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Abstract

We consider discrete channels with additive random noise. We show that output
feedback does not increase the capacity of such channels. This is first shown for
both ergodic and non-ergodic additive stationary noise processes.

In light of recent results on channel capacity by Verdd and Han, we generalize

our result for discrete channels with arbitrary non-stationary additive noise.
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1 Introduction

We consider discrete channels with additive random noise. Note that such channels need

not be memoryless; in general, they have memory. The Gilbert burst-noise channel [8], as
well as the Polya-contagion channel [3], belong to the class of such channels. We assume
that these channels are each accompanied by a noiseless, delayless feedback channel with
large capacity. We show that the capacity of the channels with feedback does not exceed
their respective capacity without feedback. This is shown for both ergodic and non-ergodic
additive stationary noise processes. In light of recent results on a general channel capacity
formula by Verdd and Han [17] we then generalize our result for discrete channels with
arbitrary (non-stationary, non-ergodic in general) additive noise processes.

For these channels, the capacities with and without feedback are equal because ad-
ditive noise channels are symmetric channels. By this we mean that the block mutual
information (respectively the inf-information rate for the case of arbitrary additive noise)
between input and output processes is maximized by equally likely 7id input process.

In earlier related work, Shannon [16] showed that feedback does not increase the
capacity of discrete memoryless channels. The same result was proven to be true for
continuous channels with additive white Gaussian noise. Later, Cover and Pombra [7]

and others considered continuous channels with additive non-white Gaussian noise and

showed that feedback increases their capacity by at most half a bit; similarly, it has been

shown [7] that feedback can at most double the capacity of a non-white Gaussian channel.

2 Discrete Channels with Stationary Ergodic Addi-
tive Noise

2.1 Capacity with no Feedback

Consider a discrete channel with common input, noise and output ¢-ary alphabet A where
A=1{0,1,...,q—1}, described by the following equation: ¥, = X, & Z,,forn =1,2,3,...

where:

o @ represents the addition operation modulo ¢.



¢ The random variables X,,, Z, and Y, are respectively the input, noise and output

of the channel.

e {X,} L {Z.}, i.e. the input and noise sequences are independent from each other.

e The noise process {Z,}7=5° is stationary and ergodic.

Note that additive channels defined above, are “non-anticipatory” channels; where by
“non-anticipatory” we mean channels with no input memory (i.e., historyless) and no
anticipation (i.e., causal) [12]. A channel is said to have no anticipation if for a given
input and a given input-output history, its current output is independent of future in-
puts. Furthermore, a channel is said to have no input memory if its current output is
independent of previous inputs. Refer to [12] for more rigorous definitions of causal and
historyless channels.

We furthermore note that discrete additive noise channels are symmetric channels.
Symmetric channels are channels for which the block mutual information (respectively
the inf-information rate for general channels) is maximized by equally likely ¢id input
process. This is due to the facts that the input and noise processes of the channel are
independent from each other, the addition operation (modulo ¢} is invertible and the
input and output alphabets are finite and have the same cardinality.

A channel code with blocklength n and rate R consists of an encoder
f:{,2,...,2"F} - A"
and a decoder
g: A" —{1,2,...,2"%}.
The encoder represents the message V € {1,2,...,2"%} with the codeword f(V) = X" =
[X1, X2,...,X,] which is then transmitted over the channel; at the receiver, the decoder
observes the channel output Y™ = [V¥],Y;,...,Y,], and chooses as its estimate of the
message V = g(Y™). A decoding error occurs if V # V.

For additive channels, Y; = X;® Z; for all . We assume that Vis uniformly distributed
over {1,2,...,2"}. The probability of decoding error is thus given by:

2"R
PO = 3 Prig(y") #VIV =k} = Prig(¥™) # V)



We say that a rate R is achievable (admissable) if there exists a sequence of codes with
blocklength n and rate R such that

lim P™ =0.

n—00

The objective is to find an admissable sequence of codes with as high a rate as possible.
The capacity of the channel is defined as the supremum of the rate over all admissable
sequences of codes. We denote it by Cnypp, to stand for capacity with no feedback.

