
 

 

 

 

 

ABSTRACT 

Title of Thesis:  AIR QUALITY ASSESSMENT OF RESIDENTIAL EXPOSURE TO         

PARTICULATE MATTER AND VOLATILE ORGANIC 

COMPOUNDS NEAR A CONCRETE BLOCK PLANT AND TRAFFIC 

IN BLADENSBURG, MARYLAND 

                      Rosemary Ifeoma Ezeugoh, Master of Public Health, 2018 

Thesis Directed By:  Dr. Sacoby Wilson, Associate Professor Maryland Institute of Applied 

Environmental Health 

 

Ambient air pollution from stationary sources, industrial traffic, and commuter traffic can 

negatively impact air quality and human health. Ernest Maier, a concrete block plant located in 

Bladensburg, Maryland wants to expand to include a concrete batching plant on the same 

property. This expansion could further degrade air quality and impact the health of vulnerable 

residents. Air quality monitoring were conducted in the community at five personal sites using 

the Airbeam and Atmotube, which are wearable, real-time sensors that can measure PM2.5 and 

VOCs respectively. Sampling and traffic counts were conducted in thirty minutes’ periods to 

capture morning on-peak, afternoon off-peak and evening on-peak periods. Pearson’s correlation 

revealed that a weak correlation among the PM2.5 and VOC concentrations observed between the 

different sites and some of the values were found to be statistically significant. ANOVA analysis 

showed that the PM2.5 levels were significantly different at the different sites (p-value 0.001). 
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Chapter 1 

Introduction 

What is Air Pollution? 

 Air pollution is the contamination of air via physical, biological or chemical alteration to 

the air in the atmosphere which is detrimental to human health. It is classified into two categories 

which are outdoor air pollution and indoor air pollution [1]. Outdoor air pollution occurs outside 

of indoor built environment and can include fine particles from fossil fuel combustion, noxious 

gases, ground level ozone and tobacco smoke [1]. Indoor air pollution refers to exposures that 

take place within houses and buildings to particulates, carbon oxides and other pollutants via 

indoor air and dust; which include gases, household products, building materials, outdoor indoor 

allergens, tobacco smoke, mold and pollen [1,2]. 

Outdoor air pollution is an important environmental health issue in the 21st century and is 

the cause of ~3.7 million deaths globally [3,4]. Exposure to outdoor air pollution can cause 

adverse effects to humans, other living organisms and the natural environment [4,5]. Also, it has 

been associated with global climate change, acid rain, ozone depletion and damage to crops [3]. 

Air pollutants are categorized as primary and secondary pollutants. Primary pollutants are 

obtained from natural and anthropogenic processes, such as ash from a volcanic eruption or dust 

from production of cement; while secondary pollutants are produced in the air via the interaction 

of primary pollutants [6]. Air pollutants include ozone, carbon monoxide, nitrogen dioxide, 

sulfur dioxide, volatile organic compounds (VOCs) and particulate matter (PM) [7]. 
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Air Pollution and Industrial Sources 

 Air pollution can occur via emissions from stationary and mobile sources. A stationary 

source is a fixed location such as factories, refineries, boilers and power plants, which releases 

different types of air pollutants [8]. Stationary sources are divided into point and area sources. 

Point sources are linked to manufacturing and industrial processes, while; area sources refer to 

small and extensively distributed emission sources which may possess substantial cumulative 

emissions such as residential water heaters, wood burning fireplaces [9,10]. Pollutants may be 

released from smokestacks, storage tanks, equipment leaks, process vents, loading and unloading 

operations [11]. While, mobile sources refer to non-stationary sources which are divided into on-

road vehicles (automobiles, buses, trucks, motorcycles) and non-road vehicles and engines (e.g., 

ships, trains, heavy equipment, locomotives and aircrafts) [12].  

Industrialization plays an important role in economic growth and social development; 

however, it can result in environmental degradation, ecological threats and adverse human health 

effects. Unfortunately, studies have revealed that small and mid-sized industries do not utilize 

pollution control measures, which increase the release of air pollutants especially in populated 

areas [13]. Presence and proximity of industrial sources can increase the risk of air pollution 

apart from topography, meteorology, traffic emissions and population crowding in urban zones 

[14].  

 

Air Pollution and Traffic Sources 

In urban areas, research has shown an increase in traffic-related air pollution (TRAP) and 

its effects on ozone levels, as well as, human health [15]. Due to urbanization, there has been a 

rise in private and commercial vehicle use. This trend has been attributed to a rapid increase in 
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traffic, vehicular and industrial emissions. As an important source of air pollutants, vehicular 

emissions have been associated with particulates, CO, SOx, NOx, heavy metals, PM, VOCs and 

polyaromatic hydrocarbons (PAHs) [16]. Also, traffic is a unique source of air pollution because 

pollutants are released close to human receptors and may not be quickly diluted in the 

atmosphere [17]. 

Exposure to traffic-related air pollution (TRAP) has been associated with deleterious 

health effects. Air pollution has a temporal relationship with heart failure hospitalization and 

heart failure mortality [18]. Wjst discovered that high rate of road traffic reduces forced 

expiratory flow and increases respiratory symptoms in children [19]. Another study 

demonstrated that an increase in exposure to traffic-related air pollution led to an increase in the 

prevalence of cough and bronchitis, and not with atopic conditions in children [20]. A case-

control study found that living within 90 meters of a main road correlates with proximity-related 

wheezing in children [21].  Inner-city asthmatic children were found to have adverse respiratory 

health effects due to short-term increases in air pollutant concentrations [22] (i.e., increases due 

to traffic). There is an increased risk of developing airway disease and sensitization in preschool 

children due to early life TRAP exposure [23]. Exposure to traffic-related air pollution, 

especially diesel particulates have been linked with reduced lung function in children living near 

major motorways [24]. Truck traffic intensity and exhaust were associated with chronic 

respiratory symptoms which were more prominent in girls than boys [25].  

Research has demonstrated a strong correlation between lung cancer and various markers 

of air pollution from traffic near local neighborhoods [26]. Evidence from case-control studies 

suggest that there is a relationship between traffic-related emissions and lung cancer [27]. Also, 

TRAP has been linked with decreased cognitive function in older men in the normative aging 
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study (NAS) in Boston, MA [28]. TRAP exposure has been also associated with an increased 

mortality risk after hospitalization with acute heart failure [29]. Maternal exposure to TRAP can 

increase the risk of preeclampsia and preterm birth [30]. Research has demonstrated that the 

effects of air pollution on life expectancy are not evenly distributed, rather they are dependent on 

certain factors like education and antioxidant vitamin status.  These exposures can negatively 

impact the life expectancy of economically disadvantaged groups [31,32]. Another study 

suggests that TRAP exposure is correlated with cardiorespiratory deaths and could impact life 

expectancy [33]. 

 

Purpose 

The purpose of this study is to provide scientific information on particulate matter 

(PM2.5) and volatile organic compound (VOC) levels near residential areas close to commuter 

traffic and industrial activity associated with a concrete block plant in Bladensburg, Maryland. 

Residents of Bladensburg are fighting against the siting of a concrete batching plant in the heart 

of their town. They believe it may increase air and noise pollution, stormwater runoff, traffic 

congestion and result in adverse health outcomes, thus affecting public health and safety of 

residents. 

The site for the concrete batching plant is a property owned by Ernest Maier, Inc., which 

is a mid-Atlantic masonry company. Unfortunately, this location is next door to a historic 

African-American church (Kingdom Missionary Baptist Church) and is close to the Peace Cross, 

Battle of Bladensburg Memorial, Anacostia River and historic Bladensburg Waterfront Park, 

which are heritage and environmentally protected sites. 
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Currently, there is limited scientific information about the spatial and temporal variation 

of PM and VOCs near the proposed concrete batch plant in an area with heavy commuter and 

industrial traffic.  

 

Specific Aims 

1. To determine human exposure to PM and VOCs in Bladensburg, Maryland.  Hypothesis 

1: Areas close to the concrete block plant will have higher exposure levels of PM and 

VOCs than areas farther away from the plant. 

2. To assess variation in human exposure to PM and VOCs at different locations during 

different times of the day in Bladensburg, Maryland.  Hypothesis 2: Individuals walking 

on highly trafficked roads will have higher exposure levels of PM and VOCs during on-

peak periods than individuals walking on low trafficked roads during on-peak hours. 

 

Thesis Outline 

This thesis is divided into five distinct chapters. Chapter 1 provides an overall 

introduction and the primary objectives of the thesis. Chapter 2 provides background and 

literature review on particulate matter and related adverse health outcomes, volatile organic 

compounds and its adverse health outcomes. Chapter 3 presents Paper 1 and provides results on 

particulate matter monitoring in support of the thesis’s purpose. Chapter 4 provides Paper 2 and 

the results obtained for the monitoring of volatile organic compounds in line with the purpose of 

the thesis. Chapter 5 provides the synopsis, strengths, limitations and public health implication of 

the thesis. 
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Chapter 2 

Literature Review 

Particulate Matter 

Particulate matter (PM) consists of a heterogeneous mixture of solid and liquid particles 

suspended in air that vary in size and chemical composition across space and time [34]. Primary 

particles are released from sources and secondary particles are produced in the atmosphere from 

gaseous emissions [35,36].  Primary and secondary PM can be dispersed and transported over 

long distances; and elimination from the atmosphere could take place through rainfall, 

gravitational sedimentation or coagulation with other particles [37]. The sources of PM are 

natural (e.g., volcanoes, fires, dust, storms, aerosolized sea salt) and anthropogenic or manmade 

(e.g., combustion in mechanical and industrial processes, vehicle emissions, tobacco smoke) 

[38]. Important sources of PM pollution are factories, power plants, incinerators, motor vehicles, 

construction activity, fires and windblown dust. They are distinguished by their aerodynamic 

diameter; those ≤ 10 µm are known as PM10, while those ≤ 2.5 µm are referred to as PM2.5 

[7,38,39].  Other categories include ultrafine particles which are smaller than 0.1µm in 

aerodynamic diameter, fine particles which are smaller than 1 µm and coarse particles which are 

larger than 1 µm [34].  

The size of these particles impacts the site of deposition as well as clearance in the 

respiratory tract. It is pertinent to note that PM10 contains ultrafine (PM0.1; diameter less than or 

equal to 0.1µm) , fine (PM2.5; diameter less than or equal to 2.5µm), coarse (PM2.5-10; diameter 

between 10µm and 2.5µm), and nanoparticles (PM0.05; diameter less than or equal to 0.05µm) 

particles or fractions [2,37,38,40]. Also, PM causes more harm than any other common air 

pollutants and has diverse constituents like nitrates, sulfates, elemental and organic carbon, 
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organic compounds (e.g., PAHs), biological compounds (e.g., endotoxins) and metals (e.g., iron, 

copper) [5,34]. The USEPA regulates particulate matter under National Ambient Air Quality 

Standards (NAAQS); and PM2.5 standards are 35 µg/m3 for a 24 hour average and 12 µg/m3 for 

an annual average [41]. 

  Particulate matter can be generated via anthropogenic sources such as industrial dust 

during industrial production processes; which varies with location, season, and time of day 

[40,42]. Manufacturing, construction and cement industries release industrial dust during routine 

activities and processes, such as handling of materials and transportation of materials or 

products. Basically, there are three routes that lead to the formation of industrial PM – fuel 

combustion processes (e.g., furnaces, gas turbines), non-combustion processes (e.g., mechanical 

treatment of raw materials), and during handling, transport and storage of dusty raw materials 

(e.g., cement). For instance, in the cement industry, PM emissions occur via pre- and after-

treatments such as milling processes. Industries involved in the utilization of cement provide an 

environment for diffuse PM emissions due to storage, transportation, and handling of bulk 

materials in open air. 

 An important source of PM emissions in urban areas is road transport which is classified 

based on the method of formation. Generally, there is an assumption that the principal method of 

PM formation is via combustion of fuels (gasoline and diesel) through internal combustion 

engines which result in emissions from tailpipes [40,43–45]. However, road transport emissions 

comprise of relationships between vehicles, road surface and the use of brakes which generates 

PM referred to as non-exhaust emissions. Non-exhaust emissions consisting of tire wear, brake 

wear, road surface wear (occurs via mechanical abrasion, grinding, crushing and corrosion 

processes) and resuspension of the dust on road surfaces [44,45]. Exhaust emissions contribute 
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fine PM (<2.5 µm) while non-exhaust emissions contribute coarse PM (PM2.5-10) into the 

atmosphere [43,44]. The use of laboratory and real-world simulations have revealed that PM 

emissions from diesel burning vehicles are higher than emissions from gasoline burning vehicles 

[40,46].  

 Maritime traffic is also a key source of PM emissions in coastal cities due to combustion 

processes which occur in ship engines; and are controlled by engine load factor, engine type and 

fuel type [40]. Also, PM can be released during loading and unloading operations of cargo from 

ships, which generate dust that sediment at the docks and may be resuspended via port-related 

traffic or wind. A study conducted on Los Angeles Metro revealed that commuters were exposed 

to high PM concentrations on the rail line [47].   

 

Particulate Matter and Public Health 

Certain factors such as composition of PM, the dose and time of exposure, size 

distribution, concentration, toxicity of PM as well as, exposure to chemical mixtures can affect 

human health in various ways [34,48]. The adoption of guidelines or standards for ambient PM 

pollution have centered around indicators of fine particles (PM2.5), inhalable and thoracic 

particles (PM10), and thoracic coarse particles (PM10-2.5) [49].   Toxicological and physiological 

evidence suggests that fine particles can have the greatest adverse effects on humans due to their 

size and they can contain sulfates, nitrates, acids, metals and particles adsorbed on their surface. 

Also, they can be deposited deep in the lungs, remain deposited for longer time periods, easily 

gain access to the indoor environment, and transported over longer distances [42].  

The National Morbidity Mortality and Air Pollution Study (NMMAPS) found a 

correlation between PM in the air and the risk of death from all causes and from cardiovascular 



 

 

 

9 

 

 

and respiratory illnesses [49,50]. Another study identified PM as a risk factor for cause-specific 

cardiovascular disease mortality through processes such as pulmonary and systemic 

inflammation, accelerated atherosclerosis, and altered cardiac autonomic function [51]. PM 

exposure has also been linked to premature death in people with heart or lung disease, nonfatal 

heart attacks, irregular heartbeat, aggravated asthma, decreased lung function, and increase 

respiratory symptoms such as irritation of airways, coughing or difficulty in breathing [5,52]. 

Exposure to particulate matter can have negative health impacts on children. Exposure to 

PM leads to reduced lung function, lower airways irritation, upper airways irritation, increase in 

asthma hospitalization, higher asthma incidence, increased asthma exacerbations, respiratory 

allergy and bronchodilator usage [36,37,53]. The deposition of PM10-2.5 in the upper airways is 

significant for asthmatic responses and irritation [54]. Residing close to PM sources (traffic and 

industry) has been identified as a risk factor for increased allergic symptoms, reduced lung 

function and increased sensitization to aeroallergens [37,55,56]. PM2.5 exposure can also lead to 

an increased risk of developing asthma; while PM2.5  and NO2 exposures increased the risk of 

developing wheeze, which is a crucial symptom of cancer in adult women [57]. A study 

conducted in central Phoenix showed that PM10 concentrations were associated with asthma 

incidents, particularly among children between the ages of 5 and 17 [53]. Another study found a 

stronger correlation between PM10-2.5 on asthma hospitalizations when compared PM10 and PM2.5   

for both sexes [54]. Another study showed an increase in exposures to PM10-2.5 and carbon 

monoxide was associated with an increased risk of severe asthma attacks and medication use 

[58]. 

Exposure to particulate matter can also lead to heart disease. Previous studies have shown 

that exposure to high PM can lead to increased hospitalizations for individuals with heart disease 
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[59,60]. There may be a correlation between particle concentration and cardiovascular disease 

(CVD) exacerbation [61]. Short term adverse health effects of PM on the cardiovascular system 

are CVD exacerbation and mortality; and increased incidence of ischemic heart disease and 

myocardial infarctions [62–65]. Studies have shown that individuals with existing conditions 

such as chronic obstructive pulmonary disease (COPD), congestive heart disease, myocardial 

infarction or diabetes were at an increased risk of exacerbation on days with high PM 

concentrations [66–69]. Increases in PM levels were associated with increases in stroke attack 

and cerebrovascular mortality and morbidity  [70–73]. Elevated short-term increases in PM 

exposure has been linked with acute increases in blood pressure in adults; while long-term 

exposure is a risk factor for stroke [74–76]. 

Evidence has also shown a relationship between exposure to elevated PM concentrations 

and smaller total cerebral brain volume with increased odds of covert brain infarcts [77]. In 

elderly women, studies has shown associations between long-term exposure to PM and the 

development of cognitive impairment [66,67]. Elevated levels of PM has been linked with 

central nervous system diseases such as Alzheimer’s; which is an age-related neurodegenerative 

disease that could result in dementia among the elderly [80]. The Nurses’ Health Study observed 

that long-term exposure to PM may result in an increased risk of cognitive decline in older 

women [81]. 

Maternal exposure to PM during pregnancy has been shown to lead to negative birth 

outcomes (i.e., low birth weight and preterm births) [82–84]. Low birth weight and small for 

gestational age were related to maternal exposure to specific PM emissions from road dust, oil 

combustion and motor vehicles (traffic-related sources) [85,86]. Adverse birth outcomes have 

been correlated with increases in neonatal morbidity and mortality, childhood developmental 
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problems and increased risk of depression or psychiatric illnesses in adulthood [82,87]. Also, 

autism has been linked with exposure to traffic-related air pollution, nitrogen dioxide and PM 

during pregnancy and the child’s first year of life [88,89]. 

Furthermore, exposure to PM from anthropogenic sources has been associated with an 

increase of premature mortality (respiratory, cardiopulmonary and lung cancer) [90]. PM 

concentrations from traffic-related sources and construction (inorganic) dust are major 

contributors to PM exposure which may result in adverse health outcomes  [91]. A study has 

demonstrated that an increase in PM exposure may result in a decrease in life expectancy [92–

95]. A study conducted on 545 U.S counties showed that reduction in PM to low levels led to 

prolonged life expectancy, especially among urban and highly populated counties [96]. A decline 

in long-term exposure to certain chemical components of PM (sulfate, ammonium and sodium 

ions) were correlated with improved public health and life expectancy [97]. There is an increased 

risk of mortality linked with PM2.5 exposure and the risks were higher than mortality risks related 

to PM10 exposures [98].  

 

Volatile Organic Compounds (VOCs) 

VOCs are organic compounds which have a boiling point below 250oC at ambient 

atmospheric pressure [99]. They include many chemicals such as benzene and its derivatives, 

simple aliphatic hydrocarbons (such as hexane), chlorinated hydrocarbons (such as chloroform), 

terpenes (such as limonene), alcohols, aldehydes and ketones with low carbon numbers such as 

isopropanol, hexanal and butanone [99,100].  They are released into the atmosphere from 

anthropogenic and biogenic sources, and could be formed in the atmosphere as products of the 

atmospheric transformations of other VOCs [100,101]. The important anthropogenic sources are 
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stationary fuel related (i.e., combustion from power plants, service stations), transport related 

(i.e., combustive and evaporative emissions from vehicles) and industrial (i.e., storage and 

transport); while biogenic emissions may occur from vegetation, ocean or soils [101]. VOCs 

produce a primary component of smog known as ozone via reaction with nitrogen oxides and 

other airborne chemicals in the presence of sunlight [102].  

The study of VOCs as air pollutants is important due to their role in ozone depletion, 

ozone formation, toxic and carcinogenic human health effects, and enhancement of the global 

greenhouse effect [103]. Outdoor VOC concentrations are influenced by season, nearness to 

emission sources (e.g., industry, traffic, gas stations) and meteorological conditions such as 

temperature [104]. Vehicle emissions contribute to ambient VOCs in urban areas [105,106]. 

