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ABSTRACT  

Design optimization is an important engineering design activity.  Performing design optimization in the 

presence of uncertainty has been an active area of research.  The approaches used require modeling the 

random variables using precise probability distributions or representing uncertain quantities as fuzzy sets.  

This work, however, considers problems in which the random variables are described with imprecise 

probability distributions, which are highly relevant when there is limited information about the 

distribution of a random variable.  In particular, this paper formulates the imprecise probability design 

optimization problem and presents an approach for solving it.  We present examples for illustrating the 

approach. 

1. INTRODUCTION 

Design optimization is an important engineering design activity in automotive, aerospace, and other 

development processes.  In general, design optimization determines values for design variables such that 

an objective function is optimized while performance and other constraints are satisfied (Papalambros and 

Wilde, 2000; Ravindran et al., 2006; Arora, 2004).  The use of design optimization in engineering design 

continues to increase, driven by more powerful software packages and the formulation of new design 

optimization problems motivated by the decision-based design (DBD) framework (Hazelrigg, 1998; 

Renaud and Gu, 2006). 

Because many engineering problems must be solved in the presence of uncertainty, developing 

approaches for solving design optimization problems that have uncertain variables has been an active area 

of research.  The approaches used require modeling the random variables using precise probability 

distributions or representing uncertain quantities as fuzzy sets.  Haldar and Mahadevan (2000) give a 
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general introduction to reliability-based design optimization, and many different solution techniques have 

been developed.  For examples, see Liang et al. (2007), Tu et al. (1999), Youn (2007), and the references 

therein.  Other approaches include evidence-based design optimization (Zhou and Mourelatos, 2008b), 

possibility-based design optimization (Zhou and Mourelatos, 2008a), and approaches that combine 

possibilities and probabilities (Nikolaidis, 2007).  Zhou and Mourelatos (2008b) discussed an evidence 

theory-based design optimization (EBDO) problem.  They used a hybrid approach that first solves a 

RBDO to get close to the optimal solution and then generates response surfaces for the active constraints 

and uses a derivative-free optimizer to find a solution. 

Different models of uncertainty are more or less appropriate given  

The amount of information available and the outlook of the decision-maker (design engineer) determines 

the appropriateness of different models of uncertainty.  No single model should be considered universally 

valid.  In this paper, we consider situations in which there is insufficient information about the random 

variables to model them with precise probability distributions.  Instead, imprecise probability 

distributions (described in more detail below) are used to capture the limited information or knowledge.  

In the extreme case, the imprecise probability distribution may be a simple interval.  This paper presents 

an approach for solving design optimization problems in which the random variables are described with 

imprecise probability distributions because there exists limited information about the uncertainties.   

2. IMPRECISE PROBABILITIES 

In traditional probability theory, the probability of an event is defined by a single number between in the 

range [0, 1].  However, because this may be inappropriate in cases of incomplete or conflicting 

information, researchers have proposed theories of imprecise probabilities.  For these situations, 

probabilities can be intervals or sets, rather than precise numbers (Dempster, 1967; Walley, 1991; 

Weichselberger, 2000).  The theory of imprecise probabilities, formalized by Walley (1991), uses the 

same fundamental notion of rationality as the work of de Finetti (1974, 1980).  However, the theory 

allows a range of indeterminacy—prices at which a decision-maker will not enter a gamble as either a 

buyer or a seller.  These in turn correspond to ranges of probabilities.   

Imprecise probabilities have previously been considered in reliability analysis (Coolen, 2004; Utkin, 

2004a, b) and engineering design (Aughenbaugh and Paredis, 2006; Ling et al., 2006; Rekuc et al., 2006). 
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Aughenbaugh and Herrmann (2007, 2008a, b) have compared techniques using imprecise probabilities to 

other statistical approaches for making reliability-based design decisions.  The work described in this 

paper builds upon these previous results. 

In many engineering applications, the relevant random variables (e.g., parameters or manufacturing 

errors) are continuous variables.  One common way to represent the imprecision in the probability 

distribution of such a random variable is a probability box (“p-box”) that is a set of cumulative 

probability distributions bounded by an upper distribution F  and a lower distribution F . These bounds 

model the epistemic uncertainty about the probability distribution for the random variable. Of course, a 

traditional precise probability distribution is a special case of a p-box, in which the upper and lower 

bounds are equal.   

