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Abstract— We present an autoregressive model for mod- phase andnline location determination phase. During
eling samples autocorrelation from the same access pointinthe offline phase, the signal strength received from the
WLAN location determination systems. Our work is inthe  3ccess points at selected locations in the area of interest
context of theHorus system, which is gorobabilistic WLAN o tabulated, resulting in a so-calleddio map During

Iocat.ion determination sys_tem. We show that the autocor- the location determination phase, the signal strength
relation between consecutive samples from the same access . .
point can be as high as 0.9. Using our model, we describefamplef recelvgd from the gccess points are L_jsed to
a technique to use multiple signal strength samples from S€arch” the radio map to estimate the user location.
each access point, taking the high autocorrelation into ~Radio-map based techniques can be categorized into
account, to achieve better accuracy. Implementation of the two broad categories: deterministic techniques and prob-
technique in the Horus system shows that the average abilistic techniques.Deterministic techniqueg6]—[8]
system accuracy is increased by more than 50%. Our represent the signal strength of an access point at a
results show that assuming independence of samples from|gcation by a scalar value, for example, the mean value,
the same access point can lead to degraded performance;ng se non-probabilistic approaches to estimate the
as the number of samples used in the estimation algorithm user location. For example, in thRadar system [6],

is increased, due to the wrong independence assumption. . .
We also discuss how to incorporate the new technique with [7] the authors use nearest neighborhood techniques to

other algorithms for enhancing the performance of WLAN infer t_he user location. On the Other hamn_iobabilistic
location determination systems. techniques [1]-[3], [9]-[13] store information about the

signal strength distributions from the access points in the
radio map and use probabilistic techniques to estimate
the user location. For example, the Nibble system [9],

[10] uses a Bayesian Network approach to estimate the
user location.

Horus is an RF-based location determination sys- The Horus system lies in the probabilistic techniques
tem [1]-[3]. It is currently implemented in the contextategory. Its goal is to identify the noisy characteristics
of 802.11 wireless LANs [4]. The system uses the signaf the wireless channel and to develop techniques to
strength returned from the access points to infer the usgmndle them. In this paper, we analyze one aspect of the
location. Since the wireless cards measure the sigieinporal characteristics of the wireless channel: samples
strength information of the received packets as part ofrrelation from the same access point. We show that
their standard operation, this makes therus system a consecutive samples can have correlation as high as 0.9.
purely software solution on top of the wireless networkhe main challenge is how to use multiple samples to
infrastructure. A large class of applications, includib [ obtain better location estimate technique despite this hig
location-sensitive content delivery, direction finding; a correlation value. Our approach is to treat the samples
set tracking, and emergency notification, can be built @ollected from an access point at a given location as a
top of theHorus system. time series [14] and use the time-series analysis tech-

WLAN location determination is an active researchiques to study their characteristics. More specifically,
area [1]-[3], [6]-[13]. WLAN location determinationwe describe an autoregressive model that captures the
systems usually work in two phasesffline training correlation of samples from the same access point. Based
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on the autoregressive model, we present a technique that
uses multiple samples from each access point, to increaser _____
the accuracy of thélorus system. We present the result |
of implementing the new technique and compare its |
accuracy with that of the originaHorus system. We £ |
also discuss how to incorporate the proposed techniqﬁe| |
with other techniques for enhancing the performance &f |
WLAN location determination systems. 3 |
The rest of the paper is structured as follows: in thg | |
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present an overview of thélorus system and briefly 4 |
introduce autoregressive models. Section IV shows tie |
temporal characteristic of the samples received from an
access point and analyze the autocorrelation of samples. L
We describe our autoregressive model to capture the — — — | s st pcausvon | — — — —
signal strength samples correlation and the technique that
uses this model to enhance the accuracy of Hioeus
system in Section V. We present the results of imple-
menting the new technique and compare its accuracy
to the accuracy of the original technique in Section VI.
Finally, Section VII discusses the main findings of the
paper and provides concluding remarks. Acce
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Radio Map
Builder

next section, we discuss related work. In section Il wg Estimator

Access Point b Access Point

Point

Il. RELATED WORK Fig. 1. Horus Components: the arrows show information flow
In this section, we describe other techniques thigt the system. Shaded block represent modules used during th
: offine phase. In this paper, we describe the correlationetiog and
use multlplg samples .tO _enhance the performance h‘g dling components of thidorus system (shown in thick lines).
WLAN location determination systems. We show how
the proposed technique relates to them.

