICE Language Compiler

4.1 Overview

In this thesis, an ICE compiler was built to translate ICE pro-
grams to threaded XMTC programs. The output XMTC code is
compiled, using the existing relatively mature and well-studied
XMTC compiler, into an executable XMT binary. This chapter
will go over the challenges in producing correct translation,
difficulties in optimizing the translation, and the complete struc-

ture of the ICE compiler.

4.2 Translating ICE to XMTC

This section will focus on the main challenges and the
problems that may arise while building a new compiler that
translates from ICE, a language following the lock-step model

into XMTC, a threaded language.
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4.2.1 Splitting apardo Region into Multiple spawn
blocks

To translate ICE programs to XMTC programs, the pardo
region is split into multiple spawn regions. Replacing every
pardo with spawn will not work since the former requires lock-
step execution, but the latter (regular multi-threading) does
not ensure it. We saw this in figure 3.2. Splitting occurs at
points where a barrier is required. In XMT there is no way to
implement barriers except through using the join instruction. A
join is introduced by terminating a spawn region and starting a
new one, effectively splitting the pardo . This solution ensures
that there will be no violation of the data dependencies (true
or anti-dependence) between the memory accesses within the
pardo region. This method’s downside is that the parallelism
granularity is reduced, but its degree is maintained.

To ensure correctness, the order of reads and writes must
be maintained. Thus when translating ICE to XMTC, it is re-
quired that a pardo be split into multiple spawn blocks wherever
the pardo contains both a read and a write to a data object ac-
cessed by at least two different parallel contexts. This ensures

that a memory access is completed by all parallel contexts,
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before any context starts with the next memory access. This
splitting is performed by introducing a barrier between the read
and the write. Two cases are possible: anti-dependence where
a write to a data object are done after a read (e.g. W and
S in figure 3.2(b)), and true dependence where a read is per-
formed after a write. Both cases require splitting the pardo
region into two successive spawn regions. However, in the
anti-dependence case, we also need to introduce a (compiler-
inserted) temporary, to which we perform the writes instead in

the first spawn region, and copy them back in the second.

4.2.2 Communication of Intermediate Information
Among spawn Blocks

Splitting pardo regions is likely to introduce many challanges
for maintaining correct operation of the translated ICE code.
Since different spawn blocks, preventing correct progression of

the data and control flow of the program

4.2.2.1 Handling Data Flow Across pardo Region Splits

Splitting pardo regions is likely to be a problem to the data
flow within a pardo block. Processors perform computations by

reading source data from memory which is then processed to

55



produce the final results that are stored into memory again.
During computations, the intermediate data is performed over,
and kept in a processor’s registers. Adding barriers between
sources’ loads and a results’ stores prevent correct data flow,
due to the inability to communicate a parallel context’s inter-
mediate data between one spawn block and the next.

This is resolved by 'demoting’ the registers and recording
their contents onto memory locations. Hence, for each interme-
diate value that is still being used in later spawn blocks, The
ICE compiler creates an array of n elements, where n is the
number of parallel contexts. Each of these element has the
same data type, size, and holds the same value as that of the
intermediate value being recorded. Then, each intermediate
value is saved onto memory before the split, and retrieved

after the split to be used in subsequence spawn blocks.

4.2.2.2 Handling Control Flow Across pardo Region Splits

Splitting pardo regions may cause complications for the
program’s control flow. There are two cases when this can

happen:

(1) When apardo region contains a conditional branch where

one of its directions requires a barrier as in figure 4.1.
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pardo (i=0; n; 1) { char cond[n+1];

if (i <50){ spawn(0,n) {
Ali+1] = c[i]; unsignedi=S;
cli] = A[i] + 1; cond[i] = i< 50;
} if (i < 50)
} Ali+1] = c[i];
}

spawn(0,n) {
unsigned i =S;
if (cond[i])
c[il] = Afi] + 1;

(a) lce code (b) XMTC translation

Figure 4.1: (a) A pardo with a conditional branch. (b) Its XMTC
translation.

(2) When a pardo region contains a serial loop within which
a barrier is needed. This causes a problem when ex-
pressing the continue and break statements, and the

serial loop’s back edge as in figure 3.2(b).

To maintain correctness, a parallel context must preserve
its intended control flow, which is not easily possible in
these cases since XMT disallows branching between spawn
blocks. To that end, branch decisions are communicated
across splits by recording the branch state for each context
into memory, and retrieve it when needed. Hence, for the

first case when a branch condition is evaluated as in fig-
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ure 4.1(b), we record the result to memory (temporary array
cond) and retrieve it in any later spawn that is on either
direction of the conditional branch. A similar solution is
used for the second case where the serial loop is taken
outside the parallel region and is executed by the MTCU,
the loop condition becomes a flag indicative of the exis-
tence of threads that have not completed execution yet, and
the original loop termination condition becomes a normal
branch and is treated as in the branch case. An example
of this is the do-while loop in figure 3.2(b)(c) where the
serial loop is taken outside the spawn block, the terminat-
ing condition now is (flag! =0) instead of (S(i) == S5(5(i))).
flag is incremented by threads which still have work to do,
using the ps operation. Furthermore, temporary arrays are
used to record when a context executes a continue Or break.
Resultant spawn blocks from this loop split will check if the

context have executed either, and will act accordingly.

4.3 Optimizing The Translated ICE Code

Splitting a pardo region into multiple spawn blocks can
degrade performance due to the overhead of creating and
managing more threads, and due to using memory to commu-

58



pardo (inti=0;n; 1) {
Ali+1] = c[i]; \\A1
c[i] = A[i] + 1; \\A2
B[i-1] = d[i]; \\B1
d[i] = B[i] +i; \\B2

}

spawn(0,n) {
unsigned i =S;
Ali+1] = c[i]; \\Al

}

spawn(0,n) {
unsigned i =S;
c[i] = A[i] + 1; \\A2

spawn(0,n) {
unsigned i =S;
Ali+1] = c[i]; \\A1
B[i-1] = d[i]; \\B1

}

spawn(0,n) {
unsigned i =S;

B[i-1] = d[i]; \\B1 c[i] = Ali] + 1; \\A2
} d[i] = B[i] +i; \\B2
!
spawn(0,n) {

unsigned i = S;

d[i] = B[i] +i; \\B2
}

(a) CodeinICE (b) Equivalent code (c) Optimized XMTC

in XMTC

Figure 4.2: Rescheduling memory accesses. Statement A2 is
dependent on statement A1, and statement B2 is dependent on
statement B1. statements A are independent from statements
B

nicate information between the different spawn blocks which
increases the degradation even further. This is exacerbated
when the number of splits is high. Hence it is crucial to
avoid splitting whenever possible, and to mitigate the effects
of the unavoidable splits.

Splitting a pardo can be avoided if we can prove that
a memory location is exclusively accessed only by a one
parallel context. In this case, the splitting becomes unnec-
essary and a direct conversion from a pardo t0 a spawn

will be possible. One example of this is when a parallel
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context with ID i’ always reads and writes to A[i]; hence
we know that no two contexts access the same memory
location. This means that no race conditions are possible;
hence no splitting is needed.

Optimization for anti-dependence case within serial loops
in pardo When the anti-dependence is within a loop in a
pardo region (as in figure 3.2 example), we can get better
performance by unrolling the pardo once, and then transform-
ing the two loops that result so that the first loop updates
temporary data structures that are clones of the original
data structures, and the second loop does the opposite.
An example of this is seen in figure 3.2(c). Thereafter the
pardo region is split to place the two loops in different
spawn blocks in the XMTC output. Other elements in the
figure such as ps operation and flag’ will be discussed in

detail shortly.

4.3.1 Clustering of Memory Instructions

In an optimization for unavoidable splits, we rearrange
memory accesses within a pardo into clusters to minimize
the number of splits needed. Each cluster represents a

spawn block. These clusters consist of a group of memory
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accesses that are independent from one another across the
different parallel contexts. When a pardo region is split into
multiple spawn blocks, often there are more splits than nec-
essary. We see an example of this in figure 4.2(a), where
there is a dependence between statements A1 and A2, and
another between B1 and B2, but none exist between the A
and B statements. Without optimization we will end up with
three spawns after the splitting as in figure 4.2(b). However,
by rearranging and grouping independent memory accesses
as in figure 4.2(c) and only then doing the splitting, we
end up with two spawns. We call this rescheduling scheme
clustering.