Because the channel is a discrete channel with additive stationary ergodic noise, the

nonfeedback capacity Cyrp of this channel is known and is equal to ([17], {14]):

CNFB = lim sup l[(Xn;Yn) (1)
n—00  yn N
. 1 n
= logy(q) — lim — H(Z") (2)

where

X" = (X1, Xa,...,X0),
Y"=(1,Y,,....Y,),
Zn = (ZI,ZZ,- . .,Zn),

I(X™;Y™) is the mutual information between the input vector X™ and the output vector
Y™, and the supremum is taken over the input distributions of X". H(Z") is the entropy
of the noise vector Z". The expression in (2) can be shown to be the capacity of the

channel using the Shannon-McMillan (AEP) theorem [14], {17].

2.2 Capacity with Feedback

We now consider the corresponding problem for the discrete additive channel with com-
plete output feedback. By this we mean that there exists a “return channel” from the
receiver to the transmitter; we assume this return channel is noiseless, delayless, and has
large capacity. The receiver uses the return channel to inform the transmitter what letters
were actually received; these letters are received at the transmitter before the next letter

is transmitted, and therefore can be used in choosing the next transmitted letter.
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A feedback code with blocklength n and rate R consists of sequence of encoders
fii{1,2,...,2"F} x A" 5 A
for:=1,2,...,n, along with a decoding function
g: A" —{1,2,...,2"F},

The interpretation is simple: If the user wishes to convey message V € {1,2,...,2"f}
then the first code symbol transmitted is X; = f1(V); the second code symbol transmitted
is X; = fo(V,Y;), where Y] is the channel’s output due to X;. The third code symbol
transmitted is X3 = f3(V, Y3, ¥3), where Y; is the channel’s output due to X,. This process
is continued until the encoder transmits X, = f,(V,Y1,Y2,...,Yo_1). At this point the
decoder estimates the message to be g(Y™), where Y™ = [V}, Y;,..., Y, ].

Assuming our additive channel, Y; = X; & Z; where {Z;} is a stationary ergodic noise
process. Again, we assume that V is uniformly distributed over {1,2,...,2"#}, and we
define the probability of error and achievability as in Section 2.1.

Note, however, that because of the feedback, X™ and Z" are no longer independent;
X; may depend on Z'71,

We will denote the capacity of the channel with feedback by Crp. As before, Crp is

the supremum of all admissable feedback code rates.

Proposition 1 Feedback does not increase the capacity of channels with additive sta-

tionary ergodic noise:

) 1
Crp = Cyrp = log,(q) — lim — H(Z") (3)

n—oo n

Proof 1 Since Vis uniformly distributed over {1,2,...,2""}, we have that H(V) = nR.
Furthermore, H(V) = H(V|Y™) + I(V;Y™). Now by Fano’s inequality,
HVIY") < h(PM)+ P log,(2"" ~ 1)
< 14 PMlog,(2"F)
= 1+ PR

)



since hy(P{™) < 1, where hy(-) is the binary entropy function.
We then have:

nR = H(V)
= HVY")+I(V;Y™")
< 14+ PMaR4I(V;Y™)

where R is any admissable rate.

Dividing both sides by n and taking n to infinity, we get:

1
CFB S im — I(V; Yn)
n-—00 n

Let us thus study I(V;Y™):

V¥ = 3 (V¥

i=1
but

(VYY) = HY[Y'™Y) — HY,|V,Y'"™)
= HY|Y™) - HX; @ Z|V,Y'™)

Now the fact that X; = fi(V,Yi,...,Y;_1) implies that

H(X; @ Z|V,Y'"™) = H(Z]|V,Y'"!, X))

(
— H(Zzl‘/, Yi—l,Xi,Xi—l, Zi——l)
= H(Z|V, Y™, X',z

(

= H(Zi|Z'™Y).

Here,

()

(8)
(9)
(10)
(11)

e Equation (8) follows from the fact that given V and Y*~!, X; is known determinis-

tically and H(Z + X|X) = H(Z|X).



e Equations (9) and (10) follow from the fact that given V and Y*~!, we know all
the previous transmitted letters X;, Xs,..., X;_1 and thus we can recover all the

previous noise letters Z; = Y; — X; (mod ¢) for j =1,2,...,1 — 1.

¢ Equation (11) follows from the fact that Z; and (V,Y*™!, X*) are conditionally in-

dependent given Z'~.

