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Abstract

As computational power and storage capacity increase, processing and analyzing large vol-
umes of multi-dimensional datasets play an increasingly important part in many domains of sci-
entific research. Several database research groups and vendors have developed object-relational
database systems to provide some support for managing and/or visualizing multi-dimensional
datasets. These systems, however, provide little or no support for analyzing or processing these
datasets — the assumption is that this is too application-specific to warrant common support.
As a result, applications that process these datasets are usually decoupled from data storage
and management, resulting in inefficiency due to copying and loss of locality. Furthermore,
every application developer has to implement complex support for managing and scheduling the
processing.

Our study of a large set of scientific applications over the past three years indicates that
the processing for such datasets is often highly stylized and shares several important charac-
teristics. Usually, both the input dataset as well as the result being computed have underlying
multi-dimensional grids. The basic processing step usually consists of transforming individual
input items, mapping the transformed items to the output grid and computing output items by
aggregating, in some way, all the transformed input items mapped to the corresponding grid
point. In this paper, we present the design of T2, a customizable parallel database that inte-
grates storage, retrieval and processing of multi-dimensional datasets. T2 provides support for
common operations including index generation, data retrieval, memory management, scheduling
of processing across a parallel machine and user interaction. It achieves its primary advantage
from the ability to seamlessly integrate data retrieval and processing for a wide variety of ap-
plications and from the ability to maintain and jointly process multiple datasets with different
underlying grids.

1 Introduction

As computational power and storage capacity increase, processing and analyzing large volumes of
data play an increasingly important part in many domains of scientific research. Typical examples
of very large scientific datasets include long running simulations of time-dependent phenomena that
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periodically generate snapshots of their state (e.g. hydrodynamics and chemical transport simula-
tion for estimating pollution impact on water bodies [4, 6, 23], magnetohydrodynamics simulation
of planetary magnetospheres [39], simulation of a flame sweeping through a volume [33], airplane
wake simulations [24]), archives of raw and processed remote sensing data (e.g. AVHRR [29], The-
matic Mapper [20], MODIS [25]), and archives of medical images (e.g. high resolution confocal
light microscopy, CT imaging, MRI, sonography).

These datasets are usually multi-dimensional. The data dimensions can be spatial coordinates,
time, or varying experimental conditions such as temperature, velocity or magnetic field. The
increasing importance of such datasets has been recognized by several database research groups and
several systems have been developed for managing and/or visualizing them [2, 7, 17, 22, 32, 38]. In
addition, commercial object-relational database systems provide some support for managing multi-
dimensional datasets (e.g., the Spatial Ware DataBlade Module [36] for the Informix Universal Server
and the Oracle 8 Spatial data cartridge [31]).

These systems, however, focus on lineage management, retrieval and visualization of multi-
dimensional datasets. They provide little or no support for analyzing or processing these datasets
— the assumption is that this is too application-specific to warrant common support. As a result,
applications that process these datasets are usually decoupled from data storage and management,
resulting in inefficiency due to copying and loss of locality. Furthermore, every application developer
has to implement complex support for managing and scheduling the processing.

Over the past three years, we have been working with several scientific research groups to
understand the processing requirements for such applications [1, 5, 6, 9, 11, 12, 14, 21, 26, 27, 33,
34, 35]. Our study of a large set of applications indicates that the processing for such datasets is
often highly stylized and shares several important characteristics. Usually, both the input dataset as
well as the result being computed have underlying multi-dimensional grids. The basic processing
step usually consists of transforming individual input items, mapping the transformed items to
the output grid and computing output items by aggregating, in some way, all the transformed
input items mapped to the corresponding grid point. For example, remote-sensing earth images
are usually generated by performing atmospheric correction on 10 days worth of raw telemetry
data, mapping all the data to a latitude-longitude grid and selecting those measurements that
provide the clearest view. As another example, chemical contamination studies simulate circulation
patterns in water bodies with an unstructured grid over fine-grain time steps and chemical transport
on a different grid over coarse-grain time steps. This is achieved by mapping the fluid velocity
information from the circulation grid, possibly averaged over multiple fine-grain time steps, to the
chemical transport grid and computing smoothed fluid velocities for the points in the chemical
transport grid.

