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Abstract—We propose a component based modelling and (TDC), and Route or Path Selection (RSC), Packet Forwarding
design strategy for the Neighborhood Discovery Component (PFC). The two components that determine the volume and
(NDC) and the Selector of Topology Information to Disseminate a4y ency of topology information that should be disseminated

Component (STIDC) of proactive ad hoc routing protocols. The . .
NDC design strategy focuses on limiting the detection time and are NDC and STIDC. NDC determines the local mechanism

removing time of network good and bad links respectively. The that is used by each node for detection of neighbors in
STIDC strategy makes sure that only stable links with long a dynamic network, and STIDC determines the mechanism
life time are selected as the topology information that will \which will be used for selection of local information to be
be broadcasted in network. We provide analytic performance p.q44cast to the network. In this paper we propose perfor-
analysis methods for both components and show that using the - . .
proposed methodologies we can significantly reduce the overheadMance metrics and de5|gr_1 strategies for th_ese two compon_ents.
of information dissemination in proactive routing protocols such We use the OLSR [1] routing protocol and illustrate our design
as OLSR. methodology through extensions and generalizations of this
routing protocol, as well as other routing protocols.

In mobile ad hoc networks (MANET), delay in detecting

One of the key challenges and obstacles in deploymdiniks and their failures is critical; hence we use these metrics
of proactive routing protocols such as OLSR [3] for Mobilexs the main design guidelines for the NDC. The NDC design
Ad-hoc Networks (MANETS) is the overhead of topologybjectives are: (1) to detect “good” quality links with low
information dissemination. In proactive routing protocols ewdelay, and (2) when quality of a detected link degrades, and
ery node should have enough information to select its pathnot acceptable, it should be removed from the detected link
or at least the next-hop to the desired destination. Thefgt with low delay too. Using these two main criteria, some
are two steps in controlling the information disseminatiogf the detected links will have a short life time. Clearly these
overhead. The first step is to select an efficient mechanisiniks are not good candidates to be broadcast in the network;
for dissemination of information [2], and the second step the STIDC design mechanism is to select the most stable links
to use pruning methods for selection of topology informatiofar the network topology representation.
that will be disseminated. In this paper, we focus on the secondn sections Il and Ill, we describe the function, performance
step and propose a pruning methodology. model, design metrics and strategy for the NDC and STIDC

In [6], [7], a component based framework for modelling angkspectively. In section IV we present and discuss simulation
design of routing protocols for ad hoc networks is proposegbsults.

This method provides a systematic approach that can be used
in the study, analysis, design and optimization of routing ||
protocols. In this approach, the routing protocol is modeled as
a complex distributed system of systems. The complex systenProactive routing protocols, such &ptimized Link State
is divided into separate components that are divided into su®euting (OLSR) [3], employ neighbor discovery methods to
components themselves. The main objective of a componéientify their local neighborhoods. Once this local neighbor-
based design iseparation of concerns, which is achieved byood information is observed at every node, these link state
breaking the system into components that overlap as little mting protocols, broadcast a pruned version of the informa-
possible in functionality. The design principles, interfaces aritn across the network. A detailed discussion of these pruning
performance metrics for each component should be specifiradthods is presented in [5] and [2]. The pruning methods
so that each can be studied and designed separately. are abstracted as th8elector of Topology Information to
The main components of a MANET routing protocol areDisseminate Componef§TIDC), which we will discuss in
Neighborhood Discovery (NDC), Selector of Topology Inthe next section. We refer the reader to [7] for a detailed
formation to Disseminate (STIDC), Topology Disseminatioexposition of models for these components.

I. INTRODUCTION

NEIGHBORHOODDISCOVERY COMPONENT(NDC)



U+D-1

Qiy = Z Tk 1)
k=U

and if we assume that the probability of successful transmis-
sion froms to j and fromj to ¢ are independent from each
other, then the probability of a bidirectional link detection is:

Pij = 4 (2)

The design (or control) parameters for NDC are flie
and D parameters that can be set to achieve the desired
performance. We can consider a number of performance

Fig. 1. FSM of neighbor detection mechanism metrics for the NDC. For dynamic and mobile networks,
delay in the detection of a neighbor and delay in removing
a node from the neighbor list are important metrics. We can