Therefore
I(ViYIY*) = HYGY™Y) — H(Z)27) (12)
and
VYY) = 3 [HOHY) — H(Z127) (13)
— H(Y") — H(Z") (14)

But H(Y™) < log, q" because the channel is discrete. Therefore, if we divide both sides
of (14) by n, and take n to infinity, we obtain that

Cre < CnrFB

But by definition of a feedback code, Crp > Cnpp since a non-feedback code is a special

case of a feedback code. Thus we get:

1 n
Crp = Cnre =logy(q) — lim — H(Z") (15)

n—o0 n

Observations:

1. It is important to note that for additive channels, the conditional noise entropy
(given in equations (8)-(11)) remains the same with or without feedback. This is
because addition is invertible; in general H(X) > H(f(X)) with equality holding
for invertible functions f(-). This is true for both discrete and continuous alphabet

additive channels.



2. The reason why output feedback potentially increases the capacity of additive non-
white Gaussian channels [7] is because for continuous channels we have power con-
straints on the input, which upon optimization may increase lim,_ % H(Y™)
when feedback is used; while for discrete channels this quantity is upperbounded by
log,(¢q) and cannot be increased with feedback. In particular for discrete additive
channels, the output entropy rate is equal to log,(¢) without feedback (symmetry
property). It is therefore suspected that feedback might increase the capacity of

discrete additive channels if we impose power constraints on the input.

3. The result given in Proposition 1 can be easily extended to discrete non-anticipatory
channels with additive asymptotically mean stationary (AMS) ergodic noise process.
Such class of noise processes include time-homogeneous ergodic Markov chains with
arbitrary initial distributions. The proof is identical to that of Proposition 1, since
the non-feedback capacity for the channel with AMS ergodic additive noise is still
given by equation (2) [9], [17]. A random process has the AMS property (or is
an AMS process) if its sample averages converge for a sufficiently large class of
measurements (e.g., the indicator functions of all events); furthermore, there exists
a stationary measure, called the “stationary mean” of the process, that has the
same sample averages. A necessary and sufficient condition for a random process to

possess ergodic properties with respect to the class of all bounded measurements is

that it is AMS [10].

Finally, with the result of Proposition 1 in mind, it would be interesting to investi-
gate discrete non-additive channels with known non-feedback capacities, and see whether

output feedback would increase their capacities.

3 Discrete Channels with Stationary Non-Ergodic
Additive Noise

3.1 Capacity with no Feedback

Consider a discrete channel similar to the one considered in Section 2 with the exception

that the additive noise process {Z,} to the channel is stationary but non-ergodic. We will



show in Proposition 2 that the resulting channel is an averaged channel whose components
are discrete channels with additive stationary ergodic noise.
An averaged channel with stationary components is defined as follows: Consider a

family of stationary channels parameterized by 6:

where Y™ and X™ are respectively the input and output blocks of the channel, each of

length n. Wg(n)(') is the block transition probabilities of the stationary channels, condi-

tioned on a parameter 8 € O.

Definition 1 We define a channel to be an “averaged” communication channel with
stationary components if its block transition probability W™(Y™ = ¢ | X* = 2m)
(where “ac” stands for averaged channel) is just the expected value of the block transition

probability {W™(¥™ = y» | X™ = z")} taken with respect to some distribution on 0 —

i.e., if it is of the form:
WO =yt | Xt =) = [ WO =yt X0 =2 dGe) (1)
= EWM (" =y" | X" =" (18)
where (O, U(G)), (3) is the probability space on which the random variable 6 is defined.

Note that the averaged channel has memory and is stationary. The averaged channel
could be realized as follows: among the (countable or uncountable) stationary components,
nature selects one of these components according to some probability distribution G. This
component is then used for the entire transmission. However this selection is unknown to

both the encoder and the decoder.
In order to show that we can write the block transition probability of the channel

with additive stationary non-ergodic noise (which is equal to the block probability of the
noise) as a mixture of the probabilities of stationary channels with additive ergodic noise
(Proposition 2), we need to state first the ergodic decomposition theorem for stationary

processes [11].



Notation: Consider a discrete time random process with an alphabet D, an event
space (o-field) o(D*) consisting of subsets of the space D> of sequences u = (uy, us, .. .),
u; € D, a probability measure g on the space (D*,o(D>)) forming a probability space
(D*,0(D>®), ) and a coordinate or sampling function U, : D*® — D defined by
U, (u) = u,. The sequence of random variables {U,;n = 1,2,...} defined on the prob-
ability space (D*,0(D>), ) is a discrete time random process. As convenient, random -
processes will be denoted by either {U,} (to emphasize the sequence of random vari-
ables), or by [D, p,U] (to emphasize alphabet, probability measure, and name of the

random variable).

