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Abstract—We propose a component based modelling and
design strategy for the Neighborhood Discovery Component
(NDC) and the Selector of Topology Information to Disseminate
Component (STIDC) of proactive ad hoc routing protocols. The
NDC design strategy focuses on limiting the detection time and
removing time of network good and bad links respectively. The
STIDC strategy makes sure that only stable links with long
life time are selected as the topology information that will
be broadcasted in network. We provide analytic performance
analysis methods for both components and show that using the
proposed methodologies we can significantly reduce the overhead
of information dissemination in proactive routing protocols such
as OLSR.

I. I NTRODUCTION

One of the key challenges and obstacles in deployment
of proactive routing protocols such as OLSR [3] for Mobile
Ad-hoc Networks (MANETs) is the overhead of topology
information dissemination. In proactive routing protocols ev-
ery node should have enough information to select its path
or at least the next-hop to the desired destination. There
are two steps in controlling the information dissemination
overhead. The first step is to select an efficient mechanism
for dissemination of information [2], and the second step is
to use pruning methods for selection of topology information
that will be disseminated. In this paper, we focus on the second
step and propose a pruning methodology.

In [6], [7], a component based framework for modelling and
design of routing protocols for ad hoc networks is proposed.
This method provides a systematic approach that can be used
in the study, analysis, design and optimization of routing
protocols. In this approach, the routing protocol is modeled as
a complex distributed system of systems. The complex system
is divided into separate components that are divided into sub-
components themselves. The main objective of a component
based design isseparation of concerns, which is achieved by
breaking the system into components that overlap as little as
possible in functionality. The design principles, interfaces and
performance metrics for each component should be specified
so that each can be studied and designed separately.

The main components of a MANET routing protocol are:
Neighborhood Discovery (NDC), Selector of Topology In-
formation to Disseminate (STIDC), Topology Dissemination

(TDC), and Route or Path Selection (RSC), Packet Forwarding
(PFC). The two components that determine the volume and
frequency of topology information that should be disseminated
are NDC and STIDC. NDC determines the local mechanism
that is used by each node for detection of neighbors in
a dynamic network, and STIDC determines the mechanism
which will be used for selection of local information to be
broadcast to the network. In this paper we propose perfor-
mance metrics and design strategies for these two components.
We use the OLSR [1] routing protocol and illustrate our design
methodology through extensions and generalizations of this
routing protocol, as well as other routing protocols.

In mobile ad hoc networks (MANET), delay in detecting
links and their failures is critical; hence we use these metrics
as the main design guidelines for the NDC. The NDC design
objectives are: (1) to detect “good” quality links with low
delay, and (2) when quality of a detected link degrades, and
is not acceptable, it should be removed from the detected link
list with low delay too. Using these two main criteria, some
of the detected links will have a short life time. Clearly these
links are not good candidates to be broadcast in the network;
the STIDC design mechanism is to select the most stable links
for the network topology representation.

In sections II and III, we describe the function, performance
model, design metrics and strategy for the NDC and STIDC
respectively. In section IV we present and discuss simulation
results.

II. N EIGHBORHOODDISCOVERY COMPONENT (NDC)

Proactive routing protocols, such asOptimized Link State
Routing (OLSR) [3], employ neighbor discovery methods to
identify their local neighborhoods. Once this local neighbor-
hood information is observed at every node, these link state
routing protocols, broadcast a pruned version of the informa-
tion across the network. A detailed discussion of these pruning
methods is presented in [5] and [2]. The pruning methods
are abstracted as theSelector of Topology Information to
Disseminate Component(STIDC), which we will discuss in
the next section. We refer the reader to [7] for a detailed
exposition of models for these components.



1 2 U

U+2 U+1U+D-1

U-1

U+D

ijfijf

ijf ijf ijf

ijf

ijs
ijs

ijs

ijs
ijs ijs

ijf

ijs

Fig. 1. FSM of neighbor detection mechanism

The neighbor discovery methods in ad hoc networks are
usually driven by proactive HELLO packet broadcasts [3],
[8]. The HELLO messages become susceptible to channel and
contention losses. In order to combat these effects most of
these protocols have been built with hysteresis to dampen the
dynamics of the discovery (section 14 of [3]).