They are also emitted from power plants, gas stations, auto body and paint shops, solvents used 

in chemical industry and diesel and gasoline-powered vehicles (i.e., vehicle exhaust, gasoline 

evaporation) [107,108]. Motor vehicle emissions are an influential source of VOC emissions, 

particularly in areas with few industrial sources, because they account for 35% of total VOC 

emissions [109]. Also, VOCs constitute 45% of on-road mobile source emissions in Southern 

California [110]. Vehicle emissions contribute to ambient VOCs in urban areas 

[105,106,106,111]. They are also emitted from power plants, gas stations, auto body and paint 

shops, solvents used in chemical industry and diesel and gasoline-powered vehicles (vehicle 

exhaust, gasoline evaporation) [107,108].  

Chronic health effects associated with VOC exposure can be non-carcinogenic or 

carcinogenic. Non-carcinogenic effects include irritation, sensory effects, headache, eye 

irritation, skin irritation and airway irritation, damage to the liver, kidneys and central nervous 

system, asthma and respiratory effects [112–114]. While the carcinogenic effects of VOCs are 
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lung, blood, liver, kidney and biliary tract cancers [112–114]. Also, exposure to VOCs may 

result in negative impacts on reproductive systems or birth defects [115]. Elevated VOC 

concentrations have been observed at high traffic intensity streets compared to low traffic 

intensity streets [107,116,117]. A study conducted in Kanawha County, West Virginia revealed 

that exposure to VOCs was associated with increased rates of chronic respiratory symptoms 

[118]. VOC exposure has been linked with cancers of the brain, nervous system, skin, 

melanoma, endocrine system and thyroid cancers in Indiana [119]. 

 

Susceptible and Vulnerable Populations 

Susceptibility to air pollution involves inter-individual variability or heterogeneity in 

human responses to air pollutants, which result in certain populations being at an increased risk 

of adverse health outcomes associated with air pollution [120,121]. Susceptibility encompasses 

biological or intrinsic factors (e.g., life stage, sex, genetics); while vulnerability includes 

nonbiological or extrinsic factors (e.g., socioeconomic status, differential exposure). Factors 

which impact susceptibility are age, nutritional status and predisposing conditions [34]. 

However, they could be used interchangeably including terms such as “at-risk population” and 

“sensitive population” to include and explain these concepts generally. It is difficult to 

distinguish between susceptibility and vulnerability because both concepts are overlapping in 

nature which contributes to the complexity surrounding them [120,122].   

For instance, one study defined susceptible population (relating to PM) as individual and 

population level characteristics which increases the risk of PM-related adverse health effects; 

such as genetics, birth outcomes (e.g., low birth weight, birth defects), race, gender, lifestyle, 

preexisting conditions, socioeconomic status, and properties that could modify exposure to PM 
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[120]. Children are more susceptible than adults when exposed to comparable levels of PM due 

to the greater time spent outdoors, higher activity levels, small volume per unit body weight and 

developing body organs or systems [41,120,122,123]. This could result in higher PM dose per 

lung surface area and lead to adverse effects on their developing lungs [41,120,122,123]. A 

significant correlation was observed between exposure to PM and their acidity and lung function 

and symptoms of bronchitis among children living in 24 US and Canadian communities [124]. 

Also, older adults or elderly individuals are a susceptible population due to the stepwise 

reduction in physiological processes over time [125]. Preexisting cardiovascular diseases and 

diabetes could increase their susceptibility to the adverse effects of PM exposure [41,68]. 

Epidemiological studies of asthmatic children demonstrated that short-term exposure to PM2.5 

was linked with an increase in medication use and respiratory symptoms; while short term PM10 

exposure was connected with morning symptoms and respiratory symptoms [120,126–129].  

Females are more susceptible than males to the adverse health effects due to PM exposure 

[35,122]. Various indicators of SES, such as income, social status measured by education, and 

work status measured by occupation can impact a population’s susceptibility to adverse health 

effects associated with PM exposure [120]. Also, low SES is linked with a higher frequency of 

preexisting conditions, limited access to medical care, and food deserts which can lead to 

increased susceptibility to adverse health effects of PM exposure [130]. Studies revealed that 

individuals with low SES experience higher PM-associated health risks [122]. 

 

Environmental Justice, Hazards, and Air Pollution 

Environmental justice is defined as the fair treatment and meaningful involvement of all 

people regardless of race, color, national origin, or income with respect to the development, 



 

 

 

15 

 

 

implementation, and enforcement of environmental laws, regulations, and policies. Fair 

treatment means that no group of people, including racial, ethnic, or socioeconomic groups, 

should bear a disproportionate share of the negative environmental consequences, resulting from 

industrial, municipal, and commercial operations or the executive of federal, state, local, and 

tribal programs and policies [131,132].  

Environmental Justice (EJ) as defined by Bunyan Bryant refers to “those cultural norms 

and values, rules, regulations, behavior, policies, and definitions that support sustainable 

development, so that people can interact with confidence that their environment is safe, nurturing 

and productive. EJ is served by when people can realize their highest potential, without 

experiencing the “isms.” EJ is supported by decent paying and safe jobs; quality schools and 

recreation; decent housing and adequate health-care; demographic decision-making and personal 

empowerment; and communities free of violence, drugs and poverty. EJ communities are where 

both cultural and biological diversity are respected and highly revered distributive justice 

prevails” [133,134]. 

The definitions above presents the different views of the spectrum of environmental 

justice. EPA’s definition is policy driven, bureaucratic, reactive and focuses on the equal 

enforcement of environmental laws. Also, it ignores historical environmental discrimination and 

geographic patterning and does not seek to address the historical burden of environmental 

hazards on communities of color and poor communities; thus omitting social justice and political 

empowerment which are important EJ goals [134]. Bryant’s definition is proactive and has a 

more holistic centered approach for creating sustainability in communities with environmental 

justice issues.  
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 The foundational tenet of environmental justice is embedded in Title VI of the Civil 

Rights Act of 1964 which bans discrimination based on race, color, or national origin under any 

program or activity receiving federal financial assistance [135].  The US Department of Justice 

and US EPA utilize similar bans when implementing regulations, especially, the location of an 

industrial site or facility in a discriminatory manner. The concept of environmental justice began 

over the past two decades as a model which combines class, race, gender, environment and social 

justice concerns [136]. This occurred via the dispute over the siting of industrial facilities in the 

US and has become a tool for poor people and communities of color which have borne 

disproportionate burdens of environmental hazards and locally unwanted land uses (LULUs) 

(e.g., landfills, power plants, prisons, factories, incinerators, chemical plants, sewage treatment 

plants, coal-fired plants, cement producing plants) while having restricted access to 

environmental amenities such as parks. A typical example was the case instituted by South 

Camden Citizens in Action against New Jersey Department of Environmental Protection, which 

sought an injunction and judgement on the grant of permits to construct and operate a cement 

producing plant by St. Lawrence Cement Company as a violation of Title VI [135].  

People of color and low-income persons have endured more environmental and health 

risks than other groups in regards to where they live, work, play, and pray [132]. Environmental 

injustice can be defined as the disproportionate exposure of communities of color and the poor 

(or other vulnerable groups) to pollution, and its concomitant effects on health and environment, 

as well as the unequal environmental protection and environmental quality provided through 

laws, regulations, governmental programs, enforcement, and policies [137].  

Urban communities of color are disproportionately overburdened by high levels of 

criteria air pollutants which are released from vehicle exhaust in highly trafficked neighborhoods 
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and factories within these communities [134,138]. Studies have shown that there is a differential 

burden of environmental hazards on disadvantaged groups [139–141]. Several studies have 

demonstrated a positive correlation between residential proximity to hazards and race/ethnicity 

and SES [140–143]. In South Carolina, it was illustrated that there were burden disparities in the 

distribution of burden disparities of superfund facilities at the block and census-tract level based 

on race/ethnicity and socioeconomic status [144]. Also, there are disparities between census 

tracts that host leaking underground storage tanks (LUSTs) and those that do not host LUSTs 

based on race and socioeconomic status in Charleston, South Carolina [145]. This knowledge is 

based on the discovery that environmental stressors (such as air, water and land pollution) are 

disproportionately distributed among communities of color and low-income communities [146]. 

Also, a study has positively demonstrated that the percentage of individuals living in 

nonattainment air quality areas is significantly higher for Latinos and African-Americans 

compared to Whites [146].   

In Maricopa County, Arizona, evidence suggests that there is environmental 

discrimination against Asians in the siting of hazardous facilities [147]. Findings have revealed 

that African-Americans were more likely to reside in close proximity to an industrial emission 

source and within two miles of multiple sources than Whites [148]. There is evidence which 

suggests that economically disadvantaged individuals are more vulnerable to emissions from 

industrial facilities compared to others [149]. There are racial and socioeconomic disparities in 

exposure to emissions from polluting industrial facilities in the US which can lead to adverse 

health outcomes among individuals of low socioeconomic status [150]. For example, individuals 

without high school diplomas were more likely to reside close to TRI facilities compared to 

individuals with higher educational attainment [150].  
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Evidence has shown that people of color and economically disadvantaged individuals 

have increased residential exposure to traffic and traffic-related air pollution [117,151–153]. 

Low-income groups and people of color are more likely to live in highly trafficked areas 

[152,154,155]. People of color from low-income groups had an increased cancer risk from 

traffic-related air pollution [156]. Pacific Islanders, African-Americans and Asians were 

observed to have higher pollution exposures and were twice as likely to live in the most polluted 

counties [157] than Whites. Elementary schools in economically disadvantaged communities 

were found to be exposed to very high traffic in California [158]. Economically disadvantaged 

individuals and communities of color were observed to be disproportionately exposed to traffic 

and air pollution which may result in an increased risk of adverse health outcomes [159–162]. 

Latinos, especially Cubans and Colombians have increased cancer risk from vehicular air 

pollution in Miami, Florida [156].  

A higher incidence of asthma among low-income individuals has been linked with higher 

traffic exposure and susceptibility factor such as health status and access to healthcare [162]. In 

California, it was revealed that nonwhite children were three or four times more likely to reside 

in highly-trafficked areas than White children; and children in low income communities had an 

increased risk to potential exposures from vehicle emissions [152]. Also, people of color and low 

income communities in Southern California may be disproportionately exposed to traffic-related 

air pollution [163]. A study on truck traffic and associated pollution in Hunts Point, New York,  

a primarily African and Latin-American community, low income individuals revealed that 

increased concentrations of elemental carbon were found at intersections and varied due to large 

truck traffic [164]. In low-income communities of Wilmington and western Long Beach, 

adjacent to the Ports of Los Angeles and Long Beach, California; the volumes of heavy-duty 
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diesel trucks were as high as 400 to 600 trucks per hour for several hours around sensitive land 

use areas, such as, schools, parks and residences [163].  

Evidence has demonstrated that traffic-related air pollution could lead to the development 

of asthma and other childhood respiratory diseases [165]. A study which assessed the association 

between residing near major roads, traffic flow and the risk of hospital admission for asthma in 

children younger than 5 years of age; revealed that children admitted with asthma diagnosis were 

more likely to live in high traffic flow which was less than 500 meters from a main road 

[166,167]. Traffic–related air pollution may lead to decreased lung function, particularly among 

girls that lived less than 300m to the motorways [168].  

Latinos, Blacks and low-income individuals in Tampa, Florida were observed to reside in 

close proximity to TRI facilities, and Whites resided closer to air monitors [169]. Also, it was 

revealed that African-Americans in West Virginia, Louisiana and Maryland; resided in close 

proximity to TRI facilities compared to Whites [148]. In South Charleston, a study showed that 

there were burden disparities in the distribution of TRI facilities at the block and census-tract 

level by race/ethnicity and socioeconomic status [170]. A study conducted in the US observed 

that nonwhites were exposed to higher outdoor NO2 concentrations compared to Whites, and low 

income populations were disproportionately exposed to higher outdoor NO2 concentrations than 

high income populations [171].  

  Economically disadvantaged individuals and people of color often reside in areas which 

are air pollution hot spots, and could suffer increased health risks associated with ambient air 

pollution than the general populace [107]. This makes research in these areas of utmost 

importance because the data could assist regulatory agencies develop solutions and interventions 

to these communities and develop strategies mitigate exposure and health risks. EJ groups focus 
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on outdoor air pollution by participating in civic activities and local-level organizing which may 

result in pushing for stronger air quality regulations and controlling hazardous plant emissions 

[172]. This has resulted in the development of partnerships between scientists and community 

leaders; which help to rank according to importance research needs of the community, obtain 

data, evaluate environmental exposures, pilot run interventions which will affect public policy, 

thereby, protecting the environment and health of all particularly people of color and 

economically disadvantaged communities [173]. These discoveries have led to various 

developments in the environmental justice field with a rising demand for participatory and 

comprehensive techniques to research and public health practice to tackle the social and 

environmental determinants of health and diseases which are observed in health disparities [146].  

  

Community Engagement and Environmental Justice 

 Community engagement can be defined as the process of  inclusive participation that 

supports mutual respect of values, strategies, and actions for authentic partnership; and working 

collaboratively with and through groups of people affiliated by geographic proximity, special 

interest, or similar situations to address issues of wellbeing of those people [174–178]. It occurs 

in different forms and is observed as a continuum of community involvement as shown in Figure 

2.1. Community engagement in research is influential  and a core element of any research for 

meaningful community involvement to address health problems facing communities [175].  

Also, it requires power sharing, maintenance of equity, and flexibility in pursuing goals, 

methods, and time frames to fit the priorities, needs, and capacities within the cultural context of 

communities [175]. There are various models of community engagement, which include, 
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community-based participatory research (CBPR), empowerment evaluation, participatory or 

community action research, and participatory rapid appraisal [175]. 

 

Figure 2.1 Community Engagement Continuum [174] 

 CBPR is a collaborative, partnership approach to research that equitably involves for 

example, community members, organizational representatives, and researchers in all aspects of 

the research process [179]. Also, it can be defined as a collaborative orientation to research 

which engages academic and community partners in knowledge generation and intervention 

strategies that benefit communities involved [180].  Partners provide their expertise and share 

responsibilities and ownership to increase understanding of a given event and incorporate the 

knowledge gained with action to improve the health and well-being of community members 

[179,181]. Also, CBPR embodies the experiences of community residents, thereby improving the 

validity and interpretation of research findings, thus providing a situation whereby residents can 

champion the implementation or application of their findings [180,182]. The CBPR process 

typically involves: (1) identification of a research question; (2) assessment of community 
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strengths, assets, and concerns; (3) selection of priorities or targets; (4) development of research 

plan and data collection methodologies; (5) implementation of research plan and data collection 

and analysis; (6) interpretation of study findings; (7) dissemination of study findings; (8) and 

application of study findings to develop action plans to enhance individual and community well-

being [183].  

 Studies in environmental justice currently utilizes participatory action research; which 

assists in filling the gaps in government data available at local level, and provide insight to 

disproportionate exposures that are neglected by politicians or overlooked by decision makers, 

thus, earning credibility for proposed policy changes and government action to eliminate 

environmental health disparities [184]. Various studies have utilized CBPR, such as, in the toxic 

free neighborhood campaign in Old Town National City, California [178]; PM concentrations on 

the sidewalks in Harlem, New York [185]; siting of a new port in North Charleston, South 

Carolina [186,187]; health survey in Richmond, California [188]; among others to address 

environmental justice issues in different communities. 

 

Citizen Science and Community-Based Participatory Research 

Citizen science is a process whereby citizens are involved in science as researchers which 

utilizes the concept of involving and encouraging the participation of the public in the 

observation, collection and record of data in research [189]. Also citizen science provides a 

unique opportunity for the public (community or volunteers)who may or may not have scientific 

training to work with scientists in organized scientific research [190,191]. Research could be 

community-driven or global investigations which will identify research questions, collect and 

analyze data, make new findings and develop interventions [190]. CBPR which is utilized in 
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environmental health investigations, is an approach where scientists and local community work 

together in developing and implementing research concerns of community members [192].  

Citizen science and CBPR frequently incorporate students or interns in the execution of 

the projects. Kinney et al utilized interns during their study on PM concentrations and diesel 

exhaust particles in Harlem, New York [185,193]. Also, in Bayview, San Francisco, high school 

students were affiliated with Literacy for Environmental Justice (LEJ) to determine the disparity 

in healthy food access [193]. Students played a role in Halifax County during the Concerned 

Citizens of Tillery (CCT) during its grassroot mobilization to introduce an intensive livestock 

ordinance [194]. In Mission Hill, Roxbury, Boston, students were trained on air pollution 

monitoring, project protocols and general issues in scientific inquiry to participate in the air 

quality characterization of the community [195]. 

The use of citizen science and CBPR in air quality monitoring has been facilitated by the 

availability of internet, smart devices, computers, statistical tools and computational techniques 

[196,197]. These have increased project visibility, functionality and accessibility; making 

individuals that previously could not be reached or served participate in citizen science [191]. 

The availability of low cost sensors has enabled citizens and communities to monitor air quality 

which can impact their daily lives [197]. Citizen science activities utilize the benefit of 

community-based participatory research and crowd-sourcing which involves individuals who 

willingly collect large amount of data that are assembled and analyzed [197].  The US EPA 

developed a citizen science toolbox which provided  Ironbound, Newark, New Jersey, an 

environmental justice community, with the tools needed to support a community-based air 

monitoring program [198].  
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Citizen science has helped overburdened communities collect data useful in their efforts 

to advance an environmental justice agenda and address environmental health disparities. A 

study conducted in Northern California demonstrated racial and ethnic inequalities in asthma and 

hay fever which were independent of education [199]. A study performed with Community 

Action Against Asthma (CAAA) revealed that exposure to particulates were higher for indoor 

environments when compared against outdoor environments, and the cycle of exposures were 

similar to the areas of heavy industry and diesel truck traffic [146]. A study in Harlem revealed 

that diesel exhaust was a major source of air pollution and the community were part of the 

research which led to positive interventions [185]. In Hunts Point, citizen scientists participated 

in a study that showed how truck traffic was linked to PM and elemental carbon concentrations 

[164]. The Richmond, California health survey conducted by Communities for a Better 

Environment (CBE), citizen scientists, and university partners (Brown University, University of 

California) discovered that childhood asthma prevalence rates in Richmond was higher than 

Marin County [188,200]. Also, adult asthma prevalence rates were correlated with the length of 

time residents lived in Richmond.  

 

Community-Based Participatory Research, Citizen Science and Air Pollution Studies 

 CBPR is a tool which addresses concerns via the direct involvement of the community in 

all stages of the research process; and could be applied to issues associated with air pollution at 

the community level [184,189,201]. Also, CBPR provides a framework that links science, 

practice and policy in the effort to minimize differences in air pollution exposures [189,193]. The 

innovation of low-cost sensors has provided a platform for community-based organizations to 
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obtain air pollution data utilizing citizen science (CS); which is an approach where citizens are 

involved in science as researchers [189,202]. 

 Utilizing CBPR and CS in air monitoring research provides a unique opportunity for 

eradicating environmental disparities due to community involvement and engagement in data 

collection, interpretation, dissemination and discussions that could result in policy changes [189].  

