SRC TR 88-24

Parallel Algorithms for Channel
Routing in the Knock-Knee Model

by

Shing-Chong Chang
and Joseph Ja Ja

Parallel Algorithms For Channel Routing
in the Knock-Knee Model?

Shing-Chong Chang
Department of Electrical Engineering
Systems Research Center
University of Maryland
College Park, MD. 20742

Joseph J&J4
Department of Electrical Engineering
Institute for Advanced Computer Studies
Systems Research Center
University of Maryland
College Park, MD. 20742

Abstract

We consider the channel routing problem of a set of two-terminal
nets in the knock-knee model. The known strategy to handle this
problem seems to be inherently sequential. We develop a new ap-
proach to route all the nets within d tracks, where d is the density,
such that the corresponding layout can be realized with three layers.
Both the routing and the layer assignment algorithms can be im-
plemented on the CREW-PRAM model in O(logn) time with O(n)
processors, where n is the number of nets.

1Supported in part by NSA Contract No. MDA-904-85H-0015, NSF Grant No. DCR-
86-00378 and by the Systems Research Center Contract No. OIR-85-00108

1 Introduction

The recent advances in the VLSI technology allow the fabrication of highly
complex systems on single chips. Sophisticated software tools are needed to
successfully design such systems. In particular, the routing phase is a crit-
ical and time-consuming part of the overall design process. Unfortunately,
it turns out that most routing problems are NP-complete and hence no ef-
ficient solutions seem to be likely. There are few exceptions, however. For
example, various river routing (one-layer) problems, the two-layer channel
routing with no constraints, and few routing problems in the knock-knee
mode! are known to have efficient solutions ([D et al],[MP],[O],[P],[PL]).
Our goal is to develop a good set of techniques to obtain fast and efficient
parallel routing algorithms.

In this paper, we consider the channel routing problem of two-terminal
nets in the knock-knee model. A routing algorithm that uses d tracks,
where d is the density, is presented in ([PL]) such that the routing can
be realized with three layers. This algorithm can viewed as a nontrivial
extension of the left edge algorithm ([O]) in which the routing is done row
by row, left to right according to a greedy strategy. However, this method
seems to be inherently sequential even for the case when each column has
at most one terminal. We develop a novel strategy to obtain the optimal
routing (which is in general different from the one obtained by the [PL]
method) such that both the routing and the layer assignment algorithms
have linear time sequential implementations. Moreove, they are both fully
parallelilzable in the sense that they can be implemented on the CREW-
PRAM model in O(log n) time with O(n) processors, where n is the number
of nets. If all the terminals lie in the range [1, N], where N = O(n), then
these algorithms will run in time O(%+log n) time with p < n'~¢ processors,
where ¢ is any positive constant.

The rest of the paper is organized as follows. The basic definitions
needed for the rest of the paper are introduced in the next section, while in
section 3 we develop a novel routing strategy and establish its correctness.
The layer assignment algorithm is presented in the last section.

Figure 1: Types of shared grid points

2 Definitions

We assume that the reader is familiar with the basic definitions related
to channel routing (See for example [O},[PL]). In this paper, we restrict
ourselves to two-terminal nets N = < t,b >, where t is the top terminal
(on the top row) and b is the bottom terminal. ¢ and b will also represent
the integer displacements of these terminals relative to a fixed origin. N
is a left (right) net if t < b (t > b). Otherwise it is a vertical net. We
will also represent a net N as N = [l,r], where ! < r, | = min{t,b}
and r = maz{t,b}. We refer to ! and r as the left and right terminals of N
respectively. An instance of the channel routing problem (CRP) is a channel
consisting of a rectangular grid and a set of nets whose terminals lie on the
grid points of the (horizontal) parallel boundaries. The local density d. at z
is defined to be the number of nets [I;, r;] such that |; < z < r;. The density
d is given by d = maz {d,}. A routing in the knock-knee model consists of
a set of edge-disjoint paths (made up of gridline segments) connecting the
terminals of each net. Hence a shared grid point could be one of two types:
crossing and knock-knee (Figure 1).

Let L,,L,...,L; be a set of conduction layers stacked on top of each
other such that L, is on the bottom and L is on the top. A wiring layout is
an assignment of single layer to each routing segment such that (1) no two
segments of two distinct nets share a grid point on the same layer, (2) a
routing path may change layers at a via and (3) no wire can use a grid point
on a layer which is between two layers with a via at that grid point. It is
known that any routing in the knock-knee model can be realized with four

2

1N 2 N
- ’

Figure 2: Forbidden Patterns

layers ([BB]) and that three layers suffice for the channel routing problem

((PL]).

