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Understanding the molecular, phenotypic, and pathogenic effects of mutations is of 

enormous importance in human disease research and protein engineering. Both create 

a demand for computational methods to leverage the explosion of new sequence data 

and to explore the vast space of possible protein modifications and designs. My study 

in this dissertation demonstrates the value of computational methods in these areas. 

First, I developed a new ensemble method to predict continuous phenotype values as 

well as binary pathogenicity and objectively tested it in CAGI (Critical Assessment of 

Genome Interpretation). In two recent CAGI challenges, the method was ranked third 

in predicting the enzyme activity of missense mutations in NAGLU (N-Acetyl-Alpha-

Glucosaminidase) and second in predicting the relative growth rate of mutated human 

SUMO-ligase in a yeast complementation assay. I also demonstrated the effectiveness 

of the new ensemble method for addressing a key problem limiting the use of current 



  

mutation interpretation methods in the clinic – identifying which mutations can be 

assigned a pathogenic or benign status with high confidence. Next, I characterized 

and compared missense variants in monogenic disease and in cancer. The study 

revealed a  number of properties of  mutations in these two types of diseases, 

including: (a) methods based on sequence conservation properties are as effective for 

identifying cancer driver mutations as they are for monogenic disease mutations;  (b) 

mutations in disordered regions of protein structure play a relatively small role in 

both classes of disease;  (c) oncogenic mutations tend to be on the protein surface 

while tumor suppressors are concentrated in the core; (d) a large fraction of tumor 

suppressors act by destabilizing protein structure and (e)  mutations in passenger 

genes display a surprisingly high level of deleteriousness. Finally, I applied 

computational methods to screen for appropriate mutations to enhance the 

thermostability of a catalytic domain of PlyC. This bacteriophage-derived endolysin 

has been demonstrated to have antimicrobial potential but its potential use is limited 

by its inherent thermosuseptibility. To prioritize stabilizing mutations, I conducted a 

rapid exhaustive survey of point mutations followed by validation using protein 

modeling and expert knowledge. The approach yielded three stabilizing mutants 

experimentally verified by our collaborators, with one particularly successful in terms 

of both thermal denaturation temperature and kinetic stability. 
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Chapter 1: Introduction 

 

1.1 Missense variants and human diseases 

1.1.1 The landscape of human mutations 

DNA mutations spontaneously occur at very low frequency due to replication, repair 

and mitotic error. They can also result from exogenous and endogenous factors such 

as chemicals, ultraviolet light, ionizing radiation, oxygen free radicals, and viruses.  

As a consequence, mutations inevitably accumulate in both germ cells and somatic 

cells in spite of the high fidelity molecular machinery for replicating and repairing 

DNA. There are many types of genetic variations including SNVs (single nucleotide 

variants), indels (insertions and/or deletions), CNVs (copy number variations), 

chromosome rearrangements, and large-scale events (e.g. aneuploidy, 

chromothripsis). In terms of the protein translation, SNVs can be synonymous (no 

amino acid change), or nonsynonymous, including missense that alters amino acids, 

and nonsense that leads to premature termination. Non-coding SNVs can affect 

splicing, alter expression and other regulatory processes, or locate at intergenic 

regions with uncertain roles. The vast majority (96%) of genetic variations observed 

in populations are SNVs, although the very few structure variations (large indels, 

CNVs, chromosome rearrangements) affect more base pairs (1000 Genomes Project 

Consortium et al., 2015). 
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Advances in next-generation sequencing technologies (Reuter, Spacek, & Snyder, 

2015; Shendure & Ji, 2008; Soon, Hariharan, & Snyder, 2013) have generated 

sequence data for tens of thousands of genomes and exomes and that has led to a 

deepening of our understanding of the landscape of human mutations. For germline 

mutations (mutations that occur in the germ cells), it is estimated that each individual 

human carries 1~5 million genetic variants in the whole genome compared with the 

reference genome (1000 Genomes Project Consortium et al., 2015; Roach et al., 

2010), out of which 30~70 are de novo point mutations compared with the parents 

(Francioli et al., 2015). Although on average only about 0.3% of SNPs (single 

nucleotide polymorphisms) observed in one genome are nonsynonymous (and 0.3% 

synonymous, 13% regulatory, and 47% in intron), there are ~10,000 nonsynonymous 

SNVs in each genome when compared with the reference genome (1000 Genomes 

Project Consortium et al., 2015; Ng et al., 2008). On top of these, through trillions of 

cell divisions from early development to adulthood, a substantial number of somatic 

mutations (mutations that occur in the somatic cells) accumulate over time. For 

instance, by middle age, thousands of point mutations may have accumulated in the 

sun-exposed skin cells (Martincorena et al., 2015). As another example, it is roughly 

estimated that there are totally a billion independent mutations accumulated in the 

whole intestinal epithelium of a 60-year-old individual (Lynch, 2010). Cancer cells in 

an individual typically carry various numbers (1000 ~20,000) of somatic point 

mutations, out of which from 10 to as many as 1000 are nonsynonymous (Vogelstein 

et al., 2013). 
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The mutation rates of germline SNVs has been estimated as between ~1.0  10-8 to 

2.2  10-8 per base pair (bp) per generation, varying depending on the approach (high 

penetrant Mendelian disease (Lynch, 2010), Phylogenetic analysis (Chimpanzee 

Sequencing and Analysis Consortium, 2005), or whole genome sequencing of 

pedigrees (Ségurel, Wyman, & Przeworski, 2014). It has also been reported to vary 

by more than 100-fold within the genome across individuals (Michaelson et al., 

2012). Germline SNVs tend to be enriched in certain sequence compositions, 

especially at CpG dinucleotides (Hwang & Green, 2004). The mutation rates of 

germline mutations in coding regions are strongly constrained by the expression level 

of genes (Drummond, Raval, & Wilke, 2006; Drummond & Wilke, 2008). The 

mutation rate is also affected by sex and parental age in that de novo point mutations 

among offspring are predominantly related to paternal age (Kong et al., 2012) and 

chromosomal nondisjunction errors are mainly affected by maternal age (Sherman et 

al., 1994). Fewer studies have estimated the mutation rates for other types of variants 

partially because it is technically challenging (Shendure & Akey, 2015). As an 

example, it is estimated that 2.94 small indels (≤ 20 bp) and 0.16 structural variants (> 

20 bp) occur per generation (Kloosterman et al., 2015). The estimated mutation rate 

of somatic mutations is around one order of magnitude higher than germline 

mutations (Lynch, 2010). It dramatically varies across cancer types and individuals 

by up to two orders of magnitude (Martincorena & Campbell, 2015; Vogelstein et al., 

2013). On a fine scale, the mutation rates in somatic cells vary depending on 

environmental factors and impaired DNA replication or repair (Shendure & Akey, 

2015). On a chromosomal scale, the variation is largely determined by chromatin 
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organization (Martincorena & Luscombe, 2013; Schuster-Böckler & Lehner, 2012; 

Shendure & Akey, 2015). 

 

1.1.2 Human diseases and their genetic basis 

There are three major types of human diseases that closely link to genetic variations, 

monogenic disease (or Mendelian disease), complex trait disease, and cancer. The 

monogenic diseases are usually caused by mutations in a single gene or one of a few 

disease genes. They can follow either a dominant or recessive inheritance pattern and 

are mostly rare. For example, one of the lysosomal storage diseases, Sanfilippo 

syndrome IIIB is caused by mutations in NAGLU gene. The disease is autosomal 

recessive with a reported birth incidence of 0.28-4.1 per 100,000 (Valstar, Ruijter, 

van Diggelen, Poorthuis, & Wijburg, 2008). To date, more than 7000 monogenic 

diseases have been catalogued in the Online Mendelian Inheritance in Man (OMIM) 

database (http://omim.org/). Despite the very low incidences of individual monogenic 

diseases, the birth prevalence of all monogenic diseases in industrialized countries 

was estimated to be 3.6 per 1,000 newborns (Baird, Anderson, Newcombe, & Lowry, 

1988). This number is even higher in the developing countries. Disease-causing genes 

have been identified for more than half of the rare monogenic diseases (Boycott, 

Vanstone, Bulman, & MacKenzie, 2013). The Human Gene Mutation Database 

(HGMD) is a major database of monogenic disease-related genes and mutations. 

Currently, it includes over 203,000 unique gene lesions in over 8000 genes for 

inheritable disease collected from literature (Stenson et al., 2017). 56% of these 

lesions are missense or nonsense SNVs. In an early version that contains a much 
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higher fraction of rare monogenic diseases, this proportion is about 60% (Stenson et 

al., 2003). 

 

Complex trait diseases have a higher rate of occurrence than monogenic diseases. A 

single complex trait disease can have incidence and prevalence similar to or more 

than all monogenic diseases combined. For example, Crohn’s disease affects about 

two million people in North America (Molodecky et al., 2012). The number is 5.3 

million for Alzheimer’s disease (Alzheimer’s Association, 2015). Globally, diabetes 

may affect 439 million adults by 2030 (Shaw, Sicree, & Zimmet, 2010). Unlike 

monogenic diseases, up to hundreds of loci in the genome may contribute to a single 

complex trait disease (de Lange et al., 2017). Variants in many of these loci only 

make a small contribution to a disease phenotype. Complex trait diseases are also 

heavily affected by environmental and behavioral factors. For many, the relevant 

genes and variants are still not clear. Much information has been obtained by the 

genome-wide association studies (GWAS), which captures disease-associated 

common SNPs using microarray technology. By including several thousand 

individuals with and without diseases, more than 50,000 unique SNP-trait 

associations have been discovered in more than 2,500 studies (GWAS catalog, 

https://www.ebi.ac.uk/gwas/). Through these associated loci, disease-causing 

mechanism SNPs may sometimes be imputed. It has been shown that missense 

mutations also play an important role in complex trait diseases (Kryukov, 

Pennacchio, & Sunyaev, 2007; Pal & Moult, 2015).  
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Cancers are diseases where cells escape constraints on growth, and potentially invade 

other parts of the body. Most cancers are caused by somatic mutations, while certain 

germline mutations can increase the risk of an individual developing the disease. 

There have been sequencing studies at the level of exomes and increasingly complete 

in more than 30 types of cancers. The sequence data are available in several major 

databases including the Cancer Genome Atlas (TCGA, 

https://cancergenome.nih.gov/), Catalogue of Somatic Mutations in Cancer 

(COSMIC, http://cancer.sanger.ac.uk/cosmic), and the International Cancer Genome 

Consortium (ICGC, http://icgc.org). To date, more than 500 genes have been 

catalogued by the Cancer Gene Census (CGC, http://cancer.sanger.ac.uk/census) as 

causal genes. Although dramatic variations exist across individuals and across cancer 

types, there are on average 33 to 66 mutated genes with altered functions in a tumor. 

86% of the mutations in these genes are missense, 7% are nonsense, and 1.6% are at 

splice sites or close to coding regions (Vogelstein et al., 2013). It was also reported 

that cancer types can be divided into two classes based on whether dominated by 

SNVs or by CNVs (Ciriello et al., 2013). At one end of the spectrum, a single tumor 

can carry thousands of mutations if the mismatch repair (Gryfe & Gallinger, 2001) or 

proofreading machinery (Palles et al., 2013) is damaged. At the other end of the 

spectrum, on average pediatric tumors and leukemias may just carry 9.6 point 

mutations per tumor (Vogelstein et al., 2013). In contrast to this large variation, it is 

estimated that most cancer types have less than 5 key point mutations (real driver) per 

tumor (Sabarinathan et al., 2017). At present, there are no established quantitative 

models on the origins of driver mutations. It has been shown that risk of different 
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cancer types is closely related to the number of cell divisions in the corresponding 

tissue (Tomasetti, Li, & Vogelstein, 2017), implying that driver incidence is largely 

determined by this factor. In general, there are two types of cancer driver genes, 

oncogenes that acquire gain-of-functions through mutations, and tumor suppressor 

genes that lose function through mutations. Driver mutations in well-studied 

oncogenes and tumor suppressor genes show obvious different patterns, with 

mutations recurrently happening at the same positions (hotspots) in oncogenes, and 

more evenly distributed through tumor suppressor genes (Vogelstein et al., 2013). 

One feature of cancer mutations is that mutations in cancer driver genes can also be 

passenger mutations. For example, among mutations in the APC protein, only those 

within the N-terminus are drivers, whereas those within the C-terminus are 

passengers (Vogelstein et al., 2013). 

 

1.2 Computational interpretation of missense mutations 

1.2.1 General mutation interpreting methods 

The advent of massive genome and exome sequencing creates a major demand for 

reliable bioinformatics tools to interpret and prioritize the genetic variations that have 

functional consequences. New computational approaches have been developed and 

applied to genetic variations in general (Cooper & Shendure, 2011; Peterson, 

Doughty, & Kann, 2013) and in cancer (Gonzalez-Perez, Mustonen, et al., 2013). In 

principle, a mutation interpretation method can identify the consequence of a given 

genetic variant at various levels: 1) functional impact at the molecular level, 2) 
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deleteriousness to the organism, and 3) pathogenicity (whether or not causing disease) 

(Shendure & Akey, 2015). While these three tasks are related, the majority of current 

computational methods measure deleteriousness using evolution information. For 

missense mutations, methods compare a mutation substitution with residues found in 

homologous protein sequences and variants within the human population under the 

assumption that conserved positions or the absence of population variants indicate 

stronger constraints from purifying selection. In this sense, these methods make use 

of fitness impact as a surrogate for pathogenicity (Calabrese, Capriotti, Fariselli, 

Martelli, & Casadio, 2009; Choi, Sims, Murphy, Miller, & Chan, 2012; Chun & Fay, 

2009; Katsonis & Lichtarge, 2014; Kircher et al., 2014; Lichtarge, Bourne, & Cohen, 

1996; Ng & Henikoff, 2003; Niroula & Vihinen, 2016; Schwarz, Rödelsperger, 

Schuelke, & Seelow, 2010; Thomas et al., 2006; Yue & Moult, 2006). The similar 

principle can be applied to methods that address non-coding variations, where 

nucleotide sequence profiles replace protein sequence profiles (Cooper et al., 2005; 

Pollard, Hubisz, Rosenbloom, & Siepel, 2010). Some methods also incorporate 

physical-chemical (e.g. amino acid properties), structure information (e.g. secondary 

structure element and solvent accessibility), and functional annotations (Adzhubei et 

al., 2010; Baugh et al., 2016; Carter, Douville, Stenson, Cooper, & Karchin, 2013; 

Folkman, Stantic, Sattar, & Zhou, 2016; B. Li et al., 2009). A few methods adopt an 

ensemble approach by incorporating outcomes from multiple other methods 

(Capriotti, Altman, & Bromberg, 2013; González-Pérez & López-Bigas, 2011; 

Ioannidis et al., 2016; Olatubosun, Väliaho, Härkönen, Thusberg, & Vihinen, 2012). 

A few methods seek a different approach by integrating three-dimensional structure 
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modeling to infer impact on protein thermostability (Redler, Das, Diaz, & Dokholyan, 

2016; Yue, Li, & Moult, 2005). These methods are designed to detect when a 

mutation destabilizes protein three-dimensional structure, and so have more limited 

scope than sequence methods. Most methods use supervised machine learning and 

require a training classifier such as random forest (Carter et al., 2013; B. Li et al., 

2009; Niroula, Urolagin, & Vihinen, 2015), neural network (Hecht, Bromberg, & 

Rost, 2015), or support vector machines (SVMs) (Calabrese et al., 2009; Kircher et 

al., 2014; Yue & Moult, 2006). A few methods rely on direct measures of certain 

properties (e.g. evolutionary), and do not require training (Choi et al., 2012; Chun & 

Fay, 2009; Lichtarge et al., 1996; Ng & Henikoff, 2003; Thomas et al., 2006). 

 

1.2.2 Cancer-specific methods 

Although originally not intended for that purpose, most methods mentioned above 

can be applied to interpret the impact of cancer somatic mutations, as will be 

discussed later in Chapter 3. In addition, there are computational methods specifically 

developed for interpreting cancer data. One class of methods aims to prioritize cancer 

driver genes using mainly three types of information (Hofree et al., 2016): 1) SNV 

recurrence, 2) SNV molecular impact, and 3) SNV spatial clustering. Some only rely 

on SNV molecular impact (Gonzalez-Perez, Deu-Pons, & Lopez-Bigas, 2012) or 

SNV clustering (Tamborero, Gonzalez-Perez, Perez-Llamas, et al., 2013; Tamborero, 

Gonzalez-Perez, & Lopez-Bigas, 2013). Others combined all three types of 

information (Dees et al., 2012; Khurana et al., 2013; Lawrence et al., 2013). The 

second class of methods aims to prioritize cancer somatic mutations using similar 
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information to that in the general mutation interpreting methods (Carter et al., 2009; 

Gonzalez-Perez et al., 2012; Joshua S Kaminker, Zhang, Watanabe, & Zhang, 2007; 

Mao et al., 2013; Reva, Antipin, & Sander, 2011; Shihab, Gough, Cooper, Day, & 

Gaunt, 2013; Yue et al., 2010). Very few computational methods were designed to 

address other types of somatic variations (e.g. CNV) (Mermel et al., 2011), or 

mutated gene subnetworks (Leiserson et al., 2015). There is also one method that 

combines driver gene discovery and mutation analysis into a single pipeline 

(Gonzalez-Perez, Perez-Llamas, et al., 2013). 

 

1.2.3 Critical assessment of contemporary methods 

There are very few studies that independently assess the performance of the current 

mutation interpretation methods (Gnad, Baucom, Mukhyala, Manning, & Zhang, 

2013; Martelotto et al., 2014). In order to have an objective assessment of the state of 

the art, John Moult and Steven Brenner started the Critical Assessment of Genome 

Interpretation (CAGI, https://genomeinterpretation.org/) (Hoskins et al., 2017) as 

community-wide experiments to test a variety of mutation and genome interpretation 

methods. In analogy to the Critical Assessment of Structure Prediction (CASP) 

(Moult, Fidelis, Kryshtafovych, Schwede, & Tramontano, 2016), CAGI strictly 

separates predictors, data providers, and assessors. Participants are asked to predict 

particular phenotypes, given genetic variant information. Meanwhile, the 

corresponding experimental results are not released until all participants have 

submitted their predictions, thus these are bona fide blind predictions. Independent 

experts assess the predictions and the outcomes are discussed at a CAGI conference. 



 

 

11 

 

The challenges in CAGI cover a wide range of prediction problems and datasets. For 

example, in the latest CAGI round (CAGI4), there were datasets of germline and 

somatic mutations in exomes, whole genomes, clinical gene panels and individual 

genes in the context of rare monogenic disease,  complex trait disease, and cancers. 

Challenges also included identification of eQTL causal SNPs and deep mutation 

scanning data. Most missense mutation analysis methods report a binary assignment 

of deleterious or not deleterious. Therefore, two CAGI challenges, NAGLU and 

SUMO-ligase (Zhang et al., 2017), are of particular interest in this dissertation in that 

they request predictions of continuous activity values. Initially motivated by this, I 

developed an ensemble approach, and further extended its application to both binary 

pathogenic prediction and estimation of the subset of mutations with high-reliability 

assignments.  

 

The human NAGLU gene encodes N-acetyl-glucosaminidase, an enzyme that 

catalyzes the cleavage of the glucosaminoglycan chain of heparin sulfate in 

lysosomes. It is one of four genes (Valstar et al., 2008) in which mutations may cause 

one of the four types of Mucopolysaccharidosis III or Sanfilippo Syndrome 

(Sanfilippo, Podosin, Langer, & Good, 1963), a severe neurological disease. The 

human NAGLU protein exists as a homo-trimer in vivo. The three-dimensional 

structure of the protein is available from a recent patent (US08775146B2, 2014) 

(Figure 1-1). The CAGI challenge was based on a set of 165 rare missense NAGLU 

mutations found in the European population samples of the ExAC exome database 

(Lek et al., 2016) (excluding known disease-causing mutations). BioMarin, the 
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company providing the challenge data, introduced each mutation into a human cell 

line via a plasmid construct, and after a period of cell growth, measured NAGLU 

enzyme activity in the cell lysate. 

Figure 1-1. Structure of the human NAGLU homo-trimer, based on the crystal 

structure reported in patent USPTO US08775146B2. The three identical NAGLU 

monomers (green, cyan, and magenta) form a symmetrical complex. The 

glycosylation sites and the glycan molecules are shown in orange. 
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Figure 1-2. Structure of human UBE2I (green) in complex with SUMO (cyan), E3 

ligase (yellow), and the substrate RANGAP1 (magenta). The UBE2I catalytic site is 

indicated by the red circle. PDB: 3UIP (Gareau, Reverter, & Lima, 2012) 

 

The human UBE2I gene encodes the SUMO E2 ligase, an enzyme that catalyzes the 

attachment of a range of target substrate proteins to SUMO (Geiss-Friedlander & 

Melchior, 2007) (See Figure 1-2 for one example). In the challenge, over 6,000 

human SUMO-ligase mutant genes were tagged with DNA barcodes and cloned into 
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S. cerevisiae cells carrying a temperature-sensitive UBC9 gene (encoding the 

corresponding yeast SUMO-ligase (Weile et al., 2017). The relative abundance of 

cells carrying each mutant gene was deduced from high-throughput sequencing of the 

barcodes, following 48 hours of cell growth. 

 

1.3 Engineering through protein design 

1.3.1 Advances in structure modeling methods 

The goal of computational protein design is to find a protein sequence that folds into 

an appropriate three-dimensional structure and so confers a desired new property or 

function such as a de novo fold, enhanced protein thermostability, altered binding 

affinity or specificity of protein-ligand and protein-macromolecule interaction, altered 

enzymatic activity, among others. Protein design methods typically involve a process 

in which an energy function and a conformational search process are used to assess 

the impact of some particular missense mutations in a certain structure context, which 

is, in some sense, comparable to the structure based mutation interpreting tools. 

However, unlike the latter, protein design also involves a process to search for 

optimal mutations in a large sequence space. In full protein design and in mutation 

selection, experimental validation plays a key role. 

 

Protein design methods arose out of protein structural modeling methods, for 

example, the RosettaDesign protocol of the Rosetta programs (B Kuhlman & Baker, 

2000; Rohl, Strauss, Misura, & Baker, 2004). In the past two decades, tremendous 
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improvements have been made to computational protein modeling algorithms 

(Samish, 2017). A few examples: the use of a set of discrete rotamers and conformers 

instead of treating amino acid side chain conformations in a continuous three-

dimensional space facilitates the efficacy of describing protein structures (Dunbrack, 

2002). The inclusion of flexible protein backbone sampling methods improves the 

accuracy of the structure modeling (Ollikainen, Smith, Fraser, & Kortemme, 2013). 

The invention of a knowledge-based approach to reassemble proteins from known 

high-resolution structural fragments has greatly boosted the efficiency and accuracy 

of protein structure prediction (B Kuhlman & Baker, 2000). To search for the global 

minimum energy conformation (GMEC), both deterministic methods (e.g. linear 

programming, and dead-end elimination, DEE) and stochastic methods (e.g. Monte 

Carlo Markov Chain, MCMC) have been adopted (Samish, 2009). For protein design, 

improvements were also seen in terms of the design strategy, such as the inclusion of 

negative design and the Cluster Expansion method (Grigoryan, Reinke, & Keating, 

2009). Protein design is a relatively new field, and there are still many challenges, 

such as loop design. 

 

1.3.2 Application of computational protein design methods 

Computational protein design has been applied to a broad range of protein 

engineering problems. For example, it was used to improve the thermostability of 

human acetylcholinesterase by 20C (Goldenzweig et al., 2016) and increased the 

midpoints of thermal denaturation of Drosophila melanogaster homeodomain from 
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49C to 99C (Shah et al., 2007), to alter protein-protein binding specificity 

(Grigoryan et al., 2009), to design protein based lysozyme inhibitor (Procko et al., 

2013), to design pH-dependent protein binding specificity (Strauch, Fleishman, & 

Baker, 2014), and to improve antibody affinity (Lippow, Wittrup, & Tidor, 2007). 