The clustering algorithm is a list scheduling algorithm.
Figure 4.3 shows the algorithm used. The compiler builds
a dependence graph in which we capture all data (flow or
'loop-carried’') and control dependencies between all the
memory accesses. Then we start building one cluster at a
time by scheduling all ‘ready-to-fire’ nodes in the current
cluster (lines 28 - 34). A node is ’'ready-to-fire’ if it satisfies

the conditions in the lines (13 - 25). In simple terms, when

"Even though the execution order within a pardo is different from that
of a loop, the term ’loop carried dependence’ is being used to refer to
the parallel contexts cross dependence between different memory access
in the pardo block
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M: set of all memory accesses
CL; = {m € M : m is a member of cluster i}
NM = {m e M : mis not a member of any cluster}

Foranm e NM:

L,, = {m; € M : loop carried dependence between m; and m}
F,, = {mye M : misDataflow dependent on mg }

C,, = {m¢eM : mis control dependent on value of m }.
LP,, = {m;p € M : m exist in a different loop from m,p }

NL, = L, NNM

NF, = F,, NNM

NC,, = C,, NNM

NLP,, = LP,, NNM

Define Procedure ConflictsWith (m,CL ) :
if NL,, # & then
| return true
ifL,, NCL +# ®then
| return true
if LB, NCL # & then
| return true
for my € NE,, do
if ConflictsWith (mg,CL ) then
| return true
for m; e NC,, do
if ConflictsWith (m.,CL ) then
| return true
return false

26
27
28
29
30
31
32
33
34
35

Define Procedure cluster:
Def: integeri=0
While (NM # @) do
define new cluster CL;
forme NM do
if ConflictsWith (m, CL;) then
| skipm
else
| Add mto CL;
i=i+1l

Figure 4.3: The clustering algorithm.

the compiler considers a memory access to be added to

cluster i,

that memory reference and all the unscheduled
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data flow and control memory accesses it depends on must
not have a ’loop carried’ dependence with any member of
that cluster. The clustering algorithm has a complexity of
O(nl), where n is the number of instructions that access

memory, and [ is the number of resulting clusters.

4.3.2 Reducing the Number of Temporaries

The ICE compiler attempts to minimize the amount of
intermediate information communicated across the different
pardo region splits, such as branch directions, loop states,
and intermediate data. This information is stored to and
retrieved from memory, which can cause performance degra-
dation. So in order to achieve maximum performance, avoid-
able memory accesses must be eliminated or promoted to
local variables inside the spawn blocks that resulted from
the splitting where possible. Alternatively, communicated in-
formation must be aggregated such that it can be stored
and retrieved in the least number of accesses possible. For
that reason, 1. We take clustering a step further. Memory
accesses scheduled to an earlier cluster are moved to a
later clusters if these clusters contain members dependent

on the memory accesses and it is legal to do so. For a
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move to be legal, a memory access must satisfy all the
conditions in the lines (13 - 25) in figure 4.3 for the target
cluster, and all clusters in between the target cluster and
the memory access original cluster. 2. We use bit vec-
tors to record the branch directions for split pardo regions,
where each branch decision along the tree gets a single

bit.

4.3.3 Fixing Control Flow after Clustering

The clustering process will result in reordering of mem-
ory accesses which can potentially distribute instruction of
a basic block across two clusters or more. This causes two
major problems: 1- Complicate and disorganize the control
flow of a pardo region. Instructions that have the same par-
ent basic block can be scattered across multiple (potentially)
nonconsecutive spawn blocks, and will likely be preceded or
followed by other instructions that belong to other basic
blocks. More on this in subsection 4.4.3 2- A bigger prob-
lem is that it prevents the transformation of a serial loop
within a pardo region, discussed in subsection 4.3 above, in
which a split serial loop within a pardo block is replaced by

a serial loop outside the resulting spawn blocks. Since, after
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clustering, the instructions belonging to that serial loop are
likely to get mixed with instructions from other basic blocks
that are not part of the serial loop.

We solve this problem by creating an empty replica of
the Control Flow Graph (CFG) of the pardo region in all
resultant spawn blocks. As such, every basic block inside
the pardo will have an empty copy of it inside every result-
ing spawn block. Then a copy of the branch terminating the
original basic block will be placed in each of the replicated
basic blocks. This allows us to maintain the correctness of
the control flow more easily, and allows a direct and un-
complicated placement of the memory accesses in their re-
spective spawn blocks. Basically, a memory access is simply
moved from the original parent basic block inside the pardo
block, to the parent block’s replica inside the spawn block
where it belongs. Furthermore, we can still use memory to
communicate control direction as discussed in section 4.2
above, however it now must be performed in every spawn
block.

There are two exceptions where a basic block is not

replicated:
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1 If the basic block is a target of a conditional branch
whose condition cannot be calculated at a specific spawn
block yet because it depends on a memory access(es)
that have been placed at a later spawn block. While
the condition is not ready, the conditional branch will
be replaced with a direct branch to the first common
immediate post-dominator basic block of the conditional

branch’s targets.

2 If the basic block belongs to a serial loop inside a
pardo block. Since, as was discussed in section 4.2,
we achieve the back edge of the loop by creating a
serial loop outside the spawn blocks and replace the
loop with branches inside of it, the basic blocks from
the loop cannot exist along basic blocks from outside
it, since that means that these other basic blocks will
execute every time the loop is executed. Instead, during
clustering we make sure that a cluster is not shared
between multiple loops (lines 17 - 18 of figure 4.3). As
such, a split serial loop will be clustered into a set of

consecutive spawn blocks.
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4.4 The ICE Compiler Structure

The ICE compiler uses a modified Clang frontend and
the LLVM compiler infrastructure to perform source-to-source
translation of ICE program into XMTC program. Thereafter
the XMTC code is compiled using the existing gcc-based
XMTC compiler [12]. Clang was modified by adding the
pardo ' keyword, and implementing the parsing of the pardo
and the relevant IR code generation. Even though multiple
LLVM passes were also implemented to accomplish all the
various steps required to convert the lock-step semantics
into threaded code, native LLVM passes were used wherever

possible.

4.4.1 preliminary Code Optimization

The LLVM compiler stack is designed for serial threaded
code executed by a single processor, making it incompat-
ible with lock-stepped parallel code. Since the available
compiler transformations do not take into account many of
the properties of parallel code (e.g. differentiating between
shared vs local variables or serial vs parallel contexts),

Some steps were required to maintain the correctness of

67



the ICE code when using native LLVM passes. For example,
the beginning and end of a pardo block are marked when
generating IR from source. Also, each parallel section is
outlined into its own function, giving it a different context
from its surrounding code. Furthermore, only the follow-
ing native LLVM transformations that are guaranteed to not
modify the memory ordering were used (listed by order of

usage):

(1) Control Flow Graph Simplification CFGSimplify pass
which removes all empty and extraneous basic blocks.
This helps in making many of the passes the compiler
uses more efficient in reasoning about control and data

flow of the program?2.

(2) Memory to register promotion mem2reg pass which trans-
forms the code into SSA (Static Single Assignment) form

making subsequent optimizations much easier.

(3) Instruction combine InstCombine pass to combine in-
structions into simpler forms whenever possible. This

helps in removing all extra instructions thus making

2There are many passes that are harmed by usage of this pass as
well. However, since none of these passes are used in the ICE compiler,
usage of CFGSimplify will only benefit the compilation process.
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the code more efficient. It also helps in reducing the

amount of information communicated across pardo splits

(4) Global Value Numbering (GVN) pass which finds all

redundant instructions and remove them.

At this stage, the clustering and scheduling of pardo block
instructions is performed, Which involve multiple stages to
build the dependency graph and perform the clustering al-
gorithm. It also involves all the steps taken to reduce the
information communicated across splits. This is explored

below.

4.4.2 Building the Dependency Graph

The clustering algorithm relies on dependencies between
memory references to decide which spawn block each mem-
ory access will be assigned to. For that purpose, the ICE
compiler builds a dependency graph that takes into consider-
ation only the dependencies that may affect the correctness
or performance of the translation from ICE as discussed
in 4.2. The compiler relies on the Dependence Analysis
(DA) pass in building that dependence graph.

The Dependence Analysis pass is a native LLVM analy-
sis pass that uses certain dependency tests to determine
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whether a dependence exists between a pair of memory
accesses, and if it exists, it attempts to provide as much
information as possible about the dependence. This anal-
ysis pass builds an internal dependency graph based on
mutual dependencies between memory references, and can
be queried about the dependency relationship between two
memory accesses, responding with one of three states; de-
pendent (flow, output, anti), independent, or confused.

