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While biofuels are widely considered to be a part of the solution to high oil 

prices, a comprehensive assessment of the environmental sustainability of existing 

and future biofuel systems is needed to assess their utility in meeting U.S. energy and 

food needs without exacerbating environmental harm. 

The following questions guide this research: 

1. What is the spatial extent and composition of agricultural management 

systems that exist in the U.S. Midwest? 

2. How does sub-grid scale edaphic variation impact our estimation of poplar 

biomass productivity across a gradient of spatial scales in the U.S. Midwest?   

3. How do location and management interactions impact yield gap analysis of 

cellulosic ethanol production in U.S. Midwest? 



  

In the first chapter, I developed an algorithm to identify representative crop 

rotations in the U.S. Midwest, using remotely sensed data; and used this information 

to detect pronounced shifts from grassland to monoculture cultivation in the U.S. 

Midwest. In the second chapter, a new algorithm is developed to reduce the 

computational burden of high resolution ecosystem modeling of poplar plantations in 

U.S. Midwest, with the results from the high resolution modeling being used to 

estimate the impact of averaging and discretization of soil properties on poplar yield 

estimates. In the third chapter, a novel yield gap analysis of cellulosic feedstocks on 

marginal lands in the U.S. Midwest is conducted to determine the management inputs 

needed to reach their yield potential in a sustainable manner. 

The significance of this research lies in providing a spatially explicit regional 

scale analysis of the tradeoffs between food and fuel production and providing an 

understanding of which biofuel crops should be grown where to maximize production 

while mitigating environmental damage. 
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Chapter 1: Context of Cellulosic Biofuel Feedstock Production 

in the US Midwest 

1.1 Background 

The annual world primary energy consumption is around 500 EJ (BP 2011), 

which is the energy equivalent of the 2011 earthquake in Japan, daily. Fossil fuel (oil, 

natural gas and coal) combustion provides nearly 87% of our consumption. This 

releases over 8 Gt C/yr of greenhouse gas (GHG) emissions (Marland et al., 2008), 

accelerates changes in composition of natural waters and air (Bertine and Goldberg, 

1971) and has chronic effects on human health (Cifuentes et al., 2001). While world 

energy consumption is projected to increase by 53 percent from 2008 to 2035 (Conti 

et al., 2011), there is an urgent need to curb emissions (Kharecha and Hansen, 2008). 

The future energy portfolio needs to be reassessed. 

As a low-carbon energy source, biofuels are widely considered to be a part of the 

solution to high oil prices (Tyner, 2008), climate change (Tilman et al., 2009) and 

carbon dioxide (CO2) emissions from fossil fuels (Hill et al., 2009) . Although 

accounting for less than 3 percent of the global transportation fuel supply, biofuel 

production worldwide has increased six-fold, from 4.8 billion gallons in 2000 to 

nearly 28 billion gallons in 2010 (Coyle, 2007, OECD-FAO, 2011), and is expected 

to provide nearly 12 percent of the global transportation fuel consumption by 2050 

(Demirbas, 2008). Almost three-quarters of the current global biofuel production or 

nearly 21 billion gallons comes from first-generation biofuels (made from sugar, 

starch and vegetable oil) and is concentrated in the US, Europe and Brazil (Coyle, 



 

 2 

 

2007). US ethanol production derives almost exclusively from fermenting corn (Zea 

mays) and has increased eight-fold in the last decade, from 1.6 billion gallons to 13.5 

billion gallons of ethanol per year (Conti et al., 2011). This dramatic increase has 

helped US surpass Brazil, which uses sugarcane as its biofuel feedstock, in ethanol 

production. 

The US biofuel production targets are even more ambitious: 36 billion gallons per 

year by 2022, of which 20 billion gallons will come from second generation biofuels 

consisting of non-grain or cellulosic plant material. Similar mandates exist in Europe, 

where biofuel production (mostly from rapeseed oil) increased fifteen-fold between 

1998 and 2010, to 2.5 billion gallons (European Biodiesel Board, 2011) and would 

further need to increase four-fold to attain a 5.75% market share target for biofuels 

(Commission of the European Communities, 2006).  

A confluence of factors is expected to increase the human and capital resources 

dedicated to biofuel feedstock production in the future. Favorable market conditions 

have led to an increase in corn acreage nationally by almost 20 percent from 2006 to 

2007 (Landis et al., 2008), increased farmer acceptance for using cellulosic feedstock 

(Swinton et al., 2010) and additional cropland has become available for cultivation 

because of the decrease in the maximum acreage enrolled in the Conservation 

Reserve Program (Westcott, 2010). In the recent past, U.S. government subsidies on 

corn-based ethanol production have also encouraged farmers to shift from cultivating 

food crops to corn (Scharlemann and Laurance, 2008). 

 



 

 3 

 

Agriculture plays a key role in the human domination of the global ecosystem 

(Vitousek et al., 1997). They are also responsible for several ecosystem services 

ranging from food (production) to nutrient regulation to habitat functions. By 

diverting existing land-uses towards more biofuel feedstock production, we could 

exacerbate environmental harm in several ways. Ironically, growing biofuel feedstock 

can actually increase GHG emissions, particularly if they replace existing carbon rich 

vegetation on virgin lands. This incurs a carbon debt which can take anywhere from a 

few years to several hundred years to repay depending on the land-use change and 

management inputs for biofuel feedstock production (Searchinger et al., 2008, 

Fargione et al., 2008). 

The simplification of agroecosystems, through expansion of agricultural land 

supporting a single crop type is an important cause behind the decline in farmland 

biodiversity (Bianchi et al., 2006). As a result, ecosystem services associated with 

biodiversity, like nutrient recycling, microclimate regulation and natural pest control, 

have also deteriorated. Beyond their ecological importance, these ecosystem services 

provide other tangible benefits. For instance, the suppression of pest populations in 

crops by natural enemies reduces yield loss and the need for excessive use of 

pesticides (Gardiner et al., 2009, Landis et al., 2008, Meehan et al., 2011). 

First generation biofuels can affect food security negatively. While no significant 

impact of biofuel production on feedstock prices has been observed currently 

(Ajanovic, 2011), perhaps because yields have increased concomitantly; estimates on 

projected price increases range between 2-65 percent for corn, 2-33 percent for wheat 

and 1-76 percent for soy (Naylor et al., 2007). The variance in the estimates comes 
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from assumptions about the quantity of biofuel feedstock production. One factor in 

favor of biofuel feedstock production is their potential to promote rural development 

via wealth transfer to traditionally cash-poor farmers (Rajagopal et al., 2007), thereby 

potentially at least partially mitigating future food price increases. 

To avoid competing with food, currently retired lands like those in the 

conservation reserve program (CRP) could be brought back into production. 

However, if used for growing first generation biofuels, this can not only accrue 

carbon debt of around 50 years but also add to health costs (Hill et al., 2009) and 

nutrient runoff and eutrophication (Donner and Kucharik, 2008). Thus, even though 

corn-ethanol reduces GHG emissions by displacing fossil fuel usage, conversion of 

CRP lands into corn-ethanol production has been discouraged (Piñeiro et al., 2009). 

The search for beneficial biofuels should focus on the twin objectives of 

sustainable biofuel feedstocks that do not compete with food crops and do not induce 

either direct or indirect land-use change. The sustainable biofuel feedstocks include 

byproducts of human activities (crop residues, forestry wastes) and purpose-grown 

perennial mixes and woody bioenergy crops. Due care needs to be taken to avoid 

excessive harvesting of crop residues as it can intensify soil erosion by tenfold or 

more, increase GHG emissions and also increase eutrophication due to runoff 

(Pimentel et al., 2009). To minimize GHG emissions from land-use change, we need 

to identify lands that are initially not storing large quantities of carbon in soil and 

vegetation but are capable of producing abundant biomass with limited management 

inputs (Tilman et al., 2009). 

 



 

 5 

 

When done right, biofuels can provide a solution to meeting the global 

environmental, food security and energy challenges (Robertson et al., 2008, V.H. 

Dale et al., 2010, Tilman et al., 2009, K. Kline et al., 2011). This proposal aims to 

address that by assessing biofuel feedstock production and ecosystem service 

tradeoffs across a gradient of agricultural management systems in the US Midwest. 

 

1.2 Objectives 

The significance of this research lies in providing a spatially explicit regional 

scale analysis of the tradeoffs between food and fuel production and providing an 

understanding of which biofuel crops should be grown where to maximize production 

while mitigating environmental damage. 

Specifically, the project will focus on the following questions: 

1. What is the spatial extent and composition of agricultural management 

systems that exist in the US Midwest? 

2. How does sub-grid scale edaphic variation impact our estimation of poplar 

biomass productivity across a gradient of spatial scales in the US Midwest?   

3. How do location and management interactions impact yield gap analysis of 

cellulosic ethanol production in US Midwest? 

 

1.3 Theoretical framework 

The theoretical framework of this research is the concept of sustainability. 

Biofuels research in particular has emphasized sustainability, leading to creation of 
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national biofuel research centers like the Great Lakes Bioenergy Research Center 

(GLBRC) (Slater et al., 2010), with a dedicated team examining sustainability of 

various biofuel feedstock options. Sustainable biofuel feedstock option include native 

perennial mixes (Tilman et al., 2009), which more fully utilizing limited resources 

thus attaining greater productivity. 

 

1.4 Scale 

The research will focus on the US Midwest (fig. 1-1). This includes the states of 

North Dakota (ND), South Dakota (SD), Nebraska (NE), Minnesota (MN), Iowa (IA), 

Kansas (KS), Missouri (MS), Wisconsin (WI), Illinois (IL), Indiana (IN), Michigan 

(MN) and Ohio (OH). I selected the US Midwest as the study area because it accounts 

for most of the non-specialty agricultural production in the US and is already the 

major producer of corn ethanol. 

 

1.5 Scope 

The proposed research focuses on ecosystem service impacts of biofuel feedstock 

production. As such, it does not include economic externalities like impact of market 

prices and farmer acceptance of growing second generation biofuels. 
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Fig. 1-1. Land-cover across coterminous U.S. 
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Chapter 2: Identifying Representative Crop Rotation Patterns 

and Grassland Loss in the US Western Corn Belt 
 

1. Introduction 

1.1 Background 

As the dominant land-use type on Earth, agro-ecosystems cover more than a 

third of ice-free land surface (Ramankutty et al., 2008). They have a profound impact 

on the environment which is manifested through global fluxes of greenhouse gases 

(McCarl and Schneider, 2001), soil carbon dynamics (Lal, 2004), increased surface 

temperature and drought conditions (Hertel et al., 2010), and provision of ecosystem 

services (Foley et al., 2011). Human management of these agro-ecosystems, based on 

economic realities and ecological conditions, can influence both the magnitude and 

the nature of impact on ecosystem services (Robertson at al., 2000).  

A key management activity performed by farmers is the development of crop 

rotation plans based on economic opportunities and adapted to environmental 

conditions. Crop rotations have been practiced for thousands of years but crop 

rotations practiced today are much simpler than those practiced in the past (Bullock, 

1992 and Plourde et al., 2013). Compared to a monoculture cropping system supplied 

with optimum nutrient levels, the practice of crop rotations usually leads to higher 

yields, which are mainly attributed to improved soil fertility and tilth (Hesterman et 

al., 1987 and Pierce and Rice, 1988), as well as enhanced pest, disease and weed 

control (Liebman and Dyck, 1993 and Tilman et al., 2002). When practiced together 

with a low-intensity tillage regime, crop rotations can potentially reduce the global 
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warming potential of agro-ecosystems (West and Post, 2002). Conversely, the 

simplification of agro-ecosystems, through expansion of agricultural land supporting 

a single crop type is an important cause behind the decline in farmland biodiversity 

(Bianchi et al., 2006). Consequently, ecosystem services associated with diversified 

crop rotations, like nutrient recycling, addition of organic matter and microclimate 

regulation have also deteriorated. Beyond their ecological importance, these 

ecosystem services provide other tangible benefits. For instance, the suppression of 

pest populations in crops by natural enemies can reduce yield loss and the need for 

increased use of pesticides (Landis et al., 2008, Gardiner et al., 2009 and Meehan et 

al., 2011), although there is uncertainty about the linkage between landscape 

simplification and pesticide use (Larsen, 2013). 

With the advent of synthetic fertilizers and pesticides in the 1950s, use of crop 

rotations declined (Bullock, 1992). However, the increased intensification did not 

boost yields in comparison to a judicious crop rotation scheme (Mannering and 

Griffin, 1981). Amidst mounting concerns over the impacts of increased chemical 

inputs on surface and groundwater quality (Turner and Rabalais, 2003), there has 

been a renewed interest in crop rotations over the last couple of decades. A 

confluence of factors is expected to influence the crop rotation patterns and the 

acreage dedicated to crop production in the future as well. Favorable market 

conditions have led to an increase in corn (Zea mays) acreage nationally by almost 

20% from 2006 to 2007 (Landis et al., 2008 and USDA, 2008) reaching a peak in 

2010 (Plourde et al., 2013 and USDA, 2011a). A parallel development has been the 

availability of additional cropland for cultivation because of the decrease in the 
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maximum acreage enrolled in the Conservation Reserve Program (Westcott, 2007). 

Farmer acceptance for using cellulosic feedstock has also grown (James at al., 2010), 

bringing new energy crops into the mix. 

 

1.2 Mapping cropland areas and crop rotation patterns 

The United States Department of Agriculture (USDA) tracks agricultural 

activity in the US at scale of individual counties as part of the census of agriculture 

(USDA, 2009). The analysis of these data provides valuable information on US 

farms, ranches and feedlots and the farmers who operate them. Due to the expensive 

and time consuming nature of this activity, new data are made available only once 

every five years. The coarse spatial resolution and sparse temporal availability 

precludes the derivation of fine resolution (< 1 ha) annual crop production and 

rotation maps. The other major source of agricultural activity monitoring is the 

Acreage (USDA, 2011b), which aggregates crop production information from 

surveying nearly 3 million ha of agricultural land. While produced annually, this 

information is provided at the scale of US states, and is therefore unsuitable for fine 

resolution mapping. 

