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periodically generate snapshots of their state (e.g. hydrodynamics and chemical transport simula-tion for estimating pollution impact on water bodies [4, 6, 23], magnetohydrodynamics simulationof planetary magnetospheres [39], simulation of a 
ame sweeping through a volume [33], airplanewake simulations [24]), archives of raw and processed remote sensing data (e.g. AVHRR [29], The-matic Mapper [20], MODIS [25]), and archives of medical images (e.g. high resolution confocallight microscopy, CT imaging, MRI, sonography).These datasets are usually multi-dimensional. The data dimensions can be spatial coordinates,time, or varying experimental conditions such as temperature, velocity or magnetic �eld. Theincreasing importance of such datasets has been recognized by several database research groups andseveral systems have been developed for managing and/or visualizing them [2, 7, 17, 22, 32, 38]. Inaddition, commercial object-relational database systems provide some support for managing multi-dimensional datasets (e.g., the SpatialWare DataBlade Module [36] for the Informix Universal Serverand the Oracle 8 Spatial data cartridge [31]).These systems, however, focus on lineage management, retrieval and visualization of multi-dimensional datasets. They provide little or no support for analyzing or processing these datasets{ the assumption is that this is too application-speci�c to warrant common support. As a result,applications that process these datasets are usually decoupled from data storage and management,resulting in ine�ciency due to copying and loss of locality. Furthermore, every application developerhas to implement complex support for managing and scheduling the processing.Over the past three years, we have been working with several scienti�c research groups tounderstand the processing requirements for such applications [1, 5, 6, 9, 11, 12, 14, 21, 26, 27, 33,34, 35]. Our study of a large set of applications indicates that the processing for such datasets isoften highly stylized and shares several important characteristics. Usually, both the input dataset aswell as the result being computed have underlying multi-dimensional grids. The basic processingstep usually consists of transforming individual input items, mapping the transformed items tothe output grid and computing output items by aggregating, in some way, all the transformedinput items mapped to the corresponding grid point. For example, remote-sensing earth imagesare usually generated by performing atmospheric correction on 10 days worth of raw telemetrydata, mapping all the data to a latitude-longitude grid and selecting those measurements thatprovide the clearest view. As another example, chemical contamination studies simulate circulationpatterns in water bodies with an unstructured grid over �ne-grain time steps and chemical transporton a di�erent grid over coarse-grain time steps. This is achieved by mapping the 
uid velocityinformation from the circulation grid, possibly averaged over multiple �ne-grain time steps, to thechemical transport grid and computing smoothed 
uid velocities for the points in the chemicaltransport grid.In this paper, we present T2, a customizable parallel database that integrates storage, retrievaland processing of multi-dimensional datasets. T2 provides support for common operations includingindex generation, data retrieval, memory management, scheduling of processing across a parallelmachine and user interaction. It achieves its primary advantage from the ability to seamlesslyintegrate data retrieval and processing for a wide variety of applications and from the ability tomaintain and jointly process multiple datasets with di�erent underlying grids. Most other systemsfor multi-dimensional data have focused on uniformly distributed datasets, such as images, maps,and dense multi-dimensional arrays. Many real datasets, however, are non-uniform or unstruc-tured. For example, satellite data consists of a two dimensional strip that is embedded in a threedimensional space; water contamination studies use unstructured meshes to selectively simulateregions and so on. T2 can handle both uniform and non-uniform datasets.Since its structure mirrors that of a wide variety of applications, T2 is easy to customize for2



di�erent types of processing. To build a version of T2 customized for a particular application,a user has to provide (1) a transformation function to pre-process individual input items; (2) amapping function to map from the input grid to the output grid (multiple functions may be neededif the processing is multi-step); and (3) an aggregation function to compute an output data itemgiven the set of input data items that map to it. To be able to e�ciently integrate retrieval as wellas all phases of processing on a parallel machine, T2 manages the allocation and scheduling of allresources including processor, memory, disk bandwidth and network bandwidth. To facilitate this,each of the functions mentioned above needs to be annotated with its memory and computationrequirements, so that the system can e�ciently manage these resources.T2 presents a uniform interface to the end users (the clients of the database system). Usersspecify the dataset(s) of interest, a region of interest within the dataset(s), and the desired formatand resolution of the output. In addition, they select the mapping and aggregation functions tobe used. T2 analyzes the user request, builds a suitable plan to retrieve and process the datasets,executes the plan and presents the results in the desired format.T2 