There has been an increase in the involvement of citizen scientists in environmental health 

research due to the innovation of environmental monitoring technologies, the use of mobile 

devices to collect data and the growth of online data sharing [184]. Communities built 

partnerships to utilize CBPR and CS in air quality monitoring within their communities due to 

concerns of the health risk associated with air pollution [189]. Improved air pollution knowledge, 

reduced air pollution risk and reduced health burdens were important in motivating community 

participation [189]. The foundational framework is community engagement for participatory 

research in environmental health as demonstrated in Figure 2.2.  
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Figure 2.2 Conceptual model for participatory research for environmental health [184] 

 Air quality monitoring is an area of environmental protection which has received 

increased scrutiny, due to the low surveillance of toxic air pollutants, questionable self-reported 

emissions data by industry and limited state monitoring efforts [203]. The earliest example of 

participatory research in environmental justice context for air quality research was the “bucket 

brigades”; who are residents in industrial zones that were recruited and monitored near oil 

refineries, chemical factories and power plants [184,203]. In Harlem, New York, CBPR was 

utilized during the air quality monitoring of PM and diesel exhaust concentrations on Harlem 

sidewalks [185]. The monitoring of elemental carbon and PM2.5 levels in Hunts Point, New York 

revealed exposure disparities due to truck traffic [164]. A study utilized CBPR during the 

baseline air quality assessment of PM before a port expansion in North Charleston, South 

Carolina [186].  Residents of Excelsior neighborhood in southeast San Francisco used CBPR 

approach during the investigations of traffic-related exposures and health hazards in the area 

[204]. 

 There have been several outcomes associated with the use of CBPR and CS in research 

especially, the formation of strong and lasting partnerships among the community, academic 

researchers and other community organizations; which builds social capital and leadership skills 

[184,189]. Also, community residents gain knowledge about their local air quality and enhance 

their capacities; thus, becoming assets in their communities to address local problems [189]. 

Three reported benefits are increased research capacity, better knowledge and citizen benefits, 

such as, improved scientific literacy and environmental awareness, empowered communities, 

and engaged policy and decision making [184,205]. Finally, participatory research has led to 
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effective positive policy change and implementation, thus, enhancing environmental monitoring 

efforts [178,184,206]. 

Background on Concrete Block Plants, Batching Plants, and Air Pollution 

Cement is the binding material which is produced worldwide and utilized in construction. 

Dispersion of particulates, particulate bound metals and ions, VOCs into the atmosphere from 

concrete batching processes occur via atmospheric dynamics [207]. Pollutants released from 

cement plants can re-suspend and deposit in soils which may get into the food chain via crops 

and water [207]. Industries which manufacture and utilize cement release about 5% of global 

carbon emissions especially CO2 and utilizes a high amount of energy [208]. The production of 

concrete involves the mixing of cement with fine aggregate (sand), coarse aggregate (e.g., gravel, 

crushed stone or iron blast furnace slag), water and in some cases small amounts of chemicals 

known as admixtures or pozzolan minerals (such as fly ash, silica fume) [209]. Chemical 

admixtures create and retain bubbles of air, reduce the amount of water required, plasticity, and 

controls the setting rate and time [209,210]. The production of the mixture depends on the end 

use or product, type of cement and proportions of aggregates, cement and water [211]. Dust 

(cement and pozzolan) generation as a visible pollutant, is released in considerable amounts by 

concrete production. Cement or concrete plant emissions can be classified as fugitive or point 

source emissions [212]. Fugitive emissions are open or nonpoint emissions which are not 

released via a vent or stack, for instance, dust from stockpiles, materials handling and PM from 

vehicular movements [207]. Point source emissions are released through a single point source via 

vent or stack into the atmosphere [207]. 

Potential sources of PM and VOC emissions from these plants could include raw material 

handling, storage, bulk loading and packaging of final product. Also, particulates released from 
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cement industry fall within 0.05 to 5.0 microns in diameter, while, plants without dust control 

technology emit particles less than 10 and 2.5 microns [207,213]. Currently, there is limited 

information on the emission of PM2.5 and VOCs from cement and concrete batching plants. 

Crystalline silica, lime, gypsum, nickel, cobalt and chromium compounds are found in cement 

which are detrimental to human health [207]. 

Research has shown linkages between exposure to cement dust and adverse effects on 

human health. Construction workers exposed to inorganic dust (e.g., asbestos, man-made 

material fibers, cement, concrete and quartz) had increased COPD mortality [214]. Also, 

construction and cement workers had a higher risk of COPD and nonspecific lung disease 

because of exposure to inorganic dust [215,216]. Blue-collar workers (e.g., contractors, 

plumbers, construction and cement workers) exposed to inorganic dust have increased risks of 

developing IgG4-related diseases (i.e., autoimmune pancreatitis) [217]. One study found an 

increased risk in hospitalizations for cardiovascular or respiratory illnesses due to exposure from 

cement plant emissions, with children being more susceptible [123]. Residing near a cement 

plant leads to an increased risk of mucous membrane of the eye and respiratory system from 

exposure to emissions (including particulate matter) [218,219]. 

 

Air Quality General Permit Process for a Concrete Batching Plant in Maryland 

 A concrete batch plant involves a procedure that merges different substances to form 

concrete. Concrete batch plants are classified as ready-mix plants and central mix plants; which 

contain a variety of equipment (such as mixers, cement batchers, conveyors, radical stackers, 

heaters). A general air quality permit for a concrete batch plant is required when plants are newly 

built or modified [220]. This permit process assists businesses to obtain environmentally sound 
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permits in a timely manner; and increases the efficiency of Maryland Department of 

Environment (MDE) through the issuance of generic permits to group of industries or plants with 

similar operation, equipment installations and emission characteristics [221]. Eligibility for the 

permit requires that the plant does not manufacture concrete or cement products (e.g., cinder 

block, concrete pipes) and does not utilize dry concrete or Portland cement in a production 

process besides the making of wet concrete. Also, a facility must get a new general permit to 

construct a new plant. A general permit is a generic document for a specific kind of activity 

which has similar environmental impacts [222].  Maryland’s general permit is accepted and 

recognized by the US EPA and limits issuance to true minor sources whose potential to emit 

(PTE) criteria air pollutants is less than 100 tons per year [223]. The Maryland air quality permit 

considers concrete batch plants as minor sources of hazardous air pollutants (HAPs) which 

would be below the emission limitations established for the general permit and located at true 

minor source review (MSR) sources [223]. Therefore, concrete batch plants are required to 

compare their potential to emit (PTE) to the NSR major source threshold for attainment areas of 

250 tons per year [223]. Also, there is no requirement for the facilities to conduct air quality 

monitoring to demonstrate the comparison between PTE and NSR. 

 Ernest Maier requested about 3.95 acres from the 4.63 acre lot, Lot 4 of their property in 

Bladensburg for a concrete batching plant [224,225]. The proposed concrete batching plant will 

be in the center of the property and at the west of the existing concrete block plant; whereby both 

plants will jointly utilize raw material stockpiles. Also, both plants will share open aggregate 

storage bins and heavy equipment used in loading aggregates into feed hoppers and conveyors 

which service both plants. The applicant requested a variance of the minimum setback distance 

for a concrete batching plant of 100 feet from the boundary line of an adjacent property in an 



 

 

 

30 

 

 

industrial zone [226]. This will enable the concrete batching plant to be constructed 12.8 feet of 

the property located to its south. Also, another variance was sought for the 25 feet roadway 

setback requirement to enable the facility to retain the existing bins at their current location 

which will be 20.3 feet from Kenilworth Avenue on the east of the property. 

 Many residents in the Port Towns of Bladensburg, Cottage City, Colmar Manor and 

Edmonston are in opposition to the special exception permit which was granted to Ernest Maier 

Inc. to construct a concrete batching plant on its property [227]. Residents are organizing and 

working with Port Towns Environmental Action (PTEA) to ensure that the expansion does not 

happen [185,187,188]. Residents and PTEA are concerned about the proximity of the plant to 

historic sites and the negative impacts of the concrete block plant on the African-American 

church next door to the plant. Also, they are concerned about storm water runoff, air and noise 

pollution, traffic congestion and public health and safety in their community [227]. The plant is 

in close proximity to the Anacostia River and Chesapeake Bay which will make the plant a 

potential runoff hazard [227]. Residents have created an EcoDistrict which will aid 

environmentally-focused tourism and economic development, and the proposed expansion may 

hinder this [228]. 

 

The Significance and Relevance of the Project to Environmental Health 

This study will provide valuable scientific information on human exposure to PM and 

VOCs released from the concrete block plant, and nearby industrial and commuter traffic in 

Bladensburg. Also, this will expand a pilot study that was conducted during the summer of 2017. 

The air quality in Bladensburg is poor in comparison to other towns in Maryland. Bladensburg 

has an air quality index (AQI) of 49.1 and is ranked 142 out of 682 municipalities in Maryland 
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[229]. This study will provide information on the impact of the concrete block plant and current 

traffic levels on air quality in Bladensburg particularly for vulnerable groups who live, walk, 

learn, play, and pray near the facility. 

Industries bring economic development to towns; however, they may release a variety of 

pollutants which can have adverse effects on human health and the environment. The concrete 

block plant (and future concrete batching plant) are environmental hazards which can increase 

PM and VOC exposures, thus leading to adverse health effects, such as asthma among local 

residents. The findings of the study will be used to prepare an executive summary for the 

residents of Bladensburg and help them with future decision-making related to the growth and 

development of their community. It also will be made available to state and local governments 

who could use the information from the study in regulatory decision-making process to develop 

preventive strategies and identify and implement appropriate and adequate regulations and 

standards. Furthermore, the results could be used to inform future epidemiological studies that 

evaluate PM and VOC exposures in neighborhoods near industrial settings. 
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CHAPTER 3 

Paper 1 

Particulate Matter Concentrations near a Concrete Block Plant and Traffic in 

Bladensburg, Maryland 

Abstract 

Background:  Ernest Maier, a concrete block plant located in Bladensburg, Maryland wants to 

expand to include a concrete batching plant on the same property. This expansion could further 

degrade air quality and impact the health of vulnerable residents. The purpose of this study is to 

provide information on particulate matter (PM2.5) levels near residential areas close to commuter 

traffic and industrial activity associated with the concrete plant. 

Method: Air quality monitoring was conducted in the community at five sites using the 

Airbeam, a wearable, real-time sensor that can measure PM2.5.  Sampling were conducted in 

thirty minutes’ periods to capture morning on-peak, afternoon off-peak and evening on-peak 

periods. Also, traffic counts were conducted at the five locations.  

Results: Average values for cars ranged from 0.67 to 247.5, while mean truck values ranged 

from 0.17 to 26.33. Mean PM2.5 concentrations ranged from 2.2 to 46.71 µg/m3 across the five 

monitoring locations. Pearson’s correlation revealed that there was weak correlation among the 

PM2.5 concentrations observed between the different sites and some of the values were found to 

be statistically significant. ANOVA analysis showed that the PM2.5 levels were significantly 

different at the different sites (p-value 0.0013).  
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Conclusion: Our results revealed spatial and temporal variations of PM2.5 levels at the site 

closest to the concrete factory. There were higher PM levels at locations closer to roadways and 

during rush hour traffic.   

Introduction 

Residents of urban neighborhoods are faced with diverse stationary and mobile sources of 

air pollution. A stationary source is a fixed location such as a factory, while, mobile sources refer 

on-road vehicles (automobiles, buses, trucks, motorcycles) and non-road vehicles and engines 

(ships, trains, heavy equipment, locomotives and aircrafts) [8–10,12]. Many urban 

neighborhoods host industries that may play an important role in economic growth and social 

development; however, their activities may result in environmental degradation, ecological 

threats and adverse human health effects. Unfortunately, studies have revealed that small and 

mid-sized industries do not utilize pollution control measures, which increase the release of air 

pollutants especially in populated areas [13,230]. Also, there has been an increase in traffic-

related air pollution (TRAP) and its effects on human health, due to urbanization, which has led 

to a rise in private and commercial vehicle use [15]. This has resulted in a rapid increase in 

traffic, vehicular and industrial emissions. Vehicles are important sources of air pollution 

including CO, SOx, NOx, heavy metals, particulate matter (PM), volatile organic compounds 

(VOCs), and polyaromatic hydrocarbons (PAHs) [16]. Traffic is a unique source of air pollution 

because pollutants are released close to human receptors and may not be quickly diluted in the 

atmosphere [17]. Exposure to traffic-related air pollution (TRAP) has been associated with 

deleterious health effects, such as, wheezing and reduced lung function in children, lung cancer, 

chronic respiratory symptoms, cardiorespiratory deaths, birth defects and a decrease in life 

expectancy [21,24,25,27,30,31]. The effects of air pollution on life expectancy are not evenly 
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distributed in the US, rather they are dependent on certain extrinsic factors like socioeconomic 

status and educational attainment; and these exposures can negatively impact the life expectancy 

of economically disadvantaged groups [31,32]. 

Particulate matter is an important air pollutant associated with industrial emissions and 

traffic. It consists of a heterogeneous mixture of solid and liquid particles suspended in air that 

vary in size and chemical composition across space and time; which could be primary or 

secondary particles [34–36]. PM is distinguished by their aerodynamic diameter and cause more 

harm than any other common air pollutants and has diverse constituents like nitrates, sulfates, 

elemental and organic carbon, organic compounds (e.g., PAHs), biological compounds (e.g., 

endotoxins) and metals (e.g., iron, copper) [7,44,231–233]. Industrial PM can be formed via 

three major routes – fuel combustion processes (e.g., furnaces, gas turbines), non-combustion 

processes (e.g., mechanical treatment of raw materials), and during handling, transport and 

storage of dusty raw materials (e.g., cement) [42].  

Road traffic is an important source of PM formation via combustion of fuels (gasoline 

and diesel) through internal combustion engines which result in emissions from tailpipes [40,43–

45]. Also, road traffic emissions comprise of relationships between vehicles, road surface and the 

use of brakes which generates PM referred to as non-exhaust emissions [44,45]. Exhaust 

emissions contribute fine PM (<2.5 µm) while non-exhaust emissions contribute coarse PM 

(PM2.5-10) into the atmosphere [43,44]. Studies have shown that PM emissions from diesel 

burning vehicles are higher than emissions from gasoline burning vehicles [40,46,234]. PM 

emissions from diesel engines are the major source of PM2.5, PM0.1 and PM0.05, which can be 

deposited deep into the respiratory tract and even transfer to extrapulmonary organs, including 

the central nervous system leading to adverse health effects [234,235]. 
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The composition of PM, the dose and time of exposure, size distribution, concentration, 

toxicity of PM as well as, exposure to chemical mixtures can affect human health in various 

ways [34,48].  Toxicological and physiological evidence suggests that fine particles can have the 

greatest adverse effects on humans due to their size and they can contain sulfates, nitrates, acids, 

metals and particles adsorbed on their surface [42,49]. Also, they can be deposited deep in the 

lungs, remain deposited for longer time periods, easily gain access to the indoor environment, 

and transported over longer distances [42]. The National Morbidity Mortality and Air Pollution 

Study (NMMAPS) found a correlation between PM in the air and the risk of death from all 

causes and from cardiovascular and respiratory illnesses [49,50]. Studies have shown that 

individuals with existing conditions such as chronic obstructive pulmonary disease (COPD), 

congestive heart disease, myocardial infarction or diabetes were at an increased risk of 

exacerbation on days with high PM concentrations [66–69]. Maternal exposure to PM during 

pregnancy has been shown to lead to negative birth outcomes (i.e., low birth weight and preterm 

births) [82–84]. Autism has been linked with exposure to traffic-related air pollution, nitrogen 

dioxide and PM during pregnancy and the child’s first year of life [88,89]. A study conducted in 

central Phoenix showed that PM10 concentrations were associated with asthma incidents, 

particularly among children between the ages of 5 and 17 [53]. Another study conducted on 545 

U.S counties showed that reduction in PM to low levels led to prolonged life expectancy, 

especially among urban and highly populated counties [96].  

People of color and low-income persons are disproportionately burdened with more 

environmental and health risks than other groups in regards to where they live, work, play, and 

pray [132]. Studies have shown that there is a differential burden of environmental hazards on 

disadvantaged groups [139–141]. Also, there is a positive correlation between residential 
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proximity to hazards and race/ethnicity and SES, which is based on the discovery that 

environmental stressors (i.e., air, water and land pollution) differentially impact communities of 

color and low-income communities [140–143,236]. Also, the percentage of individuals living in 

nonattainment air quality areas is significantly higher for Latinos and African-Americans 

compared to Whites [146].  Evidence has shown that people of color and economically 

disadvantaged individuals have increased residential exposure to traffic and traffic-related air 

pollution [117,151–153]. Economically disadvantaged individuals and communities of color 

were observed to be disproportionately exposed to traffic-related air pollution which may result 

in an increased risk of adverse health outcomes, such as asthma, cardiovascular diseases and 

respiratory illnesses [159–162]. 

Recent environmental justice and air pollution studies utilize citizen science, which is a 

process whereby citizens are involved in science as researchers which utilizes the concept of 

involving and encouraging the participation of the public in the observation, collection and 

recording of data [186,189,237]. Citizen science has helped overburdened communities collect 

data useful in their efforts to advance environmental justice and address environmental health 

disparities. A study conducted in Northern California demonstrated racial and ethnic inequalities 

in asthma and hay fever which were independent of education [199]. A study performed with 

Community Action Against Asthma revealed that exposure to particulates were higher for indoor 

environments when compared against outdoor environments, and the cycle of exposures were 

similar to the areas of heavy industry and diesel truck traffic [146]. Additional research 

performed in Harlem revealed that diesel exhaust was a major source of air pollution and the use 

of the CBPR framework led to positive interventions [185]. In Hunts Point, citizen scientists 

participated in a study that showed how truck traffic was linked to PM and elemental carbon 
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concentrations [164]. The Richmond, California health survey conducted by Communities for a 

Better Environment (CBE), citizen scientists, and university partners (Brown University, 

University of California) discovered that childhood asthma prevalence rates in Richmond was 

higher than Marin County [188,200].  In Charleston, South Carolina, researchers working with 

the Low Country Alliance for Model Communities (LAMC) found that there were no 

statistically significant difference in mean concentrations of PM2.5 and PM10 across neighborhood 

sites, whereas, mean PM10 neighborhood concentrations were significantly lower than mean 

PM10 reference concentrations for Union Heights, Accabee and Rosemont [186].  

Residents of Bladensburg, who are predominantly African-American and/or Latino, are 

faced with environmental hazards because Bladensburg is an industrial corridor; with a school 

bus depot, a trash company, Ernest Maier concrete block plant, other industrial facilities and a 

high volume of industrial traffic. Many residents in the Port Towns of Bladensburg, Cottage 

City, Colmar Manor and Edmonston are in opposition to the special exception permit which was 

granted to Ernest Maier Inc. to construct a concrete batching plant on its property [227]. 

Residents are organizing and working with Port Towns Environmental Action (PTEA) to ensure 

that the expansion does not happen [225,227,228]. They are concerned about the proximity of 

the plant to historic sites, storm water runoff, air and noise pollution, traffic congestion, the 

mixture of air pollutants emitted by the concrete block plant and traffic or mobile sources (cars, 

trucks and buses) and public health and safety in their community [227]. An EcoDistrict has been 

created in the community which will aid environmentally-focused tourism and economic 

development, and the proposed expansion by Ernest Maier may hinder this [228].  

The study is aimed at providing data on temporal and spatial variation in human exposure 

to PM due to commuter traffic, industrial traffic and industrial activities near the concrete block 
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plant. Monitoring was conducted near roadways to determine the impact of traffic on PM levels.  

The study investigated diurnal patterns based on time of the day and rush hour traffic by 

conducting air quality assessment and traffic counts during morning on-peak (rush hour), 

afternoon off-peak and evening on-peak (rush hour) periods. 

 

METHODS 

Community Background and Site Selection 

Bladensburg has a total area of 1.01 square miles with 1.00 square miles as land and 0.01 

square miles as water. It shares borders with Edmonston on the north, Hyattsville on the 

northwest, Cottage City and Colmar Manor on the southwest, and Cheverly on the southeast Air 

pollution from the location of the concrete block plant is of utmost importance because the plant 

is open for six days a week excluding Sunday. There is a bus depot, a trash company, a concrete 

block plant and high volume of industrial and commuter traffic in Bladensburg. 
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Figure 3.1. Map showing the five personal monitoring locations at Bladensburg and the 

concrete block plant (EJScreen) 
 

 We selected five locations for the study of PM2.5 levels which were Kingdom Missionary 

Baptist Church (site 1), Bladensburg Waterfront Park (site 2), Bladensburg Elementary school 

(site 3), Hillcrest Village Apartments (site 4) and Confluence area (King Pawn Auto Shop – site 

5). These locations were chosen due to concerns about high traffic and the concrete block plant, 

as well as, proximity to receptor sites [185]. 