There are multiple ways to construct a p-box for a random variable (Ferson et al., 2003).  In some cases, 

the type of distribution is known (or assumed) but its parameters are imprecise (such as an interval for a 

mean).  In other cases, the distribution is constructed from sample data.  Additionally, one can create a p-

box from a Dempster-Shafer structure, in which intervals (not points) within the range of the random 

variable are assigned probabilities.  For more about p-boxes and the link between p-box representation 

and Dempster-Shafer structures, see Ferson et al. (2004).   

Functions of random variables that have imprecise probability distributions also have imprecise 

probability distributions.  Methods for calculating these convolutions are given by Yager (1986), 

Williamson and Downs (1990), and Berleant (1993, 1996).  Wang (2008) proposes a new interval 

arithmetic that could be used as well. 

Therefore, p-boxes are a very general way to represent uncertainty.  For computational purposes, in the 

approach below, we will convert a p-box into a “canonical” Dempster-Shafer structure (Ferson et al. 

2003), which will necessarily be bounded. 

3. DESIGN OPTIMIZATION WITH IMPRECISE PROBABILITIES 

In the imprecise probability design optimization (IPDO) problem, there is a set of deterministic design 

variables for which the designer chooses values and a set of random variables, which may be 

manufacturing errors, uncertain engineering parameters, or other sources of uncertainty.  Unlike other 
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work, this formulation does not include in the model “random design variables.”  Such variables are 

typically those in which the designer chooses the mean, but the actual value is random.  In the IPDO 

formulation presented here, each such quantity is modeled with two quantities: a deterministic design 

variable and a random parameter that represents the error of that variable.  This does not limit the scope of 

the model.  For instance, suppose we have a “random design variable” X that is a dimension of a part.  

The mean of X, denoted Xμ , is chosen by the designer, but the dimension is a normally distributed 

random variable with a standard deviation of σ .  Examples of this type of variable have been considered 

in Zhou and Mourelatos (2008a) and elsewhere.  In this formulation, we replace the variable X with 

X XX d Z= + , where the first term, which corresponds to the mean, is a deterministic design variable, and 

the second term is a random variable that is normally distributed with a mean of 0 and a standard 

deviation of σ .   

The general IPDO is formulated as follows: 

 

( )

( ){ }
min ,

s.t.  , 0   1, ,i i

L U

V f

P g p i n

⎡ ⎤⎣ ⎦

≤ ≤ =

≤ ≤

…
d

d Z

d Z

d d d

 (1) 

In this formulation, kR∈d  is the vector of deterministic design variables, and rR∈Z  is the vector of 

random variables that have imprecise probability distributions.  The probabilistic constraints are functions 

of the deterministic design variables and the random variables.  We want ( ), 0ig ≥d Z  (which is the “safe 

region”) but will be satisfied if the upper bound on the failure probability is less than the target ip .  We 

choose the upper probability in order to be conservative.   

The function f is the system performance, which may be random, in which case the function V is a 

moment of that random performance, such as the upper limit for the mean; thus V is a deterministic 

function of d .  In many cases, the objective is specified as a function of only the deterministic design 

variables, in which case we get the following formulation: 

 

( )

( ){ }
min

s.t.  , 0   1, ,i i

L U

f

P g p i n≤ ≤ =

≤ ≤

…
d

d

d Z

d d d

 (2) 
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First, this formulation has the usual difficulty of computing the failure probability for each constraint.  

Analytically evaluating the failure probability is possible only in special cases.  An additional 

complication is the imprecision of the random variables, which makes applying standard RBDO 

techniques difficult.    

Now, Z  has an imprecise joint probability distribution, which can be considered as a set H of precise 

joint probability distributions.  For any precise joint probability distribution jF H∈ , let 

( ){ }, 0j iP g ≤d Z  be the probability of violating constraint i when Z has that precise joint probability 

distribution.  Then, we could reformulate the IPDO as the following RBDO: 

 

( )

( ){ }
min

s.t.  , 0   1, , ,  j i i j

L U

f

P g p i n F H≤ ≤ = ∈

≤ ≤

…
d

d

d Z

d d d

 (3) 

Unfortunately, because of the large number of constraints, this reformulation is not helpful unless the set 

H is limited to a reasonable number of “extreme” distributions that can be used as surrogates for the entire 

set.  Research on this topic is ongoing and may provide a way to increase the computational efficiency of 

IPDO in the future. 