The dependence analysis pass checks for the conditions
necessary to apply the suitable dependence test, and then
applies that test. The pass performs each of the follow-
ing dependence tests: the Zero Index Variable (Z1V) test,
the Single Index Variable (SIV) strong and weak tests, the
Restricted Double Index Variable (RDIV) test, and one of
the Multiple Index Variable (MIV) tests. For readers inter-
ested in knowing the cases where each test applies, or the
methodology each test uses to disprove dependence between
a memory reference pair, consult Appendix A.

When the dependence pass is queried about a memory
reference pair, it will first determine which dependence test
is most suitable to prove independence between the refer-

ence pair, and then apply all the suitable tests. If indepen-
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dence cannot be proved, the pass will provide information
about distance and direction vectors if the test used is ca-
pable of finding that kind of information. This information
can be very useful for optimizing passes as well as for
auto-parallelizing compilers, especially in case of nested
serial loops.

In order to be able to use the dependence analysis pass,
the ICE compiler creates fake loops based on the pardo
regions. This is done for two reasons; first, by creating
fake serial loops out of parallel pardo regions, the compiler
is effectively checking for the problems bound to arise when
a pardo region is translated as is to a single spawn block.
Dependencies that are found between different iterations of
the serial loop will translate as dependencies between the
different threads created by the spawn . Second, This pass
is intended for the dependence analysis within serial loops
and structures, and is unable to recognize parallel loops
including any lock-step loops. As a result, the dependence
analysis pass is not going to be able to recognize the
dependencies within a pardo region correctly, and it will not
find any loop carried dependence. For that reason, making

a parallel pardo region resemble a serial loop will allow the
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pass to provide all dependency information needed to build

the dependence graph used by the clustering algorithm. The

fake serial loop is created as follows:

(1)

The compiler adds two new empty basic blocks, one for
the loop header which is inserted right after the pardo
region header, and another basic block that will replace
the pardo block trailer, and will be the last basic block
to execute in every iteration of the loop. For purposes
of this explanation, this basic block will be referred to
as the ’loop trailer”. After this is completed, the loop
header should dominate all pardo basic blocks, and the
loop trailer should post-dominate all the pardo basic

blocks.

The compiler adds the code required for checking the
loop condition and places it into the loop header basic
block. This check makes sure the loop index variable
does not exceed the high parallel context ID in the
pardo statement. If the check fails, the loop execution
terminates, and execution is set to continue at the pardo
region’s trailer basic block. The compiler also adds

instructions to the loop trailer, for incrementing the loop
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index by step and an unconditional branch to the loop

header.

(8) The loop index variable is initialized to low parallel

context ID outside the loop.

Once the dependency graph is completed, the fake se-
rial loop structure is removed, and all the changes are
reversed. After the dependency graph completion, the com-
piler executes the clustering pass. Once clustering has
completed and clusters are set, the compiler will split the
pardo block, replicate the CFG as discussed in 4.3.3, and
move all memory references and intermediate instructions to

their respective clusters.

4.4.3 Maintaining Correctness of LLVM’s SSA
Form

The LLVM compiler Infrastructure Intermediate representa-
tion (IR) uses the Static Single Assignment (SSA) to repre-
sent the intermediate operations, and to maintain the def-
use and use-def chains within the compiled module. One of
the required properties of SSA representation is that a Defi-

nition must dominate all its Uses, with the only exception
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to this rule being if the user instruction is a phi-node. As
a result of clustering and the subsequent replication of the
CFG, followed by the placement of instructions into their
parent basic block’s replica within the cluster they belong
to, it is often the case that the domination property of the
SSA representation is broken. Figure 4.4 shows an example
of this problem.

This problem is resolved through cloning the offending
definition into memory in the cluster where it occurs, then
reading the clone in the user instruction’s cluster, right
before the user instruction. Unfortunately, This solution may
potentially result in cloning too many intermediate definitions
into memory.

Each definition cloned will cost at least two memory ac-
cesses; store instruction for making the clone copy and a
load instruction every time the cloned value is used by an
instruction. Hence, in order to minimize the overhead of
memory accesses, clones must not be performed unless it
is necessary. As such the compiler checks for opportuni-
ties of cheaper options that enables the recalculation of the
value instead of creating a clone of it. The recalculation is

deemed cheaper if at most it costs less than a load and a
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Before Clustering After Clustering

Cluster 1
Al = Load b[i+1]
Store Al, temp
Al = Load b[i+1]
A2 =add Al,5
St A2, bli
ore fi Cluster 2

Al1l = load temp

A2 =add Al11,5

Store A2, bli]

Figure 4.4: Example showing placement of instructions into
their respective clusters, before and after clustering, and the
CFG replication process. The store depends on the load across
multiple parallel contexts. The placement of instructions Al and
A2 into clusters 1 and 2 respectively, results in breaking the
SSA dominance property. To resolve this problem, Al is cloned
to temp in cluster 1, and temp is retrieved to be used by A2
in cluster 2
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store. In that sense, unless the value to be cloned is (i)
the result of a computation involving at least three loads
from memory, or (ii) it is the result of the computation of
two loads and the clone is going to be used in more than
a single cluster, or (iii) it uses the results of memory read
that is conflicted with other memory accesses within the
cluster (as is the case in figure 4.4), then the value is
not cloned and is recalculated instead. The compiler keeps
track of the values that it cloned, so that later on after
optimizing the control flow graph, the compiler will check
which ones are not necessary anymore and remove them.
Following this, the compiler executes the CFGSimplify pass
to remove all the unnecessary or empty basic blocks that
resulted from replicating the CFG. After that, the compiler
executes another round of the LLVM passes used for the
preliminary optimization stage to clean up and remove all
the extra variables or memory clones. After that the com-
piler will check to make sure that only the necessary clones
are left. If the LLVM passes seem to have missed a clone

that is not needed anymore, the compiler will remove it.
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4.4.4 Transforming the LLVM IR into XMTC code

Finally, the compiler translates the LLVM IR to XMTC
high level code using our XMTC backend. The XMTC back-
end is a modified version of LLVM native C Backend with
added support to generate high-level XMTC code. Here
the compiler does the splitting of pardo regions into spawn
blocks based on the results of the clustering pass. Also,
in this stage the compiler splits loops and conditionals as
discussed earlier, create all arrays for communicating inter-
mediate data, and any other steps required for generating
correct XMTC code. After the XMTC code is produced, it is
compiled using the existing gcc-based XMTC compiler [12]
to produce binaries for the XMT FPGA and XMT cycle ac-

curate simulator.

4.5 Support for Nested Parallelism

Correct translation of nested ICE code into nested XMTC
code is similar to non nested ICE code in that it requires
splitting the pardo region into multiple spawn regions. How-
ever, splitting an inner pardo region requires that all outer

pardo regions containing it to be split as well. Translating
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nested ICE code by only splitting the inner pardo region
without splitting any of the outer pardo regions will create
multiple spawn blocks contained within one enclosing spawn
block. Each ’'parent’ thread created by the outer spawn will
in turn execute its instance of the inner spawn calls at its
own pace, creating multiple tasks that are synchronous only
with threads created by same spawn call instance. So, a
‘'parent’ thread may potentially complete the execution of
multiple inner spawn calls before any is executed by other
'parent’ threads. Thus, the parallel contexts created by a
nested pardo will not synchronize with other nested parallel
contexts on same level of nesting, consequently, breaking
the lock-step execution semantics of ICE.

Translating the nested ICE code will face many of the
same problems and use many of the solutions used while
translating non-nested ICE code with minor differences. Sim-
ilar to the non-nested case, splitting an inner nested pardo
will introduce many of the data flow and control flow prob-
lems discussed in section 4.2.2. To resolve this, temporaries
will need to be created to communicate the intermediate
data computations and control direction of the nested paral-

lel contexts. However, since a split within the inner pardo
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requires that we split its enclosing pardo regions as well,
the temporaries created should account for all the parallel
context created across all enclosing parallel contexts on all
levlels of nesting. Hence, the ICE compiler creates multi-
dimensional array temporaries with as many dimensions as
the levels of nesting.

Optimizing for the nested ICE code is performed in a
very similar manner to the non-nested case as well. The
clustering algorithm is still used to minimize the number of
splits involved, as well as the optimizations used to reduce
the number of temporaries. Control flow after clustering is
still replicated. However, there are two changes that are

added for nesting:

(1) Building the Data Flow Graph The change required
was in extending the algorithm used to recognize the
pardo nesting, which allowed the data dependency graph
to capture the data flow across nested ICE code as
well. Since the clustering algorithm relies solely on the
dependency graph, the clustering algorithm does not

require other changes.