In this paper, we present T2, a customizable parallel database that integrates storage, retrieval
and processing of multi-dimensional datasets. T2 provides support for common operations including
index generation, data retrieval, memory management, scheduling of processing across a parallel
machine and user interaction. It achieves its primary advantage from the ability to seamlessly
integrate data retrieval and processing for a wide variety of applications and from the ability to
maintain and jointly process multiple datasets with different underlying grids. Most other systems
for multi-dimensional data have focused on uniformly distributed datasets, such as images, maps,
and dense multi-dimensional arrays. Many real datasets, however, are non-uniform or unstruc-
tured. For example, satellite data consists of a two dimensional strip that is embedded in a three
dimensional space; water contamination studies use unstructured meshes to selectively simulate
regions and so on. T2 can handle both uniform and non-uniform datasets.

Since its structure mirrors that of a wide variety of applications, T2 is easy to customize for



different types of processing. To build a version of T2 customized for a particular application,
a user has to provide (1) a transformation function to pre-process individual input items; (2) a
mapping function to map from the input grid to the output grid (multiple functions may be needed
if the processing is multi-step); and (3) an aggregation function to compute an output data item
given the set of input data items that map to it. To be able to efficiently integrate retrieval as well
as all phases of processing on a parallel machine, T2 manages the allocation and scheduling of all
resources including processor, memory, disk bandwidth and network bandwidth. To facilitate this,
each of the functions mentioned above needs to be annotated with its memory and computation
requirements, so that the system can efficiently manage these resources.

T2 presents a uniform interface to the end users (the clients of the database system). Users
specify the dataset(s) of interest, a region of interest within the dataset(s), and the desired format
and resolution of the output. In addition, they select the mapping and aggregation functions to
be used. T2 analyzes the user request, builds a suitable plan to retrieve and process the datasets,
executes the plan and presents the results in the desired format.

T2 has been developed as a set of modular services. While we expect that a large class of
applications will be able to use them as is, we anticipate that some applications may need to
replace or modify some of these services. We have developed interface specifications for these
services so that replacements can be added if needed.

In Section 2 we first present several motivating applications and illustrate their common struc-
ture. Section 3 then presents an overview of T2, including its distinguishing features and a running
example. Section 4 describes each database service in some detail. An example of how to customize
several of the database services for a particular application is given in Section 5. T2 is a system in
evolution. We conclude in Section 6 with a description of the current status of both the T2 design
and the implementation of various applications with T2.

2 Motivating examples

Satellite data processing: Earth scientists study the earth by processing remotely-sensed data
continuously acquired from satellite-based sensors, since a significant amount of earth science re-
search is devoted to developing correlations between sensor radiometry and various properties of
the surface of the earth. A typical analysis [1, 5, 14, 21] processes satellite data for ten days to a
year and generates one or more composite images of the area under study. Generating a composite
image requires projection of the globe onto a two dimensional grid; each pixel in the composite
image is computed by selecting the “best” sensor value that maps to the associated grid point. A
variety of projections are used by earth scientists — the USGS cartographic transformation package
supports 24 different projections [40] . An earth scientist specifies the projection that best suits her
needs, maps the sensor data using the chosen projection, and generates an image by compositing
the projected data. Sensor values are pre-processed to correct the effects of various distortions,
such as instrument drift, atmospheric distortion and topographic effects, before they are used.

Virtual Microscope and Analysis of Microscopy Data : The Virtual Microscope [12] is
an application we have developed to support the need to interactively view and process digitized
data arising from tissue specimens. The Virtual Microscope provides a realistic digital emulation
of a high power light microscope. The raw data for such a system can be captured by digitally
scanning collections of full microscope slides under high power. At the basic level, it can emulate
the usual behavior of a physical microscope including continuously moving the stage and changing
magnification and focus. Used in this manner, the Virtual Microscope can support completely



digital dynamic telepathology [30, 41, 42]. In addition, it enables new modes of behavior that
cannot be achieved with a physical microscope, such as simultaneous viewing and manipulation of
a single slide by multiple users.

Pathologists and biomedical researchers need to process as well as view microscopy data. There
is a need for three dimensional image reconstruction from data found in multiple focal planes
and on multiple microscope slides, along with image registration and compositing that takes into
account data obtained using various special stains that reveal the presence or absence of biochemical
markers.