Due to these difficulties, we will pursue a numerical approach.  To do this, we will first partition the 

constraints ( ), 0ig ≥d Z  into two sets.  Set 1S  includes any constraint that can be rearranged so that 

( ) ( ) ( )( ),i i i ig a h b= −d Z Z d , where ia  is a positive scalar.  Note ( ), 0ig ≤d Z  if and only if 

( ) ( )i ih b≤Z d .  The constraints that cannot be rearranged in this way are placed in set 2S .   

For each constraint in 1S , we will perform the convolution needed to get the imprecise distribution of 

( )ih Z  by combining the Dempster-Shafer structures for the relevant random variables.  Because the 

upper cumulative probability distribution will be a discontinuous function, we will approximate it with 

( ) ( ){ }i iF x P h x≈ ≤Z .  Therefore, we can replace each of the constraints in 1S  by ( )( )i i iF b p≤d . 
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4. SOLUTION APPROACH 

To solve the IPDO, we will use a sequential approach similar to that of Du and Chen (2004) and Zhou and 

Mourelatos (2008a). 

A key part of the approach is to solve the following deterministic optimization problem P given values for 

the random variables in each constraint in 2S .  Let ( )i kZ  be specific values for the random variables in 

constraint 2i S∈  in iteration k. 

 

( )

( )( )
( )

1

2

min

s.t.    

 , 0  

i i i

i(k)
i

L U

f

F b p i S

g i S

≤ ∈

≥ ∈

≤ ≤

d
d

d

d Z

d d d

 (4) 

In the space of the design variables, the ( ), 0i(k)
ig ≥d Z  constraints move the boundaries of the “safe 

region” (by making it smaller) in order to reduce the probability of failure.  However, it is still necessary 

to determine the probability of failure and compare it to the target.  If it is too large, then we have to move 

that constraint some more. 

Given these preliminaries, the complete approach follows: 

1. Let 0k = .  For 2i S∈ , let each component of ( )i kZ  equal a value within the range of its expected 

value.   

2. Solve P to get the solution ( 1)k+d . 

3. For 2i S∈ , evaluate ( ){ }( 1) , 0k
iP g + ≤d Z .  If ( ){ }( 1) , 0k

i iP g p+ ≤ ≤d Z  for all 2i S∈ , then the design 

point is feasible; stop.  Otherwise, for all constraints 2i S∈  where ( ){ }( 1) , 0k
i iP g p+ ≤ ≤d Z , set 

( 1) ( )i k i k+ =Z Z .  For the others, find ( 1)i k+Z  by solving the following problem: 
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( )

( ) ( ){ }
( 1)

( 1) ( 1)

( 1) ( 1) ( 1)

min ,

s.t.  , ,

i k

k i k
i

k k i k
i i i

g

P g g p

+

+ +

+ + +≤ =

Z
d Z

d Z d Z
 (5) 

This yields a “very bad” (but not worst-case) value of those random variables used in that constraint.  (A 

technique for solving this problem is described below.) 

4. 1k k= + .  Repeat steps 2 and 3 until a feasible design point is found. 

At this point we have no proof that the algorithm will converge, and the approach may fail on problems 

with irregular objective functions and constraints.  Further analysis and experimentation is needed to 

study this aspect of the method. 

We use the following reliability analysis technique to determine if ( ){ }( 1) , 0k
i iP g p+ ≤ ≤d Z  and to find 

( 1)i k+Z .  This reliability analysis technique corresponds roughly to solving the inverse “most probable 

point” problem discussed in Du and Chen (2004) or finding the “shifting vector” of Zhou and Mourelatos 

(2008a).  Given ( 1)k+d , set 0fp =   Without loss of generality, we assume that ( )( 1) ,k
ig +d Z  is a function 

of m random variables 1, , mZ Z… .  The Dempster-Shafer structure of iZ  is represented by in  equally 

likely intervals.  Let 1 2 mN n n n= .  Let *
iN p N= ⎢ ⎥⎣ ⎦  be the number of values and intervals to save.  