(2) Handling serial loops occurring within a nested pardo
block similar to how serial loops were handled in the
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non-nested ICE code, serial loops are taken outside
the pardo region containing it. Also, since all enclosing
pardo blocks need to be split, the serial loop is also
taken outside all enclosing pardo blocks and is executed
by the MTCU, the loop condition becomes a flag indica-
tive of the existence of threads that have not completed
execution yet, and the original loop termination condi-
tion becomes a normal branch within the pardo where
the loop used to reside and is treated as in the regular

branch case.
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Chapter 5: Evaluating The ICE Language: Results

and Analysis

This chapter presents the results of the experiments of
writing and compiling ICE programs, and compare the results
to programs written in the XMTC language. First, this chap-
ter examines the difference in ease of programming between
ICE and XMTC by showing a comparison of the number
of lines of code needed to implement the same algorithms.
Then, it examines the translation accuracy of the ICE com-
piler, by comparing the ICE to XMTC translation produced
by the compiler, to the hand-optimized XMTC in terms of
the number of required spawn blocks and temporaries used.
Finally, This chapter lists and examines the performance of
ICE programs for the used benchmarks, and compares to

that of the manually-optimized XMTC.
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5.1 Environment and Methodology

Since ICE is a new language with no standardized bench-
marks, a suite of 16 benchmarks based on common PRAM
algorithms was developed to be used for the experiments.
This benchmark suite contains benchmarks that can be clas-
sified as nested and non-nested algorithms, or regular and
irregular programs. A list of the the non-nested benchmarks
in the new benchmark suite is available in table 5.1, and
the nested benchmarks can be seen in table 5.2. four of
the five nested benchmarks had a non-nested version of
them. In exception of BFS, the non-nested versions of the
algorithms were essentially flattened versions of the nested
benchmarks. The fifth benchmark (i.e., topological sort) does
not have a non-nested counterpart in the benchmark suite.
A detailed description of each of the algorithms the bench-
marks were based on can be found in [25, 26, 27]. For
each benchmark, a lock-step pseudo-code was written based
on the PRAM algorithm for the benchmark, then based on
that pseudo-code two versions were implemented: an XMTC
version that is manually optimized for best performance, and

the ICE version. The ICE versions was compiled using the
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Table 5.1: A list of the non-nested benchmarks.

Benchmark Problem Size Abrv.
Integer Sort’ 1048576 INT
Merging’ 1000000 MRG
Sample Sort’ 131072 SMP
. . 1 32768 nodes BFS
Breadth First Search 65536 edges
32768 nodes CVTY

Graph Connectivity’ 65536 edges

Maximum Finding 262144 MAX

Tree Contraction 32768 nodes CTRC

Tree Rooting’ 32768 nodes RANK
g 65536 edges

2D Jacobi JAC

Stencil Computation S12xs12

LU Factorization 512x512 LU

Cholesky 510%512 CHO

Factorization

new ICE compiler, then the compiler’s output XMTC code is
compiled using the XMTC compiler. The same XMTC com-
piler is used for compiling both the hand-optimized XMTC
program and the automatically generated XMTC code that
was translated from ICE. After the XMTC compiler have
produced an XMTC executable, it is executed using the 64-

TCUs XMT FPGA.
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Table 5.2: A list of the nested benchmarks.

Nesting .
Benchmark Depth Problem Size Abryv.
. 32768 nodes TOBO
Topological Sort 2 65536 edges
. . 32768 nodes NBFS
Breadth First Search 2 65536 edges
2D Jacobi NJAC
Stencil Computation 2 S12x512
LU Factorization 2 512x512 NLU
Cholesky 2 512x512 CHO
Factorization

5.2 Ease of use and Code size

This section examines the differences in code sizes for
both ICE and XMTC implementations of all benchmarks. The
code size is used as a measure of ease of programming.
This is fair because ICE and XMTC are extensions of the C
language, each featuring an extra keyword to express paral-
lelism: pardo to lock-step parallelism in ICE, and spawn for
expressing threads in XMTC. Both languages are identical
otherwise. This means that for the same pseudo-code of
an algorithm with same inputs and outputs, smaller code
indicates simpler programs, and the increase in code size

was due to the elaboration needed to ensure correctness
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Figure 5.1: Code size for the entire program normalized to
XMTC.

and/or higher performance, as is the case in the example
in figure 3.2. Thus, we believe comparing lines of code to
approximate ease of programming is a valid approach to
demonstrate the ease of programming of ICE compared to
XMTC.

Two different measurement of code size are provided: a
measurement for the parallel algorithmic part only to ex-
amine the ICE language ability in help programmers write
simpler parallel code, and a measurement for the entire
program provided for completeness. For both measures, the
number of lines of code naturally excludes white spaces and

comments. Also, each variable is declared on a separate
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Figure 5.2: Code size of the algorithm’s parallel sections nor-
malized to XMTC.

line. For the algorithmic parallel portion of the code, we
measure only the benchmark’s code size for parallel sec-
tions only, excluding all shared variable declarations and
non-recurring initializations, all serial algorithms used as
part of the main parallel algorithm (i.e., serial sorting or
summation, etc.), the main function, and all preprocessor
directives.

Figure 5.1 shows a comparison of the reduction in the
entire program code size for non-nested ICE normalized to
optimized XMTC. This graph shows that ICE has a smaller
code size when compared to XMTC for seven out of our

eleven benchmarks. The other four benchmarks saw no
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reduction in code size, since they contain none of the cases
that ICE can help programmers with. These benchmarks
were included only as a base-line case. ICE provides a
reduction in the size of code by 11.01% on average for
the entire benchmark suite, and 16.08% on average for the
benchmarks that showed an improvement.

Figure 5.2 shows the percentage of code size reduction
for the parallel algorithm part of the benchmark for non-
nested ICE when normalized to the XMTC version. Here
as well, ICE provides the largest reduction in size of code
when compared to XMTC with reduction of up to 57.14% in
some cases. ICE provides an average reduction of 21.61%
for the entire set, and 33.35% for benchmarks that showed
an improvement. This shows the potential of ICE to reduce
code size (and therefore programming effort) compared to
XMTC, which is a more traditional threaded language.

figures 5.3 and 5.4 show that the ease of programming
benefit of ICE extends to nested ICE as well. Figure 5.3
provides a comparison of the reduction in size of the code
for the entire program for nested ICE programs normalized
to optimized nested XMTC programs, while figure 5.4 shows

the percentage of code size reduction for the parallel al-
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Figure 5.3: Code size for the entire program normalized to
XMTC for nested benchmarks.
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Figure 5.4: Code size of the algorithm’s parallel sections nor-
malized to XMTC for nested benchmarks.

gorithmic part of the benchmarks for nested ICE when nor-

malized to the nested XMTC version. In both figures, ICE

88



provides an average reduction in code size of 13.28% for
the entire program, and 34.14% for the parallel algorithm
portion of the code. We also notice in figure 5.4 that the
maximum reduction in code size for the algorithmic part of
the program was 64.71%.

Finally, When examining the reduction in code size for the
entire benchmark suite, ICE provides an average reduction
in the size of code by 11.72% for the entire program, and

25.53% for the parallel algorithmic part only of the code.

5.3 Accuracy

In this section we take a look at the ICE compiler’s
accuracy and effectiveness in translating to XMTC. We look
at the number of spawn blocks and temporaries' used to
implement our benchmarks. We believe that this will help
demonstrate the ICE compiler’s effectiveness in producing
high performance XMTC programs, due to the effect spawns
and temporaries has on the runtime performance of the

translated XMTC code as discussed in section ??

'"Each temporary was used to store only one value that may be read
multiple times.
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We look at table 5.3 to see the number of spawns and
temporaries used by the programmer and the ICE compiler.
This table shows that nine out of 15 of the 16 bench-
marks had the same number of spawns and temporaries in
both XMTC versions. The benchmark that is left had more
spawns and temporaries compared to hand-written XMTC.
This benchmark had multiple independent indirect memory
references that cannot be detected by compilers. However,
the programmer for the hand-written version was able to
avoid the extra splits and temporaries.