 The concrete block plant is on a property, which belongs to Ernest Maier, Inc. and is 

close to some historic sites in Bladensburg – Peace Cross, Battle of Bladensburg Memorial, 

Anacostia River and Bladensburg Waterfront Park [227]. The plant is located at 4700 Annapolis 

Rd, Bladensburg, MD 20710. The selection of the monitoring locations was driven by concerns 

about high traffic and location of the concrete block plant for PM2.5 monitoring. Personal 

monitoring locations were chosen based on close proximity to the plant and are within 1609 
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meters from the plant; which are important human receptor sites among children, adults and the 

elderly (offices, residential, school and recreational complexes)  [185]. Near roadway air quality 

monitoring was utilized because it will provide a measure of the exposure of individuals who 

live and work along these traffic routes [17].  

 

Particle Concentration Measurements 

 Air quality monitoring and traffic counts were conducted jointly by interns from the 

University of Maryland and residents from the community. Each location was staffed by two 

persons who wore AirBeam sensors and conducted traffic counts. Also, the researcher was 

present during all sampling periods; however, most of the work was carried out by interns. The 

interns were trained in the operation, use and placement of the AirBeam sensors. They were 

responsible for the sampling operations at each site which was overseen by the researchers. 

Air sensors used were low-cost, easy-to-use, portable air pollution sensors which provide 

high-time resolution data in near real time [197]. The AirBeam sensor is a wearable air monitor 

that maps, graphs, and crowdsources PM2.5 exposures in real-time via the AirCasting Android 

app. It measures PM2.5 in µg/m3 by utilizing a light scattering method which is registered by a 

detector and converted into measurements that estimate the number of particle in the air [238]. 

The measurements are sent through Bluetooth to the app on the android device which creates 

maps and graphs in real time on the device. At the end of the session, it is sent to the AirCasting 

website where the data is crowdsourced to generate heat maps indicating where PM2.5 

concentrations are highest and lowest. AirBeams were worn around the neck in the breathing 

zone at the personal monitoring locations. 
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At the five monitoring locations, monitoring for PM was carried out from Sunday to 

Saturday during traffic peak and off-peak periods in a thirty-minute time frame. Traffic peak 

times were 7:00am to 9:00am and 4:00pm to 6:00pm, while off peak time was between 11:00am 

to 1:00pm. Monitoring was conducted from 8:30am to 9:45am, 11:00am to 12:15pm and 4:00pm 

to 5:15pm. Air quality monitoring was conducted from March to May 2018 because it was 

spring, so that residents and interns were not exposed to the adverse effects of the cold weather 

while monitoring. Monitoring on Saturdays will aid in ensuring consistency in data collection 

and coincides with when the facility operates (i.e., Monday through Saturday) and captures time 

periods when there is less commuter traffic compared to Monday-Friday when there is more 

commuter traffic. On Sundays, the plant was closed and monitoring will account for no activity 

at the plant and reduced commuter and industrial traffic. 

 

 

Traffic Count 

Traffic counts were performed at each monitoring site while the team is assessing 

personal exposure to PM2.5. This involved counting the number of motor vehicles, including cars, 

buses, vans, trucks that drive past during the sampling period. Heavy duty trucks included trucks 

larger than pick-up trucks including buses, while vans and sport utility vehicles were counted as 

cars. Traffic counts were done manually and data was entered into the data sheets. Counts were  

conducted in 5 minutes intervals during each thirty minute sampling period or window [185]. 

The counts were summed to provide daily counts, averaged/day, averaged per each site, and 

average across each week, and averaged across the entire sampling period.  
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Statistical Analysis 

Descriptive statistics (e.g., mean, median, standard deviation, minimum and maximum) 

were tabulated and plotted for the six locations at different times of the day to assess the spatial 

and temporal variation in PM2.5 concentrations. Analysis of Variance (ANOVA) was used to 

determine the spatial and temporal variations in PM2.5 levels at the monitoring sites based on 

location and on-peak or off-peak period. Site (monitoring location), time (monitoring period) and 

day were used as independent variables; while the mean PM concentrations were the dependent 

variables in ANOVA. The mean PM concentrations was calculated based on the thirty minutes 

monitoring period. This would explain the variability between the PM data obtained at different 

locations during the on-peak and off-peak periods. Pearson correlation was used to evaluate the 

associations and significance between PM concentrations at different locations and times. This 

helped to determine the level of association between the PM concentrations recorded at different 

locations during on-peak and off-peak periods. The data collected will be analyzed using SAS 

Enterprise Version for Windows 9.3 at a significance level of 0.05 and lower (P ≤ 0.05).  

 

RESULTS 

The 2010 Census as shown in Table 3.1, revealed that there are 9,148 people in 

Bladensburg of which 53.06% of them are female, while 46.94% are male [239]. African-

Americans constitute 65.58% and Latinos are 26.92% of the population. 73.08% of the 

population are 18 years and over, while 26.83% are under 18 years of age. Also, Table 1 displays 

the educational attainment of Bladensburg; 28.48% of residents aged 18 to 24 years have less 

than high school education. 31.83% of residents aged 24 years and over have less than a high 

school degree. The median household income in Bladensburg is $34,966 as shown in Table 3.1. 
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The percentage of families in Bladensburg within the poverty level is 11.7%, while the 

percentage of people within the poverty level is 12.1% (Table 3.1). 

 

Table 3.1. Sociodemographic Composition of  Bladensburg [239] 

Population Number % 

Total Population 9,148 100 

Population by Sex     

Male 4,294 46.94 

Female 4,854 53.06 

Population by Age     

Under 18 2,454 26.83 

18 & over 6,694 73.17 

Population by Ethnicity     

Hispanic or Latino 2,463 26.92 

Non-Hispanic or Latino 6,685 73.08 

Population by Race     

White 1,149 12.56 

African-American 5,999 65.58 

Asian 187 2.04 

American Indian and Alaska 
Native 

50 0.55 

Native Hawaiian and Pacific 
Islander 

2 0.02 

Other 1,515 16.56 

Identified by two or more 246 2.69 

Educational Attainment      

Population 18 to 24 years 748   

Less than high school graduate 213          28.48 

Population 25 years and over 4,781   

Less than high school graduate             1,522          31.83 

Income in 1999      

Median household income 
(dollars) 

34,966   

Poverty levels in 2010     
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All families   11.7 

  with related children under 5 
years 

  23.5 

All people   12.1 

  related children under 5 years   21.6 

 

USEPA’s EJSCREEN places Bladensburg in the 3rd percentile in the state, 24th percentile 

in the EPA region and 39th percentile in the US for ozone, which can be formed by VOCs in the 

presence of sunlight (Table 3.2). Also, Bladensburg is ranked in the 88th percentile in the state, 

90-95th percentile in EPA region and 80-90th percentile in the US for air toxics cancer risk. 

Traffic proximity and volume in Bladensburg is placed at 89th percentile in the state, 94th 

percentile in EPA region and 91st percentile in the US. The demographic indicators as shown in 

Table 3.2 revealed that the minority population in Bladensburg constitute 95% and low-income 

population account for 53%. Of residents in Bladensburg. Also, 9% of the residents are under the 

age of 5 years, while 8% of the population are 64 years and above. 31% of the population have 

less than a high school education, and 27% of the population are linguistically isolated. 

Table 3.2. EPA’s Environmental and Demographic Indicators for Bladensburg 

(EJSCREEN) 

Selected Variables 

Val

ue 

State 

Aver

age 

Percen

tile in 

State 

EPA 

Regio

n 

Aver

age 

Percen

tile in 

EPA 

Regio

n 

USA 

Aver

age 

Percen

tile in 

USA 

Environmental Indicators               

Particulate Matter (PM2.5 in 
ug/m3) 9.28 9.26 31 9.26 46 9.14 48 

Ozone (ppb) 37.1 38.4 3 37.9 24 38.4 39 

NATA* Diesel PM (ug/m3) 1.73 1.1 91 0.92 90-95th 0.938 
80-
90th 

NATA* Air Toxics Cancer Risk 
(risk per MM) 55 45 88 42 80-90th 40 

90-
95th 
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NATA* Respiratory Hazard 
Index 2.8 2 88 1.8 90-95th 1.8 

80-
90th 

Traffic Proximity and Volume 
(daily traffic count/distance to 
road) 

150
0 580 89 360 94 590 91 

Lead Paint Indicator (% pre-
1960s housing) 0.56 0.3 78 0.37 73 0.29 79 

Superfund Proximity (site 
count/km distance) 0.11 0.13 66 0.15 64 0.13 71 

RMP Proximity (facility 
count/km distance) 1.8 0.65 89 0.61 91 0.73 89 

Hazardous Waste proximity 
(facility count/km distance) 0.22 0.14 85 0.11 89 0.093 92 

Wastewater Discharge Indicator 
(toxicity-weighted 
concentration/m distance) 

0.00
61 0.18 85 100 75 30 78 

Demographic Indicators               

Demographic Index 74% 35% 95 30% 95 36% 91 

Minority Population 95% 47% 88 31% 95 38% 93 

Low Income Population 53% 23% 92 29% 87 34% 79 

Linguistically Isolated Population 27% 3% 98 2% 98 5% 96 

Population with Less Than High 
School Education 31% 11% 95 11% 95 13% 89 

Population under Age 5 9% 6% 78 6% 81 6% 77 

Population over Age 64 8% 13% 26 15% 19 14% 23 

 

Thirty-minute traffic counts for cars and trucks at the four locations for the different time 

shifts are summarized in Table 3.3. The average cars and truck vehicle counts varied at the 

different locations on different days and at different times. The confluence area had the highest 

average of car counts at different days and monitoring periods. Also, Kingdom Missionary 

Baptist Church and Hillcrest Apartments consistently had low average cars and truck counts; 

while the average cars and truck counts at the Waterfront Park varied and may be attributed to 

activities at the park. 
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Table 3.3. Mean and Standard Deviation of 30-minutes Traffic Counts at Five Sites in 

Bladensburg 
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*No truck data observed 
 
 Forest plots were used to summarize the descriptive statistics obtained from PM2.5 

(µg/m3) monitoring at the different locations, monitoring shifts and days. The use of forest plots 

or meta-analytic pooling aids researchers to display their findings in a graphically appealing way 

but in a statistically correct way [240]. The forest plot of all the shifts for Thursday (0614) and 

Saturday (0616) as displayed in Figure 3.2 (Appendix A), revealed that there was no difference 

in the minimum values of PM2.5 concentrations; however, the means and maximum values differ 

across the locations and monitoring times. Thursday (0614) and Saturday (0616) monitoring 

shifts at the Waterfront Park is shown in Figure 3.3 (Appendix A), which has revealed that the 

minimum, mean and maximum values of PM2.5  concentrations differ on both days among the 
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locations and monitoring periods. Figure 3.4 (Appendix A) represents the forest plot for 

monitoring periods on Thursday (0614) and Saturday (0616) at Bladensburg Elementary School; 

that displays a significant difference in maximum values of PM concentrations.  

PM concentrations on Thursday (0614) and Saturday (0616) at Hillcrest Apartments as 

displayed in Figure 3.5 (Appendix A), revealed that the minimum and mean values are not 

significantly different; while the maximum values are different. Figure 3.6 (Appendix A) shows 

the PM2.5 concentrations at the confluence area on Thursday (0614) and Saturday (0616), which 

reveals that the minimum, mean and maximum values are significantly different. A forest plot of 

minimum, mean and maximum PM concentrations obtained during Thursday (0614) morning 

shifts at the five locations is shown in Figure 3.7 (Appendix A), and revealed that minimum and 

mean values are not different; however, the maximum values differ at the different locations. 

Figure 3.8 (Appendix A) displays a forest plot of minimum, mean and maximum values 

observed on Saturday (0616) morning shifts at the five locations which are significantly different 

at the different locations. The minimum, mean and maximum values of PM2.5 concentrations as 

shown in Figure 3.9 (Appendix A) represent weekday morning shifts at the church, which 

revealed that the minimum and mean values are not significantly different, whereas, the 

maximum values differ at Kingdom Missionary Baptist Church. 

Our findings revealed that Kingdom Missionary Baptist Church had the lowest vehicle 

traffic, and we looked at the trend of PM concentrations at the Church on Saturday (0616) in the 

morning, afternoon and evening monitoring periods. Figures 3.10, 3.11 and 3.12 (Appendix A) 

display the trend and showed that the morning shift had the highest number of peak PM2.5 

concentrations when compared to afternoon and evening shifts. The PM2.5 concentrations 

observed at the Kingdom Missionary (Figure 3.13, Appendix A) on Saturday afternoon (0609) 
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was compared to the readings at the Confluence area (Figure 3.14, Appendix A) using a trend 

graph. It was observed that the PM2.5 levels exceeded the annual average standard of 12 µg/m3 

during most of the monitoring period but were lower than the 24-hour average standard of 35 

µg/m3 during some of the monitoring period. While at the Confluence area, both standards were 

not exceeded. Also, Figures 3.15 and 3.16 (Appendix A) are trend graphs of PM2.5 concentrations 

observed at the Kingdom Missionary Baptist Church and the Waterfront Park on Wednesday 

morning (0613). The trend graphs reveal that both NAAQS standards for PM2.5 were exceeded at 

the Church but not at the Waterfront Park. 

Pearson’s correlation was calculated to determine if there was correlation in PM2.5 

concentrations observed between the various sites at different monitoring periods on Thursday 

(0614) as shown in Table 3.4. The results revealed that there was weak correlation between the 

different sites and some of the values were found to be statistically significant, because the p-

values were less than 0.05.  Also, Pearson’s correlation was calculated to ascertain the 

correlation between different sites at the different monitoring periods on Saturday (0616) in 

Table 3.5. Our findings revealed that a weak correlation exist among the PM2.5 concentrations 

obtained between various sites at the different monitoring periods, although most of the values 

were statistically significant and had p-values less than 0.05. Pearson’s correlation was 

conducted to examine the correlation between various sites at the different monitoring periods on 

Thursday (0614) and Saturday (0616) as displayed in Table 3.6. There is a weak correlation of 

PM2.5 concentrations obtained at the various sites within the different monitoring periods, with 

most of the values being statistically significant. 
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Table 3.4. Correlation Between Sites at Different Times of the day on Thursday (0614) 

    
Thursday Morning 

Thursday 

Afternoon 
Thursday Evening 

Site Site R R r 

Church Waterfront Park 0.20329** 0.09992* -0.18346** 

Church  Elementary School 0.0708* 0.25356** 0.02205 

Church 
Hillcrest 

Apartments 
-0.14584** 0.04366 -0.24135** 

Church Confluence Area 0.10354* -0.00357 -0.06307* 

Waterfront Park Elementary School -0.34847** -0.08758* 0.03075 

Waterfront Park 
Hillcrest 

Apartments 
0.12419** -0.14866** 0.18504** 

Waterfront Park Confluence Area 0.12587** -0.06093* -0.01247 

Elementary School Waterfront Park -0.34847** -0.08758* 0.03075 

Elementary School 
Hillcrest 

Apartments 
-0.19543** 0.14794** -0.26591** 

Elementary School Confluence Area -0.11702** 0.05029 -0.16258** 

Hillcrest 

Apartments 
Waterfront Park 0.12419** -0.14866** 0.18504** 

Hillcrest 

Apartments 
Elementary School -0.19543** 0.14794** -0.26591** 

Hillcrest 

Apartments 
Confluence Area 0.20239** -0.08367 0.08276 

Confluence Area Waterfront Park 0.12587** -0.06093* -0.01247 

Confluence Area Elementary School -0.11702** 0.05029 -0.16258** 

Confluence Area 
Hillcrest 

Apartments 
0.20239** -0.08367 0.08276 

** - p-value <0.0001 * - p-value <0.05 
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Table 3.5. Correlation Between Sites at Different Times of the day on Saturday (0616) 

    

Saturday 

Morning 

Saturday 

Afternoon 

Saturday 

Evening 

Site Site R R r 

Church Waterfront Park 0.0466 -0.06619* -0.03632 

Church  Elementary School 0.16102** -0.09496* 0.44019** 

Church 
Hillcrest 

Apartments 
-0.06705* 0.08941* 0.30877** 

Church Confluence Area -0.11263* 0.08147* -0.06771* 

Waterfront Park Elementary School -0.12063** -0.04136 -0.20502** 

Waterfront Park 
Hillcrest 

Apartments 
0.01075 -0.17965** -0.11258* 

Waterfront Park Confluence Area 0.15508** 0.16529** 0.238** 

Elementary School Waterfront Park -0.12063** -0.04136 -0.20502** 

Elementary School 
Hillcrest 

Apartments 
0.23331** 0.04199 0.17829** 

Elementary School Confluence Area -0.01256 -0.06602* 0.01661 

Hillcrest 

Apartments 
Waterfront Park 0.01075 -0.17965** -0.11258* 

Hillcrest 

Apartments 
Elementary School 0.23331** 0.04199 0.17829** 

Hillcrest 

Apartments 
Confluence Area -0.00583 -0.10108* -0.25771** 

Confluence Area Waterfront Park 0.15508** 0.16529** 0.238** 

Confluence Area Elementary School -0.01256 -0.06602* 0.01661 

Confluence Area 
Hillcrest 

Apartments 
-0.00583 -0.10108* -0.25771** 

** - p-value <0.0001 * - p-value <0.05 
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Table 3.6. Correlation Between Sites at Different Times of the day on Thursday (0614) and 

Saturday (0616) 

  

Thurs and Sat 

Morning 

Thurs and 

Sat 

afternoon 

Thurs and Sat 

evening 

  r r R 

Church -0.1347** 0.2411** 0.06487* 

Waterfront Park 0.13391** -0.02773 -0.06177* 

Elementary School 0.1816** 0.23349** 0.37148** 

Hillcrest 

Apartments 
-0.02586 -0.02244 0.061* 

Confluence area -0.16551** 0.18703** -0.01438 

** - p-value <0.0001 * - p-value <0.05 

  

We used generalized linear models to ascertain whether day of the week: Wednesday (a 

day with heavier traffic) versus Saturday (less traffic) was a significant predictor of mean PM2.5  

concentrations. The results revealed that monitoring day is not a significant predictor of PM2.5 

concentrations with an F test statistic =0.02 (p-value =0.89).  Least square means were very 

similar 12.2 µg/m3 for Wednesday compared to 11.3 µg/m3 for Saturday.  Time of day for 

measurement (morning, afternoon, evening) also was not a significant predictor of PM2.5  

concentrations with an F value = 0.14 (p-value=0.87).  Least square means were comparable 

with lowest mean PM2.5 concentrations in the morning (8.2 µg/m3) and highest in the afternoon 

(13.2 µg/m3) and 11.9 µg/m3 in the evening. However, generalized linear models revealed site is 

a significant predictor of PM2.5 measurements with an F value =6.97 (p-value=0.007).  

Comparison of least square means showed PM2.5 concentration for site 1 – Kingdom Missionary 

Baptist Church (39.3 µg/m3) is significantly higher than other sites (ranging from 3.3 to 5.1 

µg/m3).   
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DISCUSSION 

 Monitoring occurred at a small number of sites and days, the findings reveal that PM2.5 

concentrations are determined by proximity to traffic and the concrete block plant. Our study 

showed spatial and temporal variations at the different sites, especially at the Kingdom 

Missionary Baptist Church.  This variation may imply that health risks such as asthma, 

respiratory illness, cardiovascular illness which are associated with PM2.5 exposure may also 

vary across the community based on traffic and industrial sources of PM [185]. Also, our 

findings conform to the suggestions that PM2.5 concentrations are influenced by industrial 

sources at the concrete block plant and vehicular traffic. These results emphasize the concerns 

raised by the residents about the effects of air pollutants from traffic and the concrete block plant 

in Bladensburg. 

