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Chapter 1. Introduction

I ntroduction

Blue crab (Callinectes sapidus) is an important component of the Chesapeake
Bay ecosystem and supports one of the largest and most vauable fisheries in the Bay.
A detailed knowledge of its digtribution patterns within the Bay can provide vauagble
indghtsinto its ecologica relationships and increase the efficacy of spatid
management strategies such as protected areas and time-area closures. The god of
thisthesisis to describe the winter distribution of blue crab in Chesgpeske Bay and to
examine the factors responsible for the observed patterns. The development and
vaidation of datidtica toolsto accomplish this god are additional objectives.

The blue crab life history in Chesgpeake Bay is marked by distinct differences
in habitat use a different developmenta stages and between maes and femaes
(Figure 1). Blue crab spawnsin the high-sdinity waters of the lower Bay and zoese
are advected offshore where they develop through severd stagesin continental shelf
waters before returning to settle in the Bay (see Epifanio (2003) for an overview of
gpawning and larva transport and development). Newly settled crabs arefoundin
highest dengtiesin the lower Bay in summer and erly fal (Lipcius & Van Engd
1990; Metcalf et al. 1995) and are thought to settle preferentialy in submerged
aquatic vegetation (SAV) (van Montfrans et al. 2003) where mortdity rates from
predation are lower (Orth and van Montfrans 2002). Later stage juveniles and adult
maes are widely distributed throughout the Bay in the summer and overwinter in the

tributaries and the maingtem, undergoing limited migrations (T. Miller, unpubl. data).



Mature femdes undergo much longer migraionsin the late summer and early fal to
deep high-dinity watersin the lower Bay (Hines et al. 1995; McConaugha 1995)
where they release zoeae and overwinter.

Winter is an important time in the blue crab life history. In southern
populations, blue crabs continue to feed, grow, and molt throughout the year (Smith
and Chang In press). In northern populations, including Chesapeske Bay, winter
temperatures drop below a physiologica threshold forcing blue crabsto enter a
dormant period (Tagatz 1969). During thistime, crabs bury into the sediment and
growth ceases. Natura mortality during the dormant winter period is thought to be an
important factor in blue crab population dynamics with higher mortaity in cold
winters (Sharov et al. 2003). Although overdl fishing mortdity rates are lower in the
winter, the winter dredge fishery in the lower Bay may have a disproportionate
impact on the population because it targets mature females with high reproductive
value (Miller 2003). Spatid management Strategies such as the Lower Bay Spawning
Sanctuary (LBSS) have been implemented in an atempt to control fishing mortdity
on this vulnerable portion of the population (Lipcius et al. 2003).

Winter isan ided time to conduct baywide sampling of blue crabs since they
are dormant, and consequently there is no risk of bias due to movement (Vadsad et
al. 2000). Sincethe winter of 1989-1990, a Bay-wide Winter Dredge Survey (WDS)
has been conducted using a consistent protocol every year between December and
March (Sharov et al. 2003). This survey employs a dratified random design with
gpproximately 1,500 stations per year. In each year, depletion experiments are

conducted at severd locations throughout the survey domain (Zhang et al. 1993;



Vadgad et al. 2000). From these studies, vessdl and year specific correction factors
(catchability coefficients, g) have been developed to sandardize effort and to
trandate catch into an estimate of density based on the area swept (Sharov et al.
2003). The WDS survey has provided important indgghtsinto the abundance and
exploitation of blue crab in Chesapeske Bay (Zhang and Ault 1995; Vastad et al.
2000; Sharov et al. 2003) and the effectiveness of the LBSS (Seitz et al. 2001) and
migration corridor (Lipciuset al. 2001). Moreover, because of its geographic and
tempord scope, the WDS is an ided dataset for investigating the effects of spatid
distribution on blue crab population dynamics (Miller 2003).

Changes in digtribution are interesting from an ecological perspective.
Identification of the factors that regulate the distribution of a species has been a
fundamenta question in ecology since Hutchinson's classic paper defining
fundamenta and redized niches (Hutchinson 1957). A nicheisthe“n-dimendond
hyperspace’ defined by the range of biotic and abiotic factors that limit the species
digtribution. Often, physicd environmenta factors form the primary or fundamentd
definition of niche as they represent physiologica limits to the distribution. Abictic
parameters are easily measured in the laboratory and in the field, and studies that
relate the ditribution of foca speciesto the abiotic environment may reved aspects
of the species fundamenta niche (Peterson and Vieglais 2001). Within the
physiologicd limits that define the fundamenta niche, the didtribution of a pecies
may be further restricted by biotic interactions (Connell 1961). This smaler subset of
the fundamental niche is termed the “redlized” niche. Extensive research on blue crab

has reveded indghts into both its fundamenta and redlized niches. Research has



identified estimates of limiting sdinity and temperature levels for surviva of blue

crab (Tagatz 1969), and the presence of a physiologca temperature limit for growth
of approximately 10° C below which growth ceases (Brylawski and Miller 2003).
Other sudies have suggested arolefor SAV in limiting vulnerability to predation of
juveniles (e.g., Orth and van Montfrans 2002).

Intra- specific interactions can dso influence species digributions.  The
suitability of aparticular habitat may decrease as the density of a species using that
habitat increases. Thisideais centrd to Parker and Sutherland’s (1986) Ided Free
Didribution concept. Individuas that distribute themsdlves according to an IFD dll
experience the same growth potential. The IFD concept underlies MacCall’ s (1990)
basin modd. Thismodd predicts that at low population density, most individuas of
aspecieswill concentrate in optimal habitat, whereas as dengity increases, individuas
move toward increasingly less optima habitat, which becomes equally suitable
because of itslower dengity of conspecifics. The degree to which such mechanisms
operate with regard to blue crab in Chesgpeske Bay is currently unknown.

A thorough understanding of a stock’s distribution and the ability to detect
changes in the digtribution can be an important asset for management also. One
explanation for the unexpected collapse of some fished populations involves
undetected changes in distribution (Hutchings 1996). Most stock assessment models
assume that landings are directly proportional to stock abundance (Quinn and Deriso
1999). The coefficient of proportiondity is termed the catchability coefficient, g.
When this proportionality fails, stocks are said to be hyper or hypo-dispersed. Thisis

often the case in a spatidly-structured (i.e., non-randomly distributed) populations



(Walters 2003), such as schooling fish, that may be caught very efficiently even asthe
tota number of aggregations declines. In such cases, landings, which may remain
high despite serious decreases in the population, do not accurately reflect population
gze. Thus in spatidly structured populations, changes in digtribution may provide an
early warning of stock depletion (Hutchings 1996).

The WDS, an intengve point sampling (the one-minute tows can be
consdered a single point within the context of the entire Bay) of a continuous
process, lendsitsdlf to andyss usng geodtaigtica methods. The fundamenta
techniques of geodtatidtics, variogram modeing and kriging, were developed to
describe the distribution of valuable ore based on a collection of bore-hole samples,
but have since become widdy used in ecology (Legendre 1993; Ross et al. 1992) and
fisheries science (Sullivan 1991, Petitgas 1993; Rivoirard et al. 2000). The
variogram describes the spatia autocorrelation structure of the data, i.e., the decrease
in relatedness between pairs of points as the distance between them increases. Spatia
autocorrelation is a necessary prerequisite to accurate spatia interpolation using
kriging. Prdiminary variogram andyss of the WDS data showed strong spatid
autocorrelation, indicating that kriging could be an effective technique for mapping
the digtribution of blue crab.

While the WDS data are well suited to andlysis using geodtatistics, the
Chesapeske Bay, ahighly invaginated estuary, isnot. Variogram moddling and
kriging, like mogt spatid ardlys's techniques, traditiondly use a Euclidean or
draght-line distance metric to quantify the degree of physical separation between

points. Such ametric isintuitive and useful in open areas whose boundaries can be



thought of as forming a convex polygon. In such cases, there are no barriers
separating pairs of points, and Euclidean distance is a suitable metric. Few estuaries
match thisided. In the Chesgpeake Bay, for example, two points in adjacent
tributaries may be close by Euclidean distance yet quite separate from the point of
view of an aguatic organism or awater-dispersed contaminant. A more appropriate
metric is necessary for spatid modding inirregularly shaped regions with barriers.
Such metrics have been developed, but they either rely on a GI S-based network
approach (Little et al. 1997; Gardner et al. 2003) which workswell in narrow
tributaries, but is unsuitable for wide open areas, or aFORTRAN program that is not
eadly applied to other geographic areas (Rathbun 1998). These methods have
demondtrated the potentid increase in prediction accuracy to be gained by utilizing a
more gppropriate distance metric. The conditions under which such ametricis
necessary remain undefined, however, and aneed exigts for an efficient and
transferable solution to this problem.

Kriging isaussful tool for providing an accurate, quantitative description of
the digtribution of blue crabs. It provides little information, however, about the
environmenta parameters that define suitable winter habitat (but see Sullivan 1991
for an example of combining a habitat variablei.e., depth, and kriging). Blue crabs
are clearly not randomly distributed throughout the Chesgpeske Bay. In the spring
and summer, juveniles and molting individuas of both sexes are strongly associated
with SAV. Inthefdl, mature femaes migrate from summer habitat toward spawning
and overwintering habitat in the lower Bay. Mades and immature females undertake

more limited migrations toward deep water in the tributaries and main sem.



Temperature and sdinity are dominant factors in the bioenergetics of the blue crab
(Brylawski and Miller 2003), which islikely to take on increased importance during
the winter dormant stage when bioenergetic costs cannot be baanced by increased
feeding. Winter digributions of mature femaeslikdy reflect an attempt to maximize
survival and reproductive success since both spawning and overwintering occur in the
deep water of the lower Bay.

Given the broad suite of environmenta variables that may be influencing biue
crab digtributions, a satistica method for habitat suitability modding must be able to
test and integrate alarge number of varigbles individudly and in interaction. The
approach must aso be flexible enough to fit nontlinear responses and accommodate
the large number of zero catches that result from short tows and the patchy
digtribution of blue crab. Two-stage generdized additive modds (GAMS) provide
such amethod. GAMs dlow for fitting flexible regresson splines to each habitat
vaiableindividualy (Hastie and Tibshirani 1990) and are more effective than
polynomid regression a modeing threshold responses. The two- stage approach
addresses the zero-inflated distribution of the data by modeling presence-absence
(binomid digtribution) independently of dendity given presence (lognormd
digribution). Given enough data, habitat models can be developed for each year and
compared to see whether the relationships described by the model are genera and

dable.



Objectives

This thes's addresses fundamenta questions about the distribution and
abundance of blue crab in Chesapeake Bay during winter. The winter dredge survey
provides an extensve, spatialy-referenced data base of the distribution and
abundance of blue crab in Chesapeake Bay. However, to date these data have been
andyzed usng design-based approaches only. | will apply geodtatistical methods to
estimate the winter abundance and distribution of blue crab in Chesgpeake Bay.

There are three specific objectives:

OBJECTIVE 1. Develop and evaluate an alter native to Euclidean distance for

use in geostatistical models.

| will develop and test an gpproach that uses a“Lowest Cost Path” (LCP)
distance metric (the shortest distance between two points that is constrained to remain
within the body of water) asthe basis for variogram modeing and kriging. The
gpproach to this question involves substantialy modifying a set of geodatistica
methods (variogram modeling and kriging) so that they are suitable for usein
estuaries or other non-convex regions with barriers. 1 will compare the precison and
bias of the LCP distance-based and Euclidean distance-based approaches. Results of

thiswork are presented in Chapter 2.



OBJECTIVE 2. Quantify the abundance and winter digtribution of bluecrab in
Chesapeake Bay and deter mine the extent to which density-

dependent factors control their distribution.

The agpplication of geodtatistical methods to the winter dredge database
permits predictions of the abundance of crabs at unsampled locations. Maps of
predicted distributions can be further analyzed to estimate abundance and the
moments of the distribution. These secondary results will be quantified to (1) provide
a comparison with design-based estimates of crab abundance and (2) to address
questions about blue crab population dynamics and density-dependent changesin

their ditributions. The results of these analyses are presented in Chapter 3.

OBJECTIVE 3. Describethereationship between abiotic variablesand the
winter distribution of mature female blue crab in Chesapeake

Bay.

The environmental factors thet influence the winter distribution of mature
femdes aeinvedigated usng atwo-stage GAM, which models presence /absence
and abundance a individua gations separately. The tempora breadth of the WDS
dataaso allows for a cross-vdidation of this method in which the predictive power of
environmental variables important in one year is assessed in other years. The results

of these analyses are presented in Chapter 4.



Chapter 2: Landscape-based geostatistics: a case
study of the distribution of blue crab in Chesapeake
Bay

Abstract

Geodtatistica techniques have gained widespread use in ecology and the
environmental sciences. Variograms are commonly used to describe and examine
gpatid autocorrelation, and kriging has become the method of choice for interpolating
many spdidly-autocorrelated variables. Most gpplications of geogtatistics to date
have defined the separation between sample points usng sSmple Euclidean distance.
In heterogeneous environments, however, certain landscape festures may act as
absolute or semi-permesble barriers. The effective separation in this case may be
more accurately described by a measure of distance that accounts for the presence of
barriers. Here | present an approach to geostatistics based on alowest-cost- path
(LCP) function, where the cost of apath is afunction of both the distance and the
type of terrain crossed. The modified technique is applied to 13 years of survey data
on blue crab abundance in Chesapeake Bay. Use of this landscape-based distance
metric sgnificantly changed dl three variogram parameters but did not result in
congstent improvements in the accuracy of predictions of abundance at unsampled

locations.
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| ntroduction

A trend of increasing spatia redlism has been evident throughout the history
of ecologica modeling. Hufaker’'s (1958) experiments demonstrated the importance
of space in a predator-prey system and encouraged modelers to seek out appropriate
ways of incorporating a spatial component into their work. Early work by Hassell
and May (1973) showed that the addition of a spatial component to models of
predator-prey interactions enhanced the stability of the resulting equilibrium. Space
in thismode was implicit, but modes taking into account the explicit soetid
arrangement of the model components soon followed (e.g., Pulliam et al. 1992).
More recently, ecologists have sarted to use spatidly-redigtic models where
interactions take place within a specific landscape (e.g., Wahlberg et al. 1996).

Space has as0 been increasingly recognized as an important component of
datisticd modelsin ecology. Legendre (1993) and Ross et al. (1992) document a
shift from assumptions of spatid independence and homogeneity, to an undersanding
of gpatia autocorrelation as a source of useful information, provided that the
appropriate satistical tools are used. Geogtatistical modding is a common approach
to developing spatidly-explicit satisticd models. Accurate incorporation of spetia
autocorrdation isimportant in geodtatistical models that test hypotheses (Legendre
and Troussdlier 1988) or predict the distribution of species and ther interactionsin
gpace (Bez 2002). In both cases, incorrect specification of the patial covariation can
introduce spurious patterns in the analyzed data that can |lead to erroneous rejection of

null hypotheses or inaccurate predictions of distributions.
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Geoddtigticsisincreasingly used for anaytica rather than descriptive
purposes, e.g., to estimate abundance (Sullivan 1991; Bez 2002) or parameterize
other models (Fuchs and Deutz 2002). Consequently, the importance of accuracy in
geodtatidica applicationsis growing. Traditiondly, geodtatistical gpproaches have
specified spatid covariance based on the Euclidean distance between sampled points.
Implicit in the use of Euclidean distance is the assumptionthat the process or feature
of interest is continuoudy distributed between any two points. However, in many
instances, the space separating two sampled points may present abiological or

physica barrier that limits the digtribution of the process or feature.

The Importance of Barriersin Ecological M odeling

Spatid heterogeneity at severd scdesis acommon feature of nearly al
landscapes and can have important consequences for the way organisms move and
interact. One of the smplest but most important impacts of spatia heterogeneity
occurs when one landscape type serves as a barrier to movement and dispersal.
Barriers are important in determining biogeographic, ecological, and evolutionary
patterns (Grinndll 1914; MacArthur and Wilson 1967; Gilpin and Hanski 1991,
Brown and Lomolino 1998). The recognition of barriers, however, has generdly
been regtricted to afew high-profile modds (e.g. idand biogeography and
metapopulation dynamics) that explicitly describe their effects. However, as habitat

fragmentation and isolation continue to increase, barriers are an increasingly

important component of many landscapes.
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Severd recent studies have applied a diversity of gpproaches to quantitatively
account for the effects of barriers. Rupp and Chapin (2001) used a spatidly redidtic
smulatiion modd to predict the impact of the Brooks Range in northern Alaskaasa
barrier to shiftsin forest cover induced by globa warming. In this case, the presence
of barriers resulted in a 2000-year lag in the expangion of forests to the North Sope.
A recent spatidly-explicit smulation of a Lotka-V olterra predator- prey system
(Nakagiri et al. 2001) showed that even when barriers are present at afairly low
dengity and directly affect only the prey speciesther presence can lead to extinction
of both species. In astudy of within population genetic variation of field mice,
Landry and Lapointe (2001) concluded that a composite isolation index, which takes
into account landscape barriers, was a better predictor of variation than smple
geographic distance done. Taken together these studiesindicate a growing interest in
the impacts of underlying landscape barriers on many ecologica processes.

Streams and estuaries are systems where barriers are a prominent festure of
the landscape. 1t has long been recognized by stream ecologists that Euclidean
distance is an ingppropriate metric, and distance measured dong the thaweg is
commonly used. This metric recognizes that most processes in a stream are only
continuous within the aquetic habitat. Many estuaries are characterized by highly
invaginated shorelines where converging tributaries are separated by narrow
peninsulas of land. Conditions on opposite sides of a peninsula can show much
greater variation than their geographic proximity suggests. In some cases, adjacent
tributaries, because of differencesin the geology or land use of their watersheds,

show remarkable differencesin their chemica and biologica characterigtics (Pringle
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and Triska1991). Not surprisingly then, the first attempts to incorporate the effects
of barriersinto geodtatistica modeling occurred in estuaries (Little et al. 1997;

Reathbun 1998).