The ability of the ICE compiler to generate high quality
code is highly reliant on the performance of the alias anal-
ysis used to determine the dependencies between memory
accesses. These dependency relationships are used during
the clustering step to determine the number of required
splits and spawn blocks as was discussed in 4.3.1. When-
ever uncertain about a dependency, the compiler conserva-
tively assumes a dependence exists anyway. This means
that whenever alias analysis is queried about memory ref-
erences and it provide definitive answers of no-alias, the
clustering algorithm makes better clustering decisions, and

ultimately produces a more efficient code. Alias analysis is
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Table 5.3: Number of spawn blocks and temporaries in both
XMTC programs.

Benchmark Hand-written | Generated
XMTC XMTC
Spawns| Temp. | Spawns| T€mp-
Integer Sort 3 0 3 0
Merging 4 0 4 0
Sample Sort 8 0 8 0
Eirres? déhe arch 3 0 3 °
Graph Connectivity | 12 2 13 3
Maximum Finding 4 0 4 0
Tree Contraction 7 4 7 4
Tree Rooting 5 2 5 2
Jacobi 2 1 2 1
LU Factorization 1 0 1 0
Ig;cgtloersilz(gtion 2 0 2 °
Topological Sort 5 0 5 0
S LA LI R
Nested Jacobi 4 1 4 1
llzlaecsttoer?zle:ttijon 2 0 2 ’
Nested Cholesky 3 0 3 0

Factorization

91



a large field of compiler theory research and any advance-
ments within the field will benefit the operation of the ICE
compiler. However, it is outside the scope of this thesis

and we will not discuss it any further.

5.4 Performance

The XMT platform is excellent at exploiting parallelism in
irregular algorithms. A list of examples of published work
that shows XMT’s speedups against commodity superscalar
architectures was discussed in section 2.7.1. This also
validates the choice of comparing the performance of the
ICE language to the XMTC language for binaries executed
over the XMT platform.

In this section, we will focus on the performance com-
parison between binaries compiled from ICE and XMTC.
The XMT FPGA, which has 64 TCUs, was used to obtain
these performance measurements listed below for both hand-
optimized XMTC and ICE versions of the same algorithm
pseudo-code. Figures 5.5 and 5.6 provides the speedup
of ICE normalized to hand-optimized XMTC for both nested
and non-nested cases. Figures 5.7 and 5.8 shows the
net run-time improvement of ICE relative to hand-optimized
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XMTC, normalized to hand-optimized XMTC for both nested
and non-nested cases. At the end of executing a binary,
the XMT FPGA provides the number of cycles required to
execute the XMT binary. These numbers were collected for
all 16 benchmarks, and then used for performance compar-
isons. The cycle count of hand-optimized XMTC is used as
basis for the comparison, and these figures show the the
performance results for the ICE code normalized to hand-
optimized XMTC programs.

To ensure that ICE is being compared to the fastest
hand-optimized XMTC many steps were taken. Since mem-
ory accesses are the biggest source of overhead in XMT,
temporaries were not used in XMTC programs unless it was
necessary. This is can be seen in table 5.3 where thir-
teen benchmarks used no temporaries and fifteen use two
temporaries or less. The other lesser source of overhead
comes from the creation and termination of threads. This
overhead is very small in XMT and have negligible effect on
the validity of the comparisons presented in this section.

ICE achieves comparable performance to hand-optimized
XMTC, which takes considerably more programming effort

to write than ICE. Figure 5.7 shows that ICE has a 0.76%
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Figure 5.5: 64 TCU XMT processor speedup comparison of
non-nested ICE programs normalized to performance of hand-
optimized XMTC
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Figure 5.6: 64 TCU XMT processor speedup comparison for
nested ICE programs normalized to performance of hand-
optimized XMTC
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Figure 5.7: 64 TCU XMT net speedup of non-nested ICE pro-
grams normalized to hand-optimized XMTC

speedup on average for non-nested benchmarks, with maxi-
mum slowdown of 2.5% when compared to the performance
of optimized XMTC. Figure 5.8, shows that ICE nets no
slowdown on average when compared to hand-optimized
XMTC, with a maximum slowdown of 0.91%. Such minor
performance penalties for a much easier programming ef-
fort is an obvious good choice for programmers. For non-
performance-expert programmers who cannot write highly
optimized XMTC code, ICE might even provide a speedup.

The figures also show that for some benchmarks, ICE
has achieved a speed up when compared to hand-optimized

XMTC. In this work, we do not claim that ICE can provide
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Figure 5.8: 64 TCU XMT net speedup of ICE normalized to
optimized XMTC for the nested benchmarks

speed ups over XMTC for expert programmers, since intu-
itively hand optimized parallel code should always be faster.
Upon investigating, it was found that there are multiple
factors contributing to the observed speed ups. For some
benchmarks (Merging benchmark, Maximum finding bench-
mark, non-nested Jacobi benchmark), the ICE code was
accurately translated to its equivalent XMTC code (i.e., It
has the same number of spawn blocks and temporaries).
However, the program layout of both version is different.
This suggests that the performance gain is a result of fac-
tors unrelated to the translation such as data location in

the read-only cache, instruction scheduling, the whether the
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relevant data was pre-fetched, or what optimizations opportu-
nities were recognized and performed by the XMTC compiler.
For another benchmark subset (non-nested BFS benchmark,
and tree contraction benchmark), the performance gain was
a result of the LLVM compiler’s native optimizations which
is more recent than the GCC compiler used in XMTC imple-
mentation. This is combined with the ICE compiler specific
optimization that were implemented. When a PRAM algo-
rithm requires multiple synchronization points within a deep
nested if-else block, the condition needs to be re-evaluated
after each point. However, the ICE compiler used bit vectors
to record the evaluation results for multiple branches which
will require a single memory read per a spawn block will
be sufficient to retrieve the control flow information as was
discussed in 4.3.2. Since a programmer is very unlikely
to use bit vectors to record results of multiple branches,
multiple reads per spawn block are needed for condition
evaluation.

To compare the performance of ICE for both the nested
and non-nested versions of an algorithms, figure 5.9 is pro-
vided. This figure shows a comparison of both the nested

and non-nested versions net speedups as compared to hand-
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Figure 5.9: 64 TCU XMT net speedup comparison between
nested and non-nested ICE normalized to optimized XMTC

optimized XMTC. it can be seen from the figure that for
three of the four benchmark pairs, the nested versions
achieved slightly better speedups compared to the non-
nested versions of the benchmarks, whereas for the fourth
benchmark, the nested version achieved significantly lower
performance when compared to its non-nested counterpart.
We believe that this was mainly due to the minor changes
made to the algorithm to be able to write a non-nested ver-
sion of it. We do not think that we can make conclusions
on which method is better based on such a small subset.

The ease of programming of ICE permitted the writing

of programs directly from a (PRAM) algorithm with less
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effort than that required for writing hand-optimized XMTC,
while maintaining comparable performance through using a
compiler that automated the process of optimizing the the

produced XMTC code.
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Chapter 6: Related work and Conclusion

6.1 Related work

As mentioned in the introduction, over 225 parallel lan-
guages have been proposed. It is not practical to discuss
all of them here. We will focus on languages that are most
closely related, either because they have an algorithmic
foundation, such as PRAM, or have an ICE-like lock-step
execution model; or are meant for hardware like XMT suited
to irregular programs. In summary, we have not found any
related work that has the full ecosystem that ICE offers
of an easy-to-program language, with a sound algorithmic
foundation in PRAM theory, a capable compiler mapping
to threaded programs, and a hardware that is capable of
exploiting fine-grained irregular parallel programs.

The goal of this proposal is to allow programmers to
use as freely as possible an extended form of lock-step

programming similar to the way parallel algorithms are ex-
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pressed in the PRAM literature, whenever they prefer to do
so. We call this extended form ICE programming. The gen-
eral work-depth framework (due to [30]) is used in several
parallel algorithms texts [25, 26, 27] for describing PRAM
algorithms. ICE is the immediate concurrent execution ab-
straction presented in [2] for popularizing this framework.
To facilitate this goal, the statement of work in the pro-
posal includes mapping the ICE lock-step semantics onto
the XMT multi-threaded semantics while achieving the best
performance we can. As we start from lock-step specifica-
tion, the performance objective entails reducing synchrony
in an automatic way. So far, XMT programming of PRAM
algorithms was done using the modest XMTC extension to
C. In particular, [29] suggested a “programmer’s workflow”
that guides the programmer on how to advance the ICE ab-
straction of an algorithm, called there high-level work-depth
(HLWD), to an XMTC program and how to tune its perfor-
mance. The original XMT hardware allowed us to achieve
strong speedups over the best serial algorithm for many par-
allel algorithms implemented using this workflow [29]. Follow-
up architecture, compiler and run-time enhancements further

improve these speedups. The current proposal seeks to
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significantly reduce the algorithm-to-computer-program effort
by the programmer. Instead of an XMTC program, the pro-
grammer will handoff a specification of the algorithm using
ICE programming. The XMT implementation (e.g., run time)
should be “on par” with hand-optimized XMTC code.