A. Performance Model:

A generalized state space model for these neighbor discov-
ery methods has been introduced in [7]. When a stationi

receives a HELLO message from stationj, that contains its
own ID, consecutively for a neighbor Discovery Time (NDT),
it will add station j to its neighbor list. Stationi removes
j from its neighbor list if it does not receive any HELLO
message fromj for the NHT period. These two periods form
the hysteresis parameters of the NDC.

The Finite State Machine (FSM) for the neighbor discovery
algorithm described is shown in Figure 1. Each stationi in
the network runs the FSM for every stationj in its radio
range. Whenever this station receives a HELLO packet from
j it corresponds to a decision edges, and when the HELLO
packet is lost in transmission it corresponds to a decision
edgef . Station i declares a unidirectional linki → j if it
is in any one of states fromU to U + D − 1. Otherwise it
declares a unidirectional link failure. This FSM then forms
the executable modelfor the NDC in the system design.

The correspondingperformance model, which captures the
steady state behaviour of the FSM, can be obtained using
Markov chain analysis. The inputs to this model are the
probability of success (sij) and failure(fij = 1 − sij) in the
transmission of HELLO messages. The design parameters are
U and D. A detailed analysis of these methods is presented
in [7], [10].

B. Performance Metrics

Let πk be the steady state probability that the NDC is in
statek of the Markov chain. We can use the generalized global
balance equations to derive the steady state probabilities. One
of the main NDC performance metrics is the probability of
detecting a directional link to nodej from nodei is:

qij =
U+D−1∑

k=U

πk (1)

and if we assume that the probability of successful transmis-
sion from i to j and fromj to i are independent from each
other, then the probability of a bidirectional link detection is:

pij = q2
ij (2)

The design (or control) parameters for NDC are theU

and D parameters that can be set to achieve the desired
performance. We can consider a number of performance
metrics for the NDC. For dynamic and mobile networks,
delay in the detection of a neighbor and delay in removing
a node from the neighbor list are important metrics. We can
use Markov chain analysis techniques to approximate and/or
compute lower and upper bounds for these parameters [10].
For the unidirectional links the link detection delay is the
first hitting time of stateU if we start from stateU + D.
Likewise, delay in removing a node from the neighbor list is
the first hitting time of stateU+D starting from stateU . These
distributions are for unidirectional links; for bidirectional links
the detection delay is the maximum of the detection times
of two unidirectional links. Similarly, the removing delay for
bidirectional links is the minimum removing delay of the two
corresponding unidirectional links.

Another important parameter (metric) that determines the
overhead of update messages in the network is the rate of
status change for bidirectional links in the network. We denote
a bidirectional link by BU (bidirectional link up) and a
unidirectional or lost link byBD (bidirectional link down).
The probability of link status of link(i, j) changing fromBU

to BD is approximated by

pBU→BD =
2 · πU+D−1f · q − π2

U+D−1f
2

p
(3)

Here we have dropped the indicesi,j for simplicity. Again,
we have assumed the independence and identical probabilities
of successful transmission over the directional linksi → j

andj → i. The idea behind the approximation is that the link
changes fromBU to BD when at least one of the directional
links makes a transition from the stateU +D−1 to U +D in
the FSM, while the other one is in one of the link detecting
states (blue states in Figure 1). Similarly, the probability of
the link status changing fromBD to BU is

pBD→BU =
2 · πU−1s · q + 2 · π2

U−1s
2 − πU−1s · πU+D−1f

1− p
(4)

Using conditioning arguments, thebidirectional link change
rate is given by

λ = (pBU→BD · p + pBD→BU · (1− p))λH (5)

where as before,p is the probability of detecting aBU link
andλH is the rate of sending HELLO messages.
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Fig. 2. Upper bound for Expected Detection Delay of Good Links

Thus,λij is the rate with which nodei will detect changes
in its bidirectional link to nodej. This in turn will determine
the rate with which the nodei will generate Topology Change
(TC)messages. An unstable link will have a lot of transitions
betweenBU and BD which will increase theTC message
payload. Hence,λij can be used as a performance metric.