Geostatistics and Ecological L andscapes

Increased interest in modeling the spatid component of many ecologica
phenomena has pardleed improvements in geodtatistics as an andyticd tool and
geographic information systems (GIS) as amodeing environment. Geodtatistical
tools have gained widespread acceptance not only in the field of ecology, but dsoin
other areas such as epidemiology, geology, hydrology, and population genetics. In
ecology, the most common uses of geostatistics have been to describe the spatial
autocorrelation structure using the variogram, and to interpolate and map datausing
kriging (Aubry and Debouzie 2000). Variations on ordinary kriging have been used
to modd presence/absence data (indicator kriging), interpolate one variable based on
its relationship to a second variable (co-kriging), and to incorporate atrend surface
(universal kriging). Geodatigtica techniques, including block kriging, have aso
become a standard tool for abundance estimation based on spatialy autocorrel ated
survey data, especidly for fisheries acoustic surveys (Sullivan 1991; Petitgas 1993;
Rivoirard et al. 2000; Bez 2002). A model-based geostatistical approach can be
preferable to traditiona design-based methodology when autocorrelation is present
because many design-based methods fall to take advantage of the additiona
knowledge present in the spatial autocorrelation structure (Aubry and Debouzie 2000,

2001).
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Heterogeneous landscapes can impose patterns that violate the assumptions of
geodtatistics. For example, second order stationarity (i.e., spatialy constant mean and
variance) and isotropy of the variogram in space are the strongest assumptions of the
geodtaistical model. These assumptions are aso likely to be violated in the presence
of any ecologically important gradients in the landscape. For instance, aresource
gradient in ameadow may result in atrend in mean plant dengity pardle to the
gradient (violation of the constant mean assumption). Spatia autocorrelation islikely
to be stronger and extend further when measured perpendicular to the resource
gradient (i.e,, & smilar resource levels), and consequently the variograms will exhibit
anisotropy. A Smilar effect is often seen in data from coastd sysemsin which
autocorrelation extends further when measured pardld to the shoreling, i.e., dong
rather than across depth contours. Checking for and correcting these landscape-
induced violations of the assumptions has become an integra step to geodtatitica
modeling through the introduction of easily applied corrections such as detrending,
universa kriging, and variogram models that incorporate geometric anisotropy.

Efficient and eadly implemented solutions to landscape barriers, however,
have not been available. Consequently, their impacts are largely ignored. A
commonly used gpproach to interpolation in the presence of barriers, which is
implemented in many GIS programs, isto Smply regect points that are separated by a
barrier. This approach effectively divides the prediction areainto many convex
regions in which only points contained within a given region are used for prediction.

In complex landscapes with many barriers, the result of this approach isthet relatively
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few points are used for prediction in some areas, and therefore greater sample sizes
are needed to achieve the same degree of accuracy.

While asmple test for the presence of influentia barriersis not available, we
can define pre-conditions for the importance of barriers. Barriers are only likely to
have a substantial impact on geodtatisticd interpolation when the following two
generd conditions apply:

1) The extent of the survey and the prediction areais larger than the scae at which
barriersintervene. For example, peninsulas may be effective barriers to the dispersa
of marine organisms among adjacent bays. They would have little impact on
predictions, however, if asurvey and the prediction areawere limited to a single bay.
2) Therange of spatid autocorrelation islarger than the scae a which barriers
intervene. In an estuary, we would expect little impact if the Euclidean distance
between sample or prediction pointsin adjacent bays was greater than the range
parameter from the variogram. This s because points separated by a distance greater
than the range are essantialy uncorrelated and receive very little weight when
predictions are made.

Visud ingpection of the sample and prediction points on amap of the
underlying landscape can indicate quickly whether condition one gpplies. It ismore
difficult, however, to determine a priori whether the range is greater than the scae at
which barriersintervene since barriers may influence the empirica variogram and

consequently affect the estimate of the range.
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A Landscape-Based Distance M etric

What are appropriate dternatives to Euclidean distance when barriers exist
and the spatia scale of the modeling effort and the range of spatid autocorrelation
indicate that they may have an impact on geodtatigticd anadysis? Sampson and
Guttorp (1992) suggest an empirical non-parametric approach to determining the
gppropriate distance metric in cases where atime series of observations for each
sample dteisavailable. Such adatarich environment, however, islikey to be the
exception for most ecologists. Rathbun (1998) divided the study region into a series
of adjacent convex polygons based on a digitized shoreline of the estuary. This
gpproach splits the estuary into increasingly smdler polygons until the shortest
through water distance between dl sample pointsis achieved. Littleet al. (1997)
recognized the suitability of a GIS as an efficient environment for conducting this
type of spatid caculation. They defined a network of line segments connecting
pointsin an estuary. While computationdly efficient for narrow regions where
movement is only possible along one path, this gpproach is difficult to gpply in the
more open portions of an estuary where distance both aong and across the principa
axis of the estuary must be considered.

Here | develop adistance metric that is equaly applicable to nearly linear
networks and open aress, terrestrial or aguatic, and accounts for the presence of
barriersin the landscape. It is calculated using the cost-weighted distance function
common to many GIS programs. This raster function calculates the lowest- cost
distance from any pixe in adigitized map to any other. Cost is defined by a cost

raster where the pixe vaues represent the relative ease of movement through the
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associated habitat type. Diagona movements are alowed and their cost is estimated
from the length of the diagond rather than the cell Sze. Thetota cogt of agiven path
isthe sum of the individua cost pixels encountered dong that path multiplied by the
pixe 9ze. When the landscape is defined in terms of absolute barriers, the binary

case, passable habitat is given acost of 1 while barrier habitat is given an infinite cost
(eg.a“nodaa’ vaue). Theresulting distance is smply the length of the shortest

path between two points that does not cross abarrier. For each point in the survey
data set, a distance raster map is produced whose cell va ues represent the lowest-cost
distance from the cdll to the sample point.

The landscape-based approach was tested using data from the winter dredge
survey (WDS) of blue crabs (Callinectes sapidus Rathbun: Portunidae) in Chesapegke
Bay conducted yearly by the Maryland Department of Natural Resources and the
Virginia Indtitute of Marine Science. These data have been used to quantify crab
abundance (Zhang and Ault 1995) and fishery exploitation (Sharov et al. 2003) in
Chesgpeake Bay. Like many estuaries, the Chesapeake Bay has severd tributaries
separated by long, narrow peninsulas of land that present a barrier to the digtribution
of many aquatic variables a a scae that makes them potentialy influentid for
baywide modding efforts. The tributaries differ widdly in the land- use characteristics
of their watersheds with some, such as the Potomac River, draining large urban aress,
and others, such as the Susquehanna River and many eastern shore tributaries,
draining primarily agriculturd land. Thus, sample points in adjacent tributaries,
athough quite close in Eudidean distance, can differ subgtantiadly in their chemicd

and biologicd characterigtics.
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The WDS takes place during the crabs dormant period limiting potentid bias
due to movement. It has been conducted annually since 1990 with an average of
1,413 Stations per year, providing a comprehensive sample of the blue crab
population in the Bay. Preliminary variogram anaysis showed that blue crab catches
exhibit distinct spatid autocorrelation a arange grester than the separation of some
sample pointsin adjacent tributaries. This indicates that Euclidean distance-based
kriging techniques may rely on samples from adjacent tributaries, and that a

landscape-based approach may increase prediction accuracy.

Methods

Data

All data utilized were from the winter dredge survey (WDS) of the blue crab
population in Chesapeake Bay. Full details of the survey design and applicetion are
provided in Vdstad et al. (2000) and Sharov et al. (2003). Briefly, the survey
conssted of aone-minute tow of a1.83 m wide crab dredge at each station. Stations
were chosen randomly each year within three strata. Sample size ranged from
approximately 900-1,500 stations per year. Depletion experiments were conducted
yearly to determine catchability coefficients that could be used to transform catch into
an estimate of absolute abundance (Zhang et al. 1993; Vastad et al. 2000). The
variable studied was the dengty of blue crabs (including dl age and size classes) per
1000 n, calculated by dividing the absolute abundance estimate by the dredge area

swept.
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Sample coordinates were based on the starting location of each tow, and the
tow distance was ca culated from the start and end coordinates determined by Loran
Cinearly years and differentid GPS more recently. Tows shorter than 15 m and
longer than 500 m (1.4% of the total data) were not used in thisandysis. All
coordinates were projected to Universal Transverse Mercator (UTM) zone 18 before
andyss. Annua dendty estimates were detrended to meet the geostatistical
assumption of gationarity. For detrending, a second order two-dimensond
polynomid of spatia trend with interactions wasfit to each year. The modd was
amplified usng backward dimination with asignificance leve to stay equd to 0.01.
Thisrddively stringent criterion was used to avoid overfitting the trend. Variogram

andysis, kriging, and cross-vdidation were conducted on the resduds.

Incorporation of Landscape-based Distance into Geostatistical Algorithms

The detrended resduals were used to estimate variograms for both the
Euclidean and the L CP distance metrics. Euclidean distances were calculated using
standard agorithms programmed within Matlab (The Mathworks, Cambridge, MA).
Intersample lowest-cost path (LCP) distances for every pair of sample locations were
cdculated using a cost- distance agorithm programmed in the Visua Basic macro
language within ArcView v8.3 (ESRI, Redlands, CA) where LCP distance was

cdculated dong the path that minimized the distance function:
a (c xx)
where C; is the cost coefficient of theit" habitat type (here C; is equal to one for cells

in the water and is effectively infinite for cells on land) and X isthe distance across

20



anindividud cdl. X isequd to the cell szefor cdlsthat are crossed in the north

south or east-west direction or +/(2xcellsize?) for celsthat are crossed diagonaly.

The resulting distances are written to the intersample distance matrix. Thismatrix is
used for cdculating the variogram. A second matrix containing the LCP distances
from each sample point to each prediction point is caculated and used for prediction
and mapping.

Robust variograms were cal culated according to Cressie (1993), with a Matlab
program that used distances from the Euclidean and landscape- based distance
matrices. A 250 m bin size was used to caculate the empiricd variogramto a
distance of 40 km. Exponentia and Gaussian variogram models were fit to the
empirica variograms using nonlinear least squares (SAS system, NLIN procedure)
where sarting parameter values were chosen by eye. The best fitting variogram
modd, i.e., the mode with the lowest mean squared error, was used for kriging and
variogram comparison. The variogram parameters for the Euclidean and landscape-
based distance metrics were compared using the sign rank test.

Following variogram selection, kriging was conducted in a Matlab program
modified to use Euclidean and landscape- based distances from a user-defined
distance matrix and a neighborhood of the 10 nearest points. Blue crab dengty in
each 1 km grid cdll was predicted by adding the kriged prediction to the trend at the
center of every cdl inthe landscape. Prediction accuracy for both Euclidean and
landscape-based methods was assessed using the prediction error sum of squares
(PRESS) datigtic. The PRESS datidtic is a cross-vdidation measure ca culated by

leaving one observation out of the data set and using the remaining points to predict
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the value a that Ste. The PRESS datigtic is smply the sum of the squared difference
between the predicted and observed values a each site. Predicted abundances were
then mapped in ArcView v8.3 for visual comparison.

Differences between the two distance metrics are likely to be accentuated as
distances increase between neighboring sample points. Within agiven landscape,
increased distance between sample points increases the likelihood that a barrier will
intervene a some point aong the straight line connecting any two points. Increasing
the average distance between pairs of sample points without changing the underlying
gpatia structure can be achieved by taking arandom subset of the data. The potentia
impact of increased intersample distance was examined by taking 50 random subsets
of 200 sample points each and cdculating the average difference in PRESS.

Smilarly, differences between the Euclidean and LCP based kriging
predictions are likely to be greater in regions of the Bay where more barriers are
present. In the mainstem of the Bay, few barriers exist and the Euclidean and LCP
disances arelikely to be smilar. In thetributaries and in aress of the Bay with
idands and complex shorelines, the Euclidean and L CP distances, and consequently
the kriging predictions, are more likely to show differences. To examine these
potential regional differences, predictions were made and the PRESS was compared

for asubset of the data from Tangier Sound, aregion with many idands and inlets.

Results

Spatid trends in abundance were found in dl years. In most cases, the

underlying trend in the data was described best by amodel of the form:
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Dengty =3 + 31X + [y + Rxy
where X refers to the easting value and y the northing value. The trend mode for 1998
dsoincluded an »? term, and that for 2000 included an ¢ and a y? term.

Gaussian variogram models were chosen for al years, except 1990 and 1992,
where an exponentia model provided a better fit (Table 1). In many cases, the
exponentia mode provided a marginally better fit, but was rejected because it
resulted in unredigtic variogram parameters (e.g., negative nugget or unredidticaly
highrange). Inal years, choice of variogram modd was the same for both distance
metrics.

Comparison of the variograms ca culated under a Euclidean distance metric
with those from the L CP distance metric reveded systematic differencesin the
variogram parameters. Inter-sample distances calculated using the LCP agorithm
were on average 11-17 km (14-23%) greater than the equivadent Euclidean distances
(Table1). The variogram parameters, the nugget (Figure 3), sl (Figure 4), and range
(Figure5), were dl sgnificantly lower on average for the LCP distance variograms.
Compared to the Euclidean distance variograms, the LCP distance variograms had a
lower nugget in eight out of the ten years compared, with an average difference of
236 (sgn rank test, p = 0.049); alower sl in nine out of ten years, with an average
difference of 1,038 (sgn rank test, p = 0.049); and alower rangein eight out of ten
years, with an average difference of 3.32 km (sign rank test, p = 0.049). The equal
sgnificance values for these three tests are coincidental. The effect of this pattern of
differences was to reduce the inter-gation variability a any given distance.

Representative variograms are shown for 1996 (Figures 6 and 7), ayear of rdatively
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small (0.01%) difference in prediction accuracy and for 2001 (Figures 8 and 9), the
year of greatest difference (3.46%) in prediction accuracy. The variograms for 2001
are an example of a case where the exponentid variogram provided a somewhat
better fit than the Gaussian modd, but was regjected because it resulted in an
unredigticadly high estimate of therange. In both years, the estimated nugget, partia
sll, and range are lower for the LCP distance metric.
Despite this difference in the distances and in the variogram parameters, the

PRESS datigtic comparison shows only small differencesin prediction accuracy
between the two distance metrics (Table 2). Differencesin PRESS range from 0.01 —
3.46% with amean increase in PRESS of 0.2% when LCP distance isused. Of the 13
years of survey datatested, only 7 showed greater prediction accuracy when LCP
distance is used.

Results were smilar for the random subsample and the Tangier Sound subset
(Table 3). For the random subsample, the difference in PRESS ranged from 0.07 —
1.47% with amean increase in PRESS of 0.25% when LCP distanceisused. In
Tangier Sound, the difference in PRESS ranged from 0.15 —7.29% with amean
increase in PRESS of 0.94% when LCP distanceisused. The direction of the
difference in PRESS was not consstent with 4 out of 13 years for the random subset
and 7 out of 13 yearsfor Tangier Sound showing greater prediction accuracy when
LCP distance is used.

Consgtent with the small differences in PRESS, maps of predicted blue crab
density show broadly smilar patterns. Baywide patterns of blue crab distribution

appear Smilar between the two methods in both 1996 (Figure 10) and 2001 (Figure
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11). Smaller scae differences are gpparent, however, especidly in the unsampled
upper reaches of some tributaries. In the upper Potomac River, for example, the
Euclidean-based map for 1996 (Figure 10a) shows high predicted density because the
nearest samples (by Euclidean distance) are high valuesin the adjacent Patuxent

River. The LCP-based map for the same year (Figure 10b) predicts low abundance in

the upper Potomac River based on the nearest samples downstream.

Discussion

Differences in prediction accuracy were expected to result from the
impact of the landscape-based distance metric at two distinct stages of the
geodtatistica modeling process. variogram estimation and kriging. Use of an LCP
distance metric changed estimates of the underlying spatiad structure as summarized
in the variogram. Estimates of dl three variogram parameters were sgnificantly
lower under the landscape-based distance metric, indicating lower variation and a
shorter estimated distance of spatial autocorrelation (range). The landscape- based
distance metric dso changed the sample points (and their weights) used in kriging,
reducing the importance of points separated by barriers from the prediction ste.
However, differencesin variogram estimates did not yield a consistent effect on the
accuracy of the kriging predictions. No congstent improvements in kriging accuracy
were seen even when distances among points were increased (the random subsample
andyss) or the analysis was redtricted to areas of the Bay with many barriers (the

Tangier Sound analyss).
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Although many factors interact to influence prediction accuracy, the unique
shape of Chesapeake Bay may have played arolein reducing the increase in accuracy
that was expected from the LCP distance metric. Many of the Bay tributaries,
particularly on the west Sde, run parald to one ancther. Because of this pardléd
orientation, the nearest point in an adjacent tributary is often at approximately the
same distance from the tributary mouth. Such a point, while in a different tributary,
may well show smilar blue crab density because of its Smilar location relative to the
tributary mouth. In this case, predictions using points in adjacent tributaries may in
fact be more accurate.

This study is not the first to attempt landscape distance based prediction in
estuaries, and the results of other approaches to kriging with alandscape-based
distance metric have been equdly equivoca. Both Little et al. (1997) and Rathbun
(1998) found improvements in the prediction of some variables but not others. Little
et al. (1997) found improvementsin prediction accuracy (on the order of 10-30%
reduction in PRESS) for only four out of eght variables when they applied alinear
network-based distance metric. For the other four variables, use of the network-based
distance metric increased the PRESS by 5-10%. Rathbun (1998) found dight
improvements in cross-vaidation accuracy using awater distance metric for
predicting dissolved oxygen but dightly worse accuracy when predicting sdinity.
Although variogram parameters differed between the two distance metricsin the
Rathbun (1998) study, with the water distance metric resulting in higher variance and
alonger range, no systematic comparisons were possible in that sudy since only one

sample was anayzed.
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Two recent studies in stream systems (Torgersen et al. In press;, Gardner et al.
2003) apply geodtatistical tools based on the distance between sample stesaong a
stream network. Torgersen et al. (In press) used a network-based distance metric to
quantify spatia structure in cutthroat trout abundance in an Oregon stream system.
Although the distance metric used provided clear variogram patterns, no explicit
comparison was made with a Euclidean distance metric. Gardner et al. (2003) found
improvements (lower prediction standard errors and predictions that better met
expectations) in the prediction of stream temperature when a network-based metric
was used, but did not report cross-vaidation datistics. Variogram parameters were
aso found to change in this study with the network-based metric resulting in smaller
nugget but longer range.

The effect of dternative distance metrics on variogram parametersis difficult
to predict Snce opposing influences may interact. For example, increasing the
distance between pointsislikely to result in alonger estimated range, as seenin the
Rathbun (1998) and Gardner et al. (2003) studies. Since alandscape-based metric
reduces the influence of points separated by a barrier, which are expected to differ
more than their Euclidean separation would suggest, it dso seems likely to reduce the
gll parameter (as seen in this study), a measure of overdl variability. Becausethe
range and the sll parameters are often highly correlated, however, the overal effect is
unpredictable.

Concurrently and independently of this study, Krivoruchko and Gribov (2002)
applied asmilar technique for caculating L CP distance and used it to modd air

qudity in Cdifornia They used adigitd devation modd (DEM) to define a cost
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map representing the relative impedance of the environment to the spread of air
pollution. Regions with steep changesin devation were given a higher cogt than flat
land in order to account for the preferentia spread of air masses dong rather than
across elevation contours. Interpolation was conducted using the inverse distance
weighted method. Visua inspection of interpolated maps based on Euclidean
distance and those produced using the landscape-based distance supported the use of
the latter technique; however, no formal comparison was presented.

