
Adapting to Route-demand and Mobility (ARM)in Ad hoc Network Routing�Sungjoon Ahn and A. Udaya Shankar(sjahn@cs.umd.edu, shankar@cs.umd.edu)Computer Science DepartmentUniversity of MarylandCollege Park, MD 20742February 14, 2001AbstractWe present ARM (Adapting to Route-demand and Mobility), a con-trol mechanism that allows any proactive routing protocol to dynamicallyadapt in a totally distributed manner to changes in node mobility andworkload route-demands. Each node independently maintains a mobilitymetric indicating how fast its neighborhood is currently changing, and aroute-demand metric indicating which destinations are currently involvedin data forwarding. Control functions use these metrics to dynamically ad-just the period and the content of routing updates. We apply ARM to theDSDV protocol, coming up with ARM-DSDV. For various mobility andworkload scenarios, ARM-DSDV typically achieves the same data deliv-ery as DSDV with update period optimized for the scenario, while savingup to 60% in routing cost. Lower cost gives data tra�c more availablebandwidth.
�This work is supported partially by DARPA contract \Information Dynamics and Agent Infrastructure"to the University of Maryland, College Park. It should not be interpreted as representing the opinions orviews of DARPA or the U.S. Government. 1

1 IntroductionAd hoc networks, also called MANETs (Mobile Ad hoc NETworks), are wireless datanetworks that do not require any communication infrastructure, unlike cellular networksand access point based wireless LANs. Ad hoc networks are suited for combat situations,search and rescue operations, and instant conferencing in infrastructure-absent geographicareas.Ad hoc networks have characteristics that routing protocols for conventional networksneed not deal with, among them dynamic topology, low bandwidth, short host battery life,and unreliable links. New routing protocols are needed for ad hoc networks and a numberhave been proposed, for example [1, 2, 3, 4, 5]. These routing protocols are usually classi�edas proactive or reactive. Proactive routing protocols [1, 2] periodically exchange routingupdates to continuously maintain routes between all mobile host pairs, as in conventionalwire routing protocols. Reactive protocols [3, 4, 5] send routing updates only when the datatra�c demands routes and these updates are only for those routes.However, in general no single routing protocol performs well over a wide range of mobilityand route-demand patterns. In fact, few of the proposed routing algorithms adapt theirbehavior to mobility and route-demand patterns. Rather, most ad hoc routing protocolsare optimized for certain operating conditions.This paper presents ARM (Adapting to Route-demand and Mobility), a control mech-anism that allows any proactive routing protocol to adapt in a totally distributed mannerto changes in node mobility and changes in data tra�c demand for routes. Each nodeindependently maintains two metrics. One is mobility metric indicating how fast its neigh-borhood is currently changing, thereby re
ecting the current rate of mobility. The otheris route-demand metric indicating which destinations are currently involved in data for-warding, thereby re
ecting the current demand for routes. These metrics are used by twocontrol functions, called update-period control function and update-content control function,to dynamically adjust the period and the content of routing updates.The ARM approach can be readily applied to any proactive routing protocol. In thispaper, we apply it to DSDV (Destination Sequence Distance Vector) protocol [1], comingup with ARM-DSDV, and evaluate its performance relative to DSDV for several simplecontrol rules using simulations. The simulator has a physical layer modeled by transmissionrange and bandwidth, a link layer based upon IEEE 802.11 (including CSMA/CA andRTS/CTS), and a workload layer of end-to-end connections. The performance metricsare data delivery ratio (fraction of data packets delivered to destinations) and routingcost (number of routing update octets transmitted). For various mobility and workloadscenarios, ARM-DSDV typically achieves the same data delivery ratio as scenario-optimizedDSDV while saving up to 60% in routing cost. (Scenario-optimized DSDV is DSDV withits update period optimized for the particular mobility and workload scenario.) Naturally,ARM-DSDV achieves higher data delivery ratio than non-optimized DSDV.This paper is organized as follows. Section 2 addresses related work. Section 3 explainsthe ARM mechanism. Section 4 details the ARM-DSDV protocol. Sections 5, 6, and 7describe respectively the performance evaluation model, the performance metrics, and thesimulation results. Section 8 concludes. 1