Lemma 1 (Ergodic Decomposition Theorem) Let [D, p, U] be a stationary, discrete
time random process. There exists a class of stationary ergodic measures {y;0 € ©} and
a probability measure G on a event space of © such that for every event F' C o(D*) we

can write:
w(F) = [ pa(F) dG(6) (19)

Remark: The ergodic decomposition theorem states that, in an appropriate sense, all
stationary nonergodic random processes have the form of equation (19) of being a mixture
of stationary ergodic processes; that is if we are viewing a stationary non-ergodic process,
we are in reality viewing a stationary ergodic process selected by nature according to
some probability measure G. Therefore, by directly applying the ergodic decomposition

theorem we get the following result:

Proposition 2 A discrete channel with stationary non-ergodic additive noise process is

an averaged channel with stationary channels with additive ergodic noise as components.

Proof 2 Since the additive noise process is independent of the input process, we can
write:

WY =y" | X" =2") = W(Z" = y" — & (mod g))

Now, applying the ergodic decomposition theorem on the non-ergodic noise process {Z,},

we get our result with each of the components being a channel with additive stationary

10



ergodic noise:

WO Y™ =y | X" = 2") = /@ WNZ® = y* — 2™ (mod q)) dG(0)

Non-Feedback Capacity of the Channel with Additive Noise: The resulting

non-feedback capacity of the channel with additive non-ergodic noise is [13], [15]:

Cnrp = log,(q) — esse sup h(Wp)

where

e the noise entropy rate h(Wy) is given by

B(Wo) 4 Tim & H, (W)

n—oc n
with

HWME 3 w ") QW (") log, Wi (y"|e")

_,L.n,yneAn
where the input block distribution Q™ (z") = L.

q

¢ and the essential supremum is defined by
essg sup f(6) L inf [r:dG(f(8) <r)=1]

3.2 Capacity with Feedback

(20)

(22)

(23)

As in the previous section, we consider the corresponding problem for the discrete addi-

tive channel with complete output feedback. Similarly, we define a feedback code with

blocklength n and rate R, as a sequence of encoders
fii{1,2,...,2"F} x A" 5 A
fore=1,2,...,n, along with a decoding function
g: A® - {1,2,...,2"%}.

11



The interpretation of the functions is identical to those in Section 2.2.

Assuming our additive channel, Y; = X; & Z; where {Z;} is a stationary non-ergodic
noise process.

Here again, we assume that V is uniformly distributed over {1,2,...,2"F} and we use

the same definitions of achievable rates, probability of decoding error and capacity as in

Section 2.2.
Because of the feedback, X™ and Z" are no longer independent; X; depends causally

on Z*~'. We will denote the capacity of the channel with feedback by Crp. We now get

the following result:

Proposition 3 Feedback does not increase the capacity of channels with additive sta-

tionary non-ergodic noise:

Crg = Cnrp = log,(q) — essg sup h(Wpy)

Proof 3 The main idea of the proof is the following. The channel is an averaged channel
whose components are stationary channels with additive ergodic noise. Since feedback
does not increase the capacity of each of these components (as shown in Section 2), it
therefore does not increase the capacity of the averaged channel.

To formalize this reasoning, we will show that the (weak) converse to the channel
coding theorem still holds with feedback. The coding theorem itself obviously holds since
a non-feedback code is a special case of a feedback code, and thus any rate that can be
achieved without feedback, can also be achieved with feedback.

The additive channel is a mixture of channels with additive stationary ergodic noise,
thus by Proposition 1, we obtain that for each of these components:

[ 6
C) = ks

Now, examining equation (20), we have: h(Wj) < essgsup h(Wjy) a.e. Then for some

small € > 0, there exists components § € O such that:

h(Wy) > essgsup h(Wp) — ¢

or
log,(q) — h(Wp) < log,(q) — esse sup h(Wy) + ¢

12



or
CI(\?;?B < CNFB + €

And the probability of such components is § > 0.