One of the currently unresolved problems with using a landscape-based
distance metric for kriging is assuring the vdidity of the covariance matrix (Rathbun
1998). Thereis no guarantee that the covariance function for agiven combination of
variogram mode and non Euclidean distance metric will be nortnegative definite.

Thatis
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where s and g represents dl finite collections of spatid location{s: 1 =1,...,m} and
red numbers{a;: i = 1,...,m} and C(x) isthe covariance function (Cressie 1993).
Consgently vaid combinations of variogram model and distance metric are yet to be
determined. Candidate covariance functions can be tested, however, and dternative
gpproaches used if they fail to meet the non-negative definiteness criterion. Although
al of the covariance matricesin this andyss met this criterion, there is no guarantee
that this would hold true for the set of al possible sample locations. Krivoruchko and
Gribov (2002) suggest amoving average gpproach to estimating the covariance

modd that is not subject to the same criterion. 1t should be noted that variograms,
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gpatid autocorrelation gatigtics, and determinigtic interpolation methods are not
affected by this problem.

While the smple binary (passable or barrier) caseis presented in this
example, the LCP gpproach can incorporate varying degrees of impedance to the
continuity of the process or population under study. For example, one type of habitat
may represent an insurmountable barrier while another may only dow the spread of
the process. Parameters used to define the degree of impedance or ‘cost’ of different
landscape types could come from many sources depending on the type of variable
studied. For mobile organisms, costs could be based on studies of animal movement
such as Dyer et al. (2002) or the trandocation experiments by Bélide (2001) dthough
the extent to which different habitat types present a barrier to movement may not be
datic (Thomaset al. 2001). For temporary barriers the cost might smply be the
inverse of the fraction of time that the barrier is passable. For spatid modding of
chemicd contaminants, cost parameters might come from |aboratory experiments of
diffuson and trangport in different media

L andscape ecologists have long recognized that Euclidean distance is rardly
the most gppropriate metric when consdering the ecologica relatedness among
points in alandscape (Forman and Godron 1986). When flows between points are of
interest “time-distance’, i.e., the quickest route, may be preferable. However, time-
distance requires detailed knowledge of how an organism disperses through various
habitat types. Time-distance has an added complication in that it may be asymmetric,
where the time-distance from A to B is not necessarily the same asthat from B to A.

Thisislikely to be the case in stream systems, hilly terrain, and other environments
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that impose directionaity on anima movement. Neverthdess, the idea that the
distance metric should reflect the relative ease or speed of moving along a particular
path remains vaid.

The LCP gpproach to variogram estimation and kriging presented here
represents an easly incorporated modification to commonly used geodtetistical
techniques. The benefits of using this gpproach depend on the study environment
(e.g. scde and extent of barriers), the patia distribution of the variable being Sudied,
and the study objectives (e.g. variogram estimation, mapping, or quantitative
prediction). Although the expected increases in prediction accuracy did not
materidize in this sudy, the relatively unique configuration of pardld tributaries
within the Bay may have been partly responsible. This gpproach, however, isa
genera one and can be applied to other locations or data sets for which greater
differences in accuracy may be found. The potentid also exigsfor the LCP distance
metric to be incorporated into other types of spatia anayses such as home range

esimation, habitat modeling, and determinigtic interpolation methods.

30



Chapter 3: Geostatistical Analysis of Blue Crab
(Callinectes sapidus) Abundance and Winter
Distribution Patterns in Chesapeake Bay

Abstract

Spatid heterogeneity is a striking festure of the blue crab life higtory and
fisheriesin Chesapeake Bay. Patterns of sex- and age- gpecific habitat use have long
been documented. However, a quantitative assessment of the spatia digtribution of
blue crabs has been lacking. Here, | gpply geodtatistica techniques (variogram
modeling and kriging) to 13 years of datafrom awinter dredge survey (WDS) to
describe the pattern of spatial autocorrelation in blue crab density and map patterns of
blue crab winter abundance. These maps are then used to derive atime-series of
baywide abundance and to examine changing patterns of habitat use and aggregation.
Geodtatistical- based abundance estimates are higher on average than those ca culated
from design-based methods, athough both time series show alarge and significant
decline in abundance from 1990 - 2002. The latitude of the weighted centroid of blue
crab density in Chesapeske Bay exhibited a significant positive reaionship with
Baywide abundance, suggesting density-dependent changesin digtribution. The
range parameter of the variogram was not found to be sgnificantly related to
abundance, suggesting that blue crab patch sze may be unrelated to population
dengty. Such quantitative and spatidly-explicit information provides a potentidly
useful base for congtructing population models and evauating dterndive

management options.
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Introduction

There is an increasing recognition of the importance of space and spatidly-
explicit information for understanding the ecology, population dynamics, and
management of marine resources (Nishida and Booth 2001). Thistrend is aresult of
agrowing awareness of the risks of not accounting for the spatia dynamics of
exploited populations (Hutchings 1996; Walters 2003) coupled with new methods for
incorporating space into single species modd s (Caddy 1975) as well as mixed fishery
models (Pelletier et al. 2001) and multi- species trophic moddls (Waters et al. 1999).
These spatid modds and spatidly-explicit management srategies such astime-area
closures and marine protected areas are being used increasingly to manage fisheries.
While the god's and data requirements of these modeling and management
approaches differ subgtantidly, dl require a quantitative description of the
distribution of the speciesin question and most could benefit from an understanding
of how that distribution may change over time or with changesin stock Sze.

Blue crab is an important benthic predator and scavenger (Eggleston et al.
1992; Mansour and Lipcius 1993) that provides alink between benthic and pelagic
food webs (Baird and Ulanowicz 1989). The ecological role of the blue crab in
Chesapeake Bay varies both spatialy and temporally as aresult of its complex life
history. Blue crab spawnsin mid to late summer in the high sdinity waters of the
lower Bay (Van Engel 1958; Jones et al. 1990). The larvae are advected offshore
where they develop through severa immature stages before returning to the Bay and
Stitling, often in seagrass beds, in the lower Bay (Lipcius & Van Engd 1990;

Metcaf et al. 1995). Seagrass beds and other structurally complex habitats continue
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to provide important nursery and molting habitat for juvenile and adult stages (Orth
and van Montfrans 1987; Orth et al. 1996). Inlatefal, blue crab in Chesspeske Bay
undertake a migration to deeper water where they overwinter in the sediment. Winter
habitat use and migration patterns are sex- and age-specific. Maes and immature
females predominate in the lower sdinity waters of tributaries and the upper Bay and
make shorter migrations to nearby channels for overwintering (Abbe and Stagg

1996). Mature femaes migrate greater distances toward lower Bay spawning habitat
(Hines et al. 1995; McConaugha 1995; Turner et al. 2003).

Chesapeake Bay blue crab fisheries reflect the spatial and tempora aspects of
the blue crab life history. A diverdity of gear and techniques exist to target seasond
aggregations and specific molt stages (Rugolo et al. 1998). For example, awinter
dredge fishery targeting mature femaes exigs in the lower Bay; modified bottom
trawls (caled “crab scrgpes’) are used to target spring “peder runs’ of molting crabs,
and pots and trot lines are used to catch crabs of both sexes from spring through fal.
Management efforts have responded to this spatid and tempord variahility of blue
crabs and their fisheries with regulations that are regiondly- and seasondly-specific.
For example, pot fishing is restricted to open waters of the mainstem of the Bay in
Maryland whereas trot-lines are used in the tributaries and shallow bays. A blue crab
spawning sanctuary designed to protect mature femaesin the lower Bay hasbeenin
place for decades (Van Engd 1958) and has been extended several times — most
recently in 2003 when it was enlarged from approximately 1,500 to 2,400 kn?. This
sanctuary, however, protects crabs only during the summer (June 1 — September 15)

and is open to the dredge fishery in the winter. Recent declinesin the Chesapeske
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Bay blue crab stock and decreases in spawning stock biomass (Lipcius and
Stockhausen 2002) indicate that current restrictions, including the lower bay
sanctuary, may be insufficient to ensure the long term sustainability of the blue crab
fishery. Although modeling studies show theat reductions in the lower bay winter
dredge fishery done are not enough to ensure a sustainable fishery (Miller 2001), the
lower bay sanctuary boundaries could likely be improved using maps of blue crab
winter distribution.

Time series of blue crab relative abundance are available from severd fishery-
independent surveys including the Maryland and Virginiatrawl surveys (Lipcius et
al. 2003), the Cdvert Cliffs pot survey (Abbe and Stagg 1996), and the baywide
winter dredge survey (Sharov et al. 2003). However, the spatid analysis of these
surveys has been conducted at avery coarse scae only, with informeation generdly
divided into two geographic categories, usudly either upper bay/lower bay or
Maryland/Virginia (e.g., Miller 2003). Geodtatistica methods are one approach to
andyzing fine-scale patterns of distribution (Rivoirard et al. 2000).

Geodatigticad modeing techniques have been gaining popularity in ecology
and the environmenta sciencesin generd (Ross et al. 1992; Legendre 1993) and
within fisheries science specificaly (Petitgas 1993; Rivoirard et al. 2000). Thetwo
main components of a geodtatistical analys's are variogram modeling and kriging.
Empirical variograms show the decrease in rel atedness between pairs of points as a
function of distance. A variogram modd fit to the empirica variogram describes
gamdl-scae variability and measurement error (the nugget parameter), broad-scale

vaiability (the sll), and the distance a which points become statistically independent
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(therange). Although variogram modeling is often Smply an intermediate sep

before kriging, the range parameter can be used to parameterize other modes (Fuchs
and Deutz 2002) or to determine sampling intervas (Maravelias 1999; Kendall et al.

In press). Kriging isan interpolation method that makes use of the spatia structure
defined in the variogram to predict values of avariable a unsampled stes. Kriging

can be used for descriptive purposes such as mapping (Comeau et al. 1998) aswell as
for abundance estimation (Petitgas 1993; Rivoirard et al. 2000) based on physical
sampling (Maynou et al. 1998) or acoustic surveys (Sullivan 1991).

Do geostatistical approaches have advantages over classical design-based
approaches for estimating the abundance of marine resources? Ignoring spatial
autocorrelation can result in biased estimates of the variance. Aubry and Debouzie
(2000, 2001) demongtrated the superiority of model-based geodtatistica techniques
for hypothesis testing in the presence of spatia autocorreation. The presence of
positive autocorrelation (where vaues for neighboring pairs of points are more
gmilar to one another than are distant ones), if not dedlt with appropriately, can result
in an effective overesimation of sample size Snce samples are not entirdly
independent. Ross et al. (1992) and Legendre (1993) showed that while spatia
autocorrelaion is a common source of problems for many design-based statistica
methods, it is aso a source of vauable information provided that the gppropriate
detistica tools are used.

Improvements in abundance estimation are not the only rationae for gpplying
gpatia modeling techniques to data on blue crab winter distributions. Quantitetive

maps of blue crab digtributions would dlow managers to evauate the potentid
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effectiveness of time/area closures and marine reserves and provide an objective
biology-based criterion for setting reserve boundaries. Such maps would aso provide
input for predicting the potentid impacts to the blue crab population of changesto the
environment such as dredging and disposal of dredged materid. Findly, quantitetive
maps alow researchers to develop and test hypotheses about habitat use and
ecologica relationships.

Didtribution maps derived from atime-series of data alow for the
examination of potentia changes in habitat use and aggregeation through time. When
the distribution maps are derived from data collected over arange of population Szes
(asthey arein for blue crab in the Chesgpeake Bay), they dso permit the examination
of density-dependent changes in digtribution. Theoretical modes of density-
dependent habitat selection (DDHS), including the discrete space “ided despotic
digtribution” (Fretwell 1972) and the continuous space “basin modd” (MacCal
1990), suggest thet at low population dengity, individuas should concentrate
themsdvesin the mogt suitable habitat. As population density increases, the redlized
suitability in the best habitat declines, and individuas spread out to other habitats that
wereinitidly less suitable but that now have equa or better “redized” suitability.
Although these models have most often been used to describe foraging behavior
(Krebsand Inman 1992), i.e., habitat selection to maximize consumption, they can
aso be gpplied to habitat selection to balance consumption and predation risk (Utne
et al. 1993; Grand and Dill 1997), or minimize energetic costs and maximize surviva
based on abiotic environmenta factors (Kemp et al. 2003). Blue crab winter habitat

selection ismogt likely to correspond to this last Situation since blue crab does not
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forage during its winter dormant period and its energetic costs (Brylawski and Miller
2003) and winter mortality rates (Sharov et al. 2003) are known to vary with
temperature and sdinity.

To the extent that theoretical habitat selection models provide an accurate
description of blue crab behavior, changes in the variogram parameters and
distribution maps can be expected as population density changes. The range
parameter of the variogram indicates the maximum distance a which spatia
autocorrelaion is present between pairs of points, and has been used as a proxy for
patch sze (eg., Biondi et al. 1994, Maravelias & Hardabous 1995, and Dent &
Grimm 1999). If suitable blue crab winter habitat is patchily distributed, with highest
suitability occurring toward the center of the patch, then blue crab patches are likely
to increase in Sze as the population density increases. Such increasesin patch Sze
would result in increases in the estimated ranges. Changesin blue crab densty may
aso manifest themselves as broad- scde changes in crab digtribution within the Bay.
Blue crabs are known to undergo migration toward deeper water in the fal with
mature femaes moving to the degp waters of the lower Bay and maes and immature
femaes moving to deep water of the tributaries and mainstem of the Chesapeske Bay.
Since deep water represents preferred habitat, and more deep water (though not the
deepest point in the Bay) is found in the lower Bay, DDHS modds predict that the
digtribution of blue crabsis likely to move northward into less favorable habitat as
dengty increases. | examine the extent to which blue crab winter digtributions fit the

predictions of DDHS models by testing the following hypotheses:
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H1 - The centroid of the blue crab distribution moves northward as baywide blue crab
abundance increases.
H2 - The range parameter of the variograms increases as baywide blue crab

abundance increases.

Methods

Data

All data andyzed in this study were from the winter dredge survey (WDS) of
the blue crab population in Chesapeake Bay that has been conducted annualy since
1990. The WDS samples crabs during the dormant winter period when crabslie
buried in the sediment, thus limiting potentia bias due to movement. Full details of
the survey design and implementation are provided by Vddstad et al. (2000) and
Sharov et al. (2003), and are summarized here. Briefly, the survey conssted of a
one-minute tow of a 1.83 m wide crab dredge at each station. For most years, stations
were chosen randomly within three strata. During the first two years of the survey,
however, twenty-two and twenty-five drata were used, with each of the mgjor
tributaries and embayments forming a separate stratum. Sample sze ranged from
gpproximately 900-1500 stations per year. Depletion experiments, in which the same
areawas dredged repeatedly, were conducted yearly to determine the fraction of blue
crabs sampled by a single dredge tow, the catchability coefficient (g). Based on these
experiments, Vadgad et al. (2000) used an exponentid model to estimate vessel and
year specific catchability coefficients and transform catch at each Sation into an

estimate of absolute abundance. The variable analyzed here isthe densty of blue
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crabs (number per 1000 n¥), caculated by dividing the absolute abundance estimate
by the dredge area swegpt.

The spatid analyses employed here are based on sample coordinates defined
by the gtarting location of each tow, and the tow distance was caculated from the
gtart and end coordinates as determined by Loran-C in early years and differentia
GPS since 1996. Tows shorter than 50 m and longer than 500 m (1.7% of the total
data) were not used in thisanalysis. All coordinates were projected to Universal
Transverse Mercator (UTM) zone 18 before andys's, dthough for easier

interpretation, plots show equivaent latitude and longitude coordinates.

Geostatistical Analysis

Although some researchers (Little et al. 1997; Rathbun 1998) have suggested
that a landscape-based distance metric that measures distances between sample points
through the water is more gppropriate for kriging in estuaries, results of these studies
have not shown a consstent improvement in prediction accuracy compared to
traditiond kriging methods based on Eudlidean disance. Prdiminary investigation
suggests that improvements in prediction accuracy of blue crab density in Chesapeake
Bay from alandscape-based distance metric are smal and inconsistent with a small
decrease in accuracy observed on average (see Chapter 2). Consequently, the
Euclidean distance metric isused in thisandyss.

In order to satisfy the assumption of Sationarity (i.e., no large scdetrend in
the mean or variance) required in geostatistical andyses, data were spatialy
detrended, and variogram modeing and kriging were conducted on the resduals.

For detrending, a second order two-dimensiond spatid trend with interactions was fit

39



for each year. The modd was smplified using backward dimination with a
ggnificance level to stay equd to 0.01. Thisrelatively stringent criterion was used to
avoid overfitting the trend.

Robust empirica variograms (Cressie 1993) were caculated in SAS
(VARIOGRAM procedure, SAS Corporation, Cary, NC). Variogram estimation was
limited to Stations separated by up to 40 km with alag size of 250 m. Sphericd,
exponentia, and Gaussian variogram models were fit to the empirica variogram
(SASNLIN procedure, SAS Corporation, Cary, NC), and the best fitting model was
chosen except in cases where one variogram mode resulted in unredigtic variogram
parameters (such as a negative nugget) or failed to converge.

Following variogram selection, ordinary kriging was conducted in SAS
(KRIGE2D procedure, SAS Corporation, Cary, NC) with akriging neighborhood of
the 10 nearest sample points. Blue crab density was mapped a a1 km grid scae by
adding the kriged predictions (resduas) to the trend at the centroid of every mapped
grid cdl. Dengty was mapped for dl grid cellsin the Bay south of the northernmost
sample gation. This cutoff was used to avoid extrgpolation into the northernmost
region of the Bay, an area of unsuitable winter habitat for blue crabs dueto low
sinity. Kriging variance maps were aso created. Mapping was conducted in
ArcView v8.3 (ESRI Corp, Redlands, CA). Map cell densties were transformed to
cdll-specific abundance estimates by multiplying the density by the cdll area. These
local abundance estimates were summed across dl mapped cells to estimate baywide

abundance.
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In order to examine potential geographic differencesin dengty trends over the
13-year time-series, the tempora trend for each grid cell was calculated. For each
grid cell, alinear regression of abundance againgt time wasfit. The vauesfor the
dope of the regression were then mapped in order to visualy evauate patterns of
changein dengty. Although the large number of regressions (11,189) and the
presence of spatid autocorrelation prevent rigorous significance testing, a probability
cut-off of 0.05 isused to limit the possibility of displaying spurioustrends. Cells
meeting the p < 0.05 were classified as increasing (positive trend), moderate decline
(negative trend < 0.1 crabs per 1000 7 per year), and strong decline (negative trend
> 0.1 crabs per 1000 n¥ per year)

The relaionship between winter abundance and catch per unit of effort
(CPUE) from the winter dredge fishery was assessed by linear regression of CPUE
againg geodatigtica and design-based abundance estimates. Detailed trip-leved effort
datafor thisfishery is only available from 1994 to the present. Information on dredge
fishery license sales, however, is avallable for the entire 1990-2002 time period.
Consequently, CPUE is caculated here as landings per license. A strong correlation
(r = 0.96) exigts between landings per dredge day and landings per license, indicating
that landings per licenseis a reasonable proxy for CPUE calculated based on more

detailed effort data

Density-dependent Habitat Selection
A centroid was calculated from the distribution maps for each year. The
centroid is Smply amean latitude and longitude of dl grid cdlls weighted by the

edimated dengty in each cell. Although calculation of a centroid is possible from the
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raw data, values caculated in this manner reflect the distribution of samples, aswell
asthe digtribution of values. Thisis not true of centroids calculated from the
abundance predicted for each cdl of agrid. Becausethe samegrid celsareused in
al yearsin the map-based caculation of the centroid, the result reflects changesin
the distribution of crabs rather than the distribution of samples.