2 Related WorkProactive routing protocols [1, 2] periodically exchange routing updates to continuouslymaintain routes between all mobile host pairs, as in conventional wire routing protocols.Their advantage is that a data packet can be sent out immediately without any routingdelay if a route exists. On the other hand, a proactive protocol wastes a large portion ofavailable bandwidth when most of the routes it maintains are not used. Some optimizationsare suggested to mitigate the routing overhead in [1]. One is incremental dump where eachnode advertises only the di�erence from the last update, reducing update message tra�c.Delayed update defers broadcasting route update messages in hopes of better routes arrivingshortly. Despite these optimizations, the routing update tra�c of proactive routing is ratherlarge. This is the main reason why proactive protocols perform ine�ciently in certainnetwork conditions [6], especially those characterized by skewed workload.Reactive protocols [3, 4, 5] aim to eliminate the excessive overhead of proactive protocolsby sending routing packets only when the data tra�c demands routes. One disadvantageis the unavoidable initial delay in forwarding the �rst packet of a connection. Also, eventhough the goal is to reduce routing tra�c, reactive protocols can su�er from high routingtra�c overhead because they
ood the network when discovering a new route [7]. The e�ectof
ooding can be disastrous when the network is large and demand for new routes is high.Modi�cations can be introduced to alleviate the cost of
ooding. For instance, geographiclocation of each node is exploited in LAR (Location Aided Routing) [8] to limit
oodingarea. However this assumes that all nodes are equipped with special devices like GPS.Another approach [9] makes use of prior routing histories to localize route request queries.Hybrid protocols try to combine the strengths of proactive and reactive protocols. ZRP(Zone Routing Protocol) [7] is a hierarchical routing protocol that combines proactive andreactive protocols. A network is divided into zones inside which routing is done proactively.Interzone routing is performed reactively and only among zone leaders, which are electednodes responsible for providing interzone routes to their zone members. By allowing proac-tive routing only within a zone, bandwidth is not wasted in advertising route entries ofother zones. Flooding is limited by their route query control schemes. The zone radius isa con�gurable parameter. With zone radius of one, ZRP becomes purely reactive. Within�nite zone radius, it becomes purely proactive. Through simulation the authors show thatthe optimal zone radius value depends on the call-to-mobility ratio (the ratio of number ofcalls or connections to node speeds). A high ratio (i.e., large number of connections or lowmobility) favors large radius or more proactivity, while a low ratio favors small radius ormore reactivity. ZRP assumes that the network condition (call-to-mobility ratio) is rela-tively static and known a priori for setting the optimal zone radius. Dynamically changingthe zone radius involves recon�guring zones and electing zone leaders, which can be prettyexpensive and may require data forwarding to be halted during the transition.In a survey paper of ad hoc routing protocols [10], the authors suggest switching betweendi�erent protocols according to current network conditions. But no detailed work has beenreported about intelligently switching between routing protocols based on dynamic networkconditions. The cost of switching would be high in general because it has to occur globallythroughout the network.To summarize, few routing protocols adjust their operational parameters dynamicallyduring their execution. ARM, proposed in this paper, allows any proactive routing protocolto adapt dynamically to changes in mobility and route-demand patterns. Furthermoreit is completely decentralized. Adaptations do not require network-wide synchronization.2

Each node adapts independently based on local observation and decision, spending a smallamount of additional overhead.3 ARM MechanismRecall that ARM has two controls. The update-period control maintains the mobility metricand dynamically adjusts the routing update period. The update-content control maintainsthe route-demand metric and dynamically adjusts the content of routing updates.ARM can be applied to any routing protocol in which each node periodically sendsrouting updates. Speci�cally, in each period a node sends an routing update message con-structed from its current routing information and builds new routing information basedupon routing update messages received. At the end of the period, the new routing infor-mation becomes the current routing information, and the cycle repeats. Data packets areforwarded based on the current routing information.Most proactive routing protocols behave this way. Also, these protocols broadcast rout-ing update messages and hence can lose them. ARM is robust to such loss.3.1 Update-period controlThe intuition behind update-period control is that a node should update more frequently inhigh mobility, so as to accurately re
ect the current network topology, and less frequentlyin low mobility, when frequent updates do not bring additional accuracy but consumebandwidth.A node measures mobility by measuring the rate of change in its neighborhood, i. e.,the set of nodes within radio range. The node maintains two neighbor tables: cur-rent neighbor table, based on updates received by the start of the current update period,and new neighbor table, based on updates received during the current update period. Bothtables have entries of the type fneighbor id, t expirationg. Member t expiration representsthe time when the next update from the neighbor is expected to arrive. An entry is regardedas expired if t expiration is less than current clock. This expiry time information is requiredbecause each nodes can have di�erent update periods and update information from a nodewith a longer period should survive longer than that from a node with a shorter period.To maintain these neighbor tables, routing update messages need to contain the sender'supdate period, in addition to the sender's id. Additional types of packets can be used tobuild the tables, depending on the particular underlying protocols, for example, senderinformation in hello messages and predecessor information in data packets.Figure 1 describes the processing involved in the update-period control. At the startof a new period, an \instantaneous" mobility metric is obtained by dividing the number ofnodes that became neighbors or stopped being neighbors by the previous update period.Smoothing the instantaneous metric over time interval TW SMOOTH yields the mobilitymetric. The update-period control function maps the mobility metric to the new updateperiod. The new neighbor table is merged into the current neighbor table and expiredentries are deleted.There are several points to note. In computing the mobility metric, an alternative tosmoothing is to use weighted time averaging, as in TCP's RTT estimation [11]. Regardingupdate-period control function, it turns out that even simple update-period control func-tions, such as shown in Figure 2, can outperform non-adaptive update periods. The expirytimes of entries in the neighbor tables is reasonably well-approximated by the sum of the3

At start of an update period:// Mobility metric computationRemove expired entries from new_neighbor_table ;Let nbd_change be the number of nodes e such thate is expired in current_neighbor_table and not in new_neighbor_tableor e is in new_neighbor_table and not in current_neighbor_table ;Let inst_nbd_rate_change be nbd_change divided by current update period ;Let mobility_metric be the inst_nbd_rate_change smoothed over TW_SMOOTH ;// New update period computationNew update period is update-period control function value at mobility_metric ;// Neighbor tables updateRemove expired entries from current_neighbor_table ;For each entry n in new_neighbor_tableif match m is found in current_neighbor_table thenassign n.t_expiration to m.t_expiration ;otherwise insert n into current_neighbor_table ;Empty new_neighbor_table ;At reception of routing update message:Let expiration_time be sender's update period plus clock plus slack ;If sender's id has match in new_neighbor_table thenupdate t_expiration in the table ;otherwise insert the sender's id and expiration time into the table ;Figure 1: ARM update-period control
New
Update
Period