has been developed as a set of modular services. While we expect that a large class ofapplications will be able to use them as is, we anticipate that some applications may need toreplace or modify some of these services. We have developed interface speci�cations for theseservices so that replacements can be added if needed.In Section 2 we �rst present several motivating applications and illustrate their common struc-ture. Section 3 then presents an overview of T2, including its distinguishing features and a runningexample. Section 4 describes each database service in some detail. An example of how to customizeseveral of the database services for a particular application is given in Section 5. T2 is a system inevolution. We conclude in Section 6 with a description of the current status of both the T2 designand the implementation of various applications with T2.2 Motivating examplesSatellite data processing: Earth scientists study the earth by processing remotely-sensed datacontinuously acquired from satellite-based sensors, since a signi�cant amount of earth science re-search is devoted to developing correlations between sensor radiometry and various properties ofthe surface of the earth. A typical analysis [1, 5, 14, 21] processes satellite data for ten days to ayear and generates one or more composite images of the area under study. Generating a compositeimage requires projection of the globe onto a two dimensional grid; each pixel in the compositeimage is computed by selecting the \best" sensor value that maps to the associated grid point. Avariety of projections are used by earth scientists { the USGS cartographic transformation packagesupports 24 di�erent projections [40] . An earth scientist speci�es the projection that best suits herneeds, maps the sensor data using the chosen projection, and generates an image by compositingthe projected data. Sensor values are pre-processed to correct the e�ects of various distortions,such as instrument drift, atmospheric distortion and topographic e�ects, before they are used.Virtual Microscope and Analysis of Microscopy Data : The Virtual Microscope [12] isan application we have developed to support the need to interactively view and process digitizeddata arising from tissue specimens. The Virtual Microscope provides a realistic digital emulationof a high power light microscope. The raw data for such a system can be captured by digitallyscanning collections of full microscope slides under high power. At the basic level, it can emulatethe usual behavior of a physical microscope including continuously moving the stage and changingmagni�cation and focus. Used in this manner, the Virtual Microscope can support completely3



digital dynamic telepathology [30, 41, 42]. In addition, it enables new modes of behavior thatcannot be achieved with a physical microscope, such as simultaneous viewing and manipulation ofa single slide by multiple users.Pathologists and biomedical researchers need to process as well as view microscopy data. Thereis a need for three dimensional image reconstruction from data found in multiple focal planesand on multiple microscope slides, along with image registration and compositing that takes intoaccount data obtained using various special stains that reveal the presence or absence of biochemicalmarkers.The digitized image from a slide is e�ectively a three dimensional dataset, since each slide cancontain multiple focal planes. In the operation of the virtual microscope, high resolution data isretrieved, decompressed and projected onto a grid of suitable resolution (governed by the desiredmagni�cation). A compositing algorithm is applied to all pixels mapping onto a single grid pointto avoid introducing spurious artifacts into the displayed image. In the future, we plan to makeuse of multi-resolution data structures to make it possible to acquire and store data arising fromdi�erent spatial regions at di�erent levels of resolution.Water contamination studies: Environmental scientists study the water quality of bays andestuaries using long running hydrodynamics and chemical transport simulations [4, 6, 23]. Thehydrodynamics simulation imposes an unstructured grid on the area of interest and determinescirculation patterns and 
uid velocities over time. The chemical transport simulation models reac-tions and transport of contaminants, using the 
uid velocity data generated by the hydrodynamicssimulation. This simulation is performed on a di�erent unstructured spatial grid, and often usessigni�cantly coarser time steps. This is achieved by mapping the 
uid velocity information fromthe circulation grid, averaged over multiple �ne-grain time steps, to the chemical transport grid andcomputing smoothed 
uid velocities for the points in the chemical transport grid. As the chemicalreactions have little e�ect on the circulation patterns, the 
