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Abstract

We consider the problem of optimal filtering of two dimensional diffusion process mea-
sured in a noisy channel. We approximate the solution of Zakai equation for the two dimen-
sional process by a solution of Zakai equation for one dimensional process for two models.
The first one is fast and slow variables, that is where one element of the process changes
much more rapidly than the second one. The second model is the quasi-deterministic case
for which the fast element has a small diffusion term. In both cases a simple approximated
equations for the filtering problem are given that make numerical solution simpler.



1. Introduction

We study filtering of nonlinear diffusion process given by the It equation

(1) &X[t) = F (X(t), )dt + of X (1)) d (1)

from the observation process
(1.2) dZ(t) = h(X(t))dt + dv

lead to the solution of the Zakai equation for an unnormalized conditional probability
density of X(t) given {y(s), 0 < s < t}. Here F(X,t) : IR" x [0c0) — IR", X[t =
0) = X, ,Z(t = 0) = Zy, o(z,t) is a n X m matrix, w(t) is a m-dimensional standard
Brownian motion independent of the initial value zo,v(t) is an one dimensional standard
Brownian motion independent of Z; and w(¢t). The Zakai equation is a linear stochastic

partial differential equation given by
(1.3) du(z,t) = Lu(z,t)dt + h(z,t) u(z,t) dZ(t)

where L is the Fokker-Planck operator

(1.4) L() = %Zi’jéaj—;iz [(Q__U.T)ij'] -

- - [Rlz0).

83:,-

i=1

Numerical methods to solve (1.3) on line for a given realization Z(t) could not be imple-
mented until recently. Indeed, such numerical methods involve the real time solution of
parabolic partial differential equations whose right hand side is a function ol ¢, and hence
a calculation for an elliptic difference scheme during the time between two successive mea-
surements of the function Z(t). However, the recent progress in VLSI special purpose array
processors and especially the advent of systolic VLSI array made it possible to implement
fast algorithms for the solution of the discretized Zakai equation 6].

In [7] La Vigna showed that sequential detection of diffusion signals for some cost
function is solved by a real time solution of Zakai equation, and presented a discretized
scheme that converges to the exact solution of Zakai equation as well as a fast algorithm to

solve this scheme and a VLSI architecture for implementation of the algorithm. However



this was done only for the one dimension case. Generalization of the result to, say, two
dimensions requires calculation of a two dimensional elliptic partial differential equation
scheme between two successive measurements which is too slow unless one increases the
mesh size and hence the error due to the discritization scheme. In this paper we will present
an approximation solution for the Zakai equation (1.3) for a two dimensional process (1.1)
and a one dimensional observation process (1.2) by the following procedure:

Let u(z,t) be the exact solution for Zakai equation (1.3). Let u(z,t) be an approxima-

tion, in some sense, to u(z,t) of the form
(1.5) i(z,t) = A(z,t) - B(z,t)

such that A as well as B is either a solution to the Zakai equation corresponding to a one
dimensional model or is a solution for a Fokker-Planck equation that can be pre-calculated
before the real-time procedure starts. Although there are two sources of error. (One due
to the approximation of u(z,t) by @(z,t) and the second due to the discretization scheme),
there are models for which i(z,?) is close to u(z,t), and the total error is small.

Note that in discretized schemes the process Z(t) is measured only at mesh points so
one can assume that Z(t) is a Holder continuous function of ¢ and solves the Zakai equation
as a deterministic parabolic partial differential equation.

In this work we consider two dimensional models that have separable approximations,
that is, approximations that can be written as (1.5).

The first model is of fast and slow variables, that is the two dimensional process is

governed by the equations

(1.6) dx = (o, 9)dt + % Ay (1)
(1.7) dy = G(z,y)dt + 02 dW,(t)

The observation process is given by (1.2) where X = (z,y). The small parameter € indicates
that z is a fast variable related to y, that is, the changes in y are 0(1) when y has a value
y(t), while after time 0(¢) = becomes a stationary - like random process z(t) = z(y(1)).