The average PM2.5 concentrations ranged from 2.2 to 46.71 µg/m3 across the five 

monitoring locations. In Allen Park, Detroit, Michigan the PM2.5 levels averaged 16.8 µg/m3 in a 

study which used time-series and simulation models to estimate vehicle contributions to pollutant 

levels near roadways [241]. In Barcelona, the mean daily PM2.5 levels was 17 µg/m3, while in 

Mexico, the mean ranged from 53-84 µg/m3 [242,243].The mean concentrations were within the 

levels reported in urban areas, except at the Kingdom Missionary Baptist Church (7.02 – 46.71 

µg/m3) ,where the values were above reported levels [185]. These levels exceeded the annual 

National Ambient Air Quality Standard of 12 µg/m3. Our study findings demonstrated that there 

were higher PM levels in areas close to the concrete block plant compared to areas farther away 

from the plant. A study in Detroit revealed that traffic and industrial plants are major sources of 

PM [244]. Plant emissions was identified as the major source of PM exposure in and around 
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Braddock [245]. PM concentrations may increase around areas close to the plant and from goods 

movement activities related to truck traffic [186].  

Also, we observed differences in mean values of PM2.5 concentrations between high 

traffic and low traffic areas during on-peak and off-peak times. Mean PM2.5 concentrations 

observed at the Confluence area (0607) was 10.47 µg/m3 during the morning on-peak period and  

6.68 µg/m3 during the afternoon off peak period. At Bladensburg Elementary School, the mean 

PM2.5 concentrations were 11.39 µg/m3 during the morning on-peak and 7.5 µg/m3 during the 

afternoon off-peak periods. Also, there were higher mean PM2.5 values during on-peak periods 

compared to off-peak periods due to commuter traffic, industrial traffic and industrial activities 

around the concrete block plant.  Mean PM2.5 concentrations observed at Bladensburg 

Elementary School (0616) were 8.45 µg/m3, 3.64 µg/m3 and 3.87 µg/m3 respectively during the 

morning on-peak, afternoon off-peak and evening on-peak periods.  The Confluence area had 

observed mean PM2.5 levels of  5.72 µg/m3, 3.17 µg/m3 and 3.88 µg/m3 respectively for morning 

on-peak, afternoon off-peak and evening on-peak periods. PM concentrations began to increase 

in the morning when traffic starts due to direct dust resuspension by road traffic [242]. Another 

study in New York city observed a diurnal cycle with significant peaks between 7.00 and 9.00am 

(morning rush hours) and 5.00 and 11.00pm [246]. A Detroit study demonstrated that PM levels 

decrease slightly before sunrise and increases at a steady rate between mid and late morning, 

decrease until early afternoon, then PM level rises until midnight [244]. A study conducted in 

Braddock, Pennsylvania observed large temporal variation with higher PM concentrations in the 

morning compared to afternoon [245]. 

 There are some limitations of the study, which include the focus on PM exposure only 

and did not include an assessment of potential adverse health effects among the residents in 
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Bladensburg. The short duration of our study restricts our ability to make claims about long-term 

relationship PM measurements, traffic and industrial activities associated with the cement block 

plant. Our spring-only data may distort associations, if the patterns are significantly different 

based on season. Our study did not compare the data collected with any federal reference 

method, which is considered the best characterization of concentration of any given pollutant and 

are supported by a comprehensive quality assurance program. We did not adjust for accuracy of 

the AirBeam sensors by calibrating and adjusting the slope and offset against a co-located 

reference/equivalent station. During air quality monitoring, the AirBeam sensors were observed 

to be sensitive to harsh sunlight or extreme temperature, which may have affected our data. The 

traffic counts conducted at the Kingdom Missionary Baptist Church did not capture the truck 

traffic which was suspected to occur within the early hours of the morning. 

Also, the study did not address the cumulative PM exposures from the various industrial 

facilities in the community. Our study did not incorporate a health impact assessment of PM 

exposure from traffic and near the concrete block plant. The topography and weather conditions 

(e.g., wind speed and direction) in Bladensburg were not considered in the study. We trained the 

residents on the use of the air sensor but due to the timing of the monitoring shifts and residents 

availability, residents were not a part of the data collection. We were not able to install PurpleAir 

sensors which would have measured PM10, PM2.5 and PM1 due to accessibility to the monitoring 

locations and logistic challenges.  

Exposure assessment and epidemiologic research are conducted utilizing case crossover, 

case-control and time-series epidemiologic studies, and Bayesian analysis, to examine 

associations between air pollution and respiratory and/or cardiovascular morbidity. Case-

crossover and time-series studies take advantage of temporal contrasts in exposure, particularly 
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for regional pollutants (PM2.5) that exhibit greater spatial homogeneity. Cohort studies have 

shown associations between long-term exposure to air pollution and various health endpoints by 

utilizing air pollution data from regulatory monitoring networks that are operated by government 

[247]. Our study showed spatial variations in PM2.5 exposures within Bladensburg; however, it 

did not include or indicate if the variations in PM exposures was associated with variations in the 

rates of PM-related health outcomes such as respiratory illness, cardiovascular illness and 

premature mortality.  

 Future research should develop a unique study design at the Kingdom Missionary Baptist 

Church which is the closest site to the concrete block plant; to capture the truck traffic around the 

plant. This was because we observed high mean PM2.5 concentrations and low truck traffic 

observed at the location. Also, monitoring should be conducted year-round at more locations to 

reflect seasonal variations in PM2.5 concentrations. Geographic Information System (GIS) 

modeling and spatiotemporal mapping should be incorporated into the study design to take into 

consideration topography and weather patterns on different monitoring days. The present study 

focused on community-level exposures which does not represent individual exposure to PM2.5; 

therefore, future study should consider individual exposures within their various 

microenvironments. Our future study would investigate the variations of PM10 and PM1 

concentrations within the community. 

 

CONCLUSION 

 This study revealed the spatial and temporal variations in the PM2.5 concentrations in 

Bladensburg and may provide baseline information on residential exposure to PM2.5 due to 

commuter traffic, industrial traffic and industrial activities associated with the concrete block 
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plant. Also, this work could serve as a model to researchers who would like to incorporate CBPR 

and citizen science in their approach to address environmental issues. The findings of this work 

may assist to improve the knowledge and understanding of residential PM2.5 exposures among 

economically disadvantaged individuals; however, we would recommend longer monitoring 

periods and more locations.  
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Chapter 4 

Paper 2 

Investigation of Volatile Organic Compound (VOC) Levels near a Concrete Block Plant 

and Traffic in Bladensburg, Maryland 

 

Abstract 

Background: Ambient air pollution from stationary sources, industrial traffic, and commuter 

traffic can negatively impact air quality and human health including emissions of particulate 

matter and volatile organic compounds (VOCs). Ernest Maier, a concrete block plant located in 

Bladensburg, Maryland wants to expand to include a concrete batching plant on the same 

property. This expansion could further degrade air quality and impact the health of vulnerable 

residents. The purpose of this study is to provide information on volatile organic compounds 

(VOCs) levels near residential areas in close proximity to commuter traffic and industrial activity 

associated with the concrete plant. 

Method: Air quality monitoring was conducted in the community at five personal sites using the 

Atmotube, a wearable real-time sensor that can measure total VOCs via Air Quality Score 

Android app. Also, traffic counts were conducted at the five personal monitoring locations.  

Results: The mean VOC concentrations observed ranged from 0.11ppm to 0.68ppm and the 

highest values were obtained at the Kingdom Missionary Baptist Church. Our findings revealed 

that there could be an association of the VOC levels obtained at different sites at different times 

of the day. Also, we observed some spatial and temporal variations in VOC levels due to traffic 

and industrial activity at the plant as key emission sources.   

Conclusion: Our results revealed spatial and temporal variations of VOC concentrations at the 

site closest to the concrete factory. We observed higher VOC levels at locations closer to 

roadways and during rush hour traffic.   
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Introduction 

Individuals living in urban neighborhoods are plagued with a diverse range of outdoor 

environmental risks including poor air quality [185]. Air pollution is a great concern for residents 

of Bladensburg, Maryland due to local industrial and mobile sources of pollution. Volatile 

organic compounds (VOCs) are a concern and include many chemicals such as benzene and its 

derivatives, simple aliphatic hydrocarbons (such as hexane), chlorinated hydrocarbons (such as 

chloroform), terpenes (such as limonene), alcohols, aldehydes and ketones with low carbon 

numbers such as isopropanol, hexanal and butanone [99,100].  They are released into the 

atmosphere from anthropogenic and biogenic sources, and could be formed in the atmosphere as 

products of the atmospheric transformations of other VOCs [100]. VOCs produce a primary 

component of smog known as ozone via reaction with nitrogen oxides and other airborne 

chemicals in the presence of sunlight [102,103,106,248].  

VOCs are emitted from mobile and stationary sources in large amounts due to 

combustion, solvent and fuel evaporation and tank leakage. Emissions of VOCs as gases occur 

from various daily emission sources such as driving cars, painting buildings or cooking [111]. 

Vehicles are a major source of VOC emissions and account for 35% due to relatively heavy 

traffic and adverse dispersion conditions in urban areas, which could lead to an accumulation of 

high levels that can adversely affect air quality and human health in street canyons, especially in 

urban areas [105,106,109,111,249]. Also, VOCs constitute 45% of on-road mobile source 

emissions in Southern California play a key role in urban and rural atmospheres because they 

constitute 70% of hazardous air pollutants [110,250]. Emissions occur from power plants, gas 

stations, auto body and paint shops, solvents used in chemical industry and diesel and gasoline-
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powered vehicles (vehicle exhaust, gasoline evaporation) [107,108]. The study of VOCs as air 

pollutants is important due to their role in ozone depletion, ozone formation, toxic and 

carcinogenic human health effects, and enhancement of the global greenhouse effect [103]. 

Outdoor VOC concentrations are influenced by season, nearness to emission sources (industry, 

traffic, gas stations) and meteorological conditions such as temperature [104]. 

Chronic health effects associated with VOC exposure can be non-carcinogenic or 

carcinogenic. Non-carcinogenic effects include irritation, sensory effects, headache, eye 

irritation, skin irritation and airway irritation, damage to the liver, kidneys and central nervous 

system, asthma and respiratory effects [111–114]. While the carcinogenic effects of VOCs are 

lung, blood, liver, kidney and biliary tract cancers [112–114]. Also, exposure to VOCs may 

result in negative impacts on reproductive systems or birth defects [115]. Elevated VOC 

concentrations have been observed at high traffic intensity streets compared to low traffic 

intensity streets [107,116,117]. A study conducted in Kanawha County, West Virginia revealed 

that exposure to VOCs was associated with increased rates of chronic respiratory symptoms 

[118]. VOC exposure has been linked with cancers of the brain, nervous system, skin, 

melanoma, endocrine system and thyroid cancers in Indiana [119]. 

Evidence has demonstrated that TRAP could lead to the development of asthma and other 

childhood respiratory diseases [165]. In California, nonwhite children were three or four times 

more likely to reside in highly-trafficked areas than White children; and children in low income 

communities had an increased risk to potential exposures from vehicle emissions [152]. A study 

revealed that children younger than 5 years of age who were admitted with asthma diagnosis 

were more likely to live in high traffic flow which was less than 500m from a main road 

[166,167]. TRAP may lead to decreased lung function, particularly among girls that lived less 



 

 

 

61 

 

 

than 300 m to the motorways [168]. Latinos, Blacks and low-income individuals in Tampa, 

Florida were observed to reside in close proximity to Toxic Release Inventory (TRI) facilities, 

and Whites resided closer to air monitors [169]. Also, it was revealed that African-Americans in 

West Virginia, Louisiana and Maryland resided in closer proximity to TRI facilities compared to 

Whites [148]. A study conducted in the US observed that nonwhites were exposed to higher 

outdoor NO2 concentrations compared to Whites, and low income populations were 

disproportionately exposed to higher outdoor NO2 concentrations than high income populations 

[171].  

Economically disadvantaged individuals often reside in air pollution hot spots, and could 

suffer increased health risks associated with ambient air pollution than the general populace 

[107]. EJ groups focus on outdoor air pollution by participating in civic activities and local-level 

organizing which may result in pushing for stronger air quality regulations and controlling 

hazardous plant emissions [172]. This has resulted in the development of partnerships between 

scientists and community leaders with a rising demand for participatory and comprehensive 

techniques to research to tackle the social and environmental determinants of health and diseases 

which are observed in health disparities [146,173]. Current studies leverage on citizen science 

(CS) and community-based participatory research (CBPR) as important and integral tools. CS is 

a process whereby citizens are involved in science as researchers in the observation, collection 

and record of data in organized research; which could be community-driven or global 

investigations [189–191]. CBPR is an approach where scientists and local community work 

together in developing and implementing research concerns of community members [192]. 

Students or interns are usually incorporated in the execution of these projects. Kinney et al 

utilized interns during their study on PM concentrations and diesel exhaust particles in Harlem, 
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New York [185,193]. In San Francisco, students were affiliated with Literacy for Environmental 

Justice (LEJ) to determine the disparity in healthy food access [193]. Students were involved in 

Halifax County for the Concerned Citizens of Tillery (CCT) during its grass root mobilization to 

introduce an intensive livestock ordinance [194]. In Mission Hill, Boston, students were trained 

on air pollution monitoring, project protocols and general issues in scientific inquiry to 

participate in the air quality characterization of the community [195]. 

CS and CBPR in air monitoring has helped overburdened communities collect data to 

advance an EJ agenda and address environmental health disparities. The US Environmental 

Protection Agency (USEPA) developed a citizen science toolbox which provided Ironbound, 

New Jersey, with the tools needed to support a community-based air monitoring program [198]. 

A study conducted in Wyoming, Arkansas, Pennsylvania, Colorado and Ohio, within 

communities near oil and gas production revealed that  there were high levels of  volatile organic 

compounds near  oil and gas production sites [251]. In California, a study on exposures of 

Vietnamese women working in nail salons showed that there were high observed levels of 

toluene, methyl methacrylate and total volatile organic compounds [252]. A study performed in 

Boston, Massachusetts, which conducted air quality survey of nail salons, demonstrated that 

there were higher total VOCs in salons with less ventilation and higher levels were observed 

when tasks were being performed [253].   

Residents of Bladensburg, who are predominantly African-American and/or Hispanic, are 

faced with environmental hazards because Bladensburg is an industrial corridor; with a school 

bus depot, a trash company, Ernest Maier concrete block plant, other industrial facilities and a 

high volume of industrial and commuter traffic. Many residents in the Port Towns of 

Bladensburg, Cottage City, Colmar Manor and Edmonston are in opposition to the special 



 

 

 

63 

 

 

exception permit which was granted to Ernest Maier Inc. to construct a concrete batching plant 

on its property [227]. Residents have partnered with PTEA to address the health concerns and 

exposures associated with industrial and commuter traffic near a concrete block plant. The study 

is aimed at providing data on temporal and spatial variations in human exposure to VOCs due to 

commuter traffic, industrial traffic and industrial activities near the concrete block plant. Also, 

the study will assess the variation in human exposure at different receptor sites and locations 

during different times of the day in Bladensburg, Maryland. 

 

 

METHODS 

Community Background and Site Selection 

Bladensburg has a total area of 1.01 square miles with 1.00 square miles as land and 0.01 

square miles as water. It shares borders with Edmonston on the north, Hyattsville on the 

northwest, Cottage City and Colmar Manor on the southwest, and Cheverly on the southeast. Air 

pollution from the location of the concrete block plant is of utmost importance because the plant 

is open for six days a week excluding Sunday. There is a bus depot, a trash company, a concrete 

block plant and high volume of industrial and commuter traffic in Bladensburg. 
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Figure 4.1. Map showing the five personal monitoring locations at Bladensburg and the 

concrete block plant (EJScreen) 
  

We selected five locations for the study of VOCs which were Kingdom Missionary Baptist 

Church (site 1), Bladensburg Waterfront Park (site 2), Bladensburg Elementary school (site 3), 

Hillcrest Village Apartments (site 4) and Confluence area (King Pawn Auto Shop – site 5). 

These locations were chosen due to concerns about high traffic and the concrete block plant, as 

well as, proximity to receptor sites [185] 

The concrete block plant is on a property, which belongs to Ernest Maier, Inc. and is 

close to some historic sites in Bladensburg – Peace Cross, Battle of Bladensburg Memorial, 

Anacostia River and Bladensburg Waterfront Park [227]. The plant is located at 4700 Annapolis 

Rd, Bladensburg, MD 20710. The selection of the monitoring locations was driven by concerns 

about high traffic and location of the concrete block plant for monitoring of VOC emissions. 

Personal monitoring locations were chosen based on close proximity to the plant and are within 
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1609 meters from the plant; which are important human receptor sites among children, adults 

and the elderly (offices, residential, school and recreational complexes)  [185]. Near roadway air 

quality monitoring was utilized because it will provide a measure of the exposure of individuals 

who live and work along these traffic routes [17].  

 

Environmental Assessment  

 Air quality monitoring and traffic counts were conducted by interns from the University 

of Maryland. Each location was staffed by two persons who wore Atmotube sensors and 

conducted traffic counts. Also, the researcher was present during all sampling periods; however, 

most of the work was carried out by the interns. The interns were trained in the operation, use 

and placement of the Atmotube sensors. The trained interns were responsible for the sampling 

operations at each site which was overseen by the researchers. 

Air sensors used were low-cost, easy-to-use, portable air pollution sensors which provide 

high-time resolution data in near real time [197]. The Atmotube is a wearable, portable device 

which measures the presence of total VOCs in the real-time via Air Quality Score Android app. 

Measured data are sent via Bluetooth low energy (LE) protocol to your mobile phone. The 

device has an LED color which represents the Air Quality Score and alerts you whenever the air 

is unsafe. Also, measurements are uploaded to a secure cloud and is aggregated on the air quality 

map. Atmotube sensors were worn around the neck in the breathing zone at the personal 

monitoring locations. 

At the personal monitoring location, VOC monitoring occurred from Sunday to Saturday 

during traffic peak and off-peak periods in a thirty-minute time frame. Traffic peak times were 

7:00am to 9:00am and 4:00pm to 6:00pm, while off peak time was between 11:00am to 1:00pm. 
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Monitoring was conducted from 8:30am to 9:15am, 11:00am to 12:15pm and 4:00pm to 5:15pm. 

Air quality monitoring was conducted from March to May 2018 because it was Spring, so that 

residents and interns were not exposed to the adverse effects of the cold weather while 

monitoring. Monitoring on Saturdays will aid in ensuring consistency in data collection and 

coincides with when the facility operates (i.e., Monday through Saturday) and captures time 

periods when there is less commuter traffic compared to Monday-Friday when there is more 

commuter traffic.  

 

Traffic Counts 

Traffic counts were performed at each monitoring site while the team assessed personal 

exposure to VOCs. This involved counting the number of motor vehicles, including cars, buses, 

vans, trucks that drive past during the sampling period. Heavy duty trucks included trucks larger 

than pick-up trucks including buses, while vans and sport utility vehicles were counted as cars. 

Traffic counts were done manually and data was entered into the data sheets. Counts were  

conducted in 5 minutes intervals during each thirty minute sampling period or window [185]. 

The counts were summed to provide daily counts, averaged/day, averaged per each site, and 

average across each week, and averaged across the entire sampling period.  

