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Environmental Science Department 
 
 

Spatial heterogeneity is a striking feature of the blue crab life history and 

fisheries in Chesapeake Bay.  However, a quantitative assessment of their spatial 

distribution and the factors controlling it has been lacking.  Based on 13 years of data 

from a baywide winter dredge survey, geostatistical and two-stage generalized 

additive models (GAMs) are used to characterize blue crab distributions and 

investigate environmental factors responsible for the distribution of mature females, 

respectively.  A landscape-based distance metric, the “Lowest-Cost Path” (LCP) 

distance, is developed as an alternative to Euclidean distance for kriging in estuaries.  

Estimates of variogram parameters differed significantly between the two metrics but 

kriging accuracy did not.  Geostatistical abundance estimates show significant 

declines from 1990 to 2002.  The observed relationship between changes in 

distribution and changes in abundance is suggestive of density-dependent habitat 

selection.  Depth and distance from the Bay mouth were the most important 

predictors of mature female abundance.   
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Chapter 1: Introduction 

 

Introduction 

Blue crab (Callinectes sapidus) is an important component of the Chesapeake 

Bay ecosystem and supports one of the largest and most valuable fisheries in the Bay.  

A detailed knowledge of its distribution patterns within the Bay can provide valuable 

insights into its ecological relationships and increase the efficacy of spatial 

management strategies such as protected areas and time-area closures.  The goal of 

this thesis is to describe the winter distribution of blue crab in Chesapeake Bay and to 

examine the factors responsible for the observed patterns.  The development and 

validation of statistical tools to accomplish this goal are additional objectives. 

The blue crab life history in Chesapeake Bay is marked by distinct differences 

in habitat use at different developmental stages and between males and females 

(Figure 1).  Blue crab spawns in the high-salinity waters of the lower Bay and zoeae 

are advected offshore where they develop through several stages in continental shelf 

waters before returning to settle in the Bay (see Epifanio (2003) for an overview of 

spawning and larval transport and development).  Newly settled crabs are found in 

highest densities in the lower Bay in summer and early fall (Lipcius & Van Engel 

1990; Metcalf et al. 1995) and are thought to settle preferentially in submerged 

aquatic vegetation (SAV) (van Montfrans et al. 2003) where mortality rates from 

predation are lower (Orth and van Montfrans 2002).  Later stage juveniles and adult 

males are widely distributed throughout the Bay in the summer and overwinter in the 

tributaries and the mainstem, undergoing limited migrations (T. Miller, unpubl. data).  
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Mature females undergo much longer migrations in the late summer and early fall to 

deep high-salinity waters in the lower Bay (Hines et al. 1995; McConaugha 1995) 

where they release zoeae and overwinter.        

Winter is an important time in the blue crab life history.  In southern 

populations, blue crabs continue to feed, grow, and molt throughout the year (Smith 

and Chang In press).  In northern populations, including Chesapeake Bay, winter 

temperatures drop below a physiological threshold forcing blue crabs to enter a 

dormant period (Tagatz 1969).  During this time, crabs bury into the sediment and 

growth ceases.  Natural mortality during the dormant winter period is thought to be an 

important factor in blue crab population dynamics with higher mortality in cold 

winters (Sharov et al. 2003). Although overall fishing mortality rates are lower in the 

winter, the winter dredge fishery in the lower Bay may have a disproportionate 

impact on the population because it targets mature females with high reproductive 

value (Miller 2003).  Spatial management strategies such as the Lower Bay Spawning 

Sanctuary (LBSS) have been implemented in an attempt to control fishing mortality 

on this vulnerable portion of the population (Lipcius et al. 2003). 

 Winter is an ideal time to conduct baywide sampling of blue crabs since they 

are dormant, and consequently there is no risk of bias due to movement (Vølstad et 

al. 2000).  Since the winter of 1989-1990, a Bay-wide Winter Dredge Survey (WDS) 

has been conducted using a consistent protocol every year between December and 

March (Sharov et al. 2003).  This survey employs a stratified random design with 

approximately 1,500 stations per year.  In each year, depletion experiments are 

conducted at several locations throughout the survey domain (Zhang et al. 1993; 
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Vølstad et al. 2000).  From these studies, vessel and year specific correction factors 

(catchability coefficients, q) have been developed to standardize effort and to 

translate catch into an estimate of density based on the area swept (Sharov et al. 

2003).  The WDS survey has provided important insights into the abundance and 

exploitation of blue crab in Chesapeake Bay (Zhang and Ault 1995; Vølstad et al. 

2000; Sharov et al. 2003) and the effectiveness of the LBSS (Seitz et al. 2001) and 

migration corridor (Lipcius et al. 2001).  Moreover, because of its geographic and 

temporal scope, the WDS is an ideal dataset for investigating the effects of spatial 

distribution on blue crab population dynamics (Miller 2003). 

Changes in distribution are interesting from an ecological perspective.  

Identification of the factors that regulate the distribution of a species has been a 

fundamental question in ecology since Hutchinson’s classic paper defining 

fundamental and realized niches (Hutchinson 1957).  A niche is the “n-dimensional 

hyperspace” defined by the range of biotic and abiotic factors that limit the species 

distribution.  Often, physical environmental factors form the primary or fundamental 

definition of niche as they represent physiological limits to the distribution. Abiotic 

parameters are easily measured in the laboratory and in the field, and studies that 

relate the distribution of focal species to the abiotic environment may reveal aspects 

of the species fundamental niche (Peterson and Vieglais 2001).  Within the 

physiological limits that define the fundamental niche, the distribution of a species 

may be further restricted by biotic interactions (Connell 1961).  This smaller subset of 

the fundamental niche is termed the “realized” niche.  Extensive research on blue crab 

has revealed insights into both its fundamental and realized niches.  Research has 
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identified estimates of limiting salinity and temperature levels for survival of blue 

crab (Tagatz 1969), and the presence of a physiological temperature limit for growth 

of approximately 10º C below which growth ceases (Brylawski and Miller 2003).  

Other studies have suggested a role for SAV in limiting vulnerability to predation of 

juveniles (e.g., Orth and van Montfrans 2002).   

Intra-specific interactions can also influence species distributions.   The 

suitability of a particular habitat may decrease as the density of a species using that 

habitat increases.  This idea is central to Parker and Sutherland’s (1986) Ideal Free 

Distribution concept.  Individuals that distribute themselves according to an IFD all 

experience the same growth potential.  The IFD concept underlies MacCall’s (1990) 

basin model.  This model predicts that at low population density, most individuals of 

a species will concentrate in optimal habitat, whereas as density increases, individuals 

move toward increasingly less optimal habitat, which becomes equally suitable 

because of its lower density of conspecifics.  The degree to which such mechanisms 

operate with regard to blue crab in Chesapeake Bay is currently unknown. 

 A thorough understanding of a stock’s distribution and the ability to detect 

changes in the distribution can be an important asset for management also.  One 

explanation for the unexpected collapse of some fished populations involves 

undetected changes in distribution (Hutchings 1996).  Most stock assessment models 

assume that landings are directly proportional to stock abundance (Quinn and Deriso 

1999).  The coefficient of proportionality is termed the catchability coefficient, q.   

When this proportionality fails, stocks are said to be hyper or hypo-dispersed. This is 

often the case in a spatially-structured (i.e., non-randomly distributed) populations 
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(Walters 2003), such as schooling fish, that may be caught very efficiently even as the 

total number of aggregations declines.  In such cases, landings, which may remain 

high despite serious decreases in the population, do not accurately reflect population 

size.  Thus, in spatially structured populations, changes in distribution may provide an 

early warning of stock depletion (Hutchings 1996).   

 The WDS, an intensive point sampling (the one-minute tows can be 

considered a single point within the context of the entire Bay) of a continuous 

process, lends itself to analysis using geostatistical methods.  The fundamental 

techniques of geostatistics, variogram modeling and kriging, were developed to 

describe the distribution of valuable ore based on a collection of bore-hole samples, 

but have since become widely used in ecology (Legendre 1993; Rossi et al. 1992) and 

fisheries science (Sullivan 1991; Petitgas 1993; Rivoirard et al. 2000).  The 

variogram describes the spatial autocorrelation structure of the data, i.e., the decrease 

in relatedness between pairs of points as the distance between them increases.  Spatial 

autocorrelation is a necessary prerequisite to accurate spatial interpolation using 

kriging.  Preliminary variogram analysis of the WDS data showed strong spatial 

autocorrelation, indicating that kriging could be an effective technique for mapping 

the distribution of blue crab.  

While the WDS data are well suited to analysis using geostatistics, the 

Chesapeake Bay, a highly invaginated estuary, is not.  Variogram modeling and 

kriging, like most spatial analysis techniques, traditionally use a Euclidean or 

straight-line distance metric to quantify the degree of physical separation between 

points.  Such a metric is intuitive and useful in open areas whose boundaries can be 
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thought of as forming a convex polygon.  In such cases, there are no barriers 

separating pairs of points, and Euclidean distance is a suitable metric.  Few estuaries 

match this ideal.  In the Chesapeake Bay, for example, two points in adjacent 

tributaries may be close by Euclidean distance yet quite separate from the point of 

view of an aquatic organism or a water-dispersed contaminant.  A more appropriate 

metric is necessary for spatial modeling in irregularly shaped regions with barriers.  

Such metrics have been developed, but they either rely on a GIS-based network 

approach (Little et al. 1997; Gardner et al. 2003) which works well in narrow 

tributaries, but is unsuitable for wide open areas, or a FORTRAN program that is not 

easily applied to other geographic areas (Rathbun 1998).  These methods have 

demonstrated the potential increase in prediction accuracy to be gained by utilizing a 

more appropriate distance metric.  The conditions under which such a metric is 

necessary remain undefined, however, and a need exists for an efficient and 

transferable solution to this problem. 

Kriging is a useful tool for providing an accurate, quantitative description of 

the distribution of blue crabs.  It provides little information, however, about the 

environmental parameters that define suitable winter habitat (but see Sullivan 1991 

for an example of combining a habitat variable i.e., depth, and kriging).  Blue crabs 

are clearly not randomly distributed throughout the Chesapeake Bay.  In the spring 

and summer, juveniles and molting individuals of both sexes are strongly associated 

with SAV.  In the fall, mature females migrate from summer habitat toward spawning 

and overwintering habitat in the lower Bay.  Males and immature females undertake 

more limited migrations toward deep water in the tributaries and main stem.  
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Temperature and salinity are dominant factors in the bioenergetics of the blue crab 

(Brylawski and Miller 2003), which is likely to take on increased importance during 

the winter dormant stage when bioenergetic costs cannot be balanced by increased 

feeding.  Winter distributions of mature females likely reflect an attempt to maximize 

survival and reproductive success since both spawning and overwintering occur in the 

deep water of the lower Bay. 

Given the broad suite of environmental variables that may be influencing blue 

crab distributions, a statistical method for habitat suitability modeling must be able to 

test and integrate a large number of variables individually and in interaction.  The 

approach must also be flexible enough to fit non-linear responses and accommodate 

the large number of zero catches that result from short tows and the patchy 

distribution of blue crab.  Two-stage generalized additive models (GAMs) provide 

such a method.  GAMs allow for fitting flexible regression splines to each habitat 

variable individually (Hastie and Tibshirani 1990) and are more effective than 

polynomial regression at modeling threshold responses.  The two-stage approach 

addresses the zero-inflated distribution of the data by modeling presence-absence 

(binomial distribution) independently of density given presence (lognormal 

distribution).  Given enough data, habitat models can be developed for each year and 

compared to see whether the relationships described by the model are general and 

stable. 
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Objectives 

This thesis addresses fundamental questions about the distribution and 

abundance of blue crab in Chesapeake Bay during winter.  The winter dredge survey 

provides an extensive, spatially-referenced data base of the distribution and 

abundance of blue crab in Chesapeake Bay.  However, to date these data have been 

analyzed using design-based approaches only.  I will apply geostatistical methods to 

estimate the winter abundance and distribution of blue crab in Chesapeake Bay.  

There are three specific objectives: 

 

OBJECTIVE 1.  Develop and evaluate an alternative to Euclidean distance for 

use in geostatistical models.  

 

 I will develop and test an approach that uses a “Lowest Cost Path” (LCP) 

distance metric (the shortest distance between two points that is constrained to remain 

within the body of water) as the basis for variogram modeling and kriging.  The 

approach to this question involves substantially modifying a set of geostatistical 

methods (variogram modeling and kriging) so that they are suitable for use in 

estuaries or other non-convex regions with barriers.  I will compare the precision and 

bias of the LCP distance-based and Euclidean distance-based approaches.  Results of 

this work are presented in Chapter 2.   
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OBJECTIVE 2.  Quantify the abundance and winter distribution of blue crab in 

Chesapeake Bay and determine the extent to which density-

dependent factors control their distribution. 

 

 The application of geostatistical methods to the winter dredge database 

permits predictions of the abundance of crabs at unsampled locations.  Maps of 

predicted distributions can be further analyzed to estimate abundance and the 

moments of the distribution.  These secondary results will be quantified to (1) provide 

a comparison with design-based estimates of crab abundance and (2) to address 

questions about blue crab population dynamics and density-dependent changes in 

their distributions.  The results of these analyses are presented in Chapter 3.  

 

OBJECTIVE 3.  Describe the relationship between abiotic variables and the 

winter distribution of mature female blue crab in Chesapeake 

Bay. 

 

The environmental factors that influence the winter distribution of mature 

females are investigated using a two-stage GAM, which models presence /absence 

and abundance at individual stations separately.  The temporal breadth of the WDS 

data also allows for a cross-validation of this method in which the predictive power of 

environmental variables important in one year is assessed in other years.  The results 

of these analyses are presented in Chapter 4.    



 

 10 
 

Chapter 2: Landscape-based geostatistics: a case 
study of the distribution of blue crab in Chesapeake 
Bay 

 

Abstract 

Geostatistical techniques have gained widespread use in ecology and the 

environmental sciences.  Variograms are commonly used to describe and examine 

spatial autocorrelation, and kriging has become the method of choice for interpolating 

many spatially-autocorrelated variables.  Most applications of geostatistics to date 

have defined the separation between sample points using simple Euclidean distance.  

In heterogeneous environments, however, certain landscape features may act as 

absolute or semi-permeable barriers.  The effective separation in this case may be 

more accurately described by a measure of distance that accounts for the presence of 

barriers.  Here I present an approach to geostatistics based on a lowest-cost-path 

(LCP) function, where the cost of a path is a function of both the distance and the 

type of terrain crossed.  The modified technique is applied to 13 years of survey data 

on blue crab abundance in Chesapeake Bay.  Use of this landscape-based distance 

metric significantly changed all three variogram parameters but did not result in 

consistent improvements in the accuracy of predictions of abundance at unsampled 

locations. 
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Introduction 

A trend of increasing spatial realism has been evident throughout the history 

of ecological modeling.  Hufaker’s (1958) experiments demonstrated the importance 

of space in a predator-prey system and encouraged modelers to seek out appropriate 

ways of incorporating a spatial component into their work.  Early work by Hassell 

and May (1973) showed that the addition of a spatial component to models of 

predator-prey interactions enhanced the stability of the resulting equilibrium.  Space 

in this model was implicit, but models taking into account the explicit spatial 

arrangement of the model components soon followed (e.g., Pulliam et al. 1992).  

More recently, ecologists have started to use spatially-realistic models where 

interactions take place within a specific landscape (e.g., Wahlberg et al. 1996). 

 Space has also been increasingly recognized as an important component of 

statistical models in ecology.  Legendre (1993) and Rossi et al. (1992) document a 

shift from assumptions of spatial independence and homogeneity, to an understanding 

of spatial autocorrelation as a source of useful information, provided that the 

appropriate statistical tools are used.  Geostatistical modeling is a common approach 

to developing spatially-explicit statistical models.  Accurate incorporation of spatial 

autocorrelation is important in geostatistical models that test hypotheses (Legendre 

and Troussellier 1988) or predict the distribution of species and their interactions in 

space (Bez 2002).  In both cases, incorrect specification of the spatial covariation can 

introduce spurious patterns in the analyzed data that can lead to erroneous rejection of 

null hypotheses or inaccurate predictions of distributions.    
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Geostatistics is increasingly used for analytical rather than descriptive 

purposes, e.g., to estimate abundance (Sullivan 1991; Bez 2002) or parameterize 

other models (Fuchs and Deutz 2002).  Consequently, the importance of accuracy in 

geostatistical applications is growing.  Traditionally, geostatistical approaches have 

specified spatial covariance based on the Euclidean distance between sampled points.  

Implicit in the use of Euclidean distance is the assumption that the process or feature 

of interest is continuously distributed between any two points.  However, in many 

instances, the space separating two sampled points may present a biological or 

physical barrier that limits the distribution of the process or feature.   

 

The Importance of Barriers in Ecological Modeling 

Spatial heterogeneity at several scales is a common feature of nearly all 

landscapes and can have important consequences for the way organisms move and 

interact.  One of the simplest but most important impacts of spatial heterogeneity 

occurs when one landscape type serves as a barrier to movement and dispersal.  

Barriers are important in determining biogeographic, ecological, and evolutionary 

patterns (Grinnell 1914; MacArthur and Wilson 1967; Gilpin and Hanski 1991; 

Brown and Lomolino 1998).   The recognition of barriers, however, has generally 

been restricted to a few high-profile models (e.g. island biogeography and 

metapopulation dynamics) that explicitly describe their effects.  However, as habitat 

fragmentation and isolation continue to increase, barriers are an increasingly 

important component of many landscapes.   
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Several recent studies have applied a diversity of approaches to quantitatively 

account for the effects of barriers.  Rupp and Chapin (2001) used a spatially realistic 

simulation model to predict the impact of the Brooks Range in northern Alaska as a 

barrier to shifts in forest cover induced by global warming.  In this case, the presence 

of barriers resulted in a 2000-year lag in the expansion of forests to the North Slope.  

A recent spatially-explicit simulation of a Lotka-Volterra predator-prey system 

(Nakagiri et al. 2001) showed that even when barriers are present at a fairly low 

density and directly affect only the prey species their presence can lead to extinction 

of both species.  In a study of within population genetic variation of field mice, 

Landry and Lapointe (2001) concluded that a composite isolation index, which takes 

into account landscape barriers, was a better predictor of variation than simple 

geographic distance alone.  Taken together these studies indicate a growing interest in 

the impacts of underlying landscape barriers on many ecological processes.  

Streams and estuaries are systems where barriers are a prominent feature of 

the landscape.  It has long been recognized by stream ecologists that Euclidean 

distance is an inappropriate metric, and distance measured along the thalweg is 

commonly used.  This metric recognizes that most processes in a stream are only 

continuous within the aquatic habitat.  Many estuaries are characterized by highly 

invaginated shorelines where converging tributaries are separated by narrow 

peninsulas of land.  Conditions on opposite sides of a peninsula can show much 

greater variation than their geographic proximity suggests.  In some cases, adjacent 

tributaries, because of differences in the geology or land use of their watersheds, 

show remarkable differences in their chemical and biological characteristics (Pringle 
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and Triska 1991).  Not surprisingly then, the first attempts to incorporate the effects 

of barriers into geostatistical modeling occurred in estuaries (Little et al. 1997; 

Rathbun 1998). 

