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Off-specular neutron reflectometry is an instrumental technique which can be
utilized for the characterization of thin-film systems in the depth and in-plane direc-
tions simultaneously. Currently, its use is limited both experimentally by the avail-
able neutron flux at modern neutron facilities and theoretically by a lack of widely
available, user friendly, and open-source modeling software. This thesis describes
work carried out on the development of a software package which utilizes currently
available mathematical approximations to characterize model systems and evaluates
the abilities and deficiencies of each algorithm. The evaluation will be carried out
within the framework of a well-structured, object oriented, Python software pack-
age which is versatile and extendable. As new approximations and mathematical
treatments are developed, they can be incorporated into the software infrastructure
and tested with minimal effort.

We show that, at high q, the Born approximation can be used to qualitatively
model off-specular scattering data; however, it does not capture any of the dynamic
effects observed in real data. Some dynamical effects can be captured by perturb-
ing the wavefunction by interactions with the substrate/incident media interface;
however, low q scattering as well as scattering at the "horizons’ is still inaccurately
represented. Currently, the best interpretation of the off-specular scattering can be
accomplished with the complete distorted wave Born approximation. This is shown
to produce theory functions which match quite well with scattering data.

Neutron coherence length is an important parameter in off-specular reflec-
tometry as it dictates the number of feature periods being probed by the neutron
beam. To determine the coherence length, a series of magnetic gratings were fabri-
cated. Specular and off-specular measurements were used to evaluate the shape of
the neutron wave packet work is still on going for a complete interpretation of these
results.
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Chapter 1

Introduction

This thesis describes work carried out on furthering the development of off-
specular neutron scattering data acquisition, reduction and analysis. Chapter 1
will discuss neutron reflectometry as it applies to modern materials analysis, the
advantages of using neutrons as a characterization probe, specular reflectometry
mathematical derivations, and the current state of off-specular reflectometry mod-
eling. Chapter 2 will describe the software development approach for the reduction
and modeling of off-specular neutron reflectometry data. It will focus primarily on
computational challenges and software infrastructure development. Chapter 3 will
cover the formalism used for the modeling algorithms. Chapter 4 describes the fab-
rication process used to create the standard non-magnetic and magnetic samples
utilized in both the modeling and the neutron coherence length studies. Chapter
5 will show modeling results for the fabricated standard samples and will discuss
capability, applicability, and limitations of each approximation. Chapter 6 will dis-
cuss the neutron beam coherence length studies which were carried out the NG1
reflectometer at the NIST Center for Neutron Research. Finally, Chapter 7 will
discuss the further work needed to make off-specular neutron reflectometry a widely

utilized characterization technique.
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Figure 1.1: Select relative elemental scattering potentials for x-rays and neutrons.

The scattering potential scales with circle diameter.

1.1 Neutron Properties

Neutrons may be used as a materials properties probe, providing many unique
characterization abilities which cannot be achieved using other, more commonly
used, probes such as X-ray and light scattering. Neutron scattering also has some
limitations and complications which can result in significant challenges not inher-
ent to other scattering probes (eg. low intensity, high facility costs, etc.). General
knowledge of neutron scattering capabilities can help provide insight into what types
of systems are best studied with a neutron probe. In practice, neutron scattering
techniques are most commonly used in conjunction with other measurement tech-
niques to elucidate sufficient information about a sample.

It is convenient to compare neutron scattering to X-ray scattering, although
similar comparisons can be made with other scattering probes such as visible light.

The most fundamental difference between neutron and X-ray probes is, while the



electromagnetic X-rays interact primarily with the electron cloud surrounding the
atoms, the heavier neutrons interact with the atomic nuclei of a sample [9]. This
difference in atomic interaction leads to some important consequences. First, by
interacting with the nucleus, the elemental neutron scattering potential varies sig-
nificantly as a function of atomic number. Figure 1.1 illustrates the relative scat-
tering potentials for some select elements. With X-rays, the scattering potential is
observed to be correlated with atomic number. This is not surprising as electron
density also correlates closely with atomic number. With neutrons, scattering po-
tential for the elements in figure 1.1 vary significantly even for atoms with similar
atomic numbers. The figure also shows that even isotopes of the same element may
have significantly different scattering potentials. This property is often exploited
with hydrogen and deuterium isotopic substitution, which is routinely employed to
intentionally manipulate contrast and simplify scattering profiles from complicated
systems.

Due to this highly varying scattering potential across elements, neutrons are
useful for seeing contrast between materials which would otherwise be difficult to
differentiate between with other techniques [15]. It also allows for aspects of a sample
to be highlighted using isotope exchange in select sample components [13]. For
example, diblock copolymer systems are comprised of two polymer phases which, in
general, have similar scattering potentials for most scattering probes. With neutron
scattering, one of the phases can be deuterated to improve the contrast between
the two polymer phases and provide a clearer scattering signal for determining the

structure of the sample. In addition, isotopic solvent mixtures (eg. HoO/D2O) may



be used to mask particular structures in a sample, allowing the neutron probe to
effectively highlight specific aspects of a system [32]. A good example of this is in
small angle neutron scattering (SANS) from core/shell micelles which are generally
complicated to model. By varying the scattering potential of the solvent around the
micelles to match the shell scattering potential, there will only be neutron scattering
contrast between the micellar core and the surrounding media, providing a simple
measurement of the micelle core diameter. For this type of contrast matching,
mixing different volumetric ratios of H,O(p = —0.0056 % 10~ 2ecm A=) and D,O(p =
06404 % 10~ 2emA~3) can produce a solvent of any scattering potential between the

scattering length density (SLD) values of the pure components and can be calculated

by:

Peff = PaWa + PaWa (1.1)

where w is the volume percent of solvent a and solvent b respectively [9]. The
exact meaning of SLD is defined more clearly in section 1.3. To clarify, for a solvent
with a scattering contrast of 0.0cmA~3, one would use a solution of 92% H,O and
8% D50 [9].

The neutrons zero charge moment also provides neutron scattering techniques
with additional capabilities. Because of their spin, neutrons can be used to probe
a sample’s structural and magnetic properties. This interaction makes neutrons
incredibly valuable for elucidating information about a sample’s magnetic charac-

teristics [4]. How this interaction relates to reflectometry measurements will be



described in section 1.4. Finally, because of the weak nuclear scattering, neutrons
can generally penetrate deep into condensed matter and probe a large sample volume
9].

The aforementioned properties indicate where neutron scattering can uniquely
contribute to the understanding of materials properties. By utilizing these abilities,
neutron scattering has contributed to advances in a wide variety of fields and con-
tinues to contribute heavily in important research areas such as hydrogen storage
[27], fuel cells [33], solar cells [15]), battery technology [3], and computer memory

[16] to name just a few.

1.2 Neutron Production

Unlike X-rays, where lab scale equipment can be readily acquired, neutron
experiments must be carried out at facilities which are equipped with the ability to
produce large fluxes of neutron radiation. This production is both complicated and
expensive which limits access to instrumentation. Still, a number of facilities exist
in the United States including the NIST Center for Neutron Research (NCNR) at
the National Institute of Standards and Technology (NIST), the High Flux Isotope
Reactor (HFIR) and the Spallation Neutron Source (SNS) at Oak Ridge National
Lab, and the Los Alamos Neutron Science Center (LANSCE) at Los Alamos Na-
tional Lab. Other, smaller sources also exist. These facilities do not all produce
neutrons in the same way and an understanding of the neutron production method

is important for data reduction and interpretation. There are two main neutron



production methods currently in use. The first is a reactor source and the second is

a spallation source.

1.2.1 Reactor Sources

The NCNR and the HFIR are currently the two largest reactor sources oper-
ating in the United States. Reactor sources produce neutrons through the fission of

2350 [23]. The net reaction can be written as:

(527)U + (o)n — 2.5(p)n (1.2)

where 0.5 of the neutrons are lost due to neutron absorption [9]. Reactor
sources run at a constant power and the neutrons produced are very high energy|[9].
To use the neutrons from this fission reaction in scientific instrumentation, they must
be thermalized with a moderator material [9]. Some of the most common modera-
tor materials are HoO, DO, graphite, or beryllium [9]. Different instrumentation
requires different levels of moderations. Table 1 shows the classification scheme
for neutrons and their corresponding characteristics. Once the neutron reaches
the instrument, the beam still has a large distribution of energies and requires a
monochromator to narrow the energy spread of the neutron [2].