C. Design Strategy

In [7] a design mechanism to choose appropriateU andD

to discover links with desired detection probability is given.
While this does reduce the number of unstable links detected,
it suffers from long detection delays that is not acceptable
for dynamic networks. This is evident from the sojourn times
analysis of the Markov chain model introduced in [10]. The
analysis results for the sojourn time of the link detection is
shown in Figure 2.

It is clear from figure 2 that the detection time grows
exponentially with the parameterU . Thus the process of
detecting only stable bidirectional links is time consuming and
hence does not satisfy the primary objective of quick neighbor
detection. We thus shift the onus of dealing with the problem
of unstable links to the STIDC. We argue and show that this
is a natural problem in this component based abstraction. In
dynamic networks the primary objectives of NDC should be
to limit the detection time of good links and at the same time
the removing time of bad links.

Let us assume that for a good link the success probability
is above 0.8, and for a bad link it is below 0.6. In figures
2, 3 the average link detection and life time delay for good
(s = 0.8) and bad links (s= 0.6) as a function ofU andD

respectively are given. From these figures it is clear that by
choosingU = 2 andD = 2 we can keep both metrics below
10 seconds.

III. SELECTOR OFTOPOLOGY INFORMATION TO

DISSEMINATE COMPONENT (STIDC)

Many routing strategies inspired from protocols used in
wired networks were shown to perform poorly when applied
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Fig. 3. Lower bound for Expected Life Time of Bad Links

to networks with mobile stations [9]. Thus there is a need
to develop protocols to take the dynamic nature of topology
into account. One such effort was OLSR [3]. OLSR is a
proactive link state algorithm in which every station in the
network floods pruned local link state information across the
network. This is needed because, unlike in wired networks,
the topology here is dynamic and flooding the entire link
state information can createbroadcast storms[2]. Thus link
state algorithms must include appropriate pruning methods
to broadcast only significant links. This functionality in link
state routing algorithms in our framework [6], is abstracted as
the STIDC. This component based abstraction is discussed in
detail in [6], [7]. In this paper we present novel methods to
develop the functional and performance models of the STIDC.

We observe that a good STIDC should have the following
properties:

1) The amount of link information that is flooded across
the network should be sufficiently low.

2) The reduced topology as viewed by every host in the
system, must preserve the shortest paths for routing.

Though OLSR pruning guarantees the second condition, it
fails to reduce the link information broadcast storm in a dy-
namic network. This is because theMPR selection algorithm
[9], employed in OLSR, tries to prune local information on
a static topology without considering its time-varying nature.
The greedy MPR selection algorithm (based on second-order
neighbor coverage) is likely to choose unstable links. This is
because the nodes which are farthest from the host are likely
to be chosen as MPRs because they tend to have a larger
coverage. These MPRs usually have poor signal reception and
hence the detected bidirectional links are more likely to be
unstable.

We show that this problem can be resolved if we choose
a metric that considers the dynamics of these links. A good
metric to consider is thebidirectional link rate introduced in
subsection II-B. This leads to a formulation which helps us to
interpret the STIDC as a solution to a constrained optimization
problem.



A. Functional Model

As with traditional pruning algorithms we assume that
every hosth in the network knows its local neighborhood
(the first-order (one-hop) neighbors)N 1(h) and the second-
order(two-hop) neighborsN 2(h). With this local view every
host attempts to solve the following optimization problem to
obtain the set of neighbor links that it should flood across the
network:

min
∑

j∈N 1(h)

λhj · · ·Problem(h)

such that shortest paths fromh to everyi ∈ N 2(h)

are preserved.

In effect this problem formulation attempts to find the op-
timal set of stable links which preserve the shortest paths
in the global view of the network as a dynamic graph.
This property is shown in subsection III-C. As a result any
solution toProblem(h), viewed globally, indeed satisfies the
general properties of a STIDC described above. Unfortunately
Problem(h) turns out be an NP-Hard problem as shown in
the next subsection.