uid velocity data can be generated onceand used for many contamination studies.3 OverviewIn this section, we provide an overview of T2. We describe its distinguishing features and use adatabase that generates composite images out of raw satellite data as an example to illustrate howT2 would be used.There are four distinguishing features of T2. First, it is targeted towards multi-dimensionaldatasets { the attributes of each dataset form some underlying multi-dimensional attribute spaces(e.g., spatial coordinates, time, temperature, velocity, etc.). T2 can simultaneously manage andprocess multiple datasets with di�erent attribute spaces and di�erent distributions of data withineach attribute space. For example, T2 can manage satellite data at multiple stages in a processingchain ranging from the initial raw data that consists of a two dimensional strip embedded in athree dimensional space to ten day composites that are two dimensional images in a suitable mapprojection to monthly composites that are 360x180 images with one pixel for each longitude-latitudeelement. T2 uses multi-dimensional indices (e.g., R�-trees [3, 16], quad-trees [13]) to manage thesedatasets. For a given dataset, a separate index is created for every attribute space of interest. Forexample, the underlying attribute space for AVHRR satellite data has three axes - latitude (in1/128th of a degree), longitude (1/128th of a degree) and time (in seconds). During processing,this attribute space is mapped to another attribute space, which is a grid in the Interrupted GoodesHomolosine map projection [37]. T2 allows users to index this dataset either on the underlying4



latitude-longitude-time attribute space or on the attribute space jointly de�ned by the Goodes mapprojection and time.Second, T2 leverages commonality in processing requirements to seamlessly integrate data re-trieval and processing for a wide variety of applications. It provides support for a variety of commonoperations such as index generation, data retrieval, memory management, scheduling of processingacross the parallel machine and user interaction.Third, T2 can be customized for a wide variety of applications without compromising e�ciency.To customize T2, a user has to provide (1) a transformation function to pre-process individual inputitems; (2) one or more mapping functions to map from the input attribute space to the outputattribute space (multiple functions are automatically composed by T2); and (3) an aggregationfunction to compute an output data item given the set of input data items that map to it.Fourth, T2 leverages the commonality in the structure of datasets and processing to present auniform interface. Users specify in a T2 query the dataset(s) of interest, a region of interest withinthe dataset(s), and the desired format, resolution and destination of the output. In addition, theyselect the transformation, mapping and aggregation functions to be used. The output of a T2 queryis also multi-dimensional. The attribute space for the output is speci�ed as a part of the query (byspecifying the desired format and resolution). The region of interest can be speci�ed in terms ofany attribute space that the dataset has an index on. For example, a query to retrieve and processAVHRR data could specify its region of interest in terms of either the latitude-longitude-timeattribute space that underlies the AVHRR dataset or the attribute space de�ned by the Goodesmap projection and time.Figures 1 and 2 show how T2 is used to generate the desired output image from processingraw AVHRR data. Each data item in the AVHRR dataset is referred to as an instantaneous �eldof view (IFOV), and consists of eight attributes { three key attributes that specify the spatio-temporal coordinates and �ve data attributes that contain observations in di�erent parts of theelectromagnetic spectrum. IFOVs from multiple orbits are stored in T2, although Figure 1 onlyshows a strip from a single orbit. The query region is speci�ed in terms of the latitude-longitude-time attribute space, and an R�-tree indexed over the IFOVs on the same attribute space is usedto identify the IFOVs of interest. The output is an image in the Goodes map projection. EachIFOV selected for the query is pre-processed by a transformation function to correct the e�ects ofvarious distortions { instrument drift, atmospheric distortion and topographic e�ects. It is thenmapped to a pixel in the output image by a mapping function. Since the query region extends overten days and since observations from consecutive orbits overlap spatially, multiple IFOVs map toan output pixel. The aggregation function for an output pixel selects the \best" corrected IFOVthat maps to the output pixel, based on a measure of the clarity of the sensor readings. Figure 2illustrates these operations.4 System ArchitectureT2 has been developed as a set of modular services: the attribute space management service, thedata loading service, the indexing service, the data aggregation service, the query interface service,the query planning service and the query execution service. Figure 3 shows the overall architectureof T2. In this section, we describe these services. While we expect that a large class of applicationswill be able to use them as is, we anticipate that some applications may need to replace or modifysome of these services. 5
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Figure 3: The architecture of T2.4.1 The attribute space serviceThe attribute space service manages the registration and use of attribute spaces and mappingfunctions. Mapping functions are used to either map individual points between previously registeredattribute spaces or to map points from a registered attribute space to de�ne a new attributespace. In this section, we describe how attribute spaces and mapping functions are speci�ed andmaintained.Multi-dimensional attribute spaces are the central structures in T2. All other structures andoperations are speci�ed in terms of these attribute spaces. An attribute space is speci�ed by thenumber of dimensions and the range of values in each dimension. For user convenience, additionalinformation can be stored with an attribute space. For example, a name and the resolution of thevalues in a dimension can be speci�ed (e.g. for the latitude-longitude-time attribute space