A. Signal Strength Space Averaging uses a moving time-average of multiple consecutive
The authors of th&kadar[6], [7] system, adetermin- |ocation estimates to obtain a better location estimate.

istic location determination technique, were the first to Our technique uses multiple samples in thignal-

propose using multiple signal strength samples to obtajftength spacéo obtain a better location estimate. More-

better estimation accuracy. Their technique is to averager our technique can be used in conjunction with

the received samples and use the average value in the physical-location space averaging to enhance their

k-nearest neighborhood algorithm to determine the begjcuracy as discussed in Section VII.

location estimate. Their results indicate that using moreThe proposed technique is unique in using multiple

samples in the averaging process leads to better accuragynples in the signal-strength space to enhance the ac-
The work in this paper is concerned wiphobabilistic  curacy ofprobabilisticlocation determination techniques

location determination techniques in which the proceggking into account the high correlation degree between

of using multiple samples to obtain a location estimat&amples from the same access point

is more involved. For example, if the system averages

samples, the system needs to calculate the probability of I1l. BACKGROUND

the average value using the distribution of the average pof

n original distribution. Obtaining this distribution is not

trivial if the samples are not independent. We address/n this section, we present a brief overview of the
this issue in Section V. Horus system [1]-[3]. Our goal is to provide context

for the technique presented in Section Morus is a
B. Physical Location Space Averaging probabilistic location determination system. The main
Different systems, e.g. [6], [7], [11]-[13], proposed tgoal of the system is to identify the noisy characteristic
use averaging in thghysical-location spacel'he system of the wireless channel and to develop techniques to han-

Overview of the Horus System



dle them. Figure 1 shows the components of teeus Alg. 1 z= HorusGetLocation §, X, P_RM)
system. The system uses the signal strength informati@Rut:

returned from different access points to infer the user s :Measured signal strength vector frdnaccess
location and to provide an API for the user applications PoIints & = (s1, ..., 5)).
to use the system functionality. X Radio map locations.

The system works in two phases: RM : A radio map based function, where

1) Offline phaseto build the radio map, cluster radio ~ ©-12M (sa, a, ) returns the probability of receiving
map locations, do and other preprocessing of the signal strengths, from access point: at location
signal strength models. v e X

2) Online Phaseto estimate the user location basefutput:
on the received signal strength from each access The locationz € X that maximizesP(z/s).
point and the radio map prepared in the offline;: Max — 0
phase. 2: for 1 € X do

The radio map stores the distribution of signal strength,, p __ ﬁ P_RM(s;,i,1)

received from each access point at each location. There i=1
are two modes for operation of théorus system: one 4  if P> Maxthen
uses non-parametric distributions and the other used x 1

parametric distributions. In this paper, we will use the® Maz —p
parametric distribution mode in which the signal strength’* znfd if
8: end for

distributions are modeled usirgaussiandistributions.
The Clustering module is used to group radio map
locations based on the access points covering them. Clus-

tering is used to reduce the computational requiremegiglves in time according to probabilistic laws is called
of the system and, hence, conserve power. a stochastic procesd he time series to be analyzed may
The Discrete Space Estimatomodule returns the pe thought of as a particular realization of the system
radio map location that has the maximum probabilitynder study. Astationarystochastic process is based on
given the received signal strength vector from differeffie assumption that the process is in a particular state of
access points. An outline of the algorithm used is givefiatistical equilibrium. More formally, a discrete proses
in Algorithm 1. is strictly stationary if the joint probability of any set of
The Small-Scale Compensatanodule handles the observations must be unaffected by shifting all the times
small-scale variation characteristics of the wirelessiehasf the observation forward or backward by any integer
nel [2]. _ _ amount.
_TheContinuous Space Estimattakes as an inputthe  pytoregressive models are stochastic models used to
discrete estimated user location, one of the radio M3Ralyze stochastic time series. In these models, the

locations, and returns a more accurate estimate the UYs§fhent values of the process is expressed as a finite

location in the continuous space. _ ~linear aggregate of previous values of the process and
In this paper, we describe th@orrelation Modeling 5 noiser,. Therefore, if we denote the values of the
and the Correlation Handling modules of theHorus process asi, s;_1, 5_a, ..., then

system.
B. Time Series Analysis 5t—5 = (¢1.5¢-1—58)+(P2.5t—2—5)+...+(¢p.5t—p—5)+v¢
The technique described in this paper treats the sam- (1)

ples received form an access point as a time serigscalled an autoregressive process of orgewhere s

and use time series based-techniques to analyze ithéhe average of the process.

correlation between the samples.titne serieg[14] is In this paper, we treat the signal strength samples from
a set of observations generated sequentially in timen access point as a discrete stationary time series. We
If the set is discrete, the time series is said to bwodel this time series using a first order autoregressive
discrete, otherwise, it is a continuous time series. Weodel. To the best of our knowledge, this is the first
refer to successive equi-spaced samples from a discnetgk to apply time series techniques to the analysis of
time seriess as sy, s9, .... A statistical phenomenon that802.11 signal strength characteristics.