Consider each of the N combinations of intervals for the random variables.  For each combination, let 

each random variable range over its interval and find min
ig , the minimum of ( )( 1) ,k

ig +d Z  for that 

combination.  If min 0ig ≤ , add 1
N  (the probability of that combination) to fp .  As the N combinations of 

intervals are checked, keep the *N  smallest minima found along with the values of 1, , mZ Z…  that yield 

those minima.  The final value of fp  is used to estimate ( ){ }( 1) , 0k
iP g + ≤d Z .  We set ( 1)i k+Z  equal to 

the values of 1, , mZ Z…  that yield the largest of the *N  smallest minima found.   

5. EXAMPLES 

This section presents three examples to illustrate the IPDO solution method.  The first example has two 

design variables and three random variables: 
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( ) ( ){ }

1 2

3
1

2
1 1 2 2

min

4s.t.  0 0.02

20 0 0.02

L U

d d

P z
d

P d z d z

+

⎧ ⎫
− ≤ ≤⎨ ⎬

⎩ ⎭

+ + − ≤ ≤

≤ ≤

d

d d d

 (6) 

The bounds ( )0.01,0.01L =d  and ( )10,10U =d .  Note that the first constraint is in set 1S , whereas the 

second one is in set 2S . 

All three random variables have imprecise probability distributions.  The random errors 1z  and 2z  have 

the same distribution, each characterized by the intervals ( ) ( )1 1.5 1 / 99, 0.5 1.5 1 / 99k k⎡− + − − + − ⎤⎣ ⎦ , for 

1, ,100k = …  (each interval has a probability of 0.01).  Therefore, they can range from -1 to 1.  The 

distribution of random parameter 3z  is characterized by the intervals 

( ) ( )1 0.5 1 / 99,1.5 0.5 1 / 99k k⎡ + − + − ⎤⎣ ⎦ , for 1, ,100k = …  (each interval has a probability of 0.01).  This 

random parameter ranges from 1 to 2. 

For 3z , we will approximate its upper cumulative probability as follows: 

 { } ( )3

0 if 1
 2 -1  if 1 1.5

1 if 1.5

x
P z x x x

x

<⎧
⎪≤ = ≤ ≤⎨
⎪ >⎩

 (7) 

The IPDO solution approach begins with 1z  and 2z  both set to zero; that is, 2(0) (0,0)=Z : 

 

1 2

3
1

2
1 2

min

4s.t.  0 0.02

20
L U

d d

P z
d

d d

+

⎧ ⎫
− ≤ ≤⎨ ⎬

⎩ ⎭

≥

≤ ≤

d

d d d

 (8) 

This yields ( )*(1) 3.9604,1.2751=d , but the upper probability of violating the second constraint is too 

high.  Our reliability analysis technique estimates that ( ) ( ){ }2*(1) *(1)
1 21 220 0 0.7830P d z d z− + + ≤ = .  
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Because there are 210,000 100=  combinations of intervals, we keep the worst 200 interval lower bounds.  

( ) ( )2(1) 2(1)
1 2, 0.5303, 0.9697z z = − −  gives the best of these worst.  (The first superscript refers to the second 

constraint, the second to the iteration number.) 

Now we solve by adding the shifting vector to the second constraint: 

 

( ) ( )

1 2

3
1

2
1 2

min

4s.t.  0 0.02

0.5303 0.9697 20
L U

d d

P z
d

d d

+

⎧ ⎫
− ≤ ≤⎨ ⎬

⎩ ⎭

− − ≥

≤ ≤

d

d d d

 (9) 

This yields ( )*(2) 3.9604,2.6696=d .  Our reliability analysis technique estimates that 

( ) ( ){ }2*(2) *(2)
1 21 220 0 0.0655P d z d z− + + ≤ = .  Thus, the upper probability of violating the second 

constraint is lower but still too high.  We also determine that ( ) ( )2(2) 2(2)
1 2, 0.7727, 0.9545z z = − −  gives the 

best of the worst for this design point.   