Reactor sources can have much higher, time-averaged intensities than spal-
lation sources; however, their maximum neutron flux is limited to 10'° neutrons
em™2s7! due to reactor cooling requirements [2] [9]. In fact, the physical limita-

tions presented by the heat production will most likely prevent any further increase



Table 1.1: Neutron classification and characteristics [2]

Neutron Classification | Energy(meV) | Velocity(m/s) | A(nm)
Ultra-cold 0.00025 6.9 o7
Cold 1 437 0.9
Thermal 25 2,187 0.18
Epithermal 1,000 12,832 0.029

in neutron flux from reactor sources [9]. Higher flux production will have to be

accomplished through the development of spallation sources.

1.2.2  Spallation Sources

In the United States, there are two main spallation neutron sources. The first
is at Los Alamos Neutron Science Center (LANSCE) and the second is the relatively
new Spallation Neutron Source (SNS). In this type of source, pulses of H~ ions are
produced and accelerated down a linac at high energies where they collide with
a target, releasing or spallating neutrons [9]. Most spallation sources utilize the
time-of-flight (ToF) method of operating. In this configuration the neutron energy
is determined by its location in the pulse distribution, which is a function of time
from pulse genesis [2]. When the ion pulse interacts with the target, neutrons with
a large distribution of energies are released [2]. As these neutrons are guided toward
the instrumentation, the higher energy neutrons move faster than the slower energy

neutrons, increasing the neutron spread [2]. Consequently, instrumental resolution



is highly dependent on flight path distance [2]. Moderators can also be used to alter
the neutron spread and are generally used in the same way as for reactor sources.
The spallation sources biggest advantage are their low heat generation per
neutron, allowing for a much higher peak neutron flux than reactor sources[2] [9].
Some instruments also gain notable advantages from ToF operation [2]. Depending
on the operational configuration of the source (i.e. long versus short pulse sources),

the full energy distribution may be utilized for more efficient data acquisition [§].

1.3 Non-magnetic Neutron Specular Reflectometry

In this section, the general physics and application of specular reflectometry is
discussed. An understanding of the specular technique is important for determining
how to extend reflectometry to the off-specular regime. It is important to note that,
due to the nature of the measurement technique, reflectometry does not measure
sample properties directly but rather infers the properties through an iterative pro-
cess of calculating theory functions for a given representative system, or model, and
then comparing the results to real data (see 1.3.2 for explanation). This can make
the technique quite challenging to implement; however, with modern fitting soft-
ware, the technique can be routinely used to determine compositional information

about scientifically relevant systems.
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Figure 1.2: Schematic of scattering length. The blue planes indicate a plane wave
representation of the neutron beam. O is the scattering center interacting with the
wave. The other parameters are defined to solve for the scattered wave shown in

the equation.

1.3.1 Scattering Length Density

In neutron reflectometry, the scattering contrast of a system is defined through

the use of a scattering length density (SLD). The SLD is defined as [4]:

M
p= Nib; (1.3)

j=1
where b is the coherent scattering length of the atomic isotope, N is the number
density of the isotope and M is the number of isotopes present in the material [4].
Essentially, this formula states that the scattering potential of a material is the
sum of the scattering potentials of each individual component that makes up that

material.

The scattering length is a measure of the scattering power. Figure 1.2 shows



a schematic of scattering length [5]. It illustrates that when a plane wave interacts
with an object, the object will scatter the plane wave, which changes its amplitude
[5]. The magnitude of this change in amplitude is dependent on the coefficient, b(u)
[5]. In practice, values for the elemental scattering length have been experimentally
measured and tabulated and can be found in many references [10]. It is important
to note that, in the case of highly absorbing materials, the scattering length will
have a non-trivial imaginary component [5]. Generally, neutron absorption is quite
small and the imaginary component is negligible [5].

To understand the scattering produced from reflectometry we start with the

Schrodinger wave equations:
—EVMV(*) U =EV (1.4)
- T = .

where the red portion of the equation is the kinetic energy of the wave, the
blue is the potential energy and m is the neutron mass; simply stating the kinetic
energy plus the potential energy is equal to the total energy [4]. For a wave in a

vacuum (which we assume is outside of the sample) [4]:

V() =0 (1.5)

so that all of the energy is kinetic and is given by:

1 h?k3
Ey = Emvg = 0

- (1.6)

The potential energy, after entering a new medium, is dependent on the scat-
tering length density and can be written as [4]:

10



B 2mh?
om

B 2w h?

V Nb

This means that the total energy inside a medium can be written as:

WE> 2rh?
= -

2m m

E

p

Through the conservation of energy it is necessary that:

Ey=FE

which allows us to reduce the previous equationl.9:

h%g B h2k? n 2xh2 2
om  2m 2%m

to give:

ko = k* + 4mp

The refractive index for neutrons can be written [4] [5]:

n(ko) =1/1 — 4mp/k?

which can alternately be written as k = nky.

1.3.2 Formalism

(1.7)

(1.8)

(1.10)

(1.11)

(1.12)

Specular reflectometry is a small angle scattering technique which is tradi-

11

tionally used to determine the scattering length density depth profile of thin film



Figure 1.3: Schematic of the specular reflectometry geometry. The angle of the in-
coming wavevector is the same as the outgoing wavevector, resulting in a wavevector
transfer which only has a z component. The coordinate system in this figure is the

system most commonly used for the reflection geometry.

12



structures. This depth profile is then interpreted as a compositional profile through
some knowledge of the initial composition and the processes being studied. When
a sample (i.e. thin-film structures) has no in-plane variations in scattering length
density the scattering is completely specular in nature and the wavevector transfer
only occurs in the ¢, direction. The geometry to measure such scattering is de-
picted in Figure 1.3. k; is the incoming wave vector and £y is the outgoing wave
vector which leads to the scattering vector, Cj The scattering vector can be written

mathematically as [5]:

—

Q=ks—k (1.13)

where the incoming wave vector is [5]:

k= X (1.14)

and A is the wavelength of the neutron beam.
In this geometry, 8; = 0 which means the vector, @, only has a z component,

where z is the depth direction of the sample. This can be calculated by [5]:

q. = —sin(6;) (1.15)

The physics used to describe a reflectometry experiment is based on the quan-
tum mechanical description of a plane wave interacting with a potential barrier.
If it is assumed that the in-plane (x-y plane) structure is uniform, then there is

no perturbation in the waves momentum in the plane of the film and the problem

13



simplifies significantly [4].
We can start by using the wave equation 1.4 and substituting the kinetic 1.6

and potential 1.7 energies to give:

(V2 4+ KU =0 (1.16)

which is comprised of:

\DF = \Ijr,y,z = ¢x¢y¢z (117)

If the wave impinging on the sample is approximated as a plane wave, then

the wavefunction is given by [4]:

\I[F _ ezkor _ ez(kz:p+kyy+kzz) _ ezklmezkyyezkzz (118)

Because the wavefunction can be broken down into its individual components,

1.11 may be written as:

K2+ k) + K2+ Amp = kG, + kg, + kS, (1.19)

Because it is assumed that there is no variation in scattering contrast in the
plane of the film, there can be no wavevector transfer in either the x or y direction.
Mathematically, this means k, = k,o and k, = kyo leaving only the z component [4]:

k2 +dmp = k], (1.20)
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Figure 1.4: Schematic of a 1D plane wave interacting with a potential barrier. The
solution to the wavefunction is solved at each interface.