By this we mean, that we can find among the stationary components, with probability
6 > 0, components with capacity C,(\f}wB < Cnrp+ ¢ for some small € > 0; i.e. § = Pr{f ¢

0: CI(\/?}‘B < Cnrp + €} > 0.
With feedback encoder f; and message V = k, we define

Al ={y" € A*: filk,y ) =2 i =1,2,... )},

where z} = (xgcl),xff),...,:ci")). The probability that the feedback codeword for the
message k is z7; is given by Py(a?) = LuneA(r) WM(Y™ = y»| X" = 2). Letting D be
the decoding set for message k, the probability that the feedback codeword for the message
k is a} and a decoding error takes place is given by Pey(a}) = 2o yme A(en)nD; W (y» =
y"| X" = a}), where Df is the complement of Dy.

Hence, the probability of decoding error when message k was sent is written as

Pef" = Pr{g(Y") £ V|V = k}
= Y X WOT=yx" =) (24)

zy EAn yn EA(:L';:)PIDi

It should be noted here that A(z?) and D in the above summation do not, depend on

the channel W((.). Therefore, the overall average probability of decoding error is

2nR

1 ; n
FP=gRL XY WO =yt =) (25)

k=1zp €A™ yreA(sT)NDSE

It is evident using Proposition 2, that this probability of error can be expressed as

PO = [P0 dGo) (26)
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where

2nR

2iR XY Wit =y Xt =ap) (27)

k=1zp€Am yn GA(x;:)ﬂD;

POO) =

and P(")(0) is the average probability of decoding error for the channel component 'Wg(") (+).

Now, suppose there exists a sequence of feedback codes with blocklength n and rate

R, such that R > Cnpp + 2¢. Thus we have:

PY = [ P(0) dG(0) (28)
PM (9 dG(0 29
/{()} () (9) dG(0) (29)

We now recall the weak converse to the nonfeedback channel coding theorem for sta-
tionary channels with additive ergodic noise: if R > Cypp + cl, for some small ¢ > 0,
then there exists v > 0 , such that P(™ > ~ for sufficiently large n. To show this, using
Fano’s inequality along with the fact that H(V) = nR we have

nR < 14+ P™nR4+I(V;Y™)

< 14 P™pR4+ I(X™(V);Y™)

where the second inequality follows from the data processing theorem with V. — X™ — Y™

forming a Markov chain. Thus

1 1 1
P Z 5 R nI(X,Y) "
1 1
> '}—%(R“‘CNFB__>
b=
R ¢ n

and the result is shown. Note that v 4 % (6' — %) is independent of the characteristics

of the channel.
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Therefore, applying the weak converse of the coding theorem for the stationary channel
components with additive ergodic noise, we get that for R > Cnrp + 2¢ > C}@:B + ¢,

there exists some small 4 > 0, such that P(™ () > v, as n — co. As mentioned above, 7

is independent of # and depends only on € and R.

Then
lim P™ > Pr{fe®: Clkp < Cnrp+ely=67>0 (30)
Therefore the weak converse is proved and Cpg = CnFp. N

Observation: It should be noted that for general averaged channels, i.e. non-additive
averaged channels, feedback might increase capacity. For example, if we consider an aver-
aged channel with a finite number of non-additive discrete memoryless channels (DMC’s),
then the non-feedback capacity of the averaged channel is equal to the capacity of the

corresponding compound memoryless channel [1]:

(ac) _ : M. yw(v ‘
Cnrp = max inf 1(QV; Wy (31)
Note that:
(@) o (). ()
Cnrp < gg(g rggg(I(Q s We) (32)
= inf OO
L)

where C9 = maxg(1) QW Wo(l)) is the non-feedback capacity of each of the DMC
components.

Now, if we use output feedback, the encoder knows the previous received outputs, and
thus can determine by some statistical means, which one of the DMC components is being

used. In the most pessimistic case, the capacity of this DMC component may be equal to

infpee C?. Thus the capacity with feedback of the averaged channel will be:
(ac) — (6) :
Crg ;gg C (33)

Therefore C}‘?Bf) > Cj(\?;)B. This result (equation (33)) is equivalent to the result already

derived by Ahlswede for the discrete averaged channel with sender informed [2].
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Finally, in the case for which the inequality in (32) holds with the strict inequality, we
obtain that feedback increases capacity: Cl(gilg.) > CI(\?IC:)B. Refer to Section 2 in [6] for an

example of a finite collection of DMC’s for which (32) holds with the strict inequality.