More prominently, computation protein design methods have successfully designed 

proteins with novel folds that do not exist in nature (Brian Kuhlman et al., 2003; 

Xiong et al., 2014), a small stable vaccine to induce potent neutralizing antibodies 

(Correia et al., 2014), and enzymes with new activity (Jiang et al., 2008; 

Röthlisberger et al., 2008; Siegel et al., 2010). 

 

1.3.3 Rosetta and FoldX 

The Rosetta program (Das & Baker, 2008) was developed by David Baker and many 

collaborators. The method consists of two major algorithms (B Kuhlman & Baker, 

2000; Rohl et al., 2004): 1) Monte Carlo sampling of peptide fragment conformation 

space shaped by local contacts to reduce the conformational search problem 2) 

Searching for the optimal protein conformation using an energy function of mixed 

physical and statistical terms. It now includes dozens of modeling and design 

protocols tailored to different tasks. Particularly, the Rosetta ddG application predicts 

the change of protein folding free energy change (ΔΔG) induced by point mutations 

(Kellogg, Leaver-Fay, & Baker, 2011). Another program, FoldX (Guerois, Nielsen, & 

Serrano, 2002; Schymkowitz, Borg, et al., 2005; Schymkowitz, Rousseau, et al., 

2005) adopted an empirical energy function based on both physical terms such as van 
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der Waals interactions, hydrogen bonding, electrostatic and solvation, and statistical 

energy terms computed from observations in the database of known protein 

structures. Given a point mutation, FoldX uses a fixed backbone modeling process 

that can rapidly estimate the impact of a mutation on the folding free energy.  

 

1.3.4 PlyC as a potential antimicrobial 

Endolysins (phage lysins) are bacteriophage peptidoglycan hydrolases (Nelson, 

Schuch, Chahales, Zhu, & Fischetti, 2006). Purified PlyC proteins can be applied to 

lyse the cell wall of susceptible streptococci both in vitro and in vivo with a superior 

activity compared to other endolysins (Nelson, Loomis, & Fischetti, 2001). The 

protein structure of PlyC is unique in that it consists of eight identical PlyCB 

monomers forming an octameric ring structure as the cell wall binding domain, and a 

PlyCA subunit as the catalytic domain. Two domains of PlyCA, N-terminal glycosyl 

hydrolase (GyH) and C-terminal cysteine, histidine-dependent 

amidohydrolase/peptidase (CHAP), catalyze distinct reactions synergistically. The 

PlyCB octamer and PlyCA are connected via a helical docking domain (McGowan et 

al., 2012). Although PlyC is a potential antimicrobial, the PlyCA CHAP domain is 

very thermal unstable, which could limit its shelf life. 

 

1.4 Overview 

The dissertation is organized as follows. In Chapter 2, I first review the previous 

efforts and analyses in interpreting missense variants in human diseases, followed by 
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an introduction of the two CAGI challenges. I then present the results and post 

analysis of the ensemble methods for prediction of continuous activity, binary 

assignment, and estimation of reliability. In Chapter 3, I describe the current picture 

of missense somatic mutations in cancers, the current computational methods, and 

issues in identifying cancer driver genes and driver mutations. I then present the 

results of characterizing and comparing missense variants in monogenic diseases and 

cancer in light of a better understanding of cancer driver mutations and their effects. 

In Chapter 4, I describe the computational and experimental approaches to engineer 

PlyC CHAP domain thermostability. I then present the successful mutation and the 

experimental validation results. In Chapter 5, I summarize the conclusions of the 

three projects and then look into future prospects for improving computational 

mutation interpretation and protein engineering methods. 
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Chapter 2: Ensemble variant interpretation methods to predict 

enzyme activity and assign pathogenicity in the CAGI4 

NAGLU (Human N-acetyl-glucosaminidase) and UBE2I 

(Human SUMO-ligase) challenges 

 

Published:  

Yin Y, Kundu K, Pal LR, Moult J. 2017. Ensemble variant interpretation methods to 

predict enzyme activity and assign pathogenicity in the CAGI4 NAGLU (Human N-

acetyl-glucosaminidase) and UBE2I (Human SUMO-ligase) challenges. Human 

Mutation 38(9):1109-1122. 

My contribution: computational experiments and data analysis 

 

2.1 Abstract 

CAGI (Critical Assessment of Genome Interpretation) conducts community 

experiments to determine the state of the art in relating genotype to phenotype. Here 

we report results obtained using newly-developed ensemble methods to address two 

CAGI4 challenges: enzyme activity for population missense variants found in 

NAGLU (Human N-acetyl-glucosaminidase) and random missense mutations in 

Human UBE2I (Human SUMO E2 ligase), assayed in a high throughput competitive 

yeast complementation procedure. The ensemble methods are effective, ranked 2nd for 

SUMO-ligase and 3rd for NAGLU, according to the CAGI independent assessors. 
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However, in common with other methods used in CAGI, there are large discrepancies 

between predicted and experimental activities for a subset of variants. Analysis of the 

structural context provides some insight into these. Post-challenge analysis shows the 

ensemble methods are also effective at assigning pathogenicity for the NAGLU 

variants. In the clinic, providing an estimate of the reliability of pathogenic 

assignments is key. I have also used the NAGLU dataset to show that ensemble 

methods have considerable potential for this task, and are already reliable enough for 

use with a subset of mutations. 

 

2.2 Introduction 

The vast quantities of data generated by the high-throughput genotyping and next-

generation sequencing technologies (Reuter et al., 2015; Soon et al., 2013) have 

created a major demand for reliable methods of interpreting the phenotypic 

significance of genetic variation, particularly as it relates to human disease. Among 

various types of genetic variation, missense single nucleotide polymorphisms (SNPs) 

and missense rare mutations in coding regions are of particular interest because of the 

major role these play in monogenic disease (Stenson et al., 2014), complex trait 

disease (Kryukov et al., 2007; Pal & Moult, 2015), and cancer (Shi & Moult, 2011; 

Wood et al., 2007). 

 

Many computational methods have been developed to identify the relevance of 

missense variants to disease (Peterson et al., 2013). Most of these methods make use 

of sequence variation across species and within the human population to infer the 
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likely fitness impact of an amino acid substitution, assumed to be related to disease 

relevance (Calabrese et al., 2009; Choi et al., 2012; Chun & Fay, 2009; Katsonis & 

Lichtarge, 2014; Kircher et al., 2014; Lichtarge et al., 1996; Ng & Henikoff, 2003; 

Niroula et al., 2015; Schwarz et al., 2010; Thomas et al., 2006; Yue & Moult, 2006). 

A few make use of three-dimensional structure information, particularly to infer any 

thermodynamic destabilization of the structure (Redler et al., 2016; Yue et al., 2005), 

assuming that decreased protein activity implies a relationship to disease. Some 

methods combine both sequence and structure information (Adzhubei et al., 2010; 

Baugh et al., 2016; Carter et al., 2013; Folkman et al., 2016; Hecht et al., 2015; B. Li 

et al., 2009). Methods usually use supervised machine learning such as random forest 

(Carter et al., 2013; B. Li et al., 2009; Niroula et al., 2015), neural network (Hecht et 

al., 2015) and support vector machines (Calabrese et al., 2009; Kircher et al., 2014; 

Yue & Moult, 2006), or models that do not need training (Choi et al., 2012; Chun & 

Fay, 2009; Lichtarge et al., 1996; Ng & Henikoff, 2003; Thomas et al., 2006). 

 

Missense analysis methods have usually been evaluated by benchmarking against 

databases of known monogenic disease mutations and presumed benign species or 

population variants, and there have been very few independent tests. Critical 

Assessment of Genome Interpretation (CAGI), conducts community-wide 

experiments to test these and other genome interpretation methods. CAGI participants 

are provided genetic variant information and asked to predict phenotypic 

consequences. Independent assessors then evaluate the results. The experiments are 

double blind in that participants do not know the phenotypes and the assessors do not 
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know the identity of the participants. In the most recent CAGI round, CAGI4 

(http://genomeinterpretation.org), there were two missense variant interpretation 

challenges: the NAGLU challenge (https://genomeinterpretation.org/content/4-

NAGLU) and the SUMO-ligase challenge 

(https://genomeinterpretation.org/content/4-SUMO_ligase). Here we report our 

results for these. 

 

NAGLU (MIM# 609701) encodes Human N-acetyl-glucosaminidase, an enzyme 

involved in the heparan sulfate degradation process, and is one of four (Valstar et al. 

2008) lysosomal enzymes in which mutations may result in one of four corresponding 

types of Sanfilippo Syndrome (Sanfilippo et al. 1963). Mutations in NAGLU protein 

cause a rare neurological disease, Mucopolysaccharidosis IIIB or Sanfilippo B 

disease (O’Brien 1972; von Figura and Kresse 1972; Valstar et al. 2008). The 

NAGLU challenge utilized in vitro enzyme activity data for a set of 165 rare 

population missense mutations extracted from the ExAC exome database (60,706 

individual genomes) (Lek et al., 2016), omitting 24 known disease mutations. CAGI 

challenge participants were asked to quantitatively predict the enzymatic activity of 

each mutant relative to that of the wild-type enzyme. A unique feature of the NAGLU 

dataset is that it represents the distribution of protein function of rare variants present 

in a population. To our knowledge, this is the first test of this type for current 

missense analysis methods, and more relevant to variants encountered in the clinic 

than usual database benchmarking. 
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UBE2I (MIM# 601661) encodes the human small ubiquitin-like modifier proteins 

conjugating protein (SUMO E2 ligase) that catalyzes the covalent attachment of 

SUMO to a range of target proteins. The CAGI challenge data provider had generated 

a library of over 6,000 human SUMO-ligase UBE2I clones expressing nearly 2,000 

unique missense mutations in various combinations. The competitive growth rate of 

each clone was deduced from deep sequencing of a yeast-based complementation 

system. CAGI participants were asked to predict the relative competitive growth rates 

of yeast cells carrying three different sets of random mutations. Unlike the NAGLU 

challenge, where enzyme activity is known to be directly related to pathogenicity 

(von Figura & Kresse, 1972), the relationship between SUMO-ligase function and 

fitness is complicated by two factors – the multiple regulator and target proteins that 

interact with SUMO-ligase (Geiss-Friedlander & Melchior, 2007), and the fact that 

the human SUMO-ligase was substituted for the native enzyme in yeast cells. These 

factors make this a complex system from the point of view of interpreting the CAGI 

results. Many similar high throughput mutational scans are now being undertaken, so 

it is of interest to use the CAGI experiment to begin to probe the strengths and 

limitations of this approach, both generally, and as a basis for CAGI challenges. 

 

All submitted predictions in each challenge were evaluated by independent assessors, 

one for each challenge. Results reported here were ranked 2nd among 9 groups with 

16 submissions for the SUMO-ligase challenge and 3rd among 10 groups with 17 

submissions for NAGLU. 
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Most missense analysis methods assign each variant as either deleterious or benign. 

An unusual feature of both the NAGLU and SUMO-ligase challenges is that they 

require prediction of a continuous variable, in one case relative enzyme activity, and 

in the other, relative yeast growth rate. In other words, the challenges require a 

regression predictor rather than a classification predictor. To address this requirement, 

I made use of an ensemble approach, combining binary predictions or associated 

confidence scores from up to eleven different methods. In a number of fields, 

ensemble methods that combine results from multiple individual methods have 

proven effective (Abeel, Helleputte, Van de Peer, Dupont, & Saeys, 2010; Dietterich, 

2000; Moult, 2005). A number of missense ensemble predictors, for example 

CONDEL (González-Pérez & López-Bigas, 2011), PONP (Olatubosun et al., 2012), 

Meta-SNP (Capriotti et al., 2013) and most recently REVEL (Ioannidis et al., 2016) 

have also been developed for the more usual task of binary classification, but as far as 

we are aware, this is the first use for quantitative prediction of missense impact. 

 

I also performed several post-challenge analyses on the NAGLU dataset, examining 

the usefulness of structure information for identification of deleterious mutations and 

comparing the performance of the new ensemble method with other missense 

methods for binary classification. In the clinic, a major concern is not just to have an 

accurate predictor of pathogenicity, but also to assign a reliable probability that an 

assignment of pathogenic or benign is correct. The NAGLU challenge data set 

provided an opportunity for testing methods of assigning such probabilities on a 

clinically relevant dataset. 
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2.3 Methods 

2.3.1 Challenge data and benchmark data 

The challenge set of 165 NAGLU rare population missense mutations was provided 

by Jonathan H. LeBowitz (BioMarin). The SUMO-ligase CAGI challenge set was 

generated by the Fritz Roth lab using a competitive yeast complementation growth 

assay (Weile et al., 2017). Three sets of UBE2I (SUMO-ligase) mutations were 

provided – 1) a reliable (multiple measurements) set of 219 single missense 

mutations, 2) a less reliable set of 463 single missense mutations and 3) a set of 4427 

double or more mutations per clone. The experimental NAGLU enzyme activity data 

and the SUMO-ligase yeast growth data were not released to CAGI participants until 

all predictions had been submitted. In addition, we also collected 90 NAGLU known 

disease-related variants from HGMD (Stenson et al., 2014), together with the 278 

interspecies variants, as a benchmark set. 

 

2.3.2 Data for training predictors of continuous activity 

Methods training for both NAGLU enzyme activity and SUMO-ligase growth rates 

required data that are also on an appropriate continuous scale of biological activity (as 

opposed to the more usual pathogenic/benign classification). For this purpose, a set of 

enzyme activity data for 92 human Phenylalanine hydroxylase (PAH) variants from 

(http://www.biopku.org/pah/) was used, supplemented by a set of 139 PAH 

interspecies variants (identified by comparing the human sequence with those of 

seven PAH orthologs (HomoloGene, (NCBI Resource Coordinators, 2015)) with 
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sequence identities higher than 80%), assumed to have full activity. I also searched 

the literature for high throughput mutation datasets that might be appropriate for use 

as training data. Only one of these appeared suitable, a set of cell growth rate data for 

yeast ubiquitin (UBI4) mutations (Roscoe, Thayer, Zeldovich, Fushman, & Bolon, 

2013). In practice, methods trained on these data performed poorly, and so its use was 

discontinued. 

 

2.3.3 Combining multiple missense analysis methods to predict relative protein activity 

For the ensemble methods, up to eleven missense analysis methods were used: 

Polyphen-2 (Adzhubei et al., 2010), SIFT (Ng & Henikoff, 2003), SNPs3D Profile 

(Yue & Moult, 2006), CADD (Kircher et al., 2014), Panther (Thomas et al., 2006), 

PON-P2 (Niroula et al., 2015), SNAP2 (Hecht et al., 2015), PROVEAN (Choi et al., 

2012), VEST3 (Carter, Douville, Stenson, Cooper, & Karchin, 2013), LRT (Chun & 

Fay, 2009) and MutationTaster (Schwarz et al., 2010). The dbNSFP2.9 database (X. 

Liu, Jian, & Boerwinkle, 2013) was used to obtain CADD, PROVEAN, LRT, VEST3 

and MutationTaster results. SNPs3D Profile results were obtained using the 

standalone in-house software. Results of other methods were obtained from the 

corresponding web-servers. 

 

Binary predictions and associated scores were collected when both were available. 

Polyphen-2 ‘Probably damaging’ and ‘Possibly damaging’ were merged as a 

deleterious assignment. The MutationTaster deleterious set was compiled by 

combining the ‘A’ and ‘D’ categories, and the benign set consisted of the ‘P’ and ‘N’ 



 

 

27 

 

categories. Four methods (CADD, SNPs3D profile, Panther, and VEST3) didn’t 

directly report binary assignments. The recommended threshold score of 15 was used 

for CADD and the standard score threshold of zero was used for SNPs3D profile.  A 

‘deleterious’ score of 0.5 and a score of 0.77 were chosen as the cutoffs for Panther 

and VEST3 respectively, the values at which the distribution curves of deleterious 

and benign training sets crossed each other. 

 

For machine learning based prediction of protein activity, two sets of input features 

were tested: One set consists of the score values returned by each of the 11 missense 

methods listed above. The other set consists of the binary assignments of benign or 

deleterious, represented as 0 or 1. Both feature sets also included the fraction of 

agreement (FOA) for a deleterious assignment across predictors, calculated as 

follows: 

𝐹𝑂𝐴 =  ∑ 𝐶𝑖

𝑖

  ∑ 𝑁𝑖

𝑖

⁄   

where the sum is over the number of missense methods included, and  𝑁𝑖 is 1 if a 

binary assignment is available for the i-th method, and is 0 otherwise, 𝐶𝑖 is 1 if the i-

th method predicted deleterious and is 0 if the i-th method predicted benign or was 

not available. 

 

Weka (Frank et al. 2016) with standard settings was used to test a number of machine 

learning models: logistic regression, linear regression, support vector machine (SVM) 

regression, multi-layer perceptron, M5 Rule, random tree and random forest. The 

overall best performance (as judged from Root mean square deviations (RMSD, see 
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supplementary methods), Pearson, and Spearman) on the PAH training set with 10-

fold cross validation was returned for an SVM regression with an RBF kernel with 

the default settings and using the 11 method scores and FOA as features. However, 

the spread of performance across the best combinations of the feature sets and the ML 

methods was small (Pearson’s r 0.84-0.87, RMSD 0.18-0.20, 10-fold cross validation) 

and so more extensive parameter optimization might have produced a different 

choice. In addition to the prediction of activity, CAGI4 rules also required estimated 

standard deviations for each activity value. I provided the RMSD on the PAH training 

set as the standard deviation for all predicted activities. 

 

2.3.4 Scale calibration and manual adjustment for each challenge 

The SVM regression model was used to predict the relative enzyme activity of each 

NAGLU mutation and the cell growth rate of each UBE2I (SUMO-ligase) mutation. 

Because the model was trained on a different gene (PAH) with enzyme activity 

measured using a different experimental assay, we expected some systematic bias in 

the predictions and assumed that results would require scaling for each challenge 

system. For NAGLU, a zero activity reference point was defined using 15 known 

disease mutations with reported zero enzyme activity (Beesley et al., 2004; Lee-Chen 

et al., 2002; Tessitore et al., 2000; Weber et al., 1999). A full activity reference point 

was defined by the 278 NAGLU interspecies variants compiled in the same way as the 

PAH interspecies variants described above. These reference points were used to 

linearly scale the NAGLU activity predictions. I also collected structural information 

on the NAGLU protein from SNPs3D stability (Yue et al., 2005) and FOLDX 
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(Guerois et al., 2002) predictions, as well as information on the functional role of 

individual residues from UniProt (UniProt Consortium, 2015). Two predictions 

affecting disulfide bonds were manually adjusted to 0.1 activity. Predictions for six 

residues were adjusted to lower predicted activity in an ad hoc manner, on the basis 

of predicted structure destabilization. The experimental data later showed that these 

manual adjustments did not improve overall prediction accuracy, and increased 

prediction error for three of the six residues. For SUMO-ligase, the distribution of 

experimental measurements was provided as part of the challenge. Two submissions 

were made using different calibration procedures. For the first, I used the closest 

experimental values to 0 and 1 as the zero and full growth rate reference points and 

applied a linear scaling procedure like that used for NAGLU. In the second 

submission, each predicted growth rate was uniquely matched to the corresponding 

ranked experimental value. We noted that the experimental distributions have a 

number of mutations with growth rates significantly higher than wild-type. For each 

challenge set, for the submission not mapped to the distribution of experimental data, 

it was necessary to reassign some growth rates to values greater than wild-type to 

match experiment. I increased the values for the top predicted growth rate subset, 

except for those that predicted destabilizing by SNPs3D Stability (Yue et al. 2005) 

and FOLDX (Guerois et al. 2002). I also took into account (Bernier-Villamor et al. 

2002; UniProt Consortium 2015) several reports of mutations with enhanced growth 

rate. The experimental data showed that this procedure is less accurate than that 

without manual adjustments on most gain-of-function mutations (22 of 27 in set 1 and 

47 of 52 in set 2). For Challenge set 3, where multiple mutations were present in each 
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sample, we assumed that the highest impact prediction dominated, and assigned that 

predicted value. The results of each challenge presented throughout the rest of the 

manuscript are based on a final set of predictions that include the manual adjustments. 

 

All final predictions were adjusted to be 0 if below 0, as required by the CAGI4 

submission instructions. 

 

2.3.5 Positive and negative controls 

Positive and negative control models were used to further evaluate the continuous 

predictions of relative protein activity. The positive control model estimated the 

performance expected if the computational method were perfect so that the only 

discrepancies arose from experimental error. For this purpose, simulated experimental 

errors were randomly drawn from a Gaussian distribution using the reported 

experimental mean and standard deviation based on the experimental error for each 

mutation. The performance was averaged from 1000 repeats of this process. The 

negative control adopted the algorithm proposed by the CAGI SUMO-ligase assessor 

as follows: 

Prediction Score = ln (
𝑃𝑚

𝑄𝑚
) − ln (

𝑃𝑤

𝑄𝑤
) 

Where 𝑃𝑤 and 𝑃𝑚 are the probability of the wild type and mutated residue type 

occurring at the mutated position in a multiple sequence alignment and 𝑄𝑤 and 𝑄𝑚 

are the background frequencies of the wild type and mutated residue respectively in 

the entire sequence profile. 
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2.3.6 Analysis of the influence of training set type and size on performance 

The continuous value prediction models used a small training set of mutations and 

that set was from an unrelated protein. Once the submissions were made and the 

experimental data were available, for each of the challenges, I tested the influence of 

these factors as follows. 15% of the data was set aside for testing and a series of 

subsets of different sizes were randomly selected from the remainder. The machine 

learning model was retrained on each of these subsets. The procedure was repeated 10 

times, omitting a different 15% data each time. Performance was then evaluated as a 

function of training set size. 

 

2.3.7 Training and testing data for the binary predictor 

For training ensemble binary predictors of pathogenicity, all mutations in an earlier 

version of HGMD (Stenson et al., 2003) were used as true positives and a set of 

interspecies variants were used as true negatives (‘benign’ mutations), compiled by 

comparing homolog protein sequences across species with at least 90% sequence 

identity over at least 80% of the full length (Yue & Moult, 2006). For testing 

pathogenicity models and assessing prediction reliability, I compiled two independent 

test data sets. The first set is composed of ClinVar (Landrum et al., 2016) variants 

with pathogenic or benign assignments, excluding all that are in HGMD (2014 

version) (Stenson et al., 2014) and OMIM (http://omim.org/) in order to ensure 

independence from the commonly used training data. ClinVar ‘likely pathogenic’, 

‘likely benign’ entries, and entries with conflicting ClinVar assignments were not 

included. The second is the challenge set of 165 NAGLU rare population missense 
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mutations. A complication in this analysis is choosing an activity level below which 

all mutations are pathogenic (that is, penetrance is 100%).  In other data referenced by 

the data provider, pathogenic mutations are found at activities up to 45% but most are 

below 15%. Because of this uncertainty, I evaluated methods performance using both 

10% and 30% relative enzyme activity cutoffs for pathogenicity. 

 

2.3.8 Pathogenicity prediction models 

Three machine learning methods were tested for binary state (pathogenic/benign) 

prediction models: Logistic Regression (Weka), Random Forest (Weka) and SVM 

(RBF kernel, SVMlight (Joachims 1999)). Features sets were the same as those used 

for continuous value prediction except that Panther and SNAP2 predictions were 

removed due to the difficulty of collecting the large number of predictions required 

from the corresponding web-servers. Models were trained using the HGMD dataset 

with default parameters. REVEL (Ioannidis et al., 2016) predictions were 

downloaded from (https://sites.google.com/site/revelgenomics/). The dbNSFP2.9 

database (X. Liu et al., 2013) was used to map REVEL results to individual protein 

mutations. 

 

2.3.9 Measuring prediction reliability 

In the clinic, variants are often accepted as pathogenic or benign if the 

confidence in that assignment is estimated as greater than some threshold, typically 

90%. For each binary prediction method, I therefore I evaluated the fraction of 



 

 

33 

 

variants that were predicted with reliability (PPV, positive predictive value, see 

supplementary methods) at 95%, 90%, 85% and so on. To this end, for each method, 

the data were sorted by the associated prediction score, from highest confidence score 

to lowest. For prediction of pathogenicity, the fraction of highest confidence variants 

with a given PPV was then determined. The resulting fractions versus PPV curves 

were plotted using R ggplot2 (Wickham H, 2009)(Wickham 2009). To reduce noise, 

the NAGLU dataset was expanded to 1000 variants by bootstrapping, and assessed by 

averaging over 1000 bootstrappings. 