The Zakai equation for this case is given by

(1.8) du(z,y,t,€) = L-u(z,y,t,€)dt + h(z,y) u(z,y,1, €)dZ(t)



where
_ 1 Jf 0
Lu = {E( 2 Uzz(xayat’f) “%(Fl(x’y)(](x’y’t’e)))_*—
o2 2
(1.9) —;Uyy(z:,y,t,e) - a*y(G(ﬂ?,y)u(z,yat’f))} :

In this case we write an asymptotic approximation for (8) in the form

z 2K o)
(1.10)  a(z,y,t) = Ao(y,t) exp </0 —((;i’*y)d‘g) + 27 An(y, 1) pn(z, y)e e
1 n=1

where A;(y,t) are the solutions of the corresponding one-dimensional Zakai equations, and
pn(Z,y) can be precalculated.
In the second model a large parameter multiplies the drift coefficient of z. The process

z is now given by

1
(1.11) dz = = Fi(z,y)dt + o1dW;(t)
€
and the process y is governed by (1.7). In this case we assume that:
oF, oF,
LY, €¢) ((;”;y’ ) o 2HEwd ((,‘;";y’ ) _0(1) ase—o.

Although we must have an uniform expansion in ¢, (thus, as for the previous model, defining
the two scale time variables (¢,7) where 7 = ¢/¢), we only calculate the zero order term,

that is, t = 0(1). We show that

1
(1.12) U(z,y,€t) =~ A(y,t,¢€) exp [ET(x,y)]
where
2 z
(1.13) T(z,y) = ;12—/0 Fi(s,y)ds

and A(y,t,€) is a solution of a Zakai equation.
After this work was complete it came to our attention that the first models were treated

by Marchetti in his Ph.D. Thesis [8].

2. Fast and Slow Variables

Consider the model (1.6), (1.7), (1.2), assume that Fi(z,y),G(z,y),h(z,y) are such

that there exists unique solution to Zakai’s equation, (see for example Pardoux, 1], Baras,



Blankership and Mitter [2], Baras, Blankenship and Hopkins [3]). Zakai’s equation is given
by

1,0} 2] 1 0
du(z,y,t) = {;(EIUM - ~a—xF1(:1;,y)u) + —z—agUyy — %G(x,y)u} dt

(2.1) +h(z,y)udZ(t)
in the Itd sense and by

_J1 06} ) 1, )

du(z,y,t) = {6 (—2—um — axFl(x,y)u) + 502Uy a—yG(x,y)u—
1

(2.2) —Ehz(:c, y)u} dt + h(z,y)udZ(t)

in the Stratonovich sense. Using the Stratonovich version it is easy to construct a robust
version of the problems which to overcome the problems arise because of the dZ(t) term.

Formally, equation (2.1) can be written as

Ju 1
where
2 a2

_ 019> 0 .

(2.4) Ll - 2 axz axFl(x)y)
o? 9% 0
(2.5) L, = 715? ~ 3y (z,y) -
dz(t

(2.6) Ly = h(m,y)-#

with the following condition: for 0 <t < T

(2.7) /z/yu(:z:,y,t)dxdy = ~(t) 0<q(t) < o
and
(2.8) u(z,y,0) = N(z,y)

where uo(z,y) is given non negative function and u(z,y,t) > 0 for all (z,y) € IR* and
t€[0,T).
(2.3) is a singular perturbation problem. In order to have a uniform expansion in time for

the solution of (2.3) we represent a multi-timed version of (2.3) by defining the following



two scaled time variables:

(2.9) t— (t,7) where 7 = °.
€
SO
Jdu 10du 1

Now we expand v = u(t,7,z,y,€) as a series in €, that is, we formally assume that
(2.11) u(t, 7, z,y,€) = uo(t,7,z,y) + eus(t, 7, z,9) + . ..
If we substitute (2.11) in (2.10) and collect terms of order %, we obtain

(212) —67 = L1U0

where the variables ¢ and y appear as parameters. Following (Risken [4]) we have the
following ansatz for ug

(2.13) uo = A(y,t)p(z,y,t)e".