The neighbor discovery methods in ad hoc networks af@e Markov chain analysis techniques to approximate and/or
usually driven by proactive HELLO packet broadcasts [3hompute lower and upper bounds for these parameters [10].
[8]. The HELLO messages become susceptible to channel a1} the unidirectional links the link detection delay is the
contention losses. In order to combat these effects mostpét hitting time of stateU if we start from statel/ + D.
these protocols have been built with hysteresis to dampen thewise, delay in removing a node from the neighbor list is
dynamics of the discovery (section 14 of [3]). the first hitting time of stat& -+ D starting from staté/. These
A. Performance Model: distributions are for unidirectional links; for bidirectional links

A lized stat del for th iahbor di the detection delay is the maximum of the detection times
generaiized stale space modet for these NeIghbor dISCyY5,,, ynidirectional links. Similarly, the removing delay for

ery methOdS has been infroduced in _[7]' When a_Sta_i'onoidirectional links is the minimum removing delay of the two
receives a HELLO message from statignthat contains its corresponding unidirectional links

own ID, consecutively for a neighbor Discovery Time (NDT), Another important parameter (metric) that determines the

'F ;N'" ag:d Sta}t'ﬁgj th t'ts,‘f qeélghbor “tSt' Sta}tlon’ rerr|1_|ol\5/ﬁi Ooverhead of update messages in the network is the rate of
J trom 'Sf ne|gf Otrh ISNII-|TI 0_63 n'l?h rec?ve any ds status change for bidirectional links in the network. We denote
message trom for the period. 1hese tWo pernods 10fMy, pidirectional link by BU (bidirectional link up) and a

the hysteresis parameters of the NDC. C . C .
. . . . unidirectional or lost link byBD (bidirectional link down).
Th? Finite S“"?te Mgchme (FS.M) for the neighbor d|§gover.yhe probability of link status of linKs, j) changing fromBU
algorithm described is shown in Figure 1. Each statidn to BD is approximated by
the network runs the FSM for every statignin its radio
range. Whenever this station receives a HELLO packet from 2-1uspf q— 7 p 1 f?

j it corresponds to a decision edgeand when the HELLO PBU—~BD = p (3)

packet is lost in transmission it corresponds to a decisionare we have dropped the indicag for simplicity. Again
edge f. Station: declares a unidirectional link — j if it e have assumed the independence and identical probabilities
IS In any one Of states fro_rﬁf tO_U +D — L Otherwise it ot gy ccessful transmission over the directional liriks- J
declares a unidirectional link failure. This FSM then formgndj —. i. The idea behind the approximation is that the link
the executable modédbr the NDC in the system design. changes fromBU to BD when at least one of the directional
The correspondingerformance model, which captures thg s makes a transition from the stater D — 1 to U + D in
steady state behaviour of the FSM, can be obtained usigd FSm, while the other one is in one of the link detecting

Markov__chain analysis. The inputs to this mode_l are thgates (blue states in Figure 1). Similarly, the probability of
probability of success {5) and failure(f; = 1 — s;;) in the 14 |ink status changing from8D to BU is
transmission of HELLO messages. The design parameters are

U and D. A detailed analysis of these methods is present%d _2-my1s-q+2- Tf_18° = Tu-15 Tu+p-1f
. BD—BU —
in [7], [10]. 1—p

(4)

B. Performance Metrics Using conditioning arguments, thedirectional link change
Let 7, be the steady state probability that the NDC is ifate is given by

statek of the Markov chain. We can use the generalized global

balance equations to derive the steady state probabilities. One

of the main NDC performance metrics is the probability ofvhere as beforeyp is the probability of detecting &#U link

detecting a directional link to nodgfrom nodei is: and Ay is the rate of sending HELLO messages.