The digitized image from a slide is effectively a three dimensional dataset, since each slide can
contain multiple focal planes. In the operation of the virtual microscope, high resolution data is
retrieved, decompressed and projected onto a grid of suitable resolution (governed by the desired
magnification). A compositing algorithm is applied to all pixels mapping onto a single grid point
to avoid introducing spurious artifacts into the displayed image. In the future, we plan to make
use of multi-resolution data structures to make it possible to acquire and store data arising from
different spatial regions at different levels of resolution.

Water contamination studies: Environmental scientists study the water quality of bays and
estuaries using long running hydrodynamics and chemical transport simulations [4, 6, 23]. The
hydrodynamics simulation imposes an unstructured grid on the area of interest and determines
circulation patterns and fluid velocities over time. The chemical transport simulation models reac-
tions and transport of contaminants, using the fluid velocity data generated by the hydrodynamics
simulation. This simulation is performed on a different unstructured spatial grid, and often uses
significantly coarser time steps. This is achieved by mapping the fluid velocity information from
the circulation grid, averaged over multiple fine-grain time steps, to the chemical transport grid and
computing smoothed fluid velocities for the points in the chemical transport grid. As the chemical
reactions have little effect on the circulation patterns, the fluid velocity data can be generated once
and used for many contamination studies.

3 Overview

In this section, we provide an overview of T2. We describe its distinguishing features and use a
database that generates composite images out of raw satellite data as an example to illustrate how
T2 would be used.

There are four distinguishing features of T2. First, it is targeted towards multi-dimensional
datasets — the attributes of each dataset form some underlying multi-dimensional attribute spaces
(e.g., spatial coordinates, time, temperature, velocity, etc.). T2 can simultaneously manage and
process multiple datasets with different attribute spaces and different distributions of data within
each attribute space. For example, T2 can manage satellite data at multiple stages in a processing
chain ranging from the initial raw data that consists of a two dimensional strip embedded in a
three dimensional space to ten day composites that are two dimensional images in a suitable map
projection to monthly composites that are 360x180 images with one pixel for each longitude-latitude
element. T2 uses multi-dimensional indices (e.g., R*-trees [3, 16], quad-trees [13]) to manage these
datasets. For a given dataset, a separate index is created for every attribute space of interest. For
example, the underlying attribute space for AVHRR satellite data has three axes - latitude (in
1/128th of a degree), longitude (1/128th of a degree) and time (in seconds). During processing,
this attribute space is mapped to another attribute space, which is a grid in the Interrupted Goodes
Homolosine map projection [37]. T2 allows users to index this dataset either on the underlying



latitude-longitude-time attribute space or on the attribute space jointly defined by the Goodes map
projection and time.

Second, T2 leverages commonality in processing requirements to seamlessly integrate data re-
trieval and processing for a wide variety of applications. It provides support for a variety of common
operations such as index generation, data retrieval, memory management, scheduling of processing
across the parallel machine and user interaction.

Third, T2 can be customized for a wide variety of applications without compromising efficiency.
To customize T2, a user has to provide (1) a transformation function to pre-process individual input
items; (2) one or more mapping functions to map from the input attribute space to the output
attribute space (multiple functions are automatically composed by T2); and (3) an aggregation
function to compute an output data item given the set of input data items that map to it.

Fourth, T2 leverages the commonality in the structure of datasets and processing to present a
uniform interface. Users specify in a T2 query the dataset(s) of interest, a region of interest within
the dataset(s), and the desired format, resolution and destination of the output. In addition, they
select the transformation, mapping and aggregation functions to be used. The output of a T2 query
is also multi-dimensional. The attribute space for the output is specified as a part of the query (by
specifying the desired format and resolution). The region of interest can be specified in terms of
any attribute space that the dataset has an index on. For example, a query to retrieve and process
AVHRR data could specify its region of interest in terms of either the latitude-longitude-time
attribute space that underlies the AVHRR dataset or the attribute space defined by the Goodes
map projection and time.

Figures 1 and 2 show how T2 is used to generate the desired output image from processing
raw AVHRR data. Fach data item in the AVHRR dataset is referred to as an instantaneous field
of view (IFOV), and consists of eight attributes — three key attributes that specify the spatio-
temporal coordinates and five data attributes that contain observations in different parts of the
electromagnetic spectrum. IFOVs from multiple orbits are stored in T2, although Figure 1 only
shows a strip from a single orbit. The query region is specified in terms of the latitude-longitude-
time attribute space, and an R*-tree indexed over the IFOVs on the same attribute space is used
to identify the IFOVs of interest. The output is an image in the Goodes map projection. Each
IFOV selected for the query is pre-processed by a transformation function to correct the effects of
various distortions — instrument drift, atmospheric distortion and topographic effects. It is then
mapped to a pixel in the output image by a mapping function. Since the query region extends over
ten days and since observations from consecutive orbits overlap spatially, multiple IFOVs map to
an output pixel. The aggregation function for an output pixel selects the “best” corrected IFOV
that maps to the output pixel, based on a measure of the clarity of the sensor readings. Figure 2
illustrates these operations.