 

2.3.10 Measures of performance 

For predicted NAGLU enzyme activity and SUMO-ligase yeast growth rate, I 

calculated the root mean square deviation (RMSD) as follows:   

𝑅𝑀𝑆𝐷 =  √∑(𝑋𝑝𝑟𝑒𝑑
𝑖 − 𝑋𝑒𝑥𝑝

𝑖 )2

𝑖

𝑁⁄  

Where 𝑋𝑝𝑟𝑒𝑑
𝑖  and 𝑋𝑒𝑥𝑝

𝑖  are the predicted and experimental value of the i-th mutation. I 

used in-house programs and EXCEL2013 to calculate the Pearson’s r and the 

Spearman’s rho. The true positive rate and false positive were defined as following: 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

The area under the receiver operating characteristic (ROC) curves (AUC) were 

approximated using the R package pROC (Robin et al., 2011). AUCs of different 

methods were compared using DeLong’s test (DeLong, DeLong, & Clarke-Pearson, 
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1988). When testing on the HGMD training set, I performed 10-fold cross validation. 

For evaluation of the accuracy of probability of pathogenicity estimates, the positive 

predicted value (PPV) is defined as follows: 

𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

2.4 Results 

2.4.1 Comparison of predicted and experimental enzyme activities 

Figure 2-1A shows a scatter-plot for the NAGLU challenge mutations showing the 

relationship between all predicted and experimental enzyme activities. The overall 

RMSD between predicted and experimental values is 0.31, Pearson’s r is 0.55, and 

Spearman’s rho is 0.57. These values are worse than the cross validation results on 

the PAH training data, which are RMSD of 0.20, Pearson’s r of 0.82 and Spearman’s 

rho of 0.78. The NAGLU predicted values are also substantially worse than the 

positive control ‘perfect prediction’ RMSD of 0.12, 0.95 Pearson’s r and 0.94 

Spearman’s rho (based on the reported experimental standard errors). There are a 

small number of serious outliers, and as the plot shows, most of these correspond to 

mutations identified by the assessor as ‘hard to predict’ on the basis of poor 

performance by all the top methods. A breakdown of performance by location in the 

structure (Figure 2-2) shows striking variations for the Pearson’s correlation 

coefficient of 0.83, 0.50 and 0.39 for buried, partially exposed and surface mutations 

respectively. (Variant location based on the STRIDE (Eisenhaber & Argos, 1993; 

Eisenhaber, Lijnzaad, Argos, Sander, & Scharf, 1995; Frishman & Argos, 1995) 
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relative surface accessibility: buried core (≤ 0.05), partially exposed (> 0.05, ≤ 0.25) 

and surface (> 0.25)). The most serious outliers for both under and over-prediction of 

activity are in the partially or completely exposed subsets. Performance metrics are 

substantially improved omitting these ten, with RMSD of 0.24, Pearson’s r of 0.71 

and Spearman’s rho of 0.71 (Table 2-1). 
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Figure 2-1. Prediction results for NAGLU and UBE2I (SUMO-ligase) mutations. 

Figure 2-1A. Scatter-plot comparing experimental NAGLU relative enzyme 

activities (Y-axis) with the predicted values (X-axis) for the CAGI challenge variant 

set. Dashed lines delineate the expected prediction RMSD from based on training 

results. 61% of the predicted values are within the range of the estimated RMSD, but 

a few mutations have very large deviations from the experimental measurements. The 

over-estimates shown in orange and the under-estimates shown in green are the ten 

mutations selected by the assessor as ‘hardest’ to predict. See text and Figure 2-2 and 

2-3 for a discussion of these. 

Figure 2-1B. Scatter-plot comparing experimental relative yeast growth rates with 

the mapped predicted values for the SUMO-ligase CAGI challenge UBE2I mutation 

Set 1. Dashed lines delineate the expected prediction RMSD from the training on 

phenylalanine hydroxylase mutations. The correlation with experiment is 

substantially weaker than for the NAGLU challenge (Figure 2-1A). 39% of the 

predicted values are within the range of the estimated RMSD. 
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Figure 2-2. Scatterplot comparing experimental CAGI NAGLU relative enzyme 

activities with predicted values for three categories of surface accessibility. 2-2A) 

core residues, 2-2B) partially buried residues, 2-2C) exposed residues on the surface. 

Dashed lines delineate the expected prediction RMSD expected from training 

performance. Predictions are most accurate in the core and least accurate on the 

surface. Orange and green colored points represent mutations considered ‘hard’ by 

the assessor. Performance is worst for surface residues and best for core residues, 
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Table 2-1. Metrics of prediction performance for NAGLU and SUMO-ligase  
 

a In the SUMO-ligase challenge, we submitted two prediction sets, submission 1 using 

the scaled prediction scores (No Map), submission 2 (Mapped) mapping each 

predicted value to the experimental value of closest rank. 

b In the positive control, I estimate the expected difference between experiment and 

prediction, given the reported experimental errors. That is, a perfect prediction 

method could not be more accurate than this. See MATERIALS AND METHODS. 

c In the negative control, a prediction score was computed for each mutation based on 

amino acid frequency information only, using the equation described in 

MATERIALS AND METHODS. The resulting prediction scores were mapped to the 

experimental value of closest rank.  
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Are the ten outlier mutations cases where all the prediction methods systematically 

fail, or are these experimental artifacts of some sort? A definitive answer to this 

question is not possible without further experiments, but in some cases, likely 

explanations present themselves. For example, 10 out of 11 individual methods in the 

ensemble model and a structural method, SNPs3D Stability, predict mutation 

(NAGLU NP_000254.2:p.A627V) to be benign, but the reported experimental activity 

value is close to 0. Consistent with the prediction results, examination of a multiple 

sequence alignment shows A627 is at a variable position across species, where 15 

different amino acid types are found. A627 is on the protein surface (Figure 2-3A) 

and the variant introduces a hydrophobic side chain (crystal structure from USPTO 

US08775146B2 (US08775146B2, 2014)). Under in vivo conditions, that may indeed 

have little impact, but in overexpression conditions of the experimental in vitro assay, 

aggregation may result. On the other hand, it is difficult to find any plausible 

explanation for some of the outliers. For example, one outlier (NAGLU 

NP_000254.2:p.P283L) is a partially exposed proline at an extremely conserved 

position (Figure 2-3B). All 11 individual prediction methods as well two structure-

based methods, FOLDX (Guerois et al., 2002; Schymkowitz, Borg, et al., 2005) and 

SNPs3D Stability (Yue et al., 2005), predict this mutation deleterious. Inspection of 

the structure suggests no way in which the leucine side chain could be 

accommodated. The reported experimental activity is the highest of any of the 

variants, at 1.19. 

 

 



 

 

41 

 

 

Figure 2-3. Structural view of two of the 10 ‘hard’ NAGLU outliers. Crystal 

structure is from USPTO US08775146B2. Mutated residues are yellow. Wild-type 

residues and environments in green, with a neighboring subunit in cyan. An N-

Acetylglucosamine molecule is in magenta, ordered water molecules are red crosses.  

2-3A 10 out 11 individual prediction methods and one structural method (SNPs3D 

Stability) predict A627V as benign, and it is a species variable surface residue, but 

reported experimental enzyme activity is only 0.08.  

2-3B All 11 individual methods and two structural methods, FOLDX and SNPs3D 

Stability, predict P283L as deleterious and the proline is highly species conserved, but 

the experimental enzyme activity is 1.19. 
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Figure 2-1B is a scatter plot of the relationship between Submission 2 predicted and 

experimental growth rates for Set 1 UBE2I (SUMO-ligase) mutations. The 

performance is weaker (RMSD 0.55, Pearson’s r 0.39, Spearman’s rho 0.46) than the 

results for NAGLU, likely because of the complex relationship between aspects of 

SUMO-ligase function, its many substrates, and cell growth as well as effects from 

use of human protein in a yeast system. In contrast to NAGLU, the best performance 

is for surface residues (Pearson’s r 0.59), and it is less good for mutations of buried 

(Pearson’s r 0.35) and partially buried (0.29) residues. The results are worst for 

mutations in the substrate, SUMO, and SUMO-E3 ligase protein-protein interfaces 

((Pearson’s r 0.24, Figure 2-4). For example, in the experimental structure with a 

human SUMOylation substrate, RANGAP1 (PDB code 3UIP), the wild-type K74 

forms a salt bridge with E526 of the substrate (Figure 2-5). Mutations (UBE2I 

NP_003336.1:p.K74S and UBE2I NP_003336.1:p.K74E) disrupt that interaction and 

in the case of K74E electrostatic repulsion is introduced. Both positions are 

conserved, and the mutations are overwhelmingly predicted deleterious, yet the 

experimental growth rates are higher than wild-type. On the other hand, mutation 

(UBE2I NP_003336.1:p.K74R) appears to enhance the salt bridge with E526, and 

four out of ten sequence methods and the two structure methods predict it as benign. 

Yet the experimental value shows complete loss of growth. At the CAGI meeting the 

data provider, Fritz Roth, agreed that a possible complication here is that interfaces 

between human SUMO-ligase and its human partners may have significantly different 

properties from the equivalent yeast interfaces, and that in general the substantial 

number of gain of function mutations may be due to this cause.  
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Figure 2-4. Scatterplots of the experimental SUMO-ligase set 1(Y-axis) relative cell 

growth rate versus predicted values. Mutations are divided into four categories based 

on solvent accessibility: 2-4A) surface residues, 2-4B) core residues, 2-4C) partially 

exposed residues and 2-4D) residues at the interfaces to SUMO, SUMO E1 ligase and 

SUMO E3 ligase. The dashed lines delineate the expected RMSD from the training 

on phenylalanine mutations. The best performance is for surface residues, and the 

worst is for protein interface residues. 
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Figure 2-5. Structural view of three SUMO-ligase mutations of the same residue 

where predictions have large errors (PDB code 3UIP). Under-predicted mutation 

outliers (K74S and K74E) are orange and an over-predicted mutation outlier (K74R) 

is magenta. Wild-type residue K74 and its environment are green, and a SUMO-

ligase substrate (RANGAP1) is cyan. K74R should make a stronger salt bridge to 

E526 than the wild-type K74 and consistent with that four individual sequence 

methods and two structure methods, SNPs3D Stability and FOLDX, predict this 

mutation as benign. The experimental value shows zero growth rate. On the other 

hand, most of the individual methods and FOLDX predict K74S and K74E 

deleterious and the structure shows these two mutations likely disrupt the contacts 

with the substrate residue. K74E may also induce electronic repulsion. But the 

experimental growth rates are higher than wild-type. Discrepancies for these and 

other interface-related mutations may reflect differences between human and yeast 

partner proteins structures or that different substrates have different modes of binding. 
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Table 2-2. Total number of variants in each dataset, and coverage of these by 

different prediction methods, for each dataset used. The SUMO-ligase set includes all 

non-redundant single mutations in CAGI challenge set 1, set 2 and set 3. ClinVar 

consists of ‘pathogenic’ and ‘benign’ missense variants excluding those also found in 

HGMD and/or OMIM. 



 

 

46 

 

Some other SUMO-ligase substrates do not have exactly the same interface (Bernier-

Villamor, Sampson, Matunis, & Lima, 2002). Thus, in general, it is not clear how 

altering the interface with one substrate may affect interactions with other substrates, 

and therefore what the overall effect on growth may be. 

 

Table 2-1 summarizes all the agreement statistics between prediction and experiment 

for the NAGLU mutations and the UBE2I (SUMO-ligase) set 1, set 2 and set 3 

mutations, together with the values for the positive and negative controls. (Data are 

for the SVM regression models described in Materials and Methods). Table 2-2 

shows the number of missense analysis methods reporting for each data set. The 

results show our models outperformed the (quite sophisticated) negative control in the 

NAGLU challenge (RMSD 0.31 versus 0.42, Pearson’s r 0.55 versus 0.45, and 

Spearman’s rho 0.57 versus 0.48). The model is also effective on the SUMO-ligase 

set 1 (the most reliable single mutations) when compared to the negative control 

(RMSD 0.55 versus 0.59, Pearson’s r 0.39 versus 0.30, and Spearman’s rho 0.46 

versus 0.38). The large gap between the method’s performance and the positive 

control suggests that experimental error was likely not the limiting factor in the level 

of agreement with experiment. 

 

2.4.2 NAGLU and SUMO-ligase challenge variant properties 

The NAGLU challenge data are extracted from the ExAC database of population 

variants (Lek et al., 2016). In this respect it is a unique dataset – a set of variants 

found in a largely healthy population as opposed to the collections of known disease-
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related mutations in databases such as HGMD (Stenson et al., 2003) and Clinvar 

(Landrum et al., 2016) and control sets of variants such as interspecies differences 

that are typically used for training and benchmarking methods. It is therefore of 

interest to ask how different the overall properties of these population variants are 

from the variants in the standard databases. Figure 2-6A shows that the predicted 

relative enzyme activity for the 90 NAGLU disease variants in HGMD and for 278 

NAGLU interspecies variants have distinct distributions centered on 0 and 0.9~1 

respectively, as expected. In contrast to this, the predictions for NAGLU CAGI 

challenge variants are approximately evenly distributed across the whole 0 to 1 range, 

in a manner similar to that of the experimental data. 

 

Figure 2-6. Distributions of predicted and experimental enzyme activities 

Figure 2-6A. Distribution of NAGLU relative enzyme activities 1) predicted for 

disease mutations in HGMD (HGMD, red); 2) predicted for inter-species variants 

(Interspecies, green); 3) predicted for mutations provided for the CAGI challenge 

(Prediction, blue), and 4) experimental activities for the challenge mutations 

(Experiment, purple). As expected, known disease mutations are predicted to have 

low activities and interspecies variant to have high activity. In contrast to these, the 

population variants have activities approximately equally distributed across the full 

range, for both prediction and experiment. 

Figure 2-6B. Relative yeast growth rate distributions for UBE2I (SUMO-ligase) 

mutation Set 1. The distribution of the unmapped predicted values (Submission 1, 

red) only approximately matches the experimental distribution (Experiment, black), 
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available during the challenge. We submitted a second set of predictions in which 

each predicted value was mapped to the experimental value of closest rank 

(Submission 2, blue). This improves the overall match of the distributions (red and 

black) but not the prediction accuracy. 

(Figure 2-6. See above for caption.) 

 

Figure 2-6B shows a comparison of the distribution of predicted yeast growth rates 

for SUMO-ligase challenge Set 1 mutations compared to the experimental 

distribution. An unusual feature of the experimental distribution is a substantial 

number (19%) of gain of function mutations, and this resulted in a poor overall fit 

from our prediction model. For submission 1, the distribution at low growth rates 

(below 0.2) is close to experiment, but between 0.2 and 1.0 there are too few 

predicted values and there are too many moderate gain of function values (in the 1.0 

to 1.4 range). The second submission, which mapped each predicted value to the 

closest experimental value, corrects these distribution errors and produced a better 

overall distribution but doesn’t improve the prediction accuracy (Table 2-1). Set 2 

showed similar results, whereas Set 3 shows many fewer gain-of-function mutations, 
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presumably because of the presence of multiple mutations in each sample (Figure 2-

7). 

 

Figure 2-7. Distributions of experimental and predicted relative yeast growth rate 

distributions for the SUMO-ligase mutation Set 2 (A) and Set 3 (B). The distribution 

of the predicted values for our first submission (Submission 1, red) overestimates the 

number of experimental gain of function mutations (Experiment, black). The second 

submission (Submission 2, blue) corrects for this effect by mapping each value to the 

closest ranked experimental value. Set 3, with multiple mutations in each sample, has 

fewer gain-of-function mutants, as expected. 

 

2.4.3 Role of structure destabilization 

Thermodynamic destabilization of three-dimensional structure is established as 

playing a large role for monogenic disease-causing mutations (Yue et al., 2005), so it 

was of interest to examine what part this factor plays for the challenge variants. (This 
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analysis was undertaken after the results were known, and did not form part of our 

CAGI submissions). Figure 2-8A shows the distribution of destabilization scores 

from SNPs3D (Yue et al., 2005) for the NAGLU homo-trimer complex. At a NAGLU 

pathogenicity activity threshold of 0.3, a high fraction (68%) of the low activity 

variants are destabilizing, so, as in other monogenic diseases, this factor plays a major 

role. 

 

The structure analysis is independent of the sequence methods and so provides some 

evidence for whether or not the 10 ‘hard’ predictions are experimental artifacts or 

systematic failures of the sequence methods. Two of the ‘hard’ variants with high 

experimental activity (NAGLU NP_000254.2:p.P283L and NAGLU 

NP_000254.2:p.G596C) are predicted destabilizing, consistent with the sequence 

analysis results and inconsistent with experiment. One of the ‘hard’ very low activity 

(0.06) variants ((NAGLU NP_000254.2:p.R377H), Figure 2-8B) is found to be 

destabilizing though, consistent with experiment and in disagreement with some 

sequence methods (5 out of 11). Wild-type R377 makes charge-dipole interactions 

with two main chain carbonyl groups (T343, A345) and a side chain hydroxyl group 

(Y335) so stabilizing a turn, and these interactions are absent for the variant (Figure 

2-8B). The other seven ‘hard’ variants are all low activity and predicted to be not-

destabilizing (lower right quadrant in Figure 2-8A). This could be because some other 

mechanism (for example involvement in catalysis) causes the low activity or because 

of experimental artifacts. Inspection of the structural environment does not reveal any 

such mechanisms, reinforcing the impression that these are experimental artifacts. 
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17% of the stability predictions disagree with the experimental data – predicted 

destabilizing but with higher than pathogenic activity. These partly reflect the 

shortcomings of present stability analysis methods as illustrated by the example of 

mutation (NAGLU NP_000254.2:p.D306G) (Figure 2-8C). Wild-type D306 forms 

electrostatic interactions with R234 that is absent for the variant. In reality, loss of 

this interaction is likely largely compensated for by increased solvation energy, a 

factor poorly represented in the SNPs3D model. There is scope for improvement of 

these methods in this and a number of other ways.  

 

Figure 2-8. The role of thermodynamic destabilization in loss of function mutations.  

2-8A) Scatter plot comparing SNPs3D stability scores with experimental relative 

enzyme activity of NAGLU. Blue point variants in the lower left quadrant (68% of all 

those with low (< 0.3) activity) are predicted to destabilize the structure. Those at the 

upper right are predicted not destabilizing, consistent with their high activity. Those 

at the lower right (gray) are predicted to have low activity for reasons other than 

destabilization. The upper left quadrant variants (orange) are predicted destabilizing 

even though the experimental activity is high. Triangles show the location of the ten 

‘hard to predict’ variants. 

2-8B) Structural context of NAGLU ‘hard’ outlier R377H (red in [A]). Predicted 

destabilization is consistent with the low experimental activity. A substantial fraction 

(5 out of 11) of sequence methods predict this variant to be benign. 
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2-8C) Structural view of variant D306G (red in [A]), predicted to be destabilizing, 

inconsistent with the experimental activity. Although the variant disrupts some 

electrostatic interactions, these are likely compensated by greater solvation. (Cyan: 

wild-type residues and interaction partners, orange: variants). 

 

(Figure 2-8. See above for caption.) 
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2.4.4 Effect of training set size and choice of training data 

One obvious drawback to my approach is the limited number (activities for 231 

phenylalanine hydroxylase mutations) of training data. Further, training on that single 

system may introduce systematic bias. In order to evaluate whether the performance 

of the model is restricted by these two factors, I retrained using the NAGLU enzyme 

activity data, after these were released to the CAGI community (see Materials and 

Methods). A range of training set sizes was used to determine the contribution of that 

factor to accuracy. For each size, I retrained and measured performance, and averaged 

over 10 repeats. For each training, 15% of the data were randomly chosen for 

evaluation, and omitted from training.  Figure 2-9 shows that performance converged 

rapidly as the size of the training set increased beyond 100 mutations, showing that 

training set used in the CAGI challenges was large enough and not a factor limiting 

accuracy. Comparison between the converged performance and the performance in 

the blind CAGI challenges showed only a slight improvement of 0.05 RMSD and 

0.07 Spearman’s rho for NAGLU and 0.08 RMSD for SUMO-ligase, so that the loss 

of performance from training on the phenylalanine hydroxylase system is small. 

Similar results were obtained for the SUMO-ligase challenge. Together, this analysis 

shows that the results were not substantially limited by either the training set size or 

training on a different system, and other factors must account for the worse than 

positive control performance. 
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Figure 2-9. Blue: average training set performance, green: average test set 

performance (15% of data omitted from training). Averages over 10 runs. Purple 

rectangles show performance in the CAGI challenge with the model trained on PAH. 

2-9A) RMSD, 2-9B) Spearman rank correlation coefficient. Prediction performance 

converges rapidly as the training set size increases beyond 100 mutations. Training on 

the target protein rather than Phenylalanine hydroxylase (PAH) only slightly 

improves performance (0.05 RMSD and 0.07 Spearman’s rho). Thus, training set size 

and training on PAH are not limiting factors in performance. 

 

2.4.5 Predicting pathogenicity using ensemble methods 

Post-challenge, I also investigated how well ensemble methods perform on assigning 

pathogenicity in the clinically relevant NAGLU data, compared with performance on 

standard benchmarking datasets.  For these binary predictions (pathogenic/not 

pathogenic), I trained ensemble methods based on nine individual predictors (CADD 
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(Kircher et al., 2014), LRT (Chun & Fay, 2009), MutationTaster (Schwarz et al., 

2010), PON-P2 (Niroula et al., 2015), PPH2 (Adzhubei et al., 2010), PROVEAN 

(Choi et al., 2012), SIFT (Ng & Henikoff, 2003), SNPs3D Profile (Yue & Moult, 

2006) and VEST3 (Carter et al., 2013)) with three machine learning models (Logistic 

Regression, Random Forest, and SVM). Training was performed on a version of 

HGMD (Stenson et al., 2003) and a set of interspecies variants (see Materials and 

Methods). Results were evaluated using 10-fold cross-validation. When tested on 

HGMD, the ROC curves and AUCs of the ensemble machine learning predictors 

show better performance than any of the individual methods, with the highest AUC of 

0.98 (Figure 2-10A and Table 2-3), although most perform extremely well. A number 

of individual predictors are partially or completely trained on HGMD, so to control 

for this factor, I also tested on a subset of ClinVar variants not in HGMD or OMIM 

(another common source of training data). (Figure 2-10B and Table 2-3). Though still 

better than most individual predictors, my ensemble predictors (best AUC 0.95) were 

slightly but significantly outperformed by VEST3 (Carter et al., 2013) (AUC 0.96) 

and the new ensemble method REVEL (Ioannidis et al., 2016) (AUC 0.97). As 

Figures 2-10C and Table 2-3 show, when the same methods were tested on the more 

relevant challenge NAGLU variant set, all showed substantially deteriorated 

performance (AUC up to 0.84 for the ensemble methods, slightly better than any 

other tested methods). Relative performance is insensitive to the exact activity 

threshold for pathogenic loss of activity (Table 2-3). I also converted the continuous 

NAGLU activity predictions to binary assignments and generated a ROC curve. That 

results in an AUC of 0.82, with both 0.1 and 0.3 activity cutoffs. Evidently, the 
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distribution of activities found in the general population (all activities approximately 

equally likely to be encountered) are much more challenging for all methods than 

distinguishing between only pathogenic and interspecies variants.   

 

Figure 2-10. ROC (receiver operating characteristic) curves for predictions of 

pathogenicity by the new ensemble methods and other methods on HGMD, ClinVar 

unique and NAGLU challenge sets. For NAGLU, the pathogenicity threshold is an 

activity of 0.3 of wild-type. The AUC (area under curve) of these ROC curves are 

listed in Table 2-3.  