B. Computational Complexity and Greedy Approximation

In this subsection we show thatProblem(h) is an NP-Hard
problem in the local neighborhood. We present a parsimonious
transformation of the well known NP-Completeset cover
problem to Problem(h). Let U represent the universe of
elements. LetS = {S1, S2, · · · , SN} be the set of subsets
of the universe. Associated with each subset is a weight
wk, 1 ≤ k ≤ N . The optimal set cover is to find a subset
of S, C which covers all the elements in the universe and
also minimizes the cost

∑

Sk∈C

wk. Consider the following

polynomial time transformation. Let us create a fictitious host
h. For each elementsi in U create a nodei which represents
the second-order neighborhoodN 2(h). For each of the sets
in Sk ∈ S create a nodek which represents the first-order
neighborhoodN 1(h). For eachk ∈ N 1(h), let thelink change
rate beλhk = wk. The incidence betweenN 1(h) andN 2(h)
is then created as follows. There exists an edge between
k ∈ N 1(h) andi ∈ N 2(h), if the setSk contains the element
si. A feasible solution toProblem(h), in this local view,
would essentially solve the optimal set cover problem. The
constraint of maintaining all the shortest paths to∀i ∈ N 1(h),
ensures that all the elements inU are covered by the one-hop
neighbors which form the coverC. This would be the optimal
cover because it minimizes

∑

k∈N 1(h)

λhk, which is the same

as minimizing the covering costmin
Sk∈C

∑

Sk∈C

wk.

This parallel with the set-cover problem suggests to use
the popular greedy approximation algorithm employed for
the set cover problem [4]. Algorithm 1 is carried out by

every hosth in the network. The algorithm outputs the set
of stable neighborsC which solveProblem(h). Each host
uses a set of relays (for example, those obtained from the
Topology Dissemination Component [7]) to broadcast any
topology changes of the stable link set{(h, j),∀j ∈ C}.

Algorithm 1 Greedy Approximation algorithm for
Problem(h)

Cover C = ∅
Removing the essential cover
for all i ∈ N 2(h) do

Ei = {j1, j2, · · · , jd} ← set of vertices ∈
N 1(h) which shares an incidence with i.
if |Ei| == 1 then
C = C ∪ {j1}

end if
end for
R = N 2(h)
for all j ∈ C do

for all i ∈ N 2(h) do
if (i, j) ∈ E then
R ← R\{i}

end if
end for

end for
N1(h)← N 1(h)\C
Greedy selection
while R 6= ∅ do

Dj = {i1, i2, · · · } be the set of vertices ∈
R which shares an incidence with j ∈
N1(h).
cj =

λhj

|Dj |
Assign cj to each element i ∈ Dj . This is
the cost in covering i.
j∗ = arg minj∈N1(h) cj

R ← R\Sj∗

N1(h)← N1(h)\j∗

C ← C ∪ {j∗}
end while

For eachj ∈ N 1(h), the influence ofj in the second order
neighborhoodN 2(h) is defined as the set of neighbors ofj in
N 2(h). Mathematically theinfluenceis given byI(j) = {i ∈
N 2(h) : (j, i) ∈ E}, whereE is the edge set in the local
view of the hosth. Let us denote the size of the maximal
influence|I∗| = maxj∈N 1(h) |I(j)|. We denote byΛGreedy,
the cost achieved by using the greedy algorithm andΛOpt,
the optimal cost.

Theorem 3.1:

ΛGreedy

ΛOpt
≤ H(|I∗|)

whereH(n) =

n∑

i=1

1

i
is thenth harmonic number.



Proof: The proof is based on lemma 11.9 (Chapter 11 of
[4]) which states that the total covering cost of any influence

∑

i∈I(j)

ci ≤ H(|I(j)|)λhj

Let us suppose that the optimal stable neighbor link set isC∗.
Then

ΛOptimal =
∑

j∈C∗

λhj

≥
1

H(|I∗|)

∑

j∈C∗

∑

i∈I(j)

ci

≥
1

H(|I∗|)

∑

i∈N 2(h)

ci

=
1

H(|I∗|)

∑

i∈C

λhj

C. Global properties of the algorithm

Theorem 3.2:The shortest path between any pair of sta-
tions i and j is preserved in every hosth’s global view.

Proof: Let us suppose the shortest path hop count be-
tween two stationsS and D is k. For k ≤ 2 the proof is
trivial (the local view gives all the paths). Fork > 2, let us
suppose that the shortest path isS → j1 → j2 · · · → jk → D

in the original communication graphG. Since the pruning
algorithm preserves all shortest paths in the local view, there
would be at least a replacement pathS → jr1 → j2. Thus
jr1 → j2 → j3 · · · → jk → D is a path of lengthk − 1. If
we apply the above argument recursively it is trivial to show
that that shortest path is indeed preserved in the global view.