 

Geostatistics and Ecological Landscapes 

Increased interest in modeling the spatial component of many ecological 

phenomena has paralleled improvements in geostatistics as an analytical tool and 

geographic information systems (GIS) as a modeling environment.  Geostatistical 

tools have gained widespread acceptance not only in the field of ecology, but also in 

other areas such as epidemiology, geology, hydrology, and population genetics.  In 

ecology, the most common uses of geostatistics have been to describe the spatial 

autocorrelation structure using the variogram, and to interpolate and map data using 

kriging (Aubry and Debouzie 2000).  Variations on ordinary kriging have been used 

to model presence/absence data (indicator kriging), interpolate one variable based on 

its relationship to a second variable (co-kriging), and to incorporate a trend surface 

(universal kriging).  Geostatistical techniques, including block kriging, have also 

become a standard tool for abundance estimation based on spatially autocorrelated 

survey data, especially for fisheries acoustic surveys (Sullivan 1991; Petitgas 1993; 

Rivoirard et al. 2000; Bez 2002).  A model-based geostatistical approach can be 

preferable to traditional design-based methodology when autocorrelation is present 

because many design-based methods fail to take advantage of the additional 

knowledge present in the spatial autocorrelation structure (Aubry and Debouzie 2000, 

2001).   
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Heterogeneous landscapes can impose patterns that violate the assumptions of 

geostatistics.  For example, second order stationarity (i.e., spatially constant mean and 

variance) and isotropy of the variogram in space are the strongest assumptions of the 

geostatistical model.  These assumptions are also likely to be violated in the presence 

of any ecologically important gradients in the landscape.  For instance, a resource 

gradient in a meadow may result in a trend in mean plant density parallel to the 

gradient (violation of the constant mean assumption).  Spatial autocorrelation is likely 

to be stronger and extend further when measured perpendicular to the resource 

gradient (i.e., at similar resource levels), and consequently the variograms will exhibit 

anisotropy.  A similar effect is often seen in data from coastal systems in which 

autocorrelation extends further when measured parallel to the shoreline, i.e., along 

rather than across depth contours. Checking for and correcting these landscape-

induced violations of the assumptions has become an integral step to geostatistical 

modeling through the introduction of easily applied corrections such as detrending, 

universal kriging, and variogram models that incorporate geometric anisotropy. 

Efficient and easily implemented solutions to landscape barriers, however, 

have not been available.  Consequently, their impacts are largely ignored.  A 

commonly used approach to interpolation in the presence of barriers, which is 

implemented in many GIS programs, is to simply reject points that are separated by a 

barrier.  This approach effectively divides the prediction area into many convex 

regions in which only points contained within a given region are used for prediction.  

In complex landscapes with many barriers, the result of this approach is that relatively 
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few points are used for prediction in some areas, and therefore greater sample sizes 

are needed to achieve the same degree of accuracy.   

While a simple test for the presence of influential barriers is not available, we 

can define pre-conditions for the importance of barriers. Barriers are only likely to 

have a substantial impact on geostatistical interpolation when the following two 

general conditions apply:   

1)  The extent of the survey and the prediction area is larger than the scale at which 

barriers intervene.  For example, peninsulas may be effective barriers to the dispersal 

of marine organisms among adjacent bays.  They would have little impact on 

predictions, however, if a survey and the prediction area were limited to a single bay.  

2)  The range of spatial autocorrelation is larger than the scale at which barriers 

intervene.  In an estuary, we would expect little impact if the Euclidean distance 

between sample or prediction points in adjacent bays was greater than the range 

parameter from the variogram.  This is because points separated by a distance greater 

than the range are essentially uncorrelated and receive very little weight when 

predictions are made.  

 Visual inspection of the sample and prediction points on a map of the 

underlying landscape can indicate quickly whether condition one applies.  It is more 

difficult, however, to determine a priori whether the range is greater than the scale at 

which barriers intervene since barriers may influence the empirical variogram and 

consequently affect the estimate of the range.   
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A Landscape -Based Distance Metric 

What are appropriate alternatives to Euclidean distance when barriers exist 

and the spatial scale of the modeling effort and the range of spatial autocorrelation 

indicate that they may have an impact on geostatistical analysis?   Sampson and 

Guttorp (1992) suggest an empirical non-parametric approach to determining the 

appropriate distance metric in cases where a time series of observations for each 

sample site is available.  Such a data rich environment, however, is likely to be the 

exception for most ecologists.  Rathbun (1998) divided the study region into a series 

of adjacent convex polygons based on a digitized shoreline of the estuary.  This 

approach splits the estuary into increasingly smaller polygons until the shortest 

through water distance between all sample points is achieved.  Little et al. (1997) 

recognized the suitability of a GIS as an efficient environment for conducting this 

type of spatial calculation.  They defined a network of line segments connecting 

points in an estuary.  While computationally efficient for narrow regions where 

movement is only possible along one path, this approach is difficult to apply in the 

more open portions of an estuary where distance both along and across the principal 

axis of the estuary must be considered.    

 Here I develop a distance metric that is equally applicable to nearly linear 

networks and open areas, terrestrial or aquatic, and accounts for the presence of 

barriers in the landscape.  It is calculated using the cost-weighted distance function 

common to many GIS programs.  This raster function calculates the lowest-cost 

distance from any pixel in a digitized map to any other.  Cost is defined by a cost 

raster where the pixel values represent the relative ease of movement through the 
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associated habitat type. Diagonal movements are allowed and their cost is estimated 

from the length of the diagonal rather than the cell size.  The total cost of a given path 

is the sum of the individual cost pixels encountered along that path multiplied by the 

pixel size.  When the landscape is defined in terms of absolute barriers, the binary 

case, passable habitat is given a cost of 1 while barrier habitat is given an infinite cost 

(e.g. a “no data” value).  The resulting distance is simply the length of the shortest 

path between two points that does not cross a barrier.  For each point in the survey 

data set, a distance raster map is produced whose cell values represent the lowest-cost 

distance from the cell to the sample point.   

The landscape-based approach was tested using data from the winter dredge 

survey (WDS) of blue crabs (Callinectes sapidus Rathbun: Portunidae) in Chesapeake 

Bay conducted yearly by the Maryland Department of Natural Resources and the 

Virginia Institute of Marine Science.  These data have been used to quantify crab 

abundance (Zhang and Ault 1995) and fishery exploitation (Sharov et al. 2003) in 

Chesapeake Bay.  Like many estuaries, the Chesapeake Bay has several tributaries 

separated by long, narrow peninsulas of land that present a barrier to the distribution 

of many aquatic variables at a scale that makes them potentially influential for 

baywide modeling efforts. The tributaries differ widely in the land-use characteristics 

of their watersheds with some, such as the Potomac River, draining large urban areas, 

and others, such as the Susquehanna River and many eastern shore tributaries, 

draining primarily agricultural land.  Thus, sample points in adjacent tributaries, 

although quite close in Euclidean distance, can differ substantially in their chemical 

and biological characteristics.  
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The WDS takes place during the crabs’ dormant period limiting potential bias 

due to movement. It has been conducted annually since 1990 with an average of 

1,413 stations per year, providing a comprehensive sample of the blue crab 

population in the Bay.  Preliminary variogram analysis showed that blue crab catches 

exhibit distinct spatial autocorrelation at a range greater than the separation of some 

sample points in adjacent tributaries.  This indicates that Euclidean distance-based 

kriging techniques may rely on samples from adjacent tributaries, and that a 

landscape-based approach may increase prediction accuracy. 

 

Methods 

Data 

All data utilized were from the winter dredge survey (WDS) of the blue crab 

population in Chesapeake Bay.  Full details of the survey design and application are 

provided in Vølstad et al. (2000) and Sharov et al. (2003).  Briefly, the survey 

consisted of a one-minute tow of a 1.83 m wide crab dredge at each station.  Stations 

were chosen randomly each year within three strata.  Sample size ranged from 

approximately 900-1,500 stations per year.  Depletion experiments were conducted 

yearly to determine catchability coefficients that could be used to transform catch into 

an estimate of absolute abundance (Zhang et al. 1993; Vølstad et al. 2000).  The 

variable studied was the density of blue crabs (including all age and size classes) per 

1000 m2, calculated by dividing the absolute abundance estimate by the dredge area 

swept.   
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Sample coordinates were based on the starting location of each tow, and the 

tow distance was calculated from the start and end coordinates determined by Loran-

C in early years and differential GPS more recently.  Tows shorter than 15 m and 

longer than 500 m (1.4% of the total data) were not used in this analysis.  All 

coordinates were projected to Universal Transverse Mercator (UTM) zone 18 before 

analysis.  Annual density estimates were detrended to meet the geostatistical 

assumption of stationarity.  For detrending, a second order two-dimensional 

polynomial of spatial trend with interactions was fit to each year.  The model was 

simplified using backward elimination with a significance level to stay equal to 0.01.  

This relatively stringent criterion was used to avoid overfitting the trend.  Variogram 

analysis, kriging, and cross-validation were conducted on the residuals. 

 

Incorporation of Landscape -based Distance into Geostatistical Algorithms  

The detrended residuals were used to estimate variograms for both the 

Euclidean and the LCP distance metrics.  Euclidean distances were calculated using 

standard algorithms programmed within Matlab (The Mathworks, Cambridge, MA).  

Intersample lowest-cost path (LCP) distances for every pair of sample locations were 

calculated using a cost-distance algorithm programmed in the Visual Basic macro 

language within ArcView v8.3 (ESRI, Redlands, CA) where LCP distance was 

calculated along the path that minimized the distance function: 

( )∑ ⋅ XCi  

where Ci is the cost coefficient of the ith habitat type (here Ci is equal to one for cells 

in the water and is effectively infinite for cells on land) and X is the distance across 
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an individual cell.  X is equal to the cell size for cells that are crossed in the north-

south or east-west direction or )2( 2cellsize⋅  for cells that are crossed diagonally.  

The resulting distances are written to the intersample distance matrix.  This matrix is 

used for calculating the variogram.  A second matrix containing the LCP distances 

from each sample point to each prediction point is calculated and used for prediction 

and mapping.   

Robust variograms were calculated according to Cressie (1993), with a Matlab 

program that used distances from the Euclidean and landscape-based distance 

matrices.  A 250 m bin size was used to calculate the empirical variogram to a 

distance of 40 km.  Exponential and Gaussian variogram models were fit to the 

empirical variograms using nonlinear least squares (SAS system, NLIN procedure) 

where starting parameter values were chosen by eye.   The best fitting variogram 

model, i.e., the model with the lowest mean squared error, was used for kriging and 

variogram comparison.  The variogram parameters for the Euclidean and landscape-

based distance metrics were compared using the sign rank test.   

Following variogram selection, kriging was conducted in a Matlab program 

modified to use Euclidean and landscape-based distances from a user-defined 

distance matrix and a neighborhood of the 10 nearest points.  Blue crab density in 

each 1 km grid cell was predicted by adding the kriged prediction to the trend at the 

center of every cell in the landscape.  Prediction accuracy for both Euclidean and 

landscape-based methods was assessed using the prediction error sum of squares 

(PRESS) statistic.  The PRESS statistic is a cross-validation measure calculated by 

leaving one observation out of the data set and using the remaining points to predict 
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the value at that site.  The PRESS statistic is simply the sum of the squared difference 

between the predicted and observed values at each site.  Predicted abundances were 

then mapped in ArcView v8.3 for visual comparison. 

Differences between the two distance metrics are likely to be accentuated as 

distances increase between neighboring sample points.  Within a given landscape, 

increased distance between sample points increases the likelihood that a barrier will 

intervene at some point along the straight line connecting any two points.  Increasing 

the average distance between pairs of sample points without changing the underlying 

spatial structure can be achieved by taking a random subset of the data.  The potential 

impact of increased intersample distance was examined by taking 50 random subsets 

of 200 sample points each and calculating the average difference in PRESS. 

Similarly, differences between the Euclidean and LCP based kriging 

predictions are likely to be greater in regions of the Bay where more barriers are 

present. In the mainstem of the Bay, few barriers exist and the Euclidean and LCP 

distances are likely to be similar.  In the tributaries and in areas of the Bay with 

islands and complex shorelines, the Euclidean and LCP distances, and consequently 

the kriging predictions, are more likely to show differences.  To examine these 

potential regional differences, predictions were made and the PRESS was compared 

for a subset of the data from Tangier Sound, a region with many islands and inlets.   

 

Results 

Spatial trends in abundance were found in all years.  In most cases, the 

underlying trend in the data was described best by a model of the form: 
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Density = ß0 + ß1x + ß2y + ß3xy 

where x refers to the easting value and y the northing value. The trend model for 1998 

also included an x2 term, and that for 2000 included an x2 and a y2 term.   

Gaussian variogram models were chosen for all years, except 1990 and 1992, 

where an exponential model provided a better fit (Table 1).  In many cases, the 

exponential model provided a marginally better fit, but was rejected because it 

resulted in unrealistic variogram parameters (e.g., negative nugget or unrealistically 

high range).  In all years, choice of variogram model was the same for both distance 

metrics.  

Comparison of the variograms calculated under a Euclidean distance metric 

with those from the LCP distance metric revealed systematic differences in the 

variogram parameters.  Inter-sample distances calculated using the LCP algorithm 

were on average 11-17 km (14-23%) greater than the equivalent Euclidean distances 

(Table 1).  The variogram parameters, the nugget (Figure 3), sill (Figure 4), and range 

(Figure 5), were all significantly lower on average for the LCP distance variograms.  

Compared to the Euclidean distance variograms, the LCP distance variograms had a 

lower nugget in eight out of the ten years compared, with an average difference of 

236 (sign rank test, p = 0.049); a lower sill in nine out of ten years, with an average 

difference of 1,038 (sign rank test, p = 0.049); and a lower range in eight out of ten 

years, with an average difference of 3.32 km (sign rank test, p = 0.049).  The equal 

significance values for these three tests are coincidental.  The effect of this pattern of 

differences was to reduce the inter-station variability at any given distance.  

Representative variograms are shown for 1996 (Figures 6 and 7), a year of relatively 
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small (0.01%) difference in prediction accuracy and for 2001 (Figures 8 and 9), the 

year of greatest difference (3.46%) in prediction accuracy.  The variograms for 2001 

are an example of a case where the exponential variogram provided a somewhat 

better fit than the Gaussian model, but was rejected because it resulted in an 

unrealistically high estimate of the range.  In both years, the estimated nugget, partial 

sill, and range are lower for the LCP distance metric. 

  Despite this difference in the distances and in the variogram parameters, the 

PRESS statistic comparison shows only small differences in prediction accuracy 

between the two distance metrics (Table 2).  Differences in PRESS range from 0.01 – 

3.46% with a mean increase in PRESS of 0.2% when LCP distance is used.  Of the 13 

years of survey data tested, only 7 showed greater prediction accuracy when LCP 

distance is used.   

Results were similar for the random subsample and the Tangier Sound subset 

(Table 3).  For the random subsample, the difference in PRESS ranged from 0.07 – 

1.47% with a mean increase in PRESS of 0.25% when LCP distance is used.  In 

Tangier Sound, the difference in PRESS ranged from 0.15 –7.29% with a mean 

increase in PRESS of 0.94% when LCP distance is used.  The direction of the 

difference in PRESS was not consistent with 4 out of 13 years for the random subset 

and 7 out of 13 years for Tangier Sound showing greater prediction accuracy when 

LCP distance is used. 

 Consistent with the small differences in PRESS, maps of predicted blue crab 

density show broadly similar patterns.  Baywide patterns of blue crab distribution 

appear similar between the two methods in both 1996 (Figure 10) and 2001 (Figure 



 

 25 
 

11).  Smaller scale differences are apparent, however, especially in the unsampled 

upper reaches of some tributaries.  In the upper Potomac River, for example, the 

Euclidean-based map for 1996 (Figure 10a) shows high predicted density because the 

nearest samples (by Euclidean distance) are high values in the adjacent Patuxent 

River.  The LCP-based map for the same year (Figure 10b) predicts low abundance in 

the upper Potomac River based on the nearest samples downstream. 

 

Discussion 

 Differences in prediction accuracy were expected to result from the 

impact of the landscape-based distance metric at two distinct stages of the 

geostatistical modeling process: variogram estimation and kriging.  Use of an LCP 

distance metric changed estimates of the underlying spatial structure as summarized 

in the variogram.  Estimates of all three variogram parameters were significantly 

lower under the landscape-based distance metric, indicating lower variation and a 

shorter estimated distance of spatial autocorrelation (range).  The landscape-based 

distance metric also changed the sample points (and their weights) used in kriging, 

reducing the importance of points separated by barriers from the prediction site.  

However, differences in variogram estimates did not yield a consistent effect on the 

accuracy of the kriging predictions.  No consistent improvements in kriging accuracy 

were seen even when distances among points were increased (the random subsample 

analysis) or the analysis was restricted to areas of the Bay with many barriers (the 

Tangier Sound analysis). 
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Although many factors interact to influence prediction accuracy, the unique 

shape of Chesapeake Bay may have played a role in reducing the increase in accuracy 

that was expected from the LCP distance metric.  Many of the Bay tributaries, 

particularly on the west side, run parallel to one another.  Because of this parallel 

orientation, the nearest point in an adjacent tributary is often at approximately the 

same distance from the tributary mouth.  Such a point, while in a different tributary, 

may well show similar blue crab density because of its similar location relative to the 

tributary mouth.  In this case, predictions using points in adjacent tributaries may in 

fact be more accurate. 

This study is not the first to attempt landscape distance based prediction in 

estuaries, and the results of other approaches to kriging with a landscape-based 

distance metric have been equally equivocal.  Both Little et al. (1997) and Rathbun 

(1998) found improvements in the prediction of some variables but not others.  Little 

et al. (1997) found improvements in prediction accuracy (on the order of 10-30% 

reduction in PRESS) for only four out of eight variables when they applied a linear 

network-based distance metric.  For the other four variables, use of the network-based 

distance metric increased the PRESS by 5-10%.  Rathbun (1998) found slight 

improvements in cross-validation accuracy using a water distance metric for 

predicting dissolved oxygen but slightly worse accuracy when predicting salinity.  

Although variogram parameters differed between the two distance metrics in the 

Rathbun (1998) study, with the water distance metric resulting in higher variance and 

a longer range, no systematic comparisons were possible in that study since only one 

sample was analyzed. 
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 Two recent studies in stream systems (Torgersen et al. In press; Gardner et al. 

2003) apply geostatistical tools based on the distance between sample sites along a 

stream network.  Torgersen et al. (In press) used a network-based distance metric to 

quantify spatial structure in cutthroat trout abundance in an Oregon stream system.  

Although the distance metric used provided clear variogram patterns, no explicit 

comparison was made with a Euclidean distance metric.  Gardner et al. (2003) found 

improvements (lower prediction standard errors and predictions that better met 

expectations) in the prediction of stream temperature when a network-based metric 

was used, but did not report cross-validation statistics.  Variogram parameters were 

also found to change in this study with the network-based metric resulting in smaller 

nugget but longer range. 

The effect of alternative distance metrics on variogram parameters is difficult 

to predict since opposing influences may interact.  For example, increasing the 

distance between points is likely to result in a longer estimated range, as seen in the 

Rathbun (1998) and Gardner et al. (2003) studies.  Since a landscape-based metric 

reduces the influence of points separated by a barrier, which are expected to differ 

more than their Euclidean separation would suggest, it also seems likely to reduce the 

sill parameter (as seen in this study), a measure of overall variability.  Because the 

range and the sill parameters are often highly correlated, however, the overall effect is 

unpredictable.   

Concurrently and independently of this study, Krivoruchko and Gribov (2002) 

applied a similar technique for calculating LCP distance and used it to model air 

quality in California.  They used a digital elevation model (DEM) to define a cost 
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map representing the relative impedance of the environment to the spread of air 

pollution.  Regions with steep changes in elevation were given a higher cost than flat 

land in order to account for the preferential spread of air masses along rather than 

across elevation contours.  Interpolation was conducted using the inverse distance 

weighted method.  Visual inspection of interpolated maps based on Euclidean 

distance and those produced using the landscape-based distance supported the use of 

the latter technique; however, no formal comparison was presented.  