Mobility Metricx

y

Piecewise Constant

Mobility Metric
x

y

New
Update
Period

Piecewise LinearFigure 2: Simple update-period control functionscurrent time and the sender's update period; some slack can be added for a more conser-vative estimate. When ARM is instantiated in a routing protocol, the routing table entriesare subject to the same expiry time constraints as neighbor table entries.The update-period control computation is completely local to the node. The overheadconsists of the extra �eld in routing update messages and the computation/storage of mo-bility metric, new update period, and neighbor tables.3.2 Update-content controlThe intuition behind update-content control is that a node does not have to send a piece ofrouting information in every routing update if that information is not being used by othernodes. In ARM, each node keeps track of which destinations it has forwarded packets torecently, speci�cally within a time window TW RECENT. When constructing a routingupdate message, routing information for other destinations is included only if it satis�es aupdate-content control function. 4

At forwarding of a data packet:// Route-demand metric computationIf the data packet's destination is in the route_demand_table thenupdate the entry's t_last_forwarded to clock value ;otherwise create an entry in the route_demand_table withpacket destination id and clock value ;At construction of a routing update message:For every entry in the routing table// Update-content control functionif there is a match m in route_demand_table with age less than TW_RECENTor if the entry passes the filter function ;then the entry is included in the message ;Figure 3: ARM update-content controlTo implement this, the node maintains a route demand table whose entries have theform fdestination id, t last forwardedg, indicating when the last forwarding occurred to thedestination. The recent route demands recorded in the table represent route-demand metric.Figure 3 describes the update-content control operation.The �lter function can be implemented in a several ways, for example, in every Kthrouting message, randomly with some probability, etc. We point out that even if the update-content control decides not to include any routing information, the node still transmits arouting update (depending on update-period control) in order to advertise its own presenceand help the update-period control of its neighbors.The above description of update-content control assumes an underlying routing protocolwhich uses destination information, such as distance vector. However update-content controlcan be applied to other types of proactive protocols. For example, in a link state protocolthe update-content control can decide whether or not to disseminate an outgoing link costchange based on how recently the link was used or whether the link is the current next hopto a \recently used" destination.As in update-period control, update-content control is carried out locally and introducesminimal overhead, namely the computation/storage for route demand table and the �lterfunction.In most proactive protocols, every available entry (in routing table or next hop table) isincluded when update messages are constructed. But not sending all the information eachtime would not seriously a�ect the operation of the network. Thus a network in which onlysome nodes have ARM would still work.4 DSDV and ARM-DSDV ProtocolDetails of DSDV is presented �rst. How ARM is applied to DSDV producing ARM-DSDVis presented next.4.1 DSDV protocolDSDV uses improved version of Bellman-Ford algorithm. One of its main advantages overtraditional distance vector protocol is the loop of freedom through the use of destinationsequence numbers [1]. Original DSDV uses both periodic and triggered updates. We onlyfocus on periodic updates in this paper. 5

CONSTANTS : UPDATE_PERIODVARIABLES : dest_seq_no, t_updatecurrent_routing_table, new_routing_tableeach routing table entry has members{ dest_id, next_hop_id, num_hops, dest_seq_no }Figure 4: Variables of DSDV protocolMESSAGE FIELDS : sender_id, sender_dest_seq_no, routing_update_vectoreach entry in the vector has members{ dest_id, num_hops, dest_seq_no }Figure 5: Routing update message of DSDV protocolIn DSDV, nodes maintain variables as shown in Figure 4. Constant UPDATE PERIODdenotes the globally �xed update period for all nodes. Variable dest seq no and t updatedenotes destination sequence number and start of the next update period of the node, respec-tively. Routing entries to all possible destinations are maintained in current routing table,for data packet forwarding. New routing table stores routing entries based on the informa-tion in routing update messages received in the current period. Entries in routing tableshave members denoting id of the destination, id of the next hop, number of hops to thedestination, and sequence number originating from the destination, in the order they appearin the �gure.As shown in Figure 5, a routing update message contains id of the sender, currentdestination sequence number of the sender, and the routing update vector whose entriesare copied from corresponding entries of the sender's current routing table. Table membernext hop id is not included in vector entries because sender id becomes next hop id for vectorentries in the message when they are stored in routing tables.EVENT : expiration of t_updatedest_seq_no ++update current_routing_table using new_routing_tableempty new_routing_tablebuild routing update message from current_routing_table and send itt_update += UPDATE_PERIODEVENT : reception of a routing update messagefor x ranging over sender and vector entriesif (new_routing_table has no entry for x)// if x is sender, x.dest_id is sender_id of the messagetheninsert x into new_routing_tableelse // let m be the matched entry in new_routing_tableif ((x.dest_seq_no > m.dest_seq_no) or((x.dest_seq_no == m.dest_seq_no) and(x.num_hops + 1 < m.num_hops))// if x is sender, x.dest_seq_no is sender_dest_seq_no of the message// if x is sender, x.num_hops is zerothenm.next_hop_id := sender_id of the messageupdate other members of m using members of xendfor Figure 6: Routing events of DSDV protocolA node handles two routing events, expiration of t update and reception of a rout-ing update message as shown in Figure 6. On expiration of t update, dest seq no of thenode is incremented to favor the to-be-broadcast routing update message of the currentperiod. Contents of new routing table is copied into current routing table for packet for-6