D. Performance model

Performance models for components of an algorithm help
analyze its performance without resorting to packet level
simulations. The performance models should generalize and
capture the properties of all such component system realiza-
tions. Furthermore, the performance metrics of the algorithm
should be derivable from the performance metrics of the
components. A good performance model and its analysis for
NDC is carried out in [7], [10]. In this paper we develop
a performance model for STIDC based on reduced Monte-
Carlo methods and this necessitates the addition of a new
output parameterλhj for the NDC. These component models
help in parametric analysis of the composition of the NDC
and the STIDC. The Markov chain methods introduced in
subsection II-B for NDC give good estimates of the steady
state bidirectional link statistics. These performance outputs
from the NDC serve as the inputs to the performance model
of the STIDC. Figure 4 illustrates the relation between the
two performance models.

Fig. 4. Composition of Performance Models

While NDC performance models provide local metrics of
the graph topology, the set cover algorithms that couple the
state spaces of the FSMs of every station provide a global met-
ric of the graph topology. To perform an exhaustive Monte-
Carlo simulation to estimate the link-flooding overhead would
be an overkill. Instead we extract a reduced Markov model (of
the coupled Markov models of the NDCs) shown in Figure
5 which accurately captures the average link change rate
(however, the sample paths arenot identical). This reduced
Markov chain can be used to drive a Monte-Carlo simulation
to approximate the amount of link information to broadcast.

Fig. 5. Reduced Markov Chain which captures the average change rate

In order to obtain a generalized performance model for the
STIDC, we claim that the STIDC algorithm attempts to solve
the following optimization problem

min
∑

j∈N 1(h)

λα
hj

such that shortest paths fromh to N 2(h)

are preserved.

Whenα = 0 it captures the OLSR’s MPR selection algorithm
and whenα = 1 it reduces to our rate sensitive set-cover
problem. Thus(U,D) andα form the tuning parameters for
the components NDC and STIDC respectively.

IV. RESULTS AND DISCUSSION

To illustrate the power and efficiency of performance analy-
sis using component methods we choose the network example



shown in Figure 6. The values on the edges indicate the
symmetric loss probabilities for the HELLO messages. These
Bernoulli processes induce a random process on the graph.
The neighbor discovery protocol tries to detect bidirectional
links based on this process which evolves over the edges. The
neighbor discovery protocol depending on the programmed
hysteresis parameters(U,D) dampens the bidirectional link
discovery. The neighbor discovery process can be interpreted
as a filtering process of the original stochastic process. The
STIDC algorithms run on this filtered process and choose a
set of significant linksthat needs to be flooded. The manner
in which nodes perceive the significance of links depends on
the tuning parameterα. The tuning factorα = 0 myopically
chooses links to nodes that have maximal local coverage.
However α = 1 chooses cheap nodes (whose links do not
change often) that also give a good coverage.

Fig. 6. Example network

For α = 0, which corresponds to the default OLSR MPR
selection algorithm we see a lot of link changes that are
flooded. However when we use the new selection criteria
based on our greedy algorithm, we observe a significant
reduction in the flooding information. In Figure 7 we have
obtained the average number of links flooded for varyingU

andD. We compare the performance for two values ofα (0
and1).

In Table IV we obtain the average number of links flooded
for α varying in [0,1], in steps of 0.2, whileU = 2 and
D = 2 are fixed. The rates shown are normalized with respect
to the HELLO transmission rates. As expected by changingα

we observe that we can control the average number of links
broadcast. Thus, the parametersU,D andα can be tuned to
operate at various tradeoff points.

V. CONCLUSIONS

In this paper we have developed the performance model
for the STIDC and presented a design strategy to optimize the
amount of topology information broadcast across the network.
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Fig. 7. Flooding performance of STIDC for varyingU andD

α 0 0.2 0.4 0.6 0.8 1.0
Average number
of links broad-
casted

0.625 0.561 0.561 0.561 0.561 0.561

TABLE I
FLOODING PERFORMANCE FOR DIFFERENTα

Currently we are studying the effects of the component
parameters for large networks.
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