 

Statistical Analysis 

Descriptive statistics (e.g., mean, median, standard deviation, minimum and maximum) 

were tabulated and plotted for the six locations at different times of the day to assess the spatial 

and temporal variation in VOCs. Pearson correlation was used to evaluate the associations and 

significance between VOCs at different locations and time; and between VOC concentrations 
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and traffic counts. This helped to determine the level of association between the VOCs recorded 

at different locations during on-peak and off-peak periods. The data collected was analyzed using 

SAS Enterprise Version for Windows 9.3 at a significance level of 0.05 and lower (P ≤ 0.05).  

 

RESULTS 

 The 2010 Census as shown in Table 4.1, revealed that there are 9,148 people in 

Bladensburg of which 53.06% of them are female, while 46.94% are male [239]. African-

Americans constitute 65.58% and Hispanics are 26.92% of the population. 73.08% of the 

population are 18 years and over, while 26.83% are under 18 years of age. Also, Table 4.1 

displays the educational attainment of Bladensburg; 28.48% of residents aged 18 to 24 years 

have less than high school education. 31.83% of residents aged 24 years and over have less than 

a high school degree. The median household income in Bladensburg is $34,966 as shown in 

Table 4.1. The percentage of families in Bladensburg within the poverty level is 11.7%, while 

the percentage of people within the poverty level is 12.1% (Table 4.1). 

Table 4.1. Sociodemographic Composition of  Bladensburg [239] 

Population Number % 

Total Population 9,148 100 

Population by Sex     

Male 4,294 46.94 

Female 4,854 53.06 

Population by Age     

Under 18 2,454 26.83 

18 & over 6,694 73.17 

Population by Ethnicity     

Hispanic or Latino 2,463 26.92 

Non-Hispanic or Latino 6,685 73.08 

Population by Race     
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White 1,149 12.56 

African-American 5,999 65.58 

Asian 187 2.04 

American Indian and Alaska 
Native 

50 0.55 

Native Hawaiian and Pacific 
Islander 

2 0.02 

Other 1,515 16.56 

Identified by two or more 246 2.69 

Educational Attainment      

Population 18 to 24 years 748   

Less than high school graduate 213          28.48 

Population 25 years and over 4,781   

Less than high school graduate             1,522          31.83 

Income in 1999      

Median household income 
(dollars) 

34,966   

Poverty levels in 2010     

All families   11.7 

  with related children under 5 
years 

  23.5 

All people   12.1 

  related children under 5 years   21.6 

 

Thirty minutes’ traffic counts for cars and trucks at the four locations for the different 

time shifts are summarized in Table 4.3. The average cars and truck vehicle counts varied at the 

different locations on different days and at different times. The confluence area had the highest 

average of car counts at different days and monitoring periods. Also, Kingdom Missionary 

Baptist Church and Hillcrest Apartments consistently had low average cars and truck counts; 

while the average cars and truck counts at the Waterfront Park varied and may be attributed to 

activities at the park. 
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Table 4.2 Mean and Standard Deviation of 30-minutes Traffic Counts at Five Sites in 

Bladensburg 

 
*No truck data observed 
 

Forest plots were used to summarize the descriptive statistics obtained from VOC 

monitoring at the different locations, monitoring shifts and days. The use of forest plots or meta-

analytic pooling aids researchers to display their findings in a graphically appealing way but in a 

statistically correct way [240]. A forest plot is a powerful tool that illustrates heterogeneity 

which are the differences in results; while displaying the pooled result which is the overall 

combined result from the various measurements [254]. The monitoring shifts conducted on the 

first Wednesday at the Kingdom Missionary Baptist Church and the Waterfront Park were 

graphically represented in a forest plot as shown in Figure 4.2. We observed that the minimum, 
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mean and maximum values were different for both locations during all the shifts. Figure 4.3 

represents a forest plot of the minimum, mean and maximum values obtained from monitoring at 

the Kingdom Missionary Baptist Church and Hillcrest Apartments. It was observed that all the 

values of VOC concentrations were different across the sites and monitoring periods. The 

descriptive statistics of VOC levels obtained at the Kingdom Missionary Baptist Church and 

Bladensburg Elementary School were graphically illustrated as shown in Figure 4.4. The 

findings revealed that the minimum, mean and maximum values are different across the sites 

irrespective of the monitoring shift. A forest plot of the minimum, mean and maximum values 

gotten from monitoring VOC concentrations on Wednesday at the Kingdom Missionary Baptist 

Church and confluence area is displayed in Figure 4.5. The plot revealed that the values were 

different at both locations, however, the values for each location were similar. 

 A comparison of the minimum, mean and maximum values obtained for VOC 

concentrations at the Kingdom Missionary Baptist Church and the confluence area on the second 

Wednesday were presented in a forest plot as shown in Figure 4.6.  The forest plot revealed that 

all the values differed across the sites during different monitoring shifts. The forest plot in Figure 

4.7 demonstrated that the minimum, mean and maximum values were different at the Kingdom 

Missionary Baptist Church and the Waterfront Park across the monitoring periods. The 

minimum, mean and maximum values obtained at the Kingdom Missionary Baptist Church and 

Bladensburg Elementary School illustrated that the values differ at both sites across the 

monitoring shifts. The forest plot in Figure 4.9 demonstrated that the minimum, mean and 

maximum values obtained at the Kingdom Missionary Baptist Church and Hillcrest Apartments 

were different during the monitoring shifts at both locations. 
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 We compared the minimum, mean and maximum values for VOC concentrations at the 

Kingdom Missionary Baptist Church on both Wednesdays (Figure 4.10, Appendix A). The plot 

showed that the values were different on both days at the Church. A comparison of the 

minimum, mean and maximum VOC values obtained on both Wednesdays at the Waterfront 

Park (Figure 4.11, Appendix A) showed that the values differed on both days at the park. The 

forest plot of minimum, mean and maximum VOC values at Bladensburg Elementary School 

recorded on both Wednesdays (Figure 4.12, Appendix A) demonstrated that the values differ on 

both days at the school which was irrespective of monitoring period. Figure 4.13 (Appendix A) 

represents the forest plot of minimum, mean and maximum values of VOC levels on both 

Wednesdays at Hillcrest Apartments which showed that the values were different on both days at 

Hillcrest Apartment which differed at the monitoring shifts. The forest plot of minimum, mean 

and maximum values of VOC concentrations obtained for both Wednesdays at the confluence 

area (Figure 4.14) showed that the values were different on both days, but the values for the first 

Wednesday were similar. 

 Trend graphs were created for observed VOC levels at different locations during different 

dates and monitoring periods. Figures 4.15 and 4.16 (Appendix A) display the trend of VOC 

concentrations observed on Saturday afternoon (0609) at the Waterfront Park and Confluence 

area. It was observed that at the Confluence area the readings were below 0.13ppm, while at the 

Waterfront Park, the concentrations were below 0.25ppm. The trend graph of VOC levels 

observed on Wednesday evening (0613) at the Bladensburg Elementary School and the Kingdom 

Missionary Baptist Church are shown in Figures 4.15 and 4.16 (Appendix A). It demonstrates 

that the VOC levels at the Church were within 0.25 – 0.45ppm, while at the school the VOC 

levels were within 0.2 – 0.35ppm. 
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 We conducted Pearson’s correlation to ascertain the associations between the VOC 

concentrations obtained at various monitoring locations on Wednesday (0606). Table 4.4 

displays the results obtained in which most of the results had a weak correlation and were not 

statistically significant. The findings revealed that as the VOC concentrations increased at the 

Kingdom Missionary Baptist Church, VOC levels decreased at Hillcrest Apartments during the 

evening shift and 89.17% of the variability in concentrations were explained by the relationship. 

Also, as VOC concentrations increased at Bladensburg Elementary School, there was observed 

increase at the Hillcrest Apartments; which the 67.85% and 61.17% of the variability in the data 

obtained during the morning and afternoon shifts were explained by the relationship. It was 

observed that as the VOC levels increased at Bladensburg Elementary School during the 

morning shift, the readings at the confluence area increased; and 50.44% of the variability in 

VOC levels were explained by the relationship. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

73 

 

 

 

 

Table 4.3. Correlation Between Sites at Different Times of the day on Wednesday (0606) 

    

Wed 0606 

Morning 

Wed 0606 

Afternoon 

Wed 0606 

Evening 

Site Site r R r 

Church Waterfront Park 0.69545 -0.19958   

Church  Elementary School 0.94911* 0.58211 0.45551 

Church 

Hillcrest 

Apartments 
-0.17859 -0.101 -0.89172* 

Church Confluence Area 0.54481 -0.12603   

Waterfront Park Elementary School 0.17951 -0.05199 -0.08816 

Waterfront Park 

Hillcrest 

Apartments 
0.01286 0.09 0.04854 

Waterfront Park Confluence Area 0.01423 -0.0353 0.31382 

Elementary School Waterfront Park 0.17951 -0.05199 -0.08816 

Elementary School 

Hillcrest 

Apartments 
0.67853** 0.61172* 0.03106 

Elementary School Confluence Area 0.50444* -0.13142 0.26628 

Hillcrest 

Apartments Waterfront Park 
0.01286 0.09 0.04854 

Hillcrest 

Apartments Elementary School 
0.67853** 0.61172* 0.03106 

Hillcrest 

Apartments Confluence Area 
0.20643 0.06702 0.39088* 

Confluence Area Waterfront Park 0.01423 -0.0353 0.31382 

Confluence Area Elementary School 0.50444* -0.13142 0.26628 

Confluence Area 

Hillcrest 

Apartments 
0.20643 0.06702 0.39088* 

** - p-value <0.0001 * - p-value <0.05 

 Pearson’s correlation was conducted to determine the associations between the VOC 

concentrations recorded at different locations on Wednesday (0613) during the various 

monitoring time periods (Table 4.5). The results revealed that as the VOC levels increased at the 

Kingdom Missionary Baptist Church, there was an observed decrease at the Waterfront park 

during the afternoon shift and 62.27% of the variability in data could be explained. Also, there 
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were observed increases in the VOC levels at the Kingdom Missionary Baptist Church and 

Hillcrest Apartments of which 88.22% and 65.91% of the variability in the data obtained during 

the morning and afternoon shifts can be explained. The VOC concentrations at the Kingdom 

Missionary Baptist Church and the confluence area were increased during the afternoon shift and 

60.52% of the variability in VOC levels could be explained. The findings demonstrated that as 

the VOC levels at the Waterfront Park increased, there was a decrease in the levels obtained at 

the confluence area, 51.54% of the variability in the data obtained during the afternoon shift 

could be explained. An increase in the VOC concentrations observed at Bladensburg Elementary 

School was associated with an increase in VOC levels at the confluence area of which 64.26% of 

the variability in the data could be explained.   

 

Table 4.4. Correlation Between Sites at Different Times of the day on Wednesday (0613) 

    
Wed 0613 

Morning 

Wed 0613 

Afternoon 

Wed 0613 

Evening 

Site Site r R r 

Church Waterfront Park 0.23653 -0.62267* -0.11342 

Church  Elementary School 0.45077 -0.0539 -0.03113 

Church 

Hillcrest 

Apartments 
0.88215* 0.65907* 0.23734 

Church Confluence Area 0.15495 0.60517* 0.00238 

Waterfront Park Elementary School -0.1148 0.28424 0.03057 

Waterfront Park 

Hillcrest 

Apartments 
-0.30291 -0.38314* 0.10667 

Waterfront Park Confluence Area 0.08932 -0.51538* 0.05315 

Elementary School Waterfront Park -0.1148 0.28424 0.03057 

Elementary School 

Hillcrest 

Apartments 
0.19293 -0.35597 0.39684 

Elementary School Confluence Area -0.39671 -0.21992 0.64256* 

Hillcrest 

Apartments Waterfront Park 
-0.30291 -0.38314* 0.10667 

Hillcrest 

Apartments Elementary School 
0.19293 -0.35597 0.39684 
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Hillcrest 

Apartments Confluence Area 
-0.31129 0.20813 0.3433 

Confluence Area Waterfront Park 0.08932 -0.51538* 0.05315 

Confluence Area Elementary School -0.39671 -0.21992 0.64256* 

Confluence Area 

Hillcrest 

Apartments 
-0.31129 0.20813 0.3433 

** - p-value <0.0001 * - p-value <0.05 

 

 

DISCUSSION 

Monitoring occurred at a small number of sites and days, the findings reveal that VOC 

concentrations are higher in locations close to traffic and the concrete block plant. The mean 

VOC concentrations observed ranged from 0.11ppm to 0.68ppm and the highest values were 

obtained at the Kingdom Missionary Baptist Church. A study conducted to determine traffic 

related differences in VOC concentrations, showed that VOC levels were 100% higher at homes 

located within high traffic intensity roadways [255]. This was consistent with our findings which 

revealed high mean values at the confluence area and Bladensburg Elementary School which 

were high traffic roadways. Our study revealed that there could be an association of the VOC 

levels obtained at different sites at different times of the day, such as between the elementary 

school and Hillcrest Apartments, the church and the elementary school; and the elementary 

school and the confluence area, which are high traffic intensity areas. Therefore, we observed 

some spatial and temporal variations in VOC levels due to traffic and industrial activity at the 

plant as key emission sources.  Mobile sources are important contributors to outdoor VOC 

concentrations [103]. VOC levels are usually high around areas with industrial facilities and 

heavy traffic; which decreases with increasing distance from emission sources [256]. These 
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results emphasize the concerns raised by the residents about the effects of air pollutants from 

traffic and the concrete block plant in Bladensburg.  

Many residents in the Port Towns of Bladensburg, Cottage City, Colmar Manor and 

Edmonston are in opposition to the special exception permit which was granted to Ernest Maier 

Inc. to construct a concrete batching plant on its property [227]. Residents are organizing and 

working with Port Towns Environmental Action (PTEA) to ensure that the expansion does not 

happen [225,227,228]. They are concerned about the proximity of the plant to historic sites, 

storm water runoff, air and noise pollution, traffic congestion, the mixture of air pollutants 

emitted by the concrete block plant and traffic or mobile sources (cars, trucks and buses) and 

public health and safety in their community [227]. An EcoDistrict has been created in the 

community which will aid environmentally-focused tourism and economic development, and the 

proposed expansion By Ernest Maier may hinder these activities [228].  

Evidence has shown that people of color and economically disadvantaged individuals 

have increased residential exposure to traffic and traffic-related air pollution (TRAP); and are 

more likely to live in highly trafficked areas which may result in an increased risk of adverse 

health outcomes, such as cancer [110,117,151–153,156,159–162]. Asian Pacific Islanders, 

African Americans and Asians were observed to have higher pollution exposures and were twice 

as likely to live in the most polluted counties than Whites [157]. Elementary schools within 

economically disadvantaged communities were found to be exposed to very high traffic in 

California [158]. Hispanics, especially Cubans and Colombians have increased cancer risk from 

vehicular air pollution in Miami, Florida [156]. Higher incidence of asthma among low-income 

individuals has been linked with higher traffic exposure and susceptibility factor such as health 

status and access to healthcare [162]. People of color in Southern California may be 
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disproportionately exposed to TRAP [163]. A study conducted in Hunts Point, New York 

revealed that increased concentrations of elemental carbon were found at intersections and varied 

due to large truck traffic [164]. In Wilmington and western Long Beach, adjacent to the Ports of 

Los Angeles and Long Beach, California; the volumes of heavy-duty diesel trucks were as high 

as 400 to 600 trucks per hour for several hours around sensitive land use areas, such as, schools, 

parks and residences [163].  

There are some limitations of the study, which include the focus on VOC exposure only 

and did not include personal exposure or an assessment of potential adverse health effects among 

the residents in Bladensburg. Also, the study did not address the cumulative VOC exposures 

from the various industrial facilities and indoor exposures within the community. Our study did 

not incorporate a health impact assessment of VOC exposure from traffic and near the concrete 

block plant. The topography and weather conditions (such as wind speed and direction) in 

Bladensburg were not considered in the study because we did not utilize geographic information 

systems (GIS) modeling and spatiotemporal mapping. 

The Atmotube sensors have not been tested with any other sensors associated with VOC 

measurements; therefore, we may not have information about its accuracy and the impact of 

extreme weather conditions on the sensors. During air monitoring, we observed that the sensor 

often disconnected from the mobile device, which may impact the data collected. Also, the data 

was not easily accessible after each session because they had to be downloaded from the mobile 

device that was used.  The short sampling period (March to May) was not adequate to collect 

data to display seasonal variations in VOC concentrations. The study was conducted in the 

spring season and there could be the possibility that the exact magnitude of differences found 

between high and low traffic intensity roadways may be different if the VOC concentrations 
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during other seasons were measured. Also, there is limited literature on outdoor VOC levels, 

whereas literature is focused on indoor VOC concentrations [82,112,257–259]. 

 Future research should develop a unique study design at the Kingdom Missionary Baptist 

Church which is the closest site to the concrete block plant; to capture the truck traffic around the 

plant. This is due to the high VOC concentrations and low truck traffic observed at the location. 

It will be beneficial to utilize fixed monitors and electronic traffic counters because we believe 

that a majority of the truck traffic at the concrete block plant occurred during the early part of the 

day. Also, monitoring should be conducted year-round at more locations to reflect seasonal 

variations in VOC concentrations. GIS modeling should be incorporated into the study design to 

take into consideration topography and weather patterns on different monitoring days. The 

present study focused on community level exposures which does not represent individual 

exposure to VOC; therefore, future study should consider individual-level exposure. Our future 

study will provide a baseline exposure assessment and epidemiological study to examine changes 

in individual health outcomes associated with VOC exposure such as asthma among residents of 

Bladensburg, Maryland. 

 

CONCLUSION 

 Spatial and temporal variation in VOC concentrations were observed at some of the 

monitoring sites, such as the Kingdom Missionary Baptist Church, Confluence area and 

Bladensburg Elementary School; which were attributed to high traffic intensity and industrial 

activities at the concrete block plant. We observed an irregular trend  and variations in the 

observed VOC measurements in areas close to high traffic roads such as the Waterfront Park and 

Hillcrest Apartments, which may underestimate residential exposure and the potential health 
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risks linked with VOC exposure for residents. Also, we would recommend that measurements 

and monitoring should be conducted throughout the year.  And it may be beneficial to increase 

the number of monitoring locations around the plant; which may provide information on which 

locations are directly impacted by industrial activities at the concrete block plant. The use of 

meteorological data in our future work will explain the effects of wind pattern, temperature, 

humidity and rainfall on the dispersion and distribution of  VOC concentrations within the 

community. It would be important to identify and differentiate the different truck traffic when 

conducting traffic counts in future studies because this information may provide information on 

the exposure levels associated with the different types of truck traffic.  
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CHAPTER 5 

Synopsis, Strengths, Limitations, and Public Health Implications  

This chapter presents an overview of our findings, strengths and limitations of our study. 

The previous chapters assessed the literature and provided a framework for the development of 

our study and laid credence to the specific aims of our study. We conclude with public health 

implications that provide a basis for future research studies on air quality assessment of 

residential exposure to particulate matter and volatile organic compounds.  

 

5.1 Specific Aim #1: To determine human exposure to PM and VOCs in Bladensburg, 

Maryland.  Hypothesis 1: Areas close to the concrete block plant will have higher exposure 

levels of PM and VOCs than areas farther away from the plant. 

 The findings from our study revealed that the Kingdom Missionary Baptist Church, 

which was the closest monitoring location to the concrete block plant, had the highest mean 

values for PM2.5 and VOC concentrations. This may be attributed to industrial traffic and 

industrial activities at the concrete block plant. Also, we observed high mean PM2.5 and VOC 

concentrations at the confluence area and Bladensburg Elementary School, which may be 

associated with high commuter and industrial traffic. The Waterfront Park and Hillcrest 

Apartments which were further away from the concrete block plant, had smaller mean PM and 

VOC values compared to other locations. Our results indicate that there was weak correlation in 

the observed PM2.5 concentrations between the different sites on different monitoring days.  The 

results obtained from Pearson’s correlation revealed that there was an observed association of the 

PM2.5 measurements at the Kingdom Missionary Baptist Church during all the monitoring shifts. 