Given a routing of an instance of CRP, the diagonal diagram can be
obtained by inserting a diagonal for each knock-knee, a half-diagonal for
each bend. If we remove the half-diagonals, we obtain the core layout. It
is known that a wire layout can be realized with three layers if its core can
[PL). A partition grid is a grid containing all the diagonals (see [PL] for a
formal definition). A set P of edges of the partition grid is called a legal
partition if the following properties hold:

1. Every internal vertex in incident on an even number of edges of P.
2. The set of diagonals in P is identical to that of the diagonal diagram.

3. None of the forbidden patterns in Figure 2 appear in P.

A legal partition of a core layout W exists if and only if W can be wired
with three conducting layers.

We use the standard CREW (Concurrent Read Exclusive Write) shared
memory model. All our results will be stated in this model. However,
our algorithms have fast implementations on fixed-interconnection networks
such as the mesh or the hypercube. For example, all the algorithms stated

3

in this paper can be implemented on a /n x y/n mesh in time O(/r),
where n is the input length.

3 Channel Routing

Given an instance of CRP of density d, our goal is to determine a wiring
of all the nets in d tracks. In addition, the resulting layout or a slight
modification of it should be realizable in three layers.

The algorithm developed in [PL] constructs the wiring track by track
by lying each track from left to right. The overall strategy can be viewed as
a nontrivial extension of the line packing (or left edge) algorithm, where a
mechanism is provided to solve conflicts arising in columns. This approach
seems to be inherently sequential even if there is at most one terminal in
each column. Our method is quite different and consists of two main steps:

1. Partition the nets into d chains satisfying certain properties to be
outlined below. In particular, the nets in each chain define a set of
nonoveralpping intervals.

2. Assign a track number to each chain. Then wire all the nets simulta-
neously.

We will outline how to perform each step next. The algorithm below
creates chains of nets which will be modified later to satisfy all the de-
sired properties. We will denote the successor (predecessor) of a net N by

succ(N) (pred(N)).

Algorithm Create Chains

Input: terminals [;’s and r;’s of all the nets Ny, N,,...,N,.

Output: d chains of nets, where d is the density of the corresponding channel
routing problem.

1 237 s 8 13145 12 11 10 20 17 18 16 21 25 13 24 23 19 22

R 2 I 2 2 ¥ L 2B K AR 2 L 2 2 L 2B AL R B JRE NN JNE N A 2 L 4
— s & 2 o 4 o & o 2 * & o > 2 & @ > > 2 2 > o * o 'S
4 5 ¢ 7 8 9 10 11 12 3 14 15 18 17 18 19 20 21 22 23 24 25

Figure 3: A channel routing problem

1. Mark all terminals as active. For each left terminal l; of a net N;, find
the nearest right terminal r; of some other net such that r, is to the left
(or in the same column) of l;. If two such choices are possible, pick the
one whose corresponding net is of the same type as N;. Set ply) =r;. ¥
no such r; exists, then set p(l;) =nil. Similarily, define p(r;) for each right
terminal,

2. If p(l;) = r; and p(r,) = ;, then set succ(N;) = N;, and mark r; and [
as snactive. Create a reference point k between r; and ;.

3. Let Ry, R,,..., R, be the intervals determined by the reference points.
For each R;, create L(R;) consisting of all the active left terminals, and
R(R;) consisting of all the active right terminals in R;.

4. Find the corresponding terminal pairs in R(R;) and L(R;,,) and create

links as before. Mark all terminals used as inactive and merge intervals
Rji_1 and Ry for all 1. Repeat this step until there is one interval left.

As an example, consider the channel routing instance of Figure 3. The
chains produced by the above algorithm are given in Figure 4. We also
have the following.

Lemmal: The number of chains created by the above algorithm is exactly
d, where d is the channel density. This algorithm can be implemented on
the CREW-PRAM in time O(log n) with O(n) processors, where n is the

number of nets.