This ansatz leads to the following eigenvalue problem

(2.14) Lip+Ap=0
and
(2.15) z—h—»I:Itloo p(z,y,t) =0

where L; is the Fokker-Planck operator (2.4) with respect to z. We have the following

results ([4]):
i) All eigenvalues of (2.14) are real and nonnegative.

ii) The first eigenvalue A = 0 corresponding to the stationary solution

(2.16) po = exp(—do(z))
where
(2.17) ¢o(z) = —/0z gﬁ%ﬁd&



iii) Defining the Hermitian operator L = /2L e~#/2, we see that both L and L; have
the same eigenvalues and that the corresponding eigenfunctions satisfy ¢, = e?/?.p,

where ¢, are the eigenfunctions of L and prn are of L.

iv) The eigenvalues form either a non-negative discrete sequence or a non-negative contin-
uous set; in either case the eigenfunctions that corresponding to different eigenvalues

are orthogonal.

v) Assuming that X is a discrete sequence (otherwise the sum sign is replaced by the

integral sign) and that M(z,y) is smooth, we have

(2.18) e 7 M(z,y) = Bnan(y)¥n(zy)
where
an(y) = /_o;e“;) M (2,y) ¥n(z,y)dz, and
N(2,9) = Snan(v)on(z,y),  so that
(2.19) wolt, 1, 2,9) = O An(ys)on (e, y)e "

n=0

where A, are the eigenvalues, p, are the eigenfunctions of Li, A, (y,0) = a,(y) as defined
in (2.18), po is the stationary solution. Fi(z,y) must satisfy the appropriate conditions to

ensure that

(2.20) / pi(z,y)dz < oo V.

. . . 1 1 ] 'l i 1
An(y,t) will be determined by the Fredholm Alternative when we look at the next order

terms, that is the €® order:

0 0 de
(2.21) - Furl‘ + Lyuy = L'uy = % — Lyuo— Ly uo & Mug

Let £ be the Banach space of all bounded function of z with the inner product

(2.22) (u,v) = / u(z) v(z) dz.



Assuming the same ansatz as (2.13) for u(t,7,z,y), the solvability conditions for the
existence of solutions for (2.21) are

(2.23) / " M [A(y, t)oi(z,1)] pi(z,t) d = 0

— 00

Note that for n # k one has A, # Ai; hence e**7 is an independent sequence of functions.

We have

/_o:o M (A (yt)pr(z,y) pi(z,y) dz =0 vk
but direct calculation yields
(2.24) p;, =" - pu(z,y)
SO
(2.25) /_ °:o M(Ai(y,t) pu(2,v))e?@ py(z,y) dz = 0.
Recall that
(2.26) M[Ax(y,t)pr(z,y)] = %pk(x,y) - %%-%Akpk—

%[GAkPk] — h(z, y)AkPk(m,y)@).

and substitute (2.26) in (2.25). Then for each k we have a stochastic differential equation
for Ag(y,t) with the initial conditions

(2.27) Ax(Y,0) = ax(Y).
For k = 0, one has a stationary solution, po(z,y) = e~%; hence we have

(2.28) /oo M][Aq(y,t)e @V ]dz = 0.

Denoting by E the integral

(2.29) By) = [ B(z,y) exp(~4(z,v))dz,

— 00
we have the following equation for Ao(y,?):

04
ot

2
(230) = %AOyy + Dley + D2A0 + D3A0



where

(2.31) Dy = - (——a‘pa(;y) - G(Ey)) (),

(2.32) D; = ((a¢§;y))2 - ‘3;’ - % - %%G) (D),
_ oy -192 (1)

(2.53) D = h{ay)(D) 2,

and

(2.34) Ao(Y,0) = ao(y).

Similar equations can be obtain for each k. The first approximation for u(z,y,t) is, then,
[e ¢}
(2.35) u(z,y,t) =) e_A"t/eAk(y,t)pk(x, y) + 0(e)
k=0
uniformly in time.
That is, in order to find an approximate solution for 2.3 one have to solve for each p;
a deterministic differential equation (this can be done off line) and then calculating (2.31)

— (2.33) and solving (2.30) in a real time procedure.

3. The quasi deterministic case.

Consider the model:

1
(3.1) dr = EFl(x,y,e)dt + o0,d Wy,
(32) dy = Gl(ﬂl,y)dt -+ 0'2dW2,
(3.3) dZ = h(z,y)dt+ dv(t).