2-10A For HGMD test data, the new ensemble models (Logistic Regression 0.98, 

Random Forest 0.98 and SVM 0.97) outperformed all constituent individual 

predictors on the HGMD test dataset. PPH2 and VEST3, which were also trained 

partially or completely on HGMD, have slight but significantly (P-value < 2.2e-6) 

worse AUCs.  

2-10B For the unique ClinVar dataset (no overlap with HGMD or OMIM), another 

ensemble method, REVEL, outperformed all other methods. The next highest AUCs, 

for VEST3 and my ensemble models, are slightly but significantly (P-value < 0.05) 

smaller.  

2-10C For the NAGLU rare population variants, all methods perform substantially 

worse than on HGMD and ClinVar. My ensemble FOA (fraction of agreement) 

method has the best AUC of 0.84, followed by my Logistic Regression and Random 
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Forest models, and VEST3. All four are not significantly different from each other 

(P-values > 0.05). 

 

(Figure 2-10. See above for caption.) 
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Table 2-3. Metrics of binary prediction performance 

 

 

 
a Ensemble model combining nine individual missense mutation analysis methods 

b Fraction of the nine methods making a deleterious assignment 

c Using NAGLU relative activity cutoff of 0.1 

d Using NAGLU cutoff of 0.3 
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2.4.6 Reliability of pathogenic assignments 

I investigated the effectiveness of ensemble methods for estimating the reliability of 

pathogenic assignments using the results from the binary pathogenicity analysis 

described above. To examine whether there is a useful ensemble signal to be 

exploited, I first examined the PPV as a function of the fraction of methods agreeing 

on a deleterious assignment (FOA) for the HGMD and interspecies dataset. Table 2-2 

shows the number of methods included. There is strong dependence of PPV on FOA 

with the HGMD set (Figure 2-11A): For the set of variants where all nine methods 

predict deleterious, the PPV is 0.97 and the PPV is above 0.9 even when only 7 out of 

9 methods predict deleterious. At the other end of the scale, the PPV is 0.04 when no 

method predicts deleterious and still below 0.1 even where two methods predict 

deleterious, so that in all 78% of mutations have better than 90% confidence 

assignments of either pathogenic or benign (Figure 2-11B). Thus even a very simple 

ensemble method shows promise for this purpose.  

 

Figure 2-11 Initial results of estimating assignment reliability 

2-11A. Relationship between the fraction of methods that agree on a deleterious 

assignment (FOA) and the positive predictive value, PPV (fraction of predicted 

pathogenic variants that are pathogenic), for HGMD and interspecies variants.  

2-11B. Fraction of variants in each bin. Approximately 39% of variants can be 

predicted pathogenic with 90% or greater confidence (PPV) and 39% can be 

predicted benign with 90% or greater confidence (NPV). This simple analysis 
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demonstrated a potential usefulness of ensemble methods in assigning prediction 

reliability. 

(Figure 2-11. See above for caption.) 

 

A fuller analysis is shown in Figure 2-12. Here the fraction of variants meeting a 

given reliability threshold is plotted as a function of the threshold, for both confidence 

in pathogenicity (top panels) and non-pathogenicity (bottom panels). As with the 

pathogenicity assignment results above, my ensemble methods and REVEL perform 

best on the HGMD and ClinVar sets respectively. Also as with the pathogenicity 

assignment, performance is substantially better on the HGMD and ClinVar test sets 

than on the NAGLU data. For HGMD, the best methods assign pathogenicity with 

90% or greater confidence for 90% of the data, and benign assignments with equal 

confidence are made for about 75% of data. Pathogenicity confidence on the ClinVar 

set is similar, with a higher fraction meeting 90% confidence criterion (96%) for 

benign assignments. For the more realistic NAGLU dataset using an activity of 0.3 as 

the pathogenicity threshold, 43% of the pathogenic variants are predicted with 90% or 
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better accuracy, and 56% benign assignments are 90% or better correct. However, the 

dependence of accuracy on the threshold is steep for both these numbers, and precise 

values are likely to be dataset specific. Overall, the results do show that ensemble 

methods are advantageous for assigning reliability to pathogenicity assignments, and 

that the fraction of variants for which 90% confidence can be reached in the clinic is 

likely quite high. More realistic datasets such as the NAGLU one are needed to 

further investigate these properties.  

 

Figure 2-12. Fraction of data for which pathogenicity or benign status is predicted at 

a specified level of confidence, as a function of the confidence level, for HGMD (2-

12A, 2-12B), ClinVar (2-12C, 2-12D) and the NAGLU challenge dataset 

(pathogenicity cutoff of 0.3, 2-12E, 2-12F). Vertical dashed lines show the 0.9 

reliability threshold. For each dataset, the top panel shows the fraction of pathogenic 

variants meeting a reliability (PPV) threshold as a function of threshold and the 

bottom panel shows the equivalent data for reliability of benign assignment (NPV). 

My ensemble methods and REVEL perform best on the HGMD and ClinVar sets 

respectively. Overall, even in the demanding NAGLU dataset, a substantial fraction 

of variants can be assigned as pathogenic or benign with high confidence. 
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(Figure 2-12. See above for caption.) 

 

2.5 Discussion 

2.5.1 Ensemble methods for the NAGLU and SUMO-ligase challenges 

 The NAGLU and SUMO-ligase challenges are unusual in that CAGI participants 

were asked to predict a continuous variable – in the case of NAGLU, relative enzyme 

activity, and in the case of SUMO-ligase, relative growth rate in a yeast 

complementation assay. Most missense analysis methods are designed to make a 

binary assignment of pathogenic or non-pathogenic, and so are not immediately 

applicable to the challenges. To address this, we explored the use of an ensemble 
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strategy, incorporating up to 11 of the binary assignment methods. Ensemble methods 

have already been shown to be effective for the binary pathogenicity assignment task 

(Capriotti et al., 2013; González-Pérez & López-Bigas, 2011; Ioannidis et al., 2016; 

Olatubosun et al., 2012). Here we assume that the more single methods make a 

pathogenic assignment for a given variant, the lower the corresponding protein 

activity will be. As the simple FOA (fraction of agreement between methods) 

approach demonstrates, this is the case. Use of confidence scores for each 

contributing method rather than binary values makes the procedure more nuanced, 

and machine learning provides a means of combining the methods in a balanced way. 

A potential limitation was the lack of suitable enzyme activity training data, but post-

challenge analysis showed that as few as 100 phenylalanine hydroxylase variant 

activities were sufficient, and also that there was no significant bias from training on 

that system. The ensemble approach was successful in that it performed well, 

although it was slightly behind the best performers. In the NAGLU challenge, the 

ensemble approach was marginally outperformed by MutPred2 (unpublished, -0.005 

in RMSD, +0.05 in Pearson’s r, +0.04 in Spearman’s rho and +0.00 in AUC) and by 

Evolution Action (Katsonis and Lichtarge 2014, -0.028 in RMSD, +0.001 in 

Pearson’s r, -0.019 in Spearman’s rho and +0.03 in AUC). In the SUMO ligase 

challenge, our two submissions of the ensemble approach performed best on set 1 and 

set 2 respectively, but were outperformed by most other methods on set 3 (multiple 

mutation set), probably due to the assumption that growth would be determined by 

the most deleterious mutation for each sample, rather than affected additively. For 

data set 1, I also compared prediction performance for mutations at positions where 
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residue types are identical in human and yeast with that at positions where the 

residues are different. The former subset contains a relatively larger proportion of 

mutations with low relative growth rates. For example, there are more than twice as 

many zero growth mutations where the wild-type human and yeast residues are 

identical as opposed to different. But the performance of the ensemble method was 

not sensitive to this data partition (difference in RMSD ~0.07, in Pearson’s r ~0.06, 

and in Spearman’s rho <0.005). There is little difference between the fractions of 

wild-type identical residues versus non-identical for the subset of mutations with 

relative growth rates greater than 1.0. Neither our ensemble approach nor other best 

performers provided revolutionary accuracy. As discussed below, limitations in all 

contemporary approaches probably ensure that is not possible. 

 

2.5.2 Accuracy 

Although the methods used here and others in CAGI produce very strong statistical 

significance in terms of the relationship between predicted and experimental activity 

values, the agreement appears substantially less than expected, given the reported 

experimental accuracy.  What limits the accuracy? – Some part of the disagreement 

may be due to experimental artifacts. For example as noted earlier, for one of the 10 

NAGLU ‘hard’ variants the conditions of expression in the cell line may contribute to 

aggregation not encountered in vivo. For SUMO-ligase, as discussed in Results, 

differences between yeast and human proteins contribute to discrepancies.  
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Overall though, most of the discrepancy likely comes from the inherent deficiencies 

of the methods.  Nearly all primarily attempt to relate sequence conservation patterns 

to pathogenicity (some also incorporate partial structure information (Adzhubei et al., 

2010; Carter et al., 2013; Hecht et al., 2015)). Although there clearly is a qualitative 

relationship of this type, there is no theoretical framework providing a quantitative 

relationship. Such a framework would need to relate phylogenic profiles to fitness, 

something which the molecular evolution community has not succeeded in doing 

after many years of effort (Orr, 2009). Further, the relationship between fitness and 

disease relevance is also not straightforward. As a consequence, all current 

pathogenicity prediction methods are ad hoc, using calibration or machine learning to 

achieve some level of quantitation. Given that, they are surprisingly effective. There 

are a number of ways in which accuracy may improve in the future. In my results, 

there is markedly different accuracy for surface and interior residues, so that treating 

these classes of residues differently may be useful. Other structural and functional 

information may also help. Specific training only on variants where individual 

methods do not correlate well might be helpful, if there are sufficient data and an 

appropriate algorithm for training. More generally, at present, most methods are 

completely non-specific, and are applied to different proteins without incorporating 

information pertinent to each case. In future, we envision that protein specific models 

will be built. There is also a major requirement for more realistic training and testing 

datasets, such as NAGLU. 
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2.5.3 Assigning pathogenicity 

As noted earlier, the NAGLU challenge data set is so far unique in that it consists of 

protein activity data drawn from a background population representative of that 

expected in the clinic. The commonly used HGMD and ClinVar databases, although 

useful compilations of clinically relevant data, are usually paired with highly benign 

controls for training and testing purposes, and so not very representative of clinical 

encounters. Therefore, I also tested an ensemble approach for assigning pathogenicity 

in the NAGLU dataset, compared to standard benchmarks. The new ensemble method 

and many others tested here perform extremely well on two standard benchmark sets, 

HGMD (Stenson et al., 2014) and a unique subset of ClinVar (Landrum et al., 2016), 

many with AUCs of over 95%. Both my ensemble method and another recent 

ensemble approach, REVEL (Ioannidis et al., 2016) have relatively good performance 

on the NAGLU data, but overall, all methods are strikingly less effective (best AUCs 

up to 0.84). The results suggest that we need many more clinically relevant datasets 

like NAGLU in order to realistically evaluate the pathogenicity assignment methods. 

 

2.5.4 Utilization of protein structure information 

As demonstrated here and in other work (Adzhubei et al., 2010; Baugh et al., 2016; 

Carter et al., 2013; Folkman et al., 2016; Hecht et al., 2015; Redler et al., 2016; Yue 

et al., 2005), analysis based on protein structure provides an orthogonal approach that, 

in spite of its own accuracy limitations, can sometimes provide valuable insight into 

the atomic level mechanisms in play. In particular, as with other monogenic disease-

related mutations (Yue et al., 2005), for NAGLU, structure analysis shows a large 
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fraction operate by destabilizing protein three-dimensional structure. There is 

considerable scope for further improvement of these approaches, using more 

biophysical approaches (Seeliger & de Groot, 2010). 

 

2.5.5 Reliability for pathogenicity assignments 

In the clinic a major concern is not just to have an accurate predictor of pathogenicity, 

but also to be able to have a reliable probability that an assignment of pathogenic or 

benign is correct: a method may be highly accurate some of the time and fail on a 

subset of variants, and it is important to know when the prediction can be trusted and 

with what confidence. Because of a lack of well-tested reliability estimates, present 

clinical guidelines allow computational methods of predicting pathogenicity only 

secondary status as evidence for establishing a genetic cause for disease symptoms 

(Richards et al., 2015). The challenge NAGLU data set provided an opportunity for 

testing methods of assigning such probabilities on a clinically relevant dataset.  The 

ensemble methods reported here, as well as other ensemble approaches such as 

REVEL (Ioannidis et al., 2016), are among the best for this purpose. Encouragingly, 

even on the realistic NAGLU population variants, a substantial fraction (up to 40%) of 

pathogenicity assignments can be made with greater than 90% confidence. More 

testing on diverse mutation sets is needed to establish clinical applicability. 
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Chapter 3: Characterizing and comparing missense variants in 

monogenic disease and in cancer 

 

3.1 Introduction 

3.1.1 Overview 

The large amount of genomic data now available for monogenic disease and for 

cancer has vastly expanded our knowledge of which mutations are involved in these 

diseases (Martincorena & Campbell, 2015; Shendure & Akey, 2015). In monogenic 

disease, over 7000 monogenic diseases and over 10,000 related genes have been 

described in the Online Mendelian Inheritance in Man (OMIM) database 

(http://omim.org/). In HGMD (Stenson et al., 2014), there are over 2,800 genes where 

some monogenic disease-causative mutations have been identified, over 50% of 

which are missense mutations. Sequencing of over 20,000 cancer sample exomes and 

a growing number of complete cancer genomes has revealed the mutation landscape 

for dozens of cancer types (Martincorena & Campbell, 2015; Vogelstein et al., 2013). 

Most of these data are available through three large consortia, the Cancer Genome 

Atlas (TCGA) (https://cancergenome.nih.gov/), the Catalogue of Somatic Mutations 

in Cancer (COSMIC, http://cancer.sanger.ac.uk/cosmic) and the International Cancer 

Genome Consortium (ICGC) (http://icgc.org). The mutation load found varies by 

more than two orders of magnitude among individual samples as well as by cancer 

type (Martincorena & Campbell, 2015; Vogelstein et al., 2013). For example, acute 

myeloid leukemia and some pediatric cancers may carry less than 10 nonsynonymous 

somatic mutations per tumor, while exogenous mutagen induced cancers such as lung 
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cancer and melanoma typically have an average of around two hundred (Alexandrov 

et al., 2013; Lawrence et al., 2014; Vogelstein et al., 2013). It has been generally 

accepted that only a small number of the somatic mutations (4-6 (Armitage & Doll, 

1954; Sabarinathan et al., 2017)) (the ‘drivers’) in each sample are responsible for the 

development of the disease. A recent comprehensive study estimates the average total 

number of driver mutations per sample as 4.6, including both SNVs and CNVs 

(Sabarinathan et al., 2017).  

 

A variety of mutation types may be causative of monogenic diseases or be cancer 

drivers, including single base changes resulting in effects on expression and splicing, 

amino acid substitutions (missense) and premature stop codons, as well as small 

insertions and deletions (Ciriello et al., 2013; Stenson et al., 2009), and particularly in 

cancer (Ciriello et al., 2013), copy number changes (large insertions or deletions, 

deleting or duplicating one or more genes).  Larger scale chromosomal changes also 

play a role in cancer, where genome instability is common (Stephens et al., 2011). In 

monogenic disease, and in contrast to complex trait disease (Gusev et al., 2014; 

Maurano et al., 2012; Nicolae et al., 2010), very few mutations affecting expression 

have been identified (Landrum et al., 2016). Data for non-coding contributions in 

cancer are only now becoming available. Some clear examples have been identified 

(Horn et al., 2013; Huang et al., 2013), but a clear picture has yet to emerge. In 

monogenic disease, the most common mutation type is missense (Stenson et al., 

2003), a single base change causing an amino acid substitution. In cancer, missense 

mutations also play a major role (Ciriello et al., 2013). 
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3.1.2 Missense mutations 

In this paper I use computational methods to analyze and compare the role of 

missense mutations in monogenic disease and cancer. There are three primary 

motivations. First, as noted above, this class of mutation is the most in common in 

both types of disease, so that a thorough understanding of its role is worthwhile. 

Second, unlike most indels and copy number variants which have a major impact on 

protein function and hence disease phenotype, missense mutations range from no 

effect on protein function to complete loss of activity. The wide range of possible 

molecular impact presents problems for clinical interpretation. As a result, at present, 

evidence from computational analysis is given low weight in clinical diagnosis in 

monogenic disease (Richards et al., 2015). Greater understanding of how these 

mutations influence disease phenotype will help improve the usefulness of the 

computational methods. Third, with many instances of these mutations now known in 

both types of disease, it is possible to perform statistical analyses that provide insight 

into the molecular mechanisms involved.   

 

3.1.3 Methods for interpretation of missense mutations 

Methods for imputing the disease relevance of missense mutations fall into two 

classes: Those that rely on the pattern of observed amino acid substitutions at a 

mutation position both across species and paralogs and as common variants within the 

human population, and those that make use of structural and other molecular function 

information. Sequence-based methods usually utilize machine learning, and typical 

features are related to sequence conservation and the pattern of substitutions at the 
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position of interest  (Cooper & Shendure, 2011). An advantage of these methods is 

that, provided there is a deep enough, diverse enough, and stable alignment, any 

mutation can be analyzed (currently 92% of the reference set of monogenic disease 

mutations (Stenson et al., 2003) using SNPs3D profile (Yue & Moult, 2006)). 

Further, subject to the assumption below, they are effective for all types of underlying 

mechanisms including gain of function (highly relevant for mutations in oncogenes). 

The disadvantage is that they provide no insight into the mechanism by which a 

mutation is involved in disease. The methods implicitly assume that if a mutation 

plays a causative role in disease, it will affect Darwinian fitness, and thus tend to be 

selected against. Since many monogenic diseases are early onset and severe enough 

to affect reproductive success, that may be a reasonable assumption. Relevance to 

cancer, where driver mutations promote cell growth in many ways, is less obvious. 

Although the assumption of a relationship between an effect on fitness and disease 

phenotype is embedded in the methods, there is no formal theoretical framework for 

calculating fitness impact. Rather machine learning (Adzhubei et al., 2010; Carter et 

al., 2013; Douville et al., 2016; Kircher et al., 2014; Yue & Moult, 2006) or other 

parameterization (Lichtarge et al., 1996; Ng & Henikoff, 2003) is used to calibrate the 

relationship between amino acid substitution patterns and disease phenotypes in an ad 

hoc way.  

 

Protein structure and function provide a complementary, more mechanism oriented 

approach to identifying disease-relevant mutations. Previous studies have shown that 

a high fraction of monogenic disease and to some extent cancer tumor suppressors 
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mutations destabilize three dimensional-structure (Shi & Moult, 2011; Z. Wang & 

Moult, 2001; Yue et al., 2005): for a reference set of monogenic disease proteins 

(Stenson et al., 2003), SNPs3D_Stablity  (Yue et al., 2005) assigned 72% as 

destabilizing, and for the cancer set (Ciriello et al., 2013), 50%~60% (Shi & Moult, 

2011). Thus, methods of estimating the change in free energy difference between the 

folded and unfolded states introduced by an amino acid substitution play an important 

role. Molecular dynamics free energy perturbation methods (Seeliger & de Groot, 

2010) may be used for this purpose. Up to now, these methods have found limited 

application in studies of mutations because of relatively high computational cost and 

lower accuracy when compared with more empirical approaches. In this paper I use 

SNPs3D_Stability (Yue et al., 2005) to examine the role of destabilization in both 

monogenic disease and cancer.  The method uses empirical potential terms 

representing van der Waals interactions, electrostatics, conformational strain, solvent 

accessibility and local flexibility in a non-linear support vector machine model and 

was trained using monogenic disease data (Stenson et al., 2003) together with 

interspecies variants as controls. It has been benchmarked against experimental G 

data and monogenic disease mutations (Yue et al., 2005). The method returns a binary 

yes/no estimate of whether a missense variant destabilizes a structure sufficiently to 

contribute to monogenic disease, together with score related to the confidence of the 

assignment.  
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3.1.4 Identifying driver mutations 

There are well-established databases of causative mutations for monogenic disease 

(Stenson et al., 2003), and although these sources are not error-free (Xue et al., 2012), 

they are sufficiently accurate for many statistical purposes. Reliable identification of 

cancer driver mutations remains a major problem, because of the high background of 

passenger mutations.  Current strategies focus on first identifying a subset of genes 

that contain driver mutations (‘driver genes’) and then determining which mutations 

in those genes are drivers. Driver genes are identified on the basis of containing a 

statistically higher number of cancer somatic mutations than sample background, 

together with other factors  (Davoli et al., 2013; Dees et al., 2012; Gonzalez-Perez & 

Lopez-Bigas, 2012; Leiserson et al., 2015; Mermel et al., 2011; Reimand & Bader, 

2013; Rubio-Perez et al., 2015; Tamborero, Gonzalez-Perez, Perez-Llamas, et al., 

2013; Tamborero, Gonzalez-Perez, & Lopez-Bigas, 2013; Vogelstein et al., 2013). 

Although a number of sets of driver genes have been proposed, there is limited 

agreement between them (Tokheim, Papadopoulos, Kinzler, Vogelstein, & Karchin, 

2016). It is very likely that some other genes contain some driver mutations, and 

conversely it is clear that driver genes will contain some level of non-driver 

(‘passenger’) mutations. In this work I used the driver gene sets derived from the two 

cancer mutation datasets I analyzed (Ciriello et al., 2013; Futreal et al., 2004).   

 

A number of methods for identifying individual driver missense mutations (Carter et 

al., 2009; Gonzalez-Perez et al., 2012; J. S. Kaminker et al., 2007; Mao et al., 2013; 

Reva et al., 2011; Shihab et al., 2013) have been developed. These primarily utilize 
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combinations driver gene lists, predicted impact of mutations, clustering of mutations, 

and the number of samples in which a mutation has been observed. A limited number 

of driver mutations have been reliably annotated, for example, a set of 889 (Catalog 

of Validated Oncogenic Mutations, 

https://www.cancergenomeinterpreter.org/mutations). Currently, these sets are too 

small for a statistical analysis of properties and because of the way they were derived 

(an emphasis on repeat occurrence for instance) likely have significant biases. I 

address the problem of uncertain driver mutation assignments by considering all 

mutations found in the sets of driver genes, and investigating properties of interest as 

a function of driver assignment confidence. 

 

3.1.5 Questions addressed 

We use the sets of monogenic disease and cancer driver mutations together with the 

computational methods to address the following questions: 

How effective are sequence-based methods for identifying mutations relevant to the 

two types of disease? As noted above, these methods depend on mutations impacting 

Darwinian fitness and, especially for cancer, the validity of that assumption is not 

clear. Technical issues may also limit accuracy. 

How important are intrinsically disordered regions of proteins compared with ordered 

regions in the two types of disease? The role of disordered regions in protein function 

has been much discussed (Midic, Oldfield, Dunker, Obradovic, & Uversky, 2009; 

Vacic et al., 2012) and disease mutation properties provide insight into that.  
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What is the relative role of mutations on the protein surface versus those in the core 

of protein structures? Surface mutations are more likely to be involved in inter-

molecular interactions and other mechanisms, while core mutations will be enriched 

for effects on protein structure stability. 

How extensive is the role of destabilization of protein structure in the two types of 

disease? As noted above, this mechanism plays a major role in monogenic disease, 

but its role in cancer has been less clear. 

What are the properties of mutations in cancer passenger genes? Are these benign, as 

the ‘passenger’ designation implies?  

 

3.2 Methods 

3.2.1 Monogenic disease data and cancer data 

The monogenic disease set comprises 10,865 disease-related variants collected from 

an earlier version of HGMD (Stenson et al., 2003), together with 13,499 interspecies 

variants in these genes, compiled by comparing mammalian homolog protein 

sequences with at least 90% sequence identity over at least 80% of the full length and 

excluding any known disease-related variants (Yue & Moult, 2006). The disease 

genes can be classified as dominant or recessive based on their inheritance patterns. 