Ny - Nyg — Nig — N33

Ny — Ny — Ng — Nygp — Nyg = Nas
Nz — Ng — Ny3 — Nig — N33 — Noy
N3 — Ng — N33 — Ny7 — Ny

No — Ny — Nyo — N3z

LR o o

Figure 4: The chains created by Algorithm Create Chains

Proof: Let R, R;,..., R,, be the intervals created by the above algorithm,
prior to a set of merging operations of step 4, such that K; is the reference
point between R;_; and R;. Let n,, n;, be respectively the numbers of
active right and left terminals in R; and let n;, be the number of nets with
terminals on different sides of K;.

Claim: The following inequalities hold true before each set of merging
operations performed in step 4 of the above algorithm:

n,, + nh.’.ﬂ S d

ny, + Nk, S d

Proof of Clasm: Notice that initially all active right terminals in R; must
be to the right of the rightmost left terminal /; in R;. If at the completion
of step 3, n,, +n;,,, > d, then the density of the channel at a point between
the right and left terminals of R; is > n,, + n;,, > d, which is impossible.
Similarily we can establish the other inequality. We now show that after
each set of merging operations, the inequalities will hold. Consider the
merging of the intervals Ry;_; and Ry;. We know that n,,, , +n,, <dand
ny,, + ny,, < d. Let ¢ = min{n;,,_,,n,. ,}. We distinguish between two
cases:

1. Suppose that n;,, > n,,,_,. Then the number of left terminals in the
new merged interval Ry is given by n;, = my,,_, + 1y, —ny,, , —c and

6

hence Myt e, =gy, 0y, -0y, 0, —c. But Ryt 00y, =
ysi-y T+ N, and therefore n;, + Ny, =Ny, +ny,, —c< d

2. Suppose that n;,; < n,,,_,. Then the number of left terminals in the
merged interval Ry will be n;, = ny,,, — ¢ and thus n, +ng, =
ny,_, + Ng,y — € < d.

In a similar fashion, we can establish the other inequality. This concludes
the proof of the claim.

Let @’ be the number of chains created by the above algorithm. Clearly,
d' > d. At the termination of the algorithm, the number of chains is equal
to the number of left terminals. Using the claim above, we deduce that
d' < d and hence d' = d.

We now establish the time and processor bounds. One can check that a
couple of sorting steps and few simple operations will take care of step 1-3.
Step 4 consists of O(log n) merging operations each of which can be done
in O(1) time.

The above chains can be used to wire all the nets in d tracks. However,
the corresponding layout may not be realizable in three layers. We modify
the above chains so that they have the following property. Let ¢ be any
column. Then either

1. c is empty, or
2. ¢ contains one terminal, or

3. ¢ contains two terminals of nets N; and N;. Let N; = < ¢,b; > and
N; =<t e>.

e If both N; and N; are either right or left nets, then they both
belong to the same chain and one is the successor of the other.

e Suppose that N, is a right net and N; is a left net. The other
case can be dealt with similarily. Let N! = suce(N;) and
N} = succ(N;). Then they either share a column or the col-
umn of N} or N; which is closer to ¢ has only one terminal (see
Figure 5(b)).

., =¢ ts=¢
b)N.- k j'\, b.'.)N" kN" b -)N‘ Ny ' N

- e e

. N" ;.l N’, t, N t. ’
4 \N; K ? \ ’ KN," ’ \N’ K e
by =c by=¢ bj=c¢
(a)
t,=¢ ti=c¢ ti=¢c
b")N‘ ‘k I\\g b.' /N‘ kN,’ bi u)N' ’ "\3
t, NJ" Y M, t, N ty Ni St
) \Nj . ‘,’ J'\ J J/;V-") \N,- J/' ‘,‘
B b,~=c b,=c b,'=C N
()

Figure 5: Possible successors of two nets with right terminals in the same
column

The following algorithm outlines how to modify the chains so that the
above property holds.

Algorithm Modify Chains

Input: A set of chains produced by the algorithm create chains.
Output: A set of chains satisfying the property stated above.

1. Mark each column with two right or two left terminals as active.

2. For each active column ¢ with a top right terminal ¢; and a bottom right
terminal b;, do the following:

o If the left terminals of suce(N;) and suce(N;) are in the same column
¢, then mark both ¢ and ¢’ as inactive.

o If the left terminals are in two distinct columns, say ¢' containing the
left terminal of succ(N;) is the left one, then mark ¢ inactive if ¢’ has
only one terminal.

e Otherwise, ¢’ contains another left terminal b}. Let N; = pred(N}).
Then create the pair < N;, N; >. Mark ¢ and ¢’ as inactive.