 One of the currently unresolved problems with using a landscape-based 

distance metric for kriging is assuring the validity of the covariance matrix (Rathbun 

1998).  There is no guarantee that the covariance function for a given combination of 

variogram model and non-Euclidean distance metric will be non-negative definite.  

That is: 
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where si and ai represents all finite collections of spatial location {si: i = 1,…,m} and 

real numbers {ai: i = 1,…,m} and C(x) is the covariance function (Cressie 1993).  

Consistently valid combinations of variogram model and distance metric are yet to be 

determined.  Candidate covariance functions can be tested, however, and alternative 

approaches used if they fail to meet the non-negative definiteness criterion.  Although 

all of the covariance matrices in this analysis met this criterion, there is no guarantee 

that this would hold true for the set of all possible sample locations.  Krivoruchko and 

Gribov (2002) suggest a moving average approach to estimating the covariance 

model that is not subject to the same criterion.  It should be noted that variograms, 
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spatial autocorrelation statistics, and deterministic interpolation methods are not 

affected by this problem.   

While the simple binary (passable or barrier) case is presented in this 

example, the LCP approach can incorporate varying degrees of impedance to the 

continuity of the process or population under study.  For example, one type of habitat 

may represent an insurmountable barrier while another may only slow the spread of 

the process. Parameters used to define the degree of impedance or ‘cost’ of different 

landscape types could come from many sources depending on the type of variable 

studied.  For mobile organisms, costs could be based on studies of animal movement 

such as Dyer et al. (2002) or the translocation experiments by Bélisle (2001) although 

the extent to which different habitat types present a barrier to movement may not be 

static (Thomas et al. 2001).   For temporary barriers the cost might simply be the 

inverse of the fraction of time that the barrier is passable.  For spatial modeling of 

chemical contaminants, cost parameters might come from laboratory experiments of 

diffusion and transport in different media.   

Landscape ecologists have long recognized that Euclidean distance is rarely 

the most appropriate metric when considering the ecological relatedness among 

points in a landscape (Forman and Godron 1986).  When flows between points are of 

interest “time-distance”, i.e., the quickest route, may be preferable.  However, time-

distance requires detailed knowledge of how an organism disperses through various 

habitat types.  Time-distance has an added complication in that it may be asymmetric, 

where the time-distance from A to B is not necessarily the same as that from B to A.  

This is likely to be the case in stream systems, hilly terrain, and other environments 
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that impose directionality on animal movement.  Nevertheless, the idea that the 

distance metric should reflect the relative ease or speed of moving along a particular 

path remains valid.   

The LCP approach to variogram estimation and kriging presented here 

represents an easily incorporated modification to commonly used geostatistical 

techniques.  The benefits of using this approach depend on the study environment 

(e.g. scale and extent of barriers), the spatial distribution of the variable being studied, 

and the study objectives (e.g. variogram estimation, mapping, or quantitative 

prediction).  Although the expected increases in prediction accuracy did not 

materialize in this study, the relatively unique configuration of parallel tributaries 

within the Bay may have been partly responsible.  This approach, however, is a 

general one and can be applied to other locations or data sets for which greater 

differences in accuracy may be found.  The potential also exists for the LCP distance 

metric to be incorporated into other types of spatial analyses such as home range 

estimation, habitat modeling, and deterministic interpolation methods. 
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Chapter 3: Geostatistical Analysis of Blue Crab 
(Callinectes sapidus) Abundance and Winter 
Distribution Patterns in Chesapeake Bay 

  

Abstract 

Spatial heterogeneity is a striking feature of the blue crab life history and 

fisheries in Chesapeake Bay.  Patterns of sex- and age-specific habitat use have long 

been documented.  However, a quantitative assessment of the spatial distribution of 

blue crabs has been lacking.  Here, I apply geostatistical techniques (variogram 

modeling and kriging) to 13 years of data from a winter dredge survey (WDS) to 

describe the pattern of spatial autocorrelation in blue crab density and map patterns of 

blue crab winter abundance.  These maps are then used to derive a time-series of 

baywide abundance and to examine changing patterns of habitat use and aggregation.  

Geostatistical-based abundance estimates are higher on average than those calculated 

from design-based methods, although both time series show a large and significant 

decline in abundance from 1990 - 2002.  The latitude of the weighted centroid of blue 

crab density in Chesapeake Bay exhibited a significant positive relationship with 

Baywide abundance, suggesting density-dependent changes in distribution.  The 

range parameter of the variogram was not found to be significantly related to 

abundance, suggesting that blue crab patch size may be unrelated to population 

density.  Such quantitative and spatially-explicit information provides a potentially 

useful base for constructing population models and evaluating alternative 

management options.    



 

 32 
 

Introduction 

There is an increasing recognition of the importance of space and spatially-

explicit information for understanding the ecology, population dynamics, and 

management of marine resources (Nishida and Booth 2001).  This trend is a result of 

a growing awareness of the risks of not accounting for the spatial dynamics of 

exploited populations (Hutchings 1996; Walters 2003) coupled with new methods for 

incorporating space into single species models (Caddy 1975) as well as mixed fishery 

models (Pelletier et al. 2001) and multi-species trophic models (Walters et al. 1999).  

These spatial models and spatially-explicit management strategies such as time-area 

closures and marine protected areas are being used increasingly to manage fisheries.  

While the goals and data requirements of these modeling and management 

approaches differ substantially, all require a quantitative description of the 

distribution of the species in question and most could benefit from an understanding 

of how that distribution may change over time or with changes in stock size.  

 Blue crab is an important benthic predator and scavenger (Eggleston et al. 

1992; Mansour and Lipcius 1993) that provides a link between benthic and pelagic 

food webs (Baird and Ulanowicz 1989).  The ecological role of the blue crab in 

Chesapeake Bay varies both spatially and temporally as a result of its complex life 

history.  Blue crab spawns in mid to late summer in the high salinity waters of the 

lower Bay (Van Engel 1958; Jones et al. 1990).  The larvae are advected offshore 

where they develop through several immature stages before returning to the Bay and 

settling, often in sea grass beds, in the lower Bay (Lipcius & Van Engel 1990; 

Metcalf et al. 1995).  Seagrass beds and other structurally complex habitats continue 
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to provide important nursery and molting habitat for juvenile and adult stages (Orth 

and van Montfrans 1987; Orth et al. 1996).  In late fall, blue crab in Chesapeake Bay 

undertake a migration to deeper water where they overwinter in the sediment.  Winter 

habitat use and migration patterns are sex- and age-specific.  Males and immature 

females predominate in the lower salinity waters of tributaries and the upper Bay and 

make shorter migrations to nearby channels for overwintering (Abbe and Stagg 

1996). Mature females migrate greater distances toward lower Bay spawning habitat 

(Hines et al. 1995; McConaugha 1995; Turner et al. 2003). 

 Chesapeake Bay blue crab fisheries reflect the spatial and temporal aspects of 

the blue crab life history.  A diversity of gear and techniques exist to target seasonal 

aggregations and specific molt stages (Rugolo et al. 1998).  For example, a winter 

dredge fishery targeting mature females exists in the lower Bay; modified bottom 

trawls (called “crab scrapes”) are used to target spring “peeler runs” of molting crabs, 

and pots and trot lines are used to catch crabs of both sexes from spring through fall.  

Management efforts have responded to this spatial and temporal variability of blue 

crabs and their fisheries with regulations that are regionally- and seasonally-specific.  

For example, pot fishing is restricted to open waters of the mainstem of the Bay in 

Maryland whereas trot-lines are used in the tributaries and shallow bays.  A blue crab 

spawning sanctuary designed to protect mature females in the lower Bay has been in 

place for decades (Van Engel 1958) and has been extended several times – most 

recently in 2003 when it was enlarged from approximately 1,500 to 2,400 km2.  This 

sanctuary, however, protects crabs only during the summer (June 1 – September 15) 

and is open to the dredge fishery in the winter.  Recent declines in the Chesapeake 
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Bay blue crab stock and decreases in spawning stock biomass (Lipcius and 

Stockhausen 2002) indicate that current restrictions, including the lower bay 

sanctuary, may be insufficient to ensure the long term sustainability of the blue crab 

fishery.   Although modeling studies show that reductions in the lower bay winter 

dredge fishery alone are not enough to ensure a sustainable fishery (Miller 2001), the 

lower bay sanctuary boundaries could likely be improved using maps of blue crab 

winter distribution.  

 Time series of blue crab relative abundance are available from several fishery-

independent surveys including the Maryland and Virginia trawl surveys (Lipcius et 

al. 2003), the Calvert Cliffs pot survey (Abbe and Stagg 1996), and the baywide 

winter dredge survey (Sharov et al. 2003).  However, the spatial analysis of these 

surveys has been conducted at a very coarse scale only, with information generally 

divided into two geographic categories, usually either upper bay/lower bay or 

Maryland/Virginia (e.g., Miller 2003).  Geostatistical methods are one approach to 

analyzing fine-scale patterns of distribution (Rivoirard et al. 2000). 

   Geostatistical modeling techniques have been gaining popularity in ecology 

and the environmental sciences in general (Rossi et al. 1992; Legendre 1993) and 

within fisheries science specifically (Petitgas 1993; Rivoirard et al. 2000).  The two 

main components of a geostatistical analysis are variogram modeling and kriging.  

Empirical variograms show the decrease in relatedness between pairs of points as a 

function of distance.  A variogram model fit to the empirical variogram describes 

small-scale variability and measurement error (the nugget parameter), broad-scale 

variability (the sill), and the distance at which points become statistically independent 
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(the range).  Although variogram modeling is often simply an intermediate step 

before kriging, the range parameter can be used to parameterize other models (Fuchs 

and Deutz 2002) or to determine sampling intervals (Maravelias 1999; Kendall et al. 

In press).  Kriging is an interpolation method that makes use of the spatial structure 

defined in the variogram to predict values of a variable at unsampled sites.  Kriging 

can be used for descriptive purposes such as mapping (Comeau et al. 1998) as well as 

for abundance estimation (Petitgas 1993; Rivoirard et al. 2000) based on physical 

sampling (Maynou et al. 1998) or acoustic surveys (Sullivan 1991).   

Do geostatistical approaches have advantages over classical design-based 

approaches for estimating the abundance of marine resources?  Ignoring spatial 

autocorrelation can result in biased estimates of the variance. Aubry and Debouzie 

(2000, 2001) demonstrated the superiority of model-based geostatistical techniques 

for hypothesis testing in the presence of spatial autocorrelation.  The presence of 

positive autocorrelation (where values for neighboring pairs of points are more 

similar to one another than are distant ones), if not dealt with appropriately, can result 

in an effective overestimation of sample size since samples are not entirely 

independent.  Rossi et al. (1992) and Legendre (1993) showed that while spatial 

autocorrelation is a common source of problems for many design-based statistical 

methods, it is also a source of valuable information provided that the appropriate 

statistical tools are used. 

Improvements in abundance estimation are not the only rationale for applying 

spatial modeling techniques to data on blue crab winter distributions.  Quantitative 

maps of blue crab distributions would allow managers to evaluate the potential 
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effectiveness of time/area closures and marine reserves and provide an objective 

biology-based criterion for setting reserve boundaries.  Such maps would also provide 

input for predicting the potential impacts to the blue crab population of changes to the 

environment such as dredging and disposal of dredged material.  Finally, quantitative 

maps allow researchers to develop and test hypotheses about habitat use and 

ecological relationships.   

Distribution maps derived from a time-series of data allow for the 

examination of potential changes in habitat use and aggregation through time.  When 

the distribution maps are derived from data collected over a range of population sizes 

(as they are in for blue crab in the Chesapeake Bay), they also permit the examination 

of density-dependent changes in distribution.  Theoretical models of density-

dependent habitat selection (DDHS), including the discrete space “ideal despotic 

distribution” (Fretwell 1972) and the continuous space “basin model” (MacCall 

1990), suggest that at low population density, individuals should concentrate 

themselves in the most suitable habitat.  As population density increases, the realized 

suitability in the best habitat declines, and individuals spread out to other habitats that 

were initially less suitable but that now have equal or better “realized” suitability.  

Although these models have most often been used to describe foraging behavior 

(Krebs and Inman 1992), i.e., habitat selection to maximize consumption, they can 

also be applied to habitat selection to balance consumption and predation risk (Utne 

et al. 1993; Grand and Dill 1997), or minimize energetic costs and maximize survival 

based on abiotic environmental factors (Kemp et al. 2003).   Blue crab winter habitat 

selection is most likely to correspond to this last situation since blue crab does not 
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forage during its winter dormant period and its energetic costs (Brylawski and Miller 

2003) and winter mortality rates (Sharov et al. 2003) are known to vary with 

temperature and salinity.   

To the extent that theoretical habitat selection models provide an accurate 

description of blue crab behavior, changes in the variogram parameters and 

distribution maps can be expected as population density changes. The range 

parameter of the variogram indicates the maximum distance at which spatial 

autocorrelation is present between pairs of points, and has been used as a proxy for 

patch size (e.g., Biondi et al. 1994, Maravelias & Haralabous 1995, and Dent & 

Grimm 1999).  If suitable blue crab winter habitat is patchily distributed, with highest 

suitability occurring toward the center of the patch, then blue crab patches are likely 

to increase in size as the population density increases.  Such increases in patch size 

would result in increases in the estimated ranges.  Changes in blue crab density may 

also manifest themselves as broad-scale changes in crab distribution within the Bay.  

Blue crabs are known to undergo migration toward deeper water in the fall with 

mature females moving to the deep waters of the lower Bay and males and immature 

females moving to deep water of the tributaries and mainstem of the Chesapeake Bay.  

Since deep water represents preferred habitat, and more deep water (though not the 

deepest point in the Bay) is found in the lower Bay, DDHS models predict that the 

distribution of blue crabs is likely to move northward into less favorable habitat as 

density increases.   I examine the extent to which blue crab winter distributions fit the 

predictions of DDHS models by testing the following hypotheses: 



 

 38 
 

H1 - The centroid of the blue crab distribution moves northward as baywide blue crab 

abundance increases.  

H2 - The range parameter of the variograms increases as baywide blue crab 

abundance increases. 

Methods 

Data 

All data analyzed in this study were from the winter dredge survey (WDS) of 

the blue crab population in Chesapeake Bay that has been conducted annually since 

1990.  The WDS samples crabs during the dormant winter period when crabs lie 

buried in the sediment, thus limiting potential bias due to movement.  Full details of 

the survey design and implementation are provided by Vølstad et al. (2000) and 

Sharov et al. (2003), and are summarized here.  Briefly, the survey consisted of a 

one-minute tow of a 1.83 m wide crab dredge at each station.  For most years, stations 

were chosen randomly within three strata.  During the first two years of the survey, 

however, twenty-two and twenty-five strata were used, with each of the major 

tributaries and embayments forming a separate stratum.  Sample size ranged from 

approximately 900-1500 stations per year.  Depletion experiments, in which the same 

area was dredged repeatedly, were conducted yearly to determine the fraction of blue 

crabs sampled by a single dredge tow, the catchability coefficient (q).  Based on these 

experiments, Vølstad et al. (2000) used an exponential model to estimate vessel and 

year specific catchability coefficients and transform catch at each station into an 

estimate of absolute abundance. The variable analyzed here is the density of blue 
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crabs (number per 1000 m2), calculated by dividing the absolute abundance estimate 

by the dredge area swept. 

The spatial analyses employed here are based on sample coordinates defined 

by the starting location of each tow, and the tow distance was calculated from the 

start and end coordinates as determined by Loran-C in early years and differential 

GPS since 1996.  Tows shorter than 50 m and longer than 500 m (1.7% of the total 

data) were not used in this analysis.  All coordinates were projected to Universal 

Transverse Mercator (UTM) zone 18 before analysis, although for easier 

interpretation, plots show equivalent latitude and longitude coordinates. 

 

Geostatistical Analysis 

Although some researchers (Little et al. 1997; Rathbun 1998) have suggested 

that a landscape-based distance metric that measures distances between sample points 

through the water is more appropriate for kriging in estuaries, results of these studies 

have not shown a consistent improvement in prediction accuracy compared to 

traditional kriging methods based on Euclidean distance.  Preliminary investigation 

suggests that improvements in prediction accuracy of blue crab density in Chesapeake 

Bay from a landscape-based distance metric are small and inconsistent with a small 

decrease in accuracy observed on average (see Chapter 2).  Consequently, the 

Euclidean distance metric is used in this analysis. 

In order to satisfy the assumption of stationarity (i.e., no large scale trend in 

the mean or variance) required in geostatistical analyses, data were spatially 

detrended, and variogram modeling and kriging were conducted on the residuals.   

For detrending, a second order two-dimensional spatial trend with interactions was fit 
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for each year.  The model was simplified using backward elimination with a 

significance level to stay equal to 0.01.  This relatively stringent criterion was used to 

avoid overfitting the trend.   

Robust empirical variograms (Cressie 1993) were calculated in SAS 

(VARIOGRAM procedure, SAS Corporation, Cary, NC).  Variogram estimation was 

limited to stations separated by up to 40 km with a lag size of 250 m.  Spherical, 

exponential, and Gaussian variogram models were fit to the empirical variogram 

(SAS NLIN procedure, SAS Corporation, Cary, NC), and the best fitting model was 

chosen except in cases where one variogram model resulted in unrealistic variogram 

parameters (such as a negative nugget) or failed to converge. 

Following variogram selection, ordinary kriging was conducted in SAS 

(KRIGE2D procedure, SAS Corporation, Cary, NC) with a kriging neighborhood of 

the 10 nearest sample points.  Blue crab density was mapped at a 1 km grid scale by 

adding the kriged predictions (residuals) to the trend at the centroid of every mapped 

grid cell.  Density was mapped for all grid cells in the Bay south of the northernmost 

sample station.  This cutoff was used to avoid extrapolation into the northernmost 

region of the Bay, an area of unsuitable winter habitat for blue crabs due to low 

salinity.  Kriging variance maps were also created.  Mapping was conducted in 

ArcView v8.3 (ESRI Corp, Redlands, CA).  Map cell densities were transformed to 

cell-specific abundance estimates by multiplying the density by the cell area.  These 

local abundance estimates were summed across all mapped cells to estimate baywide 

abundance.   
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In order to examine potential geographic differences in density trends over the 

13-year time-series, the temporal trend for each grid cell was calculated.  For each 

grid cell, a linear regression of abundance against time was fit.  The values for the 

slope of the regression were then mapped in order to visually evaluate patterns of 

change in density.   Although the large number of regressions (11,189) and the 

presence of spatial autocorrelation prevent rigorous significance testing, a probability 

cut-off of 0.05 is used to limit the possibility of displaying spurious trends.  Cells 

meeting the p < 0.05 were classified as increasing (positive trend), moderate decline 

(negative trend < 0.1 crabs per 1000 m2 per year), and strong decline (negative trend 

> 0.1 crabs per 1000 m2 per year)  

The relationship between winter abundance and catch per unit of effort 

(CPUE) from the winter dredge fishery was assessed by linear regression of CPUE 

against geostatistical and design-based abundance estimates.  Detailed trip-level effort 

data for this fishery is only available from 1994 to the present.  Information on dredge 

fishery license sales, however, is available for the entire 1990-2002 time period.  

Consequently, CPUE is calculated here as landings per license.  A strong correlation 

(r = 0.96) exists between landings per dredge day and landings per license, indicating 

that landings per license is a reasonable proxy for CPUE calculated based on more 

detailed effort data. 

 

Density-dependent Habitat Selection 

A centroid was calculated from the distribution maps for each year.  The 

centroid is simply a mean latitude and longitude of all grid cells weighted by the 

estimated density in each cell. Although calculation of a centroid is possible from the 
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raw data, values calculated in this manner reflect the distribution of samples, as well 

as the distribution of values.  This is not true of centroids calculated from the 

abundance predicted for each cell of a grid.  Because the same grid cells are used in 

all years in the map-based calculation of the centroid, the result reflects changes in 

the distribution of crabs rather than the distribution of samples.  