 

Two cancer driver data sets were compiled as follows. One set was extracted from the 

level 3 TCGA (Cancer Genome Atlas Network, Bainbridge, et al., 2012; Cancer 

Genome Atlas Network, Koboldt, et al., 2012; Cancer Genome Atlas Research 
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Network et al., 2008, 2011, 2012; Cancer Genome Atlas Research Network, Getz, et 

al., 2013; Cancer Genome Atlas Research Network, Ley, et al., 2013) data described 

in (Ciriello et al., 2013), which has 449,788 unique somatic single-residue 

substitutions in a total of 3,477 tumor samples from studies on 12 different cancer 

types (Table 3-1). The TCGA driver set consists of the 9,325 unique somatic 

missense mutations found in 193 driver genes identified by (Ciriello et al., 2013). 

Another 415,090 somatic missense mutations in genes not belonging to the 193 driver 

gene list were extracted to form the TCGA passenger set. Mutations in other potential 

driver genes (Kumar, Searleman, Swamidass, Griffith, & Bose, 2015; Lawrence et al., 

2014; Martincorena & Campbell, 2015; Tokheim et al., 2016; Vogelstein et al., 2013) 

were also omitted in the passenger set. 27 oncogenes and 47 tumor suppressor genes 

were identified in the TCGA 193 driver gene list, based on the literature (Kumar et 

al., 2015; Tokheim et al., 2016; Vogelstein et al., 2013), providing a TCGA 

Oncogene set of 1,362 missense mutations and TCGA TSG set of 2,933 missense 

mutations. A set of 3,116 interspecies variants in the 193 TCGA driver genes were 

extracted using the same procedure as for the monogenic disease set described above.  

 

The second cancer data set was extracted from the 531,728 unique somatic single-

residue substitutions in the COSMIC Database (Forbes et al., 2017) version 68. The 

Cosmic Gene Census (CGC) driver dataset consists of the 30,773 missense mutations 

in 477 driver genes identified by the Cancer Gene Census (Futreal et al., 2004). 

Another 495,530 missense mutations extracted from the COSMIC non-CGC genes 

form the CGC passenger set. Mutations in other potential driver genes were removed 
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in the same way as for the TCGA passenger set. A CGC Oncogene set of 7,422 

missense mutations in 79 genes and a CGC TSG set of 12,016 missense mutations in 

81 genes were compiled using the same procedure as for the TCGA sets. A CGC 

interspecies variants set of 6448 missense mutations was extracted using the same 

procedures as above. 

 

Table 3-1. TCGA data set 

 

Tumor type TCGA ID 
Number of 

samples 

Number of unique 

mutationsa in 

driver genes 

    

Bladder urothelial 

carcinoma 
BLCA 100 17431 

Breast invasive 

carcinomab 
BRCA 513 17460 

Colon and rectum 

adenocarcinomac 
COADREAD 498 100020 

Glioblastoma 

multiformaed 
GBM 276 21531 

Head and neck 

squamous cell 

carcinoma 

HNSC 306 34079 

Kidney renal clear-

cell carcinoma 
KIRC 473 15557 

Acute myeloid 

leukemiae 
LAML 201 2500 

Lung adenocarcinoma LUAD 230 44092 

Lung squamous cell 

carcinomaf 
LUSC 177 44883 

Ovarian serous 

cystadenocarcinomag 
OV 456 17819 

Uterine corpus 

endometrioid 

carcinomah 

UCEC 247 106141 

    

 
aRestricted to somatic nonsynonymous single-residue substitutions observed in 

samples of each specific cancer types.  
bReference see (Cancer Genome Atlas Network, Koboldt, et al., 2012) 
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cReference see (Cancer Genome Atlas Network, Bainbridge, et al., 2012) 
dReference see (Cancer Genome Atlas Research Network et al., 2008) 
eReference see (Cancer Genome Atlas Research Network, Ley, et al., 2013) 
fReference see (Cancer Genome Atlas Research Network et al., 2012) 
gReference see (Cancer Genome Atlas Research Network et al., 2011) 
hReference see (Cancer Genome Atlas Research Network, Getz, et al., 2013) 

 

3.2.2 Missense mutation analysis methods 

Seven sequence-based missense analysis methods were used to assign missense 

mutations as deleterious or benign and the fraction of those mutations that are 

assigned as deleterious (the PDF, predicted deleterious fraction) was then calculated. 

Four of these (SNPs3D Profile (Yue & Moult, 2006), PolyPhen-2 (Adzhubei et al., 

2010), CADD (Kircher et al., 2014), VEST3 (Carter et al., 2013; Douville et al., 

2016)) were trained on monogenic disease mutation datasets (except CADD which 

was trained differently). The rest three: SIFT (Ng & Henikoff, 2003), LRT (Chun & 

Fay, 2009), and PROVEAN (Choi et al., 2012) rely on direct measures of sequence 

conservation properties and do not require training. In addition, three sequence 

methods trained specifically for interpreting cancer mutations were tested: FATHMM 

(Shihab, Gough, Cooper, Day, & Gaunt, 2013), Mutation Assessor (Reva et al., 2011) 

and CHASM (Carter et al., 2009; Wong et al., 2011). SNPs3D Profile results were 

generated using standalone in-house software. The dbNSFP2.9 database (X. Liu et al., 

2013) was used to obtain PolyPhen-2, CADD, SIFT, LRT, VEST3, PROVEAN, 

FATHMM and Mutation Assessor results. CHASM results were obtained from the 

CRAVAT Web server (http://www.cravat.us/CRAVAT/). Binary assignments of 

structure destabilizing/non-destabilizing were obtained using SNPs3D Stability (Yue, 
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Li, & Moult, 2005) with in-house software and the predicted destabilizing fractions 

(PDFs) were calculated from those data. 

 

Binary predictions were collected for PolyPhen-2, SIFT, LRT, PROVEAN, 

FATHMM and Mutation Assessor. The HumDiv version of PolyPhen-2 was used, 

and “probably damaging” and “possibly damaging” predictions were considered 

deleterious. MutationAssessor “H” and “M” predictions were also considered 

deleterious. Three methods (CADD, VEST3, and CHASM) reported continuous 

scores rather than binary assignments. Dataset-specific score thresholds were chosen 

for these, such that the false positive rates on the corresponding interspecies variants 

sets are similar to that of other methods. For the monogenic disease data, the score 

thresholds are 22 for CADD, 0.5545 for VEST3, and 0.095 for CHASM. On the 

TCGA data, the thresholds are 21.35 for CADD, 0.2815 for VEST3, and 0.1395 for 

CHASM. On the Cosmic data, the thresholds are 21.35 for CADD, 0.2915 for 

VEST3, and 0.1225 for CHASM. 

 

To assess potential training bias, SNPs3D Profile and SNPs3D Stability methods 

were retrained on the two cancer data sets and on specific subsets of monogenic 

disease data. In retraining, all parameters in the support vector machine (SVM) 

models were re-optimized with a grid search algorithm. At each search step, the 

corresponding data set was bootstrapped 30 times, with the model trained on a set of 

randomly drawn data (number of data points equal to the data set size), and evaluated 
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on the data points not included in training. 95% confidence intervals in the other 

analyses were also inferred from 30 rounds of bootstrapping.  

 

3.2.3 Structure modeling 

For analysis of structure-related features, the set of experimental protein structures 

was extended by building homology models for protein domains where a suitable 

template was available, as described in (Yue et al., 2005). The procedure is briefly 

summarized here. Proteins that have > 40% sequence identity to the query protein and 

a crystal structure of < 3Å resolution are used as templates for backbone 

conformations. The 40% sequence identity cutoff is based on earlier benchmarking 

(Yue et al., 2005) that showed prediction accuracy for models based on 40% or higher 

sequence identity to a template is not significantly lower than for that based on 

experimental structures. Where the template amino acids are identical to the 

corresponding ones in the query structure, side chains atoms from the template are 

used. Otherwise, the side-chains are modeled using SCWRL (Canutescu, Shelenkov, 

& Dunbrack, 2003). 

 

3.2.4 Analysis of somatic missense mutation recurrence and density 

For each unique cancer somatic missense mutation, the recurrence was calculated as 

the number of times the mutation was observed in all samples. The majority of unique 

somatic missense mutations, even in the likely driver genes, have a low recurrence (< 

5). Recurrence values were grouped into six bins, the last of which covers all 

recurrence larger than 10.  The cancer type specific mutation load was defined as the 
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average number of unique missense mutations per sample, observed in the samples of 

the corresponding cancer type. 

 

3.2.5 Analysis of structure disorder and surface missense mutations 

DISOPRED3.16 (Jones & Cozzetto, 2015) with default parameters was used to 

predict intrinsically disordered protein residues in each data set. STRIDE  

(Eisenhaber & Argos, 1993; Eisenhaber et al., 1995; Frishman & Argos, 1995) was 

used to calculate the absolute solvent accessible surface area (SASA) of each amino 

acid residue in the protein structures or homology models prepared as described in  

(Yue et al., 2005) and above.  The relative SASA was then calculated by normalizing 

the STRIDE results with the corresponding amino acid residue maximal solvent 

accessibility reported in (Rost & Sander, 1994). Based on the relative SASA, residue 

location was assigned as buried core (<0.05), partially exposed (≥0.05, ≤ 0.25), and 

surface (>0.25). The relative density (RD) of missense mutations in a particular state 

is calculated as follows: 

𝑅𝐷 =  
𝑁𝑖/𝑀𝑖

𝑁𝑗/𝑀𝑗
 

where, given two particular states 𝑖 and 𝑗 (disordered, ordered, buried in the core, and 

exposed on the surface), 𝑁𝑖 and 𝑁𝑗 are the total number of missense mutations in the 

corresponding states, and 𝑀𝑖 and 𝑀𝑗 are the total number of amino acid residues in 

the corresponding states. 
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3.3 Results 

3.3.1 Performance of variant interpretation methods on monogenic disease and cancer 

missense mutations 

I begin the analysis by investigating the fraction of monogenic disease mutations and 

assumed cancer drivers that are predicted to be deleterious by a number of sequence-

based methods. As noted earlier, these methods indirectly utilize the impact of a 

mutation on fitness. Figure 3-1A shows the results using three different sequence 

methods (SNPs3D profile (Yue & Moult, 2006), Polyphen2 (Adzhubei et al., 2010) 

and CADD (Kircher et al., 2014)), comparing the fraction of mutations predicted to 

be deleterious on a monogenic disease dataset, HGMD (Stenson et al., 2003) and 

mutations in two sets of cancer driver genes (Cancer Genome Atlas Network, 

Bainbridge, et al., 2012; Cancer Genome Atlas Network, Koboldt, et al., 2012; 

Cancer Genome Atlas Research Network et al., 2008, 2011, 2012; Cancer Genome 

Atlas Research Network, Getz, et al., 2013; Cancer Genome Atlas Research Network, 

Ley, et al., 2013; Forbes et al., 2017). These methods have previously been shown to 

be effective for identifying monogenic disease mutations (Dong et al., 2015; Yin, 

Kundu, Pal, & Moult, 2017; Yue et al., 2005), and consistent with that, the fraction 

predicted deleterious here is high, between 0.85 and 0.88. For all three methods, the 

fraction deleterious for mutations in cancer driver genes is substantially lower (0.64 - 

0.74) (Figure 3-1A). An additional four monogenic disease missense analysis 

methods and three developed specifically for cancer missense analysis show the same 

pattern (Table 3-2). Previous studies have also shown similar results for cancer data 

(Gnad et al., 2013; Martelotto et al., 2014).  
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Figure 3-1B shows that in contrast to the results for the disease mutations, 

interspecies variants in these three sets of genes have a uniformly low predicted 

deleterious fraction (0.03 - 0.10), with no significant differences between monogenic 

disease and cancer. Although a low number of human monogenic disease mutations 

may be found to be fixed in other species (Kondrashov, Sunyaev, & Kondrashov, 

2002), these numbers do provide an approximate measure of the false positive rate for 

the methods. Surprisingly, for mutations in passenger genes (Figure 3-1C) the 

predicted deleterious fraction is much higher (34% to 82%) than for the interspecies 

variants in the driver genes. As discussed later, there are two possible factors 

contributing here: weak purifying selection in cancer samples (suggested by others 

(McFarland, Korolev, Kryukov, Sunyaev, & Mirny, 2013)), and additional drivers in 

genes currently designated as passengers. Table 3-3 provides the number of missense 

mutations and other statistics for all datasets.  
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Figure 3-1: Performance of three sequence-based variant interpretation methods on 

mutations in the two types of diseases. (A) Fraction of predicted deleterious 

mutations for monogenic disease mutations (HGMD, blue), cancer somatic mutations 

in the Sander driver gene list (TCGA Sander, green), and cancer somatic mutations in 

the COSMIC Cancer Gene Census driver gene list (COSMIC, red). A consistently 

high fraction of monogenic disease mutations appear deleterious, while the fractions 

of mutations in cancer driver genes are consistently lower. (B) Fraction of predicted 

deleterious interspecies variants in these gene sets. A very low fraction is predicted 

deleterious in all three data sets, supporting a low false positive rate for the methods. 

(C) Fraction of predicted deleterious mutations in passenger genes in the two cancer 

data sets. A surprisingly high fraction of mutations are predicted deleterious 

compared with the interspecies controls, suggesting limited purifying selection and 

the presence of additional driver mutations.  

Error bars show 95% confidence intervals derived from 100 rounds of bootstrapping. 
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(Figure 3-1. See above for caption.) 
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Table 3-2. Performance of sequence-based variant interpretation methods on all 

datasets 
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Table 3-3. Total number of mutations and genes (Italics in brackets) in each dataset, 

and coverage of these by different variant interpretation methods, for each dataset 

used. 

 

 

 

 

a
Ordered or disordered mutation subsets predicted by DISOPRED3 

b
Core or surface mutation subsets predicted by STRIDE 
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3.3.2 The effect of passenger mutations in cancer driver genes 

A likely reason for the lower fraction of mutations predicted deleterious for cancer is 

that not all mutations in driver genes are drivers, for example, the mutations within 

the C-terminus in the APC protein (Vogelstein et al., 2013). I used two methods to 

identify subsets of mutations enriched in drivers. The first assumes that the more 

cancer samples a mutation is observed in, the more likely it is to be a driver, an 

approach that others have also used (Ciriello et al., 2013). Figure 3-2 shows the 

dependence of the predicted deleterious fraction (PDF) on the number of occurrences 

of a mutation. Strikingly, the PDF in driver genes increases sharply with mutation 

recurrence, from approximately 0.6 for mutations only observed once to 0.9 for those 

observed more than 10 times. The latter value is higher than the PDF for monogenic 

disease. For mutations in passenger genes, on the other hand, the PDF does not 

increase with recurrence and is lower than the lowest value for driver genes. Thus, by 

this criterion, the low PDF observed in the driver gene mutation set is primarily a 

consequence of the presence of passenger mutations in driver genes, and a pure driver 

set would have a PDF values as high as or higher than that for monogenic disease. 

 

The second method of enriching for driver mutations examines the PDF as a function 

of the average total mutational load in different cancer types. As noted above, 

mutational load differs by more than two orders of magnitude, depending on cancer 

type (Martincorena & Campbell, 2015; Vogelstein et al., 2013), so that the 

background of passengers in low mutation load cancers will be very much smaller 

than for high load ones. Thus, if passengers in driver genes are a cause of the low 
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overall PDF, the PDF will be higher in cancer types with a lower mutational load. 

Figure 3-3 shows that this is indeed the case: for driver genes, the trend is for 

increased PDF as mutation load decreases, whereas passenger genes show no trend. 

These results are consistent across three different variant interpreting methods (Figure 

3-4). Thus, by this criterion too, the low PDF observed in the driver gene mutation set 

is primarily a consequence of the presence of passenger mutations in driver genes. 

 

3.3.3 Other factors that may affect the fraction of driver gene mutations predicted deleterious 

I explored two other possible explanations for the different deleterious rates for 

monogenic disease and cancer mutations. One difference between the two types of 

disease is that whereas most monogenic disease missense mutations overwhelmingly 

result in loss of protein function (Yue et al., 2005), cancer driver mutations are either 

loss of function (in tumor suppressors) or gain of function (in oncogenes). I divided 

the cancer data into these two subtypes and repeated the analysis (Table 3-4). Results 

vary a little by methods, but overall there is no substantial difference between the two 

types of driver genes, so this is not a significant factor in the monogenic 

disease/cancer difference. A second possible explanation is training bias - methods 

trained on one type of disease may not perform as well on the other. Two lines of 

evidence show this is also not a significant factor. First, the analysis done with the 

three cancer-specific methods shows a similar monogenic disease/cancer difference 

(Table 3-2). Second, versions of the SNPs3D Profile method retrained on the cancer 

datasets also produce a lower predicted deleterious fraction in cancer genes than in 

monogenic disease (Table 3-5 shows statistics on this and all other retraining results).  
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Table 3-4. Performance of variant interpretation methods on cancer oncogene and 

tumor suppressor gene subsets 

Variant interpreting 

method 

Fraction of predicted 

deleterious mutations 

in oncogenes 

 

Fraction of predicted 

deleterious mutations in 

tumor suppressor genes 

TCGA 

Sander 

Cosmic Gene 

Census 
 

TCGA 

Sander  

Cosmic Gene 

Census  

G
en

er
a
l 

SNPs3D Profile 0.66 0.68  0.75 0.70 

PPH2 0.72 0.72  0.77 0.73 

CADD 0.79 0.68  0.71 0.66 

SIFT 0.69 0.67  0.75 0.68 

LRT 0.87 0.82  0.73 0.75 

VEST3 0.88 0.83  0.87 0.83 

PROVEAN 0.60 0.59  0.60 0.57 

SNPs3D Stability 0.47 0.44  0.59 0.53 

       

C
a
n

ce
r 

sp
ec

if
ic

 FATHMM 0.37 0.39  0.52 0.57 

MutationAssessor 0.52 0.45  0.53 0.49 

CHASM 0.75 0.80  0.71 0.80 
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Figure 3-2: Fraction of predicted deleterious mutations in the driver genes (circles 

and solid lines) as a function of mutation recurrence, for two cancer datasets. The 

fraction rises from around 0.6 for single occurrence mutations to about 0.9 for those 

occurring more than 10 times.  In contrast to that, for passenger gene mutations 

(squares and dashed lines), the value is approximately constant for all recurrence 

values, and lower than for the lowest recurrence driver gene value. These data are 

consistent with an increase in the fraction of driver mutations with recurrence. For the 

most enriched driver set, the fraction predicted deleterious is higher than that for 

monogenic disease (Figure 3-1). The results are consistent across SNPs3D Profile 

(blue), PPH2 (green) and CADD (orange). Error bars show 95% confidence intervals 

derived from 100 rounds of bootstrapping. 
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Figure 3-3: (A) The fraction of predicted deleterious mutations in TCGA Sander 

driver genes is negatively correlated with the mutation load across cancer types, 

whereas (B) the fraction of predicted deleterious mutations in the TCGA passenger 

genes does not show correlation with the mutation load. The correlation is consistent 

across SNPs3D Profile (shown here), PPH2 (shown in Figure 3-4) and CADD 

(Figure 3-4). The results are consistent with the overall low predicted deleterious 

fraction arising from the burden of passenger mutations in driver genes. Error bars 

show 95% confidence intervals inferred from 100 rounds of bootstrapping. Small 

error bars may be obscured by symbols. BLCA: Bladder urothelial carcinoma; 

BRCA: Breast invasive carcinoma; COADREAD: Colon and rectum 

adenocarcinoma; GBM: Glioblastoma multiforme; HNSC: Head and neck squamous 

cell carcinoma; KIRC: Kidney renal clear-cell carcinoma; LAML: Acute myeloid 

leukemia; LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinoma; 
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OV: Ovarian serous cystadenocarcinoma; UCEC: Uterine corpus endometrioid 

carcinoma.  

 

 

 

 

 

 

 

Figure 3-4: The fraction of predicted deleterious mutations derived with (A) PPH2 

and (C) CADD in driver genes in the TCGA Sander list are negatively correlated with 

the mutation burden across cancer types, whereas the fraction of predicted deleterious 

mutations in the TCGA passenger genes (B, D) show no or weak positive correlation 

with the mutation burden. These results are consistent with those from SNPs3D 

Profile (Figure 3). Error bars indicate the 95% confidence intervals inferred from 100 

round bootstrapping. Small error bars may not be obscured by the symbols. BLCA, 

Bladder urothelial carcinoma. BLCA: Bladder urothelial carcinoma; BRCA: Breast 

invasive carcinoma; COADREAD: Colon and rectum adenocarcinoma; GBM: 

Glioblastoma multiforme; HNSC: Head and neck squamous cell carcinoma; KIRC: 

Kidney renal clear-cell carcinoma; LAML: Acute myeloid leukemia; LUAD: Lung 

adenocarcinoma; LUSC: Lung squamous cell carcinoma; OV: Ovarian serous 

cystadenocarcinoma; UCEC: Uterine corpus endometrioid carcinoma. 



 

 

95 

 

 

(Figure 3-4, see above for caption.) 
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Table 3-5. Performance of SNPs3D methods trained on specific datasets 
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aFraction of missense mutations predicted deleterious or destabilizing 
bDisease related genes in HGMD, or the Sander list of diver genes in TCGA, or 

Cancer Gene Census (CGC) driver genes in COSMIC 
cCGC, Cancer Gene Census (COSMIC) 
dOG, Oncogenes 
eTS, Tumor suppressor genes 
fAfter removing collagen proteins 
gLow counts for this subset 

 

 

3.3.4 Intrinsically disordered regions in monogenic disease and cancer 

I next examine the first of three protein structure related factors that affect the 

properties of monogenic disease and cancer mutations: the role of intrinsically 

disordered structure. 27% of residues in monogenic disease proteins are predicted 

disordered by the method used here (Jones & Cozzetto, 2015) (Figure 3-5A).  Cancer 

passenger proteins, representing the majority of genes, have a similar value (Figure 3-

5A). But for cancer driver proteins, as others have also noted (Pajkos, Mészáros, 

Simon, & Dosztányi, 2012), the predicted content of disordered residues is 

substantially higher, at 40 to 45% (Figure 3-5A). (The disorder data are derived using 

a machine learning prediction method (Jones & Cozzetto, 2015) rather than direct 

observation of structure, 5% false positive rate threshold).  
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Figure 3-5: (A) Predicted fraction of intrinsically disordered residues. Only about ¼ 

of monogenic disease protein residues are predicted disordered (blue), compared with 

nearly twice as many in cancer driver genes (green and red). Passenger gene values 

are close to those for monogenic disease. (B) Ratio of mutation density in disordered 

regions to that in ordered regions. The relative density of cancer driver mutations is 

more than twice as high as for monogenic disease. High passenger protein relative 

density and very high values for interspecies variants are consistent with lower 

functional restraints in disordered regions. (C) The fraction of mutations in disordered 

regions of cancer driver genes decreases with mutation recurrence rate, consistent 

with most mutations in these regions being passengers. No dependence on recurrence 

rate is seen for the equivalent mutations in passenger genes.  (D) The fraction of 

mutations in disordered regions of cancer driver proteins increases with cancer type 

mutational load, also consistent with most of these mutations being passengers. Error 

bars show 95% confidence intervals derived from 100 rounds of bootstrapping. Small 

error bars may be obscured by symbols. BLCA: Bladder urothelial carcinoma; 

BRCA: Breast invasive carcinoma; COADREAD: Colon and rectum 

adenocarcinoma; GBM: Glioblastoma multiforme; HNSC: Head and neck squamous 

cell carcinoma; KIRC: Kidney renal clear-cell carcinoma; LAML: Acute myeloid 

leukemia; LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinoma; 

OV: Ovarian serous cystadenocarcinoma; UCEC: Uterine corpus endometrioid 

carcinoma. 
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(Figure 3-5. See above for caption.) 
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3.3.5 Mutations in intrinsically disordered regions 

Figure 3-5B shows that monogenic disease mutations are only ~1/3 as likely to occur 

at disordered positions as ordered ones. This, together with the low fraction of 

disordered residues, results in a total of only 10% of monogenic disease mutations 

lying in disordered regions, indicating a small role for these in this type of disease. In 

contrast to this, cancer driver gene mutations are only moderately less likely in 

disordered regions than in ordered ones (0.76), and that, together with the higher 

content of disorder in cancer driver proteins, results in total 31~34% of these 

mutations occurring in disordered regions. Two factors may contribute to the higher 

disorder cancer mutation density - an excess of passenger mutations in disordered 

regions, and a possible greater functional role for disordered regions in cancer drivers 

than in monogenic disease. Figure 3-5B also shows that the density of mutations in 

the ordered and disordered regions of passenger proteins is approximately equal and 

slightly higher than that of driver proteins and that the highest relative density is for 

interspecies variants, with a density more than 2.5 times higher in disordered regions 

than ordered ones. Both this and the higher passenger relative density are consistent 

with substantially less functional restrictions on the acceptance of mutations in 

disordered regions and so a tendency for passengers to accumulate there. In support 

of this, Figure 3-5C shows that the fraction of driver gene mutations observed more 

than 10 times (and therefore most likely to drivers) in disordered regions is only 1/3 

the fraction for mutations observed only once (so least likely to be drivers). Similarly, 

Figure 3-5D shows that the fraction of mutations in disordered regions decreases with 
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decreasing total mutational load, consistent with a higher fraction of passengers in 

these regions.  