A= (pBu—BD P+ pBD—BU - (1 —D)) AH %)



Expected Link Detection Delay vs. U for 0.8 Hello Message Success Probabiliy . Expected Link Life Time vs. D for 0.6 Hello Message Success Probability
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Fig. 2. Upper bound for Expected Detection Delay of Good Links Fig. 3. Lower bound for Expected Life Time of Bad Links

Thus, \;; is the rate with which nodé will detect changes to networks with mobile stations [9]. Thus there is a need
in its bidirectional link to nodej. This in turn will determine to develop protocols to take the dynamic nature of topology
the rate with which the nodewill generate Topology Changeinto account. One such effort was OLSR [3]. OLSR is a
(T'C)messages. An unstable link will have a lot of transitiongroactive link state algorithm in which every station in the
betweenBU and BD which will increase thel'C message network floods pruned local link state information across the
payload. Hence);; can be used as a performance metric. network. This is needed because, unlike in wired networks,

the topology here is dynamic and flooding the entire link
C. Design Strategy state information can creat@oadcast stormg2]. Thus link

In [7] a design mechanism to choose appropriatand D  state algorithms must include appropriate pruning methods
to discover links with desired detection probability is giverfo broadcast only significant links. This functionality in link
While this does reduce the number of unstable links detect&éate routing algorithms in our framework [6], is abstracted as
it suffers from long detection delays that is not acceptablee STIDC. This component based abstraction is discussed in
for dynamic networks. This is evident from the sojourn timedetail in [6], [7]. In this paper we present novel methods to
analysis of the Markov chain model introduced in [10]. Thééevelop the functional and performance models of the STIDC.
analysis results for the sojourn time of the link detection is We observe that a good STIDC should have the following

shown in Figure 2. properties:
It is clear from figure 2 that the detection time grows 1) The amount of link information that is flooded across
exponentially with the parametdy. Thus the process of the network should be sufficiently low.

detecting only stable bidirectional links is time consuming and 2) The reduced topology as viewed by every host in the
hence does not satisfy the primary objective of quick neighbor  system, must preserve the shortest paths for routing.

detection. We thus shift the onus of dealing with the problem Though OLSR pruning guarantees the second condition, it
of unstable links to the STIDC. We argue and show that thigjls to reduce the link information broadcast storm in a dy-
is a natural problem in this component based abstraction. damic network. This is because tMPR selection algorithm
dynamic networks the primary objectives of NDC should bg], employed in OLSR, tries to prune local information on
to limit the detection time of good links and at the same timg static topology without considering its time-varying nature.
the removing time of bad links. The greedy MPR selection algorithm (based on second-order
Let us assume that for a good link the success probabiligighbor coverage) is likely to choose unstable links. This is
is above 0.8, and for a bad link it is below 0.6. In figurepecause the nodes which are farthest from the host are likely
2, 3 the average link detection and life time delay for goo@ be chosen as MPRs because they tend to have a larger
(s = 0.8) and bad links (s= 0.6) as a function of and D coverage. These MPRs usually have poor signal reception and
respectively are given. From these figures it is clear that Bgnce the detected bidirectional links are more likely to be
choosingU = 2 and D = 2 we can keep both metrics belowynstable.
10 seconds. We show that this problem can be resolved if we choose
a metric that considers the dynamics of these links. A good
metric to consider is theidirectional link rateintroduced in
subsection 1I-B. This leads to a formulation which helps us to
Many routing strategies inspired from protocols used iimterpret the STIDC as a solution to a constrained optimization
wired networks were shown to perform poorly when appliegroblem.

Ill. SELECTOR OFTOPOLOGY INFORMATION TO
DISSEMINATE COMPONENT(STIDC)



A. Functional Model every hosth in the network. The algorithm outputs the set

As with traditional pruning algorithms we assume thef Stable neighborg” which solve Problem(h). Each host
every hosth in the network knows its local neighborhood!Ses @ set of relays (for example, those obtained from the
(the first-order (one-hop) neighbora' (7) and the second- Topology Dissemination Compqnent [7]) to broadcast any
order(two-hop) neighbora/2 (k). With this local view every topology changes of the stable link sgt, j), Vj € C}.
host attempts to solve the following optimization problem to— — i
obtain the set of neighbor links that it should flood across tf#g0rithm 1 Greedy Approximation algorithm  for

network: Problem(h)
Cover C=10
] Removing the essential cover
min Z Anj - Problem(h) for all i € N2(h) do
JEN(h) E; = {j1,j2, -+ ,ja} < set of vertices €
such that shortest paths fromto everyi € N'?(h) N(h) whi ch shares an incidence with i,
are preserved. if |E;]==1 then
; . , C=CuU{j1}
In effect this problem formulation attempts to find the op- o4 if
timal set of stable links which preserve the shortest pathsend for

in the global view of the network as a dynamic graph. R = N2(h)