Remotely-sensed data provide a way to mitigate the temporal frequency and 

spatial resolution limitations of ground based surveys. National scale corn and 

soybean (Glycine max) acreage estimates obtained from Moderate Resolution 

Imaging Spectroradiometer (MODIS) data at 250m and 500m resolution compare 

favorably with the USDA’s National Agricultural Statistics Service (NASS) survey 

based acreage estimates (Change et al., 2007 and Wardlow and Egbert, 2008). While 
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the MODIS satellite follows a rapid 16-day repeat cycle and the average farm size of 

175 ha (Dimitri et al., 2005) far exceeds MODIS resolution, its utility in determining 

crop rotations is limited because crop rotations for individual fields in a farm can vary 

at sub-MODIS resolutions. This limitation is even more evident when using the 1-km 

resolution Advanced Very High Resolution Radiometer (AVHRR) data to classify 

crop cover types (Jakubauskas et al., 2002). A capable alternative is the USDA NASS 

Cropland Data Layer (CDL) which classifies more than 100 crop types in 

coterminous US at a resolution of 30/56m (Boryan et al., 2011). The oldest CDL 

product dates back to 1997 for North Dakota. While initially focused on the major 

crop producing states, the program has expanded to cover the conterminous US from 

2008 onwards. The CDL has been used widely in land-cover change detection 

(Wright and Wimberly, 2013), watershed runoff modeling (Srinivasan et al., 2010), 

habitat monitoring (Meehan et al., 2010) and in process-based models for biofuel 

feedstock production analysis (Gelfand et al., 2013). 

The simulation of biomass yields, evapotranspiration, runoff and related 

outcomes in a process-based model, are affected by soil properties, crop types and 

climatic conditions (Izaurralde et al., 2007). Therefore, it is critical to get both the 

spatial extent and temporal coverage of crop rotation patterns right for land-cover 

change analysis and ecosystem modeling. A variety of approaches have been 

developed to construct crop rotation patterns. These approaches fall into three 

categories: (a) Methods based on a mathematical framework: Crop rotations are 

modeled either as a transition matrix with implicit path dependency (Castellazzi et al., 

2008) or are based on linear programming models (Detlefsen and Jensen, 2007). 
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While these methods attempt to incorporate expert knowledge on suitable crop 

rotation patterns, they usually do not include the market drivers that influence 

farmer’s decisions on an annual basis. Instead, they are more useful for exploratory 

modeling studies (Dogliotti et al., 2003). (b) Crop rotation patterns determined 

through consultation with field experts, USDA extension agents or from NASS 

survey data (Arabi et al., 2008): Unless the study area is a small farm, it is difficult to 

obtain spatially explicit information on land-cover and land-cover change through this 

approach. Therefore, approaches that rely on expert knowledge can be difficult to 

scale without prior information on what crop rotations are practiced in a region (Xiao 

et al., 2014), and are susceptible to biases or gaps in that information. (c) Crop 

rotation patterns determined through remotely-sensed data like CDL: While spatially 

explicit and generally accurate for major production crops in the US, combining 

multiple years of CDL to get crop rotation information results in a large number of 

factorial crop combinations (Stern et al., 2012). The large number of crop rotations 

are combined with a wide range of other input choices for chemicals and irrigation to 

generate management scenarios. Modeling frameworks face computational 

bottlenecks in efficiently simulating a large number of management scenarios. Some 

modeling studies try to bypass this limitation by selecting far fewer crop rotations 

based on their acreage (Srinivasan et al., 2010 and Muth et al., 2013). These studies 

only use a subset of all existing crop rotations and do not quantify the error 

introduced in the output as a result. Others greatly simplify each crop rotation pattern 

to focus on general trends i.e. whether the crop rotation is a monoculture or 

alternating (biannual, triennial, and quadrennial) in nature (Stern et al., 2008, 
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Mehaffey et al., 2011, Secchi et al., 2011 and Plourde et al., 2013). Further, no 

attempt has been made in existing literature to produce a parsimonious selection of 

representative crop rotations for a region with acreage estimates comparable to NASS 

data. 

 

1.3 Objectives and preview 

The objectives of this research are to: (a) quantify the diversity of crop rotation 

patterns and (b) to examine land-cover transitions occurring in the agronomically 

productive and ecologically sensitive parts of the WCB. In order to achieve these 

objectives, we developed a novel two-parameter algorithm for identifying crop 

rotation patterns in the WCB during a three year period (2010 to 2012). We examined 

the tradeoff between number of representative crop rotations and accuracy by 

comparing estimated acreage against CDL and NASS crop acreage data. A sensitivity 

analysis of the algorithm parameters was conducted to assess its performance across 

the study region. Finally, we used the crop rotation product to estimate grassland 

conversion to crop cultivation in a wetland dominated part of the WCB. In summary, 

we examined the effectiveness of the algorithm in reducing the number of crop 

rotation patterns required to map and model each state by several orders of 

magnitude, while adequately capturing crop acreage and land-cover change trends. 
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2. Materials and Methods 

2.1 Study area 

Annual crop production is the dominant land-use in our study area comprising 

the WCB states of North Dakota (ND), South Dakota (SD), Nebraska (NE), 

Minnesota (MN) and Iowa (IA). While accounting for more than two-fifths of the 

corn and soybean acreage planted nationally in 2012 

(http://quickstats.nass.usda.gov/), these states also overlap the Prairie Pothole Region 

(PPR), an ecologically sensitive wetland landscape (Johnson et al., 2010). CDL data 

for all five states in the WCB has been available since 2006, providing seven years of 

land-use/cover information for analysis. Starting in 2007, CDL data are provided 

statewide with cloud-free coverage. For years prior to 2007, CDL data includes 

metadata files with information on level and extent of cloud contamination. 

 

2.2 Cropland Data Layer 

USDA classifies crop cover types in conterminous US using satellite imagery 

from a variety of sources including MODIS, Advanced Wide Field Sensor (AWiFS) 

and Landsat Thematic Mapper (TM). To produce the annual CDL product, ground 

truth information on land-use, acreage and field boundaries is obtained from the 

USDA farm service agency’s Common Land Unit (CLU) dataset. Subsequently, a 

statewide land-cover classification is produced by performing a supervised 

classification of the geo-referenced and orthorectified satellite imagery, using the 

digitized field segments as training samples. By using a comprehensive national 
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ground truth dataset, CDL data achieves producer and user accuracies between 80% - 

95% for major agricultural crops that are traded on the US commodity markets, 

including: corn, soybean, winter wheat (Triticum aestivum), cotton (Gossypium 

hirsutum), spring wheat (Triticum aestivum) and durum wheat (Triticum durum). 

Crop acreage estimates obtained by counting pixels in the CDL data compare 

favorably with survey based estimates from NASS (Plourde et al., 2013). The 

information from the CLU dataset pertains only to agricultural land-cover and is 

supplemented by the National Elevation Dataset (NED), National Land Cover Dataset 

(NLCD) percent tree cover and percent impervious products for non-agricultural 

land-cover classes. 

 

2.3 Data processing 

We downloaded the CDL raster data for the WCB states from 

http://nassgeodata.gmu.edu/CropScape/ (Han et al., 2012). While CDL data are 

available for the conterminous US starting from 2008, we chose to present our 

algorithm results and analysis for a three year period (2010 to 2012). Most crop 

rotations in the US Midwest do not exceed this duration (Plourde et al., 2013). 

However, the algorithm can be run for any number of years pending availability of 

CDL data. The resolution of CDL between 2006 and 2009 is 56m, and can be 

resampled to 30m resolution. The rasters were acquired in Albers conical equal area 

projection, one file for each year for each state. Each CDL raster is thematic with a 

unique identifier representing discrete features of crop cover type or in the absence of 

cropping, the land-cover. A generically defined NonAg land-cover class was created 

from all non-agricultural land-cover classes in CDL. The CDL classes considered to 

http://nassgeodata.gmu.edu/CropScape/
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be non-agricultural included: pasture/hay (CDL code 181), shrubland (code 64), 

grassland herbaceous (code 171), sod/grassseed (code 59), clovers/wildflowers (code 

58), other hay (code 37) and pasture/grass (code 62). This was done because of low 

confidence in the accuracy of CDL to distinguish between various grassland 

categories (grass hay, grass pasture, hay/pasture and native grassland). The CDL 

documentation also suggested using NLCD for all non-agricultural land-cover change 

analysis1. 

Of the several thousand unique crop rotations that exist for each state (Table 2-1), 

we wanted to select a subset of representative crop rotations which while much fewer 

in number, provide acreage estimates comparable to CDL. We present the 

Representative Crop Rotations Using Edit Distance (RECRUIT) algorithm to derive 

representative crop rotations using the CDL. The algorithm was coded in Python and 

used the ArcPy API from ArcGIS® to perform geospatial analysis. The fully 

automated algorithm operates as follows (Fig. 2-1): 

  

1. For each state, CDL pixels with the same spatial co-ordinates, but different 

annual time stamps (2010, 2011 or 2012) were combined in ArcGIS®, 

producing a unique output value for each unique combination of input values. 

Each of the output values denotes a distinct crop rotation. Since there are nearly 

100 crop types in the CDL database and we analyzed three years of data, the 

number of possible crop rotations is nearly 1 million (1003). However, when 

calculated using multi-year CDL data, there are 13,588 crop rotations ranging 

from 0.09 ha (1 pixel) to 7.5 million ha (83,278,895 pixels) in size (Table 2-1) 
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in the WCB. The number of unique crop rotations in the WCB is not the sum of 

its constituent states because the same crop rotation can exist in different states. 

The pixels corresponding to a particular crop rotation need not be spatially 

contiguous and can have NonAg as a land-cover type. 

 

2. For each crop rotation, we computed its acreage by multiplying the cell size of 

the raster (30m x 30m or 0.09 ha) with the number of pixels corresponding to 

that rotation. We also computed the percentage of the total cultivated acreage 

occupied by that crop rotation and then rearranged the crop rotations by 

descending order of acreage. 

 

3. To determine the representative crop rotations, we selected crop rotations 

starting from the one with the largest acreage, till either one of two threshold 

parameters was exceeded. The first parameter is the cumulative acreage 

threshold (α), defined as the percentage of the total acreage occupied by the 

rotations selected thus far. A value of 0% for this parameter implies that no crop 

rotation will be selected, while all crop rotations will be selected at 100%. The 

second parameter is the marginal increase threshold (β), defined as the 

marginal increase in acreage by selecting the current rotation. To assess 

parameter sensitivity, the algorithm was run for ten cumulative acreage 

threshold values (0%, 15%, 30%, 45%, 60%, 75%, 80%, 90% and 100%), and 

eight marginal increase threshold values (0%, 0.5%, 1%, 5%, 10%, 20%, 60% 

and 100%). 
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4. After selecting the representative rotations, a large number of rotations 

remained unaccounted for. Therefore, we used the reclassify command in 

ArcGIS® to convert each of them to a rotation from the representative list they 

were most similar to. The edit distance metric is used to quantify the similarity 

by counting the minimum number of insertions, deletions and substitutions 

required to transform one crop rotation into another (Ristad and Yianilos, 1998). 

For example, consider the following three year crop rotations: corn-soybean-

corn and a continuous corn rotation. These differ in the middle year, and can be 

made the same by converting from soybean to corn or vice versa. Therefore the 

edit distance for this example would be one. This step increased the accuracy of 

the representative crop rotations and is unique to our algorithm. However, it was 

also the most time consuming part of RECRUIT, since its performance is 

directly proportional to the square of the number of years of CDL data used as 

input. In case of a tie, we reclassified the rotation to the representative rotation 

with the larger acreage. While we considered crop rotations that are mirror 

images of one another: e.g. corn-soybean-corn and soybean-corn-soybean to be 

unique, the RECRUIT tool can optionally merge them. 

 

5. After reclassifying all the remaining rotations, RECRUIT can create a wall-to-

wall product by merging the crop rotation raster with non-agricultural land-

cover pixels (forests, grasslands, wetlands and urban areas) from the CDL 

rasters. 
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Fig. 2-1. Flowchart of the RECRUIT algorithm. Individual steps of the algorithm are 

indicated in bold font. 
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Table 2-1. Number of unique crop rotations by state and region. 

  

Number 

of 

rotations 

Largest rotation 

Largest 

rotation 

(ha) 

Smallest  

rotation 

(ha) 

% of 

cultivated 

area occupied 

by largest 

rotation 

ND 9,619 soybean-spring wheat-

soybean 

345,046 0.09 4.1% 

SD 6,091 corn-soybean-corn 942,059 0.09 15.4% 

NE 3,906 corn-soybean-corn 1,410,024 0.09 19.5% 

MN 5,554 corn-soybean-corn 1,774,178 0.09 22.9% 

IA 1,108 corn-soybean-corn 3,077,256 0.09 33.4% 

WCB 13,588 corn-soybean-corn 7,495,100 0.09 19.3% 

 

We computed the accuracy of the crop rotation product as the percentage of pixels 

for which our crop rotation product differs in its land-cover class compared to the 

CDL, averaged across multiple years of rotation. For example, consider the following 

three year rotations: corn-soybean-corn and soybean-soybean-corn occupying 100 

and 20 ha respectively. If we merge the second rotation into the first, we will get a 

representative rotation of corn-soybean-corn. Our accuracy for the new rotation 

would be 94.4%, because out of the total acreage of 360 ha over the 3 year duration, 

only the soybean fields spread over 20 ha in the first year would have been 

incorrectly reclassified as corn, while the remaining 340 ha are classified correctly. If 

we did not merge the second rotation into the first and used the first rotation to map 

the entire area, the soybean-soybean-corn rotation spread over 60 ha across the three-

year duration would be unaccounted for, leading to an accuracy of 83.3%. Therefore, 



 

 21 

 

the marginal increase in accuracy by merging the second rotation into the first is 

equal to the difference in accuracies for the two scenarios or 11.1%. 