To describe the reflected wave, equation 1.6 and 1.18 can be combined to form

oo, = eFozTehovty)) (1.21)

Because the previous derivation shows that the reflected wave for a system

of uniform scattering density in the plane of the film can be reduced to a one
dimensional problem, the wave equation can be written as [4]:

2

o
@ + kgz - 47sz Q/}z =0 (122)

This reduction to a one dimensional problem allows the system to be treated
as a one dimensional plane wave impinging on a potential barrier, a problem that is
easily treated[4]. The process is illustrated in figure 1.4 and can be found in intro-
ductory quantum mechanics books. In this schematic, the plane wave approaches a
potential barrier with a normalized intensity of 1. When the wave hits the potential

15



barrier, some of the intensity (r) is reflected from the interface and some is trans-
mitted (¢) through the interface[4]. The wave equations for these scenarios are also
shown in figure 1.4. Some absorption will occur during this process; however, the
number of absorbed neutrons is small and will be left out for the sake of simplicity.
Because energy and momentum are conserved in this process, we can assume that

both the wavefunctions and their derivatives are equal or [4]:

l+r=c+d (1.23)

M(l—r)=c—d (1.24)

cetbiil 4 debul = qetkinil (1.25)

cetbrrl — dekul — kurgethinl (1.26)
krr :

where L is the thickness of the potential barrier. These formulas lead to the

matrix:

. cos(krrL) sin(krrL)/kry 1+7r 1.27)
1kt —krrsin(krr L) cos(krrL) ikr(1—r)

The full derivation of this matrix may be found in appendix A.

The equations presented so far have an explicit dependence on E; however,
we can also write these same equations as having a dependence on Cj using the
relation shown in 1.13[4]. Because we are discussing specular reflectometry where
the outgoing wavevector is the same magnitude as the incoming wavevector but the

z component of the vector is reversed, this relationship means that the wave vector
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transfer may be written as: [4]

kp = —ky (1.28)
Q = ko — (—ko) (1.29)
G = 2k (1.30)

In addition, because the scattered data is a measure of the neutron beam
intensity reflected off of a sample at a given position in space (the detector position),
information corresponding to the phase of the neutron is lost. Mathematically, this
means that instead of measuring the reflection as calculated by the transfer function,

it is instead [4]:

I=|r]? (1.31)

The consequence of this will be explained elsewhere; however, these two equa-
tions allow for the direct understanding of how the transfer function relates to the
most common method for visualizing reflectometry data. In general, scattering data
is plotted as I versus ) where [ is the log scale intensity and @ is the @), inverse
space.

For a single film on a substrate, the interference fringe, sometimes referred to
as Kiessig fringe, spacing is % where ¢ is the thickness of the film layer[4]. The
critical edge is the point at which reflection changes from total external reflection
(ie. the full intensity if reflected) to penetrating the sample[4]. This phenomenon

can be explained by equation 1.12 which shows that, if k3 < 4mp, the right hand side
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Figure 1.5: Example of specular reflectometry simulation showing one scattering
potential with a semi-infinite substrate. Present are the interference fringes associ-
ated with the layer thickness and the critical edge. (Inset) a schematic of the depth

profile represented by the model.

of the square root becomes > 1 and n becomes purely imaginary [4]. This means

the critical edge is at[4]:

Qe = ki, = 4mp. (1.32)

Although the derived theory solves exactly the case of a single layer with sharp
interfaces, most experimentally relevant systems are not isolated, sharply varying
layers. To treat cases where multiple layers or non-sharp interfaces are involved,
some extra steps are needed. Fortunately, the same matrix derived previously can be
used to transfer the beam through multiple interfaces. Figure 1.6 shows a somewhat
arbitrary case of a system with strongly varying scattering contrast[4]. The system

can be estimated as a collection of sharply interfaced micro-slabs, which allows for
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Figure 1.6: Schematic of how samples with constantly varying SLD can be treated
[4]. The integration is accomplished through approximating the system as a collec-

tion of small slabs. The size of these slabs can effect the model results and dL must

be chosen carefully.
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the direct application of the transfer matrix [4]. If the matrix is represented as[4]:

cos(krrL) L sin(k; L)
M — krr (1.33)
—]{?[] Sin(k’[[L) COS(IC]]L)

Then, starting from the bottom of the stack, the wave may be propagated out

toward the detector by [4]:

A B

C D

This matrix holds all of the information required to calculate the reflected intensity.

The reflectivity amplitude coefficients can be calculated as [9]:

 B+C+i(D—A) B>+ D?—A?—(C*-2i(AB+CD)

= 1.35
"TB-C+iD+A) A2+ B2+ (21 D% +2 (1.35)
Alternatively, the scattering may be written as [9]:
1 2
21+H2 =A*+B*+C*+ D? (1.36)
—|r

Determining a size for dL in figure 1.6 is not only important for specular
but also off-specular reflectometry as the modeling for both scattering techniques is
dependent on a discretized representation of the experimental system. Because Cj
is in reciprocal space and L is a real space value, the measurement’s sensitivity to
L is dependent on the maximum measured Cj value. Figure 1.5 can be used as an

example. If the theory function in this figure is estimated as a data set, the data
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obtained would extend to 0.1A~!. This means that the the best resolution that can

be recovered in real space is[4]:

2T 2T

At= —— = ——
Omaw  0.10A-1

= 62.84 (1.37)

So, when modeling this system, the maximum AL is 62.8A.

1.4 Magnetic Neutron Specular Reflectometry

Because neutron scattering has the ability to probe the magnetic properties of
thin film samples as a function of depth, it is important to discuss the fundamen-
tal concepts involved in modeling these effects. The instrumental setup required
to measure magnetic scattering in neutron reflectometry is somewhat more compli-
cated than non-magnetic scattering, requiring additional components to prepare the
neutron beam so that the initial neutron spin state is known and the finally spin
state can be analyzed. This section will discuss the mathematical and physical prin-
ciples by which these instrumental components operate, followed by how a magnetic
sample interacts with the prepared neutron beam and how this interaction can be

interpreted in the scattering data.

1.4.1 Polarizing and Analyzing the Neutron Beam

A schematic of the process is shown in 1.8. The neutron source produces
both spin-up (1 or +) and spin-down (. or -) neutrons which can interact with a

magnetic field inside a thin film sample[4]. To measure the proportion of neutrons
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which change their polarization after interacting with a magnetic sample to those
which did not, the incoming beam must first be prepared so that only a single spin
state impinges on the sample. This is accomplished through the use of a neutron
spin state selector, or polarizer.

To select a single spin state, the polarizer uses the bias that the neutron’s spin
state has when interacting with a magnetic material. As will be discussed in more
detail later, magnetic materials may be thought of as having two separate scattering
potentials. The first is the structural scattering potential which was discussed in
1.3. The second is the magnetic scattering potential. The formula for the refractive

index which includes the magnetic scattering potential can be written as[4]:

s = /1= 4mlpn = par) /43 (1.38)

which, in the case of specular reflectometry, reduces to only include the z

component[4]:

nes = /1 dn(pn % par) /K. (1.39)

The neutron’s interaction with this potential is dependent on the spin state.
This difference in scattering potential leads to individual critical edges for each of
the two spin states at different @ values. Using equation 1.32 and the magnetic
scattering potential, the critical edges for the two spin states can be calculated

with[4]:
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Figure 1.7: Schematic and theory calculation for how neutron polarizers work.

Qe = 47 (pn + pur) (1.40)

Qey = 4Am(pn — pur) (1.41)

When an angle of reflection is chosen so that the @) vector falls between these
two critical edges, the spin-up state will be totally reflected while the spin-down
state will be scattered[4]. In the case of the iron polarizer shown in figure 1.7, the
spin-up neutrons are reflected down the instrument toward the sample, while the
spin-down neutrons are transmitted into a neutron absorbing materials to reduce
its contribution to the background signal[4].

In this way, spin-up neutrons can be separated from the spin down neutrons
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Figure 1.8: Schematic of magnetic neutron reflectometry measurement.

with efficiencies of up to 98%][4][1]. Once the spin-up neutrons are selected, they are
reflected off of the sample. The reflected neutrons have a probability of changing
their spin state depending on the sample’s in-plane magnetization (the in-plane
dependence is due to the specular geometry). This change can be determined using
the same process which was used to polarize the beam. An analyzer selects the
spin-up neutrons and reflects them toward the detector. This process is illustrated
in figure 1.8[4].