3. Group the pairs < N;, N, > into maximal groups < Ny, Ny; >,<

Nu,Niz >, ...,< Nu_y1, Ny >. Update the successors of these nets by
setting the new successor of N,; to be the previous successor of Ny, for

1. Ny = Ng — Nyjg — Nig — Ny

2. N¢ = N7 — Ng = Ny; — Nyp — Nog
8. N3 = Ny — Ny3 — Nig — N3y — Ny,
4. Ny — Ny — Ny5 — N3»

5. No = N33 — Ny7 — Nyg

Figure 6: New chains generated by Algorithm Modify Chains

all0 <t < t—1. In addition, set the new successor of Ny, to be the previous
successor of Nio.

4. Repeat procedure for active columns with two left terminals.

5. Adjust chains in such a way that whenever the configurations of Fig-
ure 5(a) occur, they will be replaced by the corresponding configurations
of Figure 5(b) (similarily for columns with two left terminals).

As an example, consider the chains of Figure 4. Then the above algo-
rithm creates the new set of chains given in Figure 6.

Lemma2: The above algorithm modifies the chains generated by the algo-
rithm Create Chains such that the new chains satisfy the desired properties.
Moreover, the algorithm runs in O(log n) time with O(n) processors on the
CREW-PRAM model.

Proof: To simplify the presentation we will introduce a new graph called
the link graph. There is vertex v, corresponding to each column ¢. There is
an edge between v, and v, if and only if ¢ contains a terminal of a net whose
successor or predecessor has a terminal in ¢’. Notice that the link graph of
each of the groups created in step 3 has the form shown in Figure 7(a). If
¢) has another link to a, then a cannot appear between ¢o and ¢;. After
the modifications performed in step 3 the link graph of the group will be
of the form given in Figure 7(b) with 2 link loops or paths of length 2.

(a) ®)
Figure 7: Forms of groups in the proof of Lemma2

Hence it is clear that after step 3 no column with two right terminals could
cause any problem. Each group may have generated one column with two
left terminals which donot satisfy the desired property. Then step 4 of the
above algorithm takes care of all these columns (Figure 5). Step 5 insures
that columns with two terminals will be of the form given in Figure 5(b).
The time and processor bounds of the algorithm can be easily established.

The track assignment and the wire layout will be described next. Sup-
pose that track k has been assigned to net N = < ¢,b >. Then the wire
of N will consist of the interval [t;,b:] on track k, a vertical line segment
from b to b;, and a vertical line segment from ¢ plus a possible detour to ¢,.
Therefore the problem comes down to determining how to connect a ter-
minal on the upper row down vertically to its track. The algorithm below
describes how to achieve this.

Algorithm Wire Nets

Input: A chain of nets as modified by the algorithm Modify Chains.
Output: A wire layout for each net.

1. For each chain, assign the leftmost terminal I; as the primary key, and,
if I, is a bottom terminal, assign O as the secondary key and 1 otherwise.
Sort the chains according to their keys. The track number of each chain is
its corresponding rank.

2. For each column ¢, do the following:

10

,,_J M N N,__I - VI » LN
“3 L "imf- i i j@r“’

) (2) @

M | L” - o M- . ’
N'%][-—l—” N [——’A{ N N N M T M

<
x
1
x

) M ® © (10)

Figure 8: Possible detours of nets with terminals in the same column

1. if ¢ contains one terminal of a net N, then connect that terminal
vertically to the track of N.

2. Suppose ¢ contains two terminals of a single net. Then connect these
two terminals vertically.

3. Suppose that ¢ contains two terminals of two distinct nets N =<
¢,b > and M =< t,c >. If N and M have the same track number,
then wire the terminals to this track using a knock-knee. Otherwise
there is detour only if the track number of N is less than that of M.
In this case, it is a left or right detour depending on whether c is a
right or left terminal. The detour extends to either to the column
of successor (for & right detour)or predecessor (for a left detour)of
either N or M whichever is closer. All the cases that can arise and
the corresponding routing are shown in Figure 8.

Consider the example of Figure 2 again. Then the routing obtained by
the above algorithm is given in Figure 9 .

Lemma$: Given an instance of the channel routing problem, the above
algorithm provides a legal routing of all the nets in the knock-knee model.