4 System Architecture

T2 has been developed as a set of modular services: the attribute space management service, the
data loading service, the indexing service, the data aggregation service, the query interface service,
the query planning service and the query execution service. Figure 3 shows the overall architecture
of T2. In this section, we describe these services. While we expect that a large class of applications
will be able to use them as is, we anticipate that some applications may need to replace or modify
some of these services.



July 1-10,' 87 Query Region
~ .

|atitude
40N-40S

*
R-tree

longtitude
20W-40E \
IFOV ooc@/ooo@@ooooo
~8 90006500000 0
|atitude 00000000000 O
longtitude 000 000000000 O
time 0000000 ®® OO O
spectral bandl O 000Cee0@® @® O O
spectral band2 0 00000000000 O
spectral band3 0 00000000000 O
spectral bandd 0O 00000000000 O
spectral band5

Figure 1: Example of a T2 query for an AVHRR dataset. The query region is specified in terms of
the attribute space that underlies the AVHRR dataset.
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Figure 2: The output of a query into an AVHRR dataset is an image in the Goodes map projection.
A transformation function is applied to each IFOV for correction, but is not shown.
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4.1 The attribute space service

The attribute space service manages the registration and use of attribute spaces and mapping
functions. Mapping functions are used to either map individual points between previously registered
attribute spaces or to map points from a registered attribute space to define a new attribute
space. In this section, we describe how attribute spaces and mapping functions are specified and
maintained.

Multi-dimensional attribute spaces are the central structures in T2. All other structures and
operations are specified in terms of these attribute spaces. An attribute space is specified by the
number of dimensions and the range of values in each dimension. For user convenience, additional
information can be stored with an attribute space. For example, a name and the resolution of the
values in a dimension can be specified (e.g. for the latitude-longitude-time attribute space from
Section 3, the resolution of the latitude dimension is 1/128-th of a degree).

T2 supports two kinds of attribute spaces: base and derived. Base attribute spaces are explicitly
specified by the user and are persistent, so can be identified by names that are visible to users. A
derived attribute space is specified as a (base attribute space, mapping function) pair. Logically, a
derived space is defined as the space generated by mapping every point in the base space using the
mapping function.

Mapping functions are specified by the domain and range attribute spaces and an algorithm
for the mapping between them. The attribute space service manages the namespace of attribute
spaces and mapping functions and allows users to browse the sets of available attribute spaces
and mapping functions via the query interface service. Currently, mapping functions are statically
linked; we plan to provide dynamic linking in the near future.

4.2 The data loading service

The data loading service manages the process of loading new datasets into T2. To load a new
dataset into T2, a user has to specify the format, location and metadata for the dataset and the
data loading service takes care of loading the dataset and integrating it into the database.

T2 expects incoming datasets to be partitioned into chunks, each chunk consisting of one or
more data items. T2 allows users to pick any chunk size (all chunks do not have to be the same



size); users should pick chunk sizes that allow for efficient retrieval from disk, because chunks are
the unit of disk retrieval in T2 (for the IBM Starfire disks that our T2 prototypes run on, we pick
chunk sizes greater than 128 KB). The format of the dataset is specified by: (1) the name of a base
attribute space that underlies the dataset (we call this the native attribute space of the dataset);
(2) the size of each chunk in the dataset; (3) the number of chunks in the dataset; (4) an iterator
function that iterates over the set of data items in a single chunk; and (5) and an access function
that given a data item, returns its coordinates in the underlying attribute space.

The location of a dataset is specified as the names of files that contain the dataset. T2 loads
each chunk separately, so there are no constraints on the order of the files or on the order of chunks
within each file.