To test the predictions of DDHS models, the effective range of spatial 

autocorrelation and the latitude of the centroid were regressed against baywide blue 

crab abundance.  The effective range of spatial autocorrelation is equal to the range 

parameter of the variogram for spherical models, but by convention is considered to 

be the distance at which the semivariance is equal to 95% of the sill for exponential 

and Gaussian models which approach the sill asymptotically.  Two alternative 

explanations for changes in distribution patterns were examined in the same manner.  

Changes in freshwater flow (and therefore the location of the salt front) due to 

interannual differences in precipitation were tested as a possible explanation by 

regressing the latitude of the centroid against the mean flow rate of the Susquehanna 

River measured at Conowingo, MD (USGS 2004) for the preceding fall (October-

December).  Conversely, changes in the relative number of mature females may 

explain the observed pattern.  To test this alternative, the latitude of the centroid was 

regressed against the percentage of mature females in the population.  Since 

geostatistical estimates of mature female abundance are not feasible due to the high 

number of tows in which no mature females were caught (zero inflation), the 

proportion of mature females was calculated from design-based estimates of mature 

female and total blue crab abundance (G. Davis unpubl. data). 
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Results 

Spatial trends in abundance were found in all years.  Trend models are 

summarized in Table 4. Gaussian variogram models were chosen in most years, 

except in 1992 and 1997, where a spherical model provided a better fit and 2000 

where the best fitting model was exponential (Table 4).   

Spatial patterns of blue crab density in Chesapeake Bay (Figures 12-24 a) 

showed a great deal of interannual variability, but areas of consistently high or low 

density are also evident.  Predicted densities in the upper reaches of many tributaries 

and in the northernmost part of the mainstem should be viewed with caution since 

few samples exist in these areas and consequently the uncertainty there is high 

(Figures 12 - 24 b).  The map of average blue crab density over the 13-year study 

period (Figure 25a) shows complex patterns with high density in many lower Bay 

tributaries and eastern shore embayments.  However, some clear patterns emerged.  

Crab abundance in the deeper channels north of the Patuxent River, and south of the 

Potomac River in the main stem is consistently below average.  Similarly, Tangier 

and Pocomoke Sounds always exhibit above average abundances.  Temporal trends in 

blue crab density over the 13-year study period (Figure 25b) differ in different parts 

of the Bay with much of the lower Bay mainstem and the eastern shore showing 

declines and some indication of an increase in crab density in the upper Potomac.  

The upper Potomac, however, falls in an area of consistently high variance indicating 

that the significance of the trend in this area is highly uncertain.  
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Trends in the time-series of baywide blue crab abundance (all individuals 

larger than 15 mm of both sexes) estimated using geostatistical methods (Figure 26) 

generally agree well with design-based estimates of abundance (G. Davis unpubl. 

data), although the geostatistical estimates are higher in most years.  Notable 

exceptions to this general agreement are apparent, however, in the first two years 

(1990 and 1991) where the geostatistical estimates are 38% and 73% higher 

respectively.  Both geostatistical and design-based abundance estimates show 

significant negative trends (geostatistical: R2 = 0.53, p = 0.005; design-based: R2 = 

0.55, p = 0.004) with a decrease in baywide abundance of 80% and 66%, respectively 

from 1990 to 2002.  Winter dredge fishery CPUE is significantly related to both 

geostatistical (R2 = 0.59, p = 0.002) and design-based  (R2 = 0.31, p = 0.049) 

abundance estimates (Figure 27). 

The centroid of blue crab density in Chesapeake Bay exhibits substantial 

interannual variability. Consistent with the North-South orientation of the Bay, the 

variability in the location of the centroid is more pronounced in the North-South than 

in the East-West direction.   Generally, the centroids for earlier years fall to the north 

of those from later years.  This temporal trend in the latitude of the centroid (Figure 

28) is statistically significant (R2 = 0.43, p = 0.01).  An even stronger relationship 

exists between the latitude of the centroid and the estimated Baywide blue crab 

abundance (Figure 29, R2 = 0.78, p < 0.001).  There is no apparent relationship 

between the latitude of the centroid and the percentage of mature females in the 

Chesapeake Bay blue crab population (Figure 30, R2 = 0.05, p = 0.484).  A weak but 

significant positive relationship exists between fall flow of the Susquehanna River 
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and the latitude of the centroid (Figure 31, R2 = 0.33, p = 0.041).  There is no 

apparent relationship between the effective range of spatial autocorrelation and 

estimated Baywide blue crab abundance (Figure 32, R2 = 0.05, p = 0.447). 

 

Discussion 

For the time series over which the WDS has been conducted, the Chesapeake 

Bay blue crab stock has undergone substantial and significant decline.  Over this 

same time period, the winter distribution of crabs has exhibited marked interannual 

variability.  Some regions have shown consistently high abundance e.g., Tangier 

Sound and the lower portions of the three major lower Bay tributaries 

(Rappahannock, York, and James Rivers).  Additionally some areas exhibit high 

abundance, but not consistently so e.g., the uppermost mapped portion of the Bay and 

the uppermost portions of many tributaries, particularly the Potomac River.  

Estimates in these regions are often associated with a higher degree of uncertainty.  

An important area of relatively high crab density is often found in the deep waters of 

the lower Bay mainstem.  The precise location of this high-density region, which is 

likely to be made up largely of mature females, shows substantial interannual 

variation. 

Consistent with the overall declines in blue crab abundance, more areas of the 

Chesapeake Bay exhibit a pattern of decreasing density than exhibit increasing 

density.  Decreases in density are apparent in some of the most consistently high-

density regions of the Bay including the eastern shore area from the Choptank River 

south through Tangier Sound.  The major western shore tributaries generally do not 
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show large areas of declining abundance.  Although the overall distribution of blue 

crabs shifted toward the south, substantial regions of declining density were observed 

in the lower Bay mainstem.  The one area of increasing density, the upper part of the 

Potomac River, occurs in an area of high variance, which makes any conclusions 

about trends in this area highly uncertain. 

Two statistical approaches to estimating crab abundance, design-based and 

geostatistical, both showed a pattern of declining abundances over the 13-year period 

from 1990-2002.  Geostatistical estimates of Baywide blue crab abundance were 

generally higher than estimates derived from design-based methods, especially in the 

first two years of the time-series.  Differences in the estimates between design-based 

methods and model-based methods are not unexpected as the accuracy of either 

estimate will be influenced by the degree to which the assumptions of the analysis are 

met and the extent to which it can make use of patterns in the data.  The strongest 

assumptions of the geostatistical methods used here are the stationarity of both mean 

and variance and that the fitted variogram models are an accurate description of the 

spatial autocorrelation structure.  Examination of the residuals after detrending 

indicated that, although local trends remained, there was no broad scale trend in the 

mean or variance.  Variogram model fits were more problematic with several years 

showing spikes at short distances or increases that failed to level off within the 40 km 

range over which the variograms were plotted.  Other studies, however, have found 

that kriging is fairly robust to misspecification of the variogram parameters (Diamond 

and Armstrong 1984; Stein and Handcock 1989). Although the variogram fits were 
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problematic, all variograms showed strong evidence of spatial autocorrelation – a 

source of information that design-based methods fail to utilize.  

A further important reason for differences in the two estimates is their 

assumptions about unsampled areas.  The design-based approach effectively assigns a 

density equal to the mean stratum density to all areas of a stratum and then multiplies 

this mean by the area of the stratum.  Unsampled areas are also assigned this mean 

stratum density, with the assumption that all areas of the stratum are proportionally 

reflected in the mean given large enough sample sizes.  The geostatistical approach 

explicitly assigns values to unsampled areas based on the values of the nearest 

sampled locations.  The likely reason for the observed differences in abundance 

estimates between these two methods relates to sparsely sampled regions of a stratum.  

Design-based approaches implicitly assign values for unsampled locations based on 

the sample mean, whereas geostatistical approaches extrapolate from the nearest 

sample points.  Accordingly, sample points in sparsely sampled regions are given 

disproportional weight in the geostatistical method.  Consequently, if these samples 

are representative of the region, the geostatistical approach may be more accurate.  

Conversely, if the observations are unrepresentative outliers, they can skew the 

resulting abundance estimate.  This phenomenon is well illustrated in some of the 

density maps where extreme values are present in the sparsely sampled extremities of 

many tributaries and in the northernmost part of the mainstem. 

In this specific comparison, the area over which blue crab distributions are 

calculated also differs.  This is another potential cause of the difference between the 

two abundance estimates.  The geostatistical abundance estimates presented here 
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were calculated over an area of 11,189 km2 while the design-based approach 

presented by Sharov et al. (2003) used an area of 9,812 km2, a 12.3% smaller 

estimate.  Although both areas were estimated in a GIS, different shoreline files or 

map projections may result in different area estimates.  A more important source of 

differences may be the definition of what constitutes Bay waters.  For this study, 

abundance was estimated for all grid cells falling to the south of the northernmost 

sample point (out of all years) and inshore of a line approximately connecting Cape 

Henry and Cape Charles.  The 1 km grid size limited the extent to which the narrow 

upper reaches of tributataries were represented in abundance calculations.  Rescaling 

the design-based abundance estimates by the ratio of the two areas slightly reduces 

the magnitude of the discrepancy between design-based and geostatistical estimates, 

but does not change the overall patterns. 

It is not possible to determine which abundance estimation method more 

accurately estimates the size of the blue crab stock in Chesapeake Bay.  However, the 

significant correlations between winter dredge fishery landings and the two 

abundance estimates provides support for both methods.  The stronger correlation 

between landings and the geostatistical abundance estimate suggests that this method 

may do a better job of capturing inter-annual fluctuations in abundance.  Interestingly, 

the 1990 and 1991 (the years for which the two methods differed most dramatically) 

geostatistical abundance estimates fall close to the regression line indicating that 

these unusually high estimates may be an accurate reflection of higher abundance in 

the first two years of the survey.  This correlation only addresses pattern, however, 

not the scale of the estimates.  A strong correlation between landings and abundance 
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estimates could be found even if the estimates were consistently higher or lower than 

true abundance. 

One of the most striking patterns that emerged from analysis of the density 

maps was the positive relationship between the latitude of the centroid of blue crab 

density and the abundance of blue crabs in the Bay.  While it is notoriously dangerous 

to infer process from pattern, several alternative explanations for this pattern were 

examined, and DDHS remains the most convincing.  Two of the most plausible 

alternative explanations, the percentage of mature females and fall Susquehanna 

River flow rate, were examined and neither displayed a strong relationship with the 

latitude of the centroid.  The weak positive relationship between fall flow and the 

latitude of the centroid is most plausibly explained by gravitational circulation 

shifting the salt front northward in bottom waters.  Despite the lack of convincing 

alternative explanations, the observed pattern can only be seen as suggestive of 

DDHS since other untested factors may be influencing the distribution of blue crab. 

The shift in centroid over the time series of the WDS may reflect several physical and 

biological variables that also exhibited trends over the same time period and could be 

implicated in the observed changes in the centroid.    

Although the relationship between the location of the centroid and blue crab 

abundance strongly implicates DDHS, the limiting resource and the behavioral 

mechanism for maintaining DDHS are not apparent.  Space is the most obvious 

potentially limiting resource since blue crabs do not feed during their dormant winter 

stage.  The highest density of crabs observed in the trawl data was 5,614 crabs per 

1,000 m2.  At this density, more than five crabs would be found in an average 1 m2 
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quadrat, and space might well be limiting.  Such densities appear to be very rare, 

however, with 99.4% of samples having densities less than 1,000 crabs per 1,000 m2.  

At these lower densities, it is not clear how space could be a purely physically 

limiting resource, i.e., that additional crabs would be forced to move elsewhere for 

lack of a place to bury.  Although aggressive interactions are common among blue 

crabs and density-dependent agonism is thought to influence habitat selection by 

juveniles (van Montfrans et al. 2003), a behavioral explanation for space limitation in 

the winter seems unlikely given that crabs already buried in the sediment are in a 

dormant state and are probably unable to defend their space. 

Another possible factor affecting the distribution of crabs is the winter dredge 

fishery.  The WDS takes place over a four-month period from December to March.  

During this time, an active winter dredge fishery with landings during the period 1990 

- 2002 of 4 - 31 million crabs per year  (S. Iverson unpubl. data) – representing 1 - 

5% of the total overwintering population) – takes place in the lower Bay.  As the 

season progresses, samples from the WDS increasingly reflect the impact of the 

winter dredge fishery on winter distributions.  The effect of the winter dredge fishery 

on the latitude of the centroid depends on how catch varies in relation to abundance.  

If catch is a constant proportion of abundance, the winter dredge fishery would have 

no effect on the centroid.  Alternatively, if catch is a constant which does not vary 

with abundance, the winter dredge fishery would cause the latitude of the centroid to 

be inversely related to abundance since the fishery would remove a smaller and 

smaller fraction of the lower Bay population as abundance increased.  Only if the 

winter dredge fishery removed a greater fraction of the lower Bay population as 
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abundance increased could the winter dredge fishery cause the observed positive 

relationship between abundance and the latitude of the centroid.  The apparently 

linear relationship between landings and abundance suggests that the first relationship 

(catch is a constant proportion of abundance) is the most likely, indicating that the 

winter dredge fishery is unlikely to be a significant cause of the changes in the 

location of the centroid.    

The lack of any apparent relationship between the effective range of spatial 

autocorrelation and blue crab abundance suggests that either: 1) the range is not a 

suitable proxy for patch size; or 2) patch size is not related to baywide abundance.  

Although several studies have used the range parameter from variograms as an 

estimate of patch size (e.g., Biondi et al. 1994, Maravelias & Haralabous 1995, and 

Dent & Grimm 1999), none appear to have tested this relationship.  The range is 

likely influenced not only by patch size, but also by other characteristics of a spatial 

distribution such as distance between patches and patch shape.   The ranges observed 

in this study were typically on the order of tens of kilometers.  While patchiness at 

this scale may also have biological meaning – for example, patches of the deep lower-

Bay habitat used by mature females may be of this size – smaller scale patchiness on 

the order of tens to hundreds of meters may be more relevant, particularly in many of 

the tributaries and embayments.  This smaller scale patchiness is probably not well 

sampled by the survey and contributes to the nugget, which incorporates 

measurement error and variability below the sampling resolution (Cressie 1993).  

Alternatively, the assumption that DDHS would result in larger patches may be 
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wrong.  Suboptimal habitat patches may become suitable as densities increase within 

optimum patches, resulting in more, but not necessarily larger, patches of blue crabs.    

What do density dependent changes in winter distributions mean for the 

population dynamics of blue crab?  If DDHS does play a role in determining 

distributions, and lower densities result in more crabs overwintering in optimum 

habitat, then natural overwintering mortality rates may decline.  Such a compensatory 

mechanism has not previously been documented in blue crab populations and 

understanding its potential effects will require more research on overwintering 

mortality.  Potential gains due to decreased overwintering mortality may be offset, 

however, by increased fishing mortality rates in the lower Bay as the distribution 

shifts southward.  The de facto winter refuge in the upper Bay, where no winter crab 

fisheries exist, protects a decreasing proportion of the population as stock size 

declines and the distribution shifts to the south.  This potential depensatory 

mechanism could be offset by stricter controls on the winter dredge fishery.   

The results of this study show significant declines in winter abundance and 

concurrent changes in distribution.  The distributional changes are consistent with the 

predictions of DDHS models, however, alternative explanations exist which cannot 

be rejected based on the available data.  Whether the observed distributional changes 

are due to DDHS or not, they may interact with exploitation patterns to hasten the 

decline of the blue crab stock in Chesapeake Bay.  The distributional maps provide a 

potentially useful tool for designing spatial management strategies that could avoid 

such declines. 
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Chapter 4: Winter Distribution of Blue Crab 
(Callinectes sapidus) in Chesapeake Bay: Application 
and Cross-validation of a Two-stage Generalized 
Additive Model (GAM) 
 

Abstract 

I present a two-stage generalized additive model (GAM) of the distribution of 

mature female blue crab (Callinectes sapidus) in Chesapeake Bay based on data from 

a fishery-independent winter dredge survey.  The distribution and abundance of blue 

crabs was modeled as a flexible function of depth, salinity, water temperature, 

distance from the Bay mouth, distance from submerged aquatic vegetation (SAV), 

and bottom slope for each of the 13 years of available data.  Depth, salinity, 

temperature and distance from the Bay mouth were found to be the most important 

environmental determinants of mature female blue crab distributions.  The response 

curves for these variables displayed patterns that are consistent with laboratory and 

field studies of blue crab/habitat relationships.  The generality of the habitat models 

was assessed using intra- and inter-annual cross-validation.  Although the models 

generally performed well in cross-validation, some years showed unique habitat 

relationships that were not well predicted by models from other years.  Such 

variability may be overlooked in habitat suitability models derived from data 

collected over short time periods. 
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Introduction 

Blue crab (Callinectes sapidus) ranges along the Atlantic coast of the 

American continent from Brazil to Canada.   Evidence does not support the existence 

of distinct genetic populations, but functional sub-populations are recognized with 

only limited exchange between them (McMillen-Jackson et al. 1994).  Over the 

species’ wide latitudinal range, individual sub-populations can experience markedly 

different environments.  Temperature is likely the key environmental parameter 

causing the variation observed in life history schedules (Smith 1997).  Central to 

temperature's role is the existence of a physiological minimum temperature (Tmin), 

close to 10° C, below which molting, and hence growth, ceases (Brylawski and Miller 

2003).  As temperatures increase above Tmin, the period between molts shortens, and 

thus, overall rates of growth increase.  In particular, the proportion of the year during 

which temperatures are above Tmin is an important determinant of the life history 

pattern expressed.  In the Gulf of Mexico, average bottom water temperature is above 

Tmin throughout the year, and crabs grow sufficiently fast so that they can mature, 

reproduce and enter the commercial fishery in a single year.  In contrast, water 

temperatures in mid-latitudes are unfavorable between late November and late April.  

During this period, crabs enter a dormant phase during which they bury into the 

sediments.  Thus in mid-latitude populations, growth and maturation occur in 

different years so that individuals take a minimum of 18-24 months to complete their 

life cycle.  

Because overwintering blue crabs in Chesapeake Bay do not feed and are 

unlikely to experience significant predation, bioenergetic costs are likely to play a 
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dominant role in determining overwintering survival.  Laboratory studies (Tagatz 

1969, McKenzie 1970) have shown that salinity and temperature interact with thermal 

tolerances dependant on both salinity and acclimation temperature.  These results 

suggest that salinity and temperature, as well as factors such as depth, which might 

serve to limit temperature fluctuations, may be important in determining choice of 

overwintering habitat; however no studies to date have examined the extent to which 

winter distributions of blue crab reflect differences in these variables.     