11

(a)

~ N\

© N\ N N NN AVANNNN
Figure 9: (a) The layout generated by Algorithm Wire Nets, (b) its corre-
sponding diagonal diagram and (c) its corresponding constraint graph

Theorem1l: Given an instance of the channel routing problem of density
d, it is possible to wire all the nets in d tracks in time O(logn) time on
the CREW-PRAM model with O(n) processors, where n is the number
of nets. If all terminals lie in the range [1,N], where N = O(n), then
the above algorithm can be implemented in O(n) sequential time and in
O(5 + logn) parallel time with p processors on the CREW-PRAM model,
where p < n'"¢, and ¢ is any positive constant.

Proof: The first statement of the theorem follows from the previous lem-
mas. If all the terminals lie in the interval [1, N], N = O(=n), then sorting
(most expensive step) takes O(n) sequential time. For the parallel imple-
mentation, the most expensive steps are sorting and traversing linked lists.
Using the results of ([K et al]) we obtain the bounds stated in the theorem.

4 Layer Assignment

In this section, we show that a modified version of the routing produced by
the algorithm of the previous section can be laid out in three layers. [PL]
provides a necessary and sufficient conditions for the realization of a wiring
in three layers. As stated in section2, the problem is essentially reduced to

12

1 2 3 7 ¢ 8 13145 12 11 10 20 17 18 16 21 25 15 24 23 19 22
\ - ,
— 5) L]) L—’L_T‘Jr_,
o e E R
s B 1 [- -]
1 23 4 S 8 7 8 9 10 11 12 13 14 15 18 17 18 13 20 21 22 23 24 25
S s
AN g AN / NN
B g yd

finding a legal partition of the core of the diagonal diagram. The routing
layout produced by the algorithm in [PL] has a special property, namely
every column is either empty or contains one diagonal or a diagonal \ on
the bottom and a diagonal / above it. Their algorithm proceeds from left to
right, looking at each column and making vertical connections (and possibly
changing the routing) so that the resulting partition is legal. Unfortunately,
we encouter a major difficulty in our case. Each column of our routing
layout could have two diagonals (\ and /) in an arbitrary order (because
our routing uses left and right detours). This makes it necessary to change
the wire layout much more substantially than was done in [PL]. In the rest
of this section, we outline how to overcome this difficulty.

By adding dummy diagonals if necessary, we can assume that each col-
umn is either empty or contains exactly two diagonals. As in [PL], our
partition will be constructed by adding vertical edges only. Define a refer-
ence line as a vertical line that touches the endpoint of some diagonal. For
each reference line, the diagonals touching this line will partition it into
several line segments., Number these line segments starting from the top
most segment. Notice that there are two possible ways of adding vertical
segments (to create a legal partition): add the odd-numbered or the even-
numbered segments. We have to choose (if possible) those segments that
will not create a forbidden pattern.

We define the constraint graph as follows. The two possible choices of
vertical segments corresponding to reference line L, are represented by two
vertices vy;_; and vy;. Two vertices are connected by an edge if and only if
the corresponding choices create a forbidden pattern. Notice that forbidden
patterns can be created only between adjacent reference lines.

Lemma4: The total number of the edges between the vertices correspond-
ing to adjacent reference lines is < 2.

Proof: Since the maximum number of diagonals between two adjacent
vertical reference lines is 2, there are at most two “constraints” between

{vzi-1,v2} and {vai1,vai43}, for each 1.

Our goal is to pick for each reference line one of its vertices such that
no two such vertices are connected by an edge. This may not be possible,

13

A N N\ AN
AN A P A A\

Figure 10: Configurations that may give rise to forbidden columns

in which case the routing layout has to be modified. We introduce the
patterns that can create potential problems. A forbidden column is a pair
of vertices corresponding to a reference line such that no selection of its
vertices will lead to a legal partition. The set of configurations that may
give rise to a forbidden column are shown in Figure 10.

Our goal is to modify the wiring layout if necessary so that the resulting
constraint graph has no forbidden columns. We start by showing that any
such graph will lead to a legal partition. The following algorithm shows
how to select the proper set of vertices.

Algorithm Select

Input: Reference lines and the corresponding constraint graph with no
forbidden columns.

Output: A subset of the vertices which will induce a legal partition of the
wiring layout.

1. Mark all reference lines as active. For each reference line L;, select v3;
(vsi-1) if vai-y (va:) is incident on two edges to a single adjacent column. If
such a selection is made, mark L; as inactive and assign weight O if vy; is
selected, otherwise assign weight 1.