To test the predictions of DDHS moddls, the effective range of spatia
autocorrelation and the latitude of the centroid were regressed againgt baywide blue
crab abundance. The effective range of spatia autocorrelation is equd to the range
parameter of the variogram for sphericd models, but by convention is considered to
be the distance at which the semivariance is equa to 95% of the sil| for exponentia
and Gaussian modes which gpproach the sl asymptoticaly. Two dternative
explanaions for changes in digtribution patterns were examined in the same manner.
Changesin freshwater flow (and therefore the location of the sdlt front) dueto
interannua differencesin precipitation were tested as a possible explanation by
regressing the latitude of the centroid against the mean flow rate of the Susquehanna
River measured a Conowingo, MD (USGS 2004) for the preceding fal (October-
December). Conversdly, changesin the relative number of mature females may
explain the observed pattern. To test this dternative, the latitude of the centroid was
regressed againg the percentage of mature femalesin the population. Since
geodtatistical estimates of mature female abundance are not feasible due to the high
number of tows in which no mature femaes were caught (zero inflation), the
proportion of mature females was cal culated from design-based estimates of mature

femae and tota blue crab abundance (G. Davis unpubl. data).
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Results

Spatia trends in abundance were found in dl years. Trend modds are
summarized in Table 4. Gaussan variogram models were chosen in most years,
except in 1992 and 1997, where a spherical mode provided a better fit and 2000
where the best fitting model was exponentia (Table 4).

Spatia patterns of blue crab density in Chesapeake Bay (Figures 12-24 a)
showed a grest dedl of interannua variability, but aress of consstently high or low
density are dso evident. Predicted densities in the upper reaches of many tributaries
and in the northernmost part of the mainstem should be viewed with caution since
few samples exist in these areas and consequently the uncertainty thereis high
(Figures 12 - 24 b). The map of average blue crab density over the 13-year study
period (Figure 258) shows complex patterns with high density in many lower Bay
tributaries and eastern shore embayments. However, some clear patterns emerged.
Crab abundance in the degper channels north of the Patuxent River, and south of the
Potomac River in the main sem is consgtently below average. Smilarly, Tangier
and Pocomoke Sounds aways exhibit above average abundances. Tempora trendsin
blue crab dengty over the 13-year study period (Figure 25b) differ in different parts
of the Bay with much of the lower Bay maingem and the eastern shore showing
declines and some indication of an increase in crab dengty in the upper Potomac.
The upper Potomac, however, fdlsin an area of congstently high variance indicating

that the sgnificance of the trend in thisareais highly uncertain.

43



Trends in the time-series of baywide blue crab abundance (al individuads
larger than 15 mm of both sexes) estimated using geodtatistical methods (Figure 26)
generdly agree well with design-based estimates of abundance (G. Davis unpubl.
data), athough the geodtatigtica estimates are higher in most years. Notable
exceptions to this generd agreement are apparent, however, in the first two years
(1990 and 1991) where the geostatistical estimates are 38% and 73% higher
respectively. Both geostatistical and design-based abundance estimates show
significant negative trends (geostatistica: R? = 0.53, p = 0.005; design-based: R =
0.55, p = 0.004) with a decrease in baywide abundance of 80% and 66%, respectively
from 1990 to 2002. Winter dredge fishery CPUE is Sgnificantly related to both
geostatistical (R? = 0.59, p = 0.002) and design-based (R® = 0.31, p = 0.049)
abundance estimates (Figure 27).

The centroid of blue crab density in Chesgpeake Bay exhibits substantia
interannud variability. Consstent with the North- South orientation of the Bay, the
variability in the location of the centroid is more pronounced in the North- South than
in the East-West direction.  Generdly, the centroids for earlier yearsfal to the north
of those from later years. Thistempora trend in the latitude of the centroid (Figure
28) is satisticaly significant (R? = 0.43, p = 0.01). An even stronger relaionship
exigs between the latitude of the centroid and the estimated Baywide blue crab
abundance (Figure 29, R? = 0.78, p < 0.001). Thereis no apparent relationship
between the latitude of the centroid and the percentage of mature femaesin the
Chesapeske Bay blue crab population (Figure 30, R? = 0.05, p = 0.484). A weak but

ggnificant pogtive relationship exigs between fal flow of the Susquehanna River



and the |atitude of the centroid (Figure 31, R? = 0.33, p = 0.041). Thereisno
gpparent relationship between the effective range of spatia autocorrelation and

estimated Baywide blue crab abundance (Figure 32, RZ = 0.05, p = 0.447).

Discussion

For the time series over which the WDS has been conducted, the Chesapeake
Bay blue crab stock has undergone substantial and significant decline. Over this
same time period, the winter distribution of crabs has exhibited marked interannud
variability. Some regions have shown conggtently high abundance eg., Tangier
Sound and the lower portions of the three mgjor lower Bay tributaries
(Rappahannock, Y ork, and James Rivers). Additiondly some areas exhibit high
abundance, but not consistertly so e.g., the uppermost mapped portion of the Bay and
the uppermost portions of many tributaries, particularly the Potomac River.
Edtimatesin these regions are often associated with a higher degree of uncertainty.
An important area of relatively high crab dengty is often found in the deep waters of
the lower Bay maingem. The precise location of this high-dengty region, which is
likely to be made up largely of mature femaes, shows subgtantia interannua
variaion.

Conggtent with the overall declinesin blue crab abundance, more areas of the
Chesgpeake Bay exhibit a pattern of decreasing density than exhibit increasing
dengty. Decreasesin dendty are gpparent in some of the most consistently high-
density regions of the Bay including the eastern shore area from the Choptank River

south through Tangier Sound. The mgor western shore tributaries generaly do not
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show large areas of declining abundance. Although the overdl digtribution of blue
crabs shifted toward the south, substantia regions of declining density were observed
in the lower Bay maingem. The one area of increasing dengty, the upper part of the
Potomac River, occursin an area of high variance, which makes any conclusons
about trends in this area highly uncertain.

Two datigical gpproaches to estimating crab abundance, design-based and
geodtatistica, both showed a pattern of declining abundances over the 13-year period
from 1990-2002. Geodatistical estimates of Baywide blue crab abundance were
generdly higher than estimates derived from design-based methods, especidly in the
firgt two years of the time-series. Differences in the estimates between design-based
methods and mode- based methods are not unexpected as the accuracy of either
edimate will be influenced by the degree to which the assumptions of the anadlysis are
met and the extent to which it can make use of patternsin the data. The strongest
assumptions of the geodtatistica methods used here are the stationarity of both mean
and variance and that the fitted variogram models are an accurate description of the
gpatid autocorrelation structure. Examination of the residuas after detrending
indicated that, athough locd trends remained, there was no broad scae trend in the
mean or variance. Variogram modd fits were more problematic with severd years
showing spikes at short distances or increases that failed to leve off within the 40 km
range over which the variograms were plotted. Other studies, however, have found
that kriging isfairly robust to misspecification of the variogram parameters (Diamond

and Armstrong 1984; Stein and Handcock 1989). Although the variogram fits were
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problematic, al variograms showed strong evidence of spatia autocorrdation — a
source of information that design-based methods fail to utilize.

A further important reason for differencesin the two estimatesistheir
assumptions about unsampled areas. The design-based gpproach effectively assgnsa
densty equd to the mean stratum dengity to al areas of a stratum and then multiplies
this mean by the area of the stratum. Unsampled areas are d 0 assigned this mean
dratum density, with the assumption thet &l areas of the stratum are proportionaly
reflected in the mean given large enough sample sizes. The geogtatistica gpproach
explicitly assgns vaues to unsampled areas based on the values of the nearest
sampled locations. The likely reason for the observed differencesin abundance
estimates between these two methods relates to sparsaly sampled regions of a stratum.
Design-based approaches implicitly assign vaues for unsampled locations based on
the sample mean, whereas geostatistica gpproaches extrapolate from the nearest
sample points. Accordingly, sample points in sparsely sampled regions are given
disproportiond weight in the geostatistical method. Consequently, if these samples
are representative of the region, the geodtatistica approach may be more accurate.
Conversdly, if the observations are unrepresentative outliers, they can skew the
resulting abundance estimate. This phenomenon iswell illustrated in some of the
density maps where extreme values are present in the sparsely sampled extremities of
many tributaries and in the northernmogt part of the maingtem.

In this specific comparison, the area over which blue crab digtributions are
caculated dso differs. Thisisanother potentia cause of the difference between the

two abundance estimates. The geodtatistical abundance estimates presented here

47



were calculated over an area of 11,189 kn? while the design-based approach
presented by Sharov et al. (2003) used an area of 9,812 kn?, a12.3% smdller
edimate. Although both areas were estimated in a GIS, different shordinefiles or
map projections may result in different area estimates. A more important source of
differences may be the definition of what congtitutes Bay waters. For this study,
abundance was estimated for dl grid cdlsfdling to the south of the northernmost
sample point (out of dl years) and inshore of aline approximately connecting Cape
Henry and Cape Charles. The 1 km grid size limited the extent to which the narrow
upper reaches of tributataries were represented in abundance caculations. Rescaling
the design-based abundance estimates by the ratio of the two areas dightly reduces
the magnitude of the discrepancy between design-based and geostatistical estimates,
but does not change the overall patterns.

It is not possible to determine which abundance estimation method more
accurately estimates the size of the blue crab stock in Chesapeake Bay. However, the
ggnificant correations between winter dredge fishery landings and the two
abundance estimates provides support for both methods. The stronger correlation
between landings and the geostatistical abundance estimate suggests that this method
may do a better job of capturing inter-annud fluctuations in abundance. Interestingly,
the 1990 and 1991 (the years for which the two methods differed most dramaticaly)
geodtatistical abundance estimates fal close to the regression line indicating thet
these unusudly high estimates may be an accurate reflection of higher abundancein
the first two years of the survey. This correlation only addresses pattern, however,

not the scde of the estimates. A strong correlation between landings and abundance
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esimates could be found even if the estimates were conggtently higher or lower than
true abundance.

One of the mogt driking patterns that emerged from andysis of the dengty
maps was the positive relationship between the latitude of the centroid of blue crab
dengty and the abundance of blue crabsin the Bay. Whileit is notorioudy dangerous
to infer process from peattern, severd dternative explanations for this pattern were
examined, and DDHS remains the most convincing. Two of the most plausible
dternative explanations, the percentage of mature femaes and fdl Susquehanna
River flow rate, were examined and neither displayed a strong relaionship with the
latitude of the centroid. The weak positive relationship between fal flow and the
latitude of the centroid is most plausibly explained by gravitationa circulation
shifting the sdt front northward in bottom waters. Despite the lack of convincing
dternative explanations, the observed pattern can only be seen as suggestive of
DDHS since other untested factors may be influencing the distribution of blue crab.
The shift in centroid over the time series of the WDS may reflect severa physical and
biologica variables that dso exhibited trends over the same time period and could be
implicated in the observed changes in the centroid.

Although the relationship between the location of the centroid and blue crab
abundance strongly implicates DDHS, the limiting resource and the behaviora
mechanism for maintaining DDHS are not gpparent. Space is the most obvious
potentialy limiting resource since blue crabs do not feed during their dormant winter
stage. The highest density of crabs observed in the trawl data was 5,614 crabs per

1,000 n?. At this density, more than five crabs would be found in an average 1 n?
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quadrat, and space might well be limiting. Such densities appear to be very rare,
however, with 99.4% of samples having densities |ess than 1,000 crabs per 1,000 n¥.
At these lower dengties, it is not clear how space could be a purely physcdly
limiting resource, i.e., that additiona crabs would be forced to move e sewhere for
lack of aplaceto bury. Although aggressive interactions are common among blue
crabs and density-dependent agonism is thought to influence habitat selection by
juveniles (van Montfrans et al. 2003), a behaviora explanation for space limitation in
the winter seems unlikely given that crabs aready buried in the sediment areina
dormant state and are probably unable to defend their space.

Another possible factor affecting the digtribution of crabsis the winter dredge
fishery. The WDS takes place over afour-month period from December to March.
During thistime, an active winter dredge fishery with landings during the period 1990
- 2002 of 4 - 31 million crabs per year (S. Iverson unpubl. data) — representing 1 -
5% of the totad overwintering population) — takes place in the lower Bay. Asthe
Season progresses, samples from the WDS increasingly reflect the impact of the
winter dredge fishery on winter distributions. The effect of the winter dredge fishery
on the latitude of the centroid depends on how catch variesin reation to abundance,
If catch is a congtant proportion of abundance, the winter dredge fishery would have
no effect on the centroid. Alternatively, if catch isacongant which does not vary
with abundance, the winter dredge fishery would cause the latitude of the centroid to
be inversdy related to abundance since the fishery would remove a smdler and
smaller fraction of the lower Bay population as abundance increased. Only if the

winter dredge fishery removed a grester fraction of the lower Bay population as
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abundance increased could the winter dredge fishery cause the observed positive

rel ationship between abundance and the latitude of the centroid. The gpparently
linear relationship between landings and abundance suggests that the first relationship
(catch is acongtant proportion of abundance) isthe most likely, indicating that the
winter dredge fishery is unlikdly to be asgnificant cause of the changesin the
location of the centroid.

The lack of any apparent relationship between the effective range of patia
autocorreation and blue crab abundance suggests thet either: 1) therangeis not a
suitable proxy for patch size; or 2) patch sze is not related to baywide abundance.
Although severd studies have used the range parameter from variograms as an
estimate of patch size (e.g., Biondi et d. 1994, Maravelias & Haraabous 1995, and
Dent & Grimm 1999), none appear to have tested thisrelationship. Therangeis
likely influenced not only by patch Sze, but dso by other characterigtics of a atid
distribution such as distance between patches and patch shape.  The ranges observed
in this study were typicaly on the order of tens of kilometers. While patchiness at
this scale may aso have biologicd meaning — for example, patches of the deep lower-
Bay habitat used by mature females may be of this Sze— smadler scae paichiness on
the order of tens to hundreds of meters may be more relevant, particularly in many of
the tributaries and embayments. This smaler scale patchinessiis probably not well
sampled by the survey and contributes to the nugget, which incorporates
measurement error and variability below the sampling resolution (Cressie 1993).

Alternatively, the assumption that DDHS would result in larger patches may be
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wrong. Suboptima habitat patches may become suitable as densitiesincrease within
optimum patches, resulting in more, but not necessarily larger, patches of blue crabs.

What do density dependent changes in winter distributions mean for the
population dynamics of blue crab? If DDHS does play arole in determining
digributions, and lower densities result in more crabs overwintering in optimum
habitat, then natura overwintering mortdity rates may decline. Such a compensatory
mechanism has not previoudy been documented in blue crab populations and
understanding its potentid effects will require more research on overwintering
mortality. Potentid gains due to decreased overwintering mortaity may be off s,
however, by increased fishing mortdity ratesin the lower Bay as the digtribution
shifts southward. The de facto winter refuge in the upper Bay, where no winter crab
fisheries exi<, protects a decreasing proportion of the population as stock size
declines and the digtribution shifts to the south. This potential depensatory
mechanism could be offset by dtricter controls on the winter dredge fishery.

The results of this sudy show significant declines in winter abundance and
concurrent changesin digtribution. The digtributiona changes are consigtent with the
predictions of DDHS models, however, dternative explanations exist which cannot
be rgjected based on the available data. Whether the observed distributiond changes
are due to DDHS or not, they may interact with exploitation patterns to hasten the
decline of the blue crab stock in Chesgpeake Bay. The distributional maps provide a
potentialy useful tool for designing spatia management drategies that could avoid

such declines.
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Chapter 4: Winter Distribution of Blue Crab
(Callinectes sapidus) in Chesapeake Bay: Application
and Cross-validation of a Two-stage Generalized
Additive Model (GAM)

Abstract

| present atwo-stage generdized additive modd (GAM) of the digtribution of
meature femae blue crab (Callinectes sapidus) in Chesapeake Bay based on data from
afishery-independent winter dredge survey. The distribution and abundance of blue
crabs was modeled as aflexible function of depth, salinity, water temperature,
distance from the Bay mouth, distance from submerged aquatic vegetation (SAV),
and bottom dope for each of the 13 years of available data. Depth, sdinity,
temperature and distance from the Bay mouth were found to be the most important
environmental determinants of mature female blue crab digtributions. The response
curves for these variables displayed patterns that are consistent with laboratory and
field sudies of blue crab/habitat relationships. The generdity of the habitat modds
was assessed using intra- and inter-annua cross-vadidation. Although the models
generdly performed well in cross-vaidation, some years showed unique habitat
relationships that were not well predicted by models from other years. Such
variability may be overlooked in habitat suitability models derived from data

collected over short time periods.
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| ntroduction

Blue crab (Callinectes sapidus) ranges dong the Atlantic coast of the
American continent from Brazil to Canada.  Evidence does not support the existence
of digtinct genetic populations, but functiona sub-populations are recognized with
only limited exchange between them (McMillen-Jackson et a. 1994). Over the
Species wide latituding range, individua sub-populations can experience markedly
different environments. Temperatureis likely the key environmental parameter
causing the variation observed in life history schedules (Smith 1997). Centrd to
temperatures role is the existence of aphysologica minimum temperature (Tpin),
closeto 10° C, beow which molting, and hence growth, ceases (Brylawski and Miller
2003). Astemperaturesincrease above Tmin, the period between molts shortens, and
thus, overdl rates of growth increase. In particular, the proportion of the year during
which temperatures are above T isan important determinant of the life history
pattern expressed. In the Gulf of Mexico, average bottom water temperature is above
Tmin throughout the year, and crabs grow sufficiently fast so that they can mature,
reproduce and enter the commercid fishery inasingleyear. In contrast, water
temperatures in mid-latitudes are unfavorable between late November and late April.
During this period, crabs enter a dormant phase during which they bury into the
sediments. Thusin mid-latitude populations, growth and maturation occur in
different years so that individuds take a minimum of 18-24 months to complete their
lifecyde

Because overwintering blue crabs in Chesgpeake Bay do not feed and are

unlikely to experience significant predation, biocenergetic coss are likely to play a
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dominant role in determining overwintering surviva. Laboratory studies (Tagatz

1969, McKenzie 1970) have shown that sdlinity and temperature interact with thermal
tolerances dependant on both sdinity and acclimation temperature. These results
suggest that salinity and temperature, as well as factors such as depth, which might
serve to limit temperature fluctuations, may be important in determining choice of
overwintering habitat; however no sudies to date have examined the extent to which
winter distributions of blue crab reflect differences in these variables.