Unfortunately, this only gives a quarter of the information needed to com-
pletely analyze the magnetic scattering. To understand and model the in-plane
magnetization, data for both the flipped and non-flipped neutrons is needed. This
leads to four different magnetic cross-sections, referred to as ||, {1, T4, and 17.
The first state in each of the four cross-sections is the state of the neutron before it

enters the sample. The second state is that of the neutron after it is reflected from

24



CMoment rotation

tMoment direction K=K’

. . N
Precession axis , y=z
\

Region 1 0 Region 2 L Region 3

Neutron position as a function of time

Figure 1.9: Schematic of a spin flipper. An in-depth description can be found below.

the sample. Because the polarizer and analyzer are sensitive to alignment and can
be cumbersome to remove, the idea of switching 1 selecting polarizers for | select-
ing polarizers is a somewhat unrealistic procedure and would involve, not only the
design and development of an | selecting polarizer but would also require time to
setup which would otherwise be used for data acquisition. To resolve this issue and
make neutron flipping a more reasonable experiment, a spin-flipper device, which is
somewhat more complicated but far less labor intensive, has been developed.

Spin-flippers use electromagnetic fields to reverse the spin-state selected by
the polarizer and the analyzer[4]. By having the ability to flip the selected neutrons
after the polarizer and analyzer, all four magnetic cross-sections may be obtained.
Figure 1.5 shows the principle behind the spin-flipper device[4].

The schematic starts at some point after the polarizer, where the spin-up

state has already been selected. There is a small alignment field after the polarizer
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which helps ensure that the neutrons do not loose polarity as they traverse the
instrument. This magnetic field is applied in the the direction of the quantization
access, or the axis in which the spin-up neutrons are precessing around. Notice
that this precession does not change the neutron’s polarity. Schematically, this
is illustrated by the blue arrow which shows the neutron precession around the
quantization axis. As it precesses, there is no change to the moment (represented
by the black arrow). When the neutron reaches position 0 at the boundary between
region 1 and region 2, it immediately changes it’s quantization axis to the —y[4].
This sharp and immediate transition results in a non-adiabatic process and is crucial
for changing the quantization axis and, therefore, cause the neutron to precess in
the z plane[4]. If the transition is too gradual, the neutron will instead follow the
field gradient as it changes[4]. The size and magnetic field of region 2 is precisely
chosen so that, by the time the neutron reaches location L, it has precessed 180

degrees. These design requirements may be calculated using the formula:

2muB

2uB
Ag| ~ koy = k 1.42
where 1 is the magnitude of the neutron magnetic moment (u = —1.913 x

5.051 % 10727.J/T) and B is the magnetic induction. A nice example of this is given
on page 421 of reference [4]. Finally, the individual polarization components for the

x, v and z directions can be calculated using a rotation matrix:
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Pr, cos(A)Y) —sin(A)Y) 0| [ Pr 10 0
Pp, | = | sin(A)g)  cos(A)) 0| | Py [*]0 0 —1 (1.43)
Pr, 0 0 1] \ P 01 0

Now that the neutron can be polarized and that polarization can be reversed,

all four magnetic cross-section may be obtained.

1.4.2 Interpreting Magnetic Scattering Data

Now that the methods for neutron preparation have been explained, we can
now discuss how to interpret magnetic scattering data. As in the non-magnetic
case, the transfer matrix must be determined starting with the solution to the
wavefunction. The process is similar; however, there is added complexity introduced
by the magnetic scattering. It is important to note that, because we are still in the
specular limit, there is only a z dependence in the formalism. Specifically, it takes

the form[4]:

[% + QTQ - 47TP++Z} Yy, —dmp,W_, =0 (1.44)
[g + @& 47?,0__2} U —drp U, =0 (1.45)

Just by observation, one can see the similarities between this equation and
equation 1.22. Because both equations are equal to zero, we can combine them by

multiplication to form[4]:
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where:

F= % —Am(prs, — p--.)
G = Q? ? —0? — 47)2 —
1 Q7 (pss. — p-—s) + (M) (piipol — piep—v.)

which is derived in C.1

This can be written more conveniently as:

S*+FS?+G=0

(1.46)

(1.47)

(1.48)

(1.49)

with roots (using the number density form of the scattering length density

derived in C.2):

Sy = \/An(Nb+ Np) — Q2/4

SQ - —Sl

Sz = /47 (Nb— Np) — Q?/4

Sy = -5,

Now, solving the wavefunctions from equation 1.44 for each root[4]:

— 4 Sz
U =31 Ce
_ 4 Sz
v.oo=> j=1 Dje
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At this point, the same steps which were used to derive the non-magnetic
scattering are followed for the magnetic derivation. This derivation is shown, in

part, in C.3 and is given byl[4]:

iy A A Aig Au Iy +ry
t_ A21 AQQ Agg A24 I_+r_
- (1.52)
§t+ Az Azy Asz A %(1 ++ry)
?t_ Ay Agp Ay Ay %([— +r_)

where the values for A;; are tabulated in C.4

1.5 Off-Specular Scattering

In the previous sections all mathematical derivations have assumed that the
wave vector transfer only contains a ¢, component. This is only the case where
potential barriers are completely flat with no in-plane variation. In reality, this case
rarely occurs and in-plane variations from fabrication, diffusion, phase separation,
and other events are often present. These in-plane variations scatter the incoming
neutron beam at angles outside of the specular scattering condition, resulting in a
wave vector transfer with three dimensional components (scatters in ¢, g,, and g.).
This results in a three dimensional problem rather than a one dimensional problem
and creates a much more complicated scenario to model.

To date, no closed form solution to the off-specular scattering problem has
been developed. Still, significant progress has been made in the formulation of

approximations for modeling off-specular neutron scattering. This section describes
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the most recent work on the appropriate ways to treat off-specular scattering data.
In 1988, Sinha et al. developed a closed form calculation for solving the diffuse
scattering from films with ’special’ types of interfacer roughness within the distorted

wave Born approximation(DWBA) for systems where:

q.0 >>1 (1.53)

where ¢ is the root-mean-square roughness and ¢, is the specular component
of the scattering[26]. Most of his derivation is based on the work by Vineyard in
in 1982 [31]. He also presented the Born approximation(BA) results for a similar
set of special cases. Of course, the approximations still contained inaccuracies and
must be used with caution. The inaccuracies of both the BA and the DWBA which
were implemented in the paper are well illustrated in figure 1.10. The BA cannot
represent the critical edge and is observed to approach infinity as ¢, — 0 while the
DWBA proves to be inaccurate at higher q values.

Although his work was applicable for both X-rays and neutrons, it was only
accurate for single films with special types of roughness. This was later extended
by Ljungdahl[18] to include an autocorrelation function which allowed the formula-
tion to be used for an even broader range of roughness types. In 2005, Rauscher et
al. was able to use the DWBA with Gaussian roughness to model the off-specular
scattering from a multilayer system [25]. Their results show Yoneda wings resulting
from the interfacial roughness between the multilayers. Unfortunately, most of their

results are shown as schematics and real systems were not modeled. Significant
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Figure 1.10: figure from reference [26].

contributions to the field have also been made by Toperverg [28, 29, 30]; however,
these papers lack detail in their mathematical presentation and the source code used
to perform the fundamental calculations is not available for review and verification.
Perhaps the most well-presented and pertinent formalism is given by Kentzinger et
al. [14]. As this result is the basis for many of the calculations implemented in
our software, it is worthwhile to present these calculations in full. For this specific
presentation, the magnetic component will be omitted. As with most DWBA for-
malisms, this version of the calculation starts with splitting the calculation into a

reference potential and a perturbation on that potential. This can be written as

[14]:

A~

B, =V, +V, (1.54)
The reference potential, \71, is the specular reflectivity and V, , is a perturbation
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to that specular reflectivity. Because the full, three dimensional problem cannot be
solved, \Y , is taken to be the average in-plane scattering potential [14]. This allows
the perturbation to be calculated in a single (z) direction. This perturbation is then
applied to the whole in-plane structure [14]. The assumption made here is that the
out-of-plane dependence of the wavefunction is so small that it may be estimated
as that calculated by the averaged the in-plane potential [14]. The wave equation
may now be propagated down into this averaged sample to determine a solution to
the wavefunction with which the scattering will be perturbed. There are two waves
to be concerned with. The wavefunction for the incoming and outgoing wave can

be written as [14]:

[u) = €™t - Sy - [thiogk.0)) (1.55)

(Wnl = (Lrog,.0) - [Sp) - €0 (1.56)

respectively where the propagator functions are [14]:

Sil(z) — eiﬁil(Z—sz1)fil€—iﬁiz(z—2l71)fil (1.57)
Sfl(z) = eiﬁfl(Z_Zl_l)iﬂe_iﬁfl(z_zl_l)fﬂ (158)

This is simply the solution to the wavefunction at each layer in the sample.