2. Create a sorted list for each set of active reference lines between two
inactive reference lines.

14

3. For each list created in step 2, do the following. Assign a weight 0 to
each line L; in the list if there is an edge between v,;_s and vy, or between
vzx-3 and vs_;. Otherwise, assign a weight of 1 to L,.

4. Calculate the rank of each reference line. Then select vy, if the rank of
L, is even; otherwise select vg;_;.

LemmaBb: Given a partition graph with no forbidden columns, Algorithm
Select will generate a subset of the vertices that determine a legal partition
of the wiring layout.

Proof: Let’s start by observing that the selection made in step 4 for in-
active reference lines is consistent with that of step 1 because the graph
contains no forbidden columns. For the rest of the proof, it is enough to
show that there is a selected vertex for each reference line such that no two
selected vertices are connected by an edge. The algorithm clearly selects
exactly one vertex for each reference line. Suppose that there is an edge
between two selected vertices, say vy; and v,_3. Then the weight of L; must
be 0 (because both have even ranks). But then either vy, is connected to
Vai_s OF Ug;_1 is connected to vgi—3. In the first case, vz;—; would have been
selected; in the second case, v3;_s would have been selected. Similarily we
can handle the other cases. Notice that the selection made in step 4 for
inactive reference lines is consistent with that of step 1 because the graph
contains no forbidden columns.

In the rest of this section, we will show how to modify the wiring
in such a way that the corresponding constraint graph has no forbid-
den columns. We first introduce the following classification of reference
lines (cf [PL)): Tvividl (Figure 11), Overlap (Figure 12), Disjoint (Fig-
ure 13), Inclusion (Figure 14). Each type is shown with its possible con-
straint graph. The only possible forbidden columns could come from:
Dy,Ds, D¢, Dy, I3, I, I, Is. In most of these cases, the wiring has to be
modified by adding diagonals in such a way that no forbidden column could
possibly arise. The procedure involves a detailed case study which is sum-
marized by the following algorithm.

15

Figure 11: Trivial reference lines

<X

<<

<<

<<

<X

<<

<<

<K

Figure 12: Overlap reference lines

Ds
N
v
<

Ds
v
N

X

Figure 13: Disjoint reference lines

16

;q
:q
b
:‘hq
:4
:.-Q

7
Z

Z.
Z

4
N

e

- -
-

- -
- -

a
NN

Va -

AN
AN

\"\

X NewC
-
Z

AN
£
AN

AV
- X
AV
% -

Figure 14: Inclusion reference lines

Algorithm Modify

Input: Wiring layout produced by Algorithm Wire Nets.

Output: A new wiring with its modified constraint graph and a set of
selected vertices.

1. Generate the diagonal diagram, delete all half diagonals and add nec-
essary dummy diagonals as follows. If there exists exactly one diagonal \,
then add a dummy diagonal / in an additional row above all the rows. If
there exists exactly one diagonal /, then add a dummy diagonal \ in an ad-
ditional row below all the rows. Determine the constraint graph and mark
all reference lines which may give rise to forbidden columns as active.

2. Handle type I; active reference lines as follows. Let L;, L;_3,...,L;_3
be a maximal chain of active I;’s. We want to modify every other L; starting
with L; in a way that depends on the type of its left neighbor L;_;. All
the cases that can arise are shown in Figure 15 with the corresponding
modifications. In each such case, a vertex of L,_; is selected (its degree is
0), edges between reference line L;_, of selected vertex and its neighbors
removed and the reference lines L;, L;_;, L;-; are marked inactive. Handle
type I reference lines in a similar fashion.

3. Handle type active I as shown in Figure 16. Select vy; and remove edges
between L, and its neighbors. Mark L;, L;_1, L;;; as inactive. Handle type

I, similarily.

17

o

AN

Z

Z\I\IZ__

VYA

< - < <
A\ 5 >\ >_< >.\< >\<

" @ “ () (5)

N

e
7(— ——
< ' < < .
A AN AN AN
(6) (1) (8) (9)

circled.

18

Figure 15: Transformations on type I; reference lines. Selected vertices are

bg pe
<

Figure 16: Transformations on type I reference lines

4. Handle active type D; as shown in Figure 17. Select vj;.; and remove
edges between L; and its neighbors. Mark L;_;, L;, L;;; as inactive. In
Figure 18 a maximal chain of D,’s is considered. L;, L;;y,...,L; are all of
type D;. If L; or L, can give rise to a forbidden column, then modify as
shown and remove all edges of L; — L;. All the odd vertices of of L; — L; are
selected. As before edges are removed for selected columns and adjacent
reference lines are marked inactive. Repeat the same procedure for types
Dy, Dg and Ds.