The blue crab population in the Chesgpeake Bay supports the single largest
blue crab fishery in North America. Assessments of this stock indicate recent
declines in both abundance and landings (Chesapeake Bay Stock Assessment
Committee 2003) despite efforts to reduce fishing mortality (Chesapeske Bay
Commission 2001). Winter distributions in the Bay have been an emphasis of recent
research for severd reasons. Mot directly, estimates of abundance and rates of
exploitation of blue crab in Chesapeake Bay, on which stock assessments have been
based, have been derived from a baywide, fishery-independent winter dredge survey
(WDS) conducted between December and March (Sharov et a. 2003). Also making
the winter distribution of crabs important is concern over the vulnerability of
gpawning femaesin awinter dredge fishery (Miller 2003) and the efficacy of a
dispersa corridor (Lipcius et a. 2001) and a combined marine protected areaand
dispersa corridor (Lipcius et d. 2003) that has recently been established in the
Virginia (southern) portion of Chesgpeske Bay. Thus, the ability to predict blue crab

winter distribution has become desirable.
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Generdized additive modds (GAMS) provide a flexible non-parametric or
semi- parametric framework to model the relationship between a response and one or
more predictor variables (Hastie & Tibshirani 1990). GAMs do not require the
digtributional assumptions of traditiona parametric gpproaches and provide the
ability to fit flexible non-linear response curvesto individud predictor variables. In
GAMs, the response varigble is assumed to be the sum of separate individud
functions of each of the predictor variables with alink function gppropriate to the
digtribution of the response varidble (e.g., a Poisson link function is often specified
for count data). In the more familiar generdized linear models (GLMs), these
individua functions of the predictor varidblesarelinear. In GAMs, the individua
functions may be linear or may be non-parametric smoothers such as regression
splines, which are better suited to modeling many common biological response curves
such asthreshold functions. Different functions may be specified for each predictor
variable, alowing for response curves that are specific to theindividua predictors.

The use of GAMsto mode organism/habitat rel ationships increased following
publication of Hagtie and Tibshirani’s (1990) book and Swartzman et a.’s (1992)
gpplication of this technique to mode groundfish in the Bering Sea. GAMs have
snce become widdy used in marine sciences to predict abundance and identify
important habitats (e.g., Svartzman et al. 1994,1995, Maravelias et a. 20003, Reid &
Maravelias 2001) and to mode stock-recruitment relaionships (Cardinde &
Arrhenius 2000).

Two-gtage GAMs are an extension of the basic Sructure in which the response

variableismodded first as abinomid variable (presence/absence or yes'no) and
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secondly the non-zero observations (presence or yes) are modeled as a continuous or
count variable, usudly with a Gaussian or Poisson digtribution respectively. Thetwo
sages may then be combined multiplicatively to yied an overd| prediction (Barry &
Wedsh 2002). This approach is particularly useful in modding aguatic organisms, for
which, because of their patchy distributions, survey catches are often zero-inflated,
(Maraveias 1999). Two-sage GAMs have been used in fisheries to improve
estimates of various stock assessment indices (e.g. Borchers et al. 1997, Piet 2002)
and to model saimon feeding and growth (Rand 2002).

However, despite the widespread use of GAMS, studies have yet to examine
their ability to find generd relationships that are vaid beyond the particular data set
or year modeled. A risk of usng highly flexible, non-parametric methods is thet the
resulting predictive models may fit the modeled data so specificdly that they may
have little predictive power when applied to other data sets. The underlying god of
mogt habitat modeling studies is not Smply description of the trends in the modeled
data, but aso to produce predictions vaid in other years/locations. I1dedly, GAMs
should produce an understanding of the functiona relationship between an organism
and various components of its environment. Cross-validation, by testing the &bility
of models based on one data set to accurately predict valuesin another, isauseful
means of assessing the generdity of amodel.

Here | fit two-stage GAMSs for each of thirteen years of data from the WDS to
determine the environmenta variables that regulate winter digtribution of mature

femae blue crab in Chesapeake Bay. Subsequently, cross-vaidation is used to assess
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the ability of models developed to predict distributions in one year to predict the

digtribution of crabsin other years.

Methods

| modeled the distribution of mature femae blue crab in Chesapeske Bay. Mature
females were chosen as the focus of this study because of their greater per capita
contribution to future generations and because current management srategies,
including the lower bay spawning sanctuary, are focused specificaly on ther

protection.

Data

The WDS has been conducted annually between December and March since
the winter of 1989-1990. Full details of the survey design are provided in Sharov et
al. (2003), and are only summarized here. Survey years will henceforth be referred to
by the year in which the survey was completed, eg. thefirst survey isthe 1990
survey. Stratification and sample sze in the firdt three years of the survey were
different than in the remaining years, but except for this change the survey has been
conducted consistently throughout the period of record. From 1993 — present, 1255 —
1599 dratified random stations were sampled within three region-based strata.
During the period 1990 — 1992, there were more strata and generdly fewer (867 —
1395) samples. A typica digtribution of station locations and densities of mature
femde blue crabsis shown in Figure 2. One-minute tows of a 1.83m-wide crab

dredge were made at each station. The length of each tow was determined by either
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Loran-C or adifferentia globa postioning sysem (DGPS). All crabs greater than 15
mm carapace width were measured, sexed and enumerated. Additiondly,
environmenta parameters were measured at each station. Depletion experiments
(Zhang et al. 1993; Valstad et al. 2000), in which the same area was dredged
repeatedly, were conducted yearly since 1992 to determine the fraction of blue crabs
sampled by asingle dredge tow, i.e., the catchability coefficient (g). Based on these
experiments, an exponential modd was used to estimate vessel and year pecific
catchability coefficients that were used to transform catch at each Sation into an

estimate of absolute abundance.

Environmental Variables

Sx environmenta variables were chosen for congderation in the GAMs based
on availability and known or plausble rolesin influencing blue crab digtributions.
Depth was measured a each WDS ste. The five remaining variables, sdinity, water
temperature, distance from the Bay mouth, distance from the nearest submerged
aquatic vegetation (SAV), and bottom dope, were derived using data from other
sources and a geographic information system (GIS).

Although surface sdlinity and temperature were measured a each WDS site,
the more relevant measurements for describing blue crab winter habitat choice are the
bottom salinity and temperature at the time when they bury into the sediment. For
this reason, temperature and sdinity used in this analysis were interpol ated from
Chesgpeake Bay Water Quality Monitoring Program data (Chesapeake Bay Program
1993). December bottom temperature and sainity maps were produced for each year

using data collected at 99-123 Sites per year. The data were first spatialy detrended
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in order to satisfy the assumption of first-order stationarity (Cressie 1993).

Detrending was conducted using linear regression and northing, easting, and northing

X eadting interaction terms. Variogram modeing and ordinary kriging were

conducted on the residuas before adding the trend back to the kriged predictions.
Gaussan, sphericd, and exponentid variogram models were fit to empirica

variograms using nortlinear least squares (SAS, NLIN procedure) and the best fitting
mode (lowest mean squared error) was used for kriging (SAS, KRIGE2D procedure).
I nterpol ated bottom temperature and sainity were mapped in ArcView v3.2 and maps
from the previous December were used to assign vaues to each WDS site.

Distance from the Bay mouth was caculated along the shortest through-water
path between the dredge start point and a point in the mouth of the Bay midway
between Cape Henry and Cape Charles. This distance was calculated in ArcView
v3.2 usng a customized script based on the lowest-cost path function and a raster
map of the Bay with aresolution of 250 m (see Chapter 2). This variable was chosen
basaed on a preference by mature femaes for higher sdinity water in the lower Bay
waters where their offsporing may be more easily advected off-shore (Johnson 1995).
Distance from SAV was chosen as a potentialy important environmenta variable
because of known affinities by blue crabsfor SAV (Orth et d. 1996) during the
gpring and summer and the hypothesis that mature females may choose the nearest
suitable winter habitat. In accord with this hypothes's, SAV didtributions from the
previous summer were used, e.g., 1989 SAV digtributions were used to predict 1990
(i.e,, winter 1989-1990) crab distributions. Distance from the nearest SAV beds was

caculated usng maps of annua Chesapeske Bay SAV didributions derived from
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aeria photography (Orth et a. 2001). Distance from SAV was calculated asthe
draight-line distance and was log transformed in order to conform to anormal
digtribution.

Maps of Chesapeake Bay bottom type are not of sufficient patia and
temporal resolution to dlow us to incorporate bottom type directly into our anayses.
Accordingly, | used bottom dope as a proxy for benthic habitat type. This approach
assumes aress of high dope are likely to be unstable and hence ingppropriate
overwintering habitat. Bottom dope was cdculated from a high-resolution (30m)
bathymetric digitd devation layer (National Oceanic and Atmospheric
Adminigtration 1998) in ArcView v3.2. Bottom dope was log transformed and
multiplied by afactor of 10 in order to conform to anorma digtribution on asmilar

scde as the other environmentd variables.

Two-stage Generalized Additive Models

Two-stage GAMs were used to describe the relationship between mature
femade blue crab densty and the Sx environmentd variables. Models were
developed independently for each year of data using arandomly selected training
subset representing 75% of the dataiin an individud year (650-1199 dtations). The
remaining 25% of the data were reserved for cross-vaidation. Inthefirst stage of the
andysis, presence or absence of mature female crabs was modded using alogistic
mode with abinomid error didribution and alogit link function. In this stage, the
probability of crab occurrence a any site was modeled as an additive function of the

sx environmentd variables (D = water depth (m), M = distance to the Bay mouth
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(km), V = distance (km) to SAV beds, S = sdinity (ppt), B = bottom dope, and T =
water temperature (°C)), given by:

p=s(D) +sM) + V) +S) + §B) + T @
where | isthe binary response indicating presence or absencein asample, p isthe
estimated probability that | = 1 (presence), the S's are unique regression spline
functions for each environmenta variable. Pendized regression splines (Wood &

Augustin 2002) were fit usng the mgev (v1.0-9) package for R v1.9.1.

In the second stage of the modd, log transformed mature female blue crab
density (# 1000m2) of only those stations at which at least one mature female crab
was caught was modeled as afunction of environmenta covariates with the
assumption of a Gaussian error distribution. The mode equation was:
In(17) = (D) +s(M) + (V) + «S) +(B) + «T) 2
where 1t isthe predicted dendty of mature femae blue crabs given occurrence, and
the other variables are as gven above. Subsequently, the predicted log abundance,
In( §), a agiven location was caculated as the product of Stage | and Stage |1
In(9)= pin(#) 3
(Barry & Welsh 2002).

Theflexibility of the response curves was optimized usng an iterative method
that rewards modd fit and penalizes degrees of freedom (Wood 2000). This approach
avoids the subjectivity inherent in choosing degrees of freedom a priori and ensures
that the models provide the best fit with the fewest degrees of freedom. Aninitia full
modd containing al sx variables was smplified by removing inggnificant variables

(backward dimination) until al remaining variables were ggnificant (a=0.05). All
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possible two-variable interactions using the remaining variables were then added to
the modd, and the model was again pared down to only significant terms. Non
ggnificant main effect terms (a single regponse variable with no interaction) were
retained, however, if they were dso part of asignificant interaction. In two instances,
the model-fitting agorithm would not converge when the degrees of freedom for an
interaction term were not fixed. In these cases, arange of plausible degrees of

freedom were given, and the model with the highest adjusted R? was selected.

Model fit, Cross-validation, and Mapping

Recelver operating characteristic (ROC) curves were used to assess the fit and
generdity of stage | (presence/absence) models. Although ROC curves are
commonly used to assess logigtic regresson models (Hosmer and Lemeshow  2000)
and have been used to assess habitat models devel oped through logistic regression
(e.g., Bonn & Schroder 2001, Scholten et. d. 2003, Gibson et a. 2004), they can dso
be applied to any modd that produces estimates of p (the probability of presence) for
abinomialy didributed response variable. ROC curves are smply aplot of
sengtivity (the fraction of correctly predicted presences) againgt specificity (the
fraction of correctly predicted absences) with changing critical vaues of p (Perit, the
probability above which presence is predicted). An ROC curve for amodd with no
discriminatory power is Smply astraight line with adope of one, i.e,, as peit changes,
any increase in sengtivity is offsat by an equivaent loss of specificity. ROC curves
are used here to caculate the area under the ROC curve (AUC, a measure of
discriminatory power), popt (the value of p which resultsin the highest percentage of

correct predictions), and prir (the vaue of p for which senstivity and specificity are

63



equa). AUC isathreshold-independent (i.e., it does not depend on a specified perit)
summary datigtic that ranges from 0 (no discriminatory power) to 1 (perfect
discriminatory power) and has been previoudy used to assess the generdity of
logidtic regression-based habitat models (Bonn & Schroder 2001). Although criteria
for evaluating AUC values are to some extent arbitrary, Hosmer and Lemeshow
(2000) suggest the following cut-offs: 0.7-0.8 acceptable, 0.8-0.9 excellent, >0.9
outstanding.

Cross-vdidation was aso used to assess the trandferability of the combined
models (the product of stage | and stage 1) fit to training datasets to a separate test
data set from the same year (i.e,, intra-annud cross-vdidation) or to datafrom
another year (i.e., inter-annua cross-validation). The predictive ability of each
combined model was assessed by regressing predicted vaues on the observed vaues.
The resulting least-squares correl ation coefficient was used as an index of modd
performance. Two hypotheses were tested:

1) Moddsfit to atraining data set perform better (i.e. higher r) on the training data
than on independent test data from the same year.

2) Moddls perform better in intra-annual cross-validation than when gpplied to deta
from other years (inter-annua cross vdidation).

To test these hypotheses, the Fisher (1915) transformation was used to
norméalize the cross-vaidation correlation coefficients (r). Thefirst hypothesis was
tested using a paired t-test of the transformed correation coefficients and the second
was tested using at-test for two sampleswith equa variance. To ad interpretation of

the results of the cross-vdidation andyses dl individud models were compared to the
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grand mean (induding inter- and intra-annual) cross-vaidationr. | caculated

sandardized normd deviates;

(ri,j - 1)

S

wherer; j is the Fisher (1915) transformed coefficient of determination for predictions
from the modd yeer i, applied to observed year j, ™ isthe grand mean, and sthe
sample standard deviation of

In order to visudize predicted mature female blue crab distributions,
predictions from the most genera modd (i.e., the mode with the highest mean cross-
vaidation r-squared value), were mapped for stage |, stage 11, and the combined
model. Predictionswere made for 1 km by 1 km grid cells based on the vaues of the
predictor variables for each cdll. Vdues of the dynamic predictor variables
(temperature, dinity, and distance from SAV) used in mapping were the values
within each grid cdll for the summer (distance from SAV) or December (temperature

and sainity) preceding the most generd modd.

Results

Model Development

Significant correlations were present between many pairs of explanatory
variables (Table 5). Most notably, there was a strong and negative correlation (r = -
0.64) between sdinity and distance from the Bay mouth. Moderately strong
correlations occurred between sdinity and temperature (r = 0.34), and between depth

and bottom dope (r = 0.28). Although the correlations among the explanatory
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variables were often gatigticdly significant, even the two most strongly correlated
variables (sainity and distance from the Bay mouth) do not overlap entirely as
sinity patterns are strongly influenced by freshwater flow from the western shore
tributaries, which, combined with the Coriolis effect, resultsin a pattern of lower
sinitiesin the eastern Bay. Colinearity among the explanatory variables was not
deemed aufficient to drop variables from the full models, but will be considered in the
interpretation of model sdection results.

All sx explanatory variables were included as either Sgnificant main effects
or ininteraction termsin &t least three of the find models, however, no varigble
occurred in dl modes (Table 6). Distance from Bay mouth and depth were the most
commonly included variables. In stage |, distance from the Bay mouth was
ggnificant in 9 out of 13 years and depth was sgnificant in dl years. Distance from
Bay mouth appeared in 10 out of 13 yearsfor stage |1 models, while depth was
included in 5 stage |1 moddls. Water temperature dso appeared commonly in stagel,
occurring in 9 out of 13 years, but was only found to be sgnificant in 2 of the stage 11
modeds. Sdinity wasincluded in 8 yearsfor stage| and in 2 yearsfor sage 1.
Importantly, salinity was often included in stage | models when distance from the Bay
mouth was not. The remaining two variables, bottom dope and distance from SAV,
were not often found to be sgnificant in either mode Sage.

Pendlized regresson splinefits of individud environmenta factors to blue
crab dengty varied from smple linear functions to highly complex curves. Response
curves are presented for the most commonly included variables, distance from the

Bay mouth (Figure 33), sdinity (Figure 34), depth (Figure 35), and temperature
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(Figure 36), for dl yearsin which they were included as Sgnificant main effect terms
only, i.e., not in interaction.

Relationships between crab distribution and abundance and distance from the
Bay mouth showed two dominant patterns. A linear decline in crab density with
increasing distance from the Bay mouth was seen in four of the seven Stage || models
examined (Figure 33, panelsd, g, j, and ). The second pattern, amaximum at
gpproximately 25-50 km, was observed in two Stage | (Figure 33, panels b and c) and
two Stage || models (Figure 33, pandlsj and h). The shape of these response curves
at greater distances from the Bay mouth was highly variable, reflecting the rlatively
rare catch of mature femae blue crabsin the upper Bay, and some curves (Figure 33,
pandsc, f, g, and k) suggest that the decline in crab dendity may leve off beyond 100
km from the Bay mouth.

Response curves for sdinities below 15-20 ppt were characterized by lower
probabilities of presence and lower abundance given presence aswell as extreme
variability due to the smdler number of samplesa low sdinity. Some curves (Figure
34, pandls a, e, and f) showed amaximum or aleveding off a approximately 25 ppt.