4 Discrete Channels with Arbitrary Additive Noise

4.1 Capacity with no Feedback

Consider a discrete channel similar to the one considered in Section 2 with the exception
that the additive noise process {Z,} to the channel is an arbitrary random process (non-
sationary, non-ergodic in general). We again use the same definitions as stated in Section
2.1 for channel block code, probability of error, achievable (or admissable) code rates and
operational capacity (the supremum of all achievable rates). We denote the nonfeedback
capacity by Cnrp.

In [17], Verdd and Han derived a formula for the operational capacity of arbitrary
single-users channels (not necessarily stationary, ergodic, information stable, etc.). The
(nonfeedback) capacity was shown to equal the supremum, over all input processes, of the
input-output inf-information rate defined as the liminf in probability of the normalized

information density:
Cnrg =sup I (X™;Y") (34)
Xn

where X™ = (X1, X,,...,X,), for n = 1,2,..., is the block input vector and
Y™ = (11, Y2,...,Y,) is the corresponding output sequence induced by X" via the channel
W = Pynjxn : A* — B™; n =1,2,..., which is an arbitrary sequence of n-dimentional
conditional output distributions from A™ to B", where A and B are the input and output
alphabets respectively.

The symbol I (X";Y™) appearing in (34) is the inf-information rate between X" and
Y™ and is defined as the liminf in probability of the sequence of normalized information

densities % ixnyn(X™; Y™), where

16



Pynxn(b"|a™)

Pyn(b") (35)

ixnyn(a"; ") = log,

The liminf in probability of a sequence of random varaibles is defined as follows: if A,

is a sequence of random variables, then its liminf in probability is the supremum of all
reals o for which P(A, < a@) — 0 as n — oo. Similarly, its limsup in probability is
the infimum of all reals 8 for which P(A, > ) — 0 as n — oo. Note that these two
quantities are always defined; if they are equal, then the sequence of random variables
converges in probability to a constant (which is a).

Using equation (34) as well as the properties of the inf-information rate derived in
[17], we obtain that the inf-information rate in (34) is maximized for equiprobable iid X"
(symmetry property), yielding the following expression for the nonfeedback capacity of

our discrete channel with arbitrary additive noise:

Cnrp = logy(q) — H(Z™) (36)

where Z" = (Zy,Za,...,Zy) and H(Z") is the sup-entropy rate of the additive noise
process {Z, }, which is defined as the limsup in probability of the normalized noise entropy

density

1 1 1
— 10 —————,
n gZ PZn(Zn)

4.2 Capacity with Feedback

As in the previous section, we consider the corresponding problem for the discrete additive
channel with complete output feedback. Similarly, we use the same definitions as stated
in Section 2.2 for feedback channel block code, probability of error, achievability and
operational capacity with feedback (supremum of all achievable feedback code rates). We
denote the capacity of the channel with feedback by Crp.

Note again, that because of the feedback, X" and Z" are no longer independent; X
may depend on Z*~1.

17



We now state the key result (Theorem 4) of [17] which is a new converse approach
based on a simple new lower bound on the error probability of an arbitrary channel code

as a function of its size.

Lemma 2 Let (n, M, ¢) represent a channel block code with blocklength n, M codewords
and error probability e. Then every (n, M, €) code satisfies

[n
IV

1 1

P [— ixryn(X™Y"™) < —log, M — fy] — exp(—yn) (37)
n n

for every v > 0, where X™ places probability mass 1/M on each codeword.

We now obtain the following result:

Proposition 4 Feedback does not increase the capacity of discrete channels with arbi-

trary additive noise:

Crp = Cnrp = logy(q) — H(Z") (38)

Proof 4 We start by noting that the result given in Lemma 2 still holds if we replace
the input vector X" by the message random variable V where V is uniform over the set

of messages {1,2,...,M}. That is, every (n, M, €) feedback code satisfies

1 1
€ > Pl—iyy=(V;Y") < —log, M —~| — exp(—7n) (39)
n n

for every v > 0, where V is uniform over {1,2,...,M}.
We refer to the sequence (n, M, ¢,) of feedback codes with vanishingly small error
probability (i.e., €, — 0 as n — o) as a reliable feedback code sequence.