Using these values, the scattering amplitude may be calculated as [14]:

Fy; = Z/dzgfl(z) L F(Q)) - Su(2) (1.59)
!
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where F}(Qj) is the in-plane Fourier transform.

By combining the scattering contributions from the reference and residual
potential, one gets the resulting scattering from the system.

This formalism is similar to those used in previous work and is what we will
adapt for our scattering calculations. The exact formula used in the software is

described in chapter 3.

1.6 Off-specular Neutron Reflectometry Sensitivity and Applications

By measuring both specular and off-specular reflectometry simultaneously in-
formation about both the depth profile and in-plane structure may be determined.
The size scales at which each of the probing directions is sensitive to; however, differ
significantly. Figure 1.11 highlights the large difference in q range probed in the g,
and ¢, directions. This is a practical limitation due to the instrumental geometry.
In these plots, the maximum ¢ indicates the smallest real space feature which is
able to be resolved by that data. In the specific example of figure 1.11, the depth
profile can resolve thicknesses on the order of 209A while the in-plane structure
can only resolve features of approximately 3,121.6A. This means that, with cur-
rent instrumentation, the in-plane ordering that can be practically evaluated by the
off-specular scattering is on the order of microns.

This difference in real space sensitivity must be considered when determin-

ing the techniques usefulness when considering its use for modeling real samples.
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Some useful cases are the use of determining magnetic exchange properties of large
magnetic ellipses in a rectilinear lattice. Another use is presented by Kentzinger
[14] evaluates large magnetic domains in permalloy supermirrors where there is no
structural in-plane variation. With better signal to noise it may be possible to even-
tually characterize smaller in-plane feature which would allow for the study of phase
separated diblock copolymers; however, current instrumentation does not have such
capabilities.

In general, this technique will find use in any thin film systems that have
large in-plane ordering. Although specialized, this technique provides many unique
advantages over other techniques and may become a key characterization tool for

many types of systems.
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that can be resolved.

35



Chapter 2
Software

2.1 Overview

An important part of producing a widely usable and open software package is
to ensure that the software is broad in its functionality and easily accessible to the
target users. In general, specialized data analysis and modeling software presented
in this thesis is written in either Mathematica or Matlab which are commercially
available software packages that are designed for mathematical applications. Unfor-
tunately, these packages also require licenses to use, which limits the software’s user
community to those which have licenses to the particular software package. Because
one goal of this project is the development an open-source and broadly usable mod-
eling software, other languages had to be utilized. The language chosen was Python
[22], which is an open-source scripting language with a variety of mathematical
(eg. scipy, numpy) [19], data visualization (eg. matplotlib, pylab)[12] and graphical
user interface libraries(GUI)(eg. wxpython)[21]. By combining the power of these
libraries (mostly written in C) with the development speed inherent to scripting
languages, this is a good choice for scientific software development. More specific
information about software installation, dependencies, and functionality may be
found in Appendix D, which is the software instruction manual. The software is

open source under a general usage license agreement. Users of this software should
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Figure 2.1: Class structure outline for the software.

reference this thesis.

2.2 Software Workflow

Software for the modeling of scattering data requires two basic components.
The software must provide a user with the ability to build a model of their system.
This can be done in a variety of ways and is where most of the user interaction
occurs. The second component provides a user with a way to calculate what the
scattering looks like from the model system and compare it to real data. To achieve
this functionality, the software was developed with an object oriented design which
is outlined in figure 2.1. This design allows for the easy development of additional
components to the software without breaking other aspects of the calculations. Com-
putational objects hold all of the required information and calculations which are
specific to that set of information.

For example, figure 2.1 shows a Lattice object. This object holds all of the
information required to calculate the structure factor as discussed in chapter 3. By

making the structure factor calculation part of the Lattice object, a user or developer
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could create a new structure factor calculation which could then be used in place of
the one provided in the software. By following the overall application programming
interface (API), the new structure factor calculation can utilize every other class (eg.
Unit_Cell for feature building), without further modification. The advantage of this
design becomes quite apparent when developing and testing different mathematical
approximations for calculating theory functions.

The Calculator class holds all of the information that is required to calculate
off-specular scattering theory functions. It is comprised entirely of individual objects
of other classes and, based on those object types, chooses the appropriate calculation
(which can also be defined by the user). The developed subclasses are complex and

the details of each are explained below.

2.3  Unit_Cell

This is the most complicated class as it is the entire representation of a single
unit. The primary representation of the unit cell is a matrix implemented with the
numpy library, which holds the SLD values for a discretized model. This matrix can
be produced through different methods depending on the the users desired model.
The first unit building method imports a raw data file from an open source 3D mod-
eling packages. The second allows the user to build a unit cell with parameterized
shapes using mathematical form factors. The third model building method allows
users to import a .png file of a model’s cross-section. Each will be described in detail

below.
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Each of these methods provide a unique way to create the finite element matrix
used to model scattering data. The important difference between these methods is
how the models are parameterized. A system’s parameterization is the numerical
way in which a shape, feature, or structure is described. Parameterization is espe-
cially important in fitting, where an iterative change in parameter values is used to
minimize the difference between scattering data and real data. Models should be
parameterized in a way which allows for realistically constrained optimization. If
the parameterization has too many degrees of freedom, the fitting process can take a
prohibitively long time to minimize and can result in models which are non-physical.
The parameterization must also have enough degrees of freedom that a fitting algo-
rithm may be utilized. Of the three implemented methods, only the mathematical
form factors method is parameterized in a way which allows for fitting. The 3D
modeling software describes features using a collection of edges and nodes. These
node positions could be used as parameters for a fitting engine; however, with so
many nodes, and therefore so many parameters, it would be difficult to obtain realis-
tic models from the minimization algorithm. The .png loader has the opposite issue.
The image is fixed, and therefore does not allow for convenient parameterization.
Each pixel could be treated as an individual parameter; however, this again leads to
a prohibitively large number of parameters. Although only the mathematical form
factors method is useful for fitting, the other modeling tools may be useful for more

complicated systems, or for combining SEM images with scattering data.
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Figure 2.2: K3D output and processing for a model system.

2.3.1 3D Modeling Software

Among the open source 3D modeling software programs available, the one that
best fit our needs was K3D [20]. This particular program allows for the output of a
3D model as a collection of polyhedron sides and nodes which make up the shape.

Figure 2.2A shows a trapezoid built in the 3D modeling software along with
its raw data output. A discretization algorithm is applied so that a matrix is formed
as the spy plot in figure 2.2B shows. The final matrix is schematically represented
in figure 2.2D. The process of building the matrix in this manner is computationally
expensive and time consuming. Some effort has been made to speed up this process;
however, as this is not intended to be the main input mechanism, the current state
has not been optimized.

The process starts with an empty matrix which is sized at the user’s discretion.
This matrix will be filled with the feature which was built in the 3D modeling

software. The process relies on a ray tracing or shooting algorithm to determine
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whether or not each of the points represented by the matrix fall within the feature
which was created in the k3d software[11]. The process uses a ray to probe space and
determine whether a point falls within a polyhedron by testing how many polygon
faces the ray intersects with. The following math describes the steps taken by the
algorithm to build a matrix using a K3D model.

The sample is assumed to be in the first octant of 3D space. First, the most
distant point on the feature is determined by finding the maximum value for each
dimension in the k3d node list. This point, (r,7,,7.) can be seen in figure 2.2 and
defines a bounding radius for the feature. each point (p;, pj, p) is then run through
a serious of tests to conclusively determine whether it falls within a feature.

The first test determines whether:

(pi = 72)* + (0 = 7y)* + (= 72)° > 2+ 402 (21)

which tests whether the point falls outside of the bounding sphere. This is
computationally much less expensive than the shooting algorithm and, depending
on the size of the feature, can significantly decrease calculation times. Point p4 in
figure 2.2 illustrates this situation.