Now we solve with the new shifting vector: 

 

( ) ( )

1 2

3
1

2
1 2

min

4s.t.  0 0.02

0.7727 0.9545 20
L U

d d

P z
d

d d

+

⎧ ⎫
− ≤ ≤⎨ ⎬

⎩ ⎭

− − ≥

≤ ≤

d

d d d

 (10) 

This yields ( )*(3) 4.1927,2.6645=d .  The first constraint is not active, but the upper probability of 

violating the second constraint is now acceptable.  Our reliability analysis technique estimates that 

( ) ( ){ }2*(3) *(3)
1 21 220 0 0.0194P d z d z− + + ≤ = .  So the solution is feasible, and the algorithm stops. 
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The second example is the mathematical example from Zhou and Mourelatos (2008a).  In our version, the 

problem has two design variables ( )1 2,d d=d  and two random variables, the error for each one: 

( )1 2,z z=Z .  The bounds are 0 10id≤ ≤  for both design variables.  The objective is to minimize the sum 

of the design variables.  In the terms of our general IPDO, we have the following relationships: 

 

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2
2

1 1 1 2 2
2 2

2 1 1 2 2 1 1 2 2
2

3 1 1 2 2

, 20

, 4 5 12 120

, 75 8

f d d

g d z d z

g d z d z d z d z

g d z d z

= +

= + + −

= + + + − + + − − − −

= − + − +

d

d Z

d Z

d Z

 (11) 

Both random variables have the same imprecise probability distribution, which is characterized by the 

intervals ( ) ( )1 1.5 1 / 99, 0.5 1.5 1 / 99k k⎡− + − − + − ⎤⎣ ⎦ , for 1, ,100k = …  (each interval has a probability of 

0.01).  Therefore, they can range from -1 to 1.   

We cannot separate any of the constraints, so 1S =∅  and { }2 1,2,3S = .  The two random variables have 

the same imprecise probability distribution, which is approximately an imprecise uniform distribution 

with a lower bound in the range [-1, 0.5] and the upper bound in the range [0.5, 1].  Figure 1 shows the 

actual p-box. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1.5 -1 -0.5 0 0.5 1 1.5

z1 (or z2)  
Figure 1.  The p-box for 1z  (and 2z ). 
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First, we will solve the deterministic optimization problem with both random variables replaced by 0.  We 

get ( )3.1139,2.0626=d , the same optimal solution as Zhou and Mourelatos (2008a).  The objective 

function value is 5.1765.   

Next, we let ( )(0) 0,0i =Z  for all 2i S∈  and solve problem P.  This yields the solution 

( )(1) 3.1139,2.0626=d .  ( ){ }(1) , 0iP g ≤d Z  is greater than 0.02 for the first two constraints but equals 

zero for the third constraint. 

When evaluating this probability, we have to compare 10,000 combinations, in which each combination 

has an interval from the p-box for 1z  and an interval from the p-box for 2z .  For each combination, we 

must find the minimal value of ig  over those values of 1z  and 2z .  Based on the mathematical analysis of 

the constraints, it is possible to develop simple rules to identify the values of 1z  and 2z  that give the 

minimum for that combination.   

Let min max
1 1,z z⎡ ⎤

⎣ ⎦  and min max
2 2,z z⎡ ⎤

⎣ ⎦  be the intervals that form the combination.  For the first constraint, the 

minimum is found at min
2 2z z= , and 1z  is either an endpoint of the interval or 1d− .  For the second 

constraint, the minimum is found at one of the following five points: ( )min min
1 2,z z , 

( )min min
1 2 2 26.4 0.6 0.6 ,d d z z− − − , ( )max min

1 2,z z , ( )max max
1 1 2 1,1.6 0.6 0.6z d d z− − − , or ( )max max

1 2,z z .  For 

third constraint, the minimum is found at max
2 2z z= , and 1z  is one of the endpoints of its interval. 

From this algorithm we set ( ) ( )1(1) 1(1)
1 2, 0.7121, 1z z = − −  and ( ) ( )2(1) 2(1)

1 2, 0.8939, 0.8182z z = − .  We will use 

these two vectors in the first two constraints as we try to find a feasible solution in the next iteration.  For 

the third constraint, which was already feasible, we let ( ) ( )3(1) 3(1)
1 2, 0,0z z = . 