 

3. Results and Discussion 

3.1 Crop rotation acreage variation across the WCB 

The mechanics of the RECRUIT algorithm can be better understood by 

examining the variation in crop rotation acreages across the WCB. We plotted the 

marginal contribution of each crop rotation to the total cultivated acreage in Fig. 2-2. 

A gradual increase, as is the case in North Dakota, indicates a wider diversity of crop 

rotations as compared to Iowa where the largest crop rotation by acreage accounts for 

one-third of the cultivated area (Table 2-1), while the smallest crop rotation in each 

state reflects the pixel size (0.09 ha). The RECRUIT algorithm is based on selecting 

the crop rotations with the greatest marginal contribution as representative of the 

entire set. 
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Fig. 2-2. Marginal contribution of each crop rotation to the total cultivated acreage of 

the state. 

 

The crop rotations representative of the WCB from 2010 to 2012 were 

mapped (Fig. 2-3). They were selected by running the RECRUIT algorithm, with 

parameter values α (75%) and β (5%). Each pixel in the representative crop rotation 

raster had three attribute values: one land-cover for each year from 2010 to 2012. 

Overall, 75.2% of the pixels in the representative crop rotation product had the same 

land-cover as the CDL data from which it was derived. The acreage estimate for each 

representative crop rotation, listed by state, is presented (Table 2-2). Nearly 24.2 

million ha or 62.5% of the total cultivated acreage is occupied by corn-soybean-corn 

and soybean-corn-soybean rotations. From an agronomic point of view these rotations 
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are the same. However, were the latter rotation merged into the former, the effective 

area devoted to corn production would increase, thus reducing the total acreage 

devoted to soybean production by nearly 2 million ha/yr. Several crop rotations, e.g. 

continuous soybean were shown to have zero acreage in several states (Table 2-2). 

This does not imply that no such crop rotation exists in that state. Instead, its acreage 

was low enough for RECRUIT to combine it with a higher frequency crop rotation 

based on their similarity. 

 

Table 2-2. Crop rotations from fig. 2-2 with acreage figures for each state and 

arranged in descending order of its total acreage in the WCB.  Crop names are given 

as abbreviations: Swht - Spring Wheat, Soyb - Soybean, Cano - Canola. NonAg 

includes all includes all non-agricultural land-cover classes that are in rotation with 

crops for this three year period. 

 

2010 2011 2012 ND SD NE MN IA 
Corn Soyb Corn 925,987 2,544,827 3,138,292 3,641,786 3,769,169 

Soyb Corn Soyb 766,928 1,511,005 1,458,197 2,369,365 4,146,642 

Corn Corn Corn 0 389,559 1,662,749 707,676 1,301,801 

Soyb Swht Soyb 2,457,665 0 0 536,270 0 

Swht Swht Swht 1,698,744 0 0 0 0 

Soyb Corn Corn 0 331,269 547,324 485,527 0 

Swht NonAg Swht 1,150,006 0 0 0 0 

NonAg NonAg Corn 0 717,099 0 0 0 

Corn Corn Soyb 0 180,132 424,756 0 0 

Swht Soyb Swht 511,866 0 0 0 0 

Soyb Soyb Corn 214,859 186,577 0 0 0 

Swht Canola Swht 320,383 0 0 0 0 

Soyb Soyb Soyb 314,193 0 0 0 0 

NonAg Corn Soyb 0 241,432 0 0 0 

Swht Soyb Soyb 156,184 0 0 0 0 

 

There are significant land-cover changes taking place in the WCB as a result 

of grassland conversion to cultivated areas (Wright and Wimberly, 2013). There are 
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three representative crop rotations with NonAg land-cover class for at least one year 

(Fig. 2-2, Table 2-2). This could either indicate a fallow year which was misclassified 

as grassland or it could be Conservation Reserve Program (CRP) land coming out of 

enrollment. Much less frequently, the NonAg class could denote a land-cover that is 

highly unlikely to be part of a rotation e.g. urban. Using the edit-distance metric to 

combine low frequency rotations with the representative ones automatically adjusts 

for the rotations that are probably misclassified. 

 

Fig. 2-3. Crop rotation patterns across the WCB from 2010 to 2012. Crop names are 

given as abbreviations: Swht - Spring Wheat, Soyb - Soybean, Cano - Canola. NonAg 

includes all non-agricultural land-cover classes that are in rotation with crops for this 

three year period. 
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3.2 Accuracy of representative crop rotations 

Regional variability in the choice and acreage of crops planted by farmers 

manifests itself in the observed crop rotation patterns. In Iowa, selecting two 

representative crop rotations (corn-soybean-corn and soybean-corn-soybean) achieve 

~85% accuracy (Fig. 2-4). In contrast, more than 100 representative crop rotations are 

needed to map North Dakota at a similar accuracy (Fig. 2-4). In all, 400 data points 

were plotted, representing RECRUIT results for 80 combinations of α and β for each 

of the five states. The number of visible data points in fig. 2-4 is less than 400 

because several α and β combinations result in the same accuracy. The logarithmic x-

axis implies that any additional accuracy gains involve a tradeoff, thereby greatly 

increasing the number of representative crop rotations. For example 1,108 crop 

rotations can map Iowa at 100% accuracy (Table 2-1), compared to just two for 85% 

accuracy. 
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Fig. 2-4. Tradeoff between product accuracy and the number of representative crop 

rotations selected for each state in the WCB. The gray band indicates the number of 

representative crop rotations for different combinations of α and β, with accuracy 

exceeding 90%. 

 

 

The accuracy of the WCB crop rotation product varies as a function of the two 

threshold parameters (Fig. 2-5). At one extreme, on the lower left corner of the 

heatmap, we do not select any crop rotation resulting in an accuracy of 0%. On the 

lower right corner, we select all crop rotations as representative resulting in an 

accuracy of 100%. Between these two extremes, the number of representative crop 

rotations varies by three orders of magnitude. The isolines for accuracy levels of 
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60%, 70%, 80% and 90% indicate the α and β values for attaining specific accuracy 

targets. Notably, part of the 60% isoline is perfectly horizontal. This is because no 

crop rotation in the WCB has a marginal contribution exceeding 60% of the acreage 

of the representative crop rotations selected before it. Since RECRUIT selects 

representative crop rotations till either the cumulative acreage or the marginal 

increase in acreage threshold is exceeded, at high values of α (> 60%), we need to 

select a β value of 5% or lower to obtain an accuracy exceeding 80% (Fig. 2-5). For 

lower values of α, the value of β is not as much of a constraining factor for product 

accuracy. 
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Fig. 2-5. Variation in accuracy of the WCB crop rotation product as a function of α 

and β parameters used in RECRUIT. The contours indicate the isolines for accuracy 

levels of 60%, 70%, 80% and 90%. 

 

Merging the low frequency crop rotation with the representative set increases the 

accuracy of the crop rotations product (Fig. 2-6). Each of the eight panels (A to H) 

plots the percentage marginal increase in accuracy for a distinct value of the marginal 

increase in acreage threshold (0%, 0.5%, 1%, 5%, 10%, 20%, 60% and 100%) while 

the cumulative acreage threshold varies. In each panel, the percentage marginal 

increase in accuracy rises from 0% when α is 0% to around 25% or slightly higher 

when α is 15%. The higher percentage marginal increase for Nebraska rather than 

Iowa can be understood on the basis of the much greater diversity and number of crop 

rotations in Nebraska (Fig. 2-2). There are simply more crop rotations to merge with 

the representative set in the case of Nebraska. In panel A, the percentage marginal 

increase in accuracy drops to 0% when α is 100% because all crop rotations have 

been selected as representative at that point, leaving no additional crop rotations to 

merge. 
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Fig. 2-6. Marginal increase in accuracy of crop rotation product for each state, 

obtained by combining all crop rotations with the representative crop rotations. Each 

of the eight panels shows a distinct value of the marginal increase in acreage 

threshold (β). 

 

While the percentage marginal increase in accuracy puts a numeric estimate 

on the benefit of merging all crop rotations with the representative set, it is useful to 

look at the percentage accuracy of the product as it will ultimately drive our selection 

of RECRUIT parameter values. Full accuracy is achieved when α is 100%, 

corresponding to a 0% marginal increase in accuracy (Fig. 2-7(A)). Consistent with 

fig. 2-4, accuracy scores are generally the lowest for North Dakota and highest for 

Iowa. Also consistent with observations in fig. 2-6, percentage accuracy starts to 

plateau sooner as the value of β increases. 
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Fig. 2-7. Accuracy of crop rotation product for each state, obtained by combining all 

crop rotations with the representative crop rotations. Each of the eight panels shows a 

distinct value of the marginal increase in acreage threshold (β). 

 

Crop acreage estimates obtained by counting pixels in the CDL are typically 

downward biased due to imperfect classification, cloud contamination or interference 

from neighboring pixels (Townshend et al., 2000). Since the crop rotation product is a 

simplification of a time-series of CDL rasters, we compare acreage estimates from the 

CDL and our crop rotation product against NASS survey data. We observe a 3% 

average difference in corn acreage and 4.1% average difference in soybean acreage 

from 2010 to 2012 between the 13,588 crop rotations in CDL (Table 2-1) and NASS 

(Fig. 2-8). The corresponding differences for a crop rotation product with 82 

representative rotations and overall accuracy exceeding 90%, was 7.6% for corn and 
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9.24% for soybean. Reducing the number of representative crop rotations to 15 

increased the average difference in acreage to 21.7% for corn and 18.4% for soybean 

(Fig. 2-7). 

 

Fig. 2-8. Magnitude of average difference in crop acreages from 2010 to 2012 

between the crop rotation product and NASS (blue and orange bars), and CDL layers 

for each year and NASS (gray bars). Panels A and B shows the average difference for 

corn and soybean acreages respectively. The α and β parameter values corresponding 

to the blue and gray bars are shown on top of panel A. 
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3.3 Pronounced shifts from grassland to cultivated areas in the prairie pothole region 

Crop rotation patterns can provide information on land-cover change 

happening in ecologically sensitive areas. We used the crop rotation product 

identified in fig. 2-8 (82 crop rotations with overall accuracy > 90%, α(75%), 

β(0.5%)) to estimate grassland conversion to specific crop rotation patterns in the 

PPR. Recently, Wright and Wimberly (2013) reported that contemporary grassland 

conversion to corn and soybean cropping (GRCS) in the PPR is concentrated within a 

500m area surrounding wetlands. If land-cover conversion in the PPR was induced by 

increased demand for corn and soybean, we should be able to observe intensive 

cultivation of corn and soybean in the area. To test this hypothesis, we selected 

representative crop rotations from 2010 to 2012 for the PPR with an overall accuracy 

of around 90%. Using the CDL, we found nearly 147,267 ha undergoing GRCS in 

close proximity to wetlands between 2010 and 2012. Of the lands undergoing GRCS, 

nearly 38% was devoted to continuous corn or continuous soybean cropping and 

another 27% was covered by alternating corn and soybean rotations (Table 2-3). 

These patterns are very surprising especially given the widespread consensus that 

continuous cropping of soybean for more than two years is not a viable choice on 

account of enhanced parasite activity (Secchi et al., 2011). 

 

Table 2-3 

Crop rotations in the GRCS pixels in PPR. The GRCS pixels lie within a 500m radius 

of wetlands. Soybean is abbreviated as Soyb. 
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2010 2011 2012 Area (ha) 

Soyb Soyb Soyb 39,173 

Corn Corn Corn 16,767 

Soyb Corn Soyb 25,846 

Corn Soyb Corn 13,916 

 

4. Discussion of limitations and future work 

The RECRUIT algorithm is temporal range agnostic. While we present results for 

crop rotations from 2010 to 2012, it is possible to use CDL rasters starting from 2008 

for any state in the coterminous US, and going back to 1997 for states like North 

Dakota. Using RECRUIT over longer time periods (> 3 years), can produce patterns 

that include repetitions of the same crop rotation, e.g. a corn-soybean rotation 

repeated thrice over a six year period. Our approach can be enhanced in the future by 

initially identifying the repetitions within a crop rotation pattern and subsequently 

applying the edit-distance based approach. 

The methodology, software and input data used to produce CDL has evolved 

during the fifteen year history of the product and it is important to understand how 

that can affect the accuracy of the derived crop rotation product. First, from 2006 to 

2009, 56m resolution AWiFS sensor data was used to produce the CDL. An imagery 

comparison between the two sensors (AWiFS and Landsat-5 TM) shows that they 

produce equivalent results for agricultural and forestry applications despite the 

differences in the design of the two sensors (Johnson, 2008) and the radiometric 
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degradation over time of the AWiFS sensor (Goward et al., 2012). Second, because of 

the relatively large swath width of the AWiFS sensor (740 km), angular effects 

arising from variable solar and viewing geometry can potentially cause significant 

changes in observed reflectance without any change in land-cover, phenological 

status or vegetation condition (Gao et al., 2013). Wheat shows stronger angular 

effects than corn in both red and NIR bands (Gao et al., 2013), perhaps contributing 

to its lower producer/user accuracies in the CDL. Third, land-cover change analysis 

using CDL data prior to 2006 can be subject to errors because of a change in 

processing software and algorithms in 2006 (Boryan et al., 2011). Fourth, while CDL 

has producer and user accuracies between 85%-95% for major row crops like corn 

and soybean, its accuracies are quite a bit lower for specialty crops, fruits and 

vegetables. Finally, CDL performs poorly in distinguishing between the subtle 

spectral signature variations amongst the various non-agricultural land-cover classes, 

especially in the grassland category: pasture/hay, fallow/idle cropland and native 

grassland. It is recommended to use NLCD for land-cover change analysis involving 

non-agricultural or grassland/pasture categories1.  