Next, the special cases of the test point falling on a line of a planer face must
be tested. Taking the two points which make up the line, p; and po, and the point

to be tested, pg, the distance can be tested with:

|(p2 — 1) x (P1 — po)|
|(p2 — p1)]

d = (2.2)
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and if d = 0 then the point is accept as being inside the feature. This test
must be run for every line which makes up the feature. Next, the point is tested to

determine whether or not it falls on any of the planes. The plane is formulated as:

a(x — 1) +b(y —y1) +e(z—21) =0 (2.3)
where n = (a,b,c) is a vector normal to the plane, p; = (x1,y1,21) is an
arbitrary point contained on the plane, and p; = (zo, 90, 20) is the point being

tested. The plane equation can be written as:

ar+by+cz+d=0 (2.4)
where d = —ax, — by; — cz;. With these equations, the distance formula may
be written as:
b d
d— axo + 0yo + Czo + (2.5)

and again, if d = 0 then the point falls on a face of the shape and, therefore, is
included in the shape. This test must be run for every plane which makes up the
feature.

If these special situations are determined to be false, the shooting algorithm
is applied. This algorithm relies on the principle that, by placing a tracer line from
the test point to a point which is known to be outside of the feature, the number
of planes the line crosses will elucidate the position of the point in space. Simply, if

the line crosses an even number of planes, the point must lie outside of the feature
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(po and ps in figure 2.2 C). If the line crosses an odd number of points (p; in figure
2.2 C), it necessarily lies within the feature. Because this algorithm relies only on
whether or not the number of crossed planes is even or odd, it will work for both
concave and convex structures.

First, the tracer line must be chosen to ensure that it does not lie on top of
any of the lines which make up the feature. We start with the equation of a line for

each of the lines:

lirace = @+ ta(b — @) (2.6)

Lihape = €+ up(d — @) (2.7)

where [, is the tracer line and [, is the shape line segment and P are the two
points on the lines. These points have an x, y and z component which need to be

tested for intersection points. Breaking the equation into its individual components

and setting them equal to each other, we can determine if the lines intersect:

ay + (by — az)ug = ¢ + (dy — cz)uy (2.8)
ay + (by — ay)uq = ¢, + (dy — ¢ )u (2.9)
a, + (b, —a)u, = ¢, + (d, — c.)up (2.10)

The intersection calculation is now calculated for each plane. For example, to

determine if the lines intersect in the x-y plane we use the matrix form:

r=0bA"" (2.11)
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which, for the x-y plane is:

Ugq — Qg + Cy ba: — Qg _d:v + (&%
= (2.12)
Up —ay + ¢y by —a, —d;+c,
and we evaluate whether:
0<=1u, (2.13)
0<=u, <=1 (2.14)

Equation 2.14 is open on the right hand limit because the tracer line is a ray
which extends to the unit cell limit. The line segment (equation 2.14) which is
being tested has two end points and so both inequalities are tested. If these two
conditions are found to be true, then the x-z and y-z planes must all be tested. If
their lines intersect in all three planes, then a new tracer line must be selected. The
selection of a new tracer line is a trivial task because the discrete units represent a
finite distance in space. Any new point which falls within this finite space may be
used as the tracer line. The implemented algorithm starts at the center value of the
discretized unit and takes:

Pn—D
Pt = 7 ® + po (2.15)

where pg is the minimum value held by the discretization and n is the iteration
number for tracer point selection. In practice, n is rarely greater than 2. Every line
which makes up the feature must be tested to ensure that the trace will succeed.

Now that a tracer line has been selected, Each plane in the feature must be
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tested to determine whether or not the trace line passes through it. We can define

l, and [, as the points that make up the tracer line and:

po + (p1 — po)u + (P2 — po)v (2.16)

is the equation for the plane and pg, p1, and ps are three non-collinear points on the
plane. Using the method applied earlier to determine the line intersection, we can

set these two equations equal to each other to get:

lo+ (I — la)t = po + (p1 — po)u+ (p2 — po)v (2.17)

la — (la = Ip)t = (p1 — po)u + (p2 — po)v (2.18)

which can be written in the matrix form:

t Ty —Tp Ty — Ty To— T T, — Xo
ul = Y= vi—w v2—w Ya — Yo (2.19)
v Zqg —Rp R1 — Ry R2— 2 Za — R0
The point of intersection is:
lo+ (I — la)t (2.20)

Now that the point where the tracer line passes through the plane has been
calculated, it must be determined if this point falls within the polygon which makes

up the feature. To do this, the point and the polygon are projected onto each plane.
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The point is then tested to see if it falls within the polygon projection. This is done
for each plane which makes up the feature.

As mentioned previously, parameterization of this modeling would be pro-
hibitively difficult. Therefore, a more convenient parameterization scheme would
describe a sphere as a radius and a central point, rather than as a collection of poly-
gons or matrix positions. Still, this modeling technique can be useful in predicting
the scattering from very complex samples without the need to manually enter ma-
trix values. To allow for parametrization of a system, mathematical form factors

are needed.

2.3.2 Mathematical Form Factors

An infrastructure has been developed which allows for the addition of any
form factor given there is an equation to carry out the desired discretization. As
mentioned at the beginning, this is the only model building method that allows for
fitting. Each shape definition ensures that the minimized model still contains the
same form as the original shape. This limits the number of parameters and creates
a more physical minimized feature (as apposed to a model which is less likely to
physically exist). These predefined shapes may also be combined and constrained
to produce more complicated features and the syntax simplifies model scripting.
Figure 2.3 illustrates how to use these objects to build complicated unit cells.

A variety of different forms have already be developed and implemented. This

section discusses the formalism for each form factor. For all formulas, C,, C,, and
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IrMn = Layer(SLD = 6.585e- NiFe = Ellipse(SLD = 9.12e- NiFe_mag = Ellipse(SLD = Cu = Ellipse(SLD = 6.54e-
6,thickness_value = 40.0) 6,dim = shell_dim) 2.162e-6,dim = core_dim) 6,dim = shell_dim)

IrMn.is_base() ‘NiFe.on_top_of(IrMn) ‘ ‘NiFe_mag.is_core_of(NiFe) ‘ ‘Cu.on_top_of(NiFe) ’

Figure 2.3: An example of the mathematical form factors. The shapes are in-
stantiated using the syntax above each shape. The 3D plot illustrates the matrix
produced by the instantiation. Finally, the features are related to each other using
the syntax in the pink boxes to orient the shapes appropriately. The final shape is

a complicated mixture of different objects which was produced with 8 lines of code.
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C, denotes the center point and P,,P,,and P, denote the point being tested.

Sphere

(P, —Co)+ (P, —C,) + (P.— C,) <r? (2.21)

where 7 is the radius of the sphere.

Parallelepiped

For this calculation, first the minimum and maximum limits of the feature in

each direction are calculated by:

Mpin =C =2 (2.22)

2

Mpar =C + 2 (2.23)

where D is the dimension of the feature in the x, y and z directions. This is

followed by the inequality tests:

Jw’minI S x S Mmaxl (224>
Mmmy S ) S Mma:py (225>
Mminz S 4 S Mmaxz (226)
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Ellipse

For the ellipse, the z-axis test is similar to that of the parallelepiped system:

and:

Mminz S z S Mmaxz

In the x-y plane, the test is carried out through the equation:

_ 2 _ 2

0.0 < <

where a and b are the equilateral radii in the x-y plane.

Cone

The z-axis of the cone is calculated as was done in the ellipse

and:

Mminz S z S Mmaxz

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

There is an added ability here to make a truncated cone. This is done by

parameter S which says that z < S must be true.
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For the x-y plane we first define:

T, = tan™" (2) (2.34)
T, = tan™" (%) (2.35)
and then test:
2 tan(7Ty) e tan(Ty) <
0.0 < (z—Cy) Ct2)/2—2 +(y—Cy) C 122" 1.0 (2.36)
Pyramid

The z dimension test is exactly the same as the cone, including the S parameter
and so will not be repeated. Please see 2.3.2 for this calculation.

The pyramid calculation first defines:

T, =tan™" (2) (2.37)

T, = tan™" (%) (2.38)

This test is split into two components which are:

(Cz4D-/2)—z (C24D;/2)—=
Co = Tamamm S Gt “Gumm (2.39)
(Cot D./2)—= (CotD./2)—2
Cy = Tammm =Y =Gt Gam (2.40)
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Ellipsoid

The ellipsoid shape is much like a lens shape which is not to be confused with
the ellipse. In the case of the ellipse, the scattering length density is constant in the

z direction whereas the test for the ellipsoid in the z direction is written as:

(=CP =G (z=C.)?

a? b2 c?