This property is shown in subsection IlI-C. As a result any ¢, o jecdo
solution to Problem(h), viewed globally, indeed satisfies the . 411 ; < N2(h) do
general properties of a STIDC described above. Unfortunately if (4,7) € E then
Problem(h) turns out be an NP-Hard problem as shown in R — R\{i}

the next subsection. end if

B. Computational Complexity and Greedy Approximation end for

In this subsection we show th&t-oblem(h) is an NP-Hard enld for 1
problem in the local neighborhood. We presentaparsimoniousN (h) =N (}.L)\C
transformation of the well known NP-Completet cover Gr(_eedy selection
problem to Problem(h). Let U represent the universe of while R @ dp .
elements. LetS = {S),S,,---, Sy} be the set of subsets i = {d1,62,---} be the set of vertices €
of the universe. Associated with each subset is a weight Rl whi ch shares an incidence with j €
wg,1 < k < N. The optimal set cover is to find a subset N (h)xhj
of S, C which covers all the elements in the universe and ¢ ~ TD,]

also minimizes the costz wy,. Consider the following Assign c¢; to each el ement ¢ € Dj. This is
Srec the cost in covering i.

polynomial time transformation. Let us create a fictitious host j* = arg min;e ni(n) ¢;
h. For each element; in I/ create a node which represents R — R\S;-
the second-order neighborhodd?(h). For each of the sets N(h) « NY(h)\j*
in S, € S create a nodé which represents the first-order C —CuU{j*}
neighborhoodV! (h). For eacht € N'!(h), let thelink change  end while
rate be \y;, = wy. The incidence betweeN (h) and N2 (h)
is then created as follows. There exists an edge betweerror eachj € N (h), the influence ofj in the second order
k € N1(h) andi € N2(h), if the setS), contains the element neighborhoodV?(h) is defined as the set of neighbors;jah
s;. A feasible solution toProblem(h), in this local view, NZ(h). Mathematically thénfluenceis given byI(j) = {i €
would essentially solve the optimal set cover problem. The?(h) : (j,i) € E}, where E is the edge set in the local
constraint of maintaining all the shortest path&’tae N''(h), view of the hosth. Let us denote the size of the maximal
ensures that all the elementstihare covered by the one-hopinfluence|I*| = max;e () |1(j)]. We denote byA“recdy,
neighbors which form the covet. This would be the optimal the cost achieved by using the greedy algorithm aft,
cover because it minimizes Z Ank, Which is the same the optimal cost.

keNL(h) Theorem 3.1:

as minimizing the covering coshin > wy. AGreedy
SreC

| _ e —pope = H(I)
This parallel with the set-cover problem suggests to use n
the popular greedy approximation algorithm employed f%hereH(n) — Z} is the nt"* harmonic number.

the set cover problem [4]. Algorithm 1 is carried out by P



Proof: The proof is based on lemma 11.9 (Chapter 11 c
[4]) which states that the total covering cost of any influenc

S e < HTG) ) L \_
i€1(j)

Hello packet Steady State Link Rate of Flooded
ange Rates

Static Link Topology Information

Let us suppose that the optimal stable neighbor link s€tis pewie (TJDS) " SIL?C | e
Then '
AOptimal — Z )\hj
jecx
1
> H(|I*|) Z Z C; Fig. 4. Composition of Performance Models
JEC* i€l (H)
1
= H(|I*)) Z Ci While NDC performance models provide local metrics of
iEN2(h) the graph topology, the set cover algorithms that couple the
_ 1 Z Ani state spaces of the FSMs of every station provide a global met-
H(|I+[) &2 ric of the graph topology. To perform an exhaustive Monte-

Carlo simulation to estimate the link-flooding overhead would
be an overkill. Instead we extract a reduced Markov model (of
the coupled Markov models of the NDCs) shown in Figure

. 5 which accurately captures the average link change rate
~ Theorem 3.2:The shortest path between any pair of stanowever, the sample paths amet identical). This reduced
tions: and; is preserved in every hoéfs global view. Markov chain can be used to drive a Monte-Carlo simulation