fromSection 3, the resolution of the latitude dimension is 1/128-th of a degree).T2 supports two kinds of attribute spaces: base and derived. Base attribute spaces are explicitlyspeci�ed by the user and are persistent, so can be identi�ed by names that are visible to users. Aderived attribute space is speci�ed as a (base attribute space, mapping function) pair. Logically, aderived space is de�ned as the space generated by mapping every point in the base space using themapping function.Mapping functions are speci�ed by the domain and range attribute spaces and an algorithmfor the mapping between them. The attribute space service manages the namespace of attributespaces and mapping functions and allows users to browse the sets of available attribute spacesand mapping functions via the query interface service. Currently, mapping functions are staticallylinked; we plan to provide dynamic linking in the near future.4.2 The data loading serviceThe data loading service manages the process of loading new datasets into T2. To load a newdataset into T2, a user has to specify the format, location and metadata for the dataset and thedata loading service takes care of loading the dataset and integrating it into the database.T2 expects incoming datasets to be partitioned into chunks, each chunk consisting of one ormore data items. T2 allows users to pick any chunk size (all chunks do not have to be the same7



size); users should pick chunk sizes that allow for e�cient retrieval from disk, because chunks arethe unit of disk retrieval in T2 (for the IBM Star�re disks that our T2 prototypes run on, we pickchunk sizes greater than 128 KB). The format of the dataset is speci�ed by: (1) the name of a baseattribute space that underlies the dataset (we call this the native attribute space of the dataset);(2) the size of each chunk in the dataset; (3) the number of chunks in the dataset; (4) an iteratorfunction that iterates over the set of data items in a single chunk; and (5) and an access functionthat given a data item, returns its coordinates in the underlying attribute space.The location of a dataset is speci�ed as the names of �les that contain the dataset. T2 loadseach chunk separately, so there are no constraints on the order of the �les or on the order of chunkswithin each �le.The metadata for the dataset consists of placement information. T2 assumes that a disk farmis attached to the processors and placement information is needed to determine the data layout.There are two components of the placement information, both of which are optional. The �rst isa list of minimum bounding rectangles (mbr) for each chunk being loaded. An mbr for a chunkis a speci�cation of the extent of the data items in the chunk in the attribute space. If the mbrinformation is not speci�ed, it is automatically computed using the iterator and the access functions.The second is a pair of algorithms { one to decluster the chunks to individual disks and the otherto cluster them on individual disks. Each algorithm is speci�ed by name. Algorithms that have notbeen previously integrated into T2 have to be linked in. As for mapping functions, T2 currentlysupports static linking; we plan to provide dynamic linking in the near future. By default, T2 usesthe minimax algorithm [26, 27] for declustering and the Short Spanning Path (SSP) algorithm [10]for clustering. In addition, T2 allows the data layout to be separately computed and provided ina �le. This would be useful if the algorithms used to compute the placements were embedded insome other application that could not be structured to �t T2's interface requirements.Once the data layout is speci�ed, the data loading service computes an e�cient schedule formoving the chunks to their destinations and executes the schedule.4.3 The indexing serviceThe indexing service creates an index for a given (dataset, attribute space) pair. An attributespace can be used for indexing a dataset if and only if it is either the native attribute space of thedataset or the target of a chain of mapping functions that maps the native attribute space to thenew attribute space. T2 allows users to optionally specify an indexing algorithm; by default it usesa variant of R�-trees.An index can be created at any time, although it is expected that most indices will be createdas a part of the data loading operation. To create an index, the indexing service uses informationabout the mbr for each chunk in the dataset and about the physical location of each chunk on disk.It obtains this information from the data loading service. For derived attribute spaces, the indexingservice uses the associated mapping function to �rst map the mbr for each chunk into the derivedattribute space.14.4 The data aggregation serviceThe data aggregation service manages the user-provided functions to be used in aggregation op-erations. It manages the namespace of these functions and performs type checking both whenthe functions are registered (as a part of customization) and when they are used in response to a1Recall that a derived attribute space is speci�ed as a (base attribute space, mapping function) pair.8