The metadata for the dataset consists of placement information. T2 assumes that a disk farm
is attached to the processors and placement information is needed to determine the data layout.
There are two components of the placement information, both of which are optional. The first is
a list of minimum bounding rectangles (mbr) for each chunk being loaded. An mbr for a chunk
is a specification of the extent of the data items in the chunk in the attribute space. If the mbr
information is not specified, it is automatically computed using the iterator and the access functions.
The second is a pair of algorithms — one to decluster the chunks to individual disks and the other
to cluster them on individual disks. Each algorithm is specified by name. Algorithms that have not
been previously integrated into T2 have to be linked in. As for mapping functions, T2 currently
supports static linking; we plan to provide dynamic linking in the near future. By default, T2 uses
the minimaz algorithm [26, 27] for declustering and the Short Spanning Path (SSP) algorithm [10]
for clustering. In addition, T2 allows the data layout to be separately computed and provided in
a file. This would be useful if the algorithms used to compute the placements were embedded in
some other application that could not be structured to fit T2’s interface requirements.

Once the data layout is specified, the data loading service computes an efficient schedule for
moving the chunks to their destinations and executes the schedule.

4.3 The indexing service

The indexing service creates an index for a given (dataset, attribute space) pair. An attribute
space can be used for indexing a dataset if and only if it is either the native attribute space of the
dataset or the target of a chain of mapping functions that maps the native attribute space to the
new attribute space. T2 allows users to optionally specify an indexing algorithm; by default it uses
a variant of R*-trees.

An index can be created at any time, although it is expected that most indices will be created
as a part of the data loading operation. To create an index, the indexing service uses information
about the mbr for each chunk in the dataset and about the physical location of each chunk on disk.
It obtains this information from the data loading service. For derived attribute spaces, the indexing
service uses the associated mapping function to first map the mbr for each chunk into the derived
attribute space.!

4.4 The data aggregation service

The data aggregation service manages the user-provided functions to be used in aggregation op-
erations. It manages the namespace of these functions and performs type checking both when
the functions are registered (as a part of customization) and when they are used in response to a

1Recall that a derived attribute space is specified as a (base attribute space, mapping function) pair.



query. This service manages two kinds of functions: (1) transformation functions that take one
data item as input and generate another data item as output; and (2) aggregation functions that
take an input data item and a data item in an intermediate data structure and aggregate the value
of the input data item into the intermediate data structure. Transformation functions are used to
pre-process data items before aggregation. Aggregation functions are assumed to be commutative
and associative and can be applied to individual data items in parallel and in any order. T2 is able
to deal with both distributive and algebraic aggregation functions as defined by Gray et. al [15].

Currently, aggregation functions are statically linked. We plan to provide dynamic linking
facilities in the near future. Functions are specified by a (function name, object file name) pair.
The query interface service uses namespace information from the data aggregation service to allow
the user to find the set of transformation functions and aggregation functions that can be applied
to a given dataset.

4.5 The query interface service

The query interface service has two functions. First, it allows clients to find out what datasets are
available and what functions and indices are associated with each dataset. Second, it allows clients
to formulate and present valid queries.

As a part of the first function, the query interface service allows clients to browse all the
namespaces in T2: (1) attribute spaces, (2) datasets, (3) indices, (4) placement algorithms, (5)
mapping functions, (6) transformation functions, and (7) aggregation functions. As a part of the
second function, it ensures that for each query: (1) the domain of the transformation function
selected is the same as that of the input dataset (i.e. the types are the same); (2) the range of the
transformation function has the same type as the domain of the aggregation function; and (3) the
chain of mapping functions is consistent (that is, all the types and shapes match) and the input
attribute space of the first mapping function matches the native attribute space of the dataset
selected.

4.6 The query planning service

To be able to efficiently integrate data retrieval and processing on a parallel machine, T2 manages
the allocation and scheduling of all resources, including processor, memory, disk bandwidth and
network bandwidth. The task of the query planning service is to determine a schedule for the
use of these resources to satisfy a query. Given the stylized nature of the computations supported
by T2, use of several of these resources is not independent (e.g., it is not possible to use disk
bandwidth without having memory to store the data being transferred from disk). In addition, the
associative and commutative nature of the aggregation operations must be leveraged to form loosely
synchronized schedules — the schedules for individual processors need not proceed in lock-step and
only need to synchronize infrequently.