The second iteration of the problem yields the solution ( )(2) 3.5836,3.4255=d .  At this point, the 

objective function equals 7.0091.  ( ){ }(1) , 0iP g ≤d Z  is again greater than 0.02 for the first two 
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constraints but equals zero for the third constraint.  We set ( ) ( )1(2) 1(2)
1 2, 1, 0.5909z z = − −  and 

( ) ( )2(2) 2(2)
1 2, 0.3939, 1z z = − . For the third constraint, ( ) ( )3(2) 3(2)

1 2, 0,0z z = . 

The third iteration of the problem yields the solution ( )(3) 3.6113,3.5240=d .  At this point, the objective 

function equals 7.1353.  ( ){ }(1) , 0iP g ≤d Z  is less than 0.02 for the first two constraints and equals zero 

for the third constraint, so the solution is feasible. 

The third example that we consider is the optimization of a thin-walled pressure vessel.  Our formulation 

is based on the RBDO formulation of Zhou and Mourelatos (2008b).  The problem was originally 

introduced by Lewis and Mistree (1997).  The problem has three design variables: the radius R, the mid-

section length L, and the wall thickness t.  The objective is to maximize the volume of the pressure vessel.  

Five constraints ensure that the design is strong enough to resist the internal pressure (with a safety factor 

of 2) and meets geometric requirements.  

In our formulation there are three random variables: the manufacturing error of the radius, the internal 

pressure P, and the material yielding strength Y. 

In the terms of our general IPDO, we have ( ), ,R L td =  and ( )1, ,z P Y=Z  and the following 

relationships: 

 

( )
( ) ( )
( ) ( )( ) ( ) ( )( )
( ) ( )( )
( ) ( )
( )

3 24
3

1
1 1 2

22 2
2 1 1 1

3 1

4 1

5 1

, 2 2

, 2 2 2 2

, 60 2 2

, 12

, 5

f R R L

g tY P R z t

g R z t t Y P R z R z t t

g L R z t

g R z t

g R z t

π π= +

= − + +

= + + − + + + +

= − + + +

= − + +

= + −

d

d Z

d Z

d Z

d Z

d Z

 (12) 

We set 0.02ip =  for 1, ,5i = … .  The bounds on the design variables are the following ranges: 

5 24R≤ ≤ , 10 48L≤ ≤ , and 0.25 2t≤ ≤ .  The last three constraints, which form set { }1 3,4,5S = , can be 

rearranged as follows: 
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( ) ( )( ) ( )( )
( ) ( ) ( )
( ) ( ) ( )

1
3 3 1 3 1 2

4 4 1 4 1

5 5 1 5 1

, 2 ( ) 2 30

, ( ) 12

, ( ) 5

g h z b z L R t

g h z b z R t

g h z b z t R

= − = − − + + −

= − = − − + −

= − = − −

d Z d

d Z d

d Z d

 (13) 

Therefore, { }2 1,2S = .  Each of the three random variables has an imprecise probability distribution.  The 

imprecise probability distribution of the internal pressure P is approximately an imprecise normal 

distribution.  The imprecise mean has a range of [975, 1025].  The standard deviation is precisely 50.  The 

imprecise probability distribution of the material yielding strength Y is also approximately an imprecise 

normal distribution.  The imprecise mean has a range of [253500, 266500].  The standard deviation is 

precisely 13000.   

The actual p-boxes used for these two random variables are constructed as follows: for 1, ,100k = … , let 

( )2 1 / 200kf k= − , which therefore ranges from 0.005 to 0.995.  The k-th interval in the p-box for the 

internal pressure P is ( ) ( )1 1975 50 ,1025 50k kf f− −⎡ ⎤+ Φ + Φ⎣ ⎦ , and the k-th interval in the p-box for the 

material yielding strength Y is ( ) ( )1 1253500 13000 ,266500 13000k kf f− −⎡ ⎤+ Φ + Φ⎣ ⎦ . 