Assume that F(z,y), G(z,y), h(z,y) are such that there exists an unique solution to Zakai’s

equation and assume that

(3.4) g =000, 2 = o(u),
BGB(:;,y[ — 0(1), 6Ga§'-;,y! — 0(1)

Zakai’s equation for the model (3.1) — (3.3) is then given by

1



where
2 9% o
(3.6) Ly = Li(e) = ?8—— - %F(m,y,f),
2 a2
_ |29 9
(37) L2 —_ 2 ay2 By G(xay) 3
dZ(t

We write an asymptotic approximation for the solution of (3.5) but, at least formally, our
approximation is not valid in IR? but only in {IR?\ A} where the Borel measure of A4 is

zero. To illustrate the situation we present the following linear case:

1
(3.9) dz = (==z4y)dt+V2dWy,
€

(3.10) dy = (—2y+z)dt+ V2d W,

The Fokker Planck equation for the probability density function for the model (4.9) -
(4.10) is given by

oP d ,x a
(3.11) s = P,y + o 5a (E—y)P+Pyy+ a5 (2y — z)P.
The stationary solution is given by

V2 — €. z?

3.12 P —(——
(3.12) (2239 = St exp(~(; — v+ 57).
On the other hand we want to expand P as
(3.13) P(z,y,€) = Py(z,y,€) + € Pi(z,y,€) + ...
with
(3.14) / / (z,y,e)dzdy= 1—¢ 1=0,1,2,...

(so that [% [2 S22, € Pi(z,y,e)drdy =1).
First, we write (3.11) in a different form:

op

(3.15) 5

= —L1P + Ly P
€



10

where
Jd
(3.16) LiP = €P,,+ —(z—ey)P,
oz
0
Yy

We substitute (3.13) in (3.15), assume that Pi(z,y,¢) = 0(1) and collect terms of order :

to obtain.
so that
2
z
(3.19) Py(z,y,€) = A(y) -exp(——z—g + zy).

Note that we are looking for stationary solutions since the stationary conditions on (3.9)
~ (3.10) are obviously satisfied.

At the next order we see that:
(320) L1P1 - —L2P0.
Using the same argument as above, the solvability condition for (3.20) is

(3.21) [ nRds=o0

— 00
which gives

(3.22) Ay + eyAy +2yA, + 24+ 2ey* A =0
The bounded solution is then given by

(3.23) A(y) = Ao exp(—y’)

Thus, using (3.14), we obtain

(1—ev2—¢ x?

B oz 2
(3.24) Py(z,y,€) = 27 /e exp( P + zy — y*).
Substituting (3.24) in (3.20) we obtain

(325) L1P1 - "‘LzPo =0
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and, because of the solvability condition for P, and the normalization condition (3.14), we
see that

(3.26) P, = P,

It follows that

(3.27) P, =P 1=1,2,...

Returning to the assumption that
P;(z,y,€) =0(1) 1=0,1,2,... ,

we note that this assumption is not satisfied for the set A = {(z,y) : =z = 0}. Thus the
approximation is only valid on {IR?\ A}. Note that for every fixed 0 < ¢ < 1 and every
(z,y) € IR? (including z = 0) the power series (3.13) converges to the stationary solution
(3.12), (which is unbounded on A as € — 0).

Coming back to the more general filtering problem, equations (3.1) — (3.3) and the
conditions (3.4), Zakai’s equation is given by (3.5). Again in order to have a uniform
expansion in time we must apply two different time scales, for simplicity we present only
the “zeroth” order term in 7, that is, £ > 0.

In that case we assume that
(3.28) u = uo(z,y, 6,t) + eus(z,y,6,t) + ...

where

ui(z,y,€t) =0(1) as € — 0 in a subset D of IR® x [0,T].

Proceeding as above we obtain

1
(3.29) uo(z,y,6,t) = A(y,t,¢€) exp[—E—T(x,y)]
where
2 z
(3.30) T(z,y) = 0—%/0 Fi(s, y)ds.

We assume that for every (z,y) € R?,e¢> 0 one has T(z,y,¢) < 0so that

oo 1
(3.31) lime_*o/ exp[zT(x,y,f)]dx < 0.
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In general, A(y,t,¢) will be determined by the solvability condition

ou,

(332) L1u1 = EY)

— LzuO — L3Uo = Muyg
but unnder the assumption (3.31), this solvability condition reduces to
(3.33) / Muodz = 0.