The T2 query planning service creates schedules based on requirements for memory, processor
and network bandwidth. The input to the planning service consists of: (1) the list of chunks that
need to be processed, their location on disk and the region of the output attribute space that
each of them maps to; (2) the dependencies between chunks — dependencies occur when multiple
datasets are being processed simultaneously; (3) a description of the output dataset, including the
underlying attribute space and the size of each output data item; and (4) the amount of memory
available on each processor. The output of the planning service consists of a set of ordered lists of
chunks, one list per disk in the machine configuration. Each list consists of a sequence of sublists
separated by synchronization markers. The operations in each sublist can be performed in any



order; all operations in a sublist must be completed before any operation in the subsequent sublist
can be initiated. This restriction is enforced to ensure schedulability.

We now briefly describe how these resources are taken into consideration during the planning,
assuming a shared-nothing database architecture.

Load balancing: the query planning service considers two classes of load balancing. The first
class, referred to as input partitioning, requires each processor to generate an independent inter-
mediate result based on the chunks that are stored on its disks. These intermediate results are
merged in a second phase to obtain the final output. This yields correct results due to the order-
independent nature of the processing. The second class, referred to as output partitioning, partitions
the final output; the data needed to compute the portion of the output assigned to a processor
is forwarded to it by all the other processors in the machine configuration. The choice between
these approaches is based on several factors, including the distribution of the data in the output
attribute space, the placement of the input data chunks needed to answer the query on disk, and
the machine characteristics (i.e. the relative costs of computation, interprocessor communication
and disk accesses).

Memory: T2 uses memory for three purposes — to hold the data read from disk or received from
the network, to hold the intermediate results for the aggregation operation and to hold the final
output. If enough memory is available for all three purposes, operations for all chunks in a sublist
are scheduled together. Otherwise, memory is first allocated to hold the incoming input data and
the remaining memory is partitioned between the other two uses. Each sublist, then, is processed
in a sequence of iterations — each iteration being scheduled such that all data for the iteration fits
into memory.

4.7 The query execution service

The query execution service manages all the resources in the system using the schedule created
by the planning service. The primary feature of the T2 query execution service is its ability to
seamlessly integrate data retrieval and processing for a wide variety of applications. It achieves this
in three ways. First, it creates a query environment consisting of the set of functions that capture
application-specific aspects of the processing. The query environment includes: (1) the access
functions for individual data items; (2) the iterator to iterate over the data items in a chunk; (3)
the transformation function; (4) the sequence of mapping functions that are to be applied to map
each data item to the corresponding result data item; and (5) the aggregation functions needed to
compute the output. In effect, explicitly maintaining this environment allows the query execution
service to push the processing operations into the storage manager and allows processing operations
to be performed directly on the buffer used to hold data arriving from disk. This avoids one or
more levels of copying that would be needed in a layered architecture where the storage manager
and the processing belonged to different layers.

Second, this service overlaps the disk operations, network operations and the actual processing
as much as possible. It does this by maintaining explicit queues for each kind of operation (data
retrieval, message sends and receives, processing) and switches between them as required.

Third, it maximizes the utility of each disk retrieval by performing all processing for a data
chunk while the chunk is in memory. As a result, a data chunk has to be retrieved only once. This
is similar to the strip-mining and/or blocking operations performed for optimizing cache usage for
matrix operations [8, 19, 28].

The query execution service performs two kinds of synchronization. First, it enforces the syn-
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chronization indicated by the synchronization markers in the list of chunks to be retrieved from
every disk (computed by the planning service). That is, the operations between a pair of mark-
ers can be performed in any order; all operations before a marker must be completed before any
operation after the marker can be initiated. This restriction is used to avoid deadlocks.

The second type of synchronization attempts to preserve load balance by reordering operations.
If a particular processor is unable to keep up with its peers, the other processors reorder their
operations to reduce the amount of data that is sent to that processor. This mechanism can be
used only between synchronization markers.

Assuming a shared-nothing architecture, for each iteration specified by the query plan, the query
execution service goes through three phases: (1) memory allocation and initialization for interme-
diate and final results; (2) retrieval and processing of data; and (3) dispatching of the intermediate
results — either to disk for use in a later iteration, or to another processor for further processing.
The second phase consists of two sub-phases — a local reduction phase and a global combine phase.
During the local reduction phase, chunks are retrieved and forwarded to wherever they should be
processed, as specified by the query plan. Appropriate functions are invoked whenever a chunk
arrives, either from the local disks or from the network interface. These functions iterate through
the data items in a chunk, apply the transformation function to each data item, map the trans-
formed data item to an intermediate result item using the mapping function, and finally aggregate
the data items that map to each result item. After all chunks for an iteration have been retrieved
and processed, the global combine phase is performed to aggregate the intermediate results.