Lemma8: Algorithm Modify will change the wiring layout produced by
Algorithm Wire Nets in such a way that the corresponding constraint graph
contains no forbidden columns.

Proof: Consider the original constraint graph in which L; was of type I,
(hardest case). Then we have to show that L;_s will create no problems.
The only nontrivial cases are the following:

1. L;_s is of type I;. In this case the algorithm selects vertices in the
columns corresponding to L;.; and L;_, and hence there are no edges
left between L;_3 and L;-;, and between L;_s and L;_4.

19

7/

\g\
7/
\k

Figure 17: Transformations on type D, reference lines

2. L;_s is of type Is. Suppose that there are no dummy diagonals be-
tween L;_s and L;_5 or between L;_; and L;. The only possible wiring
configurations are shown in Figure 19 with their corresponding diag-
onal diagrams. If there is a dummy diagonal between L;_; and L,
then we can have one of the three possibilities shown in Figure 20.
In each of these cases, one of L; or L;,_s cannot generate a forbidden

column,

3. Li_s is of type Iy, Is, Dy, Ds, Dg or Dg. One can check that none of
these cases can possibly generate a forbidden column.

The remaining cases can be dealt with similarily.

If we go back to the example of Figure 2, then the routing produced
by the algorithm of the previous section is given in Figure 9. The layer
assignment algorithm will change the wiring of Nyg and Ny, (Figure 21)
and the final layout is shown in Figure 22.

Theorem?2: Given an instance of the channel routing problem, it is possible
to determine a three-layer assignment of the routing layout in time O(log n)
time with O(n) processors on the CREW-PRAM model.

20

SN S\

Figure 18: Maximal chain of D,’s.

21

Figure 19: Possible wiring configurations for case 2 of lemma6

N\ R NN .

. S |

(1) (2)
Figure 20: Possible configurations with dummy diagonals between L; and
L_,.

16 21 18 21

LSS £

18 21
(a)
Figure 21: Changes in the wiring of Nj¢ and Nj;

4 1 2 3 7 ¢ 8 13145 12 11 10 201718]62!25152423]9 22

T TR P

o W 3 P R

(R s s s el B B 141]
1 22 4 5 ¢ 72 8 9 10 1t 12 13 14 15 18 17 18 19 20 21 22 23 24 25

s U
(b) /\ < N N / < /

@ NN\ N NN AV

Figure 22: (a) The final layout after the modification of layer assignment
algorithm, (b) its corresponding diagonal diagram and (c) its corresponding
constraint graph

5 References

[BB] Brady, M. and D. Brown, “VLSI Routing: Four Layers Suffice,”
Advances in Computing Research 2 (VLSI Theory)), ed. Preparata,
JAI Press, Inc., Greenwich, CT, pp. 245-257, 1984.

[D et al] Dolev, D., K. Karplus, A. Seigel, A. Strong and J. Ullman,
“Optimal Wiring Between Rectangles,” Proc. 13th Annual ACM
Symposuim STOC, May 1981, pp. 312-317.

[K et al] Kruskal, C., Rudolph, L. and M. Snir, “The Power of Parallel
Prefix,” IEEE Transactions on Computers, vol. C-34 (10), pp. 965-
968, Oct. 1985.

[L] Lipski, W., “On the Structure of Three-Layer Wirable Layouts,”
Advances in Computing Research 2 (VLSI Theory), ed. Preperata,
JAI Press, Inc., Greenwich, CT, pp. 231-243, 1984.

[MP] Melhorn, K. and F. Preparata, “Routing through a rectangle,”
JACM, vol. 33(1), Jan. 1986, pp.60-85.

[O] Ohtsuki, T., “Layout Design and Verification,” Advances in CAD for
VLSI, vol. 4, North-Holland, 1986.

[P] Pinter, R., “River Routing: Methodology and Analysis,” Proceedings
of the third CalTech conference on VLSI, March 1983, pp. 141-163.

[PL] Preparata, F. and W. Lipski, “Optimal Three-Layer Channel Rout-
ing,” IEEE Trans. on Computers, C-33, pp. 427-437, 1984.