Several opportunities exist to use the crop rotation products generated by 

RECRUIT. Meehan et al. (2013), used the product to examine the changes in 

ecosystem services due to land-use conversion from annual to perennial biofuel 

feedstock in the US Midwest. Zhang et al. (2014), combined the product with other 

spatially explicit data (climate, soils and topography) to examine the sensitivity of an 

agro-ecosystem model to soil data input. These applications illustrate that as an input 

to process-based or empirical models in a carbon monitoring system, crop rotations 
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can be part of an attributional framework (West et al., 2013), linking ecosystem 

function outcomes to originating sources (Zhang et al., 2010) at multiple scales 

including individual fields (Daggupati et al., 2011). Further, by determining areas 

where non-agricultural land-covers exist in rotation with cultivated fields, we can 

improve the idle/fallow cropland mapping and CRP mapping process in CDL. Also, 

mapping of tillage extent and intensity patterns can be greatly improved by using crop 

rotations to produce expert-rules that determine probability of a field being tilled 

(Johnson, 2013). Finally, field boundaries can be generated using the crop rotations 

product under the assumption that each field has a unique crop rotation pattern over 

time. 

 

5. Conclusions 

Modeling approaches are increasingly using crop rotation patterns instead of 

single crops to estimate the environmental impacts of agricultural activities. Fine 

resolution, spatially explicit management information can help constrain the modeling 

uncertainty of spatial and temporal patterns and magnitude of terrestrial carbon 

fluxes. However, computational and analyst resource bottlenecks constrain modeling 

frameworks in the number of crop rotations they can efficiently simulate. To address 

this problem, we present the RECRUIT algorithm which uses multi-year CDL data to 

identify representative crop rotations in the WCB. We find that a small number (82) 

of representative crop rotations can account for over 90% of the spatio-temporal 

variability of the more than 13,000 rotations in the WCB (Fig. 2-8). The area 

estimates of the representative crop rotations are comparable to those from 
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agricultural census data. Using the crop rotation product, we are able to detect 

pronounced shifts from grassland to monoculture corn and monoculture soybean 

cultivation within the last few years in the ecologically sensitive PPR. Given the 

novel capability of RECRUIT to flexibly and efficiently derive representative crop 

rotation patterns in a spatially and temporally explicit manner, it is expected to be a 

useful tool for providing input data to drive agro-ecosystem models and for detecting 

shifts in cropping patterns in response to environmental and socio-economic changes. 
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Chapter 3: Poplar Biomass Productivity Across U.S. Midwest: 

High-resolution Modeling Approaches and Tradeoffs Across 

Spatial Scales 

 

1. Introduction 

1.1 Background 

The development of renewable energy sources is an integral step towards 

mitigating the carbon dioxide induced component of climate change (O’Neill and 

Oppenheimer, 2002). One important renewable source is plant biomass, comprising 

both food crops such as corn (Zea mays) and cellulosic biomass from short-rotation 

woody crops (SRWC) such as hybrid-poplar (Populus spp.) and Willow (Salix spp.). 

Cellulosic feedstocks, (hereafter referred to as second generation or 2G), represent an 

abundant and if managed properly, a carbon-neutral and environmentally beneficial 

resource that is expected to meet about 12 percent of global transportation fuel 

consumption by 2050 (Demirbas, 2008). Within the U.S., congressional legislation 

has set an ambitious target for biofuel production, mandating a ramping up of biofuel 

ethanol production from nearly 14 billion gallons in 2011 to 36 billion gallons by 

2022, with at least 16 billion gallons coming from 2G feedstocks (USEPA 2010).  

While there are several promising 2G candidates including corn stover, 

switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus) and native 

prairie mixes, several reasons make SRWCs an excellent choice for producing 

cellulosic ethanol. First, they have market acceptability as they have been under 

cultivation in large parts of U.S. for much longer in the past (Riemenschneider et al., 
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2001). Second, their overall energy balance is better (Hill et al., 2006), due to lower 

transportation costs and need for fewer agricultural inputs (Wang et al., 2013). When 

compared to conventional ethanol produced from food crops, SRWCs can reduce 

greenhouse-gas (GHG) emissions (Gelfand et al., 2013), improve nutrient retention, 

biodiversity and reduce soil erosion (Isebrands et al., 2001). 

 

1.2 Poplar as a 2G feedstock 

Amongst the various SRWC candidates, hybrid-poplar is a strong candidate 

for sustainable biofuel production. They grow fast, with rotation times ranging from 4 

to 10 years (Jug et al., 1999), and with yields ranging from 10 – 15 Mg/ha/yr for the 

temperate regions of Europe and North America (Kauter et al., 2003, Aylott et al., 

2008 and Tallis et al., 2012). Further, they can be grown on a wide variety of soils 

(Hansen et al., 1988), including marginal lands that are typically less suitable for row 

crop cultivation and therefore less likely to compete with food production or incur 

carbon debt (Fargione et al., 2008). Other traits like high light-use efficiency and 

photosynthetic capacity also make them a strong candidate as potential biofuel 

feedstock. Notably, recent scientific developments have yielded poplar clones with 

lignin that is more amenable to degradation and conversion to biofuels (Wilkerson et 

al., 2014), making it likely that the first large-scale cellulosic ethanol refinery will use 

poplars as a feedstock. 
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1.3 Consideration for modeling poplar plantations 

In order to produce cellulosic ethanol from poplars in a sustainable manner, it 

is important to understand how their productivity will vary across a landscape. There 

are a growing number of field studies documenting growth, yield and environmental 

impacts of poplar plantations across varying edaphic and climatic conditions in the 

U.S. (Gamble et al., 2014, Palmer et al., 2013, Palmer et al., 2014, Xue et al., 2014 

and Kaczmarek et al., 2013). While very useful in establishing ground truth, we need 

to extrapolate from them and predict poplar yields and environmental impacts across 

entire regions. One solution is to carefully calibrate a physical process based models 

to produce regional, national or even global impact assessments of different biofuel 

feedstock configurations. The standard approach is to divide the study area into a 

grid, with the cell size of the grid dependent on data availability, resolution as well as 

computational resources required to run the model for each grid cell. In the context of 

poplar plantations, previous modeling work has included (1) Using the 3-PG model to 

map poplar biomass productivity in Minnesota and Wisconsin (Headlee et al., 2013); 

(2) Inferring potential yields, rotation times and soil C sequestration potential of 

poplar for the U.S. (Wang et al., 2013); (3) Comparing water use efficiency of poplar 

and willow in the UK (Tallis et al., 2012). A common theme in these studies is the 

use of field scale data to calibrate the model but dropping down to much coarser scale 

data when extrapolating to a region or country. This is partly due to data availability. 

Field sites often have finely curated and extensive information on a variety of soil, 

climate and vegetation parameters, and it is infeasible both in terms of time and 

money to produce comparable data across broader spatial scales. However, even 
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when high resolution data is available, for instance the Soil Survey Geographic 

(SSURGO) dataset in the U.S., modeling studies often either use coarser scale data, 

or use discrete soil property values corresponding to specific soil textures, or average 

the variables in the fine resolution dataset to match the resolution of a much larger 

climate grid cell (Wang et al., 2013). This is particularly the case with modeling 

studies focused on SRWC ecosystems, because the models used in such studies have 

been traditionally used to model forest ecosystems with less emphasis on sub-grid 

scale edaphic heterogeneity. Most such models typically use a small subset of 

available soil property information e.g. soil texture, to simulate ecosystem processes 

(Cramer et al., 2001). This is in contrast to agroecosystem models which need to 

consider finer scale details on a much wider subset of the input soil data in order to 

understand management impact on the sensitivity of simulated yields and carbon 

fluxes (Zhang et al., 2010 and Zhang et al., 2014). Therefore, it is critical to consider 

both the impact of averaging and discretization of soil properties in the simulation of 

yields in a SRWC ecosystem, and map out how this differs for different soil databases 

used as input in various modeling studies. 

 

1.4 Aims of this study 

Details matter! A canonical problem in spatially explicit studies is the 

modifiable areal unit problem (MAUP) which introduces statistical biases in the 

results because of the choice of grid cell boundary dimensions (Fotheringham and 

Wong, 1991 and Jelinski and Wu, 1996). While the issues introduced by MAUP 

remain unsolved for a broad spectrum of spatial modeling endeavors, our aim in this 

study is to demonstrate its impact or lack thereof on ecosystem modeling of poplar 
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plantations in the U.S.. The specific objectives of the present study are to (1) 

parameterize the Ecosystem Demography (ED) model to predict potential non-

nutrient limited yields for hybrid poplar across the U.S. Midwest; (2) Determine 

quantitatively how estimates of  saturated conductivity (a key soil property measuring 

a soil’s ability to transport water) vary for two soil datasets that differ in their spatial 

resolution and method of estimating soil properties: SSURGO and World Inventory 

of Soil Emission Potentials (WISE); (3) Examine how saturated conductivity 

estimates changes based on the resolution at which they are averaged or discretized; 

(4) Estimate the impact of averaging and discretization of saturated conductivity on 

the relative accuracy of poplar yield estimates obtained from ED. 

 

 

2. Materials and methods 

2.1 Study area 

Annual crop production is the dominant land-use in our study area comprising 

the ten U.S. Midwest states of North Dakota (ND), South Dakota (SD), Nebraska 

(NE), Minnesota (MN), Iowa (IA), Wisconsin (WI), Michigan (MI), Indiana (IN), 

Illinois (IL) and Ohio (OH). While accounting for more than half of the corn and 

soybean acreage planted nationally in 2012 (http://quickstats.nass.usda.gov/), these 

states also overlap the Prairie Pothole Region (PPR), an ecologically sensitive 

wetland landscape (Johnson et al., 2010). Cellulosic biofuels are an expanding 

industry in the region, aided by existing farming infrastructure and presence of 

ethanol refineries capable of ingest cellulosic feedstocks. While not as prevalent as in 

south-east U.S., poplar plantations have been present in the region for more than a 
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decade (Netzer, 2002), with more established in recent years to account for complete 

GHG balance of the system (Palmer et al., 2013). 

 

2.2 Model 

We used the Ecosystem Demography (ED) model (Moorcroft et al., 2001, 

Hurtt et al., 2002) to simulate potential biomass from poplar plantations across the 

U.S. Midwest. ED is an individual-based, terrestrial biosphere model (fig. 3-1). It can 

estimate plant growth, phenology, mortality, belowground C and N dynamics and 

disturbance at the level of a single tree and scale up to an entire ecosystem to estimate 

changes in population structure and community composition, while simultaneously 

modeling natural disturbances, land use, and the ecosystem dynamics lands 

recovering from disturbances. 

 

Fig. 3-1. Outline of ED model 

 

ED uses a single soil-layer bucket model to simulate water percolation 

through the soil as mediated by the saturated conductivity of the soil (Klute et al., 

1986). Individual plants of different functional types compete mechanistically in ED 
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under local environmental conditions for light, water, and nutrients. These include C3 

and C4 plants (as grasses), and early, mid and late successional species. The model 

has been validated at multiple temporal and spatial scales and used for assessment of 

ecosystem dynamics in South and Central America (Moorcroft et al., 2001), patterns 

of tree mortality and its drivers in northeastern North America (Dietze and Moorcroft, 

2011), U.S. carbon sink (Pacala et al., 2001), and projections of its future, including 

the importance of future fire and fire suppression (Hurtt et al., 2002). The model 

version used in this study is based on the original version designed to evaluate the 

effects of land-use change on U.S. carbon balance (Hurtt et al., 2002), with 

modifications to parameterize a new plant functional type (poplar). 

 

2.3 Model data inputs 

Soils: SSURGO 

A conterminous-scale soil property database was built using soil survey 

geographic (SSURGO) data from the U.S. Department of Agriculture Geospatial Data 

Gateway (http://datagateway.nrcs.usda.gov). Extracted soil properties included 

number of soil layers, depth of each layer, soil texture information and saturated 

conductivity value. 

 

Soils: WISE 

The World Inventory of Soil Emission (WISE) dataset is global in nature, 

with a spatial resolution of approximately 10km at the equator. Introduced in the 

1990’s (Batjes, 1996), it has grown in the number of soil properties available as well 

http://datagateway.nrcs.usda.gov/


 

 44 

 

as filling in the missing information gaps globally (Batjes, 2005 and Batjes, 2009). It 

has been widely used to parameterize crop simulation models (Gijsman et al., 2007). 

We obtained soil depth information from WISE and use soil texture information from 

WISE to index a lookup table relating soil texture to saturated conductivity values 

(Cosby et al., 1984). 

 

Climate: 

To determine the climatic inputs required by ED, we used the observation 

constrained CRUNCEP dataset 

(http://dods.extra.cea.fr/data/p529viov/cruncep/readme.htm). This dataset has been 

used in model inter-comparison projects and while relatively coarse resolution at half-

degree, it is global in scope (Huntzinger et al., 2013). 

 

2.4 Parameterization of poplar plant functional type 

Following Albani et al., 2006, we parameterized the poplar PFT based on 

height-diameter relationships as specified in Pacala et al., 1996 (table 3-1). 

 

Table 3-1. Parameterization of poplar spp. in ED. 