The blue crab population in the Chesapeake Bay supports the single largest 

blue crab fishery in North America.  Assessments of this stock indicate recent 

declines in both abundance and landings (Chesapeake Bay Stock Assessment 

Committee 2003) despite efforts to reduce fishing mortality (Chesapeake Bay 

Commission 2001).  Winter distributions in the Bay have been an emphasis of recent 

research for several reasons.  Most directly, estimates of abundance and rates of 

exploitation of blue crab in Chesapeake Bay, on which stock assessments have been 

based, have been derived from a baywide, fishery-independent winter dredge survey 

(WDS) conducted between December and March (Sharov et al. 2003).  Also making 

the winter distribution of crabs important is concern over the vulnerability of 

spawning females in a winter dredge fishery (Miller 2003) and the efficacy of a 

dispersal corridor (Lipcius et al. 2001) and a combined marine protected area and 

dispersal corridor (Lipcius et al. 2003) that has recently been established in the 

Virginia (southern) portion of Chesapeake Bay.  Thus, the ability to predict blue crab 

winter distribution has become desirable.      
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 Generalized additive models (GAMs) provide a flexible non-parametric or 

semi-parametric framework to model the relationship between a response and one or 

more predictor variables (Hastie & Tibshirani 1990).  GAMs do not require the 

distributional assumptions of traditional parametric approaches and provide the 

ability to fit flexible non-linear response curves to individual predictor variables.  In 

GAMs, the response variable is assumed to be the sum of separate individual 

functions of each of the predictor variables with a link function appropriate to the 

distribution of the response variable (e.g., a Poisson link function is often specified 

for count data).  In the more familiar generalized linear models (GLMs), these 

individual functions of the predictor variables are linear.  In GAMs, the individual 

functions may be linear or may be non-parametric smoothers such as regression 

splines, which are better suited to modeling many common biological response curves 

such as threshold functions.  Different functions may be specified for each predictor 

variable, allowing for response curves that are specific to the individual predictors.   

The use of GAMs to model organism/habitat relationships increased following 

publication of Hastie and Tibshirani’s (1990) book and Swartzman et al.’s (1992) 

application of this technique to model groundfish in the Bering Sea.  GAMs have 

since become widely used in marine sciences to predict abundance and identify 

important habitats (e.g., Swartzman et al. 1994,1995, Maravelias et al. 2000a, Reid & 

Maravelias 2001) and to model stock-recruitment relationships (Cardinale & 

Arrhenius 2000).   

Two-stage GAMs are an extension of the basic structure in which the response 

variable is modeled first as a binomial variable (presence/absence or yes/no) and 
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secondly the non-zero observations (presence or yes) are modeled as a continuous or 

count variable, usually with a Gaussian or Poisson distribution respectively.  The two 

stages may then be combined multiplicatively to yield an overall prediction (Barry & 

Welsh 2002).  This approach is particularly useful in modeling aquatic organisms, for 

which, because of their patchy distributions, survey catches are often zero-inflated, 

(Maravelias 1999).  Two-stage GAMs have been used in fisheries to improve 

estimates of various stock assessment indices (e.g. Borchers et al. 1997, Piet 2002) 

and to model salmon feeding and growth (Rand 2002). 

However, despite the widespread use of GAMs, studies have yet to examine 

their ability to find general relationships that are valid beyond the particular data set 

or year modeled.  A risk of using highly flexible, non-parametric methods is that the 

resulting predictive models may fit the modeled data so specifically that they may 

have little predictive power when applied to other data sets.  The underlying goal of 

most habitat modeling studies is not simply description of the trends in the modeled 

data, but also to produce predictions valid in other years/locations.  Ideally, GAMs 

should produce an understanding of the functional relationship between an organism 

and various components of its environment.   Cross-validation, by testing the ability 

of models based on one data set to accurately predict values in another, is a useful 

means of assessing the generality of a model.  

Here I fit two-stage GAMs for each of thirteen years of data from the WDS to 

determine the environmental variables that regulate winter distribution of mature 

female blue crab in Chesapeake Bay.  Subsequently, cross-validation is used to assess 
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the ability of models developed to predict distributions in one year to predict the 

distribution of crabs in other years.   

  

Methods 

I modeled the distribution of mature female blue crab in Chesapeake Bay.  Mature 

females were chosen as the focus of this study because of their greater per capita 

contribution to future generations and because current management strategies, 

including the lower bay spawning sanctuary, are focused specifically on their 

protection. 

Data 

The WDS has been conducted annually between December and March since 

the winter of 1989-1990.  Full details of the survey design are provided in Sharov et 

al. (2003), and are only summarized here.  Survey years will henceforth be referred to 

by the year in which the survey was completed, e.g. the first survey is the 1990 

survey.  Stratification and sample size in the first three years of the survey were 

different than in the remaining years, but except for this change the survey has been 

conducted consistently throughout the period of record.  From 1993 – present, 1255 – 

1599 stratified random stations were sampled within three region-based strata.  

During the period 1990 – 1992, there were more strata and generally fewer (867 – 

1395) samples.  A typical distribution of station locations and densities of mature 

female blue crabs is shown in Figure 2.  One-minute tows of a 1.83m-wide crab 

dredge were made at each station.  The length of each tow was determined by either 



 

 59 
 

Loran-C or a differential global positioning system (DGPS).  All crabs greater than 15 

mm carapace width were measured, sexed and enumerated.  Additionally, 

environmental parameters were measured at each station.  Depletion experiments 

(Zhang et al. 1993; Vølstad et al. 2000), in which the same area was dredged 

repeatedly, were conducted yearly since 1992 to determine the fraction of blue crabs 

sampled by a single dredge tow, i.e., the catchability coefficient (q).  Based on these 

experiments, an exponential model was used to estimate vessel and year specific 

catchability coefficients that were used to transform catch at each station into an 

estimate of absolute abundance. 

 

Environmental Variables 

Six environmental variables were chosen for consideration in the GAMs based 

on availability and known or plausible roles in influencing blue crab distributions.  

Depth was measured at each WDS site.  The five remaining variables, salinity, water 

temperature, distance from the Bay mouth, distance from the nearest submerged 

aquatic vegetation (SAV), and bottom slope, were derived using data from other 

sources and a geographic information system (GIS). 

   Although surface salinity and temperature were measured at each WDS site, 

the more relevant measurements for describing blue crab winter habitat choice are the 

bottom salinity and temperature at the time when they bury into the sediment.  For 

this reason, temperature and salinity used in this analysis were interpolated from 

Chesapeake Bay Water Quality Monitoring Program data (Chesapeake Bay Program 

1993).  December bottom temperature and salinity maps were produced for each year 

using data collected at 99-123 sites per year.  The data were first spatially detrended 
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in order to satisfy the assumption of first-order stationarity (Cressie 1993).  

Detrending was conducted using linear regression and northing, easting, and northing 

x easting interaction terms.  Variogram modeling and ordinary kriging were 

conducted on the residuals before adding the trend back to the kriged predictions.  

Gaussian, spherical, and exponential variogram models were fit to empirical 

variograms using non-linear least squares (SAS, NLIN procedure) and the best fitting 

model (lowest mean squared error) was used for kriging (SAS, KRIGE2D procedure).  

Interpolated bottom temperature and salinity were mapped in ArcView v3.2 and maps 

from the previous December were used to assign values to each WDS site.  

Distance from the Bay mouth was calculated along the shortest through-water 

path between the dredge start point and a point in the mouth of the Bay midway 

between Cape Henry and Cape Charles.  This distance was calculated in ArcView 

v3.2 using a customized script based on the lowest-cost path function and a raster 

map of the Bay with a resolution of 250 m (see Chapter 2).  This variable was chosen 

based on a preference by mature females for higher salinity water in the lower Bay 

waters where their offspring may be more easily advected off-shore (Johnson 1995).  

Distance from SAV was chosen as a potentially important environmental variable 

because of known affinities by blue crabs for SAV (Orth et al. 1996) during the 

spring and summer and the hypothesis that mature females may choose the nearest 

suitable winter habitat.  In accord with this hypothesis, SAV distributions from the 

previous summer were used, e.g., 1989 SAV distributions were used to predict 1990 

(i.e., winter 1989-1990) crab distributions.  Distance from the nearest SAV beds was 

calculated using maps of annual Chesapeake Bay SAV distributions derived from 
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aerial photography (Orth et al. 2001). Distance from SAV was calculated as the 

straight-line distance and was log transformed in order to conform to a normal 

distribution. 

 Maps of Chesapeake Bay bottom type are not of sufficient spatial and 

temporal resolution to allow us to incorporate bottom type directly into our analyses.  

Accordingly, I used bottom slope as a proxy for benthic habitat type.  This approach 

assumes areas of high slope are likely to be unstable and hence inappropriate 

overwintering habitat.  Bottom slope was calculated from a high-resolution (30m) 

bathymetric digital elevation layer (National Oceanic and Atmospheric 

Administration 1998) in ArcView v3.2.  Bottom slope was log transformed and 

multiplied by a factor of 10 in order to conform to a normal distribution on a similar 

scale as the other environmental variables. 

 

Two-stage Generalized Additive Models 

Two-stage GAMs were used to describe the relationship between mature 

female blue crab density and the six environmental variables.  Models were 

developed independently for each year of data using a randomly selected training 

subset representing 75% of the data in an individual year (650-1199 stations).  The 

remaining 25% of the data were reserved for cross-validation.  In the first stage of the 

analysis, presence or absence of mature female crabs was modeled using a logistic 

model with a binomial error distribution and a logit link function.  In this stage, the 

probability of crab occurrence at any site was modeled as an additive function of the 

six environmental variables (D = water depth (m), M = distance to the Bay mouth 
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(km), V = distance (km) to SAV beds, S = salinity (ppt), B = bottom slope, and T = 

water temperature (°C)), given by: 

p̂ = s(D) + s(M) + s(V) + s(S) + s(B) + s(T)                   (1) 

where I is the binary response indicating presence or absence in a sample, p̂  is the 

estimated probability that I = 1 (presence), the s’s are unique regression spline 

functions for each environmental variable.   Penalized regression splines (Wood & 

Augustin 2002) were fit using the mgcv (v1.0-9) package for R v1.9.1.   

In the second stage of the model, log transformed mature female blue crab 

density (# 1000m-2) of only those stations at which at least one mature female crab 

was caught was modeled as a function of environmental covariates with the 

assumption of a Gaussian error distribution.  The model equation was: 

ln( µ̂ ) = s(D) + s(M) + s(V) + s(S) + s(B) + s(T)                                                        (2) 

where µ̂  is the predicted density of mature female blue crabs given occurrence, and 

the other variables are as given above.  Subsequently, the predicted log abundance, 

ln( ŷ ), at a given location was calculated as the product of Stage I and Stage II: 

( ) ( )µ̂lnˆˆln py =           (3) 

(Barry & Welsh 2002). 

 The flexibility of the response curves was optimized using an iterative method 

that rewards model fit and penalizes degrees of freedom (Wood 2000).  This approach 

avoids the subjectivity inherent in choosing degrees of freedom a priori and ensures 

that the models provide the best fit with the fewest degrees of freedom.  An initial full 

model containing all six variables was simplified by removing insignificant variables 

(backward elimination) until all remaining variables were significant (a = 0.05).  All 
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possible two-variable interactions using the remaining variables were then added to 

the model, and the model was again pared down to only significant terms.  Non-

significant main effect terms (a single response variable with no interaction) were 

retained, however, if they were also part of a significant interaction.  In two instances, 

the model-fitting algorithm would not converge when the degrees of freedom for an 

interaction term were not fixed.  In these cases, a range of plausible degrees of 

freedom were given, and the model with the highest adjusted R2 was selected.   

 

Model fit, Cross-validation, and Mapping 

Receiver operating characteristic (ROC) curves were used to assess the fit and 

generality of stage I (presence/absence) models.  Although ROC curves are 

commonly used to assess logistic regression models (Hosmer and Lemeshow  2000) 

and have been used to assess habitat models developed through logistic regression 

(e.g., Bonn & Schroder 2001, Scholten et. al. 2003, Gibson et al. 2004), they can also 

be applied to any model that produces estimates of p (the probability of presence) for 

a binomially distributed response variable.  ROC curves are simply a plot of 

sensitivity (the fraction of correctly predicted presences) against specificity (the 

fraction of correctly predicted absences) with changing critical values of p (pcrit, the 

probability above which presence is predicted).  An ROC curve for a model with no 

discriminatory power is simply a straight line with a slope of one, i.e., as pcrit changes, 

any increase in sensitivity is offset by an equivalent loss of specificity.  ROC curves 

are used here to calculate the area under the ROC curve (AUC, a measure of 

discriminatory power), popt (the value of p which results in the highest percentage of 

correct predictions), and pfair (the value of p for which sensitivity and specificity are 
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equal).  AUC is a threshold-independent (i.e., it does not depend on a specified pcrit) 

summary statistic that ranges from 0 (no discriminatory power) to 1 (perfect 

discriminatory power) and has been previously used to assess the generality of 

logistic regression-based habitat models (Bonn & Schroder 2001).  Although criteria 

for evaluating AUC values are to some extent arbitrary, Hosmer and Lemeshow 

(2000) suggest the following cut-offs: 0.7-0.8 acceptable, 0.8-0.9 excellent, >0.9 

outstanding.   

Cross-validation was also used to assess the transferability of the combined 

models (the product of stage I and stage II) fit to training datasets to a separate test 

data set from the same year (i.e., intra-annual cross-validation) or to data from 

another year (i.e., inter-annual cross-validation).  The predictive ability of each 

combined model was assessed by regressing predicted values on the observed values.  

The resulting least-squares correlation coefficient was used as an index of model 

performance.  Two hypotheses were tested: 

1)  Models fit to a training data set perform better (i.e. higher r) on the training data 

than on independent test data from the same year. 

2) Models perform better in intra-annual cross-validation than when applied to data 

from other years (inter-annual cross validation). 

To test these hypotheses, the Fisher (1915) transformation was used to 

normalize the cross-validation correlation coefficients (r).  The first hypothesis was 

tested using a paired t-test of the transformed correlation coefficients and the second 

was tested using a t-test for two samples with equal variance.  To aid interpretation of 

the results of the cross-validation analyses all individual models were compared to the 
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grand mean (including inter- and intra-annual) cross-validation r. I calculated 

standardized normal deviates:  

( )
s

rr
z ji −

= ,  

where ri,j is the Fisher (1915) transformed coefficient of determination for predictions 

from the model year i, applied to observed year j, r  is the grand mean, and s the 

sample standard deviation of r   

 In order to visualize predicted mature female blue crab distributions, 

predictions from the most general model (i.e., the model with the highest mean cross-

validation r-squared value), were mapped for stage I, stage II, and the combined 

model.  Predictions were made for 1 km by 1 km grid cells based on the values of the 

predictor variables for each cell.  Values of the dynamic predictor variables 

(temperature, salinity, and distance from SAV) used in mapping were the values 

within each grid cell for the summer (distance from SAV) or December  (temperature 

and salinity) preceding the most general model. 

 

Results 

Model Development 

Significant correlations were present between many pairs of explanatory 

variables (Table 5).  Most notably, there was a strong and negative correlation (r = -

0.64) between salinity and distance from the Bay mouth. Moderately strong 

correlations occurred between salinity and temperature (r = 0.34), and between depth 

and bottom slope (r = 0.28). Although the correlations among the explanatory 
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variables were often statistically significant, even the two most strongly correlated 

variables (salinity and distance from the Bay mouth) do not overlap entirely as 

salinity patterns are strongly influenced by freshwater flow from the western shore 

tributaries, which, combined with the Coriolis effect, results in a pattern of lower 

salinities in the eastern Bay.  Colinearity among the explanatory variables was not 

deemed sufficient to drop variables from the full models, but will be considered in the 

interpretation of model selection results. 

 All six explanatory variables were included as either significant main effects 

or in interaction terms in at least three of the final models, however, no variable 

occurred in all models (Table 6).  Distance from Bay mouth and depth were the most 

commonly included variables.  In stage I, distance from the Bay mouth was 

significant in 9 out of 13 years and depth was significant in all years.  Distance from 

Bay mouth appeared in 10 out of 13 years for stage II models, while depth was 

included in 5 stage II models.  Water temperature also appeared commonly in stage I, 

occurring in 9 out of 13 years, but was only found to be significant in 2 of the stage II 

models.  Salinity was included in 8 years for stage I and in 2 years for stage II.  

Importantly, salinity was often included in stage I models when distance from the Bay 

mouth was not.  The remaining two variables, bottom slope and distance from SAV, 

were not often found to be significant in either model stage.   

Penalized regression spline fits of individual environmental factors to blue 

crab density varied from simple linear functions to highly complex curves.  Response 

curves are presented for the most commonly included variables, distance from the 

Bay mouth (Figure 33), salinity (Figure 34), depth (Figure 35), and temperature 
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(Figure 36), for all years in which they were included as significant main effect terms 

only, i.e., not in interaction.   

Relationships between crab distribution and abundance and distance from the 

Bay mouth showed two dominant patterns.  A linear decline in crab density with 

increasing distance from the Bay mouth was seen in four of the seven Stage II models 

examined (Figure 33, panels d, e, j, and l).  The second pattern, a maximum at 

approximately 25-50 km, was observed in two Stage I (Figure 33, panels b and c) and 

two Stage II models (Figure 33, panels j and h).  The shape of these response curves 

at greater distances from the Bay mouth was highly variable, reflecting the relatively 

rare catch of mature female blue crabs in the upper Bay, and some curves (Figure 33, 

panels c, f, g, and k) suggest that the decline in crab density may level off beyond 100 

km from the Bay mouth.     

Response curves for salinities below 15-20 ppt were characterized by lower 

probabilities of presence and lower abundance given presence as well as extreme 

variability due to the smaller number of samples at low salinity.  Some curves (Figure 

34, panels a, e, and f) showed a maximum or a leveling off at approximately 25 ppt. 

The relationship between crab abundance and depth showed a general increase 

in both probability of crab presence and in density given presence as depth increases.  

Within this generally positive trend, a maximum (Figure 35, panels a and e) or a 

leveling off of the curve (Figure 35, panels c, d, and h) was frequently observed at 

approximately 15-20 m.  

Differences were apparent between the Stage I and Stage II response curves 

for temperature. Stage I curves (Figure 36, panels a - f) showed a generally negative 
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relationship between temperature and the probability of crab presence while Stage II 

curves (Figure 36, panels g and h) both indicate a positive relationship between 

temperature and crab density given presence.  Substantial interannual differences in 

December bottom temperatures, however, make it difficult to compare models for 

which, in some cases, the temperature ranges do not overlap.  

    

Model Fit, Cross-validation, and Mapping 

I used the models developed on the training data in a single year to predict 

crab abundance for the test data for that year, and for the entire datasets for alternative 

years (Table 7).  Two-stage GAMs developed using the six habitat variables included 

in this study explained between 13% and 36% (mean R2 = 0.277) of the variability in 

blue crab winter densities in the training data set (Table 7a).  WDS samples were 

characterized by a large percentage (80-90%) of observations containing no mature 

female blue crabs, as well as a small number of very high-density samples.  The two-

stage models generally predicted realistic densities but underestimated the observed 

variability.  For example, predicted log densities from the 1998 two-stage model 

showed a similar mean as the survey observations, with the linear regression of 

observed vs. predicted falling nearly coincident with the one-to-one line, but showed 

lower variability, i.e., fewer low- or zero-density predictions and a lower range of 

predicted values (Figure 37).  Observed densities show a notable gap between tows 

with zero catches and the lowest predicted densities. 

The mean R2 for the intra-annual comparison was 0.192.  Results for the intra-

annual cross-validation showed that there was a significant difference in model 
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performance between test data and training data (paired t-test, p = 0.002).  The inter-

annual cross-validation displayed substantial variation among years and was 

significantly less accurate than the intra-annual cross-validation (t-test, p < 0.001).   

 The cross-validation table (Table 7b) represents the ability of a model 

developed with data from one year (columns) to predict data from other years (rows), 

and it displays two different but related pieces of information.  Examining the 

patterns within a column evaluates the characteristics of one model.  Patterns within a 

row relate to the characteristics of a particular data set.   

The column patterns show that apart from 1990 and 2001 all models yielded 

above average r values for at least four other years of data.  This suggests that the 

models, though they differ in their individual parameters, do capture some general 

features of the blue crab habitat preference.  The 1998 model displayed above average 

cross-validation r values for all years except 1990, 1995, and 2002. The other striking 

feature of the column patterns is that the 1990 and 2001 models yield below average r 

values for nearly all data sets except test data from the same year.  