The relationship between crab abundance and depth showed a generd increase
in both probability of crab presence and in density given presence as depth increases.
Within this generdly postive trend, a maximum (Figure 35, panelsaand €) or a
leveling off of the curve (Figure 35, pands ¢, d, and h) was frequently observed at
gpproximately 15-20 m.

Differences were apparent between the Stage | and Stage |1 response curves

for temperature. Stage | curves (Figure 36, pandsa- f) showed agenerdly negative
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relationship between temperature and the probability of crab presence while Stage 11
curves (Figure 36, pands g and h) both indicate a positive relationship between
temperature and crab dengity given presence. Subgtantid interannud differencesin
December bottom temperatures, however, make it difficult to compare models for

which, in some cases, the temperature ranges do not overlap.

Model Fit, Cross-validation, and Mapping

| used the models developed on the training datain asingle year to predict
crab abundance for the test data for that year, and for the entire datasets for dternative
years (Table 7). Two-sage GAMs developed using the six habitat variablesincluded
in thisstudy explained between 13% and 36% (mean R = 0.277) of the variability in
blue crab winter densitiesin the training data set (Table 78). WDS samples were
characterized by alarge percentage (80-90%) of observations containing no mature
femae blue crabs, as wdl asa smdl number of very high-dengity samples. The two-
stage models generdly predicted redistic densities but underestimated the observed
variability. For example, predicted log dengties from the 1998 two- stage model
showed asmilar mean as the survey observations, with the linear regression of
observed vs. predicted faling nearly coincident with the one-to-one line, but showed
lower variahility, i.e., fewer low- or zero-dengty predictions and alower range of
predicted values (Figure 37). Observed densities show a notable gap between tows
with zero catches and the lowest predicted dengities.

The mean R for theintra-annua comparison was 0.192. Results for the intra-

annua cross-vdidation showed that there was a Sgnificant difference in model
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performance between test data and training data (paired t-test, p = 0.002). Theinter-
annud cross-vdidation displayed substantia variation among years and was
ggnificantly less accurate than the intra-annua cross-vdidation (t-test, p < 0.001).

The cross-vdidation table (Table 7b) represents the ability of a model
developed with data from one year (columns) to predict data from other years (rows),
and it displays two different but related pieces of information. Examining the
patternswithin a column eva uates the characteristics of one model. Patterns within a
row relate to the characteristics of a particular data set.

The column patterns show that gpart from 1990 and 2001 al models yielded
above averager valuesfor at least four other years of data. This suggests that the
models, though they differ in their individud parameters, do capture some generd
features of the blue crab habitat preference. The 1998 modd displayed above average
cross-vdidation r values for dl years except 1990, 1995, and 2002. The other striking
feature of the column patternsis that the 1990 and 2001 models yield below averager
vauesfor nearly al data sets except test data from the same year.

The row patterns offer further information about inter-annua differences. The
year 1990 iswell predicted (i.e. above averager) only by the modd from the same
year. The datafor 1995 issmply difficult to predict with any model. The 1994 data
are well predicted by models from any year other than 1990, 1997, or 2001.

Stage | (presence/absence) models were evauated using ROC curves to assess
modé fit (Table 8a) and generdlity (Table 8b). The percent of correct predictions for
mode!s gpplied to the training data varied from 82-93% at popt and from 74-85% at

Prair- The AUC for the training data varied from 0.81t0 0.91. Theselevelsare
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equivaent to Hosmer and Lemeshow’s (2000) excdlent rating. AUC vaues were
generdly lower for the cross-validation where models devel oped with data from one
year were gpplied to data from another year; however, al models displayed
acceptable discriminatory power (AUC > 0.7) for at least four other years. The stage
| models from 1997 and 1998 were the most generd with AUC > 0.7 for dl years
other than 1995. The 1995 data were well predicted only by stage | models from
1994 and 1995.

Predictions from the stage | (Figure 38a), stage |1 (Figure 38b), and combined
(Figure 38c) models were mapped for the 1998 model since this year exhibited the
greatest generdity for both stage | and the combined modd. Critical p-values used
for classifying the stage | map were prair = 0.15 and popr = 0.455. Of the samplesin
the 1998 training data that contained one or more mature female blue crabs, 77%
occurred within the shaded areas of Figure 38a, and 40% occurred within the dark
shaded area. Much of the mainstem Bay south of the Rappahannock River is shaded
indicating higher probability of blue crab presence. North of the Rappahannock
River, shaded aress are generaly restricted to the degper maingtem channels and the
channd in Tangier Sound.

Patterns of predicted dengity given presence (conditiona dengity) shownin
Figure 38b are broadly smilar to patternsin probability of occurrence. Higher
conditiond dengties are predicted in the lower Bay mainstem and in degper channels
throughout the Bay. The higher conditiond densities predicted in the upper reaches
of western shore tributaries are not found in the stage | model and are apparently

extrapolations of the sdinity effect beyond the range of sampled sdinities,
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The combined modd (Figure 38c) is derived from raster multiplication of
Figures 38a and 38b and reflects the influence of both modd stages. Highest
predicted densities are found in the lower Bay mainstem and deep channds. The high
conditiona dengties predicted in stage |1 for the upper reaches of western shore
tributaries are largely nullified by the low probability of crab presence predicted for

these areasin stagel.

Discussion

The spatid pattern of winter distribution and abundance of mature femae blue
crabs in Chesapeake Bay were sgnificantly related to severa environmenta factors
over thirteen years. Depth and distance from the Bay mouth (and their interaction)
were the dominant variables for predicting both presence/absence and abundance of
mature female blue crab. Increased depth was associated with increased probability of
finding crabs and increased crab abundance where they were present. Although
greater depths are generdly associated with lower Bay waters, depth may dso have a
direct effect on habitat suitability by providing some protection againg rapid
temperature changes due to changing air temperature.

Probability of crab presence and crab abundance generaly decreased with
distance from Bay mouth, athough in some years a maximum was discernible at 25-
50km from the Bay mouth. The correlation between distance from the Bay mouth
and other environmentd varigbles, dinity in particular, makes it difficult to
determine what, if any, direct influence distance from the Bay mouth could have on
blue crabs. However, mature fema e blue crabs both spawn and overwinter in the

lower Bay, and it islikely that effective offshore transport of newly hatched crab
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larvae is dependent on their release location within the Bay. Therole of distance
from the Bay mouth in explaining abundance of mature femae blue crab may be
related to selection for optimum larva transport conditions or a balance between
conditions favoring higher surviva and those favoring reproductive success.

Sdinity and temperature were aso frequently found to be significant factors
in determining crab digtributions, dthough perhaps not as often as might be expected
given the demondtrated effects of sdinity and temperature on the bioenergetics
(Guerin & Stickle 1992, Brylawski & Miller 2003), growth (Tagatz 1968, Smith
1997), and surviva (Tagatz 1969) of blue crabsin the laboratory. Higher sdinities
were associated with higher probability of blue crab presence and higher density
given presence, with amaximum of 25 ppt observed in some years. Femdes
migrating from the upper Chesapeake Bay likely do not spawn until the season after
mating (Turner et d. 2003), however there are potentid advantages to overwintering
in the lower Bay. Although adult femaestolerate awide range of dinities, they may
be less efficient osmoregulators a lower sdinity (Tan and Van Engd 1966), and may
be less tolerant of extreme temperatures at low sdinity (Tagatz 1969). Laboratory
studies have demongtrated that blue crab respiration increases at decreasing sdinity
(Engd and Eggert 1974, Guerin and Stickle 1992), thus overwintering in high salinity
waters may alow femaes to conserve energy.

Higher temperatures were associated with alower probability of crab
presence, but higher dengity given presence. Blue crabs may be expected to have
conflicting demands regarding temperature. Mortdity rates increase sharply below

5°C (L. Bauer, pers. obs.), but respiration and metabolic costs begin to increase
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rapidly above approximatdy 15°C (Brylawski & Miller 2003). Stll, it isunclear why
the direction of the temperature response should vary between stage | and stage 1
models.

Response curves of the two remaining variables are complex and do not
coincide with smple biologica explanations. Bottom dope and distance from SAV
showed little ability to explain crab digtributions or abundance. Even when these
variables were determined to be significant, the response curves were highly variable
and no support was provided for the hypothesis that lower dope and shorter distance
from SAV represent preferred winter habitat. Such year-to-year variability in
response curves may indicate that relationships to some habitat parameters are
complex and dynamic or may change with changesin populaion sze. Itisaso likdy
that some spurious relaionships may be found to be sgnificant when fitting 26
Separate models.

Although corrdation among environmenta parametersislikely the norm
rather than the exception, such dependencies must be considered when evaluating
mode selection results. For example, astrong correlation exists between sdinity and
distance from the Bay mouth. Asaresult, although both variables were common in
the find modds, it was relaively unusua for both to be included in the same moddl.
Although efforts were made to make dl variables equaly likely to enter into the
modd (e.g., by transforming nor-normally distributed variables and rescaling some
variables so that al were of the same magnitude), inherent differencesin variability
and measurement error are till likdly to influence model selection. As Hakanson and

Peters (1995) have pointed out, if two environmenta parameters are equdly related to
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aresponsg, it is the parameter with lower variability and lower measurement error
that ismost likely to be selected. In this case, the Satic variables, depth and distance
from the Bay mouth have an advantage in that they can be measured with little error
and they do not change over time. Even if individua crabs are sdlecting an
overwintering location based on temperature and sdlinity &t the time of burying, depth
and distance from the Bay mouth may be more powerful predictors of distributions,
despite not being the proximate cue, to the extent that they integrate information
about sdinity and temperature over the period during which crabs are selecting an
overwinter location. Such questions cannot be resolved through an empirica habitat
modeling approach.

Despite the highly flexible modding process and the inclusion of interactions
among parameters, the full two-stage GAMs explained only afraction (13-36% when
goplied to the training data) of the variability in crab abundance. In addition, the two
most important variables, depth and distance from the Bay mouth, are spatidly static
and thus cannot explain interannud changesin didribution patterns. Either there exist
other important environmenta determinants of crab distributions than those explored
here or, athough habitat affinities clearly exigt, as evidenced by the consstent
sgnificance of some of the environmenta parameters, much of the observed
variability in digtribution patterns is not the result of habitat sdlection. If other
environmentd factors are guiding habitat selection, it is unclear what those factors
may be. Although hypoxiais prevaent in degper Bay waters in the summer, winter
dissolved oxygen levels are sufficient for blue crabs in even the degpest Bay waters

(Wang et a. 2001). Better benthic habitat maps would dlow usto fully test for the
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influence of bottom type; however, | suggest that the inclusion of different
environmenta indices would lead to only incrementa rather than wholesde
improvements in modd fit. | conclude that variability in the winter distribution of
meature femae blue crab is primarily due to factors other than habitat such asthe
timing of the onset of cold weather and density-dependent habitat selection (discussed
below).

Although blue crab dengty was difficult to predict, the broader question of
determining whether a given habitat is likely to contain blue crabs or not proved more
tractable. Stage | (presence/absence) models showed considerable ability to
discriminate between suitable and unsuitable habitat with approximately 75-80%
correct predictions at prair. The discriminatory power of the stage | models was dso
maintained when gpplied to other years with an average AUC of 0.71. Indeed, the
most genera stage | modd, the 1998 model, yielded an AUC grester than 0.7 for dl
but one of the other yearsindicating thet it provides broadly gpplicable predictions
which could be useful for management purposes. Furthermore, the probability map
for the 1998 stage | model confirms observations that mature female blue crab catch
per unit effort (CPUE) is higher in deep water (Lipcius et d. 2001) and in the lower
Bay but dso predicts relatively high probabilities of occurrence in some of the deeper
channels of the middle and upper Bay and Tangier Sound. Mature females are found
in WDS samples at these middle and upper Bay locations, but it is unclear whether
these individuas represent crabs that failed to complete their migration to the lower
Bay, as suggested by Turner et d. (2003), or if these degp middle and upper Bay

channds aso represent preferred overwintering habitat. One of the component
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variables of the 1998 stage | mode is the dynamic variable, temperature. To the
extent that temperature patterns vary from year to year, the predictions of the model
aredso likdy to shift giving the modd the ability to adapt its predictions to changing
environmental conditions.

The use of aGIS in combination with habitat suitability models has become
widespread as a method of visuaizing and mapping the results of habitat modeling
(Stoner et d. 2001), as aqualitative test of habitat model output (Zheng et a. 2002),
and as atool for measuring variables that were not or could not be measured in the
field (Brown et d. 2000, Clark et d. 2003). Variables such as dope, bathymetric
variance, and distance from a particular point or habitat type may provide important
information about habitat suitability, but cannot be easly measured in thefidd. In
this study, three of the GIS-derived variables (through-water distance from the Bay
mouth, sdinity and temperature) were found to be important factors for predicting
distributions while the other two (bottom dope and distance from SAV) were not.
The ease with which such GIS-derived variables can be caculated and tested for
predictive ability makes this an appeding method for exploring potentia habiteat
suitability factors. Maps derived from such GIS-based habitat modds may be useful
for locating marine protected areas and dispersal corridors, which, for bluecrabin
Chesgpeake Bay, are currently based smply on observations of higher concentrations
of adult females at greater depths (Lipcius et d. 2001) as well as norn+biologica
concerns such as enforceability.

The cross-vdidation confirmed the ability of GAMsto describe genera

patterns, but provides awarning againg naive application of modelsto predict
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distributionsin other years. Although the mean inter-annual cross-vaidation R value
(0.102) was sgnificantly lower than that for the intra-annual comparison (0.192),
most models provided above average fits to severa other data sets, and the best
modd provided above average predictionsfor 10 out of 13 other years. Thefailures
of modd generdity were confined primarily to two or three years. The datafor 1990
are agood example. Despite the fact that the 1990 model showed a dightly above
average fit to the training data (R? = 0.299), the 1990 data were poorly predicted in
inter-annual cross-validation with R values below average for al comparisons. The
intra-annual cross-validation R?, however, was approximately average. Similarly, the
2001 model showed the best it of any mode to the training data (R? = 0.360) and
well above average intra-annua cross-vaidation, yet displayed poor generdity with
below average inter-annual cross-validation R valuesfor al comparisons. This
indicates that athough the strength of the response to habitat variablesin 1990 and
2001 was normal, the details of that response were different than those observed in
most other years. The explanation gppearsto liein the unusualy early and severe
winters of 1989-1990 and 2000-2001, which had the two lowest average December
temperatures observed over the 13 years of the survey. Thus, hypotheses or
management actions developed from habitat-model s based on 1990 or 2001 data
would likely not be applicable to other years. However, there was no reason a priori
to anticipate thislack of generdity from the mode fits or intra-annua cross-
vaidations. Accordingly, | caution againgt the application of habitat models based on

asngle year of datawithout adequate inter-annual cross-vdidation.
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Although modd s were generdly transferable, some years consstently defied
prediction by models developed from other years data. The data from 1995, for
example, were poorly predicted by al models and had the poorest observed fit to the
training data. The relationships between blue crabs and their habitat in 1995 appear
to be wesk or highly variable as dl moddsfit poorly to data from this year. Despite
this high variability in 1995, the mean response to environmenta variables in this
year appearsto have been fairly typica asthe 1995 model displayed above average
prediction accuracy when applied to 4 other years of data.

Some of the interannua variaion in the models and their cross-vaidation
performance islikely related to the date of onset of cold weather and the severity of
the winter. As ectotherms, blue crabs are restricted in their level of activity by
ambient temperatures. Early onset of cold weether is thought to result in an arrested
migration that may strand individua blue crabs in sub-optima habitat. Consequently,
the earlier the onset of cold westher, the less likely observed distributions reflect true
habitat preference. Prolonged periods of cold westher also appear to increase the
amount of winter mortality (Sharov et d. 2003). To the extent that crabs concentrate
in areas where overwinter survivd is higher, severe winters may highlight the
expression of exiging habitat affinities by preferentidly removing individuds that
gtray from optima habitat. Conversdly, severe winters are likely to obscure the
consequences of habitat choice based on factors other than survival, for example,
Spawning SUCCESS.

Dengty dependent changes in habitat use offer an intriguing dterndive

explanation for inter-annual differences. MacCdl’s (1990) basin mode predicts that
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a low populaion dengty dl individuaswill concentrate in the preferred hebitats. As
population dengity increases, the preferred habitats become full and individuas are
forced to seek out aternative sub-optima stes. Over the 13 years of the winter
dredge survey, estimates of bay-wide mature fema e abundance show a more than
four-fold variation from ahigh of 182 million in 1991 to alow of 41 million in 2001.
These obsarved changes in abundance are significantly corrdated with changesin the
location of the center of mass of blue crab distributions (see Chapter 3).

Despite inter-annua variation and the existence of non-habitat related
influences, a GAM gpproach offers unique ingghts into the factors determining
winter distributions of mature femae blue crabs. Environmenta factors were
consdered not inisolation, but smultaneoudy and in interaction. The vaue of the
GAM approach is that, from this collection of intercorrelated variables, it was
possible to discern generd patterns that persasted from year to year and to identify
depth and the distance from the Bay mouth as the two most important environmental
determinants of winter habitet. The details of these relationships and formdl
hypothesistests for individua factors are more appropriately the domain of other
methods.

GAMs have become widely recognized as an important tool for understanding
species didgtributions (reviewed in Guisan et d. (2002)) because they effectively
address many of the satistical chalenges (e.g. non-linear responses, complex
interactions, and counts that are zero-inflated or otherwise problemétic in their
distribution) associated with field survey data. One of the concerns with using such a

flexible gpproach is that better mode fit might come at the expense of generdity.
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Although some applications of GAMs have successfully addressed concerns
regarding generdity by dividing large data setsinto different years and andyzing

them separately (e.g. Begg & Marteinsdottir 2002) or including ayear term (e.g.
Maravelias et d. 2000b) in the model, and one has used inter-annua cross-vdidation
to compare two separate model years (Forney 2000), thisis the first systematic test of
GAM habitat model generdity. Interannud differences in the sructure of models,
together with their performance in cross-vaidation trids, underscore the importance
of having more than asingle year “sngpshot.”  Although most modes performed well
in cross-vdidation, afew years were different enough from the generd pattern that
they resulted in modds with little ability to predict distributionsin other years. Such
aberrant years can provide unique ingghts (in this case, suggesting the importance of
the timing of cold weether) and, with multiple years of data, they can be identified
and effectively dedt with. In the absence of sufficient tempord scope to the data,

however, habitat suitability models may be mideading.
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Chapter 5: Conclusion

I ntroduction

The god of thisthessisto describe the winter digtribution of blue crab in
Chesapeake Bay and to examine the factors responsible for the observed patterns.
Three objectives (corresponding to the three central chapters of thisthess) were

identified and met:

1) Develop and evduate an dternative to Euclidean distance for usein
geodatigtica models.