IV. SIGNAL STRENGTH TEMPORAL 0.3

CHARACTERISTICS

, , - 0.25
In this section, we present the temporal characteristics —

of the signal strength received from an access point g L
and discuss how they affect the estimation of the USEE
location. For a discussion of spatial characteristics, thg 0.15

reader is referred to [2]. £
0.1
A. Received Signal Strength Variations
, . , . 0.05
Figure 2 shows the normalized histogram of the signal JT T
strength received from an access point at a fixed position. 0
The figure shows that the measured signal strength at a 58 -56 -54 -52 -50 -48 46 -44 42
fixed position varies over time and the variations can be Signal Strength (dBm)

as large as 10 dBm. This time variation of the chann[gil 5 Anexam _ ) _
. . . . 2. ple of a normalized histogram of the signarsith

can be due to changes in the physical environment syghi, access point.

as people movement [15].

These variations suggests that depending on a single
sample for estimating the user location may lead to
inaccurate results if this sample comes from the tail
of the distribution. This motivates the need for the
techniques that are based on using more than one samglea.e

in estimating the user location.
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B. Samples Correlation

0.2

Figure 3 shows the autocorrelation function of thes
samples collected from one access point (one sample o
per second) at a fixed position. The figure shows that
the autocorrelation of consecutive samplesgy(= 1) is
as high as 0.9. This is a typical value for all the access ,,
points we experimented with. This high autocorrelation
is expected as over a short period of time the signal
strength received form an access point at a particufdg- 3- An example of the autocorrelation between samples: fr
point is relatively stable (modulo the changes in thg T;cg:ss point. The sub-figure shows the autocorrelatichéddirst
environment discussed in Section IV-A).

This high autocorrelation value should be considered
when using the methods that use multiple samples sug-
gested in the previous section, especially pavbabilis- V. HANDLING SAMPLES CORRELATION
tic location determin_ation techniques. Figure 6 showsThiS section describe an autoregressive model that
the effect of averaging samples on the accuracy of gy re the autocorrelation between samples from the
probablllstlg WLAN location determlnatlor_1 system thatSame access point. Following that, we present a tech-
assumes thindependencef samples. The figure shows nique that uses this model to calculate the distribution of

that although averaging increases accuracy, the wrapgd average of, correlated samples. Finally, we modify

mdependence_assumptlon leads to increasing aVergdeHorus location determination system to incorporate
distance errorincreasesas the number of averageqhe new technique

samples increases. The goal of this paper is to take the
high samples correlation into account to further enhange

the performance of probabilistic WLAN location deter- ) _ _ _
mination systems. Let s; be thestationarytime series representing the

samples from an access point wheis the discrete time
The figure is discussed in more details in Section VI. index. s; can be represented adiest order autoregres-
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sive model as: 3) Relation Between; and sy: We start from equa-
tion 2.

st=a.si—1+(1—a)y ;0<a<l (2) st = a.sp-1 + (1 — a)u
=a’.s9+a. (1 —a)vi—q + (1 — a)vy

3
wherewv; is a noise process, independent fremand =a’si_g+ (1 —a)vs

o is a parameter that determines the degree of auto- +a.(1 = )1 + (1 — a)y 6)
correlation of the original samples. Moreover, different
samples fromy; are i.i.d.'g. t

The model in E_quatio_n 2 states that the current s_ignal — atisg+ (1— a). Z Ny
strength valued;) is an linear aggregate of the previous
signal strength values{_;) and an independent noise
value ;). The parameten gives flexibility to the model B- Estimating the Value af
as it can be used to determine the degree of autocorrelam this section, we show that value can be approxi-
tion of the original process. For exampleqifs zero, the mated using the autocorrelation coefficient with lag one
samples of the process are i.i.d.'s, whereas ifv is one (r;). r; is estimated from a sample of si2¢ as [14]:
the original samples are identical (autocorrelation=a). | N1
the following subsections we describe some properties S [0 — 3).[se41 — 3]
of the autoregressive model that we will use in the rest — 7)
of the paper. Z 51 — 32

1) Relation Between the Mean gf and v;: We can t=1 !
see from Equation 2 that(s;) = FE(v;). The two
processes have the same mean.