The row patterns offer further information about inter-annual differences.  The 

year 1990 is well predicted (i.e. above average r) only by the model from the same 

year.  The data for 1995 is simply difficult to predict with any model.  The 1994 data 

are well predicted by models from any year other than 1990, 1997, or 2001. 

Stage I (presence/absence) models were evaluated using ROC curves to assess 

model fit (Table 8a) and generality (Table 8b).  The percent of correct predictions for 

models applied to the training data varied from 82-93% at popt and from 74-85% at 

pfair.  The AUC for the training data varied from 0.81 to 0.91.  These levels are 
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equivalent to Hosmer and Lemeshow’s (2000) excellent rating.  AUC values were 

generally lower for the cross-validation where models developed with data from one 

year were applied to data from another year; however, all models displayed 

acceptable discriminatory power (AUC > 0.7) for at least four other years.  The stage 

I models from 1997 and 1998 were the most general with AUC > 0.7 for all years 

other than 1995.  The 1995 data were well predicted only by stage I models from 

1994 and 1995. 

 Predictions from the stage I (Figure 38a), stage II (Figure 38b), and combined 

(Figure 38c) models were mapped for the 1998 model since this year exhibited the 

greatest generality for both stage I and the combined model.  Critical p-values used 

for classifying the stage I map were pfair = 0.15 and popt = 0.455.  Of the samples in 

the 1998 training data that contained one or more mature female blue crabs, 77% 

occurred within the shaded areas of Figure 38a, and 40% occurred within the dark 

shaded area.  Much of the mainstem Bay south of the Rappahannock River is shaded 

indicating higher probability of blue crab presence.  North of the Rappahannock 

River, shaded areas are generally restricted to the deeper mainstem channels and the 

channel in Tangier Sound. 

 Patterns of predicted density given presence (conditional density) shown in 

Figure 38b are broadly similar to patterns in probability of occurrence.  Higher 

conditional densities are predicted in the lower Bay mainstem and in deeper channels 

throughout the Bay.  The higher conditional densities predicted in the upper reaches 

of western shore tributaries are not found in the stage I model and are apparently 

extrapolations of the salinity effect beyond the range of sampled salinities. 
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 The combined model (Figure 38c) is derived from raster multiplication of 

Figures 38a and 38b and reflects the influence of both model stages.  Highest 

predicted densities are found in the lower Bay mainstem and deep channels.  The high 

conditional densities predicted in stage II for the upper reaches of western shore 

tributaries are largely nullified by the low probability of crab presence predicted for 

these areas in stage I. 

Discussion 

The spatial pattern of winter distribution and abundance of mature female blue 

crabs in Chesapeake Bay were significantly related to several environmental factors 

over thirteen years.  Depth and distance from the Bay mouth (and their interaction) 

were the dominant variables for predicting both presence/absence and abundance of 

mature female blue crab. Increased depth was associated with increased probability of 

finding crabs and increased crab abundance where they were present.  Although 

greater depths are generally associated with lower Bay waters, depth may also have a 

direct effect on habitat suitability by providing some protection against rapid 

temperature changes due to changing air temperature.   

Probability of crab presence and crab abundance generally decreased with 

distance from Bay mouth, although in some years a maximum was discernible at 25-

50km from the Bay mouth.  The correlation between distance from the Bay mouth 

and other environmental variables, salinity in particular, makes it difficult to 

determine what, if any, direct influence distance from the Bay mouth could have on 

blue crabs.  However, mature female blue crabs both spawn and overwinter in the 

lower Bay, and it is likely that effective offshore transport of newly hatched crab 
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larvae is dependent on their release location within the Bay.  The role of distance 

from the Bay mouth in explaining abundance of mature female blue crab may be 

related to selection for optimum larval transport conditions or a balance between 

conditions favoring higher survival and those favoring reproductive success.  

Salinity and temperature were also frequently found to be significant factors 

in determining crab distributions, although perhaps not as often as might be expected 

given the demonstrated effects of salinity and temperature on the bioenergetics 

(Guerin & Stickle 1992, Brylawski & Miller 2003), growth (Tagatz 1968, Smith 

1997), and survival (Tagatz 1969) of blue crabs in the laboratory.   Higher salinities 

were associated with higher probability of blue crab presence and higher density 

given presence, with a maximum of 25 ppt observed in some years.  Females 

migrating from the upper Chesapeake Bay likely do not spawn until the season after 

mating (Turner et al. 2003), however there are potential advantages to overwintering 

in the lower Bay.  Although adult females tolerate a wide range of salinities, they may 

be less efficient osmoregulators at lower salinity (Tan and Van Engel 1966), and may 

be less tolerant of extreme temperatures at low salinity (Tagatz 1969).  Laboratory 

studies have demonstrated that blue crab respiration increases at decreasing salinity 

(Engel and Eggert 1974, Guerin and Stickle 1992), thus overwintering in high salinity 

waters may allow females to conserve energy. 

Higher temperatures were associated with a lower probability of crab 

presence, but higher density given presence.  Blue crabs may be expected to have 

conflicting demands regarding temperature.  Mortality rates increase sharply below 

5°C (L. Bauer, pers. obs.), but respiration and metabolic costs begin to increase 
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rapidly above approximately 15°C (Brylawski & Miller 2003).  Still, it is unclear why 

the direction of the temperature response should vary between stage I and stage II 

models.   

 Response curves of the two remaining variables are complex and do not 

coincide with simple biological explanations.  Bottom slope and distance from SAV 

showed little ability to explain crab distributions or abundance.  Even when these 

variables were determined to be significant, the response curves were highly variable 

and no support was provided for the hypothesis that lower slope and shorter distance 

from SAV represent preferred winter habitat.  Such year-to-year variability in 

response curves may indicate that relationships to some habitat parameters are 

complex and dynamic or may change with changes in population size.  It is also likely 

that some spurious relationships may be found to be significant when fitting 26 

separate models. 

 Although correlation among environmental parameters is likely the norm 

rather than the exception, such dependencies must be considered when evaluating 

model selection results.  For example, a strong correlation exists between salinity and 

distance from the Bay mouth.  As a result, although both variables were common in 

the final models, it was relatively unusual for both to be included in the same model.  

Although efforts were made to make all variables equally likely to enter into the 

model (e.g., by transforming non-normally distributed variables and rescaling some 

variables so that all were of the same magnitude), inherent differences in variability 

and measurement error are still likely to influence model selection.  As Håkanson and 

Peters (1995) have pointed out, if two environmental parameters are equally related to 
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a response, it is the parameter with lower variability and lower measurement error 

that is most likely to be selected.  In this case, the static variables, depth and distance 

from the Bay mouth have an advantage in that they can be measured with little error 

and they do not change over time.  Even if individual crabs are selecting an 

overwintering location based on temperature and salinity at the time of burying, depth 

and distance from the Bay mouth may be more powerful predictors of distributions, 

despite not being the proximate cue, to the extent that they integrate information 

about salinity and temperature over the period during which crabs are selecting an 

overwinter location.  Such questions cannot be resolved through an empirical habitat 

modeling approach. 

   Despite the highly flexible modeling process and the inclusion of interactions 

among parameters, the full two-stage GAMs explained only a fraction (13-36% when 

applied to the training data) of the variability in crab abundance.  In addition, the two 

most important variables, depth and distance from the Bay mouth, are spatially static 

and thus cannot explain interannual changes in distribution patterns. Either there exist 

other important environmental determinants of crab distributions than those explored 

here or, although habitat affinities clearly exist, as evidenced by the consistent 

significance of some of the environmental parameters, much of the observed 

variability in distribution patterns is not the result of habitat selection.  If other 

environmental factors are guiding habitat selection, it is unclear what those factors 

may be.  Although hypoxia is prevalent in deeper Bay waters in the summer, winter 

dissolved oxygen levels are sufficient for blue crabs in even the deepest Bay waters 

(Wang et al. 2001).  Better benthic habitat maps would allow us to fully test for the 
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influence of bottom type; however, I suggest that the inclusion of different 

environmental indices would lead to only incremental rather than wholesale 

improvements in model fit. I conclude that variability in the winter distribution of 

mature female blue crab is primarily due to factors other than habitat such as the 

timing of the onset of cold weather and density-dependent habitat selection (discussed 

below). 

 Although blue crab density was difficult to predict, the broader question of 

determining whether a given habitat is likely to contain blue crabs or not proved more 

tractable.  Stage I (presence/absence) models showed considerable ability to 

discriminate between suitable and unsuitable habitat with approximately 75-80% 

correct predictions at pfair.  The discriminatory power of the stage I models was also 

maintained when applied to other years with an average AUC of 0.71.  Indeed, the 

most general stage I model, the 1998 model, yielded an AUC greater than 0.7 for all 

but one of the other years indicating that it provides broadly applicable predictions 

which could be useful for management purposes.  Furthermore, the probability map 

for the 1998 stage I model confirms observations that mature female blue crab catch 

per unit effort (CPUE) is higher in deep water (Lipcius et al. 2001) and in the lower 

Bay but also predicts relatively high probabilities of occurrence in some of the deeper 

channels of the middle and upper Bay and Tangier Sound.  Mature females are found 

in WDS samples at these middle and upper Bay locations, but it is unclear whether 

these individuals represent crabs that failed to complete their migration to the lower 

Bay, as suggested by Turner et al. (2003), or if these deep middle and upper Bay 

channels also represent preferred overwintering habitat. One of the component 
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variables of the 1998 stage I model is the dynamic variable, temperature.  To the 

extent that temperature patterns vary from year to year, the predictions of the model 

are also likely to shift giving the model the ability to adapt its predictions to changing 

environmental conditions.   

 The use of a GIS in combination with habitat suitability models has become 

widespread as a method of visualizing and mapping the results of habitat modeling 

(Stoner et al. 2001), as a qualitative test of habitat model output (Zheng et al. 2002), 

and as a tool for measuring variables that were not or could not be measured in the 

field (Brown et al. 2000, Clark et al. 2003).  Variables such as slope, bathymetric 

variance, and distance from a particular point or habitat type may provide important 

information about habitat suitability, but cannot be easily measured in the field.  In 

this study, three of the GIS-derived variables (through-water distance from the Bay 

mouth, salinity and temperature) were found to be important factors for predicting 

distributions while the other two (bottom slope and distance from SAV) were not.  

The ease with which such GIS-derived variables can be calculated and tested for 

predictive ability makes this an appealing method for exploring potential habitat 

suitability factors.  Maps derived from such GIS-based habitat models may be useful 

for locating marine protected areas and dispersal corridors, which, for blue crab in 

Chesapeake Bay, are currently based simply on observations of higher concentrations 

of adult females at greater depths (Lipcius et al. 2001) as well as non-biological 

concerns such as enforceability.   

 The cross-validation confirmed the ability of GAMs to describe general 

patterns, but provides a warning against naïve application of models to predict 
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distributions in other years.  Although the mean inter-annual cross-validation R2 value 

(0.101) was significantly lower than that for the intra-annual comparison (0.192), 

most models provided above average fits to several other data sets, and the best 

model provided above average predictions for 10 out of 13 other years.  The failures 

of model generality were confined primarily to two or three years.  The data for 1990 

are a good example.  Despite the fact that the 1990 model showed a slightly above 

average fit to the training data (R2 = 0.299), the 1990 data were poorly predicted in 

inter-annual cross-validation with R2 values below average for all comparisons.  The 

intra-annual cross-validation R2, however, was approximately average.  Similarly, the 

2001 model showed the best fit of any model to the training data (R2 = 0.360) and 

well above average intra-annual cross-validation, yet displayed poor generality with 

below average inter-annual cross-validation R2 values for all comparisons.  This 

indicates that although the strength of the response to habitat variables in 1990 and 

2001 was normal, the details of that response were different than those observed in 

most other years.  The explanation appears to lie in the unusually early and severe 

winters of 1989-1990 and 2000-2001, which had the two lowest average December 

temperatures observed over the 13 years of the survey.  Thus, hypotheses or 

management actions developed from habitat-models based on 1990 or 2001 data 

would likely not be applicable to other years.  However, there was no reason a priori 

to anticipate this lack of generality from the model fits or intra-annual cross-

validations.  Accordingly, I caution against the application of habitat models based on 

a single year of data without adequate inter-annual cross-validation. 
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  Although models were generally transferable, some years consistently defied 

prediction by models developed from other years’ data.  The data from 1995, for 

example, were poorly predicted by all models and had the poorest observed fit to the 

training data.  The relationships between blue crabs and their habitat in 1995 appear 

to be weak or highly variable as all models fit poorly to data from this year. Despite 

this high variability in 1995, the mean response to environmental variables in this 

year appears to have been fairly typical as the 1995 model displayed above average 

prediction accuracy when applied to 4 other years of data.     

 Some of the interannual variation in the models and their cross-validation 

performance is likely related to the date of onset of cold weather and the severity of 

the winter.  As ectotherms, blue crabs are restricted in their level of activity by 

ambient temperatures.  Early onset of cold weather is thought to result in an arrested 

migration that may strand individual blue crabs in sub-optimal habitat.  Consequently, 

the earlier the onset of cold weather, the less likely observed distributions reflect true 

habitat preference.  Prolonged periods of cold weather also appear to increase the 

amount of winter mortality (Sharov et al. 2003).  To the extent that crabs concentrate 

in areas where overwinter survival is higher, severe winters may highlight the 

expression of existing habitat affinities by preferentially removing individuals that 

stray from optimal habitat.  Conversely, severe winters are likely to obscure the 

consequences of habitat choice based on factors other than survival, for example, 

spawning success. 

Density dependent changes in habitat use offer an intriguing alternative 

explanation for inter-annual differences.  MacCall’s (1990) basin model predicts that 
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at low population density all individuals will concentrate in the preferred habitats.  As 

population density increases, the preferred habitats become full and individuals are 

forced to seek out alternative sub-optimal sites.  Over the 13 years of the winter 

dredge survey, estimates of bay-wide mature female abundance show a more than 

four-fold variation from a high of 182 million in 1991 to a low of 41 million in 2001.  

These observed changes in abundance are significantly correlated with changes in the 

location of the center of mass of blue crab distributions (see Chapter 3).  

Despite inter-annual variation and the existence of non-habitat related 

influences, a GAM approach offers unique insights into the factors determining 

winter distributions of mature female blue crabs.  Environmental factors were 

considered not in isolation, but simultaneously and in interaction.  The value of the 

GAM approach is that, from this collection of intercorrelated variables, it was 

possible to discern general patterns that persisted from year to year and to identify 

depth and the distance from the Bay mouth as the two most important environmental 

determinants of winter habitat.  The details of these relationships and formal 

hypothesis tests for individual factors are more appropriately the domain of other 

methods.   

GAMs have become widely recognized as an important tool for understanding 

species distributions (reviewed in Guisan et al. (2002)) because they effectively 

address many of the statistical challenges (e.g. non-linear responses, complex 

interactions, and counts that are zero-inflated or otherwise problematic in their 

distribution) associated with field survey data.  One of the concerns with using such a 

flexible approach is that better model fit might come at the expense of generality.  
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Although some applications of GAMs have successfully addressed concerns 

regarding generality by dividing large data sets into different years and analyzing 

them separately (e.g. Begg & Marteinsdottir 2002) or including a year term (e.g. 

Maravelias et al. 2000b) in the model, and one has used inter-annual cross-validation 

to compare two separate model years (Forney 2000), this is the first systematic test of 

GAM habitat model generality.  Interannual differences in the structure of models, 

together with their performance in cross-validation trials, underscore the importance 

of having more than a single year “snapshot.”  Although most models performed well 

in cross-validation, a few years were different enough from the general pattern that 

they resulted in models with little ability to predict distributions in other years.  Such 

aberrant years can provide unique insights (in this case, suggesting the importance of 

the timing of cold weather) and, with multiple years of data, they can be identified 

and effectively dealt with.  In the absence of sufficient temporal scope to the data, 

however, habitat suitability models may be misleading. 
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Chapter 5:  Conclusion 
 

Introduction 

The goal of this thesis is to describe the winter distribution of blue crab in 

Chesapeake Bay and to examine the factors responsible for the observed patterns.  

Three objectives (corresponding to the three central chapters of this thesis) were 

identified and met: 

 

1)  Develop and evaluate an alternative to Euclidean distance for use in 

geostatistical models. 

2)  Quantify the abundance and winter distribution of blue crab in Chesapeake 

Bay and determine the extent to which density-dependent factors control its 

distribution. 

3) Describe the relationship between abiotic variables and the winter 

distribution of mature female blue crab in Chesapeake Bay. 

 

Objective 1 

The first objective of this thesis (Chapter 2) involved the development of an 

appropriate distance metric for blue crab in Chesapeake Bay, the incorporation of this 

metric into an algorithm for variogram calculation and kriging, and the comparison of 

the predictions from this method to those of standard geostatistical methods.  Though 

ultimately unsuccessful in consistently improving prediction accuracy for blue crab in 

Chesapeake Bay, the Lowest Cost Path (LCP) distance metric represents a simple and 
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general solution to applying geostatistical methods in the presence of landscape 

barriers and may yield improvements in prediction accuracy when applied to other 

variables or other geographic settings.  The reasons for the failure of this method to 

improve prediction accuracy are unclear, but likely involve the particular geography 

of Chesapeake Bay – strong gradients along parallel tributaries.  The significant 

differences in variogram parameters between the LCP metric and the standard 

Euclidean metric are reason enough to use this approach when an accurate description 

of the spatial autocorrelation structure in the presence of barriers is all that is desired.  

This paradox - the fact that variograms changed significantly but prediction accuracy 

did not - further suggests that Euclidean distance provides some useful information 

despite the fact that it is intuitively the “wrong” metric to use when barriers are 

present.  Defining the circumstances under which a landscape-based distance metric 

such as LCP is appropriate will require further investigation in different settings and 

in the same setting with different variables.  The extent to which the LCP metric can 

improve other spatial analytical techniques such as home range estimation and habitat 

modeling remains an open and interesting question. 

Other attempts to use landscape-based distance metrics for kriging in estuaries 

have met with similarly mixed results.  Little et al. (1997) used a linear network 

approach to calculating shortest paths through the water in Murrells Inlet, SC in order 

to predict concentrations of contaminants in the water and in oyster tissues.  They 

found improvements in prediction accuracy when “in-water” distance was used for 

four of the eight variables, but small decreases in prediction accuracy for the other 

four.  There was no attempt to explain the characteristics that might determine 
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whether a variable would show improved accuracy with the alternative metric.  The 

linear network approach used by Little et al. (1997) is computationally efficient for 

geographic areas that resemble linear networks, i.e. where the width of traversable 

habitat is negligible compared to the length, and has been used successfully by other 

researchers (Gardner et al. 2003; Torgersen et al. In press).  It becomes increasingly 

awkward and inefficient in open areas where connectivity is possible in all directions. 

In geographic areas containing open areas as well as barriers, an alternative 

approach to calculating distances is required.  Rathbun (1998) offers one such 

approach and applied it to model salinity and dissolved oxygen (DO) in Charleston 

Harbor, SC.  The landscape-based distance metric resulted in small improvements in 

prediction accuracy for DO but slight decreases in accuracy for salinity.  Although 

this landscape-based metric is applicable in open regions as well as narrow linear 

areas, it relies on a FORTRAN program that is not as easily transferred to other 

geographic areas as the GIS-based approach used here.  Rathbun’s (1998) method is 

also unable to account for variable permeability of different types of barriers, an 

advantage of the LCP metric that must be explored further. 