Proof: Let us suppose the shortest path hop count bgy approximate the amount of link information to broadcast.
tween two stationsS and D is k. For k < 2 the proof is

trivial (the local view gives all the paths). Fér> 2, let us
suppose that the shortest pathSis— j; — jo -+ — jr — D
in the original communication grapty. Since the pruning // ™
algorithm preserves all shortest paths in the local view, there o< Al
would be at least a replacement pa&h— j.; — j2. Thus g B \, ( BD\O
jr1 — jo — j3--- — jr — D is a path of lengtht — 1. If _/ S
we apply the above argument recursively it is trivial to show \ /
that that shortest path is indeed preserved in the global view. -

|

C. Global properties of the algorithm

~

D. Performance model
. Fig. 5. Reduced Markov Chain which captures the average change rate
Performance models for components of an algorithm help

analyze its performance without resorting to packet level , orger to obtain a generalized performance model for the

simulations. The performance models should generalize a§¢|pc, we claim that the STIDC algorithm attempts to solve
capture the properties of all such component system realizaa following optimization problem

tions. Furthermore, the performance metrics of the algorithm

should be derivable from the performance metrics of the min Z Ahj
components. A good performance model and its analysis for JEN1(R)
NDC is carried out in [7], [10]. In this paper we develop such that shortest paths fromto A2 (h)

a performance model for STIDC based on reduced Monte-
Carlo methods and this necessitates the addition of a new
output parametek,; for the NDC. These component modelsVhena = 0 it captures the OLSR’s MPR selection algorithm
help in parametric analysis of the composition of the ND@nd whena = 1 it reduces to our rate sensitive set-cover
and the STIDC. The Markov chain methods introduced iproblem. Thus(U, D) and o form the tuning parameters for
subsection 1I-B for NDC give good estimates of the steadjie components NDC and STIDC respectively.

state bidirectional link statistics. These performance outputs
from the NDC serve as the inputs to the performance model
of the STIDC. Figure 4 illustrates the relation between the To illustrate the power and efficiency of performance analy-
two performance models. sis using component methods we choose the network example

are preserved.

IV. RESULTS ANDDISCUSSION



shown in Figure 6. The values on the edges indicate the
symmetric loss probabilities for the HELLO messages. These
Bernoulli processes induce a random process on the graph.
The neighbor discovery protocol tries to detect bidirectional
links based on this process which evolves over the edges. The
neighbor discovery protocol depending on the programmed
hysteresis parametef$/, D) dampens the bidirectional link
discovery. The neighbor discovery process can be interpreted
as a filtering process of the original stochastic process. The
STIDC algorithms run on this filtered process and choose a
set of significant linksthat needs to be flooded. The manner
in which nodes perceive the significance of links depends on
the tuning parametes. The tuning factorx = 0 myopically
chooses links to nodes that have maximal local coverage.
Howevera = 1 chooses cheap nodes (whose links do not
change often) that also give a good coverage.

Static MPR based STIDC

o o o o
w Y o @
] l ! |

Average number of links flooded
o
R
l

0.1+

Set Cover based STIDC

(1]

Fig. 6.

Example network 2]
For o = 0, which corresponds to the default OLSR MPR
selection algorithm we see a lot of link changes that arg’]
flooded. However when we use the new selection criteria
based on our greedy algorithm, we observe a significaif]
reduction in the flooding information. In Figure 7 we havel™
obtained the average number of links flooded for varying [6]

and D. We compare the performance for two valuesaof0
and1). 7]

In Table IV we obtain the average number of links flooded

for « varying in [0,1], in steps of 0.2, whild/ = 2 and

D = 2 are fixed. The rates shown are normalized with respeg%]
to the HELLO transmission rates. As expected by changing
we observe that we can control the average number of link8l
broadcast. Thus, the parametéfsD and « can be tuned to
operate at various tradeoff points. [10]

V. CONCLUSIONS

In this paper we have developed the performance model
for the STIDC and presented a design strategy to optimize the
amount of topology information broadcast across the network.

Fig. 7. Flooding performance of STIDC for varyirig and D
« 0 0.2 0.4 0.6 0.8 1.0
Average number| 0.625 | 0.561 | 0.561 | 0.561 | 0.561 | 0.561
of links broad-
casted
TABLE |

FLOODING PERFORMANCE FOR DIFFERENT

Currently we are studying the effects of the component
parameters for large networks.
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