warding in the current period. A routing update message is constructed from entries incurrent routing table, and then broadcast to the neighbors. Finally, t update is increased byUPDATE PERIOD for the next update.On reception of a routing update message, if entry to the sender does not exist innew routing table, the node creates an entry to the sender and stores sender dest seq noalong with it. Otherwise, only the destination sequence number is updated. Then the nodeprocesses the vector entries. A vector entry is inserted into new routing table if there is noentry with the same dest id. Otherwise, entry with the same dest id is updated in the tableonly when the vector entry is favored, i.e., it either has the larger destination sequencenumber or has smaller number of hops if sequence numbers are identical. As sequencenumbers are monotonically increasing over time, this guarantees new routes are selectedover old routes.4.2 ARM-DSDV protocolFigure 7 shows variables used in ARM-DSDV. Now update period is varied to control updateperiods. Two neighbor tables are for update-period control and route demand table is forupdate-content control as described in section 3. Each entry in routing tables now has newmember t expiration to denote its expected expiration time.VARIABLES : dest_seq_no, t_updateupdate_period // new for ARM-DSDVcurrent_neighbor_table, new_neighbor_table // new for ARM-DSDVeach entry has members{ neighbor_id, t_expiration }current_routing_table, new_routing_tableeach entry has members{ dest_id, next_hop_id, num_hops, dest_seq_no, t_expiration }// t_expiration is new for ARM-DSDVroute_demand_table // new for ARM-DSDVeach entry has members{ dest_id, t_forwarded_last }Figure 7: Variables in ARM-DSDV protocolMESSAGE FIELDS : sender_id, sender_dest_seq_nosender_update_period // new for ARM-DSDVrouting_update_vectoreach entry in the vector has members{ dest_id, num_hops, dest_seq_no }Figure 8: Routing update message of ARM-DSDV protocolAs shown in Figure 8, the only additional �eld in ARM-DSDV's routing update messagesis the sender's update period that is used to calculate t expiration of table entries.On expiration of t update, additions to DSDV are computation of next update period andhow current neighbor table is updated as shown in Figure 9. Both issues were addressed pre-viously. Current routing table is updated using new routing table as follows. First, expiredentries in both tables are thrown away. Second, for each entry n in new routing table, insertn into current neighbor table if no match is found. Otherwise, favored route of the two is se-lected and updated in current neighbor table if necessary. Entries in current neighbor tableis used for forwarding in the current period regardless of their t expiration. Routes updatedby neighbors on shorter periods may be used beyond their t expiration. An alternative7

EVENT : expiration of t_updatedest_seq_no ++update_period := value computed as in Figure 1 (section 3.1)update current_routing_table using new_routing_tableupdate current_neighbor_table using new_neighbor_table as in Figure 1 (section 3.1)empty new_neighbor_table and new_routing_tablebuild routing update message from current_routing_table and send itt_update += update_periodEVENT : reception of a routing update messagetmp_t_expiration := clock + sender_update_period in the message + slackinsert sender's id into new_neighbor_table as in Figure 1 (section 3.1)for x ranging over sender and vector entriesif (new_routing_table has no entry for x)// if x is sender, x.dest_id is sender_id of the message// entry with same id but expired t_expiration// is thrown away and processed hereinsert x into new_routing_tableelse // let m be the matched entry in new_routing_tableif ((x.dest_seq_no > m.dest_seq_no) or((x.dest_seq_no == m.dest_seq_no) and(x.num_hops + 1 < m.num_hops))// if x is sender, x.dest_seq_no is sender_dest_seq_no of the message// if x is sender, x.num_hops is zerothenm.new next_hop_id := sender_id of the messageupdate other members in m using members in xendfor Figure 9: ARM-DSDV update-period controlwould be stop using those entries for forwarding. But there is a possibility that those en-tries are being updated in new routing table. Another alternative would be to keep a singlerouting table and update entries in place whenever routing update messages are received.This prevents expired entries from being used for forwarding, but then the semantics ofDSDV is somewhat compromised.On reception of a routing update message, local variable tmp t expiration is calcu-lated to be stored as t expiration in neighbor and routing tables. Entries are updatedin new neighbor table as explained in section 3.1. New routing table is updated like DSDVexcept that each expired entry in the table is thrown away and never considered as a match.EVENT : forwarding of a data packetif (dest_id of data packet exists in route_demand_table)thenupdate t_forwarded_last to clock valueelseinsert the dest_id with t_forwarded_lastEVENT : expiration of t_update// when building routing update messagesfor e ranging over current_routing_table entriesif ((e has match m in route_demand_table and less thanTW_RECENT passed since m.t_last_forwarded)or (filter function allows copy))thencopy e into the routing update messageendfor Figure 10: ARM-DSDV update-content controlFigure 10 illustrates update-content control of ARM-DSDV. For ARM-DSDV, destina-tions are recorded in route demand table to be compared with routing table entries whenconstructing routing update messages. Other than this, no additional processing speci�c toDSDV are required for update-content control.8