PFT Allometric equation parameters 

 Leaf biomass  

equation 

Structural biomass  

equation 

Height-DBH 

equation 

Populus spp. a1=0.0047;  

b1=2.249 

a1=0.0265;  

b1=2.259 

b1h=22.68;  

b2h=-0.0653 

 

 

http://dods.extra.cea.fr/data/p529viov/cruncep/readme.htm
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2.5 Optimization of model parameters 

We used the R package, hydroPSO (Zambrano-Bigiarini and Rojas, 2013), to 

calibrate ED. Model optimization often suffers from equi-finality, wherein multiple 

parameter value sets achieve the same model output (Kennedy and Eberhart, 1995), 

making it difficult to select one. hydroPSO offers several user-friendly diagnostics to 

help select the best parameter set. The site data used to calibrate ED came from 

Netzer, 2002, and the individual sites used for calibration and validation are listed 

below. 

Table 3-2. Site data used for calibrating and validating model. 

 Site State Lat Lon 

Ashland WI 46.6 -90.9 

Fargo ND 46.5 -96.5 

Granite Falls MN 44.4 -95.7 

Milaca MN 45.8 -93.7 

Mondovi WI 44.5 -91.5 

Sioux Falls SD 43.5 -96.5 

 

Based on literature analysis, the parameters listed in table 3-3 were used in the 

calibration scheme. Their optimized values are listed in the table, alongside the 

parameter range supplied to hydroPSO. These range from relatively well understood 

parameters like Vm0, which controls the rate of carbon assimilation and respiration, to 

the poorly constrained mortality parameters. 
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Table 3-3. Parameters used in model calibration. 

Parameter Units Range Optimized 

GRresp Growth respiration – 0.33–0.5 0.34 

SDm Seedling mortality – 0.8–0.99 0.82 

Kw Water uptake stress – 20–200 182.85 

N1 Plant nitrogen uptake parameter – 0.1–1 0.48 

N2 Microbial nitrogen uptake parameter – 10–80 40.54 

m1 Mortality coefficient – 0.01–1 0.79 

m2 Mortality coefficient – 1–20 6.97 

m3 Mortality coefficient – 1–30 13.24 

Bf Biomass fraction (above/below ground) – 0.7–0.8 0.77 

Vm0 Maximum rate of carboxylation μ molm-

2s-1 

35–55 53.2 

Lt Leaf-off temperature °C 8–12 8.21 

Rfract Fraction of excess C to seed 

reproduction 

– 0.1–0.5 0.14 

 

2.6 Discretization and averaging soil properties 

To keep modeling calculations tractable and be able to run multiple scenarios 

within a reasonable amount of time, models perform several simplifications. These 

simplifications can come in several forms: (1) Choice of algorithm for simulating a 

particular physical process. Using a bucket model to percolation of water through a 

soil profile is much less computationally taxing than one which considers lateral 

flows as well; (2) Simplifying an entire process by substituting it with an empirical 

relation. For instance, seedling mortality is usually simplified in dynamic vegetation 

growth models into a single parameter value, whereas in actuality it is a complex 
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process by itself (Packer and Clay, 2000). Entire modeling studies are devoted to 

understanding how such simplifications can affect model outcomes.  

While the choice of model algorithms and structure is fairly defined and less 

amenable to frequent updates, modeling frameworks are far more capable regarding 

the type, quality and quantity of input data they can use. These frameworks ingest 

input data and render it into a format compatible with the model, adequately 

parameterize the model and capture and present model outputs. The smallest spatial 

domain over which a model operates is typically called a grid-cell. Current research 

trend is towards highly spatially-explicit modeling, by trying to estimate model 

outcomes for the finest resolution grid-cell available (McBratney and Pringle, 1999, 

Zhang et al., 2010 and Gelfand et al., 2013). This entails creating input datasets for 

each and every unique grid-cell in the study area and simulating them using the 

model. The benefit of this approach is that it allows us to address the variation in sub-

grid scale topographical and edaphic properties. As originally designed, ED does 

include biotic heterogeneity within each grid cell but does not simulate any abiotic 

heterogeneity within the grid-cells. While this was a necessity when the model was 

originally released in 2001 due to the lack of available high resolution soil datasets, it 

is simply no longer the case. In this study we present a simple yet novel approach to 

evaluate sub-grid scale edaphic heterogeneity without greatly increasing model 

complexity or computation time. Our approach is to discretize the soil parameters 

used by the ED model, and run the model for the entire U.S. Midwest for a factorial 

combination of soil parameter values, with a model run corresponding to a single 

value being used for each soil parameter in ED. We will also average the soil 
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properties for each grid-cell, varying its size from 60m to 1/2° (~ 55 km) with 

intermediate sizes of 1/12°, 1/6°, 1/4°, 1/3° and 5/12° (table 3-4).  

Table 3-4. Discretization and averaging of soil properties for running ED. 

Dataset Discretization Averaging 

 SSURGO 1, 2, 5, 10, 20, 25, 50 60m, 1/12°, 1/6°, 1/4°, 1/3°, 

5/12°, 1/2° 

    

 WISE 1 60m, 1/12°, 1/6°, 1/4°, 1/3°, 

5/12°, 1/2° 

 

2.7 ED simulations 

As noted in the previous section, ED will be run multiple times for the 

discretization case. ED estimates of above-ground biomass will be collected from 

these runs and assembled outside in a GIS framework. The resulting raster will be a 

high-resolution product (upto 60m x 60m in resolution), composed from several 

hundred ED runs made at a half-degree resolution. The ED runs are made at half-

degree resolution to match the spatial resolution of the CRUNCEP climate dataset 

used in this study. To compare model results from different soil dataset discretization 

and averaging experiments, we will use a taylor diagram which has been used 

successfully in the climate change literature to compare model outcomes from 

multiple climate change models (Taylor, 2001). The taylor diagram plots the pearson 

product-moment correlation coefficient ( , Pearson et al. 1895) between all pairs of 

model outcomes, and the standard deviation of each model on a single plot, providing 

an easy way to visualize how closely a pattern of group thereof matches observations. 

In our case, since we are directly comparing model outputs, with the only difference 

being the soil datasets used in the models, we assume that the 60m SSURGO based 

model output is the standard against which all other model outputs are matched. 
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3. Results and discussion 

3.1 Saturated conductivity value distribution in SSURGO and WISE 

The SSURGO database contains soil information gathered by trained 

professionals over the last several decades. This has resulted in a comprehensive 

dataset at a fine spatial resolution (~60m) and national scale coverage. In comparison, 

WISE, while being global is much coarser in resolution (~10km). The data collection 

procedures employed in collecting data which feeds into WISE are also not as 

harmonized as the SSURGO ones. Saturated conductivity is an important parameter 

determining rate of flow of water through a soil layer. The difference in soil saturated 

conductivity parameter values for these two datasets is shown in fig. 3-2. The largest 

saturated conductivity estimate in WISE is around 15.7 μm/sec, compared to >400 

μm/sec in SSURGO. In fact, nearly 30% of the total area in U.S. Midwest is occupied 

by soils with saturated conductivity values exceeding the largest estimate in the WISE 

dataset. WISE tends to overestimate the acreage occupied by the lower saturated 

conductivity soils. 
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Fig. 3-2. Distribution of soil saturated conductivity values for SSURGO and WISE. 

 

Soil parameter value is also a function of the scale at which soil properties are 

averaged and fed into a model. In the case of SSURGO, when no averaging is 

performed, the median saturated conductivity value is around 10μm/sec (fig. 3-3). 

When upscaled and averaged to be the same resolution as WISE, the median 

increases to ~ 25μm/sec, while the overall spread decreases. The highest saturated 

conductivity value in the dataset decreases from around 420μm/sec to 200μm/sec. 

Any further reduction in resolution upto 1/6°, 1/4°, 1/3°, 5/12°, 1/2° respectively does 

not affect the median value while progressively reducing the spread of saturated 

conductivity values. Reduction in the spread of values is a necessary consequence of 

averaging, however its impact on model output does not necessarily have to follow 

the same pattern. This is because a single soil parameter like saturated conductivity is 

one of many affecting model outputs. Further, the sensitivity of the model to the 
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saturated conductivity value will determine variations in model outcome for soil 

datasets at different resolutions. 

 

 

Fig. 3-3. Impact of averaging on saturated conductivity values in SSURGO. 

 

In contrast to SSURGO, the median saturated conductivity value for WISE 

stays almost constant at 3.2 μm/sec, irrespective of the resolution of the dataset (fig. 

3-4). New saturated conductivity values are introduced on averaging, as the initial 

1/12° resolution dataset contains the 12 saturated conductivity values obtained from 

the Cosby et al., 1984 lookup table. The range of values in the highest resolution 

WISE dataset is an order of magnitude less than the corresponding range in the 60m 

resolution SSURGO dataset. This implies an even lesser sensitivity of model 

outcomes to averaging when using the WISE soil dataset as input, when compared to 
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SSURGO. Notably, when averaged to a half-degree resolution, there is no perceptible 

difference in saturated conductivity values between WISE and SSURGO (fig. 3-6). 

 

 

Fig. 3-4. Impact of averaging on saturated conductivity values in WISE. 

 

There are around 1 million unique SSURGO soil identifiers in the U.S. 

Midwest. Modeling each of them separately would greatly increase the time required 

to run ED. To reduce the computational burden in this scenario, we developed a 

simple discretization approach to sample the SSURGO soil parameter value at 

specific intervals, and rather than modeling all million unique values, just model the 

sampled few. We vary the sampling intensity from an extreme of just two values 

representing the entire dataset to a maximum of 100 values, chosen at the 

corresponding percentile. 
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What sampling intensity in this discretization scheme is enough? To 

determine this, we plot a taylor diagram representing the sampling at 100 values (or 

1P) as the standard, and comparing the rest against it. The standard deviation 

increases from ~ 50μm/sec for 1P to greater than 100μm/sec for a sampling intensity 

of just two values (50P). The correlation coefficient value drop from >0.95 when 

correlating 2P against 1P, to around 0.4 for the correlation between 50P and 1P. Of 

course, this reduction in correlation comes with a fifty-fold reduction in the number 

of saturated conductivity values that need to be used as input data in ED.  

 

 

Fig. 3-5. Taylor diagram for discretized saturated conductivity values for SSURGO 
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Fig. 3-6. Taylor diagram comparing WISE saturated conductivity values, averaged at 

various resolutions to SSURGO 



 

 55 

 

 

Fig. 3-7. Distribution of saturated conductivity values for SSURGO at a resolution of 

(A) 60m, (B) 10km and (C) half-degree respectively; WISE at a resolution of (A) 

60m, (B) quarter-degree and (C) half-degree respectively. 

 

 

3.2 Above-ground biomass comparisons for different discretization and averaging 

scenarios 

As mentioned in the previous section, differences in parameter value between 

SSURGO and WISE as well as across the different discretization and averaging 

A. 60m 

B. 10km 

C. 1/2° 

D. 10km 

E. 1/4° 

F. 1/2° 
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schemes, need not necessarily translate into numerically large differences in the 

biomass estimates produced from an ecosystem model like ED. The answer to this 

question is not only site-specific, but also depends on the model complexity and 

algorithms used to simulate water flow through the soil layers. 

For SSURGO, when comparing different discretization schemes, averaged at 

a resolution of half-degree, the taylor diagram (fig. 3-8, saturated conductivity values 

mapped in fig. 3-7) shows that there is no perceptible difference in the results 

obtained from the different discretization schemes. I.e, using just 2 values of saturated 

conductivity to represent the entire U.S. Midwest at a half degree resolution works 

just as well for computing above-ground biomass as using 100 distinct values (or 1 

million!). 
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Fig. 3-8. Taylor diagram for above-ground biomass estimates from discretized 

saturated conductivity values for SSURGO. 

 

In order to gain a comprehensive view of the performance of ED when using 

data from SSURGO and WISE, we also consider the minimum and maximum 

normalized error (error divided by mean) for several scenarios. While the correlation 

coefficient gives us an idea of how well two quantities vary against each other, we are 

also interested in the magnitude of difference between two measures of above-ground 

biomass obtained from two different soil datasets (fig. 3-9). 
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Fig. 3-9. Above-ground biomass comparisons between SSURGO and WISE for 

varying averaging and discretization schemes. 

 

The left-side panel of fig. 3-9 shows the most negative difference between 

above-ground biomass values obtained when computing the normalized error, and the 

right-side panel shows the most positive differences. The red colored bars show the 

corresponding differences for SSURGO and WISE datasets, for their native 

resolutions as well as half-degree for SSURGO (maps in fig. 3-10) and 60m for 

WISE. Clearly, comparing estimates at high-resolution (60m) tends to produce the 

highest magnitude errors. The green bars represent differences between WISE and 

SSURGO, with errors increasing when the resolution is lowered from 1/2° to 1/6°. 

Finally, the blue bars correspond to the discretization scheme. Again, a higher 

resolution comparison (60m) provides much greater normalized errors compared to 

one done at half-degree. 
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Fig. 3-10. Distribution of above-ground biomass values for SSURGO at a resolution 

of (A) 60m, (B) half-degree respectively. 

 

4. Conclusion: What approach to use and when? 

Traditionally, soil datasets have been averaged to match the coarser resolution 

climate dataset, both to save computational time and also because models have 

ignored sub-grid scale edaphic variations. With more modeling studies looking at 

producing high-resolution estimates of biomass and carbon fluxes, increasingly there 

is a need to use soil datasets in their entirety. We introduce a novel yet simple 

(discretization) scheme to address this computational burden without reducing model 

A. 60m 

B. 1/2° 
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accuracy. We compare the discretization approach to the commonly used averaging 

scheme and find that, 

1. When averaged to half-degree, saturated conductivity estimates from 

SSURGO and WISE datasets are similar over the U.S. Midwest. The 

differences at a 60m resolution are much greater, with essentially no 

correlation between the two. 

2. Similar to the raw saturated conductivity values, above-ground biomass 

estimates for SSURGO and WISE are similar at half-degree resolution but we 

see large errors when compared at 60m resolution. 