 

Objective 2 

The second objective of this thesis involved quantifying patterns of blue crab 

winter distribution in Chesapeake Bay and examining the internal population factors 

that may be responsible for changes in these patterns.  Although the baywide 

abundance estimates calculated using a geostatistical approach differ substantially 

from design-based estimates in the first two years of the winter dredge survey (WDS), 
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similar downward trends in abundance are apparent in both time-series over the 13 

years of the survey.  The traditional design-based analysis of the WDS fails to 

incorporate valuable information on spatial autocorrelation structure and may not be 

the most accurate method of estimating baywide abundance from this survey.  The 

accuracy of geostatistical methods could be enhanced by simple changes to the station 

allocation methods.  For example, one source of uncertainty in the abundance 

estimates is the lack of stations in some years at the extremes of the blue crab’s winter 

distribution in the northernmost part of the mainstem and the upper part of the 

Potomac River.  Geostatistical estimates could be improved without compromising 

the historical continuity of the survey by adding a few non-random stations at the 

edges of the distribution.  Both estimation methods would be improved by reducing 

the zero-inflation in the data.  Longer tows would reduce the number of tows with no 

crabs, but would require re-evaluation of the catchability coefficients.  Accurate 

calculation of tow length is critical for calculating densities based on the area-swept 

method, and the survey would benefit from adopting the most precise and accurate 

georeferencing methods available.  This is particularly important given the extremely 

short tows where small absolute errors in position can have a large proportional 

impact on the estimated tow length and consequently the estimated density.    

 The sharp declines in blue crab abundance coupled with high fishing 

mortality rates (Sharov et al. 2003; Rugolo et al. 1998) suggest that overfishing is 

occurring and management action is needed to reverse the decline.  Sharov et al. 

(2003) calculated fishing mortality rates for the period 1990 – 1999 that were 

generally higher than Fmax = 0.64 (Rugolo et al. 1998) but, except in 1999, lower than 
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the threshold fishing mortality rate adopted by the Bi-state Blue Crab Advisory 

Committee (Anonymous 2001) of F10% = 1.08 year-1 (Miller and Houde 1998).  

Spatial management strategies such as marine protected areas and time-area closures 

are increasingly being used to increase biodiversity and reduce fishing mortality rates 

on vulnerable segments of the population (Halpern 2003).  The lower bay spawning 

sanctuary is one such spatial strategy currently used with some success in the 

Chesapeake Bay blue crab fishery (Lipcius et al. 2003) but it offers protection to blue 

crabs only during the summer months.   

The distributional maps developed in Chapter 3 of this thesis could be used to 

designate specific winter closed areas that are small (making them easier to enforce 

and more politically feasible) but effective at protecting the spawning stock during its 

winter aggregations.  These maps may also be useful for limiting the impact of 

management actions that may have an adverse effect on blue crab winter habitat.  For 

example, these distribution maps have already been incorporated into the Chesapeake 

Bay dredged material disposal and beneficial use management process.  Finally, the 

maps may be useful as an input to other modeling efforts.  For example, spatial multi-

species trophic models such as EcoPath with EcoSpace (Walters et al. 1999) require 

detailed information on the distribution (or at least habitat preferences) of component 

species. 

From an ecological point of view, the distributional maps are more interesting 

not as static snapshots, but for the insights they provide into the dynamic processes 

that may drive blue crab distributions over a nearly four-fold change in density.  The 

evidence for an intra-specific explanation (density-dependent habitat selection 
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(DDHS)) for the observed changes in distribution was examined.  One line of 

evidence implicates DDHS, and another suggests that the relationship between 

density and patch size may be more complicated than hypothesized.  The fact that 

changes in the location of the centroid of blue crab density are highly correlated with 

baywide abundance suggests that DDHS may exist in blue crabs.  Changes in the 

range of spatial autocorrelation, however, were not positively correlated with baywide 

abundance.  For mature females, and to a lesser extent for males and immature 

females, the deep waters of the lower Bay mainstem provide ideal overwintering 

habitat.  A southward trend in the centroid as baywide abundance decreases can be 

interpreted as a density-dependent contraction of the overwintering distribution 

toward the most favorable habitat.   The trend map supports this interpretation since 

relatively little of the lower Bay shows a negative trend in density.   

The lack of any apparent relationship between the effective range of spatial 

autocorrelation and blue crab abundance suggests that either: 1) the range is not a 

suitable proxy for patch size; or 2) patch size is not related to baywide abundance.  

There is evidence for both of these alternative explanations.  Although the range 

parameter of variograms is frequently assumed to be an estimate of patch size, this 

relationship has yet to be rigorously tested.  The range is likely influenced not only by 

patch size, but also by other characteristics of a spatial distribution such as distance 

between patches and patch shape.   The survey design may also have precluded 

accurate estimation of patch size.  Smaller scale patchiness – on the order of tens to 

hundreds of meters – is likely to be missed since the distance between adjacent 

samples is generally too great to accurately represent small patches.  Alternatively, 
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the assumption that DDHS would result in larger patches may be wrong.  Suboptimal 

habitat patches may become suitable as densities increase within optimum patches, 

resulting in more, but not necessarily larger, patches of blue crabs.  

Comparison with winter dredge fishery CPUE suggests that geostatistical 

methods may provide a more accurate description of fluctuations in abundance and, 

consequently, that declines in blue crab abundance may be greater than previously 

believed.  Maps of blue crab density provide a guide to spatial management strategies 

and a method of evaluating their potential impacts.  Observed relationships between 

abundance and distribution patterns are consistent with DDHS.  Alternative 

explanations for these patterns exist, however, and only controlled experiments could 

show conclusively whether blue crabs exhibit DDHS.    

 

Objective 3 

External abiotic variables such as salinity, temperature, and depth are also 

likely to play a part in determining the winter distribution of blue crab in Chesapeake 

Bay.  Their influence on mature females was the subject of Chapter 4.  Mature 

females have long been known to differ from males and immature females in many 

aspects of their life history (Van Engel 1958).  They are also thought to have the most 

specific winter habitat preferences, as they undergo long migrations from their 

summer habitat throughout the Bay to their spawning and overwintering habitat in the 

deep high-salinity waters of the lower Bay (Hines et al. 1995; McConaugha 1995).   

How strong a role does habitat play in determining where mature females overwinter?  
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What constitutes ideal winter habitat for mature females?  And does this definition of 

ideal habitat vary from year to year? 

The answer to the first question is that although some habitat variables (most 

notably depth and distance from the Bay mouth) are consistent and statistically 

significant predictors of mature female abundance, combined, they explain only 13-

36% of the observed variation in abundance in the training data set.  Although the 

possibility remains that other unknown habitat variables could improve the 

predictions, the results of this thesis suggest that habitat is an important but not 

decisive determinant of where mature females overwinter.  Other non-habitat related 

factors that may influence distributions include DDHS (discussed in Chapter 3), and 

the time at which water temperatures drop below the critical threshold for dormancy.  

This latter explanation is discussed in Chapter 4 in relation to the failure of the 1990 

and 2001 models to accurately predict abundances in other years.  It may be that 

mature female blue crabs set off on their winter migrations in response to an unknown 

environmental cue.  Some of them reach ideal habitat while others are arrested in 

their migration by a drop in temperature forcing them to overwinter in less than ideal 

habitat.  This hypothesis is consistent with the fact that the winters of 1989-1990 and 

2000-2001 saw the two lowest December temperatures on record over the 13-year 

history of the WDS. 

Ideal overwintering habitat for mature female blue crabs in Chesapeake Bay 

appears to be defined by a combination of depth, distance from the Bay mouth, and to 

a lesser extent, salinity and temperature.  The first two factors, both individually and 

in interaction, were found to be significant predictors of blue crab presence or 
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absence in all years and of abundance given presence in many years.  Crabs were 

more likely to be found and were more numerous when they were found as depth 

increased.  In some years, there was evidence of a peak at around 15-20 m, but in 

others the relationship appeared linear.  Probabilities of crab presence and abundance 

given presence were highest near the Bay mouth, though in some years the maximum 

occurred at approximately 25-50 km from the mouth.   

Although prediction accuracy was significantly lower when models developed 

on data from one year were used to predict abundance in another, the failures (i.e., 

comparisons showing below average cross-validation R2) were confined to a couple 

of non-representative years (such as 1990 and 2001 mentioned above).  This pattern is 

consistent with the hypothesis that habitat preferences are stable but in some years the 

early onset of cold weather prevents many crabs from reaching ideal habitat.  It also 

highlights the potential to be misled by single-year snapshots of the distribution of 

any mobile organism.   

The results of Chapter 4 confirm the ability of two-stage GAMs to describe 

general habitat relationships that are valid beyond the particular data set on which 

they were developed.  Because of their flexibility, GAMs are fast becoming the 

method of choice for empirical modeling of the relationship between the distribution 

of organisms and the distribution of habitat variables (Guisan et al. 2002).  Their 

flexibility, however, has raised concerns that they may fit the input data so 

specifically that their generality and transferability are compromised.  Few previous 

habitat modeling studies have had sufficient data to test this concern (but see Forney 

2000).  Here the transferability of GAMs (both intra- and inter-annually) was 
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confirmed with the caveat that the models are only as general as their input data is 

representative.  

 

Conclusion 

Blue crab winter distributions in Chesapeake Bay are dynamic and are likely 

driven by a complex interaction of intrinsic (i.e., density-dependent) and 

environmental factors coupled with a good deal of chance (e.g., the timing of the 

onset of cold weather).   Despite this complexity, strong relationships are apparent.  

The bulk of the blue crab distribution has clearly moved southward over the 13 years 

of the WDS concurrently with a significant decline in baywide abundance.  

Environmental variables, most notably depth and distance from the Bay mouth, have 

a significant effect on mature female blue crab distributions in all years. 

These findings have implications for the management and ecology of blue 

crab.  The significant decline in abundance suggests that stronger management 

actions should be taken to ensure the long-term stability of the fishery.  The 

distribution maps developed here provide a useful tool for guiding these management 

actions.  Theories of DDHS are intuitively appealing, but little evidence exists to 

show whether they apply to natural populations.  The correlation between the latitude 

of the centroid of blue crab density and abundance suggests that DDHS may apply to 

blue crab. 

In addition to insights on blue crab ecology, this thesis also advances the use 

of two statistical techniques: geostatistics and generalized additive models.  Although 

landscape-based distance metrics have been used in geostatistics before, the methods 
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used previously to calculate such metrics have not been as flexible, efficient or 

transferable as the GIS-based LCP metric presented here.  The long-term utility of 

this approach will depend on a better understanding of the conditions under which a 

landscape-based distance metric can improve prediction accuracy.  Likewise, two-

stage GAMs have been used to model organism/habitat relationships before, but they 

have not been rigorously cross-validated to insure that their predictions are general 

and transferable.   

The results of this thesis suggest three lines of future work.  First, modest 

changes to the WDS could improve the prediction accuracy of geostatistical methods 

without compromising the historical continuity of the data.  Second, further 

investigation into the density-dependence of blue crab distributions may confirm the 

applicability of DDHS models.  Third, analysis of other variables in Chesapeake Bay 

or other regions with many barriers using the LCP-distance based geostatistical tools 

developed here could determine the conditions under which the use of such 

techniques is warranted.  
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Appendix I – Matlab Functions 
 
1) – PRESSkrige, used to calculate the Prediction Error Sum of Squares (PRESS) 

statistic 
 
function [Result]=PRESSkrige(ID,var,krig_para,model,model_para,dist1_1) 
% function [Result]=PRESSkrige(ID,var,krig_para,model,model_para,dist1_1) 
% Calculates the Prediction Error Sum of Squares (PRESS) statistic 
% Input Parameters: 
% ID - A unique identifier for each sample 
% var - the measured value of the sample 
% neighborhood parameters: 
% krig_para(1,1) - maximum search radius for kriging 
% krig_para(1,2) - minimum number of neighboring data points used for kriging 
% krig_para(1,3) - maximum number of neighboring data points used for kriging 
% variogram parameters: 
% model - variogram model type: 1=spherical, 2=exponential, 3=Gaussian, 4=linear 
% model_para(1,1) - nugget 
% model_para(1,2) - sill, i.e. nugget + partial sill 
% model_para(1,3) - range 
% model_para(1,4) - power for exponential (if applicable, otherwise set to 1) 
% model_para(1,5) - length scale for hole effect (if applicable, otherwise set to 1) 
% 
% Other functions called: 
% 
% variogrammodel - calculates semivariance for given lag distances 
% Author: D. Marcotte 
% 
% sum_nan - sums a vector or matrix ignoring NaN values 
% Author: Jim Ledwell, 10/97 Woods Hole Oceanographic Institution 
%  
% By Olaf Jensen, University of Maryland Center for Environmental Science, 
% Chesapeake Biological Laboratory 
% Last modification  June 17, 2004 
% Based on original code by Dezhang Chu, Woods Hole Oceanographic Institution 
 
range=krig_para(1); 
kmin=krig_para(2); 
kmax=krig_para(3); 
EPS=2^(-52); 
 
n=length(var);  % n = number of data points 
kn=length(krig_para); 
var=reshape(var,n,1);  % ensure var is a column vector 
model_type=2; % variogram 
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tp=ones(n,1); %pre-allocate prediction vector 
 
% Kriging 
 
for j=1:n 
    
   r=dist1_1(j,:);  
 
   if kmin >= n 
     indx_sort=1:n; 
     k=1:n;nk=n; 
  else 
     [r_sort, indx_sort]=sort(r); 
     ind=find(r_sort <= range); 
     nd=length(ind); 
     if isempty(ind) 
        k=2:min(kmin+1,n); 
     elseif ind(nd) >= kmin & ind(nd)-1 < kmax  
        k = 2:ind(nd); 
     elseif ind(nd) >= kmax 
        k = 2:kmax+1; 
     elseif ind(nd) < kmin 
        k = 2:min(kmin+1,n); 
     end 
     nk=length(k); 
  end 
 
   
  M20=variogrammodel(model,r(indx_sort(k)),model_para); 
  M2=[M20 1 ]'; 
         
if  j == 1 | kmin < n  
    rs=dist1_1(indx_sort(k),indx_sort(k)); 
    K0=variogrammodel(model,rs,model_para); 
      
    K0(1:nk+1:nk^2)=zeros(nk,1); 
    K=[K0 ones(nk,1);ones(1,nk) 0]; 
             
    K_inv=inv(K); 
end  
   
  lambda=K_inv*M2; 
      
  tp(j)=sum_nan(lambda(1:nk).*var(indx_sort(k))); 
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end 
  
% Results 
 
Pre_result(:,1)=var; 
Pre_result(:,2)=tp; 
Pre_result(:,3)=(var-tp)^2; 
 
Result=sum(Pre_result(:,3)); 
 
 
2) – Variogrammodel, returns the semivariance for given lag distances 
 
       Author: D. Marcotte 
 
 function y = variogrammodel(type, r, model_para) 
% function y = variogrammodel(type, r, model_para) 
%   computes the theoretical semi-variogram. 
%   |type| = model index for semivariogram/correlogram 
%   type > 0: semi-variogram 
%        < 0: correlogram   
%      r = vector lag distances 
%  model_para = [ p1 p2 p3 p4 p5]; 
%       
%      p1: Nugt = nugget effect 
%      p2: Sill = sill 
%      p3: L = length scale for the main lobe 
%      p4: p = power for the expenential  
%      p5: b = length scale for hole effect      
% 
%      model type: 
%          01 = spherical 
%          02 = exponential 
%          03 = gaussian 
%          04 = linear 
 
%      models including hole effects 
%          05 = C * [ 1 - (sin b*r) / r ] + Nugt 
%          06 = C * [ 1 - (exp(-r/L))     * cos(br) ] + Nugt 
%          07 = C * [ 1 + (exp(-r/L))     * cos(br) ] + Nugt 
%          08 = C * [ 1 - (exp(-(r/L)^2)) * cos(br) ] + Nugt 
%          09 = C * [ 1 -                   Jo (br) ] + Nugt 
%          10 = C * [ 1 -  exp(-r/L)      * Jo (br) ] + Nugt 
%          11 = C * [ 1 -  exp(-(r/L)^2)  * Jo (br) ] + Nugt 
%         12 = C * [ 1 -  exp(-(r/L)^2)  * (1 - br)] + Nugt 
%          13 = C * [ 1 -  exp(-(r/L)^p)  * Jo (br) ] + Nugt  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Author: D. Marcotte 
% Version 2.1  97/aug/18 
% Revised by Dezhang Chu,   10-29-98 
 
Nugt=model_para(1); 
Sill=model_para(2); 
L=model_para(3); 
p=model_para(4); 
b=model_para(5);  
C=Sill-Nugt; 
n = length(r); 
rL = r ./ L; 
 
switch abs(type)  
case 1 
     indx1=find(rL < 1); 
     indx2=find(rL >= 1); 
     rL1=rL(indx1); 
     rL2=rL(indx2); 
     y1 = C * ( 1.5 .* rL1  -  0.5 .* rL1.^3)+Nugt; 
     y2 = Sill * ones(size(rL2)); 
     y(indx1)=y1; 
     y(indx2)=y2; 
     y=reshape(y,size(r,1),size(r,2)); 
 case 2 
     y = C * ( 1 - exp(-(r/L)))+Nugt; 
 case 3 
   y = C * ( 1 - exp(-(r/L).^2))+Nugt; 
 case 4 
   y = C .* r+Nugt; 
 case 5 
    y = C .* ( 1 - sin(b.*(r+eps))./(r+eps) )+Nugt; 
 case 6 
   y = C * ( 1 - exp(-r/L) .* cos(b*r) )+Nugt; 
 case 7 
   y = C * ( 1 + exp(-r/L) .* cos(b*r) )+Nugt; 
 case 8 
   y = C * (1 - exp(-(r/L).^2) .* cos(b*r) )+Nugt; 
 case 9 
   y = C * ( 1 - bessel(0, b*r) )+Nugt; 
 case 10 
   y = C * ( 1 - bessel(0, b*r) .* exp(-r/L) )+Nugt; 
 case 11 
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   y = C * ( 1 - exp(-(r/L).^2) .* bessel(0, b*r) )+Nugt; 
 case 12 
    y = C * ( 1 - exp(-(r/L).^2) .* (1 - b*r.^2) )+Nugt; 
 case 13      % generalized exponetial-Bessel  
    y= C* (1 - exp(- (r/L).^p).* bessel(0, b*r))+Nugt;   
end 
 
3) – Sum_nan, sums a vector or matrix ignoring NaN values 
 
       Author: Jim Ledwell, 10/97 Woods Hole Oceanographic Institution 
 
function    psum=sum_nan(A,k) 
%% function    psum=sum_nan(A,k) 
%% computes the summation which ignores all nan's  
%% if A is an 1D array, k is not necessary, if A is a matrix 
%% k is optional. Without k or k = 1, A is summed over column, 
%% and k = 2, summation is over rows 
%% 
% Author: Jim Ledwell, 10/97 Woods Hole Oceanographic Institution 
 
 
D=size(A); 
if D(1) == 1 | D(2) == 1      % 1-D array 
   [indx]=find(~isnan(A)); 
   psum=sum(A(indx)); 
else 
   if nargin == 1 
     k=1;    % default direction: sum over each column 
   end 
   if k == 1 
    for i=1:D(2) 
       [indx]=find(~isnan(A(:,i))); 
       if length(indx) > 0           
          psum(i)=sum(A(indx,i)); 
       else 
          psum(i)=nan; 
       end 
    end 
   else 
    for i=1:D(1) 
       [indx]=find(~isnan(A(i,:))); 
       if length(indx) > 0 
          psum(i)=sum(A(i,indx)); 
       else 
          psum(i)=nan; 
       end 
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   end 
   psum=psum(:); 
  end 
end 
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Tables 
 
 
 
 
 
 
 
 

Year 
Sample 

size 
Distance 
Metric 

Variogram 
Model Nugget 

Partial 
Sill Range(km) 

1990 863 Euclidean Exponential 18,173 22,455 54
  LCP Exponential 16,448 25,042 55

1991 964 Euclidean Gaussian 9,736 30,484 55
  LCP Gaussian 8,000 12,000 30

1992 1392 Euclidean Exponential 792 1,408 25
  LCP Exponential 763 997 16

1993 1253 Euclidean Gaussian 6,963 20,254 50
  LCP Gaussian 6,000 6,000 35

1994 1427 Euclidean Gaussian 7,108 885 35
  LCP Gaussian 7,000 900 30

1995 1598 Euclidean Gaussian 1,324 10,165 49
  LCP Gaussian 1,178 5,436 41

1996 1580 Euclidean Gaussian 3,877 11,461 34
  LCP Gaussian 3,444 7,453 28

1997 1587 Euclidean Gaussian 2,848 6,075 29
  LCP Gaussian 2,860 4,446 29

1998 1573 Euclidean Gaussian 1,160 1,580 33
  LCP Gaussian 1,195 1,222 38

1999 1519 Euclidean Gaussian 581 2,042 33
  LCP Gaussian 564 1,181 27

2000 1511 Euclidean Gaussian 592 1,220 24
  LCP Gaussian 587 1,075 23

2001 1556 Euclidean Gaussian 281 1,114 25
  LCP Gaussian 263 830 22

2002 1530 Euclidean Gaussian 416 1,409 35
  LCP Gaussian 377 867 30

 
 
 

Table 1.  Summary of variogram model parameters.  Numbers in italics denote 
parameters that were fit by eye and were not used in variogram comparisons. 