The imprecise probability distribution of 1z , the manufacturing error of the radius, is based on data given 

by Zhou and Mourelatos (2008b), who assume that we have 100 sample points for the error, but the data 

are given only in bins as follows: 3 points are in the range [-4.5, -3], 45 points are in the range [-3, 0], 49 

points are in the range [0, 3], 2 points are in the range [3, 4.5], and 1 point is in the range [4.5, 6].  Figure 

2 shows the corresponding p-box for 1z  and the curve we use for approximating the upper bound of this 

p-box.  An approximation is created for each part of the p-box.  For ,L Ux z z⎡ ⎤∈ ⎣ ⎦  where the lower left 

corner of the upper bound is ( ),L Lz F  and the upper right corner of the upper bound is ( ),U Uz F , the 

approximation ( ) ( )
2

1
L

U U L
i U L

x zF x F F F
z z

⎛ ⎞−
= − − − ⎜ ⎟⎜ ⎟−⎝ ⎠

.  Figure 3 shows the corresponding p-box for 

1z−  and the curve we use for approximating the upper bound of this p-box.  Because 

( ) ( ){ }i iF x P h x≥ ≤Z , the approximation reduces the feasible region.  If a solution is feasible with 

respect to the approximation, then it is feasible with respect to the original p-box. 
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Figure 2.  The p-box for 1z  and the approximation for its upper bound. 
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Figure 3.  The p-box for 1z−  and the approximation for its upper bound. 

First, we will solve the deterministic optimization problem with all three random variables replaced by 

constants: ( ) ( )1, , 0,1000,260000z P Y= =Z .  ( ) ( ), , 11.75,36,0.25R L t= =d  is the optimal solution that 

we found.  The pressure vessel volume equals 22,410.  Note that the probability of failure for constraints 
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4 and 5 equals the probability that 1z−  is less than equal to zero, which is imprecise but can be quite 

large, so it is not a feasible solution to the IPDO problem. 

Next, we let ( )1(0) 2(0) 0,1000,260000=Z = Z  and solve problem P.  This yields the solution 

( )(1) 6.7606,36.4396,0.3186=d .  (The optimization required 348 function evaluations.)  The pressure 

vessel volume equals 6,527.  The reliability analysis technique shows that, for all 2i S∈ , 

( ){ }(1) , 0 0iP g ≤ =d Z , so the solution is feasible, and the algorithm stops. 

6. COMPARISON TO RBDO 

The IPDO addresses situations in which probability distributions are not precise.  An alternative approach 

is to use a traditional RBDO approach while varying the probability distributions of the random variables.  

The basic idea is to loop over different combinations of the distributions for the random variables.  For 

each combination, we solve a traditional RBDO problem to get a solution.  This procedure will yield a set 

of solutions and gives the designer some idea of where good solutions lie.  But it is not clear how a 

designer should select a solution from this set. 

Another alternative is to remove the imprecision.  For instance, one can replace each imprecise 

probability distribution by the maximum entropy probability distribution that fits within the p-box.  This 

yields an RBDO problem.  For the first example in Section 5, we can model 1z , 2z , and 3z  with uniform 

distributions.  The range for 1z  and 2z  is [-1, 1], and the range for 3z  is [1, 2].  Solving the RBDO 

problem yields the solution ( )4.2227,2.5132=d .  The objective function value is 6.7359, which is better 

than that of the more conservative IPDO solution, but the probability of failure of this new solution is 

greater than the desired target for some of the probability distributions in the p-boxes of the random 

variables.   

7. SUMMARY 

This paper introduced the imprecise probability design optimization (IPDO) problem, in which there is a 

set of deterministic design variables for which the designer chooses values and a set of imprecise random 

variables, which may be manufacturing errors, uncertain engineering parameters, or other sources of 
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uncertainty.  This paper presented a sequential approach for solving this problem.  To avoid unnecessary 

calculations, the approach partitions the constraints into two sets.  By exploiting their special structure, 

the cumulative probability distributions for constraints in the first set are calculated only once and then 

replaced with an approximation.  After this, the approach solves a series of deterministic optimization 

problems and shifts selected constraints in each iteration in order to reduce the probability of failure.   

We have used examples to illustrate the usefulness of the approach.  The results show that the proposed 

IPDO approach finds high-quality feasible solutions, though the computational effort is increased because 

of the computational effort of the reliability analysis technique and the iterations needed to converge to a 

solution.  

Although this work was motivated by problems in which only imprecise probability distributions are 

available, the approach’s use of Dempster-Shafer structures makes it compatible with other approaches 

within the domain of evidence theory as well (Shafer, 1976). 

Future work will focus on improving the computational efficiency and stability of the approach by 

considering adaptive loop-methods similar to those proposed by Youn (2007). 
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