3. When discretized, distribution of SSURGO saturated conductivity values 

depends greatly on the sampling frequency. 

4.  Estimates of above-ground biomass in the discretization scheme are 

resolution dependent. At half-degree resolution, a coarsely discretized 

SSURGO dataset provides the same results as a finely discretized dataset. At 

60m resolution, it is better to use the finely discretized dataset. 
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Chapter 4: Location and Management Interaction Impacts on 

Yield Gap Analysis of Cellulosic Ethanol production in U.S. 

Western Corn Belt 

 

1. Introduction 

1.1 Background 

Demand for biofuel feedstocks in the U.S. has increased in response to the 

reduction in fossil fuels and foreign oil mandated by the Energy Independence and 

Security Act (EISA) of 2007. Currently, most of the biofuel demand is met by ethanol 

derived from grains, mostly corn (Zea mays). However, the Renewable Fuel Standard 

(RFS2) requires an annual increase in the production of biofuels from cellulosic 

biomass (hereafter referred to as second generation or 2G), reaching at least 16 billion 

gallons of production by 2022 (USEPA 2010). This has incentivized academic and 

industry research in utilizing 2G feedstocks to produce biofuels. 

When managed properly, 2G feedstocks offer several environmental benefits 

over grain-based systems, including reduced fertilizer and energy inputs (Manatt et 

al., 2011), greater soil carbon sequestration (Gelfand et al., 2011), reduced 

greenhouse-gas (GHG) emissions (Gelfand et al., 2013), higher rates of energy return 

(Robertson et al., 2011) and positive impacts on biodiversity (Meehan et al., 2013) 

and water quality. 2G feedstocks also preclude any competition between food and 

fuel systems, since they are comprised either of waste or inedible plant material. 
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1.2 Diversification of 2G feedstocks 

With the advancement of cellulosic feedstock conversion processes, further 

diversification of feedstock options is expected. However, despite their advantages, 

lack of farmer willingness to invest in growing 2G feedstocks (Jensen et al., 2007) 

and availability of proven, cost-effective technology to convert plant cellulose to 

ethanol has hampered widespread cultivation till now. While this is likely to change 

in the near future given recent breakthroughs in producing lignin that is more 

amenable to degradation and conversion to biofuels (Wilkerson et al., 2014), it is 

critical to consider a portfolio of 2G feedstocks as no single crop will satisfy all 

requirements in every agroecosystem. This is partly because biofuel feedstock 

productivity, like other crops, varies widely based on management inputs and climatic 

and edaphic conditions (Simmons et al., 2008).  

The nature and availability of agroecosytems is evolving too. New 

agroecosystems, in the form of underutilized but arable marginal lands could be 

cultivated, in order to avoid competition with land currently devoted to growing food 

crops and incur minimal carbon debt (Fargione et al., 2008). Of the available 2G 

feedstocks, perennial herbaceous energy crops are expected to result in lower GHG 

emissions that conventional corn-grain production because they require fewer nutrient 

and pesticide inputs, and less intensive tillage practices. Additionally, diverse mixes 

of perennial crops are also expected to boost cellulosic ethanol production. Low-

input, high-diversity (LIHD) grasslands can have energy yields twice that of corn 

grain ethanol, along with lesser GHG emissions and lower need for management 
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inputs (Tilman et al., 2006). The higher yields in the LIHD scenarios can be 

explained on the basis of more efficient utilization of limited resources. By further 

reducing the need for excessive fertilization, enhancing pest control, reducing soil 

erosion and improving water quality, diverse mixes of perennial crops show immense 

promise as biofuels of the future. The debate in bioenergy is no longer ‘are biofuels 

beneficial?’, rather the key question is now to identify which feedstocks should be 

grown where to maximize yields without introducing additional carbon costs from the 

displacement of food and feed production (Davis et al., 2011). 

 

1.3 Identifying suitable location and management options for 2G feedstocks 

The search for beneficial biofuels should focus on the twin objectives of 

sustainable biofuel feedstocks that do not compete with food crops and do not induce 

either direct or indirect land-use change. To minimize GHG emissions from land-use 

change, we need to identify lands that are capable of producing abundant biomass 

with limited management inputs, while initially poor in carbon storage in soil and 

vegetation (Tilman et al., 2009). We also need to close the distance between actual 

2G feedstock yields and potential yields: the yield gap (Cassman, 1999, Neumann et 

al., 2010, Tilman et al., 2011 and Ittersum et al., 2013). However, to the best of our 

knowledge, no information is available at a regional scale on the spatial distribution 

of yield gaps of 2G feedstocks and the potential for management interventions, in the 

form of fertilization and/or irrigation to close that gap. 

The present study uses an existing dataset comprised of modeled yields of 

successional herbaceous vegetation on marginal lands in the U.S. Midwest (Gelfand 
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et al., 2013), and extends it for a factorial combination of fertilization and irrigation 

inputs for each available marginal land site. The range of possible yields thus 

obtained for each site are then used to achieve the following objectives (1) Determine 

through stepwise multiple linear regression, the most important climatic and edaphic 

factors affecting yields; (2) Estimate the potential yield for each marginal land site 

based on the maximum yield attained by a site with similar climatic and edaphic 

conditions; (3) Apply adequate fertilization and/or irrigation to help attain the 

potential yield; (4) Examine how the management input affects other ecosystem 

variables like soil organic carbon, nutrient and water stress and surface runoff. We 

expect this analysis to give a high spatial resolution estimate of the environmental 

impact of cultivating 2G feedstocks in U.S. Midwest and the management 

interventions needed to sustainable achieve the maximum yield potential of the 

region. 

 

2. Method 

2.1 Study area 

Our study area comprising the WCB states of North Dakota (ND), South 

Dakota (SD), Nebraska (NE), Minnesota (MN) and Iowa (IA), (Fig. 4-1). Annual 

crop production is the dominant land-use in the WCB, accounting for more than two-

fifths of the corn and soybean acreage planted nationally in 2012 

(http://quickstats.nass.usda.gov/). These states also overlap the Prairie Pothole Region 

(PPR), an ecologically sensitive wetland landscape (Johnson et al., 2013). While the 

original study that this work is based on modeled 5 additional states in the U.S. 
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Midwest (Ohio, Illinois, Indiana, Wisconsin and Michigan), they were not included in 

this analysis as the 5 WCB states account for over 95% of the around 11 million ha of 

marginal land in the region. 

 

 

Fig. 4-1. Land-cover distribution in the Western Corn Belt 

 

2.2 Model 

We used the EPIC model (Izaurralde et al., 2006) to simulate successional 

herbaceous vegetation biomass yields on regional scales (Fig. 4-2a). In doing so, we 

used the same model parameterization as developed, calibrated and validated on site 

level data in Gelfand et al., 2013. EPIC is a comprehensive, field-scale, biophysical 

process based model that can simulate the plant yield and net primary productivity of 

over 100 plant species including grasses, food and specialty crops. It is based on the 

concept of radiation-use efficiency and growing degree days. The plant canopy 

intercepts a portion of photosynthetically active radiation and converts it to plant 

biomass, with the phenology being dependent on heat unit calculations. Potential 
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gains in plant biomass are proportionately decreased by the most severe stress factor 

including vapor pressure deficits, atmospheric CO2 concentrations and environmental 

stresses including nutrients, temperature, water, soil strength, aluminum toxicity and 

aeration (Stockle et al., 1992a, Stockle et al., 1992b). To run the model, daily weather 

data is needed, including solar radiation, air temperature, precipitation, wind speed 

and relative humidity. Other data needs include topographic parameters (slope, 

length), soil properties (pH, layer depths, C and N contents, bulk density, water 

storage capacity and texture), and management information (crop rotations, planting 

and harvesting dates, fertilization, irrigation). For each simulated field, EPIC provides 

information on the effects of management operations on water quality, soil loss and 

crop yields. EPIC also reports a comprehensive suite of ecosystem service indicators 

including C sequestration, N loss in runoff and leaching, denitrification, N fixation, 

evapotranspiration and runoff and lateral flows (Zhang et al., 2010). 

The Spatially Explicit Integrated Modeling framework (SEIMF, Fig. 4-2b), 

(Zhang et al., 2010) was used to i) create a geodatabase merging all input data sets 

together and ii) generate input files needed to run EPIC. Applying SEIMF to the 

WCB resulted in approximately quarter of a million homogeneous units. All the fields 

which constitute a homogeneous unit, share the same topography, soil type, land use, 

management and climate. Since the input data sets have different resolutions ranging 

from 56 m for the land use to 32 km for climate, the resolution of each homogeneous 

unit is the greatest common denominator i.e. 56 m. 
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2.3 Model data inputs 

The list of model data inputs and their brief description is listed below for reference. 

They are exactly the same as used in Gelfand et al., 2013. 

 

Soils 

A conterminous-scale soil property database was built using soil survey geographic 

(SSURGO) data from the U.S. Department of Agriculture Geospatial Data Gateway 

(http://datagateway.nrcs.usda.gov). Extracted soil properties included number of soil 

layers, depth of each layer, pH, bulk density, slope gradient and length, soil texture 

information and % organic carbon and total nitrogen. The land capability class (LCC) 

variable was extracted to describe marginal lands on the basis of use limitation such 

as erosion risk, soil depth, wetness and slope (Klingebiel and Montgomery, 1961). 

There are eight LCCs, ranging from class I (no limitations for agricultural use) to 

class VIII (severe limitations for agricultural use). Cropland agriculture is supported 

on classes I–IV, whereas classes V–VIII contain non-arable land. 

 

         

http://datagateway.nrcs.usda.gov/
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Fig. 4-2. (a) Conceptual framework of EPIC model (b) SEIMF framework 

 

Topography 

Topography was defined using data from NASA’s Shuttle Radar Topography 

Mission, which produced a digital elevation model for the region at a resolution of 

30 m (Farr et al., 2007). Slope length and gradient for each spatial modeling unit was 

derived through geospatial analysis of this data. 

 

Climate Data 

EPIC requires daily weather information including daily temperature 

(maximum and minimum), precipitation, solar radiation, wind speed and relative 

humidity. Daily weather files at 32-km resolution were derived from the North 

America Regional Reanalysis database 

(http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html) (Messinger et al., 2006). 

 

Successional herbaceous vegetation  

Following Gelfand et al., 2013, the list of EPIC simulated successional 

herbaceous vegetation on each marginal land site included: Red clover (Trifolium 

pratense), Timothy (Phleum pratense) and Poa (Poa annua). Of these, Red clover is a 

legume and does not need fertilization. In EPIC runs where fertilization was applied, 

http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html
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it was divided equally amongst the other two grasses. The crop parameterization, 

planting density and sensitivity analysis of these grasses follows Gelfand et al., 2013. 

 

2.4 Statistical analysis of unfertilized yields 

Simple and multiple linear regression analysis were used to develop equations 

that explain the variation in the unfertilized yields across a range of climatic and 

edaphic factors. The criterion for model selection was r2 and stepwise methods were 

employed to eliminate some of the independent variables. The independent variables 

in the analysis and their associated units are listed in table 4-1. Co-linearity of the 

independent variables was checked with the variance inflation factor value and the 

significance of the models was tested with the F value. To be included in the final 

model, variables had to be significant at P=0.05 and the complete model at P=0.001. 

 

2.5 Factorial EPIC simulations 

Factorial combinations of fertilization and irrigation management were used 

to run EPIC. These included five fertilization intensities from 0 kgN ha-1yr-1 

(unfertilized) upto 123 kgN ha-1yr-1, with intermediate levels of 33, 68 and 99 kgN ha-

1yr-1 respectively. For each fertilization intensity, we conducted EPIC simulations 

with and without irrigation for a total of ten factorial combinations. The unfertilized, 

no-irrigation scenario represents the baseline case where no management input is 

applied. While the total biomass yield is expected to be the lowest in this case, it also 

represent the scenario with least expected negative environmental impact as excessive 

leaching of nutrients to ground water and erosion cannot happen in absence of 
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fertilization or irrigation inputs. The key is to sustainably boost management inputs in 

a way such that yields are increased without a disproportionate increase in negative 

environmental impacts.    

 

2.6 Yield gap analysis methodology 

The key independent variables identified during the statistical analysis 

procedure, and listed in table 4-1 were split into equi-spaced bins. Since the fidelity of 

bin size is unknown, we used the F-ratio (Kim and Kohout, 1975), to determine the 

ideal bin size based on the difference in nitrogen stress days and water deficit before 

and after management input. The basis for this approach is that the correct bin size 

would give the biggest F-ratio for the before and after management intervention 

scenarios. Once the bin size was fixed, yield gap zones were identified as a 

combination of different bins, with each zone representing a unique combination of 

values for the significant independent variables. The maximum yield in each zone 

was considered to represent the maximum potential yield attainable under similar 

conditions. For marginal land sites where the yield fell short of the potential yield 

thus identified, we determined the minimum fertilization and irrigation level needed 

to attain the potential yield. Ecosystem variables of interest (soil organic carbon, 

surface runoff, water deficit etc.) were extracted to estimate change before and after 

management intervention. 

 

2.7 Impact of inclusion of a legume in the native successional grass mix 

Inclusion of a legume (red clover) in the native successional grass mix 

simulated by EPIC should reduce the amount of fertilization needed to reach a 
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specific potential yield because of the atmospheric N fixed by that legume and made 

available to the other grasses sharing that land (Liu et al., 2010). To understand how 

the inclusion of a legume affects simulated yields, N addition, soil organic carbon and 

water stresses in the WCB region, we ran an additional EPIC scenario with the 

legume excluded from the species mix. We then compared it against the baseline 

case, but only extracting results for the non-leguminous timothy and poa, so that we 

only compared yield estimates for two grasses in the species mix in both case. The 

only difference being that in the baseline case, the N fixation induced by the legume 

should boost simulated yields, but also potentially reduce yields because of increased 

resource competition. The interplay of N fixation and increased resource competition 

would reflect in regional variations in the yield benefit conferred by including a 

legume in the species mix. 