query. This service manages two kinds of functions: (1) transformation functions that take onedata item as input and generate another data item as output; and (2) aggregation functions thattake an input data item and a data item in an intermediate data structure and aggregate the valueof the input data item into the intermediate data structure. Transformation functions are used topre-process data items before aggregation. Aggregation functions are assumed to be commutativeand associative and can be applied to individual data items in parallel and in any order. T2 is ableto deal with both distributive and algebraic aggregation functions as de�ned by Gray et. al [15].Currently, aggregation functions are statically linked. We plan to provide dynamic linkingfacilities in the near future. Functions are speci�ed by a (function name, object �le name) pair.The query interface service uses namespace information from the data aggregation service to allowthe user to �nd the set of transformation functions and aggregation functions that can be appliedto a given dataset.4.5 The query interface serviceThe query interface service has two functions. First, it allows clients to �nd out what datasets areavailable and what functions and indices are associated with each dataset. Second, it allows clientsto formulate and present valid queries.As a part of the �rst function, the query interface service allows clients to browse all thenamespaces in T2: (1) attribute spaces, (2) datasets, (3) indices, (4) placement algorithms, (5)mapping functions, (6) transformation functions, and (7) aggregation functions. As a part of thesecond function, it ensures that for each query: (1) the domain of the transformation functionselected is the same as that of the input dataset (i.e. the types are the same); (2) the range of thetransformation function has the same type as the domain of the aggregation function; and (3) thechain of mapping functions is consistent (that is, all the types and shapes match) and the inputattribute space of the �rst mapping function matches the native attribute space of the datasetselected.4.6 The query planning serviceTo be able to e�ciently integrate data retrieval and processing on a parallel machine, T2 managesthe allocation and scheduling of all resources, including processor, memory, disk bandwidth andnetwork bandwidth. The task of the query planning service is to determine a schedule for theuse of these resources to satisfy a query. Given the stylized nature of the computations supportedby T2, use of several of these resources is not independent (e.g., it is not possible to use diskbandwidth without having memory to store the data being transferred from disk). In addition, theassociative and commutative nature of the aggregation operations must be leveraged to form looselysynchronized schedules { the schedules for individual processors need not proceed in lock-step andonly need to synchronize infrequently.The T2 query planning service creates schedules based on requirements for memory, processorand network bandwidth. The input to the planning service consists of: (1) the list of chunks thatneed to be processed, their location on disk and the region of the output attribute space thateach of them maps to; (2) the dependencies between chunks { dependencies occur when multipledatasets are being processed simultaneously; (3) a description of the output dataset, including theunderlying attribute space and the size of each output data item; and (4) the amount of memoryavailable on each processor. The output of the planning service consists of a set of ordered lists ofchunks, one list per disk in the machine con�guration. Each list consists of a sequence of sublistsseparated by synchronization markers. The operations in each sublist can be performed in any9



order; all operations in a sublist must be completed before any operation in the subsequent sublistcan be initiated. This restriction is enforced to ensure schedulability.We now brie
y describe how these resources are taken into consideration during the planning,assuming a shared-nothing database architecture.Load balancing: the query planning service considers two classes of load balancing. The �rstclass, referred to as input partitioning, requires each processor to generate an independent inter-mediate result based on the chunks that are stored on its disks. These intermediate results aremerged in a second phase to obtain the �nal output. This yields correct results due to the order-independent nature of the processing. The second class, referred to as output partitioning, partitionsthe �nal output; the data needed to compute the portion of the output assigned to a processoris forwarded to it by all the other processors in the machine con�guration. The choice betweenthese approaches is based on several factors, including the distribution of the data in the outputattribute space, the placement of the input data chunks needed to answer the query on disk, andthe machine characteristics (i.e. the relative costs of computation, interprocessor communicationand disk accesses).Memory: T2 uses memory for three purposes { to hold the data read from disk or received fromthe network, to hold the intermediate results for the aggregation operation and to hold the �naloutput. If enough memory is available for all three purposes, operations for all chunks in a sublistare scheduled together. Otherwise, memory is �rst allocated to hold the incoming input data andthe remaining memory is partitioned between the other two uses. Each sublist, then, is processedin a sequence of iterations { each iteration being scheduled such that all data for the iteration �tsinto memory.4.7 The query execution serviceThe query execution service manages all the resources in the system using the schedule createdby the planning service. The primary feature of the T2 query execution service is its ability toseamlessly integrate data retrieval and processing for a wide variety of applications. It achieves thisin three ways. First, it creates a query environment consisting