5 Performance Evaluation ModelTo compare the performance of DSDV and ARM-DSDV, we have a simulator (written inCSIM [12]) with the layered structure as shown in Figure 11. DSDV and ARM-DSDV sharethe common lower layers as well as the upper workload layer. The �gure also summarizesparameters of each layer.End-to-end workload :CONNECTION START TIME, CONNECTION DURATIONDPKT LENGTH, DPKT RATERouting layer :DSDV : UPDATE PERIODARM-DSDV : TW SMOOTH (for update-period control)TW RECENT (for update-content control)Link layer :RTS LEN, CTS LEN, ACK LENPKT HEADER, SLOT TIME, QUEUE LENPhysical layer :TX RANGE, BANDWIDTH, TA TIMEMobility Figure 11: Layer model and parameters5.1 MobilityThe mobility of a node is modeled as a series of pauses and motions. A pause is de�ned bya time duration during which the node does not move. A motion is de�ned by direction,speed, and time duration. A motion can be followed by a pause or another motion. Byjuxtaposing two motions, variable speed can be modeled.5.2 Physical layerThe physical layer is characterized by three parameters: TX RANGE, BANDWIDTH,TA TIME. Two nodes are able to transmit packets to each other only when they arein transmission range, speci�ed by parameter TX RANGE. The transmission time is deter-mined by dividing the packet length by BANDWIDTH. Parameter TA TIME speci�es thetime length required to turn the antenna from receiving mode to sending mode and viceversa.Transmission delay is treated as zero because of the relatively short transmission dis-tances. For a successful transmission of a packet from one node to another, the two nodesmust stay within transmission range during the entire packet transmission time, and thereceiver's antenna must be in receiving mode and should not receive (part or whole of)another packet during the same period of time.We do not see any substantial reason to sacri�ce simplicity and fast simulation bymodeling physical layer details like multi-path fading, attenuation of signal strength, and9

noise. Also the model does not depend on any particular spread spectrum implementation(FHSS, DSSS, etc).5.3 Link layerThe link layer model replicates IEEE 802.11 standard [13] MAC layer operations as de-scribed below.The MAC layer uses CSMA/CA (Carrier Sense Multiple Access with Collision Avoid-ance) to share the channel among all nodes. In CSMA/CA, a node starts a transmissiononly if the channel is free and this is determined by both physical and virtual carrier sensing.Physical carrier sensing is done by analyzing signal strength at the air interface. Virtualcarrier sensing is done by looking up the NAV (Network Allocation Vector), a data struc-ture indicating if the channel is currently free of ongoing RTS/CTS handshakes. If the node�nds the channel busy, the node performs binary back-o�, waiting for its back-o� counterto reach zero. The counter is initialized to a random integer that doubles on average atevery consecutive failed transmission attempt. The counter decrements when the channelappears free for a speci�ed period of time called slot time (typically set to 20 � seconds).The RTS/CTS handshake is as follows. A node with a data packet to send �rst broad-casts an RTS frame, advertising its intention to send a data frame. The intended destinationstation responds with CTS, advertising that it is ready to receive. The sender transmitsthe data packet. On valid reception, the destination sends back an ACK. On receiving oroverhearing a RTS, CTS or data frame, a node sets its NAV busy for the time durationinferred from data packet length in the frame header. Since RTS/CTS frames are muchshorter than data packets, recovery from a collision is much cheaper. RTS/CTS handshakesare not mandatory. They are not used for broadcast packets.In the model, fragmentation and reassembly are avoided by having packets be smallerthan fragmentation threshold. Every node has a send queue that holds both routing anddata packets. The maximum size of the queue is given by QUEUE LEN in number ofpackets. Routing packets have precedence over data packets. FIFO is used as the queuingdiscipline within data packets and LIFO is used within routing packets. When a routingpacket arrives from the upper layer to a full send queue, the data packet most recentlyenqueued is dropped; if the queue has only routing packets, the oldest routing packet getsdropped.PKT HEADER octets are added to upper layer packets in order to accommodate linklayer protocol header information. Parameter SLOT TIME speci�es the unit in which theback-o� counter decrements.Unlike the physical layer, it is important to have a detailed model of the link layer.Bandwidth consumption by link layer control frames and retransmissions have signi�cantimpact on instantaneous residual bandwidth for upper layers.5.4 Routing layerFor both DSDV and ARM-DSDV, all the operations described previously are modeled intothe simulator. We do not model the incremental dump and delayed update features of theoriginal DSDV. 10

5.5 End-to-end workloadThe end-to-end workload is modeled in terms of connections and packets. A connectionis de�ned by source node, destination node, start time (CONNECTION START TIME),duration (CONNECTION DURATION), data packet length (DPKT LENGTH), and datapacket rate (DPKT RATE). The packet interarrival time is constant.6 Performance MetricsA simulation scenario is characterized by mobility pattern, end-to-end workload, averagenode speed, simulation duration, and routing protocols|ARM-DSDV with speci�ed controlfunctions and DSDV with speci�c update period. For a simulation scenario, we have thefollowing performance metrics:� Delivery ratio: number of data packets that arrived at their destinations divided bythe number of data packets sent out from source nodes.� Routing cost: total number of octets in all the routing update messages sent.� Relative cost: routing cost of ARM-DSDV divided by routing cost of DSDV.
Delivery Ratio