 

3. Results and discussion 

3.1 Factorial combination of fertilization and irrigation impacts 

Before performing a yield gap analysis, it is important to observe the variation 

in simulated yields across a gradient of management inputs. In this study, we vary 

fertilization across five discrete levels, both with and without irrigation (fig. 4-3). 

Three of the five fertilization levels (0, 68 and 123 kgN ha-1 yr-1), were used in 

Gelfand et al., 2013, and the remaining two (33 and 99 kgN ha-1 yr-1), were added for 

this study in order to discretize N input levels further, making the yield gap 

calculations more precise. As expected, increased N input reduces the level of N 

stress experienced by a system (fig. 4-3A), as reflected in the decrease in the number 
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of days for which the most stress is caused due to nutrient limitation. As defined in 

EPIC, any stress (nutrient, water etc.) is reflective of the supply-demand imbalance of 

that resource in that site. Since, EPIC considers the largest stress in reducing the 

simulated yield, additional irrigation reduces water stress (fig. 4-3B), but 

concomitantly increases the number of N stress days (unfilled bars in fig. 4-3A). This 

does not imply that the nutrient stress has increased, rather, due to reduction in water 

stress, the dominant stressor is no longer moisture availability. 
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Fig. 4-3. Fertilization x Irrigation impacts on (A) nitrogen stress days; (B) water 

stress days (C) change in soil organic carbon; (D) EPIC simulated yield. 

 

Notably, additional N inputs do not appreciable increase soil organic carbon 

levels (fig. 4-3C), with the gain in soil organic carbon stocks for an eight-year period 

from 2000 – 2008, hovering around 2 ± 2.5 MgC/ha. This could be attributed to the 
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lack of clay in the marginal land soils which reduces organic C losses (Burke et al., 

1989). While irrigation provides a reliable yield boost of around 2 Mg/ha, for all 

fertilization intensity levels; it cannot be a universal solution since it also depletes soil 

organic C levels due to excessive leaching (Brye et al., 2001). 

 

3.2 Regression analysis 

The results from the simple and multiple stepwise linear regression analysis 

conducted to regress baseline, unmanaged EPIC simulated yields against climatic and 

edaphic variables are listed in table 4-1. Based on their r2 value, the following 

variables were determined to be significant in explaining yield variation for the 

baseline scenario: mean annual precipitation, pH, LCC and soil organic carbon. 

Notably, mean annual temperature was not found to be a significant predictor of 

baseline yield variation. This could be because the inter-regional variation in mean 

annual temperature is not high since the WCB constitutes a single eco-region (McNab 

et al., 2005). Additionally, the cumulative daily degree days parameterized for each of 

the three grasses are similar (~1300), thereby removing a factor whose interaction 

with mean annual temperature across the region could significantly influence yields. 

Precipitation does decrease moving from east to west with an arbitrary but commonly 

accepted transition to an arid environment west of the 100th meridian (Wright and 

Wimberly, 2013b). Other three factors significantly influencing yield variation are all 

edaphic. Of these, soil organic carbon has a well-known positive influence on 

estimated yields (Izaurralde et al. 2006, 2007; Causarano et al. 2007, 2008 and 

Apezteguía et al. 2009). As currently parameterized in EPIC, low tolerance of the 

three grasses to aluminium saturation induces a yield sensitivity to soil pH (Gaiser et 
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al., 2010). Finally, the interpretive factor, LCC describes land use classes based on 

use limitation such as erosion, risk, soil depth, wetness and slope, with the limitation 

increasing as we advance from LCC class I to LCC class VIII, thus intuitively being 

an important factor influencing yield variation (Kang et al., 2013). Scatter plots with 

hexagon binning to represent density are plotted for each of the significant (fig. 4-4) 

and non-significant (fig. 4-5) explanatory variables. 

 

Table 4-1. Exploring the effect of climate and soil variability on baseline native 

successional grass mix yields as simulated by EPIC. The 95% confidence interval 

(CI) and the coefficient of determination (r2). 

Variable  95% CI r2 

             Climate   

 Mean annual precipitation, mm 327.83 – 1025.0 0.35*** 

 Mean annual temperature, °C 5.50 – 12.91 0.02*** 

                   Soil   

 pH 5.43 – 8.39 0.18*** 

 Soil organic carbon, Mg/ha 0.16 – 2.47 0.12*** 

 Bulk density, T/m3 1.18 – 1.71 0.01*** 

 Saturated conductivity, mm/sec 1.68 – 1009.21 0.02*** 

 Available Water Capacity, m/m 2.29 – 15.45 0.02*** 
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Fig. 4-4. EPIC simulated yield variation for the baseline (unmanaged) scenario for 

marginal lands in WCB. The four explanatory variables for which the yield variation 

is plotted are: (A) soil organic carbon; (B) pH; (C) land capability class and (D) mean 

annual precipitation. 

 

Not all yield gap analysis studies conduct a regression analysis beforehand, 

instead using variables based on an intuitive understanding of the region (Licker et 

al., 2010). As a result, the commonly used variables include mean annual 
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temperature, mean annual precipitation and a metric of water deficit based on the 

ratio of actual to potential evapotranspiration (Prentice et al., 1992). Yield gap results 

are highly sensitive to our choice of environmental variables and a rigorous analysis 

can help inform results that are likely to remain constant when transferred from a 

computer model to the real world (Lobell et al., 2009). 

 

 

Fig. 4-5. EPIC simulated yield variation for the baseline (unmanaged) scenario for 

marginal lands in WCB. The four explanatory variables for which the yield variation 
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is plotted are: (A) saturated conductivity; (B) available water capacity; (C) bulk 

density and (D) mean annual temperature. 

 

3.3 Determining bin size for yield gap analysis  

Bin size or the numerical range of each unique bin can dramatically influence 

our estimates of yield potential. At one extreme, if the bin size is small enough such 

that each marginal land site occupies a unique environmental niche, we will find that 

all sites are already attaining their potential yield. This would mean that no 

management inputs are needed. On the other hand, if the bin size is big enough to 

include the entire study region in one bin, almost all sites will be below potential and 

require immense amounts of nutrient and water inputs to attain yields similar to a few 

highly productive sites. In this case, the potential yield might be so high so as to be 

considered an outlier. In this analysis, we adopt a simple yet novel approach to 

identify an appropriate bin size. Our reasoning is that an appropriate bin size for the 

system would automatically partition the sites into two groups which are 

quantitatively different in key ecosystem parameters, when compared before and after 

management inputs have been applied. For the present study, we use the F ratio 

(Hartley et al., 1950), which describes the ratio of variance between groups to the 

variance within groups. The first group in this case is the set of marginal land sites 

that were not provided with any new management inputs and the second group 

consists of the sites that were. We then compute F ratio for the number of nitrogen 

stress days and water deficit for these groups. Subsequently, we find the bin size 

which maximizes a Cobb-Douglas production function (Cobb and Douglas, 1928) 
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with these two ecosystem variables. In our present case, the production function is 

maximized when each of the significant explanatory variables affecting unmanaged 

yields (soil organic carbon, mean annual precipitation and pH) is divided into 14 

equi-spaced bins (fig. 4-6). Land capability class being ordinal in nature, is always 

divided into just three bins (LCC classes V, VI and VII). Overall, we get 8,232 

(143*3) unique combinations of the four explanatory variables for which we compute 

the potential yields. 

 

Fig. 4-6. Variation of F ratio for nitrogen stress days and water deficit with changing 

size of yield gap bin. 

 

For the analysis, we wanted to choose ecosystem metrics that would be 

affected directly with changes in management. Fertilization affects nitrogen stress 

days (fig. 4-3A), whereas irrigation affects water stress days (fig. 4-3B). However, 
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since calculation of nitrogen and water stress days is linked in EPIC with a reduction 

in one automatically causing the other one to increase, we decided to use another 

metric of moisture availability in the system: water-deficit (Licker et al., 2010). 

We conducted a sensitivity analysis on changing the bin size. A larger bin size 

means that more sites have to be provided with N or water inputs (fig. 4-7A, D), 

therefore more sites are below their potential yields (fig. 4-7B). Increased 

management inputs also bring down water and nitrogen stress days (fig. 4-7C). 
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Fig. 4-7. Variation with bin size of (A) Area supplied with both N and water; (B) area 

above or below potential yield; (C) number of stress days; (D) area supplied with N 

input. 

 

3.4 Yield gap analysis 

Another way of observing where the management inputs are applied is to 

compare ecosystem metrics for site where no new management was applied versus 

sites where new management inputs were applied (fig. 4-8). Simulated yield was 

slightly lower for sites where our algorithm suggests that we apply fertilizer to raise it 

(fig. 4-8A), this is also reflected in the higher number of N stress days (fig. 4-8C) for 

these sites. There is no appreciable difference in the nitrogen-use efficiency and 

nitrogen mineralization estimates for the two sets of sites (fig. 4-8 B, D). 



 

 82 

 

 

Fig. 4-8. Two groups of sites, one where no fertilization is done (0N) and the other 

has fertilizer applied (+N). We note their ecosystem metrics before any fertilization. 

 

In the case of irrigation, a similar comparison shows that sites chosen for 

irrigation tend to have higher water deficit (fig. 4-9A), higher water stress (fig. 4-9B), 
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lower precipitation input (fig. 4-9D) and slightly lower water use efficiency as 

compared to sites which have not been chosen for any irrigation. 

 

Fig. 4-9. Two groups of sites, one where no irrigation is done (No Irr) and the other 

has irrigation performed (+Irr). We note their ecosystem metrics before any irrigation. 
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Sites selected for irrigation also tend to have lower denitrification, N 

volatilization and surface runoff values (fig. 4-10 A, C and D) than the sites not 

selected for irrigation. Since water mediates denitrification, this means that the 

selected sites have a lower potential for loosing N in saturated and moist conditions. 

 

Fig. 4-10. Two groups of sites, one where no irrigation is done (No Irr) and the other 

has irrigation performed (+Irr). We note their ecosystem metrics before any irrigation. 
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Soil organic C stock in the marginal land sites decreases due to leaching, 

when irrigation is performed (fig. 4-3C). What implication does it have for closing 

the yield gaps? This is especially important in a region where water limitation is the 

dominant stressor (fig. 4-11), since an increase in yields due to irrigation might be 

balanced by a loss in soil organic C stocks. 

 

 

Fig. 4-11. Dominant stressor based on number of stress days estimated by EPIC. 

 

The yield gap approach manages to increase the simulated yields (after management 

intervention, fig. 4-13D) by ~33%, without a corresponding decrease in soil organic 

C stocks (fig. 4-13A). This despite a reduction in water stress days by more than 150 

and only a 25% increase in annual surface runoff (fig. 4-13C). 
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Fig. 4-12.  Change in water stress days, yield, soil organic C and surface runoff, 

before and after management inputs have been applied (N and/or irrigation). 

 

Corresponding to the numerical change estimates in fig. 4-13, their spatial 

distribution is shown in fig. 4-12. The yield increases are fairly modest (< 20%) in the 

Sandhills of Nebraska (Eggemeyer et al., 2006), where almost 50% of the ~11 million 

ha of marginal lands of the WCB are present. This can be attributed to initial low 

levels of soil C stocks and generally sandy soils in the region 
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Fig. 4-13. Ecosystem metrics before and after management intervention. 

 

In terms of magnitude, the largest increases in surface runoff can be seen in 

the sandy soils in western parts of SD, with a corresponding increase in the number of 

water stress days. 

After the yield gap algorithm has been applied at a bin size of 14, we produce 

a map showing the distribution of management across the region (fig. 4-14). Overall, 

there is a 45% increase in average yield across the region from 5.49 Mg/ha to 8.0 
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Mg/ha. 83% of the marginal land acreage has irrigation applied to it, with 13% 

receiving only fertilization and 5% receiving no management inputs at all.  

 

 

Fig. 4-14. Management distribution after yield gap analysis across the WCB 

 

3.5 Inclusion of legume in native grass mix 

As a rule of thumb, presence of around 25% of a legume in a grass mix 

removes the need for any N input. However, as modeled in EPIC, simulated yields 

are not enhanced by the presence of a legume (fig. 4-15D), probably because of the 

competitive pressure for water in an already arid environment. N fixation does help in 

the sequestration of additional soil organic C, due to the addition of extra residue into 

the soil (fig. 4-15C). 
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Fig. 4-15. Comparison of ecosystem metrics, with (unfilled bars) and without (filled 

bars) inclusion of legume. 

4. Conclusions 

In summary, statistical analysis was used to identify the significant climatic and 

edaphic factors influencing unmanaged yields of native successional grasses on 

marginal land sites in the WCB. After running EPIC for a factorial combination of 
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management options, yield gap analysis was performed to ascertain for each site, the 

management intervention best suited to improve yield outcomes in a sustainable 

manner. More than 80% of the marginal land sites need irrigation, with a much 

smaller fraction (~13%) requiring N input. We expect this analysis to give a high 

spatial resolution estimate of the environmental impact of cultivating 2G feedstocks 

in U.S. Midwest and the management interventions needed to sustainable achieve the 

maximum yield potential of the region.    
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Chapter 5:  Conclusions 
 

 

1. Contextual summary 

While biofuels are widely considered to be a part of the solution to high oil prices, 

a comprehensive assessment of the environmental sustainability of existing and future 

biofuel systems is needed to assess their utility in meeting U.S. energy and food needs 

without exacerbating environmental harm. 

The following questions guide this research: 

1. What is the spatial extent and composition of agricultural management systems 

that exist in the U.S. Midwest? 