of the set of functions that captureapplication-speci�c aspects of the processing. The query environment includes: (1) the accessfunctions for individual data items; (2) the iterator to iterate over the data items in a chunk; (3)the transformation function; (4) the sequence of mapping functions that are to be applied to mapeach data item to the corresponding result data item; and (5) the aggregation functions needed tocompute the output. In e�ect, explicitly maintaining this environment allows the query executionservice to push the processing operations into the storage manager and allows processing operationsto be performed directly on the bu�er used to hold data arriving from disk. This avoids one ormore levels of copying that would be needed in a layered architecture where the storage managerand the processing belonged to di�erent layers.Second, this service overlaps the disk operations, network operations and the actual processingas much as possible. It does this by maintaining explicit queues for each kind of operation (dataretrieval, message sends and receives, processing) and switches between them as required.Third, it maximizes the utility of each disk retrieval by performing all processing for a datachunk while the chunk is in memory. As a result, a data chunk has to be retrieved only once. Thisis similar to the strip-mining and/or blocking operations performed for optimizing cache usage formatrix operations [8, 19, 28].The query execution service performs two kinds of synchronization. First, it enforces the syn-10



chronization indicated by the synchronization markers in the list of chunks to be retrieved fromevery disk (computed by the planning service). That is, the operations between a pair of mark-ers can be performed in any order; all operations before a marker must be completed before anyoperation after the marker can be initiated. This restriction is used to avoid deadlocks.The second type of synchronization attempts to preserve load balance by reordering operations.If a particular processor is unable to keep up with its peers, the other processors reorder theiroperations to reduce the amount of data that is sent to that processor. This mechanism can beused only between synchronization markers.Assuming a shared-nothing architecture, for each iteration speci�ed by the query plan, the queryexecution service goes through three phases: (1) memory allocation and initialization for interme-diate and �nal results; (2) retrieval and processing of data; and (3) dispatching of the intermediateresults { either to disk for use in a later iteration, or to another processor for further processing.The second phase consists of two sub-phases { a local reduction phase and a global combine phase.During the local reduction phase, chunks are retrieved and forwarded to wherever they should beprocessed, as speci�ed by the query plan. Appropriate functions are invoked whenever a chunkarrives, either from the local disks or from the network interface. These functions iterate throughthe data items in a chunk, apply the transformation function to each data item, map the trans-formed data item to an intermediate result item using the mapping function, and �nally aggregatethe data items that map to each result item. After all chunks for an iteration have been retrievedand processed, the global combine phase is performed to aggregate the intermediate results.Once all the chunks for the entire query plan have been processed, the �nal output dataset iscomputed from the intermediate results and sent to the destination speci�ed by the query.5 Customization example: AVHRR databaseIn this section, we illustrate customization in more detail using the AVHRR satellite databasedescribed in Section 3 as an example. This example is loosely based on Titan [5], a prototype dataserver capable of producing composite images out of raw remotely-sensed data.The AVHRR dataset is partitioned into IFOV chunks based on the geometry of the IFOVs andthe performance characteristics of the disks used to store the data. On the machine used for Titan,one reasonable partitioning creates chunks of 204x204 IFOVs { the size of each chunk is 187 KB.The format of the chunk is speci�ed using an iterator that understands the multi-spectral natureof the values.The three dimensional latitude-longitude-time attribute space that underlies the IFOVs is reg-istered as a base attribute space with the attribute space service. An access function is used toextract the coordinate attributes from an IFOV, and the coordinates of the four corner IFOVsare used to compute for each chunk a minimum bounding rectangle in the latitude-longitude-timeattribute space. The default T2 declustering and clustering algorithms described in Section 4.2 canbe used to assign disk locations for the IFOV chunks. The data loading service then records allthe relevant information about the AVHRR dataset, and moves the IFOV chunks to their assigneddisk locations. A simpli�ed R�-tree su�ces for indexing this dataset, and uses the spatio-temporalbounds of the IFOV chunks as access keys. The spatio-temporal bounds are speci�ed as a region inthe latitude-longitude-time attribute space. The R�-tree shown in Figure 1 actually indexes overthe IFOV chunks, not the individual IFOVs.Since the standard AVHRR data product is presented in the Goodes map projection, a threedimensional attribute space jointly de�ned by the Goodes map projection and time is registeredwith the attribute space service as another base attribute space, and a mapping function is de�ned11
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