2) Quantify the abundance and winter distribution of blue crab in Chesspeske
Bay and determine the extent to which dengty-dependent factors contral its
digtribution.

3) Describe the relationship between abiotic variables and the winter

digtribution of mature femae blue crab in Chesapeake Bay.

Objective 1

The firgt objective of thisthes's (Chapter 2) involved the development of an
appropriate distance metric for blue crab in Chesapeake Bay, the incorporation of this
metric into an dgorithm for variogram caculaion and kriging, and the comparison of
the predictions from this method to those of standard geogtatistica methods. Though
ultimately unsuccessful in congstently improving prediction accuracy for blue crab in

Chesapeake Bay, the Lowest Cost Path (L CP) distance metric represents asmple and
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generd solution to applying geodtatistica methods in the presence of landscape
barriers and may yidd improvements in prediction accuracy when applied to other
variables or other geographic settings. The reasons for the failure of this method to
improve prediction accuracy are unclear, but likely involve the particular geography
of Chesapeake Bay — strong gradients dong paradld tributaries. The sgnificant
differencesin variogram parameters between the LCP metric and the standard
Euclidean metric are reason enough to use this gpproach when an accurate description
of the spatial autocorrelation structure in the presence of barriersisdl that is desired.
This paradox - the fact that variograms changed significantly but prediction accuracy
did not - further suggests that Euclidean distance provides some useful information
despite the fact that it is intuitively the “wrong” metric to use when barriers are
present. Defining the circumstances under which alandscape- based distance metric
such as LCP is gppropriate will require further investigation in different settings and
in the same setting with different variables. The extent to which the LCP metric can
improve other spatial andytica techniques such as home range estimation and habitat
modeling remains an open and interesting question.

Other attempts to use landscape-based distance metrics for kriging in estuaries
have met with smilarly mixed results. Little et al. (1997) used alinear network
gpproach to caculating shortest paths through the water in Murrdls Inlet, SC in order
to predict concentrations of contaminantsin the water and in oyster tissues. They
found improvements in prediction accuracy when “in-water” distance was used for
four of the eight variables, but smal decreasesin prediction accuracy for the other

four. There was no attempt to explain the characteristics that might determine
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whether a variable would show improved accuracy with the dternative metric. The
linear network approach used by Little et al. (1997) is computationdly efficient for
geographic aress that resemble linear networks, i.e. where the width of traversable
habitat is negligible compared to the length, and has been used successfully by other
researchers (Gardner et al. 2003; Torgersen et al. In press). It becomesincreasingly
awkward and inefficient in open areas where connectivity is possiblein al directions.

In geographic areas containing open areas aswell as barriers, an dternative
approach to caculating distancesis required. Rathbun (1998) offers one such
approach and gpplied it to modd salinity and dissolved oxygen (DO) in Charleston
Harbor, SC. The landscape-basad distance metric resulted in small improvementsin
prediction accuracy for DO but dight decreases in accuracy for sdinity. Although
this landscape-based metric is gpplicable in open regions aswell as narrow linear
aress, it rdlieson aFORTRAN program that is not as eadly transferred to other
geographic areas as the GI S-based approach used here. Rathbun’s (1998) method is
aso unable to account for variable permeability of different types of barriers, an

advantage of the LCP metric that must be explored further.

Objective 2

The second objective of thisthesisinvolved quantifying patterns of blue crab
winter digtribution in Chesgpeake Bay and examining the interna population factors
that may be responsible for changes in these patterns. Although the baywide
abundance estimates ca culated using a geodtatistica gpproach differ substantialy

from design-based estimates in the first two years of the winter dredge survey (WDS),
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smilar downward trends in abundance are gpparent in both time-series over the 13
years of the survey. Thetraditiona design-based andysis of the WDS failsto
incorporate vauable information on spatia autocorrelation structure and may not be
the mogt accurate method of estimating baywide abundance from this survey. The
accuracy of geogtatistical methods could be enhanced by smple changesto the station
alocation methods. For example, one source of uncertainty in the abundance
edimates isthe lack of stationsin some years at the extremes of the blue craly’ swinter
digribution in the northernmost part of the mainstem and the upper part of the
Potomac River. Geodtatistica estimates could be improved without compromising
the hitorica continuity of the survey by adding afew non-random gations at the
edges of the didribution. Both estimation methods would be improved by reducing
the zero-inflation in the data. Longer tows would reduce the number of tows with no
crabs, but would require re-evauation of the catchability coefficients. Accurate
caculation of tow length is critica for caculating densities based on the area- swept
method, and the survey would benefit from adopting the most precise and accurate
georeferencing methods available. Thisis particularly important given the extremdy
short tows where small absolute errorsin position can have alarge proportiona
impact on the estimated tow length and consequently the estimated density.

The sharp declines in blue crab abundance coupled with high fishing
mortality rates (Sharov et al. 2003; Rugolo et al. 1998) suggest that overfishing is
occurring and management action is needed to reverse the decline. Sharov et al.
(2003) calculated fishing mortdity rates for the period 1990 — 1999 that were

generdly higher than Fnax = 0.64 (Rugolo et al. 1998) but, except in 1999, lower than
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the threshold fishing mortdity rate adopted by the Bi-state Blue Crab Advisory
Committee (Anonymous 2001) of F1g = 1.08 year™ (Miller and Houde 1998).
Spatid management strategies such as marine protected areas and time-area closures
are increasingly being used to increase biodiversity and reduce fishing mortdity rates
on vulnerable segments of the population (Hapern 2003). The lower bay spawning
sanctuary is one such spatia strategy currently used with some successin the
Chesapeake Bay blue crab fishery (Lipcius et al. 2003) but it offers protection to blue
crabs only during the summer months.

The digtributional maps developed in Chapter 3 of thisthesis could be used to
designate specific winter closed areas that are small (making them easier to enforce
and more paliticaly feasble) but effective at protecting the spawning stock during its
winter aggregations. These maps may aso be useful for limiting the impact of
management actions that may have an adverse effect on blue crab winter habitat. For
example, these distribution maps have aready been incorporated into the Chesapeake
Bay dredged materid digposa and beneficia use management process. Findly, the
maps may be useful as an input to other modding efforts. For example, spatid multi-
species trophic models such as EcoPath with EcoSpace (Wadters et al. 1999) require
detailed information on the distribution (or at least habitat preferences) of component
Species.

From an ecologicd point of view, the ditributiond maps are more interesting
not as gatic sngpshots, but for the insights they provide into the dynamic processes
thet may drive blue crab digtributions over anearly four-fold changein dengty. The

evidence for an intra- gpecific explanation (density-dependent habitat selection

85



(DDHY)) for the observed changes in digtribution was examined. One line of
evidence implicates DDHS, and another suggests that the relationship between
dengty and patch sze may be more complicated than hypothesized. The fact that
changes in the location of the centroid of blue crab dengty are highly corrdated with
baywide abundance suggests that DDHS may exist in blue crabs. Changesin the
range of spatia autocorrelation, however, were not postively correlated with baywide
abundance. For mature females, and to alesser extent for males and immature
femaes, the deep waters of the lower Bay maingem provide ided overwintering
habitat. A southward trend in the centroid as baywide abundance decreases can be
interpreted as a density-dependent contraction of the overwintering distribution
toward the most favorable habitat. The trend map supports thisinterpretation since
relatively little of the lower Bay shows a negative trend in dengity.

The lack of any gpparent relationship between the effective range of spatid
autocorrelation and blue crab abundance suggests thet either: 1) therangeisnot a
suitable proxy for patch size; or 2) patch size is not related to baywide abundance.
Thereis evidence for both of these dternative explanations. Although the range
parameter of variograms is frequently assumed to be an estimate of patch size, this
relaionship has yet to berigoroudy tested. Therangeislikely influenced not only by
patch size, but aso by other characteristics of a patia distribution such as distance
between patches and patch shape.  The survey design may aso have precluded
accurate estimation of patch sze. Smaller scale patchiness — on the order of tensto
hundreds of meters—islikely to be missed since the distance between adjacent

samplesis generdly too greet to accurately represent smal patches. Alternatively,
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the assumption that DDHS would result in larger patches may be wrong. Suboptimd
habitat patches may become suitable as dengties increase within optimum paiches,
resulting in more, but not necessarily larger, patches of blue crabs.

Comparison with winter dredge fishery CPUE suggests that geodtetistica
methods may provide a more accurate description of fluctuations in abundance and,
consequently, that declinesin blue crab abundance may be greater than previoudy
believed. Maps of blue crab density provide a guide to spatia management Strategies
and amethod of evaluating their potentid impacts. Observed relationships between
abundance and digtribution patterns are consstent with DDHS. Alternative
explanations for these patterns exist, however, and only controlled experiments could

show conclusively whether blue crabs exhibit DDHS.

Objective 3

Externd abiotic variables such as sdlinity, temperature, and depth are also
likely to play a part in determining the winter distribution of blue crab in Chesapeake
Bay. Ther influence on mature femaes was the subject of Chapter 4. Mature
femdes have long been known to differ from maes and immature femaesin many
aspects of their life history (Van Engd 1958). They are dso thought to have the most
specific winter habitat preferences, as they undergo long migrations from their
summer habitat throughout the Bay to their spawning and overwintering habitat in the
deep high-dinity waters of the lower Bay (Hines et al. 1995; M cConaugha 1995).

How strong arole does habitat play in determining where mature femaes overwinter?

87



What condtitutesideal winter habitat for mature females? And does this definition of
ided habitat vary from year to year?

The answer to the first question is that although some habitat variables (most
notably depth and distance from the Bay mouth) are consistent and satistically
sgnificant predictors of mature female abundance, combined, they explain only 13-
36% of the observed variation in aundance in the training data set. Although the
possibility remains that other unknown habitat variables could improve the
predictions, the results of this thes's suggest that habitat is an important but not
decisve determinant of where mature females overwinter. Other non-habitat related
factors that may influence distributions include DDHS (discussed in Chapter 3), and
the time at which water temperatures drop below the critica threshold for dormancy.
This|latter explanation is discussed in Chapter 4 in relation to the failure of the 1990
and 2001 modelsto accurately predict abundances in other years. 1t may be that
meature female blue crabs set off on their winter migrations in response to an unknown
environmental cue. Some of them reach ideal habitat while others are arrested in
their migration by adrop in temperature forcing them to overwinter in less than ided
habitat. This hypothesisis congstent with the fact that the winters of 1989-1990 and
2000-2001 saw the two lowest December temperatures on record over the 13-year
higtory of the WDS.

Idedl overwintering habitat for mature female blue crabs in Chesapeake Bay
appears to be defined by a combination of depth, distance from the Bay mouth, and to
alesser extent, sdinity and temperature. Thefirgt two factors, both individualy and

ininteraction, were found to be significant predictors of blue crab presence or
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absencein dl years and of abundance given presence in many years. Crabswere
more likely to be found and were more numerous when they were found as depth
increased. In some years, there was evidence of a peak at around 15-20 m, but in
others the relationship appeared linear. Probabilities of crab presence and abundance
given presence were highest near the Bay mouth, though in some years the maximum
occurred at approximately 25-50 km from the mouth.

Although prediction accuracy was sgnificantly lower when modes devel oped
on data from one year were used to predict abundance in another, the failures (i.e.,
comparisons showing below average cross-vaidation RP) were confined to a couple
of non-representative years (such as 1990 and 2001 mentioned above). This pattern is
consgtent with the hypothesis that habitat preferences are stable but in some years the
early onset of cold wegther prevents many crabs from reaching idedl habitat. It also
highlights the potentid to be mided by sngle-year snapshots of the distribution of
any mobile organiam.

The results of Chapter 4 confirm the ability of two-stage GAMsto describe
generd habitat rdationships that are vaid beyond the particular data set on which
they were developed. Because of their flexibility, GAMs are fast becoming the
method of choice for empirical modding of the relaionship between the digtribution
of organisms and the digtribution of habitat variables (Guisan et al. 2002). Their
flexibility, however, has raised concerns that they may fit the input data so
specificaly that their generdity and transferability are compromised. Few previous
habitat modding studies have had sufficient data to tet this concern (but see Forney

2000). Herethetransferability of GAMs (both intra- and inter-annualy) was
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confirmed with the cavest that the models are only as generd astheir input datais

representative.

Conclusion

Blue crab winter digtributions in Chesapesake Bay are dynamic and are likely
driven by acomplex interaction of intrindic (i.e., dengty-dependent) and
environmenta factors coupled with agood ded of chance (eg., the timing of the
onset of cold weether).  Despite this complexity, strong relationships are apparent.
The bulk of the blue crab digtribution has clearly moved southward over the 13 years
of the WDS concurrently with a significant decline in baywide abundance.
Environmentd variables, most notably depth and distance from the Bay mouth, have
aggnificant effect on mature female blue crab didributionsin dl years.

These findings have implications for the management and ecology of blue
crab. The dgnificant decline in abundance suggests that stronger management
actions should be taken to ensure the long-term Stability of the fishery. The
digtribution maps developed here provide a useful tool for guiding these management
actions. Theories of DDHS are intuitively appeding, but little evidence existsto
show whether they apply to natural populations. The correlation between the latitude
of the centroid of blue crab density and abundance suggests that DDHS may apply to
blue crab.

In addition to insghts on blue crab ecology, thisthes's also advances the use
of two datidica techniques. geodtatistics and generaized additive models. Although

landscape-based distance metrics have been used in geodtatistics before, the methods
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used previoudy to caculate such metrics have not been asflexible, efficient or
transferable as the GI S-based LCP metric presented here. The long-term utility of
this gpproach will depend on a better understanding of the conditions under which a
landscape-based distance metric can improve prediction accuracy. Likewise, two-
stage GAMss have been used to mode organism/habitat relationships before, but they
have not been rigoroudy cross-vaidated to insure that their predictions are genera
and transferable.

The results of thisthes's suggest three lines of future work. First, modest
changes to the WDS could improve the prediction accuracy of geostatistical methods
without compromising the historical continuity of the data. Second, further
invetigation into the density-dependence of blue crab distributions may confirm the
goplicability of DDHS models. Third, analysis of other variablesin Chesapeske Bay
or other regions with many barriers usng the L CP-distance based geogtatistical tools
developed here could determine the conditions under which the use of such

techniquesis warranted.
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Appendix | — Matlab Functions

1) — PRESSkrige, used to calculate the Prediction Error Sum of Squares (PRESS)
datidic

function [Result]=PRESSkrige(ID,var krig_paramode,model_para,distl 1)

% function [Result]=PRESSkrige(ID,var,krig_paramodd,modd_para,distl 1)
% Calcuates the Prediction Error Sum of Squares (PRESS) statistic

% Input Parameters:

% 1D - A unique idertifier for each sample

% var - the measured vaue of the sample

% neighborhood parameters:

% krig_para(1,1) - maximum search radius for kriging

% krig_para(1,2) - minimum number of neighboring data points used for kriging
% krig_para(1,3) - maximum number of neighboring data points used for kriging
% variogram parameters.

% mode - variogram modd type: 1=sphericd, 2=exponentid, 3=Gaussan, 4=linear
% modd_para(1,1) - nugget

% model_para(1,2) - sll, i.e nugget + partid sl

% mode_para(1,3) - range

% model_para(1,4) - power for exponentid (if applicable, otherwise set to 1)

% mode_para(1,5) - length scde for hole effect (if applicable, otherwise set to 1)
%

% Other functions cdled:

%

% variogrammodd - caculates semivariance for given lag distances

% Author: D. Marcotte

%

% sum_nan - sums a vector or matrix ignoring NaN vaues

% Author: Jm Ledwell, 10/97 Woods Hole Oceanographic Ingtitution

%

% By Ola Jensen, University of Maryland Center for Environmental Science,

% Chesapeake Biologica Laboratory

% Last modification June 17, 2004

% Based on origina code by Dezhang Chu, Woods Hole Oceanographic Ingtitution

range=krig_para(1);
kmin=krig_para(2);
kmax=krig_para(3);
EPS=2"(-52);

n=length(var); % n = number of data points
kn=length(krig_para);

var=reshape(var,n,1); % ensurevar isacolumn vector
modd_type=2; % variogram
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tp=ones(n,1); %opre-allocate prediction vector
% Kriging
for j=1:n

r=distl 1(j,);

if kmin>=n
indx_sort=1.n;
k=1:n;nk=n;
dse
[r_sort, indx_sort]=sort(r);
ind=find(r_sort <= range);
nd=length(ind);
if isempty(ind)
k=2:min(kmin+1,n);
dsaif ind(nd) >= kmin & ind(nd)-1 < kmax
k = 2ind(nd);
dsaf ind(nd) >= kmax
k = 2.kmax+1;
dsaf ind(nd) < kmin
k = 2min(kmin+1,n);
end
nk=length(k);
end

M 20=variogrammode (modd r(indx_sort(k)),model_para);
M2=[M20 11"
if j==1]|kmin<n
rs=distl 1(indx_sort(k),indx_sort(k));
K O=variogrammodd (modd ,rsmodel_para);

KO(1:nk+1:nk"2)=zeros(nk,1);
K=[KO ones(nk,1);ones(1,nk) O];

K_inv=inv(K);
end

lambda=K_inv*M2;

tp(j)=sum_nan(lambda(1:nk).* var(indx_sort(k)));
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end
% Results

Pre result(:,1)=var;
Pre_result(:,2)=tp;
Pre_result(:,3)=(var-tp)"2;

Result=sum(Pre_result(:,3));

2) — Vaiogranmodd, returns the semivariance for given lag distances
Author: D. Marcotte

function y = variogrammode (type, r, modd_para)
% function y = variogrammode (type, r, model_para)
% computes the theoreticad semi-variogram.