ARM-DSDV

DSDV

Optimal
DSDV
Update
Frequency

DSDV Update Frequency

Routing Cost

DSDV Update Frequency

ARM-DSDV

DSDV

Optimal
DSDV
Update
Frequency

ARM savings
at optimal
DSDV Update FrequencyFigure 12: Generic resultFor a mobility pattern, workload, node speed, and simulation time, we expect ARM-DSDV and DSDV performance to be as illustrated in Figure 12. The solid lines connectsthe results for DSDV over di�erent update frequencies. The shaded line indicates the resultfor ARM-DSDV. The delivery ratio of DSDV increases rapidly as the update frequency ap-proaches the optimum. After that point, it either plateaus or decreases due to the contentionintroduced by excessively frequent updates. We expect the delivery ratio of ARM-DSDVto be similar to what DSDV achieves at optimal update frequency. The cost is comparedbetween the cost at an update frequency of DSDV and the cost of ARM-DSDV. The routingcost of DSDV grows with update frequency. We expect the routing cost of ARM-DSDV tobe much lower. Even if the routing cost is similar, ARM-DSDV still has an advantage overDSDV in that it does not require to manually con�gure optimal update frequency.11

7 Simulation ResultsWe present simulation results for two mobility patterns. Figure 13 lists common parametervalues for lower layers that we use for all our simulations.Physical layer :TX RANGE = 100 m, BANDWIDTH = 2 MbpsTA TIME = 10 � secLink layer :RTS LEN = 40 octets, CTS LEN = 40 octetsACK LEN = 34 octets, PKT HEADER = 58 octetsSLOT TIME = 20 � sec, QUEUE LEN = 100 packetsFigure 13: Common parameter values7.1 Mobility pattern 1Mobility pattern 1 models wireless nodes on vehicles crossing each other at a highwayinterchange as shown in Figure 14. There are four groups of vehicles in a 2km � 2kmgeographical area. Each group has two rows of �ve vehicles. The rows are separated by50m. Groups moving in opposite direction on adjacent lanes are separated by 20m. Allgroups have same group speed but individual vehicle speed varies within �20% of the groupspeed. Adjacent nodes in each group start with 50m separation but the separation variesdue to varying individual speeds. We have four di�erent group speeds of 5 m/sec, 8 m/sec,9 m/sec, and 10 m/sec (or 18 km/hr, 28.8km/hr, 32.4km/hr, and 36km/hr, respectively).
Step 1 - Start Step 2 - Engage

Step 3 - Disengage Communication - EnlargedFigure 14: Mobility pattern 1As the �gure shows, each group starts from the fringe and moves towards the middle.Connections are opened at about the time all nodes obtain paths to each other. Connectionsare closed before the vehicles pass by each other completely and all paths break down. The12

Routing layer :DSDV :UPDATE PERIOD = 2, 1, 0.5, 0.2, 0.1, 0.05, 0.02 secARM-DSDV :TW SMOOTH = 1 sec, TW RECENT = 3 secupdate-period control function = 8>>><>>>: 0:50 if mobility metric is 00:15 " " " is in (0,1]0:12 " " " is in (1,10]0:10 " " " is in (10,150]0:05 " " " is in (150,1)�lter function = skips one in every two advertisement opportunitiesEnd-to-end workload :CONNECTION START TIME = when nodes start to have paths to each otherCONNECTION DURATION = 5 secDPKT LENGTH = 100 octets, DPKT RATE = 1 packets/secValues of (node speed, simulation time, number of runs) :(speed = 5 m/s, 220 sec, 10 runs)(speed = 8 m/s, 170 sec, 10 runs)(speed = 9 m/s, 150 sec, 10 runs)(speed = 10 m/s, 130 sec, 10 runs)Figure 15: Scenario parameters of mobility pattern 1last picture of Figure 14 shows which vehicles become connected. Each row has exactly onenode that transmits packets, resulting in a total of eight connections in the network.Figure 15 gives scenario parameters. The simulation time depends on the speed ofvehicles; the slower the speed, the longer the simulation time in order for vehicles to completetheir trips. The update-period control function used in this paper is obtained empirically.It is subject of future research to develop a systematic way of constructing such functions.Figure 16 presents delivery ratios achieved by DSDV and ARM-DSDV. Curves for DSDVclearly show that it performs well only around optimal update frequency. ARM-DSDVachieves good delivery ratios, speci�cally 99.5%, 99.3%, 96.2%, and 97.8% for increasingspeeds. Best delivery ratios of DSDV are 100.0% at 10 updates/sec, 99.5% at 20 up-dates/sec, 97.9% at 20 updates/sec, and 99.5% at 20 updates/sec. Thus ARM-DSDV haspractically the same delivery ratios. Apparently, ARM-DSDV �nds appropriate values ofupdate frequency.Figure 17 illustrates the routing cost of both protocols. As expected, DSDV results inlinear increase in the routing cost regardless of vehicles speed. One might wonder why therouting cost decreases as vehicles travel faster. As the vehicles travel the same distance,more speed means less simulation time, and hence less occurrences of updates. In addition,more speed gives more distance between vehicles resulting in sparser topology because ofvariable individual speed. Thus each routing update message carries less number of vectorentries. These two factors o�set the more frequent updates in high mobility.The routing cost of ARM-DSDV is much less than that of DSDV at all speeds. Relativecost at optimal DSDV update frequency are 57.3%, 31.1%, 29.9%, and 30.0% for the di�erentspeeds. However, all the speeds do not show big di�erences between delivery ratios at theoptimal update frequency and the next optimal (but less frequent) update frequency forDSDV. For these update frequencies, DSDV delivery ratios are 98.3%, 98.8%, 94.4% and99.0% compared to 100.0%, 99.5%, 97.9%, and 99.5% obtained at optimal frequency. Thenew relative cost is 113.0%, 59.9%, 57.5% and 57.7%, respectively. Still, ARM-DSDV has13