DARPA launched the HIGH Productivity Computing Sys-
tems (HPCS) program with the purpose of building systems
that can be programmed productively. It resulted into three
languages; Cray’s CHAPEL [31], SUN’s Fortress [32], and
IBM’s X10 [33]. Although all these languages have ease of
programming and high productivity as a goal, none is suited
for the lock-step model of PRAM algorithms. Further all
these languages require manual specification of synchrony
and concurrency, whereas the ICE compiler automates the
process. Finally, these languages are intended to be mapped
to traditional coarse-grained hardware; hence they perform
poorly on irregular programs when compared to XMT.

APL is an early example of high-level programming that
allows for lock-step parallelism. A series of papers that
appears to have culminated with [34] sought execution of
compiler-extracted parallelism from APL programs on the

IBM RP3. The IBM RP3 built on the NYU Ultracomputer
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project, which also inspired XMT. However, APL did not
provide sufficient support for the PRAM parallel algorithms
literature. The V-RAM [35] appears to be the first lock-step
programming model aimed at implementing this literature.
However, it was a lock-step model targeting vector hardware.
NESL that followed was not lock-step, but, still appears to
have targeted machine models for which synchronization
was relatively easy; see, e.g., [36]. In any case, we are
unaware of speedup results for these approaches (APL, V-
RAM, NESL, etc.) that approach XMT results, especially for
irregular applications.

The case for (lock-step, nested) ICE programming It is
instructive to go back and read the motivation for NESL
in [37]. Parallel programming constructs were needed for
specifying parallel algorithms. Blelloch examined parallel
algorithms that are described in the literature and their
pseudo-code. He found that nearly all are described as
parallel operations over collections of values. For example
“in parallel for each vertex in a graph, find its minimum
neighbor”, or “in parallel for each row in a matrix, sum the

”

row”. The algorithms usually consist of many such parallel

calls interleaved with operations that rearrange the order of
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a collection, and can be called recursively in parallel. He
used Quicksort as an example. Hillis and Steele [38] called
this ability to operate in parallel over sets of data data-
parallelism. The languages based on it are often referred to
as data-parallel languages. Quite a few parallel languages
comprise data-parallel features as well as other forms of
parallelism [39, 40, 41, 42].

Following on his earlier work [35], Blelloch contrasts flat
data-parallel languages, where a function can be applied in
parallel over a set of values, but the function itself must be
sequential with nested data-parallel languages; in the latter,
any function can be applied over a set of values, including
parallel functions. For example, for multiplying a matrix by
a vector, the summation of each row of the matrix could
itself execute using parallel summation. We concur with
his claim that the ability to nest parallel calls is critical
for expressing algorithms in a way that matches our high-
level intuition of how they work; e.g., nested parallelism can
be used to implement nested loops and divide-and-conquer
algorithms in parallel.

As the multi-threaded architectures gained popularity, the

need for nesting, encouraged by Blelloch’s work, gained
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momentum. Cilk [43, 44] would be a good example for gen-
eral multi-threaded programming. Per [35], flattening nested
parallelism was important for the implementation of high-
level languages since they allow a compiler to translate the
high-level description of nested operations onto its low-level
implementation on a flat real (vector-like) machine. Multi-
threaded architectures, on the other hand, allowed greater
implementation flexibility. Cilk contributed important compiler
and run-time techniques such as work-stealing for implemen-
tation of nested parallelism. Our prior work [45] has already
built on this flexibility by further optimizing work stealing to
an improvement called Lazy Binary Splitting (LBS). Cilk++
[46] has incorporated a concept of reducers. They showed
that their work-stealing scheduler can support reducers with-
out incurring significant overhead. We will also try to extend
our LBS enhancement of work-stealing scheduling to reduc-
ers.

In contrast to Cilk programming, ICE stays clear of race
conditions and other complexities that led to the grave pro-
ductivity concerns with respect to general multi-threaded
programming. ICE also directly connects with the parallel

algorithms literature — the original problem that nested data-
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parallelism addressed. Namely, while being inspired by the
compiler and run-time support in [44], the XMTC program
handoff point was already closer to the algorithm; thus, re-
ducing the human effort. The proposed work will get it even
closer, further reducing the human effort. The gap between
Cilk and the parallel algorithms literature is made clear by
comparing the multi-threaded algorithms section in [47] with
parallel algorithms texts [25, 26, 27]. A key difference is
that while [47] also favors work-depth performance analy-
sis, it does not equip the programmer with the same level
of freedom for designing for work-depth performance. This
point was demonstrated with respect to parallel algorithms
for merging in [2]. Cilk, of course, has the important advan-
tage of being supported by today’s commodity hardware and
is, in fairness, more accommodating to programmers than
much of its immediate competition. However, commodity
hardware cannot exploit irregular parallelism as effectively
as XMT.

Our central question is: How should the programming
(handing off human input to machine processing) of paral-
lel machines be? The thinking on this central question has

been affected by changes in technology and parallel architec-
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tures over time (e.g., the move from vector to multi-threaded
architectures). In contrast, the literature on basic parallel
algorithms appears to be more resilient to these changes,
in spite of vigorous attempts by numerous researchers. This
resilience suggests that there is considerable intellectual
and practical merit in advancing programming specification
that will make it easier to unleash the wealth of this knowl-
edge base: 1. This specification should be as close to
the original parallel algorithm and simple to produce as
possible. 2. It should be efficiently implemented on some
architecture platform, as part of its proof of concept. 3.
Once the proof of concept is established, a proper set of
algorithm specification could create a benchmark for guiding
future parallel architectures; obviously different architectures
will need different adjustments to compiler and run time so-
lutions. 4. However, the main lesson for the success of
XMT on ease-of-programming is that support of the theory
of parallel algorithms, and in particular its concept of paral-
lel algorithmic thinking is no less important for the design
of parallel systems than any set of specific applications or
features. This is also the biggest departure from standard

computer architecture practice.
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6.2 Conclusion

We present ICE, a new lock-step easy-to-program paral-
lel programming language based on the PRAM algorithmic
model. We present the ICE compiler that we developed
which translates the lock-step ICE programs into a tradi-
tional threaded XMTC programs. We demonstrate that the
ICE compiler can provide comparable performance to highly-
optimized XMTC programs while requiring much less effort
from the programmer. We show how ICE easiness-to-program
works in synergy with XMT’s efficient parallelization of ir-
regular programs to strike the ever-sought balance between
the compiler and the programmer roles in producing paral-
lel programs, where the programmer needs only to specify
parallelism and rely on the compiler to do the rest. Finally,
given the relatively slow progress in parallel programming
language technologies for irregular programs, our works sug-
gests new opportunities for benchmarking parallel machines
by their efficient support of high-level parallel algorithmic
languages.

We conclude with a broader perspective on the signifi-

cance of our contribution. It should be clear that ICE (or
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work-depth) parallelism exists in every serial algorithm. The
only effort needed when we wish to use parallelism inherent
in a serial algorithm is to express it, which in our experi-
ence is just a matter of skill, with no creativity involved.
In contrast, practically all commercial approaches to parallel
programming are based on partitioning the work to be done
among processors or threads. There is no clear path for
deriving that from a serial algorithm, and, when doable, re-
quires significant creativity; in fact, in many cases it either
cannot be done or cannot be done beyond very limited lev-
els of parallelism. This extra level of creativity raises the
bar on the skill and effort of programmers, and has greatly
limited the adoption of many cores among programmers and
application software vendors. Our paper, along with prior
XMT work, establishes that there is a way to avert the
above practice, which arguably amounts to throwing the par-
allel programmer under the bus, through proper hardware

and software design choices.
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Chapter A: Dependence Tests and Analysis

Dependence testing is a method by which it is determined
whether dependence exist between two subscripted memory
references to the same array in nested loops [48]. It is
difficult to calculate data dependencies for arrays, due to
arrays referencing many different memory locations. This
Appendix will give an overview description of the methods
used for the high-precision testing of data dependencies.