 

3.3.6 Fraction of deleterious mutations in ordered and disordered regions 

I next examine predicted deleterious rates in disordered versus ordered regions, using 

the sequence methods introduced earlier. Since all sequence methods are trained on a 

full set of disease mutations, and, particularly for monogenic disease, there are more 

mutations in ordered than disordered regions, training bias was a concern here. To 

investigate the extent of bias, I trained versions of the SNPs3D profile method on 

only disordered HGMD mutations together with disordered interspecies variants as 

controls and also trained on the corresponding ordered data. In fact, retraining made 

almost no difference to the results: the predicted deleterious fraction (PDF) in ordered 

regions is unchanged at 0.85. The original PDF in disordered regions is 0.86 and for 

the retrained method is 0.84.  Correction for a second factor does have a significant 

impact on the results. Inspection of the set of HGMD mutations in disordered regions 

revealed that a substantial fraction (438 out of the total of 1110) are in collagen. At 

first glance, it seems odd that collagen should be classed as a disordered protein, but 

this is a correct characterization - the bulk of collagen molecules are formed from a 

homo-triple helix. A hypothetical monomer would be structurally disordered, and the 

repeat triplet of the sequence is one of the possible signatures of disordered regions. 

Nevertheless, from the point of view of this analysis, the collagen mutations are 

atypical of disordered regions in other proteins, so I again retrained the SNPs3D 

profile method, omitting these mutations. The PDF in disordered regions, omitting the 
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collagen mutations, is now substantially lower (0.69 versus 0.84). Figure 3-6A shows 

that result on monogenic disease mutations together with those from Polyphen2 

(Adzhubei et al., 2010) and CADD (Kircher et al., 2014), omitting the collagen 

mutations. The results from all three methods are similar and show consistently lower 

PDFs for disordered versus disordered regions (0.85 - 0.89 in ordered regions, 0.69 - 

0.68 in disordered regions). That is, for monogenic disease, the fraction of mutations 

predicted deleterious is about 20% lower for disordered than ordered regions. The 

reason for this is unclear, but it is likely that the feature sets used in the sequence 

methods are not an optimal choice for disordered regions, and result in a higher false 

negative rate. If so, this will depress the values for cancer mutations in disordered 

regions as well.  

 

Indeed, Figure 3-6B shows that the fraction of driver gene mutations predicted 

deleterious in disordered regions is consistently about 30% lower than in ordered 

regions.  The difference here is larger than for monogenic disease (30% versus 20%), 

suggesting that even after allowing for the apparent high false negative rate in 

disordered regions, these may contain a lower fraction of driver mutations than 

ordered regions, consistent with the results in Figure 3-5.  

 

Figure 3-6: (A) The fraction of predicted deleterious mutations is approximately 20% 

lower in disordered regions of monogenic disease proteins than in ordered regions. 

(B) For cancer driver proteins, the fraction of predicted deleterious mutations in 

disordered regions is approximately 30% lower than for ordered regions. (C) Fraction 
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of predicted deleterious mutations in the ordered (circles and solid lines) and 

disordered (square and dashed lines) regions of COSMIC Cancer Gene Census driver 

proteins as a function of mutation recurrence. For mutations with low recurrence, the 

fraction of predicted deleterious mutations is consistently lower in disordered regions 

than in ordered regions. Both fractions rise as a function of mutation recurrence and 

converge when mutations are observed for more than 10 times. Error bars show 95% 

confidence intervals derived from 100 rounds of bootstrapping.  

(Figure 3-6, see above for caption.) 
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3.3.7 Other properties of mutations in disordered versus ordered regions 

We found no tendency for tumor suppressors and oncogenes to be differently 

distributed between disordered and ordered regions. Similarly, we found no tendency 

for monogenic disease mutations in genes classified as dominant versus recessive to 

be differently distributed in disordered and ordered regions.  

 

3.3.8 Protein surface and core mutations 

A second structural feature that provides insight into the mutation properties is the 

fraction of mutations on the surface of proteins versus in the core. Figure 3-7A shows 

that the fraction of all residues designated ‘surface’ (using STRIDE (Eisenhaber & 

Argos, 1993; Eisenhaber et al., 1995; Frishman & Argos, 1995), see Methods) is 

similar for all categories of protein, at approximately 50% (See Figure 3-8A for the 

mutations in the core). As shown in Figure 3-7B, the relative density of monogenic 

disease mutations on the surface to that in the core is only 0.58, showing a strong 

tendency for mutations in this class of disease to be buried (See Figure 3-8B for the 

mutations in the core).  In contrast to this, both cancer driver gene sets show an 

enrichment of 1.3 for mutations on the surface versus in the core. Passenger gene 

mutations show a larger surface enrichment of 1.75 on average, and by far the highest 

surface enrichment is for inter-species variants, 3.6 to 4.2. The latter values reflect the 

fact that there are more possible neutral mutations on the surface than in the interior, 

so substitutions are more likely to be fixed on the surface, and there are more 

opportunities for benign passenger mutations there as well. We therefore expect some 

of the higher relative density on the surface of driver proteins arises from the 
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accumulation of passengers. However, unlike the data for disordered regions, the 

fraction of driver gene mutations on the surface as a function of mutation recurrence 

does not show a significant trend (Figure 3-7C) and so does not support an excess of 

surface passengers. Interpretation of this plot is complicated by a strong tendency for 

oncogene mutations to be on the surface and tumor suppressors to be in the core (see 

below). Since oncogene mutations have a higher recurrence rate than tumor 

suppressors, that tendency will dampen any relationship between surface and 

recurrence.  (The corresponding surface density versus mutation load plot does show 

the expected relationship, but because of limited structural data, 95% confidence 

limits are large - data not shown). An alternative probe of the extent of passengers in 

surface regions is to consider the fraction of surface mutations predicted deleterious 

as a function of recurrence, since this fraction is similar for tumor suppressors and 

oncogenes (Table 3-5). Figure 3-7D shows a strong trend of increasing deleterious 

rate with mutation recurrence, consistent with the results from the passenger proteins 

and interspecies variant density results. Overall, the data support the conclusion that a 

substantial part of the excess surface mutations in cancer driver proteins are passenger 

mutations. 

 

 I also examined the surface to core distribution for mutations in oncogenes and tumor 

suppressors (Figure 3-9). Unlike the corresponding data for disorder/order, there is a 

marked difference in surface enrichment for the two classes of genes: for oncogenes 

the density of surface mutations is 1.9 times that of core mutations, while for tumor 

suppressors, the density is lower on the surface than in the core (average 0.85 that of 
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the core). For monogenic disease, there is also a smaller but still significant difference 

between the surface to core densities for genes classified as dominant and those 

classified as recessive, (density ratio of 0.68 for dominant versus 0.45 for recessive). 

 

 

 

 

 

Figure 3-7: (A) For all classes of protein, about half of all residues are designated 

surface. (B) Ratio of mutation density on the surface to that in the core. The density 

of monogenic disease mutations on the surface is only about ½ that in the core, 

whereas for cancer driver protein mutations the density is higher on the surface.  High 

ratios for interspecies variants and passenger proteins are consistent with less 

functional constraints on surface residues. (C) The fraction of surface mutations in 

cancer driver genes does not significantly correlate with mutation recurrence, so does 

not support an excess of surface mutations being passengers. A confounding factor is 

the tendency for oncogene mutations to be on the surface. (D)  Fraction of predicted 

deleterious mutations in the core (circles and solid lines) and on the surface (square 

and dashed lines) for COSMIC Cancer Gene Census driver proteins as a function of 

mutation recurrence. The fraction of predicted deleterious mutations on the surface 

rises from around 0.7 for single occurrence mutations to 0.8~0.9 for those occurring 

more than 10 times. Error bars show 95% confidence intervals derived from 100 

rounds of bootstrapping.  
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(Figure 3-7, See above for caption.) 
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Figure 3-8 (A) Fractions of core residues and (B) ratio of mutation density in the core 

to that on the surface in monogenic disease genes and cancer driver genes, in the 

corresponding interspecies variants datasets, and in cancer passenger genes. The 

density ratio in HGMD disease genes is significantly higher than in the cancer driver 

genes. Compared to Figure 6, interspecies variants and somatic mutations in the 

passenger genes are more enriched on the protein surface, which supports that surface 

missense mutations are less deleterious and more tolerated. 
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Figure 3-9 (A) The relative residue fraction and (B) the relative mutation density, and 

(C) the fraction of mutations predicted destabilizing using the SNPs3D Stability 

method for core and surface mutations in the TCGA Sander oncogene set, the TCGA 

Sander tumor suppressor gene set, the COSMIC Cancer Gene Census oncogene set, 

and the COSMIC Cancer Gene Census tumor suppressor gene set. Missense 

mutations are enriched in the core in tumor suppressor genes, and on the surface in 

oncogenes. In the core, the fraction predicted deleterious by SNPs3D Stability 

method is significantly higher in tumor suppressor genes than in oncogenes. 
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3.3.9 Role of structure destabilization 

I next examine the role of structure destabilization in cancer mutations compared to 

those in monogenic disease. As noted earlier, destabilization plays a major role in 

monogenic disease mechanisms (Yue et al., 2005) and our earlier analysis suggests a 

significant role in cancer too (Shi & Moult, 2011). For this purpose, I trained separate 

stability SVMs on surface and core monogenic disease mutations, with interspecies 

variants in those regions as controls. Figure 3-10A shows that overall 0.71 of 

monogenic disease mutations are predicted to be destabilizing (similar to the value 

Yue & Moult reported earlier (Yue & Moult, 2006)), whereas only about 0.50 to 0.53 

cancer driver gene mutations are predicted destabilizing, a large difference. The 

interspecies variant results provide an estimated false positive rate of 0.15. To address 

possible bias arising from training the stability method on monogenic disease data, I 

retrained using cancer data. This model was unsatisfactory in that it delivered much 

higher false positive rates (0.24 to 0.41 of interspecies variants predicted 

destabilizing, Table 3-5), but the relationship between the fraction of monogenic 

disease mutations predicted destabilizing and the fraction for cancer driver genes is 

similar to that obtained with the monogenic disease model (0.81-0.84 for monogenic 

disease and 0.64-0.68 for cancer driver gene mutations, Table 3-5), supporting the 

conclusion that destabilization rates are substantially higher for monogenic disease 

than for cancer driver gene mutations. 

 

Based on the other analyses, we expect that passenger mutations in driver genes are 

one contributor to the lower fraction predicted destabilizing there. Examination of the 
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fraction of destabilizing mutations as a function of mutation recurrence (Figure 3-

10D) supports a role for this factor, although less strongly than in the corresponding 

sequence analysis. A second contribution to different levels of destabilization in 

cancer and monogenic disease may come from the higher proportion of surface 

mutations in cancer: surface mutations are intrinsically less likely to be destabilizing. 

To help isolate this effect, I examined the role of destabilization in surface and core 

mutations separately. As expected, values for surface and core are markedly different: 

For monogenic disease, 0.76 of mutations in the core are predicted destabilizing, 

compared with 0.63 for surface. For cancer driver gene mutations, average values are 

0.63 for core and 0.42 for surface (Figure 3-10B).  

 

We expected that the distinction between surface and core destabilization properties 

might be particularly sensitive to whether a mutation is an oncogene or a tumor 

suppressor, so also examined the surface/core properties of these two classes 

separately. Indeed, tumor suppressor destabilizing fractions are higher in the core 

than those for oncogenes (0.73/0.67 versus 0.59/0.53), while surface values are 

similar for the two classes of mutation (Table 3-5, Figure 3-9). Thus, particularly for 

tumor suppressor mutations, a high (>70%) fraction of core mutations in both 

monogenic disease and cancer destabilize protein structure.  
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Figure 3-10: Fraction of predicted destabilizing mutations. (A) More than 70% of 

monogenic disease mutations are predicted destabilizing compared with only about 

half of mutations in cancer driver genes. The value for passenger gene mutations is 

not much lower than for driver genes. (B) The predicted destabilizing fraction is 

substantially lower on the surface than in the core for both types of disease. (C) 

Dependence on the fraction of mutations predicted destabilizing on the fraction of 

surface mutations. Each point is for one gene. The fewer mutations on the surface, the 

higher the fraction that predicts destabilizing, and monogenic disease genes (blue) 

tend to have a lower surface fraction than cancer genes. (D) Relationship between the 

fraction predicting deleterious and recurrence for cancer mutations. The driver gene 

destabilizing fraction increases with recurrence, consistent with a mixture of driver 

and passenger mutations in these genes. There is no trend for passenger gene 

mutations. Results are for SVMs trained on monogenic disease surface and core 

mutations separately. Error bars show 95% confidence intervals derived from 100 

rounds of bootstrapping.  
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(Figure 3-10, See above for caption) 
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3.4 Discussion 

In this paper, I have used computational methods together with sequence and 

structure information to investigate and compare the properties of missense mutations 

causative of monogenic disease and driving cancer. The principal findings are as 

follows: 

 

3.4.1 Most monogenic disease and cancer driver mutations are under selection pressure, and 

so can be identified with sequence-based methods 

After allowing for the effects of passenger mutations in cancer driver genes, I find a 

high fraction (> 80%) of mutations causing monogenic disease and of cancer driver 

mutations are predicted to be deleterious. These results are consistent across three 

different methods trained on monogenic disease (Figures 3-3, Figure 3-4). There are 

two primary implications. First, sequence methods trained on monogenic disease data 

are effective at identifying cancer drivers. Second, the large majority of mutations 

positions in both types of disease are under strong selection pressure (otherwise the 

sequence methods used would not be effective). While this was likely for most 

monogenic diseases, which are often severe and early onset, it is less obvious for 

cancer mutations, selected within a clone primarily to promote cell growth. It is not 

yet clear what fraction of the apparent false negatives - disease mutations not 

predicted deleterious - are technical false negatives or mutations that do not affect 

fitness.  
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3.4.2 Mutations in disordered regions play a limited role in both monogenic disease and 

cancer 

Figure 3-5A shows that there is a much higher involvement of disordered regions in 

cancer than in monogenic disease, with only 10% of monogenic disease mutations in 

these regions, compared with 31-34% of cancer driver protein mutations. Two factors 

contribute to this difference. First, cancer driver genes are unusual in containing 

almost three times as much disorder as monogenic disease genes or passenger genes. 

That higher disordered fraction likely reflects a different functional spectrum for 

these proteins. In particular, it has been noted that these proteins are more hub-like 

(Goh et al., 2007; Jonsson & Bates, 2006; Kar, Gursoy, & Keskin, 2009) (involved in 

interactions with many partners), perhaps implying that more disordered regions are 

required to provide specificity for a range of protein binding partners (Fornili, 

Pandini, Lu, & Fraternali, 2013; J. Liu, Faeder, & Camacho, 2009). For example, the 

intrinsically disordered terminal trans-activation domain of P53 binds to three 

different protein partners in three different conformations (Oldfield et al., 2008). 

Second, the relative density of driver protein mutations in these regions is twice as 

high as for mutations in monogenic disease genes (~0.64 versus 0.30). However, the 

even higher relative mutation density in passenger protein disordered regions (~0.9) 

and for interspecies variants (~2.6) suggests that part of the cancer excess density is a 

consequence of benign passenger mutations being more likely to lie in disordered 

regions. Analysis of the relative densities as a function of the mutation recurrence and 

cancer mutational load confirm this is the case. The fraction of mutations predicted 

deleterious in disordered regions of cancer driver proteins is also low compared with 
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that for monogenic disease, also consistent with a high fraction of passengers in these 

regions (Figure 3-6). As noted above, the apparently deleterious mutations in 

disordered regions may often be involved in protein-protein interactions. The extent 

to which disordered regions of proteins are involved in function has not been clear 

(Vacic et al., 2012). Two aspects of these results confirm that disordered regions are 

much less functionally significant - the very low fraction of monogenic disease 

mutations there, and the high concentration of interspecies variants and passenger 

mutations. 

 

3.4.3 Cancer oncogene mutations tend to be on the protein surface, whereas monogenic 

disease mutations and tumor suppressors tend to be in the core 

The surface density of mutations in cancer driver genes is higher than in the core, and 

for mutations in oncogenes, it is nearly twice as high. While some of this difference 

reflects excess passenger mutations on the surface, it also likely reflects the greater 

role for disruption of intermolecular interactions in cancer (Nishi et al., 2013) and 

also that gain of function oncogene mutations tend to affect surface processes such as 

kinase conformational states related to phosphorylation (Blume-Jensen & Hunter, 

2001). Conversely, tumor suppressor mutation density is higher in the core than on 

the surface, and for monogenic disease mutations, the core density is twice that of the 

surface. As discussed below, these values reflect the high role of structure 

destabilization for these classes of mutation. In monogenic disease, there is a higher 

relative density of surface mutations in autosomal dominant genes than recessive ones 

(0.68 versus 0.45). A number of mechanisms are involved in autosomal dominant 
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disease, including haplo-insufficiency, oligomer structure (of which collagen 

mutations are an example (Lamandé et al., 1998)), and gain of function. The latter 

mechanism likely contributes most to the surface/core signal, in a manner analogous 

to that of gain of function mutations in oncogenes. Examples are of monogenic 

surface gain of function mutations in the calcium sensing receptor (CASR), causing 

hypocalcemia, and in Luteinizing Hormone/Choriogonadotropin Receptor (LHCGR), 

causing Familial Male-Limited Precocious Puberty (FMPP). 

 

3.4.4 A large fraction of monogenic disease and cancer tumor suppressor mutations in the 

protein core destabilize protein structure 

Approximately ¾ of both monogenic disease mutations and cancer tumor suppressor 

mutations in the protein core are predicted to destabilize protein structure. A 

prediction of destabilization using this method is equivalent to a major decrease in 

protein abundance in vivo (Yue et al., 2005), either through misfolding or reduced 

protein half-life. Most monogenic disease missense mutations result in a major loss of 

molecular function (for example, (Shi, Sellers, & Moult, 2012) and (Yin, Kundu, Pal, 

& Moult, 2017)). To the extent that core tumor suppressor mutations can be 

considered to represent all driver mutations, the result implies that in this class of 

disease too there is usually major loss of protein function, rather than a subtle effect at 

that level.  

 

What about the other 25% of core monogenic mutations and tumor suppressor 

mutations which do not appear to destabilize structure? Are these more subtle in their 
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effect on protein function? Recessive mutations provide some evidence here, since a 

disease outcome for most of these involves a 50% or greater loss of molecular 

function. The predicted destabilization fraction for the recessive mutations is 

approximately the same as for monogenic disease as a whole. That suggests that most 

of the remaining 25% are a combination of false negatives of the computational 

method and mechanisms other than destabilization, rather than mutations with a 

subtle effect on function.  

 

There are some oncogene mutations in the core region, and about 50% of these are 

predicted to destabilize protein structure, at first glance a surprising result, since these 

should be gain of molecular function. As noted earlier, less than 1/3 of oncogene 

mutations are in the core, so that a 50% destabilization rate corresponds to just 1/6 of 

oncogene mutations. The estimated false positive rate is 0.15, close to that value, and 

there may be some cases where oncogene gain of function is the result of 

destabilization of a regulatory domain. Also, the definition of oncogenes and tumor 

suppressors is not always unambiguous. In compiling the oncogene and tumor 

suppressor lists I noted that 10 genes had been classified as oncogenes by one group 

and tumor suppressors by the other (these were excluded). There are also examples 

where a gene may behave as an oncogene in some circumstances and a tumor 

suppressor in others (Manfredi, 2010). 
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3.4.5 Mutations in passenger genes show a high fraction of deleteriousness 

A surprisingly high fraction (more than 50%) of mutations in passenger genes appear 

deleterious with the sequence methods used here. The estimated false positive rate is 

much lower (10% or less). Stability analysis supports this observation, with almost as 

high a fraction of passenger gene mutations predicted destabilizing as in driver genes. 

There are at least two possible explanations. One is that there is insufficient selection 

pressure to eliminate these mutations in a typical cancer. Simulations of cancer 

progression suggest that moderately deleterious mutations will escape elimination by 

various population genetics mechanisms, and so accumulate, sometimes impending 

cancer progression (McFarland et al., 2013). The other is that there is a significant 

concentration of unrecognized driver genes. As noted earlier, there is considerable 

variation in driver set definitions, so that it is expected this would be the case to some 

degree. But depending on the cancer type and particular case (Martincorena & 

Campbell, 2015), there may be up to 100s or even a thousand deleterious mutations 

spread across non-driver genes and a deleterious fraction of 0.5 implies that a 

substantial fraction of these mutations genes must be drivers or deleterious mutations 

not yet selected out, which seems improbable. The exact nature and impact of these 

mutations will repay further study. 

 

In common with all analyses so far we have assumed a binary model of cancer drivers 

- a mutation is either a driver or not. But it may be that there is a continuous scale of 

driver impact with a few strong drivers and a long tail of mutations making secondary 
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contributions, loosely analogous to the contributions of variants to complex trait 

disease (Pritchard, 2001).   
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Chapter 4: Increasing the Stability of the Bacteriophage 

Endolysin PlyC Using Rationale-Based FoldX Computational 

Modeling 

Published:  

Heselpoth RD, Yin Y, Moult J., Nelson DC. 2015. Increasing the Stability of the 

Bacteriophage Endolysin PlyC Using Rationale-Based FoldX Computational 

Modeling. Protein Engineering, Design & Selection 28(4):85-92. 

My contribution: computational experiments and data analysis 

 

4.1 Abstract 

Endolysins are bacteriophage-derived peptidoglycan hydrolases that represent an 

emerging class of proteinaceous therapeutics. While the streptococcal endolysin PlyC 

has been validated in vitro and in vivo for its therapeutic efficacy, the inherent 

thermosusceptible structure of the enzyme correlates to transient long-term stability, 

thereby hindering the feasibility of developing the enzyme as an antimicrobial. Here 

we thermostabilized the CHAP domain of the PlyCA catalytic subunit of PlyC using 

a FoldX-driven computational protein engineering approach. Using a combination of 

FoldX and Rosetta algorithms, as well as visual inspection, a final list of PlyC point 

mutant candidates with predicted stabilizing ΔΔG values was assembled and 

thermally characterized. Five of the eight point mutations were found experimentally 

to be destabilizing, a result most likely attributable to computationally modeling a 
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complex and dynamic nine-subunit holoenzyme with a corresponding 3.3-Å X-ray 

crystal structure. However, one of the mutants, PlyC (PlyCA) T406R, was shown 

experimentally to increase the thermal denaturation temperature by ~2.2°C and 

kinetic stability 16 fold over wild-type. This mutation is expected to introduce a 

thermally advantageous hydrogen bond between the Q106 side-chain of the N-

terminal GyH domain and the R406 side-chain of the C-terminal CHAP domain. 