Using equation (39), we first show that
Crp < I(V;Y™) (40)
We prove (40) by contradiction. Assume that for some p > 0,
Crg = I(V;Y™) + 3p (41)

18



By definition of capacity, there exists a reliable feedback code sequence with rate
1
R=;10g2M>CFB—p (42)

Now using (39) (with v = p) along with (41) and (42), we obtain that the error
probability of the sequence (n, M, ¢,) of feedback codes must be lower bounded by

€n > P[ wyn(V;Y™) S I(V; V™) +p] — exp(—pn) (43)

However by definition of I(V;Y™) the probability in the right-hand side of (43) cannot
vanish asymptotically; therefore contradicting the fact that €, — 0 as n — oo. Thus (40)

is proved.

Now using the properties of the inf-information rate in [17], we can write

Kv;y™y < HY™)=H(Y"V)
< logy(q) — H(Y"|V) (44)

The conditional sup-entropy rate H(Y™|V) is the limsup in probability (according to
Pyy») of Xlog, W' That is H(Y™|V) is the infimum of all reals 3 such that

Pr {‘i‘logz W > ﬂ} — 0, as n — oo. But we can write

1
1 S Y P(Y™ = y"|V = v).

y":P(Y":y"|V=1J)S2—"ﬁi
Now, letting f; o filv,yi~1) and fi = o [f1(v), fa(v,41), - fio, D)) = [f1, fay - -+, fi],

we have

P(Yw, — yn|V — ’l)) — HP(K = yilyi—-l — yi—-l,v — 'U)

H P()(1 P 7 = yilyi_l 1 -1 V = U, fz) (45)

i=1

19



P(Zi=yi® filY ' =y, V=0,Xi=f) (46)

n

-
—

— H P(Z, =y D filyi—-l — yi—17v — v,Xi — fi, Zi—l — yi—l s fi—l) (47)
i=1

— HP(Zz =y D filZi_l — yi——l @fi_l) (48)
=1

=P(Z"=y"® ") (19)

Here,

e Equation (45) follows from the fact that X; = fi(V,Yi,...,Y;-1) due to feedback.
e Equation (46) holds since P(Z+ X =y|X =2) = P(Z =y — z|X = z).

e Equation (47) follows from the fact that given V and Y"~!, we know all the previous
transmitted letters Xy, X3,..., X;_1 and thus we can recover all the previous noise

letters Z; =Y; — X; (mod q) for j =1,2,...,1— 1.

e Equation (48) follows from the fact that Z; and (V,Y""!, X*) are conditionally in-

dependent given 7'

Hence,

1 1 no_.n g fn
PT{;longy‘;W—(mZﬂ} = XU:P(VIU) Z P(Z =y" @ f")

yn:P(anynGafn)Sz-—nﬁ

= ) P(V=v) > P(Z" = 2")

2" P(Zn=2zn)<2— "8

- ) P(Z" = ")

2 P(Zr=7m) <28
Therefore we obtain that
H(Y"|V)=H(Z") (50)
Thus from (40), (44) and (50) we conclude that
Crp < logy(g) — H(Z") = Cnrp (51)
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But by definition of a feedback code, Crg > Cnpp since a non-feedback code is a

special case of a feedback code. Thus we get:

Crp = Cnrp = logy(q) — H(Z") (52)
n

Observation: Note that if the noise process is stationary, then its sup-entropy rate
is equal to the supremum over the entropies of almost every ergodic component of the
stationary noise. If the noise process is stationary ergodic, then its sup-entropy rate is

equal to the entropy rate of the noise [17].

5 Conclusions

In this paper, we considered a discrete additive noise channel with output feedback.
We showed that the capacity of the channel without feedback equals its capacity with
teedback. This was first shown for a stationary ergodic and non-ergodic additive noise
process. We then generalized the result for discrete channels with arbitrary additive noise.

In [4], we introduce the notion of symmetric channels with memory. These channels
are obtained by combining an input process with an arbitrary noise process that is inde-
pendent of the input. These channels have the property that their inf-information rate is
maximized when the input process is an equally likely iid process. We show that feedback
does not also increase the capacity of these channels. Additive noise channels belong to
the class of symmetric channels.

We are currently investigating the effect of feedback on the capacity of additive noise

channels that are subject to average cost constraints on their input sequences [5].
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