Once all the chunks for the entire query plan have been processed, the final output dataset is
computed from the intermediate results and sent to the destination specified by the query.

5 Customization example: AVHRR database

In this section, we illustrate customization in more detail using the AVHRR satellite database
described in Section 3 as an example. This example is loosely based on Titan [5], a prototype data
server capable of producing composite images out of raw remotely-sensed data.

The AVHRR dataset is partitioned into IFOV chunks based on the geometry of the IFOVs and
the performance characteristics of the disks used to store the data. On the machine used for Titan,
one reasonable partitioning creates chunks of 204x204 IFOVs — the size of each chunk is 187 KB.
The format of the chunk is specified using an iterator that understands the multi-spectral nature
of the values.

The three dimensional latitude-longitude-time attribute space that underlies the IFOVs is reg-
istered as a base attribute space with the attribute space service. An access function is used to
extract the coordinate attributes from an IFOV, and the coordinates of the four corner IFOVs
are used to compute for each chunk a minimum bounding rectangle in the latitude-longitude-time
attribute space. The default T2 declustering and clustering algorithms described in Section 4.2 can
be used to assign disk locations for the IFOV chunks. The data loading service then records all
the relevant information about the AVHRR dataset, and moves the IFOV chunks to their assigned
disk locations. A simplified R*-tree suffices for indexing this dataset, and uses the spatio-temporal
bounds of the IFOV chunks as access keys. The spatio-temporal bounds are specified as a region in
the latitude-longitude-time attribute space. The R*-tree shown in Figure 1 actually indexes over
the IFOV chunks, not the individual IFOVs.

Since the standard AVHRR data product is presented in the Goodes map projection, a three
dimensional attribute space jointly defined by the Goodes map projection and time is registered
with the attribute space service as another base attribute space, and a mapping function is defined
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accordingly to map points from the latitude-longitude-time attribute space to this attribute space.
This allows the indexing service to map the mbr of each IFOV chunk from the latitude-longitude-
time attribute space to the Goodes-time attribute space, and build an index for the AVHRR, dataset
on the Goodes-time attribute space. With this additional index, a query region then can be specified
in terms of the Goodes map projection. A two dimensional spatial attribute space can be derived
from either of the three dimensional spatio-temporal attribute spaces, with a mapping function
that discards the temporal coordinate. This derived spatial attribute space is used for the standard
AVHRR data product.

As described in Section 3, the transformation function registered with the data aggregation
service performs a sequence of corrections to each IFOV. In addition, it also computes the Nor-
malized Difference Vegetation Index (NDVI) [18] for each IFOV, using corrected values from the
first two bands of each IFOV. A registered aggregation function selects the NDVI value with the
“best” ITFOV among all IFOVs that map to a single output pixel, based on the clarity of the IFOV
and the angular position of the satellite when the observation was made.

A typical query would specify an area of interest, usually corresponding to a geo-political area
of world, and a temporal bound, which gets translated into a query region in either of the two
base attribute spaces. The query would choose the AVHRR-correction/NDVI-generation algorithm
as the transformation function, and the previously described NDVI aggregation algorithm as the
aggregation function. The query also specifies the desired resolution of and where to send the
output image (e.g., to disk or to another processing program). The query interface service validates
the received query, and the query planning service generates an eflicient schedule by taking into
account the available machine resources. The query execution service carries out data retrieval
and processing according to the generated schedule, and sends the output image to the desired
destination.

6 Current Status and Future Work

We have presented T2, a customizable parallel database that integrates storage, retrieval and
processing of multi-dimensional datasets. We have described the various services provided by T2,
and further shown how several of those services can be customized for a particular application. In
particular, we have shown how an AVHRR database, based on an existing system for handling raw
remotely-sensed AVHRR satellite data, can be implemented using the services provided by T2.

We are currently in the process of implementing the various T2 services, and are designing
the planning algorithm and cost models for the query planning service. We are also working
on generalizing the design of the various services to handle multiple simultaneous queries. In
addition, we are beginning to implement Titan, the Virtual Microscope, and a system for storing
hydrodynamics simulation results for environmental studies using T2.
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