=1

wheres is the expected value of process
For large values ot (close to one), Equation 2 can
2) Relation Between the Variance @f and v;: The be approximated as:

relation between the variance of the original and noise

processes can be obtained as follows: S5t R Q.51 (8)

Substituting Equation 8 in Equation 7 yields:
Var(s;) = Var(a.si—1 + (1 — a).v) N1
=’ Var(si_1)+ (1 —a)Var(v) (3) Z [s¢ — 5].[c.sp — 3]
(s; andv; independent) TR —

Q

Z[St — 5

Since the samples of; are identically distributed (sta- N-1
tionary process)Var(s;) = Var(si—1) = Var(s). > [st —8a(st —8) — (1 —a).5]
t=1

Therefore equation 3 can be rewritten as: ~ ©)
Z [s¢ — 5]
(1—a*)Var(s) = (1 —a)®.Var(v) 4 N—1 -
. [St — 5]2
t=1
~ I
therefore %{ - (o close to 1
St — S
t=1 !
A2
Var(v) = 1o For large N, Equation 9 can be rewritten as:
Var(s) (1—a)? (5)
_lta naa (10)
Cl-a

Therefore for a large value ofe and N, as is the
case hereq can be estimated using the autocorrelation
2This model is equivalent to the one given in Equation 1. coefficient with lag one.



C. Distribution of the Average of Correlated Samples
In this section, we obtain the mean and variance of the

1
0.9

samples of a new process whose samples are the average0.8

of n samples from the original process.

1) Mean of the Distribution of the Average of
Samples:We use A(n) to denote the random variable
whose value is the average ofsamples (fromt = 0 to
t =n — 1) of the original process;, n > 1. Since

1 n—1
= > s (11)
=0

therefore,E(A(n)) = E(s;). The mean of the distribu-
tion of the average of samples is the same as the mean

Var(A(n))/Var(s)

0.7
0.6
0.5
0.4

0.3 |

0.2

of the distribution of each sample. Fig. 4.
2) Variance of the Distribution of the Average of the original process for different values afandn

Samples:From equation 6A(n) can be written as:

Ratio between the variances of the averaging proaeds

n—1 J
1 o
— J _ J—t
A(n) n.j_o {a so+ (1 a).z;a ,} .
= = Var(s 1—a”
L (1o n-1 j Var(A(n)) = 3 .{(1_a)2+n—1
=971 so—l—(l—a).ZZoﬂ_Z v; L a2
j=1i=1 —a?————— % (15)
(12) 1—a2
therefore Note that whena = 0 (i.e. the samples o#; are
’ 1 Lo independent), Equation 16 reduces to:
Var(A(n)) = —{ — 2 Var(so
(A(n)) = (75 (s0) Var(A(n)) = Va:;(s) (16)
n—1 J
+(1-a) Zaz'(ji).Var(vi)} Figure 4 shows the ratio between the variance of
=1 i=1 the averaging process and original process for different

(13) values of a and n. The variance of the averaging
process/ar(A(n)), is always less than or equal to the
variance of the original proce$sgr(s), being equal in
casea equals one. Intuitively, the lower the variance of

from equation 5

Var(A(n)) = Var(so).{(l — a”)2

n? -« the signal strength distribution at each location, thedpett
n-1 j the ability to discriminate between different locations
(1-a2). 3 300 :
and the better the accuracy.
Jj=11i=1 . .
 Var(so) [ 1-a", D. Mod'lfled HFJrus Algorithm |
-2 ( 1 _a) In this section, we use the results of the previous
- 2 (14) section to obtain the distribution of the average rof
+(1-a?). Z l-a } correlated samples. We use this value to determine the
= 1—o? most probable user location. We assume thatHbeus
Var(se) [ 1—a”, system is running in the parametric mode where the
=2 {( ) +n—1 signal strength distribution follows @aussiandistribu-
) tion [3], [11], [12]. Since the individual distribution of
Y e o’ > } each sample follows &aussiandistribution, the proba-
l-a bility distribution of the average ofi samples follows a

Sinces; is a stationary procesﬁ/a so) = Var(s ) and Gaussiandistribution whose mean and variance can be

(
the final relation betweeih’a,r( ) andVar(s) is: obtained using the results in Section V-C.