 

4.2 Introduction 

Endolysins, also termed phage lysins or enzybiotics, are bacteriophage-encoded 

peptidoglycan hydrolases (Nelson et al., 2006). During a lytic bacteriophage (phage) 

replication cycle within the host bacterium, endolysins are expressed and accumulate 

in the cytosol in a fully folded and active conformation. The exact moment of cell 

lysis is then highly regulated by holins, hydrophobic membrane proteins that generate 

pore-forming complexes on the cytoplasmic membrane, providing cytosolic 

endolysins access to their peptidoglycan substrate (I. N. Wang, Smith, & Young, 

2000; Young, 1992). The endolysin then degrades the peptidoglycan upon direct 

contact due to the hydrolysis of key covalent bonds within the cell wall structure, 

resulting in osmotic lysis and liberation of intracellular progeny virions. With this 

mechanistic understanding, the exogenous application of a purified recombinant 

endolysin to susceptible Gram-positive bacteria produces the same bacteriolytic 

phenotype without the presence of the bacteriophage or holins and thus represents an 

alternative antimicrobial to treat antibiotic-resistant bacterial infections (Fischetti, 

Nelson, & Schuch, 2006).  
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PlyC is an endolysin derived from the streptococcal C1 lytic phage that has been 

validated in vitro for its bacteriolytic efficacy against groups A (GAS), C (GCS) and 

E (GES) streptococci and in vivo for its ability to protect mice from streptococcal 

challenge (Krause, 1957; Nelson et al., 2001). When added to GAS (Streptococcus 

pyogenes) in vitro, 10 ng of PlyC was able to cause a 7 log decrease in colony 

forming units in 5 s, making this endolysin ~100 fold more active than any other 

characterized endolysin to date (Nelson et al., 2001). Unlike other endolysins, which 

are single gene products consisting of one or more enzymatically active domains 

(EAD) and a cell wall binding domain (CBD), PlyC consists of a novel multimeric 

structure with nine distinct subunits (McGowan et al., 2012; Nelson et al., 2006). 

Eight identical PlyCB monomers interact to form a symmetrical octameric ring 

structure that serves as the CBD of the holoenzyme. The ninth subunit, PlyCA, 

functions as the EAD of the endolysin and consists of three domains. The 

catalytically-active N-terminal glycosyl hydrolase (GyH) and C-terminal cysteine, 

histidine-dependent amidohydrolase/peptidase (CHAP) domains act together 

synergistically to generate the robust bacteriolytic mechanism of the enzyme, whereas 

the central helical docking domain interacts with the PlyCB CBD to promote the 

formation of the holoenzyme structure (McGowan et al., 2012).  

 

Thermal denaturation of PlyC by means of differential scanning calorimetry (DSC) 

showed that the PlyCB octamer is endogenously thermostable, displaying a thermal 

transition temperature (TG) of 75.0°C, whereas the PlyCA EAD is thermosusceptible, 

with a TG of 46.2°C (F. Schwarz, personal communication). While the dissociation of 
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the PlyCB octamer into isolated monomers is a reversible thermodynamic process, 

the unfolding of the individual PlyCA and PlyCB monomers is an irreversible event, 

which is supported by their inability to refold after being heat-denatured. The C-

terminal CHAP domain of PlyCA was shown to have a TG of 39.1°C when isolated, 

compared to a TG of 46.0°C associated with PlyCAΔCHAP in a PlyCΔCHAP 

background (i.e. PlyC holoenzyme with a PlyCA C-terminal CHAP domain deletion), 

suggesting that the CHAP domain of PlyCA is the most heat-labile structural 

component of the PlyC holoenzyme.  

 

Although the number of thermodynamically characterized endolysins is limited, there 

are examples of endolysins that display similar structural instability to that of PlyC. 

For example, the Staphylococcus aureus endolysin LysK as well as the Streptococcus 

pneumoniae endolysins Cpl-1, Pal and Cpl-7 are devoid of activity or unfold at 

42.5°C, 43.5°C, 50.2°C and 50.4°C, respectively (Bustamante, Rico-Lastres, Garcia, 

Garcia, & Menendez, 2012; Filatova, Becker, Donovan, Gladilin, & Klyachko, 2010; 

Sanz, Garcia, Laynez, Usobiaga, & Menendez, 1993; Varea et al., 2004).  In 

congruence to the Arrhenius equation, the thermolability of PlyC and other 

endolysins correlates to a short-term therapeutic shelf-life expectancy (Anderson & 

Scott, 1991).  

 

A number of computational methods have proven partially effective at identifying 

single amino acid substitutions that result in increased thermodynamic stability of a 

protein (Cheng, Randall, & Baldi, 2006; Gilis & Rooman, 2000; Guerois et al., 2002; 
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Parthiban, Gromiha, Hoppe, & Schomburg, 2007; Parthiban, Gromiha, & Schomburg, 

2006; Schymkowitz, Rousseau, et al., 2005; Zhou & Zhou, 2002). One example is 

FoldX (Guerois et al., 2002; Schymkowitz, Borg, et al., 2005; Schymkowitz, 

Rousseau, et al., 2005), which uses an empirical potential derived from a weighted 

combination of physical energy terms (e.g. van der Waals interactions, hydrogen 

bonding, electrostatics and solvation), statistical energy terms and structural 

descriptors. In third-party testing, FoldX has been shown to perform with useful 

accuracy across all protein structure types, yielding a correlation coefficient of 0.5 

between estimated and experimental ΔΔG (Khan & Vihinen, 2010; Potapov, Cohen, 

& Schreiber, 2009). Rosetta was developed primarily for designing proteins with 

desirable properties, including new protein folds (Brian Kuhlman et al., 2003), novel 

enzymatic activity (Jiang et al., 2008; Röthlisberger et al., 2008) and modified 

substrate specificity (Ashworth et al., 2006). The ddG module of Rosetta also 

provides a means of estimating ΔΔG for point mutations (Kellogg et al., 2011).  

 

Here we aim to engineer enhanced stability of a thermolabile bacteriolytic enzyme 

using computational modeling. Using the PlyC holoenzyme structure as the template, 

our engineering strategy was to apply the FoldX and Rosetta algorithms together, in 

addition to subsequent visual inspection, to the C-terminal CHAP domain of PlyCA. 

By doing so, we were able to identify one point mutant, PlyC (PlyCA) T406R, which 

was shown experimentally to thermostabilize the PlyC holoenzyme structure and 

thereby enhance its long-term stability and therapeutic potential. 
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4.3 Materials and methods 

4.3.1 Computational Modeling of PlyC Mutants 

Initial atomic coordinates were taken from the PlyC holoenzyme X-ray crystal 

structure (Protein Data Bank ID 4F88). Due to the relatively low 3.3-Å resolution of 

the structure, polypeptide backbones and side-chains were adjusted using Rosetta 

Relax (Raman et al., 2009), followed by another round of side-chain orientation 

optimization using the FoldX3.0 RepairPDB command (Guerois et al., 2002; 

Schymkowitz, Borg, et al., 2005). The resulting coordinates were then processed with 

FoldX3.0 PositionScan to obtain estimated changes in folding free energy (ΔΔGFoldX) 

for all of the 2,945 possible CHAP domain point mutants (155 total CHAP domain 

residues multiplied by the 19 alternative natural amino acids). The structural 

environments of those mutations with a predicted ΔΔGFoldX ≤ -1 kcal/mol were then 

manually inspected to remove those judged likely to introduce unfavorable structural 

alterations. Finally, the remaining mutants were processed through the Rosetta 

ddg_monomer application (Kellogg, Leaver-Fay, & Baker, 2011) to yield the PlyC 

candidate mutant list for experimental study.   

 

4.3.2 Bacterial Strains and Culture Conditions 

S. pyogenes D471 (group A streptococcus) was maintained and grown in Todd Hewitt 

broth supplemented with 1% yeast extract as previously described (Nelson et al., 

2001; Nelson, Schuch, Zhu, Tscherne, & Fischetti, 2003). E. coli strains DH5α and 

BL21(DE3)pLysS (Novagen) were grown in Luria-Bertani (LB) broth at 37°C in a 
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shaking incubator unless otherwise stated. When needed, ampicillin (100 μg/ml) was 

added to the media. 

 

4.3.3 Cloning and Site-directed Mutagenesis 

The plyC operon was cloned into pBAD24 as previously described (Nelson et al., 

2006). Site-directed mutagenesis was performed using the Phusion Site-Directed 

Mutagenesis Kit (Thermo Scientific). Mutations were introduced into the middle of 

the 30 nucleotide forward phosphorylated oligonucleotide primer for each mutant, 

with the reverse primer being complementary to the next 30 nucleotides upstream 

(Eurofins Scientific). The standard 50 µl PCR reaction mixture consisted of 1 ng of 

pBAD24::plyC, 1x Phusion HF Buffer, 0.2 mM dNTP, 0.5 μM of each primer and 1 

U of Phusion DNA polymerase. The thermocycler heating conditions consisted of 

98°C for 30 s, 25x (98°C for 10 s; 65°C for 30 s; 72°C for 4 min) and 72°C for 5 min. 

The resulting PCR products were then ligated and transformed into E. coli DH5α. 

Plasmid DNA was extracted from successful transformants and mutations were 

confirmed by nucleotide sequencing (Macrogen USA). Vector constructs comprising 

an insert with the correct nucleotide sequence were transformed into E. coli 

BL21(DE3)pLysS for protein expression. 

 

4.3.4 Protein Expression and Purification 

E. coli BL21(DE3)pLysS harboring the wild-type and mutant pBAD24::plyC 

expression constructs were grown to mid-log phase in 1.5L LB supplemented with 
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ampicillin in a 4L baffled Erlenmeyer flask. Protein expression was induced with 

0.25% L-arabinose at 37°C overnight. The cells were harvested the following 

morning at 7,000 RPM, resuspended in phosphate buffered saline (PBS), pH 7.25, 

supplemented with 1 mM phenylmethanesulfonyl fluoride (Sigma-Aldrich) and 

sonicated on ice for 15 min. The insoluble cell debris from the cell lysate was pelleted 

at 13,000 RPM for 1 h at 4°C. The soluble endolysins were then purified as 

previously described (Nelson et al., 2001). Protein solubility and purity were assessed 

on a 4-15% gradient sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) gel (Laemmli, 1970).  

 

4.3.5 In Vitro Endolysin Activity on S. pyogenes 

Spectrophotometric-based turbidity reduction assays were performed to determine the 

bacteriolytic activity of each endolysin investigated. An overnight culture of S. 

pyogenes D471 was harvested at 4,000 RPM for 15 min, washed once with PBS, pH 

7.2, and resuspended to an OD600 = 2.0. In a flat-bottomed 96-well plate, the purified 

endolysin at an initial concentration of 8.84 µM (1 mg/ml) was serial diluted in 100 μl 

of PBS buffer. An equal volume of bacteria was then mixed with the different 

enzyme concentrations and the OD600 was monitored kinetically on a SpectraMax 190 

microplate spectrophotometer (Molecular Devices) every 6 s for 30 min at 37°C. The 

amount of time (s) to decrease the initial OD600 by 50% was then plotted against the 

enzyme molar concentration and fit with a one-phase exponential decay curve. 1 U of 

enzyme activity was equated to the amount of endolysin (μg) required to decrease the 
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ODmax by 50% in 15 min. Each independent turbidity reduction assay was performed 

in triplicate. 

 

4.3.6 Circular Dichroism Spectroscopy 

A Chirascan CD spectrometer (Applied Photophysics) equipped with a 

thermoelectrically controlled cell holder was used for all CD experiments. For 

secondary structure far-ultraviolet (UV) analysis, the endolysins were at a 0.1 mg/ml 

concentration in 20 mM sodium phosphate buffer, pH 7.0. CD spectra were obtained 

in the far-UV range (190-260 nm) in a 1 mm path length quartz cuvette at 1 nm steps 

with 5-second signal averaging per data point. Spectra were collected in triplicate, 

followed by averaging, baseline subtraction, smoothing and conversion to mean 

residue ellipticity (MRE) by the Pro-Data software (Applied Photophysics). 

Secondary structure prediction was performed using the Provencher and Glockner 

method provided by DICHROWEB (Provencher & Glockner, 1981; Whitmore & 

Wallace, 2004). Melting experiments were performed by heating the endolysins at a 1 

mg/ml concentration in 20 mM sodium phosphate buffer, pH 7.0, from 20°C to 95°C 

at 1°C/min. MRE was monitored at 222 nm in a 1 mm path length quartz cuvette at 

0.5°C steps with 5-second signal averaging per data point. The melting data was 

smoothed, normalized and fit with a Boltzmann sigmoidal curve. The first derivative 

of the melting curve was then taken to determine the temperature, TG, at which the 

concentration of the folded and unfolded states of the PlyCA subunit were the same. 

This temperature was defined as the minimum in the first derivative graph (Fallas & 

Hartgerink, 2012). 
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4.3.7 Differential Scanning Calorimetry 

DSC experiments were performed on a Nano DSC differential scanning calorimeter 

(TA Instruments) at a constant pressure of 3 atm.  All samples were degassed for at 

least 15 minutes prior to the experiment. The sample and reference cells consist of an 

optimal operational volume of 0.3 ml and were calibrated with equal volumes of 20 

mM sodium phosphate buffer, pH 7.0, by means of three consecutive heating/cooling 

cycles from 15°C to 105°C and 105°C to 15°C at 1°C/min. The endolysins were then 

heated from 15°C to 105°C at a 1°C/min heating rate in 20 mM sodium phosphate 

buffer, pH 7.0, using a final protein concentration of 1 mg/ml followed by immediate 

cooling from 105° to 15°C at 1°C/min. Data analysis by means of baseline 

subtraction and curve fitting was performed by the NanoAnalyze software (TA 

Instruments). Due to a scan rate-independence displayed by PlyC during calorimetric 

analysis (F. Schwarz, personal communication), equilibrium thermodynamics were 

applied to the finalized calorimetric dataset. The thermal transition temperature, TG, 

was defined as the mid-point of each thermal transition. 

 

4.3.8 45°C Kinetic Stability Assay 

The various endolysins investigated were incubated in a 45°C hot plate in PBS, pH 

7.2, at a 44 nM (5 μg/ml) concentration for a total of 3 hours. At 20 minute 

increments, a 400 μl aliquot of the heated enzyme was removed and incubated on ice 

for 5 minutes. Three adjacent wells of a 96-well plate were then filled with 100 μl of 

the cooled enzyme, followed by the addition of an equal volume of S. pyogenes D471 

(see In Vitro Endolysin Activity on S. pyogenes for cell preparation). The residual 
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lytic activity of the endolysin was analyzed via turbidity reduction assay by 

monitoring the OD600 every 6 s for 20 min. The activity of the endolysin was equated 

to the Vmax (milli-OD units per min) corresponding to the linear portion of the 

resulting killing curve. Residual lytic activity was normalized to the activity displayed 

in the absence of heat treatment.  

 

4.4 Results 

FoldX was applied to the C-terminal CHAP domain of PlyCA (CHAP is comprised 

of PlyCA amino acids 309-465; however, atomic coordinates were only available for 

residues 310-464), substituting each of the possible 19 alternative natural amino acids 

at each residue position, so generating a library of 2,945 PlyC mutants. Most of the 

mutations analyzed (n = 2,453) were predicted by FoldX to have either destabilizing 

or neutral effects on stability, resulting in a ΔΔGFoldX ≥ 0 kcal/mol (ΔΔGFoldX = ΔGmut 

– ΔGwt) (Figure 4-1). All of the mutants (n = 92) that had a ΔΔGFoldX ≤ -1 kcal/mol 

were visually inspected, resulting in the elimination of another 61 mutants that appear 

to modify the PlyC structure in an unfavorable manner. Examples of these 

disadvantageous structure changes are disruption of salt-bridge and dipole 

interactions, replacement of salt-bridge interactions with weaker dipole interactions, 

generation of cavities in the hydrophobic core by the introduction of an amino acid 

with a smaller side-chain, exposure of hydrophobic side-chains at the surface, and 

disruption of the active site. 
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Figure 4-1. Log distribution of the predicted change in folding free energy 

(ΔΔGFoldX) for all 2,945 possible PlyCA CHAP domain point mutants calculated with 

FoldX 3.0 PositionScan. Mutations with ΔΔGFoldX < 0 are expected to increase protein 

stability. Only a small portion of mutations are predicted to be stabilizing. 
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Table 4-1. List of the final 10 PlyC mutant candidates, including the specific 

mutation (column 1), the location of the mutation within the CHAP domain of PlyCA 

(column 2) and the calculated ΔΔG (kcal/mol) values by the FoldX (column 3) or 

Rosetta (column 4) algorithms. 

 

PlyC 
Construct 

Location 
ΔΔGFoldX 

(kcal/mol) 
ΔΔGRosetta 

(kcal/mol) 

Wild-type -------- -------- -------- 

D330Y Surface, near the active site -1.09 -2.51 

Q332H Surface, near the active site -2.19 0.01 

Q332V Surface, near the active site -1.79 -1.29 

C345T Surface with potential domain-domain interaction -1.20 -2.70 

D375Y Surface with potential domain-domain interaction -2.49 -1.53 

T381Y Surface with potential domain-domain interaction -1.32 -2.65 

V384Y Surface with potential intra-domain hydrogen bond -1.04 -5.57 

C404I Hydrophobic core -2.17 -5.44 

T406R Surface with potential domain-domain interaction -1.05 -1.29 

T421I Hydrophobic core, near the active site -2.38 -3.43 

 

The impact of the mutations encoded by the remaining 31 mutants was analyzed by 

the Rosetta ddg monomer algorithm (Kellogg et al., 2011) to further evaluate likely 

stabilizing potential (Figure 4-2). Rosetta predicted 12 of the 31 mutants to be 

destabilizing (ΔΔGRosetta > 0.01 kcal/mol) and these were eliminated from further 

consideration (Figure 4-2, triangles). An additional mutant, PlyC (PlyCA) Q332H, 

has a predicted mildly destabilizing ΔΔGRosetta of 0.01 kcal/mol, but was retained 

since it is in an interesting location, adjacent to the active site cysteine of the CHAP 

domain, C333. Although mutations near the active site generally induce activity 

defects, there are several documented instances where such mutations improve 
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overall thermal stability (Daude, Topham, Remaud-Simeon, & Andre, 2013; Kamal, 

Mohammad, Krishnamoorthy, & Rao, 2012; Kanaya, Oobatake, & Liu, 1996; Lam, 

Yeung, Yu, Sze, & Wong, 2011; Xie et al., 2014; Zhi, Srere, & Evans, 1991). In 

addition to Q332H, the PlyC (PlyCA) mutants D330Y, Q332V, C345T, D375Y, 

T381Y, V384Y, C404I, T406R and T421I were also selected as candidates for 

experimental study, on the basis of predicted ΔΔG < 0 kcal/mol by both of FoldX and 

Rosetta (Figure 4-2, diamonds, Table 4-1). These final 10 candidates consisted of 

mutations located near the CHAP domain active site (D330Y, Q332H, Q332V), in the 

hydrophobic core (C404I and T421I), and at the surface predicted to form an intra-

domain hydrogen bond (V384Y) or an inter-domain interaction with the N-terminal 

GyH domain (C345T, D375Y, T381Y, T406R). The other nine mutants with FoldX 

and Rosetta ΔΔG < 0 kcal/mol values were omitted from further characterization 

(Figure 4-2, circles). These had similar structural locations to those selected, and were 

hypothesized to employ analogous stabilizing mechanisms so that inclusion would 

not improve the diversity of the candidate pool.  

 

Figure 4-2. Comparison between the ΔΔGFoldX and ΔΔGRosetta values of the final 31 

mutant candidates retained after manual curation. Twelve of these remaining mutants 

displayed a ΔΔGRosetta > 0.01 kcal/mol and were not further considered (triangles).  Of 

the remaining 19 mutants (circles and diamonds), 10 were selected for experimental 

characterization (diamonds). All of the final candidates had predicted ΔΔG ≤ 0.01 

kcal/mol values by both FoldX and Rosetta algorithms. 
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(Figure 4-2, See above for caption) 

 

4.4.1 Protein Solubility, Purity and Secondary Structure Determination 

PlyC (PlyCA) mutants Q332H, Q332V, C345T, D375Y, V384Y, C404I and T406R 

all expressed as soluble holoenzymes and were purified to homogeneity based on 

SDS-PAGE analysis (Figure 4-3). No protein expression was observed for PlyC 

(PlyCA) D330Y and T381Y and therefore both were excluded from further 

characterization (data not shown). SDS-PAGE and far-UV CD secondary structure 

analysis of purified PlyC (PlyCA) T421I showed a mixed population of holoenzyme 

and uncomplexed PlyCB octamer structures (data not shown). To overcome this 

issue, a C-terminal 6x His-tag was added to PlyCA T421I. This mutant was expressed 

and purified in the same manner as the other PlyC mutants, with two alterations; 

protein expression was induced at 18°C instead of 37°C, and there was an addition of 
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a final immobilized metal affinity chromatography (IMAC) step using a 5 ml Bio-

Scale Mini Profinity IMAC Cartridge (Bio-Rad) to remove uncomplexed PlyCB 

octamers.  

 

Protein secondary structure analysis was performed using far-UV CD. The CD 

spectra for all of the proteins analyzed were represented in terms of mean residue 

ellipticity (MRE) as a function of wavelength (Figure 4-4a). All eight of the purified 

PlyC mutants displayed no deviation in secondary structure when compared to that of 

wild-type. The far-UV spectra resembles that of an α/β folded protein, displaying 

ellipticity minima at 208 nm and 220 nm, and ellipticity maxima at 195 nm 

(Greenfield & Fasman, 1969; Kelly, Jess, & Price, 2005). Secondary structure 

composition analysis results depict highly homologous regular α-helical (±1.1%), 

distorted α-helical (±1.2%), regular β-strand (±1.0%), distorted β-strand (±0.5%), turn 

(±0.7%) and unordered (±0.7%) structures when comparing wild-type to the eight 

point mutants (data not shown). The normalized root mean square deviation 

(NRMSD) value, which measures the goodness-of-fit between back-calculated 

spectra (spectra extrapolated using the CONTIN method for soluble proteins with 

known crystal structures) and experimental spectra, for each sample was < 0.1, 

suggesting the back-calculated and experimental spectra are in close agreement. Thus, 

none of the point mutations introduced significantly affected the secondary structure 

of the holoenzyme. 
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Figure 4-3. SDS-PAGE analysis of the various PlyC constructs experimentally 

characterized. The solubility and purity of each enzyme was analyzed on a 4-15% 

gradient SDS-PAGE gel. The various lanes correlate to: (M) Molecular weight 

standard, (1) Wild-type, (2) PlyC (PlyCA) Q332H, (3) Q332V, (4) C345T, (5) 

D375Y, (6) V384Y, (7) C404I, (8) T406R and (9) T421I. Protein expression was not 

observed for PlyC (PlyCA) D330Y and T381Y and therefore both were excluded 

from the gel. 
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Figure 4-4. Secondary structure and thermal stability determination. (a) The 

secondary structure of each of the PlyC construct was analyzed by far-UV CD 

spectroscopy from 190-260 nm. The mean residue ellipticity [θ] (deg cm2 dmol-1) was 

plotted against wavelength (nm) for each mutant, with all of the resulting spectra 

being overlaid for comparative purposes. The thermal stability of each mutant was 

then analyzed by means of (b) CD thermal denaturation and (c) DSC experiments in 

20 mM phosphate buffer, pH 7.0, at a protein concentration of 1 mg/ml using a 

heating rate of 1°C/min. Note, only data for PlyCA is depicted for CD and DSC 

analysis as PlyCB denatures >70°C. 



 

 

139 

 

(Figure 4-4, See above for caption) 
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4.4.2 Kinetic Analysis of Bacteriolytic Activity against S. pyogenes 

To assess the bacteriolytic activity of each PlyC mutant, the purified enzymes were 

incubated with S. pyogenes D471 at different molar concentrations and the resulting 

activity was elucidated by turbidity reduction assays. There were no activity defects 

observed with the PlyC (PlyCA) C345T, D375Y and V384Y mutants, displaying 

1.13, 1.03 and 1.23 fold increases in activity when compared to wild-type, 

respectively (Table 4-2).  PlyC (PlyCA) mutants C404I and T406R exhibited a 

moderate loss in activity, exhibiting a respective 2.2 and 2.1 fold decrease in activity.  

More significant activity deficiencies were observed with the PlyC (PlyCA) Q332H, 

Q332V and T421I mutants, of 3.6, 9.1 and 16.7 fold reduction in activity, 

respectively. 