0.0 < <1.0 (2.41)

where a, b and c are equilateral radii. if @ = b = ¢ then this produces a sphere.

RoundedParallelepiped

This version of the the parallelepiped feature representation combines the par-
allelepiped feature with the ellipse calculation. It was created to model gold featured
samples discussed in chapter 3 because wet etching results in rounded corners and is
discussed in more detail in chapter 3 This object has an additional parameter called
‘curve’, which allows the user to choose a percent rounding of the parallelepiped
features corners. The value of the parameter is set from 0 to 1 where 0 is a purely
parallelepiped feature and 1 is a purely ellipse feature. The ratio’s meaning is de-
rived by taking the length of each side and the length of the diagonal. This is

illustrated for in figure 2.4.

2.3.3 Image Loading

Often a user has an image of the sample they wish to model, such as an

optical or SEM cross-sectional micrography, of their structure. The software has an
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Tround = [€(T max" min)] + 7 min

Figure 2.4: Illustrates how the curvature parameter, curve, is calculated. c is the

curvature parameter.

image loader ability which can use these micrographs as input for model building
to calculate the expected scattering. The color scale in the image must represent
the desired SLD to within some scaling factor. For example, figure 2.5A has grey
scale values which are multiplied by 1 * 10~° to match the desired SLD. The image
is then read into the program and a matrix is created by assuming that one axis is
constant in the depth direction of the photo. This is illustrated in figure 2.5B.
Because the pixel density of these images are often much higher than is required
for the needs of our unit cell object, a rebinning algorithm was developed. This uses
a traditional rebinning process where the volume of pixels in the original image
(2.5C) is averaged and entered into the courser discretized matrix(2.5D). Because
the chosen resizing factor is generally not an exactly divisible number, often the new
pixel volume is not an integer value of pixels from the original image. To resolve
this, the pixel contribution is weighted by the amount of the original pixel that is
included in the new pixel area. The result of this can be observed in figure 2.5D
where the interface between two SLD values is an average of the two SLD values

which make up that interface. Although this averaging causes a loss in information,
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C)o x-z slice of matrix from image load

A)

200 300 400 500 600

x-z slice rebinned

Figure 2.5: A) The original .png image which will be loaded into the unit cell.
B)Schematic showing the image extension in the y direction, which is how it will
be represented in the unit cell. C)Slice of the matrix created after loading. Not the
x-y axis which are pixel counts. D) The matrix has been reduced in size through a

rebinning process.
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Figure 2.6: A) the formula for a rectilinear lattice with a square envelope, the real
space schematic and the resulting calculation in ¢, and g,. B) the formula for the

calculation of a body centered lattice by repeating a phase shifted rectilinear lattice.

the effect on the theory function is unnoticeable for sufficiently dense unit cells.

2.4 Lattice

The lattice object holds all of the information required to describe how the
unit cell object repeats itself across the sample. This object also contains the meth-
ods for calculating the scattering from this repeat structure. There are three lattice
representations available. For now, we will discuss the case where the repeat struc-
ture has a coherence length convolved with a box envelope. The difference between
the box envelope and the Gaussian envelope are discussed in more detail in chapter
3. The first is the square lattice, which is shown in figure 2.6A. 2.6B shows how
the body centered lattice (depicted in the first half of 2.6B) may use the rectilinear
lattice calculation with a phase shift to add a repeat structure. Figure 2.6B shows

two separate rectilinear lattices represented by the blue and red dots respectively.
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Theory not calculated!

qxl qx2 qX3 qxn_1 qxn qxn+1

Figure 2.7: Shows how undersampleing the q map can lead to erroneous calculations.

The red dots are phase shifted to fall half way between the blue dots at a 45 degree
angle. It is evident from the equation at the top of figure 2.6B that the phase shift is
not limited to 0.5 period shift (see the exponential components) and can be adjusted
to position the second lattice set anywhere in space, although in the current version,
this repeat is fixed to a 0.5 shift in the x-y direction.

The software has a pre-calculated hexagonal lattice structure which takes in
one value for the repeat distance(D,) and calculates the corresponding D, distance

needed to produce a hexagonal lattice. It uses the formula:

D, = 2D, cos(30 deg) (2.42)

Although the formalism used to calculate the structure factor is derived else-
where, there is a computational concern which needs to be addressed for accurate
calculations. The structure factor is calculated for each discrete point represented

by the individual array elements. Unfortunately, this result is for a single q value
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and does not represent the full pixel for which the the calculation is being carried
out. If the desired q spacing requested by the user is sufficiently large, then the
calculation will not solve for q values which contain important features in the scat-
tering, inaccurately representing key features in the scattering. This type of artifact
is called aliasing. Figure 2.7 shows the region of q space where no calculation is oc-
curring and, therefore, not represented in the calculated results. When the sampled
q values are spaced far apart, very sharp scattering features, such as the specular
scattering, will most likely be under-sampled and, therefore, appear not to exist as
is seen in figure 2.8A. Another artifact evident in figure 2.8A is that the first order
diffraction peak appears to be much weaker than that of the second order diffrac-
tion peak. Although this phenomenon is sometimes possible, in this case the lower
intensity is due to the fact that the first order diffraction peak is substantially more
defined than the second order peak, which means the course sampling in q misses
most of the scattered intensity. The problem can be resolved by integrating over
the range of q values for which each pixel is representing. Figure 2.8B shows that,

by integrating over the q range which contains the specular scattering,

2.5 Beam

The Beam object holds all of the information about properties of the prob-
ing beam. Specifically, it contains the wavelength, wavelength divergence, angular
divergence, and background. Because this information is needed to calculate the

resolution of the instrument, this object along with the Space object and the result-
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Figure 2.8: A) Structure factor calculation carried out A) at discrete ¢ values and

B) by integrating of the the q range for which each pixel is representing.

ing scattering, which is held by the Calculator object, are used to apply a resolution
correction. This correction includes the wavelength divergence and the angular di-
vergence and is applied as a Gaussian convolution of these two effects. The resolution

can be approximately written as [10]:

5G\° 50 \?  /6A)2
— | =(—) + |+~ (2.43)
Q tan(6) A
The wavelength divergence originates from the finite wavelength selected by
the monochromator. Ideally, the monochromator would select neutrons of a specific
wavelength and remove the others. In practice some finite range of wavelengths are
selected by the monochromator, affecting the resulting scattering from the sample.
The angular divergence originates from the spread of angles at which the neutrons

leave the guide and enter the sample. Although the instrumental geometry is set for

a specific angle, this spread in angle results in measuring scattering from multiple
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angles. This also affects the neutron scattering data. Of course, because Cj is
a vector, this implementation is somewhat complicated and is described in more

detail in chapter 3.

2.6 Object Oriented MicroMagnetic Framework

Magnetics systems can be modeled by take advantage of already existing
magnetic minimization software which are used to find the minimum-energy con-
figuration of a magnetic system. the Object Oriented MicroMagnetic Framework
(OOMMF) software[6], which is an industry-standard tool developed at NIST, uses
a finite element approach similar to that used in the off-specular modeling software
to represent their systems [6]. By allowing this software to minimize the magnetic
moments in the given model and then importing that result into our software in-
frastructure, we can calculate scattering from magnetic features.

The OOMMEF software uses a Landau-Lifshitz ordinary differential equation
solver to relax the spin states in a model system. The model system is represented
by a finite element matrix of the samples starting magnetization state and is relaxed
under conditions parameterized in the model. This minimization approach can result
in different final magnetic states, the scattering of which can all be modeled in the
off-specular software.

First a specialized file writer takes the magnetic information given to the Shape
objects and creates an OOMMEF model input file. This file is then imported and

modeled using the OOMMEF software, resulting in an .omf file which can then be
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Figure 2.9: A) a .mif file created by our software loaded into the oommf software.
B) a .omlf file loaded from an oommf output file to our software and viewed using

our slice viewing panel.

loaded by the off-specular modeling software (and the scattering calculated). Figure
2.9 shows an example of this procedure.