Dependence testing has two main goals; to prove no de-
pendence exists, and provide best possible characterization
of the possible dependence, in the form of distance and
direction vectors. Dependence tests are conservative in na-
ture, so if a test cannot prove the independence of two
memory references, it must assume that a dependence ex-
ists. All the dependence tests below assume that all the
index variables of loop nests have been identified, and that
all auxiliary induction variables have been detected and re-

placed by functions of the loop indexes.
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To build the dependence graph it uses for splitting pardo
regions, the clustering pass in the ICE compiler relies heav-
ily on information provided by LLVM’s native Dependence
Analysis (DA) pass. The DA pass implements all the tests
discussed within the chapter, and decides which test (or
group of tests) to use, based on the subscripted reference
pairs being queried. This appendix is intended to give a
better understanding of the kinds of dependencies the DA
pass, and by extension the ICE compiler, will be able to
handle. For that reason, this appendix will only discuss the

dependence tests implemented within LLVM’s DA pass.

A.1 Overview of Dependence Testing

As the various array subscripts classifications have dif-
fering complexity levels involved in testing them. Subscripts
should be partitioned according to their complexities, and be
tested accordingly. This allows testing procedures of array
reference pairs based on the partitioning. These procedures

are:

1. The subscripts are partitioned into minimal and separa-

ble coupled groups.
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. Classify subscripts according to how they are indexed

(i.e., ZIV, SI1Z, MIV)

. For each subscript the appropriate subscript test should
be applied (ZIV, MIV, SIV tests). These tests are de-
termined based on a subscript’s complexity. The goal
of these tests is either prove independence, or attempt
to calculate distance and direction vectors between an

array reference pair.

. If two memory accesses subscripts were proven to be
independent, by any of the tests used, that means the
memory references are independent and testing should

be terminated.

. For each subscript group, apply multiple tests to pro-
duce distance and direction vectors for the occurring

indexes within that subscript group.

. otherwise, For every memory reference pair, merge all
the distance/direction vectors calculated in previous steps

in a single distance/direction vector.
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A.2 Zero Index Variable Test

The Zero Index Variable (ZIV) test is a loop-carried de-
pendence test that looks at array subscripts has no index
variables (i.e., subscripts that are loop invariant). Examples
of subscripts where ZIV test can be used are A[3] and A[4],
or Aft] and A[t+ 1] where t is not an induction variable

In this test, if two subscripts are proved to be unequal,
then the corresponding memory references are independent.
However, if the test failed, then caluclating distance/directional
vectors can be ignored. Since they contain no induction
variables, the subscripts have no contribution to any dis-

tance/direction vectors. An example of subscripts

A.3 Single-Subscript Dependence Tests

After the partitioning and classification of subscripts have
been completed, the tests used to check for the existence
of dependences between memory references are applied.
When a dependence exists, the tests will attempt to provide
as much information as possible about the nature of the

dependence in the form of the distance/direction vectors.
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This sections looks at tests that are applied over single

subscripts.

A.3.1 Single Index Variable Tests

The Single Index Variable tests is a group of loop-carried
dependence tests that looks at array subscript pairs that use
a single loop induction variable. These subscripts take the
form a,i+c; and asi+cy, Where a;,as are constants, c;,co are
loop invariant variables, and i is the loop induction variable.
SIV scripts is the most commonly occurring form of array
subscripts.

An exact SIV test for linear SIV subscripts is suggested
in [49, 50, 51]. These methods rely on finding all possible
solutions for a two-variables linear Diophantine equation.
Other simpler methods exists where the SIV subscripts are
categorized into weak SIV and strong SIV. All these methods

are discussed below.

A.3.1.1 Strong SIV Test

A pair of SIV subscripts is said to be strong SIV, if it
takes the form ai+ ¢; and ai + ¢y where ¢ is an induction

variable, a is a constant, and ¢; and ¢, are loop invari-
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ants; i.e., when it is linear, and the index i coefficients are
constant and equal. This test is capable of proving inde-
pendence, and if it fails to do that, it can calculate the
distance/direction vectors.

A geometric representation of the subscript pair would
translate into two parallel lines, due to which common el-
ements will always be separated by a constant distance
between them for the different loop iterations.

To find the distance separating the subscript pair, working
from the beginning:

ali—i‘Cl:aQi,—i‘Cg (A1)

Since a; = ay, the equation is simplified giving:

ai + c1 = ai’ + co (A.2)

After working out the above equation, the dependence
distance d is:

(A.3)

A dependence exists between a memory reference pair if
and only if common access happen to elements within loop
bounds. This translates to that subscript pair are indepen-
dent when d does not have an integer value, or d> (U-1L) ,
where U is the upper bound of the loop, and L is the lower

bound of the loop. However, if d has an integer value, and
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|d| < (U —- L), then a dependence exists and the direction of

the dependence is defined as

< d>0
direction = { = d =
> d<0

An exception to the dependence rule is when |d| =0, that
means that the subscript pair are dependent only when they
have the same array index, which in turn means that the
memory reference pair are loop independent references’.

One of the main advantages of this test is its ability to
be easily extended to handle loop-invariant symbolic expres-
sions. This is accomplished by first evaluating the distance
symbolically, then if the distance evaluates to a constant,
the test proceeds as discussed above. However, if that is
not the case, loop bounds difference is calculated and is
compared with the distance symbolically. An example of this
case is the subscript pair (i+2N),(i+ N) referenced within
a loop bounded by [1,N]. When the distance is calculated,
it is found to be d= N. This is compared to the the differ-
ence between the loop bounds (N —-1). However, N > (N —1),

which proves that this pair are independent.

"However, that does not mean that the reference pair are independent
from one another within the same iteration of the loop
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A.3.1.2 Weak SIV Subscripts

A pair of SIV subscripts is said to be weak SIV if they
take the form a7+ c¢; and asi + ¢y where 7 is an induction
variable, a;,a, are constants, and c¢; and ¢, are loop invari-
ants. This can be solved using the exact SIV test. However,
there are special cases where it is easier to test using
their specific properties. A geometric representation of the
subscript is two lines intersecting at a specific point where:

(Zl’i—i‘Cl :CLQ’i/—i‘CQ (A4)

A weak SIV test can be formulated to check if the point
where the lines intersect is of an integer value within the
loop bounds. There are two special cases based on this;
the Weak-Zero SIV and the Weak-Crossing SIV. finding either
of those two cases allows testing without requiring the use

of exact SIV test.

A.3.1.3 Weak-Zero SIV Test

A pair of SIV subscripts is said to be zero-weak SIV
that take the form ai +c¢; and ¢, where ¢ is an induction

variable, a is a constant, and ¢; and ¢, are loop invariants.
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This test is capable of determining independence. If it fails
to prove that, it can sometimes refine for direction.

This test relies on the fact that one of the coefficients
ay,ay 1S 0. This causes the dependence equation to reduce

to:

This suggests that one of the subscript pair references
only one specific array element. So this tests amounts to
checking at what integer loop index causes the subscript
pair to access the same array element, and whether it is
within loop bounds.

The weak-zero SIV test checks for dependences caused
by a specific loop iteration. If this is the first or last loop
iteration, which can be eliminated by the loop peeling opti-

mization?.

A.3.1.4 Weak-Crossing SIV Test

A pair of SIV subscripts is said to be weak-crossing SIV

if they take the form ai+c¢; and —ai+cy where ¢ is an induc-

2Loop peeling is an optimization where the first or last loop iteration
is split and executed separately from the rest of the loop. loop bound
are adjusted accordingly.
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tion variable, a;,a, are constants, and c¢; and ¢, are loop
invariants. This test is capable of proving independence,
failing that it can someimtes be refined for direction.

This test relies on the fact that ay = —a; = a, since sym-
metry helps simplify the analysis. This suggests that as
the loop index progresses, the subscript pair are moving
away from a specific point at the same rate. This point is
the crossing point between the subscript pair. To locate the
crossing point, i’ is set to i, and a, is substituted with —a;
which results into:

a1i+01 = —a1i+02 (A6)
Solving for ¢ results into:

j =2 (A.7)
2@1

Determining whether dependence exists amounts to check-
ing whether the crossing point is within the loop bounds,
and has a value that is either an integer or non-integer
multiple of 1. Since the subscript pair are moving with the
same rate away from the crossing point, a point that is not

in the middle between two integers, then the pair cannot

intersect at an integer, thus proving independence.
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Weak-crossing SIV dependences can be eliminated by

loop splitting optimization?s.