Speed = 5 m/s

0.5

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50

DSDV Update Frequency (pkts/sec)

D
el

iv
er

y
R

at
io

DSDV ARM-DSDV

Optimal DSDV
Update Frequency

Speed = 8 m/s

0.5

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50

DSDV Update Frequency (pkts/sec)

D
el

iv
er

y
R

at
io

DSDV ARM-DSDV

Optimal DSDV
Update Frequency

Speed = 9 m/s

0.5

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50

DSDV Update Frequency (pkts/sec)

D
el

iv
er

y
R

at
io

DSDV ARM-DSDV

Optimal DSDV
Update
Frequency

Speed = 10 m/s

0.5

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50

DSDV Update Frequency (pkts/sec)

D
el

iv
er

y
R

at
io

DSDV ARM-DSDV

Optimal DSDV
Update FrequencyFigure 16: Delivery ratio of mobility pattern 1

Speed = 9 m/s

0

650000

1300000

1950000

2600000

3250000

3900000

4550000

0 10 20 30 40 50

DSDV Update Frequency (pkts/sec)

R
ou

tin
g

C
os

t (
oc

te
ts

) DSDV ARM-DSDV

Optimal DSDV
Update Frequency

Speed = 8 m/s

0

800000

1600000

2400000

3200000

4000000

4800000

0 10 20 30 40 50

DSDV Update Frequency (pkts/sec)

R
ou

tin
g

C
os

t (
oc

te
ts

) DSDV ARM-DSDV

Optimal DSDV
Update Frequency

Speed = 5 m/s

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

0 10 20 30 40 50

DSDV Update Frequency (pkts/sec)

R
ou

tin
g

C
os

t (
oc

te
ts

) DSDV ARM-DSDV

Optimal DSDV
Update Frequency

Speed = 10 m/s

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 10 20 30 40 50

DSDV Update Frequency (pkts/sec)

R
ou

tin
g

C
os

t (
oc

te
ts

) DSDV ARM-DSDV

Optimal DSDV
Update FrequencyFigure 17: Routing cost of mobility pattern 114

far less routing cost in three of the four speeds. It spends about 10% more than DSDVwhen the speed is 5 m/sec.7.2 Mobility pattern 2Mobility pattern 2 models a search and rescue operation. Nodes are located relatively closein the beginning. After halting for individually di�erent time periods (less than 5 seconds),all nodes repeat 5 seconds of moving and 5 seconds of pausing until the end of simulation.Speed is identical for all nodes. There are four di�erent node speeds| 2 m/s, 5 m/s, 10m/s, and 15 m/s (or 7.2 km/hr, 18 km/hr, 36 km/hr, and 54 km/hr, respectively). Figure18 shows how nodes move over the time when the node speed is 10 m/s; at time 100 seconds,the nodes are spread over 1km � 1km. There are 40 nodes and each has a single connectionto a randomly selected peer.
Figure 18: Mobility pattern 2Figure 19 shows the scenario parameters.Routing layer :DSDV :UPDATE PERIOD = 2, 1, 0.5, 0.2, 0.1, 0.05 secARM-DSDV :TW SMOOTH = 1 sec, TW RECENT = 3 secupdate-period control function and �lter function = same as in Figure 15End-to-end workload :CONNECTION START TIME = uniformly distributed along simulation timeCONNECTION DURATION = 5 secDPKT LENGTH = 100 octets, DPKT RATE = 1 packets/secValues of (node speed, simulation time, number of runs) :(speed = 2 m/s, 100 sec, 10 runs)(speed = 5 m/s, 100 sec, 10 runs)(speed = 10 m/s, 100 sec, 10 runs)(speed = 15 m/s, 100 sec, 10 runs)Figure 19: Scenario parameters of mobility pattern 2Figure 20 shows delivery ratios of ARM-DSDV and DSDV. ARM-DSDV achieves 99.4%,98.1%, 94.3%, and 77.7% while the best delivery ratios of DSDV are 99.9% at 5 update/sec,99.4% at 10 updates/sec, 96.0% at 10 updates/sec, and 78.1% at 10 updates/sec. The ratiosare very similar between ARM-DSDV and DSDV. One can also observe that, as the groupspeed increases, the overall delivery ratio is getting low regardless of the protocol. This is15

Speed = 2 m/s

0.5

0.6

0.7

0.8

0.9

1

1.1

0 5 10 15 20

DSDV Update Frequency (pkts/sec)

D
el

iv
er

y
R

at
io

DSDV ARM-DSDV

Optimal DSDV
Update Frequency

Speed = 5 m/s

0.5

0.6

0.7

0.8

0.9

1

1.1

0 5 10 15 20

DSDV Update Frequency (pkts/sec)

D
el

iv
er

y
R

at
io

DSDV ARM-DSDV

Optimal DSDV
Update Frequency

Speed = 10 m/s

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

DSDV Update Frequency (pkts/sec)

D
el

iv
er

y
R

at
io

DSDV ARM-DSDV

Optimal DSDV
Update Frequency

Speed = 15 m/s

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 5 10 15 20

DSDV Update Frequency (pkts/sec)