Assume that for each y and ¢ there is a unique z = Z(y, €) for which T'(z,y, €) achieves

its maximum as a function of . Thus, for every y and e,

(3.34) T(z,y,€) < T(%(y,¢€),y,€) <0 T # Z(y,¢€).

We also assume that
O:T .
—ézz—(:c(y,e), y,€) <O0.

Next we expand T'(z,y, €) in Taylor’s series:

(3.35) T(.’B, Y, 5) = T(:'f:(y, E), Y, 6) + Ii %T(i(y, E)aya E)_[E—__%_(SJ_’_EM_

and T(Z(y,€),y,€) < 0. Then



1 »
(3.36) / —A (y,¢€,t) exp(zT(x,y))da; = Ai(y,€,t) -1/ T Ee)we)/e

: (\/zw/;m—zzT(iz,y, €) —I—O(e)) = A(y,€,t) - E(e,v)

where

(3.37) E(e,y) = /oo e T gz

and

(3.38) E(e,y) = 0(1) Vyé€elR.

Proceeding as above, we obtain

3.39 = [Ay+ -A -T
- s 242 ]
and
&up 10*T 2 0T 1 0T
3.40 = S A+ A+ ()AL
( ) ayz I: yy+£ay2 +€ y8y+62(ay) ]
Thus,
% 1

(3.41) /_ Ayyexp [ET(x,y,e)] dz = Ay (y,t,€) - Ee,y)
and

© 1 1
(3.42) / -A,T, exp [ T(z,y, e)] ds

—oo € €

oo 19T 1
= Ay - /_oo ;%(x,y,e) . exp[zT(z:,y,e)]dx

= \/— Ay(t,y,€) - (18T> ()N((y,g)y,E)C“T(i(yye):y,g)/e'

€ Jy

- (\/m/:rm(i(y,e),y,e) +0(d)).

Since %% = 0(1), we denote it by g{;’:.

Similar calculations yield that:

© 18T, 1
Lo (= = dr =
(3.43) [T 455, el Ty, s

AVE (52 (3,3, e TER2n T +0(0),

13
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© 1 J*T 1
(3.44) /_oo ZAW exp [ET(x,y,e)} de =
— 9 aT . 17(%y,€) 7]
= eayay*(z,y,f)-A-ee (v2r/T" + 0(¢),)
© g
(3.45) /_ 5y Gl yuodz =
oo 1 0T 1
/ [Gy(x,y)A + Gz, ) (A, + ;A@)] exp | T(2,,6)| do =
=/e- (\/27!'/T" + 0(£)> L@V [ A(y,t,€)Gy(E,y,€) +
" oT . ~
+A,(z,t,€)G(Z,y) + Ay, t,¢) - Eg;(x,y,e) - G(Z,y,¢€)]

Let us denote

[eo]

(3.46) fZ(y,t,e) = E(y,¢e)™! / R(z,y,¢,t) exp ET(x,y,e)] dz

and note that if 9R/9X = 0 for all z then

A~

(3.47) R(y,t,€) = R(y,t,¢).

In that case condition (3.33) has the form:

12T 2 8T 1 .0T

3.48 A ) =Ay + A-—— + ZAy— + = 2
( ) t(y9€’ ) w T € ay2 + € yay + EZA(ay)
oT dZ (t)
—AG, — A,G — A——G +h(zy)A——+
¥ Y ay + (:Cy) dt
or
JA
(349) E = AUU + B(y’(:;t)Ay + C(yaéat)A

where B and C are 0(1) in e. Assume that dZ(t)/dt in (3.8) is a Holder continuous
function of t. If we assume proper smoothness conditions on F,G and h, it is then clear
that B(y,t,€) and C(y,t,€) are Lipschitz continuous with respect to y and ¢ for any fixed

. . . . 0A DA 024
e > 0 so the solution A of (3.49) exists and is continuous, as are 57, 55, 5.2

The function ug is an asymptotic approximation to u if u1(z,y,€,t) is bounded as ¢ — 0

where 11, is the solution of

0
(350) L1u1 = % - Lz'U,O - L3’lL0.
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Let D be any compact subset of IR?. Then the right hand side of (3.50) is bounded
and locally Lipschitz in D. Thus u; exists, is bounded in D, and u, is an asymptotic

approximation for u.
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