A.3.1.5 Exact SIV Test

As discussed earlier on in this section, the exact SIV
test is used for array subscript pairs that has the form
a1t +c; and aqi’ + ¢y where i is an induction variable, ai,a,
are constants, and c¢; and ¢y are loop invariants. This test
is slower than any of the specialized SIV tests (i.e., strong,
weak-zero, weak-crossing), thus it is recommended to use
them instead. These tests are also better with symbolics
and strong SIV test can even calculate distances as dis-
cussed in A.3.1.1. This test can prove dependence, failing
that it can refine for direction.

Starting from the intersection point

ali—l—cl :agi/+02 (A8)

This test requires looking for all possible solutions for
the equation:

ali—agi':@—cl (Ag)

This equation system has a solution if and only if 2«dleraz)

cog—c1

is an integer value.

8Loop Splitting is a compiler optimization where dependences within
a loop are eliminated by breaking the loop into multiple loops with
same bodies and different bounds covering the entire index range of
the original loop
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A.4 Multiple Index Variable Test

ZIV and SIV subscripts are relatively simple linear map-
pings from Z to Z, when restricted to linear functions of
loop induction variables, and where Z is the set of natural
numbers. However, being linear mappings from 2™ to Z,
(m is the number of subscript’s loop induction variables),
MIV subscripts are more complicated. As such, in order
to accurately determine dependences, MIV subscript pairs
require use of more advanced mathematical methods. This
section explains the general dependence equations used in

the various MIV dependence tests
MIV tests are useful for loops that take the general form:

for 1. = L; to U, do
for 19 = Lo to Uy do
for i, = L, to U, do
ALf(ivinsoorin)] = ...
= ALg(ir i )]
EndFor

EndFor
EndFor

To determine if a dependence exists and has a direction
vector D = (D, D,,...,D,) is equivalent to determining if an
integer solution to the following equation system exists:

flui,ve, . v,) = g(uy, ug, ..oy uy) (A.10)
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where v,u are defined by

and direction vector added restriction

viD;y;Vi,1 <i <n,andD; € {<,=,>} (A.12)

The equation has a solution if

h(Ul,UQ, oy Upy U, U, ,U,n) - f(Ul,Ug,...,Un) _9<U17U27 ,Un)

has an integer solution inside the region defined by A.11
and A.12. However, exactly solving this equation in re-
stricted space is very difficult, which means finding an ap-
proximate solution with acceptable precision for compilers.
A simplification to the requirement for the solution to be
integer, which will make the solution space continuous. The
absence of a real number solution indicates that the equa-
tion cannot have an integer solution, which proves that no
dependence exists. This section will look only at affine
functions of the form:

f(vi,ve,...,0,) = ag + a1vy + asve + ... + apvy, (A.14)

g(uy, Us, ...;uy) = bg + bruy + baus + ... + bpuy, (A.15)
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And to solve the dependence problem means finding solu-
tions in the region defined by A.11 and A.12 to the linear

equation:

ag — bo + a,v1 — b1u1 + agvg — bgUg + ... +a,v, — bnun =0 (A1 6)

There are two important dependence tests used for MIV
subscripts, the GCD test, and the Benarjee Inequality test.

The Benarjee Inequality test will not be discussed further.

A.4.1 The Greatest Common Denominator Test

When equation A.16 terms are rearranged, it yields:

a1v1 — b1u1 + aovy — bQUg + ...+ a,v, — bnun = bo — Qo (A1 7)

This equation has the linear Diophantine equation’s stan-

dard form. A theorem about these equations is:

Theorem A.4.1 A linear Diophantine equation of the form:

a1x1 — biyr + asxe — boys + ... +apxy, — bpy, = by — ao

has a solution if and only if the GCD(ay,as,...,a,,b1,bs,...,by,)
divides by — ag
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When this theorem is applied to equation A.17, indepen-
dence is proved if the GCD of all coefficients a,b does not
divide the constant term bg — ag.

Testing for a specific direction vector D = (Dy, D,y,...D,),
with at least one direction being ' =’, tightens the condition
of solution being within the region defined by A.11 and

A.12 since wv; = u;. Substituting in equation A.17 yields:

a1V — b1u1 + aqUg — b2u2 + ...+ (Gi — bl)?}l + ...+ ayv, — bnun = bo Qo

(A._18)

In this case the GCD, should include the term (a; —b;),
and exclude the terms a;,b;, making the process more pre-
cise. This also indicates the that strong SIV test discussed

in subsection A.3.1.1 is a special case of this test.

A.4.2 Restricted Double Index Variable

RDIV is a special case of MIV subscripts, in which a
pair of subscripts take the form a;i+¢; and asj + ¢, where
a,,as are constants, ¢; and ¢, are loop invariants, and i,j
are induction variables. This test is an easy adaptation of

the exact SIV test.
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A.5 Testing in Coupled Groups

Coupled subscripts are any two subscripts containing
the same index variable. Recognition of coupling is im-
portant since in Multidimensional array references, coupled
subscripts can cause imprecisions during dependence test-
ing. When tests used for separable subscripts are used
on each subscript of a couple group, and the test proves
independence then no dependency exists. However, testing
subscript-by-subscript can also indicate false dependences.

A better test would be to test each subscript separately,
intersecting the resulting direction vectors sets [52], which
permits efficient testing, while in some cases, it conserva-
tively approximates the set of directions within a coupled
group, yielding non-existent direction vectors. A very effec-
tive strategy for addressing this is by intersecting distance
rather than direction vectors. There are many other methods
for multiple subscript tests suggested in research such as

[53, 54, 55].
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A.5.1 Delta Test

This is an intuitive, exact and efficient test used in test-
ing common coupled subscripts. The main idea behind it is
based on the intuition of distance vector intersection. Given
that SIV subscripts are the most common in practice and
that the SIV tests are easy to perform, and gives exact re-
sults in most cases, the information obtained by using them
may be used to make it easier to test other subscripts
within same group.

In the delta test, each SIV subscript in the coupled group
is examined in order to produce constraints used with other
subscripts of the same group, which usually results in sim-
plification producing a precise set of directional vector.

The Delta test gets its name from representing the dis-
tance between memory references informally with a Al. As
such, the index variable in the source memory references
is assumed to be a specific value I, and the sink memory
reference is assumed to have the same value as the source
with an added distance [ + Al.

The Delta test can detect independence if any of the

SIV tests involved detects dependence. If not, then it con-

127



verts all SIV subscripts into constraints, which in turn are
used with MIV subscripts whenever possible. This process
is repeated until no more constraints can be found. These
constraints are used to simplify RDIV subscripts. All re-
maining MIV subscripts are then tested, and the results are

intersected with other existing constraints.

A.6 Symbolic Tests

This test is intended for cases where the subscript pair
take the form a;i+c¢; and asj+c2 where a;,a, are constants,
c; and ¢, are loop invariants, and 1,5 are induction vari-
ables, with bounds L; <i<U; and L, <j <U,.

For a dependence to exist the subscript pair must point
to the same memory location, within the bounds of both
index variable i,j. As such

a1i+01:a2j+02 (A19)

ali—CLQj:CQ—Cl (AZO)

Testing for dependence require computing ¢y —c¢; and mak-

ing sure it is in the range of the maximum and minimum
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possible values of a; xi—ayxj. Based on the signs of a,a,
there are four possibilities:
o if a; >0 and ay, >0
a1l —asUy < cog—cy <a Uy —asls (A.21)
e if a; >0 and a, <0
a1L1 —asLly <cog—cy <a U —alUy (A.22)
e if ay <0 and ay, >0
a1U; —aqUy < cog—cy < a1l —asly (A.23)

o if a1 <0 and a; <0

CL1U1-CL2L1SCQ—61<CL1L1—CL2U2 (A24)

co—c; does not satisfy the inequality case from above that
applies according to the signs of a;,as, then a dependence
cannot exist.

This test can handle some RDIV cases and is only ca-
ble of disproving dependence, and it cannot calculate any
distance or direction information. It can be useful in case
of memory reference pairs that are in two different nested
loops of the same level. Furthermore, These equations can
be used to determine dependence with the existence of
symbolic values for c¢y,co, L1, Ly, Uy, Us. It better serves as a

backup for the RDIV test.
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It can also be used for dependencies in the same loop
after setting L, =L, and U, = U;. This test can handle some
SIV cases when 4,5 are equal (i.e., same variable). sub-
stituting in the above equations will result in the following
two inequalities:

e if a; and a, have the same sign

a1Ly —asUy < |cg — 1] < a1Uyp —agly (A.25)

e if a; and ay, have different signs

Ca — C1

L, <|—=
' |(a1—@2)

< U, (A.26)
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