D
el

iv
er

y
R

at
io

DSDV ARM-DSDV

Optimal DSDV
Update FrequencyFigure 20: Delivery ratio of mobility pattern 2because more dynamics makes it harder for a routing protocol to accurately maintain routeinformation.The routing cost is shown in Figure 21. The relative cost at optimal DSDV updatefrequency is 129.3%, 76.1%, 70.0%, and 68.1%, respectively. Except the case of speed 2m/sec, ARM-DSDV saves from 23.9% to 31.9%. Compared to mobility pattern 1, savingsare smaller. One of the reasons is that mobility pattern 1 has fewer connections of eightcompared to forty connections in mobility pattern 2. Update-content control has moreopportunities to cut down on vector entries in mobility pattern 1.8 ConclusionThe ARM control mechanism presented here allows a proactive routing protocol to dynam-ically adjust the period and content of its routing updates in order to adapt to the mobilityand route-demand pattern. Furthermore, ARM is completely decentralized, allowing eachnode to adapt independently, and its overhead is low.We applied ARM to the DSDV protocol, coming up with ARM-DSDV. We showedthat for various mobility and workload scenarios, ARM-DSDV typically achieves the samedata delivery ratio as DSDV with update period optimized for the mobility and workloadscenario, while saving up to 60% in routing cost. Lower cost gives data tra�c more availablebandwidth, a valuable resource in ad hoc networks. Naturally, ARM-DSDV achieves higherdata delivery ratio than non-optimized DSDV.Changes in neighborhood appear to be a good approximation to the actual extent ofmobility. Keeping track of forwarded packets appears to be a useful yet inexpensive way ofassessing the route-demand patterns. 16

Speed = 2 m/s

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

0 5 10 15 20

DSDV Update Frequency (pkts/sec)

R
ou

tin
g

C
os

t (
oc

te
ts

)

DSDV ARM-DSDV

Optimal DSDV
Update Frequency

Speed = 5 m/s

0

50000000

100000000

150000000

200000000

250000000

300000000

0 5 10 15 20

DSDV Update Frequency (pkts/sec)

R
ou

tin
g

C
os

t (
oc

te
ts

)

DSDV ARM-DSDV

Optimal DSDV
Update Frequency

Speed = 10 m/s

0

30000000

60000000

90000000

120000000

150000000

180000000

210000000

0 5 10 15 20

DSDV Update Frequency (pkts/sec)

R
ou

tin
g

C
os

t (
oc

te
ts

)

DSDV ARM-DSDV

Optimal DSDV
Update Frequency

Speed = 15 m/s

0

20000000

40000000

60000000

80000000

100000000

120000000

0 5 10 15 20

DSDV Update Frequency (pkts/sec)

R
ou

tin
g

C
os

t (
oc

te
ts

)

DSDV ARM-DSDV

Optimal DSDV
Update FrequencyFigure 21: Routing cost of mobility pattern 2Regarding future work, clearly ARM requires much more analysis. Alternative waysto obtain mobility and route-demand metrics need to be investigated and compared withcurrent metrics. Sophisticated control functions may outperform the simple ones used inthe paper.Another area of future work is to make reactive protocols adapt to mobility pattern. Thisappears to be conceptually harder than ARMing proactive protocols. A proactive protocolcan be made adaptive by slowing down its proactivity, reducing routing information beingexchanged among nodes. But for a reactive protocol, one would need to add new mechanismsof information gathering.References[1] C. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance vectorrouting for mobile computers. In Proceedings of ACM SIGCOMM, August 1994.[2] S. Murphy and J .J .Garcia-Luna-Aceves. An e�cient routing protocol for wirelessnetworks. ACM Mobile Networks and Applications Journal, October 1996.[3] C. Perkins and E. Royer. Ad hoc on-demand distance vector routing. In Proceedingsof the 2nd IEEE Workshop on Mobile Computing Systems and Applications, February1999.[4] D. Johnson and D. Maltz. Dynamic source routing in ad hoc wireless networks. InMobile Computing, Kluwer Academic, 1996.17

[5] V. Park and M. Corson. A highly adaptive distributed routing algorithm for mobilewireless networks. In Proceedings of IEEE INFOCOM, April 1997.[6] D.A. Maltz, J. Broch, and D. Johnson. A performance comparison of multi-hop wirelessad hoc network routing protocols. In Proceedings of ACM MOBICOM, October 1998.[7] Z. Haas and M. Pearlman. Performance of query control schemes for the zone routingprotocol. In Proceedings of ACM SIGCOMM, August 1998.[8] Y. Ko and N. Vaidya. Location-aided routing (LAR) in mobile ad hoc networks. InProceedings of ACM MOBICOM, October 1998.[9] R. Castaneda and S. Das. Query localization techniques for on-demand routing proto-cols in ad hoc networks. In Proceedings of ACM MOBICOM, August 1999.[10] E. Royer and C-K. Toh. A review of current routing protocols for ad hoc mobile wirelessnetworks. IEEE Personal Communications, 6(2):46{55, 1999.[11] V. Jacobson. Congestion Avoidance and Control. In Proceedings of ACM SIGCOMM,August 1998.[12] H. Schwetman. CSIM User's Guide. Microelectronics and Computer Technology Cor-poration, 1992.[13] B. Crow, I. Widjaja, J. Kim, and P. Sakai. IEEE 802.11 wireless local area networks.IEEE Communications Magazine, September 1997.

18