Year

Euclidean 
PRESS 

(*103)

LCP 
PRESS  

(*103)
Percent 

Difference

Average Absolute 
Increase in 

Intersample Distance 
(km)

Average Percent 
Increase in 

Intersample Distance
1990 65.64 65.09 0.84 16.84 23.12
1991 61.08 61.53 -0.73 12.13 15.27
1992 6.46 6.49 -0.47 12.77 16.53
1993 38.00 38.21 -0.54 14.60 20.11
1994 29.57 29.48 0.28 16.19 21.10
1995 19.80 19.63 0.87 14.13 18.99
1996 50.00 49.99 0.01 12.87 16.83
1997 16.12 16.19 -0.41 11.10 14.52
1998 9.58 9.68 -1.04 11.86 15.65
1999 10.23 10.14 0.95 11.87 15.44
2000 5.24 5.23 0.11 11.34 14.50
2001 4.49 4.65 -3.46 11.06 14.09
2002 6.10 6.04 0.94 11.68 15.30

mean: -0.20 12.96 17.03

Table 2.  Baywide.  Prediction Error Sum of Squares (PRESS) for kriging predictions based on 
Euclidean and Lowest-Cost Path (LCP) distance metrics, the percent difference in PRESS between 
the two metrics (positive numbers indicate greater prediction accuracy for the LCP metric), the 
average increase in intersample distance for the LCP metric, and the mean percent difference over 13 
years.  



Year

Tangier Euclidean 

PRESS (*103)

Tangier LCP 

PRESS  (*103)
Tangier Percent 

Difference
Random Subsample 
Percent Difference

1990 31.60 31.28 1.02 -0.36
1991 5.78 5.91 -2.22 0.55
1992 1.30 1.31 -0.92 -0.74
1993 0.30 0.33 -8.45 -0.84
1994 10.93 10.89 0.38 0.67
1995 3.55 3.41 3.98 -0.05
1996 5.38 5.33 0.87 -1.29
1997 1.72 1.70 0.70 0.07
1998 1.29 1.29 0.15 -0.86
1999 0.51 0.51 1.15 1.47
2000 1.22 1.23 -1.15 -0.86
2001 0.80 0.86 -7.29 -0.46
2002 0.44 0.44 -0.41 -0.58

mean: -0.94 -0.25

Table 3.  Tangier Sound and Baywide random subsample.  Prediction Error Sum of Squares 
(PRESS) for kriging predictions based on Euclidean and Lowest-Cost Path (LCP) distance 
metrics, the percent difference in PRESS between the two metrics (positive numbers indicate 
greater prediction accuracy for the LCP metric), and the mean percent difference over 13 years.  
Only the mean percent difference in PRESS is given for the random subsample.



Year N Nugget Partial Sill Range (km) Model X Y XY X2 Y2 XY2 YX2 X2Y2

1990 919 12,749 12,502 13,710 Gaussian x x x x x
1991 947 11,272 25,144 45,037 Gaussian x x x x
1992 1,340 731 1,008 52,532 Spherical x
1993 1,194 5,000 8,000 25,000 Gaussian x x x
1994 1,382 2,631 6,168 26,409 Gaussian x x x x x
1995 1,523 908 4,950 43,144 Gaussian x x x x
1996 1,523 3,304 8,557 32,278 Gaussian x x x x
1997 1,506 1,664 15,467 196,671 Spherical x x x x
1998 1,510 754 1,424 31,194 Gaussian x x x x
1999 1,457 407 1,383 34,206 Gaussian x x x x
2000 1,421 260 3,754 147,284 Exponential x x x x x
2001 1,464 192 797 28,676 Gaussian x x x x x
2002 1,457 254 866 33,048 Gaussian x x x

Table 4.  Summary of sample size (N), variogram parameters, variogram models, and spatial trend models based on 
northing (X) and easting (Y).



Distance (M) Salinity (S) Depth (D) Temp. (T) Slope (B) SAV (V)
Distance (M) 1

Salinity (S) -0.637 1
Depth (D) -0.038 0.192 1
Temp. (T) -0.091 0.341 0.118 1
Slope (B) 0.107 -0.073 0.284 -0.002 1

SAV (V) -0.010 -0.133 0.139 0.079 -0.055 1

Table 5.  Pearson correlation coefficients between all pairs of environmental variables.  Significant 
correlations (p<0.05) are shown in bold.  All other correlations are insignificant (p>0.05).



Year N Distance (M) Salinity (S) Depth (D) Temp. (T) Slope (B) SAV (V) Interaction I Interaction II R2 adj Dev. Explained 
1990 650 ns <0.001 0.579 0.005 ns ns D/T 0.027 ns 0.274 31.5
1991 723 0.728 ns 0.003 ns 0.048 ns M/D <0.001 ns 0.246 26.1
1992 1046 ns <0.001 <0.001 ns ns ns ns ns 0.221 22
1993 941 ns 0.229 0.702 <0.001 ns 0.044 S/D <0.001 ns 0.255 27.1
1994 1071 0.992 0.003 <0.001 ns ns 0.036 M/S 0.036 M/V 0.030 0.225 28.1
1995 1199 ns 0.047 <0.001 0.906 ns ns S/T 0.005 ns 0.097 17.7
1996 1187 <0.001 0.081 0.368 <0.001 ns 0.52 S/V 0.001 S/D <0.001 0.255 27.6
1997 1193 0.1 <0.001 <0.001 <0.001 ns ns M/D <0.001 ns 0.189 23.1
1998 1181 0.933 ns <0.001 <0.001 ns ns M/D <0.001 ns 0.267 28.3
1999 1139 <0.001 ns 0.468 0.181 ns ns D/T 0.014 ns 0.197 27.2
2000 1133 <0.001 ns <0.001 <0.001 ns ns ns ns 0.27 28.6
2001 1167 0.002 ns <0.001 <0.001 ns ns M/D 0.002 ns 0.328 38.4
2002 1148 0.011 0.012 <0.001 ns ns 0.018 M/D 0.002 ns 0.215 29.8
a

Year N Distance (M) Salinity (S) Depth (D) Temp. (T) Slope (B) SAV (V) Interaction I Interaction II R2 adj Dev. Explained 
1990 91 ns ns ns 0.004 ns 0.007 ns ns 0.136 16.5
1991 161 <0.001 ns 0.002 ns 0.002 0.047 ns ns 0.31 34.9
1992 197 <0.001 ns 0.003 ns ns ns ns ns 0.116 12.5
1993 166 <0.001 ns ns ns ns ns ns ns 0.145 15.6
1994 150 <0.001 ns ns ns ns ns ns ns 0.265 29.6
1995 88 0.002 ns ns ns 0.047 ns ns ns 0.219 31.8
1996 204 <0.001 ns <0.001 ns ns ns ns ns 0.359 39.3
1997 149 0.024 ns <0.001 ns ns 0.037 M/D 0.002 ns 0.457 50.1
1998 185 0.022 <0.001 0.007 ns ns ns ns ns 0.393 41.9
1999 102 <0.001 ns ns 0.002 ns ns ns ns 0.318 35.1
2000 193 ns <0.001 ns ns ns ns ns ns 0.182 19.3
2001 116 <0.001 ns ns ns ns ns ns ns 0.136 14.4
2002 100 ns ns ns ns ns 0.024 ns ns 0.077 9.8
b

Table 6.  Model selection results for (a) stage I (i.e. presence/absence) and (b) stage II (abundance) GAMs.  
Significance test p-values are given for the explanatory variables distance from Bay mouth, salinity, depth, temperature, bottom slope, 
distance from SAV, and interaction terms.  Terms that were not significant (ns, p > 0.05) were dropped from the model unless they 
were involved in a significant interaction.  Degrees of freedom were fixed for terms in bold.  The adjusted r-squared and percent of 
deviance explained are also given for each model.



Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
training 0.299 0.315 0.255 0.296 0.270 0.130 0.314 0.241 0.346 0.232 0.305 0.360 0.239

1990 0.099 0.064 0.016 0.069 0.059 0.091 0.014 0.060 0.081 0.001 0.015 0.069 0.013
1991 0.028 0.219 0.048 0.135 0.174 0.071 0.128 0.071 0.195 0.043 0.148 0.009 0.086
1992 0.003 0.257 0.291 0.191 0.265 0.210 0.146 0.099 0.271 0.235 0.273 0.069 0.221
1993 0.129 0.188 0.128 0.238 0.113 0.089 0.113 0.090 0.165 0.022 0.047 0.031 0.125
1994 0.000 0.194 0.200 0.232 0.244 0.237 0.117 0.056 0.194 0.176 0.222 0.041 0.124
1995 0.010 0.032 0.040 0.063 0.095 0.086 0.016 0.008 0.040 0.023 0.048 0.010 0.014
1996 0.043 0.111 0.088 0.077 0.098 0.042 0.168 0.110 0.152 0.017 0.005 0.062 0.081
1997 0.087 0.165 0.095 0.171 0.097 0.055 0.129 0.197 0.172 0.024 0.097 0.054 0.110
1998 0.035 0.105 0.085 0.109 0.079 0.066 0.084 0.099 0.129 0.008 0.049 0.005 0.044
1999 0.000 0.155 0.236 0.157 0.139 0.174 0.108 0.088 0.176 0.196 0.205 0.080 0.184
2000 0.042 0.206 0.222 0.202 0.183 0.191 0.092 0.077 0.243 0.255 0.311 0.069 0.165
2001 0.078 0.184 0.108 0.080 0.121 0.009 0.129 0.078 0.166 0.036 0.054 0.228 0.087
2002 0.001 0.083 0.075 0.016 0.084 0.021 0.019 0.056 0.084 0.062 0.128 0.061 0.089
a

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
1990 0.04 -0.43 -1.38 -0.36 -0.52 -0.06 -1.44 -0.50 -0.20 -2.10 -1.41 -0.37 -1.46
1991 -1.08 1.35 -0.69 0.48 0.89 -0.33 0.39 -0.33 1.11 -0.79 0.62 -1.61 -0.12
1992 -1.91 1.72 2.04 1.07 1.79 1.26 0.60 0.05 1.85 1.51 1.87 -0.37 1.37
1993 0.40 1.04 0.39 1.53 0.21 -0.08 0.22 -0.07 0.80 -1.22 -0.71 -1.03 0.36
1994 -2.16 1.10 1.16 1.47 1.59 1.53 0.26 -0.57 1.10 0.92 1.38 -0.82 0.35
1995 -1.58 -0.99 -0.84 -0.45 -0.01 -0.13 -1.37 -1.66 -0.84 -1.20 -0.70 -1.58 -1.43
1996 -0.78 0.20 -0.09 -0.25 0.03 -0.80 0.83 0.18 0.67 -1.36 -1.78 -0.47 -0.19
1997 -0.11 0.80 0.00 0.86 0.02 -0.58 0.41 1.13 0.87 -1.18 0.02 -0.59 0.18
1998 -0.93 0.12 -0.13 0.17 -0.22 -0.41 -0.15 0.04 0.40 -1.66 -0.68 -1.80 -0.77
1999 -2.28 0.69 1.52 0.71 0.52 0.89 0.15 -0.10 0.92 1.12 1.21 -0.21 1.00
2000 -0.80 1.22 1.38 1.18 0.99 1.07 -0.04 -0.25 1.59 1.70 2.22 -0.36 0.80
2001 -0.24 0.99 0.15 -0.21 0.32 -1.61 0.40 -0.23 0.81 -0.91 -0.60 1.43 -0.11
2002 -2.07 -0.17 -0.28 -1.39 -0.16 -1.25 -1.31 -0.56 -0.15 -0.46 0.39 -0.48 -0.08
b

Table 7. Callinectes sapidus .  Cross-validation where models developed with data from one year (columns) are applied to data from 
another (rows).  Values in (a) represent the cross-validation r-squared.  Values on the diagonal (in bold for (a)) represent intra-annual 
cross-validation where models developed using a training data subset are applied to the test data subset for the same year.  The first 
row of (a) represents the model fit to the training data.  Values in (b) represent the z-score, i.e., the number of standard deviations 
above or below the grand mean Fisher (1915) transformed cross-validation correlation coefficient.  



popt pfair

Year AUC Value Sens. Spec. % Corr. Value Sens. Spec. % Corr.
1990 0.870 0.470 0.396 0.975 89.4 0.155 0.780 0.785 78.5
1991 0.839 0.453 0.460 0.927 82.3 0.235 0.752 0.749 75.0
1992 0.809 0.575 0.284 0.973 84.3 0.180 0.746 0.740 74.1
1993 0.845 0.580 0.277 0.983 85.9 0.180 0.765 0.767 76.6
1994 0.862 0.405 0.393 0.951 87.3 0.175 0.793 0.793 79.3
1995 0.824 0.325 0.046 0.997 92.7 0.085 0.773 0.762 76.3
1996 0.851 0.470 0.373 0.966 86.4 0.195 0.770 0.770 77.3
1997 0.837 0.410 0.302 0.974 89.0 0.125 0.752 0.748 74.9
1998 0.849 0.455 0.400 0.960 87.2 0.150 0.768 0.770 77.0
1999 0.869 0.380 0.294 0.981 91.9 0.110 0.784 0.786 78.6
2000 0.859 0.533 0.290 0.972 85.6 0.200 0.777 0.783 78.2
2001 0.905 0.540 0.302 0.983 91.5 0.110 0.845 0.847 84.7
2002 0.884 0.400 0.310 0.979 92.1 0.105 0.810 0.819 81.8
a

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
1990 0.74 0.69 0.65 0.74 0.73 0.76 0.64 0.73 0.72 0.44 0.57 0.68 0.71
1991 0.71 0.78 0.65 0.79 0.75 0.74 0.78 0.75 0.81 0.65 0.69 0.63 0.70
1992 0.58 0.76 0.77 0.72 0.78 0.74 0.74 0.71 0.79 0.79 0.79 0.72 0.78
1993 0.73 0.78 0.73 0.79 0.74 0.74 0.72 0.72 0.76 0.60 0.67 0.54 0.73
1994 0.58 0.80 0.78 0.77 0.82 0.81 0.82 0.76 0.79 0.78 0.78 0.73 0.75
1995 0.63 0.64 0.62 0.67 0.72 0.70 0.65 0.63 0.66 0.64 0.67 0.50 0.65
1996 0.66 0.69 0.64 0.65 0.67 0.62 0.72 0.70 0.71 0.57 0.62 0.69 0.69
1997 0.67 0.72 0.64 0.70 0.66 0.66 0.68 0.76 0.73 0.59 0.65 0.65 0.67
1998 0.64 0.73 0.69 0.72 0.67 0.71 0.70 0.76 0.77 0.56 0.60 0.57 0.64
1999 0.64 0.80 0.81 0.77 0.82 0.81 0.82 0.81 0.85 0.85 0.86 0.68 0.86
2000 0.73 0.77 0.79 0.74 0.80 0.76 0.74 0.77 0.79 0.83 0.84 0.71 0.79
2001 0.74 0.75 0.72 0.71 0.74 0.57 0.76 0.71 0.77 0.63 0.78 0.80 0.80
2002 0.52 0.71 0.73 0.59 0.70 0.62 0.65 0.74 0.75 0.70 0.76 0.52 0.75
b

Table 8. Evaluation of stage I (presence/absence) model fits to the training data (a) using receiver operating 
characteristic (ROC) curves and cross-validation of stage I models (b).  Values in (a) represent the area under the ROC curve (AUC), 
the critical p-values: p-optimum (popt) and pfair, and their sensitivity (Sens.), specificity (Spec.), and percent correct predictions (% 
Corr.).  Values in (b) represent the AUC where models developed with data from one year (columns) are applied to data from another 
(rows).  Values on the diagonal represent intra-annual cross-validation where models developed using a training data subset are applied 
to the test data subset for the same year.  AUC values greater than 0.7 are highlighted in black. 
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Figure 1. 

Figure courtesy of C. Chenery
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Figure 3. The value of the nugget parameter from variograms based on 
a Euclidean and a Lowest Cost Path (LCP) distance metric.  The black 
line represents equality. 
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Figure 4.  The value of the range parameter from variograms based 
on a Euclidean and a Lowest Cost Path (LCP) distance metric.  The 
black line represents equality.
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Figure 5.  The value of the sill parameter from variograms based on a 
Euclidean and a Lowest Cost Path (LCP) distance metric.  The black 
line represents equality.
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Figure 6. Euclidean distance 
based variogram for 1996
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Figure 7. Lowest-cost path (LCP) 
distance based variogram for 1996
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Figure 8. Euclidean distance 
based variogram for 2001
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Figure 9. Lowest-cost path (LCP) 
distance based variogram for 2001
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Figure 12.
a. 1990 Blue crab density b. Standard error of blue crab density
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Figure 13.
a. 1991 Blue crab density b. Standard error of blue crab density
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Figure 14.
a. 1992 Blue crab density b. Standard error of blue crab density
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Figure 15.
a. 1993 Blue crab density b. Standard error of blue crab density
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Figure 16.
a. 1994 Blue crab density b. Standard error of blue crab density
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Figure 17.
a. 1995 Blue crab density b. Standard error of blue crab density
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Figure 18.
a. 1996 Blue crab density b. Standard error of blue crab density
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Figure 19.
a. 1997 Blue crab density b. Standard error of blue crab density
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Figure 20.
a. 1998 Blue crab density b. Standard error of blue crab density
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Figure 21.
a. 1999 Blue crab density b. Standard error of blue crab density
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Figure 22.
a. 2000 Blue crab density b. Standard error of blue crab density
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Figure 23.
a. 2001 Blue crab density b. Standard error of blue crab density
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Figure 24.
a. 2002 Blue crab density b. Standard error of blue crab density
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Figure 25.
a. Mean blue crab density b. Trend in blue crab density
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Figure 26. 



R2 = 0.5873

R2 = 0.3073

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

0 200 400 600 800 1,000 1,200 1,400 1,600

Estimated Baywide Abundance (106)

C
PU

E 
(p

ou
nd

s 
pe

r l
ic

en
se

)_

Geostatistical
Design-based
Linear (Geostatistical)
Linear (Design-based)

Figure 27.



R2 = 0.469

37.70

37.80

37.90

38.00

38.10

38.20

38.30

1990 1992 1994 1996 1998 2000 2002

Year

L
at

itu
de

 o
f C

en
tr

oi
d 

(d
eg

re
es

)

Figure 28.
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