Also, the correlation analysis conducted demonstrated that there was an observed association in 
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the VOC measurements obtained at the Kingdom Missionary Baptist Church, Bladensburg 

Elementary School and confluence area. Furthermore, the results of the one-way ANOVA 

analysis revealed that the monitoring site had an impact on the observed PM2.5 measurements, 

that is, PM2.5 measurements were changing in various ways based on the monitoring locations. 

 

5.2 Specific Aim #2: To assess variation in human exposure to PM and VOCs at different 

locations during different times of the day in Bladensburg, Maryland.   

Hypothesis 2: Individuals walking on highly trafficked roads will have higher exposure levels of 

PM and VOCs during on-peak periods than individuals walking on low trafficked roads during 

on-peak hours. 

 Our results revealed that Bladensburg Elementary School and the confluence area were 

highly trafficked roads. The highest mean traffic count of 136.5 cars was observed at 

Bladensburg Elementary School, while the confluence area had 247.5 cars within a thirty-minute 

monitoring period. The highest average PM2.5 concentration observed at Bladensburg 

Elementary School was 18.18 µg/m3, while 17.69 µg/m3 was recorded at the confluence area. 

The results from our correlation analysis revealed that there was an inverse relationship of both 

sites. As the PM2.5 levels at the confluence area increases, we would observe a decrease in PM2.5 

concentrations at Bladensburg Elementary School, and vice versa. The findings from one-way 

ANOVA to determine the impact of site, time or monitoring period and day on PM2.5 

measurements demonstrated that there are changes in PM2.5 measurements at the various sites, 

and the changes could occur in various ways. 

 Also, the highest average value for total VOC concentration recorded at Bladensburg 

Elementary School was 0.37ppm, and 0.68ppm at the confluence area. Pearson’s correlation 
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analysis showed that there was an inverse relationship or association of both sites. The highest 

mean traffic count truck value was 26.7 trucks at Bladensburg Elementary School and 16.24 

trucks at the confluence area. 

 

5.3 Strengths 

The AirBeam sensors have been tested to demonstrate a linear relationship with Thermo 

Scientific pDR 1500 (reference monitor) for concentrations less than 100µg/m3 [260]. Therefore, 

the AirBeam was an effective sensor in the measurements of PM2.5 concentrations at the various 

locations. Several studies have looked at PM2.5 exposure within communities of color with high 

traffic or industrial activities, however, our study provided baseline data in Bladensburg for 

PM2.5 and VOC concentrations from commuter traffic, industrial traffic and industrial activities 

near a concrete block plant [164,185–187]. This information will be useful in assisting decision 

makers and residents on how to improve the quality of life of residents. 

An important strength is the partnership with the residents, Port Towns Environmental 

Action (PTEA) and UMD-College Park. This partnership utilizes CBPR which promotes 

collaborative research between academic partners and the community, while fostering trust, 

community empowerment and building local capacity [189,193,201,261]. Residents were trained 

on the use of the air sensors which improved their knowledge on air pollution and air quality. We 

also chose different monitoring locations which were within a 2 km radius of the concrete block 

plant to monitor the residential exposure to PM2.5 and VOC levels.  Also, the locations reflected 

different environmental settings of traffic, residential and recreational uses within the 

community. These locations were categorized as high and low trafficked roads; and traffic counts 

were conducted at these locations to assist. By comparing these locations, it provided a better 
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understanding of PM2.5 and VOC concentrations from traffic and industrial activities; and the 

variations in PM2.5 and VOC levels. Also, we conducted air quality monitoring during traffic on-

peak and off-peak periods to capture PM2.5 and VOC concentrations caused by the volume of 

traffic at the monitoring locations.  

 

5.4 Limitations 

There were some limitations inherent in our study. An important limitation could be that 

the AirBeam sensors exhibits a non-linear relationship for concentrations higher than 100µg/m3 

during the testing of the sensors [260]. Particle coincidence may have occurred when using the 

AirBeam sensors, which could result in undercounting when multiple particles are coincident in 

the sensing zone [260]. Also, the AirBeam sensors were observed to be very sensitive to harsh 

sunlight during the monitoring period which was carried out during the spring. We did not adjust 

for accuracy of the AirBeam sensors by calibrating and adjusting the slope and offset against a 

co-located reference/equivalent station. The Atmotube has not undergone testing and comparison 

with a reference sensor. The Atmotube website did not collate and store data on the cloud, but 

stored them on the smart devices used. This made data collection difficult because the data had 

to be collected from each device at the end of each monitoring session.  

The short duration of our study restricts our ability to make claims about long-term 

relationship among VOC and PM2.5 measurements, traffic and industrial activities associated 

with the cement block plant. Our spring-only data may distort associations, if the patterns are 

significantly different based on season. Our study did not compare the data collected with any 

federal reference method, which is considered the best characterization of concentration of any 

given pollutant and are supported by a comprehensive quality assurance program. Residents may 
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be mobile throughout the day and may be exposed to various air pollutants in different indoor 

and outdoor environments; therefore, our study does not estimate personal exposure to air 

pollutants. Also, the study did not address the cumulative PM2.5 and VOC exposures from the 

various industrial facilities in the community. Our study did not incorporate a health impact 

assessment of PM2.5 and VOC exposure from traffic and industrial activities associated with the 

concrete block plant. Although, our study showed spatial variations in PM2.5 exposures within 

Bladensburg; however, it did not include or indicate if the variations in PM2.5 exposures was 

associated with variations in the rates of PM-related health outcomes such as respiratory illness, 

cardiovascular illness and premature mortality. 

Although we partnered with the residents to design the study and trained them on the use 

of the sensors, they were not involved in the data collection phase of the study due to availability 

and logistic challenges. Our study did not consider the effect of meteorological data on PM2.5 and 

VOC measurements at the monitoring locations and did not use GIS mapping in conducting the 

study.  Also, we did not conduct biomarker analysis or study individual VOCs. Our study 

examined only two pollutants. It would be helpful to investigate other traffic-related air 

pollutants such as NO, CO, and black carbon. Also, we were not able to conduct fixed air quality 

monitoring by installing the Purple Air sensors which would have measured PM10, PM2.5, and 

PM1 due to accessibility to the monitoring locations and logistic challenges. Although, we had 

five monitoring locations, it would have been beneficial to have more locations which would 

have covered 360o around the concrete block plant and provided information about the locations 

highly impacted by traffic and industrial activities of the concrete block plant. 
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5.5 Public Health Implications 

 One public health implication of this study is that decision makers and stakeholders at the 

federal, state and county levels should engage and interact with residents or communities, 

especially economically disadvantaged communities of color before granting permits for 

industrial activities, siting and zoning of industries; and other land use decisions within 

communities. Our study revealed that Bladensburg is overburdened by PM2.5 and VOC 

exposures associated with traffic and industrial activities linked with the concrete block plant. 

Ernest Maier has been in operation since 1926 and as such the facility is grandfathered with no 

site assessment or air quality assessment around the facility. Also, during the monitoring periods 

at the Kingdom Missionary Baptist Church, we observed that the workers did not use any 

personal protective equipment. Therefore, residents, business owners and industrial facilities 

should be educated, encouraged  and work together to form community-based organizations. 

These organizations could conduct air quality assessment and work together with state and 

federal environmental agencies to improve and promote quality of life among residents and staff. 

This would lead to a reduction in illnesses associated with air pollution, such as asthma, 

respiratory and cardiovascular illnesses; thus, result in less sick leave and reduction in hospital 

visits and bills of staff and residents. Also, the results of this study can be used to allocate and 

prioritize resources to alleviate and remediate the effects of traffic and industrial activities in the 

community.  

Also, we anticipate that federal, state and county officials could use the information from 

the study in regulatory decision-making process to develop preventive strategies and identify and 

implement appropriate and adequate regulations and standards. This study may strengthen 

partnerships among community institutions open to learning about air quality data, such as 
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schools. It is anticipated that air quality monitoring would be included in middle and high school 

curriculum. It would encourage the use of data by community residents to improve their decision 

making to reduce the adverse effects of exposure to air pollutants. This would strengthen the 

community’s competency in shaping local policies for transportation, development and 

construction projects affecting air pollution. Furthermore, the results could be used to inform 

future epidemiological studies that evaluate PM2.5 and VOC exposures in neighborhoods near 

industrial settings. 

Future studies will increase the scope of air quality monitoring around  the concrete block 

plant by increasing the number of monitoring locations around the facility. Also, utilizing fixed 

and personal monitoring and a collocated federal reference monitor would provide insight into 

community and personal exposures. We will integrate meteorological data in our future work to 

identify the locations impacted by industrial activities at the plant. This will provide information 

on the wind patterns at different times of the day and during different seasons; and the impact of 

temperature, rainfall and humidity on the dispersion of these air pollutants. Future work will 

utilize GIS to produce distinct environmental layers which can be linked spatially and temporally 

and would assist with mapping spatio-temporal exposure distribution.  Personal monitoring of 

residents and biomarkers may provide individual exposure information which could assist in 

identifying specific sources of interest (e.g. commuter traffic, industrial traffic and industrial 

activities).  
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APPENDIX A 

FOREST PLOTS AND TREND GRAPHS  

 

Figure 3.2. Forest Plot for Thursday and Saturday Shifts at the Church 
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Figure 3.3. Forest Plot for Thursday and Saturday Shifts at the Waterfront Park 
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Figure 3.4. Forest Plot for Thursday and Saturday Shifts at the Elementary School 

 

Figure 3.5. Forest Plot for Thursday and Saturday Shifts at Hillcrest Apartments 
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Figure 3.6. Forest Plot for Thursday and Saturday Shifts at the Confluence Area 

 

Figure 3.7. Forest Plot for Thursday Morning Shifts at the Five Sites 
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Figure 3.8. Forest Plot for Saturday Morning Shifts at the Five Sites 

 

Figure 3.9. Forest Plot for Weekday Morning Shifts at the Church 
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Figure 3.10. Trend at the Church During the Morning Shift on Saturday 0616 (aircasting.org)  

Figure 3.11. Trend at the Church During the Afternoon Shift on Saturday 0616 

(aircasting.org)  
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Figure 3.12. Trend at the Church During the Evening Shift on Saturday 0616 

(aircasting.org)  

 

 

Figure 3.13 Trend Graph for Saturday Afternoon (0609) at the Kingdom Missionary 

Baptist Church (PM2.5 Concentration) 
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Figure 3.14. Trend Graph for Saturday Afternoon (0609) at the Confluence Area (PM2.5 

Concentration)  

 

Figure 3.15. Trend Graph for Wednesday Morning (0613) at the Kingdom Missionary 

Baptist Church (PM2.5 Concentration)  
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Figure 3.16. Trend Graph for Wednesday Morning (0616) at Waterfront Park (PM2.5 

Concentration)  

 

Figure 4.2. Forest Plot for Wednesday Shifts at the Church and Park 
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Figure 4.3. Forest Plot for Wednesday Shifts at the Church and Hillcrest Apartments 

 

Figure 4.4. Forest Plot for Wednesday Shifts at the Church and Elementary School 
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Figure 4.5. Forest Plot for Wednesday Shifts at the Church and Confluence Area 

 

Figure 4.6. Forest Plot for Wednesday Shifts at the Church and Confluence Area 
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Figure 4.7. Forest Plot for Wednesday Shifts at the Church and Waterfront Park 

 

Figure 4.8. Forest Plot for Wednesday Shifts at the Church and Elementary School 
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Figure 4.9. Forest Plot for Wednesday Shifts at the Church and Hillcrest Apartments 

 

Figure 4.10. Forest Plot for Wednesday Shifts at the Church  
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Figure 4.11. Forest Plot for Wednesday Shifts at the Park  

 

Figure 4.12. Forest Plot for Wednesday Shifts at the Elementary School 
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Figure 4.13. Forest Plot for Wednesday Shifts at the Hillcrest Apartments 

 

Figure 4.14. Forest Plot for Wednesday Shifts at the Confluence Area 
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Figure 4.15. Trend Graph for Saturday Afternoon (0609) at Waterfront Park (VOC)  
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Figure 4.16. Trend Graph for Saturday Afternoon (0609) at Confluence Area (VOC) 

 

Figure 4.17. Trend Graph for Wednesday Evening (0613) at Bladensburg Elementary 

School (VOC) 

 

Figure 4.18. Trend Graph for Wednesday Evening (0613) at Kingdom Missionary Baptist 

Church (VOC)   
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1. Introduction 

1.1 History of Bladensburg 

Bladensburg is a town founded 1742 as a regional commercial center in Prince George’s 

County, Maryland, United States. Previously known as Garrison’s Landing, it was renamed 

Bladensburg in recognition of Thomas Bladen (governor of Maryland, 1742-1747). Bladensburg 

was created by an act of the Maryland General Assembly. The creation of a government tobacco 

inspection system led to Bladensburg as a tobacco inspection and grading port. It is an important 

crossroads of routes north to Baltimore and Philadelphia, south and east to Annapolis and Upper 

Marlboro, and west to the District of Columbia. 

 

Figure 1. Map of Bladensburg, Maryland (Google maps) 
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Bladensburg is a town with several historic sites, which are Spa Springs, Bladensburg 

Dueling Grounds of Dueling Creek, Bostwick, George Washington House, Hilltop Manor, 

Market Master’s House and William Hilleary House or Hilleary Magruder House. It has a total 

area of 1.01 square miles with 1.00 square miles as land and 0.01 square miles as water. It shares 

borders with Edmonston on the north, Hyattsville on the northwest, Cottage City and Colmar 

Manor on the southwest, and Cheverly on the southeast. 

 Approximately 9,148 people, 3,542 households and 1,960 families in Bladensburg (2010 

Census). Also, there are 12.6% White, 65.6% African American, 0.5% Native American, 2.0% 

Asian, 16.6% from other races and 2.7% from two or more races [239]. However, Hispanic or 

Latino were 26.9% of the population. These statistics reveal that residents of Bladensburg are 

predominantly of African Americans and/or Hispanic heritage. Air pollution from the location of 

the concrete block plant is of utmost importance because the plant is open for six days a week 

excluding Sunday. 

1.2 Description of The Concrete Block Plant 

The concrete block plant is on a property, which belongs to Ernest Maier, Inc. and is 

close to some historic sites in Bladensburg – Peace Cross, Battle of Bladensburg Memorial, 

Anacostia River and Bladensburg Waterfront Park [227]. The plant is located at 4700 Annapolis 

Rd, Bladensburg, MD 20710 
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Figure 2. Ernest Maier Inc., concrete block plant, Bladensburg (Google maps) 

2. Mapping Your Data 

2.1 Recruitment 

Weekly meetings will be held with the residents of Bladensburg in February 2018. 

Volunteers will be recruited and identified in the meetings and feedback will be gotten from 

residents on the monitoring locations.   

2.2 Training 

All volunteers in the study will be trained on the handling of AirBeams and atmotubes 

and conducting traffic counts at each of the monitoring locations. Training will include use of 

data sheets and sampling procedures. This will ensure community participation and lead to the 

community’s capacity to conduct scientific research.  Volunteers will be given access to the data 

sheets and schedules during meetings. There will be a practical training session on set up and 

handling of Airbeams and Atmotubes, as well as, traffic counting. The training will include the 

importance of starting all monitoring sessions at a uniform time, adhering to the schedule, taking 
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notes about equipment issues and observations about monitoring location (construction) which 

could affect data collection. 

PERSONAL MONITORING 

AirBeams and Atmotubes will be deployed site by side throughout the project. Sensors 

will be worn by volunteers in their breathing zone. 

 

Figure 1. Residents using AirBeams 

 

3. MEASURING PARTICULATE MATTER (PM) WITH AIRBEAMS 

3.1 AIRBEAMS 

AirBeams are wearable air monitor that maps, graphs, and crowdsources air pollution 

exposures in real-time via the AirCasting android app. Also, it measures fine particulate matter, 

PM2.5 by utilizing a light scattering method which is registered by a detector and converted into 

measurements that estimate the number of particle in the air. The measurements are sent through 

Bluetooth to the app on the android device which creates maps and graphs in real time on the 
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device. At the end of the session, it is sent to the AirCasting website where the data is 

crowdsourced to generate heat maps indicating where PM2.5 concentrations are highest and 

lowest. 

3.2 WHY DO WE MEASURE PM? 

PM has been associated with various adverse health outcomes, such as, asthma, 

respiratory illnesses, lung cancer, cardiovascular diseases, premature mortality, low birth weight, 

blood pressure and stroke. It is produced via industrial processes (concrete block plant) and road 

transport (diesel truck and commuter traffic). 

3.3 HOW TO USE AIRBEAMS 

3.31 CONNECTING THE AIRBEAM TO THE AIRCASTING APP 

a. Download the AirCasting app on your android device. 

b. Turn on the AirBeam, the LED indicator will start blinking. 

c. On your android device, turn on your Bluetooth and press the menu button, then press settings. 

d. Press external devices, then select the AirBeam from the list of paired devices. Select yes 

when prompted to connect. You will be redirected to the sensors dashboard. 

e. Measurements from the AirBeam will be displayed on the screen in 5 to 20 seconds and the 

blinking red light on the AirBeam will become solid red. This means that you are connected. 

3.32 AT THE MONITORING LOCATION TO BEGIN AIRCASTING 

a. At the monitoring location, turn on the AirBeam and connect it to the AirCasting app via 

Bluetooth. 

b. Your GPS should be turned on so that you can see your location on the map. 
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c. Wear the Airbeam around your neck placing it in your chest area which is your breathing 

zone. 

d. Verify your location and press the start recording button to commence a new AirCasting 

session. 

e. The Airbeam and the android device should be within 10 feet.  

f. Walk around the location and record the observed data on the AirBeam data collection sheet 

(Appendix A). 

g. At the end of the monitoring session, press the stop recording button. Then press save session 

to save the data using this format: Site number/ shift number/ date/ UMD. Site number and shift 

number can be found on Appendix D, Table 4. 

h. Turn off AirBeams and recharge them for the next shift. 

3.33 VIEWING AIRCASTING DATA 

 The AirCasting app allows you to view your data in three ways: 

a. Sensors dashboard which is the default view. You can tap the sensor tiles once to hide/show 

the peak and average values for your session. Also, you can tap the tiles twice to pause the 

stream. If you will want to map or graph a sensor stream, long press the tile, then drag it and 

place it on the map or graph areas at the top of the screen. You can rearrange the sensor tiles by 

long press, drag and drop method. 
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Figure 3. Sensors dashboard for AirCasting app 

b. The map displays your current location by a colored dot with a white outline. The color of the 

dot shows the intensity of a reading, which is explained by the heat legend found at the top of the 

screen. You can view AirCasting data from all contributors by pressing the CrowdMap button. 

The color of each square reflects the average intensity of all recordings in that area. 
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Figure 4. Map display by AirCasting app 
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Figure 5. CrowdMap button display for AirCasting app 

c. Graph shows your readings over time. You can zoom in and out for details and swipe to pan 

through the data. 

 

Figure 6. Graph display of AirCasting app 
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Figure 7. Schematics of AirBeam 

 

4 MEASURING VOLATILE ORGANIC COMPOUNDS (VOCs) WITH ATMOTUBES 

4.1 ATMOTUBES 

Atmotube is a wearable, portable device which measures the presence of VOCs in the 

real-time via Air Quality Score android app. Measured data are sent via Bluetooth low energy 

(LE) protocol to your mobile phone. The device has an LED color which represents the Air 

Quality Score and alerts you whenever the air is unsafe. Also, measurements are uploaded to a 

secure cloud and is aggregated on the air quality map.  

4.2 WHY DO WE MEASURE VOCs 

 Exposure to VOCs has been associated with irritation, sensory effects, headache, 

eye irritation, skin irritation and airway irritation, damage to the liver, kidneys and central 

nervous system, asthma and respiratory effects. Also, it may lead to lung, blood, liver, kidney 

and biliary tract cancers, and negative impacts on reproductive systems or birth defect. 