 

Table 4-2. Bacteriolytic activity quantitation by means of S. pyogenes turbidity 

reduction assay.  

 

PlyC 
Construct 

Lytic Activity 
(U/ml) 

Relative Lytic 
Activity 

Wild-type 45350 1.00 

Q332H 12730 0.28 

Q332V 4950 0.11 

C345T 51180 1.13 

D375Y 46550 1.03 

V384Y 55560 1.23 

C404I 16000 0.45 

T406R 21550 0.48 

T421I 2880 0.06 
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4.4.3 Circular Dichroism Thermal Stability Analysis 

Equal molar concentrations of the PlyC mutant enzymes were subjected to CD 

thermal denaturation experiments to determine the TG values of the mutagenized 

PlyCA subunits in the context of the holoenzyme structure (Figure 4-4b). Over the 

temperature range tested, distinct thermally-induced structural transitions were 

observed for both the PlyCA and PlyCB subunits for each mutant analyzed. When 

monitoring the loss of α-helical secondary structure, PlyCA qualitatively exhibits a 

single, cooperative structural transition that is not reversed on cooling. PlyC (PlyCA) 

mutations Q332V, C345T, D375Y, C404I and T421I were destabilizing, decreasing 

the TG of the catalytic subunit by 1.98°C, 0.07°C, 2.45°C, 0.99°C and 10.41°C, 

respectively, when compared to wild-type (TG = 50.09°C) (Table 4-3). The PlyC 

(PlyCA) mutants Q332H and V384Y slightly stabilized PlyCA by 0.08°C and 

0.39°C, respectively. The T406R point mutation to the catalytic subunit of PlyC was 

the most structurally stabilizing, augmenting the TG of PlyCA by 2.27°C.  
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Table 4-3. Biophysical thermal analysis of wild-type PlyC and the computationally 

predicted stabilizing point mutants. Results from CD thermal denaturation (columns 2 

and 3) and DSC (columns 4-9) experiments are depicted for the PlyCA subunit only.  

 

PlyC 
Construct 

Circular Dichroism  Differential Scanning Calorimetry 

TG (°C) ΔTG 
(°C) 

 
TG1 (°C) TG2 (°C) TG3 (°C) 

ΔHVH1 
(kcal/mol) 

ΔHVH2 
(kcal/mol) 

ΔHVH3 
(kcal/mol) 

Wild-type 50.09 -  48.27 50.67  171.23 205.09  

Q332H 50.17 +0.08  48.47 50.74  177.07 211.87  

Q332V 48.11 -1.98  46.94 49.28  150.50 192.22  

C345T 50.02 -0.07  48.00 50.45 55.56 158.39 205.09 193.50 

D375Y 47.64 -2.45  46.26 48.78  156.01 181.05  

V384Y 50.48 +0.39  48.50 50.79 57.05 173.96 212.65 252.90 

C404I 49.10 -0.99  47.72 49.99  153.76 203.14  

T406R 52.36 +2.27  50.48 53.05  192.68 211.38  

T421I 39.68 -10.41  39.24 45.75 49.64 121.37 113.83 118.01 

 

 

4.4.4 Differential Scanning Calorimetry 

To validate the CD structural stability analysis, the thermal denaturation of each PlyC 

mutant was investigated by DSC at equal molar concentrations (Figure 4-4c). 

Thermal transitions corresponding to the unfolding of both the PlyCA and PlyCB 

components of the holoenzyme were observed for each mutant inspected. DSC 

analysis of the FoldX mutants depicts PlyCA unfolding to fulfill a three-state, and in 

some cases, four-state, thermal transition model. Heating the protein samples from 

15°C to 105°C followed by immediate cooling from 105°C to 15°C did not result in 

the refolding of PlyCA or PlyCB for each PlyC construct investigated (data not 

shown).  
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Consistent with CD results, PlyC (PlyCA) mutants Q332V, C345T, D375Y, C404I 

and T421I were less thermostable than wild-type (TG = 48.27°C, van’t Hoff enthalpy 

of unfolding (ΔHVH) = 171.23 kcal/mol) when analyzed by DSC, encompassing a 

1.33°C, 0.27°C, 2.01°C, 0.52°C and 9.03°C decrease in PlyCA TG and a 20.73 

kcal/mol, 12.84 kcal/mol, 15.22 kcal/mol, 17.47 kcal/mol and 49.86 kcal/mol 

reduction in ΔHVH, respectively (Table 4-3). PlyC (PlyCA) mutants Q332H and 

V384Y displayed marginable increases in stability, with an increase in PlyCA TG of 

0.20°C and 0.23°C, and a 5.84 kcal/mol and 2.73 kcal/mol gain in ΔHVH , 

respectively. The T406R mutation produces a more notable improvement in the 

thermal fitness of PlyCA, improving the TG and ΔHVH by 2.21°C and a 21.45 

kcal/mol, respectively. 

 

4.4.5 45°C Kinetic Inactivation Analysis 

The rate of thermally-induced kinetic inactivation was monitored for wild-type PlyC 

and the lead FoldX mutant candidate, PlyC (PlyCA) T406R, at 45°C for a total of 3 

hours. For this particular assay, the unfolding of PlyCA is directly correlated with the 

loss of bacteriolytic activity as a function of temperature and time. The loss in activity 

is not associated with the unfolding of the PlyCB binding domain of PlyC due to the 

inherent thermal stability of the octameric CBD complex of the CBD. The heat-labile 

nature of wild-type PlyC promoted rapid PlyCA unfolding at 45°C, resulting in a 

half-life (t1/2) of 17.84 min (Figure 4-5, squares). Conversely, PlyC (PlyCA) T406R 

mutant improved the kinetic fitness of the enzyme 16 fold at 45°C when compared to 
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wild-type, displaying an extrapolated t1/2 increase to 286.09 minutes (Figure 4-5, 

inverted triangles).  

 

Figure 4-5. Kinetic stability of wild-type PlyC and PlyC (PlyCA) T406R at 45°C. 

Equal molar concentrations of wild-type PlyC and PlyC (PlyCA) T406R were 

incubated at 45°C for a total of 3 hours. At 20 minute increments, the residual lytic 

activity of each enzyme was monitored by means of turbidity reduction assay. The 

activity of each was normalized to the lytic activity displayed by the unheated sample. 

All data were expressed as the mean ± SEM of triplicate experiments. 
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4.5 Discussion 

Nineteen of the final 31 FoldX mutants were validated by Rosetta to be stabilizing, 

with the other 12 mutations calculated to be energetically unfavorable. Similar to 

FoldX, Rosetta appeared to favor mutations at the polar regions of the CHAP domain, 

with 12 of the predicted 19 advantageous point mutations being located at the surface. 

However, the percentage of the predicted stabilizing mutations located at the surface 

versus the hydrophobic core seems to be more evenly distributed for Rosetta (63% 

versus 37%) than FoldX (74% versus 26%). Additionally, the number of favorable 

mutations predicted to be near the active site was decidedly higher using FoldX 

(42%) than Rosetta (26%).   

 

A final top ten candidate list, which was assembled based on the most favorable ΔΔG 

values independently validated by the FoldX and Rosetta algorithms, was 

experimentally analyzed. Due to an absence of protein expression, two of the ten 

candidates were immediately eliminated from further characterization. Of the eight 

experimentally characterized PlyC point mutants, only three of the mutations were 

found to be thermostabilizing (Figure 4-4b and c, Table 4-3). Both of the mutations to 

the hydrophobic core region of the CHAP domain were unfavorable, while three of 

the six surface mutations increased the stability of PlyCA. Of the three stabilizing 

mutations, the two mutations distant from the active site of CHAP gave the largest 

improvements in thermal stability. There was no correlation between the magnitude 

of the ΔΔG values estimated by the FoldX and Rosetta algorithms and the 

calorimetrically measured stability of the eight PlyC point mutants. For example, the 
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mutant that exhibited the greatest gain in stability, PlyC (PlyCA) T406R, was 

predicted to be the second least favorable mutation of the eight experimentally tested 

by both FoldX and Rosetta. Conversely, despite possessing the second most 

stabilizing ΔΔG value calculated by both algorithms, the PlyC (PlyCA) T421I mutant 

displayed the highest degree of thermolability of the eight mutants thermally 

characterized. 

 

With respect to the effectiveness of the FoldX and Rosetta algorithms for estimating 

CHAP domain mutant ΔΔG values, it should be born in mind that these calculations 

are based on a relatively low-resolution 3.3-Å X-ray crystal structure that is highly 

complex and dynamic. Computationally modeling mutations into an intricate nine-

subunit holoenzyme structure with incomplete atomic coordinates and a flexible 

catalytic subunit could contribute to the inconsistency between the computational and 

experimental data. In addition, there are many approximations in the computational 

methods, and neither adequately treats contributions from altered dynamics resulting 

from the mutations. Thus the low correlation between predicted and observed effects 

on thermostability is not surprising. Nevertheless, the ΔΔG estimates derived from 

FoldX ultimately did yield one very useful and non-obvious candidate that increased 

the stability of PlyCA, at the expense of some extra experimental work on non-useful 

ones.  There may, of course, be other potentially useful mutations that the procedure 

used here overlooked.  
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Although the structural integrity of all eight of the remaining PlyC mutants remained 

intact (Figure 4-3 and Figure 4-4a), endolysin turbidity reduction activity titers 

showed that while the C404I and T406R mutations respectively caused considerable 

2.2 and 2.1 fold decreases in activity, the Q332H, Q332V and T421I mutations to the 

CHAP domain generated significant activity defects that correlated to 3.6-16.7 fold 

losses in activity (Table 4-2). Considering the PlyCA CHAP domain has active site 

residues at C333 and H420 (Nelson et al., 2006), it was not surprising to observe 

major perturbations to the catalytic efficiency of the enzyme when introducing amino 

acid mutations adjacent to either of the two active site residues. Of the five point 

mutations that conferred a loss in bacteriolytic activity, four of these mutations were 

located in the hydrophobic core and/or near the active site of the CHAP domain. 

There is no correlation between the activity displayed by a particular PlyC construct 

and the extent of its predicted ΔΔG values by either FoldX or Rosetta.  

 

After being subjected to a biophysical thermal analysis, the lead mutant candidate 

was PlyC (PlyCA) T406R, which displayed a ~2.2°C increase in PlyCA thermal 

denaturation temperature with a 21.45 kcal/mol gain in ΔHVH (Figure 4-4b and 4-4c, 

Table 4-3). The T406R mutation is located on the CHAP domain surface and is 

hypothesized to promote an inter-domain interaction between the N- and C-terminal 

domains of the PlyCA subunit. Modeling the T406R mutation into the CHAP domain 

shows how the elongated arginine side-chain allows the formation of a stabilizing 

hydrogen bond with the polar Q106 side-chain located on the surface of the N-

terminal GyH domain of PlyCA (Figure 4-6). The suspected PlyCA stabilizing inter-
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domain interaction engineered by the T406R mutation also resulted in an increase in 

kinetic fitness, with the point mutant promoting an extrapolated 16 fold augmentation 

in kinetic stability at 45°C (Figure 4-5). Although PlyC (PlyCA) T406R had an 

overall reduction in bacteriolytic activity when compared to the endogenous activity 

of wild-type PlyC, a common observation when thermostabilizing biomolecules 

(Arnold, Wintrode, Miyazaki, & Gershenson, 2001; Beadle & Shoichet, 2002; Giver, 

Gershenson, Freskgard, & Arnold, 1998; Meiering, Serrano, & Fersht, 1992; 

Mukaiyama et al., 2006; Shoichet, Baase, Kuroki, & Matthews, 1995; Yutani, 

Ogasahara, Tsujita, & Sugino, 1987), the residual activity displayed by the mutant 

nonetheless remains more potent than that of any other characterized endolysin.  

 

It is important to keep in mind that, although the ~2.2°C increase in thermal 

denaturation temperature displayed by the PlyC (PlyCA) T406R mutant was modest, 

this mutation provoked a pronounced 16 fold improvement in kinetic stability. 

Moreover, engineering significantly enhanced thermal stability to proteins is 

generally achieved through combining multiple thermostabilizing amino acid 

mutations that individually have a small effect on stability (Akasako, Haruki, 

Oobatake, & Kanaya, 1995; Ohage & Steipe, 1999; Pantoliano et al., 1989; Serrano, 

Day, & Fersht, 1993; Shih & Kirsch, 1995; von der Osten et al., 1993). If the 

mechanism of stabilization employed by each individual mutation is unique, then 

combining these advantageous mutations can additively stabilize the protein. To this 

end, the thermally advantageous mutations identified in this computational study 
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(Q332H, V384Y, T406R) could be combined to possibly further progress the thermal 

properties of PlyC.  

Figure 4-6. Local structure around wild-type PlyCA T406 with the proposed 

conformation of the mutant T406R superimposed. The crystal structure of the wild-

type PlyCA T406 residue (blue sticks) and the model of the PlyCA mutant residue 

T406R (green sticks) are shown together with the surrounding residues. The predicted 

additional hydrogen bond between Q106 of the N-terminal GyH domain and R406 of 

the C-terminal CHAP domain is shown as orange dots. Parts of the polypeptide 

backbone of the PlyCA N-terminal GyH domain (magenta) and the C-terminal CHAP 

domain (blue) are also shown.  
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Chapter 5:  Conclusion and perspectives 
 

In this dissertation, I used various computational methods to analyze and predict the 

molecular, phenotypic, and pathogenic effects of missense mutations. In the last 

chapter, I briefly summarize the conclusions of each project and look to the future in 

these fields. 

 

5.1 Brief summary 

In the first project, I developed a new ensemble approach to address a largely 

unsolved mutation interpretation problem – predicting continuous phenotype values, 

in one case for the enzyme activity of a set of rare human mutations in a monogenic 

disease gene and in the other for a yeast complementation growth assay for mutations 

of human SUMO-ligase. The ensemble approach was relatively effective for this task, 

as well as for regular binary pathogenicity assignments. In addition, I investigated the 

potential of the ensemble method in estimating the reliability of pathogenicity 

assignments for better clinical applicability. Next, I characterized and compared the 

mutations in monogenic disease and in cancer, looking for the unique features of 

cancer driver mutations and directions to improve current mutation interpretation 

methods on cancer data. The results pinpointed the issue of passenger mutations in 

cancer driver genes and confirmed the applicability of general interpretation methods 

and properties of mutations for three structure related protein features. Finally, I 

conducted a protein thermostability engineering study by computationally interpreting 
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mutation effects on protein stability. Experiments by our collaborators showed 

encouraging success, although significant improvements can be made in several 

aspects of that task, as discussed below. 

 

5.2 The demand for the right dataset 

Methods to interpret mutation effects in monogenic diseases and complex trait 

diseases often rely on training datasets that comprises a case set of disease-related 

mutations collected from literature or curated databases such as HGMD (Stenson et 

al., 2014), UniProt (UniProt consortium 2015), OMIM (http://omim.org/), and 

ClinVar (Landrum et al., 2016), and a control set of neutral mutations obtained from 

observed variants across species or polymorphisms in populations. The computational 

methods developed based on these datasets are mostly designed to make a binary 

assignment of pathogenic or nonpathogenic, and have been benchmarked in many 

studies (Dong et al., 2015; Gnad et al., 2013; Thusberg, Olatubosun, & Vihinen, 

2011). It was less clear how these methods perform on more realistic datasets such as 

in the CAGI NAGLU challenge (Hoskins et al., 2017), where mutation effects are 

distributed more evenly across the entire range of functional activity.  Mutations with 

a mid-range molecular or functional effects still pose a challenge for all contemporary 

approaches. To fully investigate this issue, there is a major requirement for more 

realistic training and testing datasets like NAGLU. However, one impediment is to 

find an appropriate way to experimentally assay the target proteins and to scale up the 

study. 
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The advent of high-throughput techniques such as deep mutational scanning in the 

last several years provides a potential solution to this. Like in the CAGI SUMO-ligase 

challenge, these techniques are able to measure the functional consequences of 

thousands of mutants, together with massive sequencing to identify corresponding 

mutations (Fowler & Fields, 2014; Wrenbeck, Faber, & Whitehead, 2017). On the 

other hand, there are inherent limitations to these techniques. I investigated the 

performance of an ensemble method on a set of deep mutational scanning datasets 

and found poorer results than on more traditional single measurement datasets. 

Potential issues include data quality and stochastic error (Fowler & Fields, 2014). 

This issue needs to be addressed more thoroughly and rigorously, for example with 

the statistical framework proposed recently (Rubin et al., 2017). Moreover, deep 

mutational scans are usually implemented in the growth-based assay, phage display or 

cell flow sorting, which are only capable of measuring a limited set of phenotypes. In 

the SUMO-ligase challenge, another possible complication is that the interfaces 

between human SUMO-ligase and its binding partners in human and in yeast may 

have different properties. Nevertheless, the high-throughput techniques will help 

provide more valuable data for mutation effect analysis in the future. 

 

In both the NAGLU and SUMO-ligase challenges, a potential cause of apparent false 

positive predictions arises from the use of cDNA constructs in the experiments. As a 

result, those missense mutations that affect splicing or alter the ratio of alternatively 

spliced isoforms in vivo (D’Souza et al., 1999; Ward & Cooper, 2009) would not 

affect the experimental phenotypes. For the NAGLU challenge, I checked for the 
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overlap of missense mutations with bases critical to splicing and found none. 

However, effects on splice enhancers and silencers (D’Souza et al., 1999; Ward & 

Cooper, 2009) are less straightforward to detect, and these may contribute false 

positives. 

 

In the analyses of both monogenic disease and cancer, the negative control dataset 

was compiled using interspecies variants, that is amino acid differences in other 

species compared to human, assuming these substitutions would be benign in the 

human protein. However, it has been estimated that, on average, around 10% of these 

interspecies variants could be pathogenic to humans, but benign to other species due 

to compensation by substitutions at other sites (Kondrashov, Sunyaev, & 

Kondrashov, 2002). This issue was reduced in our analysis by excluding known 

human pathogenic mutations from the observed interspecies variants. A more 

sophisticated approach would be to examine all coevolving sites in the sequence 

profile of the homolog proteins and their potential interacting partners. 

 

In the past decade, cancer research has greatly benefited from the explosion of cancer 

whole genome and exome sequencing data. The accuracy of many driver gene 

predictions depends on these large-scale data. On the other hand, interpreting and 

identifying the few cancer driver mutations in individuals creates a demand for a 

large gold standard dataset of the experimentally verified driver and passenger 

mutations. Notable community efforts have been made to address this issue, such as 
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the ICGC’s Pan-Cancer Analysis of Whole Genomes (PCAWG) 

(https://dcc.icgc.org/pcawg). 

 

For both complex trait disease and cancer, there is also a significant contribution from 

non-coding mutations. Generating large datasets in this regard is a new hotspot of 

research, and has been undertaken with great energy (GTEx Consortium et al., 2017; 

X. Li et al., 2017). New methods utilizing these datasets are now under development. 

 

5.3 Improving mutation interpreting methods 

A lesson learned from the CAGI NAGLU and SUMO-ligase challenges is that no 

contemporary mutation interpretation method provides revolutionary accuracy in 

predicting the experimental activity values. This suggests inherent deficiencies in the 

current prediction models that primarily relate sequence conservation patterns to 

pathogenicity. There are a number of ways in which more realistic evolutionary 

information could be utilized to provide potential improvements. These include the 

better utilization of phylogenetic information and incorporation of the relative 

likelihood of particular mutation types such single versus double base changes, 

transition/transversion relative frequencies and CpG island hotspots. 

 

As noted earlier, most current methods produce binary predictions of pathogenic or 

non-pathogenic, whereas prediction of phenotypic variables on a continuous scale is 
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desirable. My ensemble approach, combining confidence scores for binary methods, 

provides one solution to this problem. It would also be interesting to explore methods 

that directly predict a continuous value. One approach would be to use appropriate 

machine learning methods, such as support vector regression. 

 

A few contemporary methods also partially or fully rely on protein structure 

information. These methods can be improved by including state of the art structure 

modeling methods that take into account backbone flexibility and extensive rotamer 

optimization, such as ROSETTA (B Kuhlman & Baker, 2000; Rohl et al., 2004). 

Current models mainly focus on the destabilizing effect of mutations, which plays an 

important role in human diseases (Casadio, Vassura, Tiwari, Fariselli, & Luigi 

Martelli, 2011; Redler et al., 2016; Shi & Moult, 2011; Yue et al., 2005). However, 

the effects of some mutations, especially in cancer oncogenes where more driver 

mutations are located on the protein surface, manifest under various mechanisms such 

as catalytic activity, specificity, binding affinity and protein flexibility. While 

modeling on some of these are still challenging, molecular dynamics techniques 

provide a potential solution to tackle the modeling problems such as in intrinsically 

disordered regions and at the protein-macromolecular interfaces (Agarwal, 

Annamalai, Maiti, & Arsad, 2016; Doss, Chakraborty, Chen, & Zhu, 2014; George 

Priya Doss et al., 2014). 
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Additional improvement of methods may also come from 1) differentially treating 

mutations subsets, such as surface and core mutations, 2) retraining models on the 

mutations where methods do not correlate well, 3) developing gene-specific models, 

and 4) better frameworks that integrate sequence conservation-based methods with 

structure-based methods. 

 

5.4 Bridging the gap between mutation research and clinical application 

In the first project of this dissertation, I investigated the potential of ensemble 

methods to estimate the reliability for pathogenicity assignments, which is important 

in clinical applications because an accurate method may still fail on a certain subset 

of mutations. So far, this issue has not been well investigated. As a consequent, 

present clinical guidelines treat computational interpretation of potential disease 

mutations as only secondary evidence of a genetic cause (Richards et al., 2015). The 

ensemble methods achieved a substantial fraction (up to 40%) of pathogenicity 

assignments with clinically meaningful confidence (>90%). Future work and more 

testing on more data in various diseases will help increase the clinical applicability. 

 

A large set of cancer driver genes have been prioritized from examination of large-

scale cancer whole genome and exome data. A clinically more relevant task is to 

identify all driver mutations given a single cancer genome or exome. This creates a 

demand for methods to identify a long tail of potential driver genes with rare driver 

mutations. Moreover, it would be beneficial to establish models accounting for a 
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continuous cancer driver mutation penetrance instead of the current binary ‘driver vs. 

passenger’ model. 

 

5.5 Beyond simple approaches for protein thermostability engineering 

The T406R mutation we identified in the PlyCA CHAP domain (Heselpoth, Yin, 

Moult, & Nelson, 2015) displayed limited improvement in thermal stability, typical of 

that achievable with single mutations. Achieving a large improvement in stability 

usually requires a combination of multiple stabilizing mutations that operate in an 

additive or non-addition manner. On the other hand, the low success rate (3 out of 10) 

of our method reflects the serious false positive problem. Potential causes include but 

are not limited to the low-quality modeling from template structures, use of a rigid 

backbone protocol in structure modeling, and not including more structure modeling 

methods that can provide a consensus set of candidates. A recent work (Goldenzweig 

et al., 2016) reported a significant success in engineering thermally stable mutants (a 

20C increase in denaturation temperature), based on a strategy that combined 

searching for multiple stabilizing mutations with a method to remove false positives 

using phylogeny information. In future, one would expect this type of strategy to be 

more common. Indeed, our collaborator found a higher thermostability when 

combined T406R with another stabilizing mutation previously identified through a 

directed evolution approach. Computational methods also have the potential to 

engineer for thermostability in a broader range of conditions, such as altered pH 

(Strauch et al., 2014) and protein concentration (Goldenzweig et al., 2016).  
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Another issue with the successful T406R mutation was that it has a cost of more than 

half catalytic activity, as observed for many stabilizing mutations (Arnold et al., 

2001; Beadle & Shoichet, 2002; Mukaiyama et al., 2006). It is still challenging to 

rationally model mutation effects in the context of enzyme activity that involves 

complicated physical-chemical calculation of the transition state complex. Enzyme 

activity may also be affected by changes in protein flexibility and dynamics. Such 

issues can be addressed by better integrating results of molecular dynamics methods 

and normal mode analysis.  
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