2. How does sub-grid scale edaphic variation impact our estimation of poplar 

biomass productivity across a gradient of spatial scales in the U.S. Midwest?   

3. How do location and management interactions impact yield gap analysis of 

cellulosic ethanol production in U.S. Midwest? 

In the first chapter, I developed an algorithm to identify representative crop 

rotations in the U.S. Midwest, using remotely sensed data; and used this information 

to detect pronounced shifts from grassland to monoculture cultivation in the U.S. 

Midwest. In the second chapter, a new algorithm is developed to reduce the 

computational burden of high resolution ecosystem modeling of poplar plantations in 

U.S. Midwest, with the results from the high resolution modeling being used to 

estimate the impact of averaging and discretization of soil properties on poplar yield 
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estimates. In the third chapter, a novel yield gap analysis of cellulosic feedstocks on 

marginal lands in the U.S. Midwest is conducted to determine the management inputs 

needed to reach their yield potential in a sustainable manner. 

The significance of this research lies in providing a spatially explicit regional 

scale analysis of the tradeoffs between food and fuel production and providing an 

understanding of which biofuel crops should be grown where to maximize production 

while mitigating environmental damage. 

 

2. Major findings and contributions 

The research in this dissertation aimed at determining the diversity of biofuel 

feedstocks that can be sustainable grown in the U.S. Midwest. The second chapter 

focused on synthesizing the agricultural diversity in the form of crop rotations 

prevalent in the U.S. Midwest. Crop rotations (the practice of growing crops on the 

same land in sequential seasons) reside at the core of agronomic management as they 

can influence key ecosystem services such as crop yields, carbon and nutrient cycling, 

soil erosion, water quality, pest and disease control. Despite the availability of the 

Cropland Data Layer (CDL) which provides remotely sensed data on crop type in the 

U.S. on an annual basis, crop rotation patterns remain poorly mapped due to the lack 

of tools that allow for consistent and efficient analysis of multi-year CDLs. This 

chapter presented the Representative Crop Rotations Using Edit Distance 

(RECRUIT) algorithm, implemented as a Python software package, to select 

representative crop rotations by combining and analyzing multi-year CDLs. Using 

CDLs from 2010 to 2012 for 5 states in the U.S. Midwest, I demonstrated the 
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performance and parameter sensitivity of RECRUIT in selecting representative crop 

rotations that preserve crop acreage and capture land-use changes. Selecting only 82 

representative crop rotations accounted for over 90% of the spatio-temporal 

variability of the more than 13,000 rotations obtained from combining the multi-year 

CDLs. Furthermore, the accuracy of the crop rotation product compared favorably 

with total state-wide planted crop acreage available from agricultural census data. The 

RECRUIT derived crop rotation product was used to detect land-use conversion from 

grassland to crop cultivation in a wetland dominated part of the U.S. Midwest. 

Monoculture corn and monoculture soybean cropping were found to comprise the 

dominant land-use on the newly cultivated lands. 

The third chapter shifted the focus from agricultural lands to second generation 

biofuel feedstock production from Poplar. To achieve this, I parameterized the 

Ecosystem Demography (ED) model to predict potential non-nutrient limited yields 

for hybrid poplar across the U.S. Midwest. Subsequently, I determined quantitatively 

how estimates of saturated conductivity (a key soil property measuring a soil’s ability 

to transport water) vary for two soil datasets that differ in their spatial resolution and 

method of estimating soil properties: SSURGO and World Inventory of Soil Emission 

Potentials (WISE). Subsequently, I examined how saturated conductivity estimates 

changes based on the resolution at which they are averaged or discretized. Finally, I 

estimate the impact of averaging and discretization of saturated conductivity on the 

relative accuracy of poplar yield estimates obtained from ED. The significance of this 

chapter is in providing a novel method to improve the spatial resolution over which 
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ED operates by three orders of magnitude (Fig. 5-1). This is crucial because site-

specific poplar productivity estimation requires sub-grid scale modeling. 

 

Fig. 5-1. Spatial and temporal extent of ED 

 

The fourth chapter continued the focus on second generation biofuel feedstocks, 

examining the productivity of native successional grasses on marginal lands in the 

U.S. Midwest. It also determined the management inputs needed to close the yield 

gap in the region. This study used an existing dataset comprised of modeled yields of 

successional herbaceous vegetation on marginal lands in the U.S. Midwest (Gelfand 

et al., 2013), and extended it for a factorial combination of fertilization and irrigation 
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inputs for each available marginal land site. The range of possible yields thus 

obtained for each site were then used to achieve the following objectives (1) 

Determine through stepwise multiple linear regression, the most important climatic 

and edaphic factors affecting yields; (2) Estimate the potential yield for each marginal 

land site based on the maximum yield attained by a site with similar climatic and 

edaphic conditions; (3) Apply adequate fertilization and/or irrigation to help attain the 

potential yield; (4) Examine how the management input affects other ecosystem 

variables like soil organic carbon, nutrient and water stress and surface runoff. This 

analysis resulted in a high spatial resolution estimate of the environmental impact of 

cultivating 2G feedstocks in U.S. Midwest and the management interventions needed 

to sustainable achieve the maximum yield potential of the region. 

 

3. Broader implications of research 

3.1 Pronounced shifts from grassland to cultivated areas in the prairie pothole region 

Crop rotation patterns can provide information on land-cover change 

happening in ecologically sensitive areas. We use the crop rotation product identified 

in fig. 2-8 (82 crop rotations with overall accuracy > 90%, α(75%), β(0.5%)) to 

estimate grassland conversion to specific crop rotation patterns in the PPR. Recently, 

Wright and Wimberly (2013) reported that contemporary grassland conversion to 

corn and soybean cropping (GRCS) from 2006 to 2011 in the PPR is concentrated in 

the areas surrounding wetlands. Their analysis implicitly assumes that all wetlands 

affected by GRCS in the PPR existed in or after 2006. However, the areal extent of 

wetlands was based on National Wetland Inventory (NWI) maps, which were 
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produced from aerial photography taken in the 1970s and 1980s (Johnston, 2013). 

Thus, we conclude that Wright and Wimberly (2013) overestimated the total area of 

agricultural expansion through GRCS in close proximity (within 500m) of wetlands. 

Instead of attributing historical wetland conversion to recent land-use changes in the 

PPR, here we provide separate estimates of wetland conversion from 1982 - 2007 and 

2006 – 2011 using data from National Resources Inventory (NRI) and 2006 NLCD 

(Xian et al., 2009) respectively. 

According to the NRI database, net wetland area declined by 33.3 x 103 ha in 

the U.S. Midwest between 1982 and 1987 (Brady and Flather, 1994). Another 15.0 x 

103 ha of palustrine and estuarine wetlands in the Northern Plains comprised by the 

Dakotas and Nebraska were converted to other land-uses between 1992 and 1997 

(Summary Report: 1997 National Resources Inventory). This conversion can be 

equally attributed to agricultural expansion and other causative agents including 

development and silviculture (Summary Report: 1997 National Resources Inventory). 

During 1997 - 2007, palustrine and estuarine wetland acreage further declined by 8.0 

x 103 ha in the Dakotas (Summary Report: 2007 National Resources Inventory). In 

their analysis, Wright and Wimberly (2013) attribute all wetland conversion between 

1982 and 2007 in the PPR to post-2006 GRCS. 

Since the non-agricultural land-cover classes in CDL have been derived from 

NLCD, we combined both wetland classes from the 2006 NLCD, to estimate the total 

area of agricultural expansion through GRCS within 500 m of wetlands in the PPR. 

The 2006 NLCD has been previously used to derive national wetland extent and 

conversion (Potter et al., 2006).We found that the total grassland acreage in close 
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proximity to wetlands that was converted to corn/soybean cropping between 2006 and 

2011 was 230,097 ha or 58% of the nearly 400,000 ha estimated by Wright and 

Wimberly (Fig. 5-2). Notably, while Wright and Wimberly (2013) used the 2006 

NLCD to depict wetland cover (Fig. 1B in their paper), they did not use it in their 

analysis. 

 

Fig. 5-2. Separate estimates for grassland conversion to crop cultivation in close 

proximity to wetlands in PPR. 

 

Compared to Wright and Wimberly (2013), who consider only palustrine 

wetlands in their analysis, our estimate of wetland conversion is conservative since 

NLCD does not break down wetland classification by palustrine or estuarine type but 

includes two wetland classes that differ in their vegetation cover. The Energy 

Independence and Security Act of 2007 explicitly protects wetlands by mandating 

that renewable biomass may only be harvested from agricultural land that was 

cultivated prior to the enactment of the law. While biofuel production impacts land-
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use decisions, it is critical to use appropriate tools and datasets to inform our analysis 

of environmental impacts of these decisions, lest it divert our focus from other drivers 

of land-use/cover change, as well as climate change which might have a bigger 

impact on the fate of wetlands in the region (Johnston, 2013). 

If land-cover conversion in the PPR was induced by increased demand for 

corn and soybean, we should be able to observe intensive cultivation of corn and 

soybean in the area. To test this hypothesis, we selected representative crop rotations 

from 2007 to 2011 for the PPR with an overall accuracy of around 90%. Of the 

230,097 ha undergoing GRCS in close proximity to wetlands between 2007 and 2011, 

nearly 42% was devoted to continuous corn or continuous soybean cropping and 

another 30% was covered by alternating corn and soybean rotations (Table 5-1). 

These patterns are very surprising especially given the widespread consensus that 

continuous cropping of soybean for more than two years is not a viable choice on 

account of enhanced parasite activity (Secchi et al., 2011). 

 

Table 5-1 

Crop rotations in the GRCS pixels in PPR. The GRCS pixels lie within a 500m radius 

of wetlands. Soybean is abbreviated as Soyb. 

 

2007 2008 2009 2010 2011 Acreage (ha) 

Soyb Soyb Soyb Soyb Soyb 52,050 

Corn Corn Corn Corn Corn 44,867 

Soyb Soyb Soyb Corn Soyb 22,706 
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Corn Corn Corn Soyb Corn 17,895 

Corn Soyb Corn Soyb Corn 14,055 

Soyb Corn Soyb Corn Soyb 12,581 

 

 

3.2 Errors introduced by changing soil datasets 

There is a clear link between time needed to complete a modeling run and the 

spatial resolution of the input datasets. Inherent to this is a tradeoff between 

feasibility and precision of results. In our modeling of Poplar biomass using ED 

model, we used two soil datasets with vastly different resolutions: SSURGO at 60m 

and WISE at 10km. To quantify the error introduced by using a fine resolution dataset 

like SSURGO at coarser scales, I mapped out the normalized difference between ED 

biomass estimates using SSURGO data at 60m versus SSURGO averaged to half-

degree but mapped out at 60m (Fig. 5-3). Some of the least values for normalized 

error are in the Sandhill region of Nebraska. This is a positive finding because more 

than half of the 12 million ha of marginal lands in the U.S. Midwest lie in the 

Sandhills. Therefore, biomass modeling studies using coarser resolution data in that 

region are less likely to be off-mark. However, it is possible for individual locations 

to have much larger associated errors in estimation. Consequently, it is advisable to 

use the highest resolution soil dataset when possible. 
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Fig. 5-3. Normalized difference between ED biomass estimates from SSURGO at 

60m resolution and SSURGO averaged to half-degree resolution but mapped at 60m 

 

3.3 Yield gap analysis of native grass modeling results 

While yield gap analysis tries to identify the difference in potential yields and 

the yields actually achieved at a given location, it is important to place that in the 

context of the maximum yield that can be attained when no limitation is present 

(nutrient, water etc.). To understand this, I plotted four different ecosystem metrics 

for the native grass modeling, against three management scenarios: no input, enough 

inputs to close the yield gap, full irrigation and high nutrient input. The ecosystem 

metrics plotted included: yield, change in soil organic carbon, number of water stress 
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days and denitrification potential. The hypothesis was that yield gap approach is 

similar to an optimization algorithm in that it tries to maximize yield while mitigating 

increase in nutrient and water stresses. Indeed, I found that the yield gap scenario 

closed more than half the difference in yields between the no input and the full input 

case (Fig. 5-4 (A)). Moreover, this was not accompanied with a reduction in soil 

organic carbon as in the full input case (Fig. 5-4 (B)). Since irrigation was applied as 

input in several locations, the number of water stress days did decrease, almost to the 

level of full management input (Fig. 5-4 (C)). Finally, this increase in irrigation input 

was accompanied by an increase in denitrification, but less than half the nearly 40 

kg/ha of denitrification in the full input case.  
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Fig. 5-4. Yield gap analysis of EPIC modeling results for native successional grasses 

in U.S. Midwest. 

 

In conclusion, the search for beneficial biofuels should focus on the twin 

objectives of sustainable biofuel feedstocks that do not compete with food crops and 

do not induce either direct or indirect land-use change. The sustainable biofuel 

feedstocks include byproducts of human activities (crop residues, forestry wastes) and 
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purpose-grown perennial mixes and woody bioenergy crops. Due care needs to be 

taken to avoid excessive harvesting of crop residues as it can intensify soil erosion by 

tenfold or more, increase GHG emissions and also increase eutrophication due to 

runoff (Pimentel et al., 2009). To minimize GHG emissions from land-use change, we 

need to identify lands that are initially not storing large quantities of carbon in soil 

and vegetation but are capable of producing abundant biomass with limited 

management inputs (Tilman et al., 2009). 

When done right, biofuels can provide a solution to meeting the global 

environmental, food security and energy challenges (Robertson et al., 2008, V.H. 

Dale et al., 2010, Tilman et al., 2009, K. Kline et al., 2011). This dissertation 

addressed that by assessing biofuel feedstock production and ecosystem service 

tradeoffs across a gradient of agricultural management systems in the U.S. Midwest. 
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