% |typel = mode index for semivariogram/correlogram
% type> 0: semi-variogram

% < 0: correlogram

%  r=vector lag distances

% model_para=[ pl p2 p3 p4 p5;

%

%  pl: Nugt = nugget effect

% p2 Sl =4dll

%  p3: L =length scde for the main lobe

%  p4: p=power for the expenentia

%  p5: b=length scae for hole effect

%

%  modd type

% 01 = spherica

% 02 = exponentia

% 03 = gaussan

% 04 = linear

%  modesincuding hole effects

% 05=C*[1-(3anb*r)/r]+ Nugt

% 06=C*[1-(exp(-r/lL)) * cog(br)]+ Nugt

% 07=C*[ 1+ (exp(-r/lL)) * cog(br)]+ Nugt

% 08=C* [ 1- (exp(-(r/L)Y*2)) * cog(br) ] + Nugt

% 09=C*[1- Jo (br) ] + Nugt

% 10=C*[1- exp(-rlL) * Jo(br)]+ Nugt

% 11=C*[1- exp(-(r/L)Y*2) * Jo (br)] + Nugt

% 12=C*[1- exp(-(r/L)*2) * (1- br)] + Nugt
% 13=C*[1- exp(-(r/LY*p) * Jo (br)] + Nugt
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%0%0%6%0%0%0%0%0%0%6%0%0%0%0%0%0%0%0%0%0%0%0%0%0%6%0%0%0%0%60%6%0%6%0%0%0%%%%0%
%0%0%6%0%0%0%0%0%0%0%0%0%0%0%0%0%6%0%0%0%0%6%% %% %%

% Author: D. Marcotte
% Verson 2.1 97/aug/18
% Revised by Dezhang Chu, 10-29-98

Nugt=model_para(1);
Sll=modd_para(2);
L=modd_para(3);
p=model_para(4);
b=moded_para(5);
C=Sill-Nugt;

n = length(r);
rL=r./L;

switch abs(type)

cael
inax1=find(rL < 1),
indx2=find(rL >= 1);
rL1=rL (indx1);
rL2=rL (indx2);
yl=C* (15 *rL1 - 05.* rL1/3)+Nugt;
y2 = Sill * onex(size(rL2));

y(indx1)=yL;
y(indx2)=y2;
y=reshape(y,sze(r,1),5z€(r,2));
case 2
y=C* (1- exp(-(r/L)))+Nugt;
case 3
y=C* (1- exp(-(r/L)."2))+Nugt;
case 4
y =C * r+Nugt;
case5
y=C.* (1- sn(b.*(r+eps))./(r+eps) )+Nugt;
case 6
y=C* (1- exp(-r/L) .* cos(b*r) )+Nugt;
case 7
y=C* (1+exp(-r/L) .* cos(b*r) )+Nugt;
case 8
y=C* (1- exp(-(r/L).~2) .* cos(b*r) )+Nugt;
case 9
y=C* (1- bessd(0, b*r) )+Nugt;
case 10
y=C* (1- bessd(0, b*r) .* exp(-r/L) )+Nugt;
case 11
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y=C* (1- exp(-(r/L)."2) .* bessd (0, b*r) )+Nugt;

case 12
y=C* (1-exp(-(r/'L)."2) .* (1- b*r."2) )+Nugt;

case 13 % generdized exponetia-BesH
y=C* (1- exp(- (r/L)."p).* bessd(0, b*r))+Nugt;

end

3) — Sum_nan, sums avector or matrix ignoring NaN vaues
Author: Jm Ledwell, 10/97 Woods Hole Oceanographic Indtitution

function psum=sum_nan(A k)

%% function  psum=sum_nan(A k)

%% computes the summation which ignores dl nan's

%% if A isan 1D array, k isnot necessary, if A isamatrix

%% k isoptiona. Without k or k = 1, A is summed over column,

%% and k = 2, summeation is over rows

%%

% Author: Jm Ledwell, 10/97 Woods Hole Oceanographic Ingtitution

D=gze(A);
ifD(1) ==1|D(2) == % 1-D array
[indX]=find(~isnan(A));
psum=sum(A(indx));
dse
if nargin ==
k=1; % default direction: sum over each column
end
if k==
fori=1:D(2)
[indX]=find(~isnan(A(:,))));
if length(indx) >0
psum(i)=sum(A(indx,i));
dse
psum(i)=nan;
end
end
dse
fori=1:D(2)
[indX]=find(~isnan(A(i,.)));
if length(indx) >0
psum(i)=sum(A(i,indx));
dse
psum(i)=nan;
end
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psum=psum();
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Tables

Table 1. Summary of variogram mode parameters. Numbersin itdics denote
parameters that were fit by eye and were not used in variogram comparisons.

Sample Digance Variogram Partid
Y ear gze Metric Model Nugget Sl Rangekm)
1990 863 Eudidean Exponentid 18,173 22,455 54
LCP  Exponentid 16,448 25,042 55
1991 964 Eudidean Gaussan 9,73¢ 30,484 55
LCP Gaussan 8,00C 12,000 30
1992 1392 Euclidean Exponentid 792 1,408 25
LCP  Exponentid 763 997 16
1993 1253 Euclidean Gaussan 6,963 20,254 50
LCP Gaussan 6,00C 6,000 35
1994 1427 Euclideen Gaussian 7,108 885 35
LCP Gaussian 7,00C 900 30
1995 1598 Euclidean Gaussan 1,324 10,165 49
LCP Gaussian 1,178 5,436 41
1996 1580 Euclidean Gaussian 3,877 11,461 34
LCP Gaussan 3,444 7,453 28
1997 1587 Euclidean Gaussan 2,848 6,075 29
LCP Gaussian 2,86C 4,446 29
1998 1573 Eucdlideen Gaussan 1,16C 1,580 33
LCP Gaussan 1,195 1,222 38
1999 1519 Euclideen Gaussian 581 2,042 33
LCP Gaussian 564 1,181 27
2000 1511 Eucdlidean Gaussan 592 1,220 24
LCP Gaussian 587 1,075 23
2001 1556 Euclidean Gaussian 281 1,114 25
LCP Gaussan 263 830 22
2002 1530 Euclidean Gaussian 41€ 1,409 35
LCP Gaussian 377 867 30
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Table 2. Baywide. Prediction Error Sum of Squares (PRESS) for kriging predictions based on
Euclidean and Lowest-Cost Path (LCP) distance metrics, the percent difference in PRESS between
the two metrics (positive numbersindicate greater prediction accuracy for the LCP metric), the
average increase in intersample distance for the LCP metric, and the mean percent difference over 13
years.

Average Absolute
Euclideen  LCP Increasein Average Percent
PRESS PRESS  percent  Intersample Distance Incressein

Year (*10°) (*10°) Difference (km) Intersample Distance
1990 65.64 65.09 0.84 16.84 23.12
1991 61.08 61.53 -0.73 12.13 15.27
1992 6.46 6.49 -0.47 12.77 16.53
1993 38.00 38.21 -0.54 14.60 20.11
1994 29.57 29.48 0.28 16.19 21.10
1995 19.80 19.63 0.87 14.13 18.99
1996 50.00 49.99 0.01 12.87 16.83
1997 16.12 16.19 -0.41 11.10 14.52
1998 9.58 9.68 -1.04 11.86 15.65
1999 10.23 10.14 0.95 11.87 15.44
2000 524 5.23 0.11 11.34 14.50
2001 4.49 4.65 -3.46 11.06 14.09
2002 6.10 6.04 0.94 11.68 15.30

mean: -0.20 12.96 17.03
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Table 3. Tangier Sound and Baywide random subsample. Prediction Error Sum of Squares
(PRESS) for kriging predictions based on Euclidean and Lowest-Cost Path (LCP) distance
metrics, the percent difference in PRESS between the two metrics (positive numbersindicate
greater prediction accuracy for the LCP metric), and the mean percent difference over 13 years.
Only the mean percent differencein PRESS is given for the random subsample.

Tangier Euclideen  Tangier LCP Tangjer Percent  Random Subsample

Year PRESS(*10%) PRESS (*10°)  Difference Percent Difference
1990 31.60 31.28 1.02 -0.36
1991 5.78 5.91 -2.22 0.55
1992 1.30 1.31 -0.92 -0.74
1993 0.30 0.33 -8.45 -0.84
1994 10.93 10.89 0.38 0.67
1995 3.55 341 3.98 -0.05
1996 5.38 5.33 0.87 -1.29
1997 1.72 1.70 0.70 0.07
1998 1.29 1.29 0.15 -0.86
1999 0.51 0.51 1.15 1.47
2000 1.22 1.23 -1.15 -0.86
2001 0.80 0.86 -7.29 -0.46
2002 0.44 0.44 -0.41 -0.58
mean: -0.94 -0.25
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Table4. Summary of sample size (N), variogram parameters, variogram models, and spatial trend models based on
northing (X) and easting (Y).

Y ear N  Nugget Partial Sill Range (km) Modd X Y XY X® Y? XY? YX® X?/?
1990 919 12,749 12,502 13,710 Gaussian X X X X X
1991 947 11,272 25144 45037  Gaussian X X X X
1992 1,340 731 1,008 52,532  Spherical X

1993 1,194 5,000 8,000 25000 Gaussan X X X

1994 1382 2631 6,168 26,409  Gaussian X X X X X
1995 1,523 908 4,950 43144  Gaussan X X X X

1996 1523 3,304 8,557 32,278 Gaussian X X X X
1997 1506 1,664 15467 196,671  Spherical X X X X
1998 1,510 754 1,424 31,194 Gaussian X X X X

1999 1,457 407 1,383 34206 Gaussan X X X X
2000 1,421 260 3,754 147,284 Exponentia X X X X X
2001 1,464 192 797 28676 Gaussian X X X X X

2002 1,457 254 866 33,048  Gaussian X X X



Table 5. Pearson correlation coefficients between all pairs of environmental variables. Significant

correlations (p<0.05) are shown in bold. All other correlations are insignificant (p>0.05).

Distance (M) Salinity (S) Depth (D) Temp. (T) Slope (B) SAV (V)
Distance (M) 1
Salinity (S) -0.637 1
Depth (D) -0.038 0.192 1
Temp. (T) -0.091 0.341 0.118 1
Slope (B) 0.107 -0.073 0.284 -0.002 1
SAV (V) -0.010 -0.133 0.139 0.079 -0.055 1




Table 6. Modd sdection resultsfor (a) stage | (i.e. presence/absence) and (b) stage |1 (abundance) GAMs.

Significance test p-vaues are given for the explanatory variables distance from Bay mouth, sdinity, depth, temperature, bottom dope,
distance from SAV, and interaction terms. Terms that were not sSgnificant (ns, p > 0.05) were dropped from the mode unlessthey
were involved in asgnificant interaction. Degrees of freedom were fixed for termsin bold. The adjusted r-squared and percent of

deviance explained are aso given for each model.

Year N Distance (M) Salinity (S) Depth (D) Temp. (T) Slope (B) SAV (V) Interaction | Interaction Il R? adj Dev. Explained
1990 650 ns <0.001 0.579 0.005 ns ns D/T 0.027 ns 0.274 31.5
1991 723 0.728 ns 0.003 ns 0.048 ns M/D <0.001 ns 0.246 26.1
1992 1046 ns <0.001 <0.001 ns ns ns ns ns 0.221 22
1993 941 ns 0.229 0.702 <0.001 ns 0.044 S/D <0.001 ns 0.255 27.1
1994 1071 0.992 0.003 <0.001 ns ns 0.036 M/S 0.036 M/V 0.030 0.225 28.1
1995 1199 ns 0.047 <0.001 0.906 ns ns S/T 0.005 ns 0.097 17.7
1996 1187 <0.001 0.081 0.368 <0.001 ns 0.52 S/V0.001 S/D <0.001 0.255 27.6
1997 1193 0.1 <0.001 <0.001 <0.001 ns ns M/D <0.001 ns 0.189 23.1
1998 1181 0.933 ns <0.001 <0.001 ns ns M/D <0.001 ns 0.267 28.3
1999 1139 <0.001 ns 0.468 0.181 ns ns D/T 0.014 ns 0.197 27.2
2000 1133 <0.001 ns <0.001 <0.001 ns ns ns ns 0.27 28.6
2001 1167 0.002 ns <0.001 <0.001 ns ns M/D 0.002 ns 0.328 38.4
2002 1148 0.011 0.012 <0.001 ns ns 0.018 M/D 0.002 ns 0.215 29.8
a

Year N Distance (M) Salinity (S) Depth (D) Temp. (T) Slope (B) SAV (V) Interaction | Interaction I R? adj Dev. Explained
1990 91 ns ns ns 0.004 ns 0.007 ns ns 0.136 16.5
1991 161 <0.001 ns 0.002 ns 0.002 0.047 ns ns 0.31 34.9
1992 197 <0.001 ns 0.003 ns ns ns ns ns 0.116 125
1993 166 <0.001 ns ns ns ns ns ns ns 0.145 15.6
1994 150 <0.001 ns ns ns ns ns ns ns 0.265 29.6
1995 88 0.002 ns ns ns 0.047 ns ns ns 0.219 31.8
1996 204 <0.001 ns <0.001 ns ns ns ns ns 0.359 39.3
1997 149 0.024 ns <0.001 ns ns 0.037 M/D 0.002 ns 0.457 50.1
1998 185 0.022 <0.001 0.007 ns ns ns ns ns 0.393 41.9
1999 102 <0.001 ns ns 0.002 ns ns ns ns 0.318 35.1
2000 193 ns <0.001 ns ns ns ns ns ns 0.182 19.3
2001 116 <0.001 ns ns ns ns ns ns ns 0.136 14.4
2002 100 ns ns ns ns ns 0.024 ns ns 0.077 9.8




Table 7. Callinectes sapidus. Cross-vdidation where models developed with data from one year (columns) are gpplied to data from
another (rows). Vauesin (a) represent the cross-vaidation r-squared. Vaues on the diagond (in bold for (a)) represent intra-annua
cross-validation where models developed using a training data subset are gpplied to the test data subset for the same year. The first
row of (8) represents the modd fit to the training data. Vauesin (b) represent the z-score, i.e., the number of standard deviations
above or below the grand mean Fisher (1915) transformed cross-validation correlation coefficient.

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

training 0.299 0.315 0.255 0.296 0.270 0.130 0.314 0.241 0.346 0.232 0.305 0.360 0.239

1990 0.099 0.064 0.016 0.069 0.059 0.091 0.014 0.060 0.081 0.001 0.015 0.069 0.013
1991 0.028 0.219 0.048 0.135 0.174 0.071 0.128 0.071 0.195 0.043 0.148 0.009 0.086
1992 0.003 0.257 0.291 0.191 0.265 0.210 0.146 0.099 0.271 0.235 0.273 0.069 0.221
1993 0.129 0.188 0.128 0.238 0.113 0.089 0.113 0.090 0.165 0.022 0.047 0.031 0.125
1994 0.000 0.194 0.200 0.232 0.244 0.237 0.117 0.056 0.194 0.176 0.222 0.041 0.124
1995 0.010 0.032 0.040 0.063 0.095 0.086 0.016 0.008 0.040 0.023 0.048 0.010 0.014
1996 0.043 0.111 0.088 0.077 0.098 0.042 0.168 0.110 0.152 0.017 0.005 0.062 0.081
1997 0.087 0.165 0.095 0.171 0.097 0.055 0.129 0.197 0.172 0.024 0.097 0.054 0.110
1998 0.035 0.105 0.085 0.109 0.079 0.066 0.084 0.099 0.129 0.008 0.049 0.005 0.044
1999 0.000 0.155 0.236 0.157 0.139 0.174 0.108 0.088 0.176 0.196 0.205 0.080 0.184
2000 0.042 0.206 0.222 0.202 0.183 0.191 0.092 0.077 0.243 0.255 0.311 0.069 0.165
2001 0.078 0.184 0.108 0.080 0.121 0.009 0.129 0.078 0.166 0.036 0.054 0.228 0.087
2002 0.001 0.083 0.075 0.016 0.084 0.021 0.019 0.056 0.084 0.062 0.128 0.061 0.089

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

-0.70
-1.78
1997 . . . . . . . 0.02
-0.68




Table 8. Evaluation of stage | (presence/absence) modd fits to the training data (a) using receiver operating

characterigtic (ROC) curves and cross-validation of stage | models (b). Vauesin (@) represent the area under the ROC curve (AUC),
the critical p-vaues: p-optimum (o) and pr,,, and their sensitivity (Sens.), specificity (Spec.), and percent correct predictions (%
Corr.). Vauesin (b) represent the AUC where mode s devel oped with data from one year (columns) are applied to data from another
(rows). Vadues on the diagond represent intra-annual cross-validation where models devel oped using atraining data subset are gpplied
to the test data subset for the same year. AUC vaues greater than 0.7 are highlighted in black.

popt Prair
Year AUC Value Sens. Spec. % Corr. Value Sens. Spec. % Corr.
1990 0.870 0.470 0.396 0.975 89.4 0.155 0.780 0.785 78.5
1991 0.839 0.453 0.460 0.927 82.3 0.235 0.752 0.749 75.0
1992 0.809 0.575 0.284 0.973 84.3 0.180 0.746 0.740 74.1
1993 0.845 0.580 0.277 0.983 85.9 0.180 0.765 0.767 76.6
1994 0.862 0.405 0.393 0.951 87.3 0.175 0.793 0.793 79.3
1995 0.824 0.325 0.046 0.997 92.7 0.085 0.773 0.762 76.3
1996 0.851 0.470 0.373 0.966 86.4 0.195 0.770 0.770 77.3
1997 0.837 0.410 0.302 0.974 89.0 0.125 0.752 0.748 74.9
1998 0.849 0.455 0.400 0.960 87.2 0.150 0.768 0.770 77.0
1999 0.869 0.380 0.294 0.981 91.9 0.110 0.784 0.786 78.6
2000 0.859 0.533 0.290 0.972 85.6 0.200 0.777 0.783 78.2
2001 0.905 0.540 0.302 0.983 915 0.110 0.845 0.847 84.7
2002 0.884 0.400 0.310 0.979 92.1 0.105 0.810 0.819 81.8

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
0.69 0.76 0.72 0.44 0.57 0.68

0.74 0.78 0.81 0.65

1992 0.58 . . 0.74 0.74 0.79 0.79 0.79
0.74 0.72 0.76 0.60 0.67
0.81 0.79 0.78 0.78
0.70

0.71

0.73

0.77

0.85 0.85 0.86

0.79 0.83 0.84

0.77 0.78
0.75 0.70 0.76
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Figure 3. The value of the nugget parameter from variograms based on
a Euclidean and a Lowest Cost Path (LCP) distance metric. The black
line represents equality.
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Figure 4. The value of the range parameter from variograms based
on aEuclidean and a Lowest Cost Path (L CP) distance metric. The
black line represents equality.
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Figure 5. The value of the sill parameter from variograms based on a
Euclidean and aLowest Cost Path (LCP) distance metric. The black
line represents equality.
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Figure 12.
a 1990 Blue crab density b. Standard error of blue crab density
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a. 1991 Blue crab density
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Figure 14.
a 1992 Blue crab density b. Standard error of blue crab density
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a. 1993 Blue crab density
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Figure 16.
a. 1994 Blue crab density
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Figure 17.
a. 1995 Blue crab density
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Figure 18.
a. 1996 Blue crab density
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Figure 19.
a. 1997 Blue crab density
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Figure 20.
a. 1998 Blue crab density
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Figure 21.
a 1999 Blue crab density b. Standard error of blue crab density
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Figure 22.
a. 2000 Blue crab density
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Figure 23.
a. 2001 Blue crab density
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Figure 24.
a. 2002 Blue crab density
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Figure 33.

Effect on crab density Effect on crab density Effect on crab distribution
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Figure 34.

Effect on crab distribution
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Figure 36.

Effect on crab distribution Effect on crab distribution
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