The technique works as follows: A. Experimental Testbed

« Offline phasethe system calculates the parameters We performed our experiment in the south wing of
of the distribution of the average aof samples for the fourth floor of the Computer Science Department
each access point in the radio map. building. The layout of the floor is shown in Figure 5.

o Online phase Given n samples from an accessThe wing has a dimension of 224 feet by 85.1 feet. The
point, the algorithm obtains their average and calctechnique was tested in the Computer Science Depart-
late the probability of each radio map location givement wireless network. The entire wing is covered by
this value of the average using the distribution of th&2 access points installed in the third and fourth floors
average ofn samples calculated during the offlineof the building.
phase. For building the radio map, we took the radio map

Algorithm 2 shows the details of the modifiétbrus locations on the corridors on a grid with cells placed
algorithm. Note that the value of is implicitly used > feet apart (the corridor's width is 5 feet). We have a
in the online phase as the distribution of the average ©fal of 110 locations along the corridors. On the average,
n samples depends on the value @fas discussed in €ach location is covered by 4 access points. The value

Section V-C. of «, autocorrelation degree, for these access points was
approximately 0.9 for all access points.
Alg. 2 z= CorrHorusGetlLocation f, S, X, P_RM) Using the device driver and the API we devel-
Input: oped [16], we collected 300 samples at each location,
n 1 Number of samples from each access poinfne sample per second. The cards used were Lucent
S . Measured signal strength vectors froin Orinoco silver NICs Supporting up to 11 Mbit/s data

access pointsy = (51, ..., $)). Eachs;, 1 < i < k rate [17].To test the performance of the system, we used

is a vector containing: samples from access pomtan Independent test set that was collected on different
i days, time of day, and by different persons than the

X : Radio map locations. training set.

RM: A radio map based function, where

P_RM/(sq4,a,x) returns the probability of the B. Results

average, of then samples received from access We start by showing the effect of the wrong inde-

point ¢ at locationz € X, beings,. pendence assumption on the performance of the original
Output: Horus system. Figure 6 shows the average distance error
The locationz € X that maximizesP(z/S). for different values ofn. We can see that averaging
1 for i — 1.k do can significantly improves performance (average error
2 Avg(i) — average(s;) decreases by about 2 feet from = 1 to n = 2).
3 end for However, as the number of average_d samples increases,
4 Max — 0 the performar_lce degrade_:s. The minimum value at 2 .
5 for | e X do can be explallned by noting that there are two opposing
. factors affecting the system accuracy:
6 P H P_RM (Avg(i), 1) 1) as the number of averaged samplesncreases,
7. P> Max then the accuracy of the system should increase.
8: T — 2) asn increases, the estimation of the distribution of
9 Max — p the average of the samples becomes worse due
10: end if to the wrong independence assumption.
11: end for At low values ofn (n = 1,2) the first factor is the

dominating factor and hence the accuracy increases.
Starting fromn = 3, the effect of the bad estimation
of the distribution becomes the dominating factor and
accuracy degrades.

In this section we present the result of implementing Figure 7 shows the average distance error for different
the correlation handling technique in the context of thelues ofa andn. The figure shows that as the value of
Horus system. a, used in calculating the parameters of the distribution

VI. EXPERIMENTAL EVALUATION
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Fig. 5. Plan of the south wing of the 4th floor of the ComputeieBSce Department building where the experiment was coedu®eadings
were collected in the corridors (shown in gray).
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Fig. 6. Effect of the wrong independence assumption on teesge Fig. 7. Average distance error for different valuesxodindn. As the

distance error. As the number of averaged samples increts®s value of« approaches the true value @D, the system performance

average system error increases. increases. The case far= 1 (original Horus system performance)
is shown in Figure 6 for clarity.

of the average of. samples, approaches the tealue VIl. DiscussiON ANDCONCLUSIONS

(0.9), the system accuracy increases. The main contribution of this paper is three fold:

Note that at low values ofr averaging more samples(a) We applied the time series analysis techniques to
lead to worse accuracy, as shown in Figure 6, till waodeling the behavior of signal strength samples from
reach a switch-over point at aboudt = 0.4 where an access point, (b) we presented a technigue that uses
averaging more samples starts to give better accuramwltiple samples from the same access point, taking
Using the modified technique, the system can achieligh correlation into account, to enhance the accuracy
an average accuracy of about 2.15 feet, better than tfeprobabilistic WLAN location determination systems,
original system by more than 2.4 feet. and (c) we analyzed the performance of the proposed



technique by implementing it in the context of tHerus radio map.

system. We believe that the model and the technique presented
We showed that the samples autocorrelation can ipethe paper are general and can be applied to other

as large as 0.9 and therefore it becomes crucial to tgk®babilistic WLAN location determination techniques

this high autocorrelation into account when designing enhance their accuracy.

location determination algorithms that uses more than

one samples. We described an autoregressive model to
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