 

 

 

115 

 

 

 

4.3 HOW TO USE ATMOTUBES 

a. Download the Atmotube app on your android and iOS device. 

b. At the monitoring location, turn on the Atmotube and connect it to the Atmotube app via 

Bluetooth. 

c. Wear the Atmotube around your neck placing it in your chest area which is your breathing 

zone. 

d. Walk around the location and record the observed data on the Atmotube data collection sheet 

(Appendix B, Table 2). 

e. At the end of the monitoring session, save the data using this format: Site number/ shift 

number/ date/ UMD. Site number and shift number can be found on Appendix D, Table 4. 

f. Turn off Atmotubes and recharge them for the next shift. 
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Figure 8. Schematics of Atmotube 
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Figure 9. App for Atmotube 

 

5. TAKING PM AND VOC MEASUREMENTS 

PM and VOC measurement needs to be done precisely and air monitoring should begin at 

the same time at all locations to ensure consistency. 

a. Arrive at least 10 minutes before sampling time to set up the sensors. 

b. A maximum sample time of 30 minutes is recommended. 
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c. Make notes of your observations of the surroundings such as, nearby parks, buildings, stores 

and so on. 

 

Figure 10. Kingdom Missionary Baptist Church (Google map) 
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Figure 11. Bladensburg Waterfront Park (Google map) 

 

Figure 12. Bladensburg Elementary School (Google map) 
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Figure 13. Hillcrest Village Apartments (Google Map) 

 

Figure 14. Confluence Area (King Pawn Auto Shop) (Google map) 
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Figure 15. Residential area at 4213 Edmonston Rd, Bladensburg, MD 20710 (Google map) 

 

6. TRAFFIC COUNT 

Traffic count will be done at the monitoring locations while PM and VOC monitoring is 

going on. This will involve counting the number of motor vehicles, including cars, buses, vans, 

trucks and so on that drive past during the sampling period. Heavy duty trucks will comprise of 

trucks larger than pick-up trucks, while vans and sport utility vehicles were counted as cars. 

Traffic count data sheets (Appendix C, Table 3) will be utilized. 

FIXED MONITORING 

7. MEASURING PARTICULATE MATTER (PM) WITH PURPLE AIR 

7.1 PURPLEAIR 

Purple Air sensors are fixed sensors which utilize laser beams to detect PM (PM1, PM2.5 

and PM10) particles by their reflectivity and calculate their weights from the counts. The 

performance of the Purple Air sensors were tested against University of Utah’s sensors during an 
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inversion, it was observed that readings from the Purple Air were correlated but slightly lower 

than the readings from the University of Utah’s sensors. The sensors are placed in locations 

which portray the air we breathe such as neighborhoods, side of houses and a few feet above our 

heads. The data obtained is saved on the cloud. 

7.2 HOW TO USE THE PURPLE AIR 

1. Configure and set up PurpleAir on www.purpleair.com and install device at the fixed 

monitoring locations (APPENDIX E, Table 5).  

2. Mount sensors in a shady spot out of direct sun, away from vents and other sources of 

pollution. 

3. Mount power supply and connect to a power outlet. Connect Purple Air to power supply and 

turn it on. The sensor will monitor for 24 hours every day. 

 

Figure 16. Purple Air sensor 



 

 

 

123 

 

 

 

Configure WIFI 

1. Connect your phone, tablet, or computer to a Wi-Fi network called “AirMonitor_xxxx”. The 

“xxxx” is specific to your sensor. 

 

2. Connect to sensor 
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3. Select your home Wi-Fi network 
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4. Type in your home Wi-Fi password 
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5. Click save. 
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6. A confirmation screen will appear on the web page with your sensor’s information. 
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7. Finally connect the Purple Air sensor to the map. 
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Figure 17. Port Towns Community Development Corporation (Google map) 

 

Figure 18. Community Forklift Nonprofit Reuse Warehouse 
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Figure 19. Bladensburg Public Library (Google map) 

8. Air Quality 

8.1 Air Quality Index 

Air quality describes the amount of pollution present in the air. EPA has developed the Air 

Quality Index (AQI) that acts as a guide for citizens, in which pollutant concentrations and health 

concerns have been provided for common pollutants [262]. The sensors will detect pollutant 

concentrations in µg/m3 and represent them in colors explained by the AQI. A detection limit is 

the lowest concentration of a pollutant in the environment that a sensor or other instrument can 

routinely detect. The expected range for ambient VOCs concentrations in the United States is 5-

100µg/m3, while for PM concentrations it is 0-100µg/m3 for 24 hours [262]. AQI translates 
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pollution into the potential for adverse effects in individuals and is used to report daily air 

quality. AQI is calculated from air pollution data which is averaged over 1, 8 or 24 hours based 

on the pollutant. This is due to the different effects of various pollutants on the human body. 

 

Figure 20. The Air Quality Index levels of health concern, numerical values and meanings 

[262] 

8.2 Interpreting the AQI 

The time period over which the pollutant is measured is an important factor for interpreting the 

AQI.   For instance, the daily (24 hour) PM2.5 standard is 35 ug/m
3

. This standard is based on 

the average of hourly monitoring measurements over a 24-hour period. A single PM2.5 

measurement taken over a few minutes, or even hours, above 35 ug/m
3 

should not be viewed as 
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poor air quality. By using the AQI calculator on the EPA website, you can learn that a 24-hour 

average measurement of PM2.5 of 35 ug/m
3 

is “yellow,” or moderate air quality, and a 24-hour 

average measurement of 50 ug/m
3 

is “orange,” or unhealthy for sensitive groups. The 

concentration entered in the calculator should be an average value over a longer time period, 

(such as, over 24 hours) not just a single reading taken over the span of a few minutes or hours.  

9 Quality Control 

9.1 Calibration 

Sensors have been calibrated by the manufacturers, however, checks will be conducted on the 

sensors before each monitoring session to ensure the collection of accurate data. Also, sensors 

will be examined twice a week to ensure that there are no physical damage on them. 

9.2 Data Review 

Data obtained from each monitoring session will be valid and acceptable for use, if the sessions 

took place at during the initial monitoring period and last for 30 minutes as outlined in the 

monitoring protocol. After each session, each sensor’s data will be downloaded, converted to a 

Microsoft Excel file and reviewed. Data will be reviewed for consistency across sensors and 

presence of outliers. Also, after review and utilizing the time stamp across the sensors, the 

individual files will be combined into a single spreadsheet. This is important because it will aid 

to identify potential problems or reveal problems with any of the sensors. 
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APPENDIX C 

TABLE 1. AIRBEAM DATA COLLECTION SHEET 

Date 
 

Location 
 

Airbeam 
# 

 

Shift …A            Start time..                                End time  
Tim
e 0 

1mi
n 

5mi
n 

10mi
n 

15mi
n 

20mi
n 

25mi
n 

30mi
n 

Mi
n 

Ma
x 

Mea
n 

PM 
           

Humidit
y 

           

Temp 
           

Noise  
           

Shift …B            Start time..                                End time  
Tim
e 0 

1mi
n 

5mi
n 

10mi
n 

15mi
n 

20mi
n 

25mi
n 

30mi
n 

Mi
n 

Ma
x 

Mea
n 

PM 
           

Humidit
y 

           

Temp 
           

Noise  
           

Shift …C               Start time..                                End time  
Tim
e 0 

1mi
n 

5mi
n 

10mi
n 

15mi
n 

20mi
n 

25mi
n 

30mi
n 

Mi
n 

Ma
x 

Mea
n 

PM 
           

Humidit
y 

           

Temp 
           

Noise  
           

Shift …A                Start time..                                End time  
Tim
e 0 

1mi
n 

5mi
n 

10mi
n 

15mi
n 

20mi
n 

25mi
n 

30mi
n 

Mi
n 

Ma
x 

Mea
n 

PM 
           

Humidit
y 

           

Temp 
           

Noise  
           

Notes: ADD DESCRIPTION OF THE SITES AND OBSERVATIONS ABOUT SITE DURING 
MONITORING DURING SPECIFIC SHIFT 
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APPENDIX D 

TABLE 2. Atmotube data collection sheet 

Date 
 

Location 
 

Atmotub
e # 

 

Shift …A            Start time..                                End time  
Tim
e 0 

1mi
n 

5mi
n 

10mi
n 

15mi
n 

20mi
n 

25mi
n 

30mi
n 

Mi
n 

Ma
x 

Mea
n 

VOC 
           

Humidity 
           

Temp 
           

CO 
           

Shift …B             Start time..                                End time  
Tim
e 0 

1mi
n 

5mi
n 
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n 

15mi
n 

20mi
n 

25mi
n 

30mi
n 

Mi
n 

Ma
x 

Mea
n 

VOC 
           

Humidity 
           

Temp 
           

CO 
           

Shift …C            Start time..                                End time  
Tim
e 0 

1mi
n 

5mi
n 

10mi
n 

15mi
n 

20mi
n 

25mi
n 

30mi
n 

Mi
n 

Ma
x 

Mea
n 

VOC 
           

Humidity 
           

Temp 
           

CO 
           

Shift …A             Start time..                                End time  
Tim
e 0 

1mi
n 

5mi
n 

10mi
n 

15mi
n 

20mi
n 

25mi
n 

30mi
n 

Mi
n 

Ma
x 

Mea
n 

VOC 
           

Humidity 
           

Temp 
           

CO 
           

1. Notes: ADD DESCRIPTION OF THE SITES AND OBSERVATIONS ABOUT SITE 
DURING MONITORING DURING SPECIFIC SHIFT 
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APPENDIX E 

TABLE 3 TRAFFIC COUNT DATA SHEET 

Date       

Location       

Volunteer   Address Phone number 

       

Shift       

Direction      

5 minute Increment Count (Use hatch marks to record vehicles) 

Start End Cars Trucks 
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APPENDIX F 

TABLE 4 SCHEDULE OF SITE NUMBER AND SHIFT NUMBER FOR PERSONAL 

MONITORING 

Site   Site Description Shift Time Traffic 

Site 1 Kingdom Missionary Baptist Church  Shift 1a 0700 - 0900 Heavy traffic 

  4107 47th Street Bladensburg MD 20710  Shift 1b 1100 - 1300   

    Shift 1c 1600 - 1800   

Site 2 Bladensburg Waterfront Park  Shift 2a 0700 - 0900 Light traffic 

  
4601 Annapolis Road, Bladensburg MD 
20710  

Shift 2b 1100 - 1300   

    Shift 2c 1600 - 1800   

Site 3 Elementary school  Shift 3a 0700 - 0900 Heavy traffic 

  
4915 Annapolis road, Bladensburg MD 
20710  

Shift 3b 1100 - 1300   

    Shift 3c 1600 - 1800   

Site 4 Hillcrest Village Apartments   Shift 4a 0700 - 0900 Light traffic 

  4101 53rd Avenue, Bladensburg MD 20710 Shift 4b 1100 - 1300   

    Shift 4c 1600 - 1800   

Site 5 Confluence area  Shift 5a 0700 - 0900 Heavy traffic 

  
4504 Annapolis Rd, Bladensburg, MD 20710 
(King Pawn Auto Shop)  

Shift 5b 1100 - 1300 
  

    Shift 5c 1600 - 1800   

Site 6 Residential area  Shift 6a 0700 - 0900 Light traffic 

  
4213 Edmonston Rd, Bladensburg, MD 
20710  

Shift 6b 1100 - 1300 
  

    Shift 6c 1600 - 1800   
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APPENDIX G 

TABLE 5. SITE NUMBERS FOR FIXED LOCATIONS 

 

Site   Site Description 

Site 1 Kingdom Missionary Baptist Church  

  4107 47th Street Bladensburg MD 20710  

    

Site 2 Hillcrest Village Apartments   

  4101 53rd Avenue, Bladensburg MD 20710 

    

Site 3 Port Towns Community Development Corporation,  

  4930-A Annapolis Rd, Bladensburg, MD 20710  

    

Site 4 Community Forklift Nonprofit Reuse Warehouse,  

  4671 Tanglewood Dr, Hyattsville, MD 20781 

    

Site 5 Bladensburg Elementary school  

  4915 Annapolis road, Bladensburg MD 20710 

    

Site 6 Bladensburg Branch Library, PGCMLS  

  at 4820 Annapolis Rd, Bladensburg, MD  
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APPENDIX H 

DESCRIPTIVE STATISTICS FOR PM CONCENTRATIONS 
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APPENDIX I 

DESCRIPTIVE STATISTICS FOR VOC CONCENTRATIONS 
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APPENDIX J 

DESCRIPTIVE STATISTICS FOR TRAFFIC COUNTS 

 

Date Shift Vehicles Sites Mean SD 
Wednesday 
0606 Morning Cars Church 7.92 1.93 

   Trucks  1.25 0.75 

  Afternoon Cars  6 2.34 

   Trucks  3.33 2.02 

  Evening Cars  2.75 2.22 

   Trucks  0.17 0.58 

  Morning Cars Waterfront Park 122.2 131.82 

   Trucks  10.7 11.52 

  Afternoon Cars  162.2 26.71 

   Trucks  9.8 2.59 

  Evening Cars  169.33 46.42 

   Trucks  17.33 19.88 

  Morning Cars Elementary School 50.17 7.99 

   Trucks  17.5 5.01 

  Afternoon Cars  72 15.03 

   Trucks  16.5 3.02 

  Evening Cars  135 15.74 

   Trucks  26.17 3.43 

  Morning Cars 
Hillcrest 
Apartments 3.33 2.5 

   Trucks  1 1.55 

  Afternoon Cars  0.67 1.21 

   Trucks  0.17 0.41 

  Evening Cars  5.83 2.79 

   Trucks  1 1.1 

  Morning Cars Confluence 210.71 55.67 

   Trucks  11.58 3.32 

  Afternoon Cars  185.14 25.81 

   Trucks  12.86 3.18 

  Evening Cars  185.83 25.38 

   Trucks  9.83 4.88 

        

Thursday 0607 Morning Cars Church 6.58 1.56 

   Trucks  1.92 0.9 

  Afternoon Cars  9.33 3.11 
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   Trucks  2.25 1.14 

  Evening Cars  4.1 1.19 

   Trucks  1.5 0.58 

  Morning Cars Waterfront Park 2.17 1.47 

   Trucks  1.4 0.55 

  Afternoon Cars  2.31 0.57 

   Trucks  1   

  Evening Cars  2.2 1.1 

   Trucks     

  Morning Cars Elementary School 57.67 9.05 

   Trucks     

  Afternoon Cars  66.67 10.21 

   Trucks  22 8.07 

  Evening Cars  136.5 7.12 

   Trucks  25.83 4.02 

  Morning Cars 
Hillcrest 
Apartments 1.5 1 

   Trucks     

  Afternoon Cars  1   

   Trucks     

  Evening Cars  3.6 1.67 

   Trucks  1 0 

  Morning Cars Confluence 185.43 25.75 

   Trucks  16.29 2.69 

  Afternoon Cars  184.5 18.84 

   Trucks  14.17 2.99 

  Evening Cars  192 27.03 

   Trucks  6 1.73 

        

Saturday 0609 Morning Cars Church 11.25 3.62 

   Trucks  1.17 0.83 

  Afternoon Cars  6.33 3.45 

   Trucks  0.17 0.39 

  Evening Cars  2 1.41 

   Trucks     

  Morning Cars Waterfront Park 39.75 27.67 

   Trucks  9.63 3.81 

  Afternoon Cars  137.83 36.64 

   Trucks  4 1.26 

  Evening Cars  3 1.67 
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   Trucks     

  Morning Cars Elementary School 53.17 10.15 

   Trucks  16 2.82 

  Afternoon Cars  87.5 21.32 

   Trucks  13.17 2.93 

  Evening Cars  94.17 11.3 

   Trucks  14.83 3.13 

  Morning Cars 
Hillcrest 
Apartments 1.4 0.89 

   Trucks  1 1.55 

  Afternoon Cars  1.4 0.55 

   Trucks     

  Evening Cars  2.75 1.5 

   Trucks  2   

  Morning Cars Confluence 73 16.49 

   Trucks  9.17 3.92 

  Afternoon Cars  177.17 34.67 

   Trucks  4 3.22 

  Evening Cars  81 17.46 

   Trucks  3   

        
Wednesday 
0613 Morning Cars Church 9.75 3.7 

   Trucks  0.67 0.89 

  Afternoon Cars  6.83 3.51 

   Trucks  1.08 1.62 

  Evening Cars  1.92 1.73 

   Trucks  0.08 0.29 

  Morning Cars Waterfront Park 1.83 1.83 

   Trucks     

  Afternoon Cars  2.67 1.63 

   Trucks     

  Evening Cars  2.17 0.98 

   Trucks     

  Morning Cars Elementary School 56.17 3.82 

   Trucks  17.67 3.5 

  Afternoon Cars  51.67 5.64 

   Trucks  19.5 5.54 

  Evening Cars  119.67 10.58 

   Trucks  24.17 6.74 
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  Morning Cars 
Hillcrest 
Apartments 1.17 0.98 

   Trucks     

  Afternoon Cars  1.67 1.37 

   Trucks  1   

  Evening Cars  4.83 2.64 

   Trucks  2 1.73 

  Morning Cars Confluence 159.83 56.29 

   Trucks  13.83 3.06 

  Afternoon Cars  183.83 10.57 

   Trucks  12 1.1 

  Evening Cars  247.5 26.2 

   Trucks  5.33 1.37 

        

Thursday 0614 Morning Cars Church 9.33 3.08 

   Trucks  1.64 0.81 

  Afternoon Cars  9.58 2.02 

   Trucks  1.83 0.83 

  Evening Cars  3.25 2.22 

   Trucks     

  Morning Cars Waterfront Park 2.17 1.17 

   Trucks  1 0.71 

  Afternoon Cars  4.17 1.33 

   Trucks  1 0 

  Evening Cars  2.4 1.14 

   Trucks     

  Morning Cars Elementary School 52 14.18 

   Trucks  14.33 2.25 

  Afternoon Cars  60.83 10.87 

   Trucks  12 2.83 

  Evening Cars  124.5 17.51 

   Trucks  26.33 6.31 

  Morning Cars 
Hillcrest 
Apartments 3.2 1.3 

   Trucks  1.6 0.55 

  Afternoon Cars  2.5 1.22 

   Trucks  1   

  Evening Cars  5.5 4.14 

   Trucks  1.33 0.58 

  Morning Cars Confluence 90.17 11.32 
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   Trucks  13.83 3.13 

  Afternoon Cars  80.83 13.93 

   Trucks  15 2.9 

  Evening Cars  203.33 22.04 

   Trucks  6.83 3.31 

        

Saturday 0616 Morning Cars Church 13.75 4.27 

   Trucks  1.6 0.89 

  Afternoon Cars  9.83 4.17 

   Trucks  1.29 0.49 

  Evening Cars  1 0 

   Trucks  1   

  Morning Cars Waterfront Park 5.17 2.93 

   Trucks     

  Afternoon Cars  4.5 2.95 

   Trucks     

  Evening Cars  7 3.58 

   Trucks     

  Morning Cars Elementary School 52.33 7.61 

   Trucks  10.33 4.32 

  Afternoon Cars  76.33 19.54 

   Trucks  15.4 5.41 

  Evening Cars  119.33 17.57 

   Trucks  1.25 0.5 

  Morning Cars 
Hillcrest 
Apartments 3.8 0.84 

   Trucks  1   

  Afternoon Cars  3.2 2.28 

   Trucks  1.67 1.15 

  Evening Cars  4.6 3.58 

   Trucks  2 1.41 

  Morning Cars Confluence 165.83 47.05 

   Trucks  7 4.76 

  Afternoon Cars  228.17 21.71 

   Trucks  6.33 2.88 

  Evening Cars  209.33 36.81 

    Trucks   3 0.82 
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