Figure 2.9B shows a slice viewer panel which is based off of a pre-existing viewer
but adds the ability to scroll through the depth profile of the magnetic sample. This
viewer can also be used for viewing the structural part of the sample. Alternatively,
the full range of shape-building tools available for making 3D-models of nuclear SLD

can be used to make magnetic SLD unit cells.
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Chapter 3
Theory and Approximations

3.1 Overview

This chapter will cover the formalism developed and included in the model-
ing software. It shows the derivations of the formalism, discusses the usefulness
of each calculations, and shows examples of theory functions produced from mod-
els. The first attempts at modeling involved tweaking algorithms implemented in
currently available software. The only real software that employed mathematical
formalism which could be used to model off-specular scattering was [sGISAXS[17].
This software is designed to model grazing incidence small angle X-ray scattering
(GISAXS), which is very similar in geometry to neutron off-specular reflectometry.
Because GISAXS data is generally viewed in a different subset of reciprocal space
(g, versus g¢,) than off-specular reflectometry (g, versus ¢,), the Fortran scattering
kernel was removed from the software and wrapped with Matlab code to produce
the desired scattering plot. The advantages of the distorted wave Born approxima-
tion (DWBA) became clear as the resulting model contains many features similar
to those observed in real data, while the Born approximation (BA) does not. This
kernel had some very problematic limitations. First, it utilized mathematical form
factors to calculate the scattering. This limited its application to a single feature

in a given system. While this feature could be buried in a layer, multilayered fea-
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Figure 3.1: Simulations of a 3.7 m parallelepiped Au system on Si with feature height

of 200nm in the a) Born Approximation and b) Distorted Wave Born Approximation.

tures were not possible (a key class of systems for neutron reflectometry). Second,
although the scattering qualitatively matched some key features in the data, there
was evidence that it was not calculating certain scattering conditions appropriately.

Using knowledge gained from the IsGISAXS kernel, new modeling formalism was

developed.

3.2 First Order Born Approximations Form Factor

The kinematic or Born approximation is used in cases where dynamical scat-
tering effects, such as multiple scattering events, do not appreciably contribute to
the observed scattering. This approximation is most valid at larger Cj values. Be-
cause the described wave in this system is assumed to have little to no distortion by
the sample media, the wave inside the media can be approximated to be the same

as that of vacuum. This is illustrated in figure 3.2
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Wave transfer Born Approximation

Y, = l|JH=1e+ik’E

Figure 3.2: The wave transfer as done for the specular case versus the Born approx-

imation.
As shown in appendix B, the reflection amplitude can be written as an integral:

_Ar &0

ry = i Vg p.e™0=7dz (3.1)

The approximation shown in figure 3.2 which sets the wave inside the sample

to a simple plane wave:

S (3.2)
S0:
qu — % fooo eik()zzpzeik()zzdz (33)
re. = 5 [0 peehodz (3.4)
ry. = % 72, peeit2dz (3.5)

This result shows that, to this approximation, the scattering is the Fourier
transform of the scattering potential. This can be expanded to the three dimensional

case [4]:
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Form Factor Structure Factor Sample Model

Figure 3.3: A pictorial representation of how the model is treated.
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where S, is the the surface area of the sample probed by the neutron.

Because this work focuses on the specific case of repeated structures on thin
film surface, we can treat the system as two components. As such, the calculation
can be split into two separate pieces. The first component will be referred to as the
form factor and will represent the single repeat unit of the sample. For convenience,
reference to the form factor in its entirety will be denoted as §. The second will
be referred to as the structure factor and will represent how that unit cell repeats
across a sample surface. In formalism it will be denoted as &. Figure 3.3 shows the

two components which make up a model.

Sf:(iL)(¥L><:l)(1—ei%ﬂ(l—ei%%(y—emﬂ)CZT@m@ (3.7)

iq.) \iq,) \ig.
To model data, this integral must be solved computationally. First, it will be
easiest to break the integral into the two components based on the modeling shown
in the previous section. For now, & will be used as a placeholder for the structure
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factor calculation. The integral may now be written as:

q S 2 Dy Dy D. . . . 2
( Z47:y> rgl” = / / / Pay-€ F W dodydr | * |G (38)
0 0 0

Taking only the z component of this integral:

D, )
§: = / Pay-€" 7 dz (3.9)
0

where D is the unit cell size in each of the three dimensions. As seen in figure
3.3, the integral will be solved over discrete units much like figure 1.6. By the nature
of the discretization, each sub-unit of the model will have the same SLD value. This

means that the integral may be written as:

N nAz
5= / Pimn€ " dz (3.10)
n=1 Y (n=1)Az

makes p a constant and can be removed from the integral.

nA )
e'*dz (3.11)

N
Sz - Zplmn/(
n=1

z
n—1)Az

Because we have now presented the formalism for the discretized system and,
over each discretized unit, the py,., is constant, the integral may now be written as

a summation over all of the discretized units:

1qznAz eiqz(nfl)Az

N
gz = Zplmn |:€ ; - ; (312)
n=1

14 1q

Now, to reduce the number of operations, we can pull out commonalities within

the summation to give:
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5. = (i) (1—e"?) [i plmneiqZ”Az] (3.13)

1
4 —

Because each component can be treated separately, the demonstrated treat-

ment of §, can be applied to §, and §, which yields the form factor:

N

1 1 1 | | | - |
_ | = _ - gz o qyy _ —igzz iqzlAx _iqumAy iqg.nlAz
S_ (Z(:ZCC> (qu) (zqz) (1 € ) (1 e ) (1 e ) [Z Pimn€ e e

n—1

(3.14)

It now becomes clear that the calculation may be treated as the Fourier trans-

form of the scattering potential. Computationally, this simplifies the calculation
by utilizing build-in mathematical function like the numpy.fft() which can be found
in the numpy library and solves the fast Fourier transform (FFT). While the FFT
significantly reduces calculation time by utilizing the Fourier transform symmetry,
the resulting matrix is both sparse in reciprocal space and solves an incredibly large
region of Q, most of which is unnecessary when modeling real scattering data. The
matrix sparseness can potentially be resolved by zero padding the function; how-
ever, the zero padding required to obtain solutions for Q points needed to model
data creates a matrix so large that the computational resources required to store
and interact with it are prohibitively limiting. To quickly and efficiently solve the
Fourier transform for a specific region of ) space, we utilize the Chirp-z transform

[24]. To be thorough, the formula can now write as:

5= <i) (i) (%) (1—e =) (1 —e ) (1 — e ") « CZT pyn (3.15)

1qy iQy
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This result is used in the Born approximation form factor calculation. Now
that a form factor has been developed we may turn our attention to the structure
factor, &, which will be used to describe how the form repeats itself across the

sample.

3.3  Structure Factor

Mathematically, the scattering is calculated over all space. In practice; how-
ever, scattering only occurs over the probed sample volume which is limited to the
size of the beam footprint. Furthermore, if only coherent scattering is considered,
which is the volume over which the neutron coherence length extends in the x, y and
z directions, then the integral volume is decreased even further (assuming that the
beam footprint is larger than the neutron beam coherence length, which is generally
the case. In this work, we assume that, under the probed area, the features are

uniformly repeating which leads to the simple formula:

AT W ey )] e >/)2/>2)} (310

where D is the the size of the unit cell and N is the number of repeats which are
scattering coherently. Figure 3.4A shows the results for this calculation. Between
the diffraction peaks there is calculated scattering which is not observed in the
real scattering data. This is due to the implicit assumption that the system is
coherently scatteringly evenly across the sample until the coherence limit where it
sharply becomes zero. This treatment not only results in a theory function exhibiting
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Figure 3.4: Demonstration of the different structure factor calculations.

scattering that does not exist, but also does not fundamentally represent the actual
scattering.
In reality, the coherent scattering is a convolution of a Gaussian with the

diffraction rods of the repeat structure, or:

S = e 2 % FT(Viasice) (3.17)

where the exponential is the Fourier transform of the Gaussian, o is the length
over which the system is coherently scattering, and V' represents the lattice structure.
The results of this calculation are shown in figure 3.4B and the final resolution
corrected scattering calculation (in the Born approximation) is shown in figure 3.4C.
This structure factor is a much more realistic representation of the scattering from

a repeating unit cell and will be used for the modeling in chapter 5.
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Figure 3.5: Illustration of the refractive shift on a data set taken on gold pillars on

the AND/R reflectometer.

3.4 Refractive Shift

An interesting and somewhat surprising experimental observation was a refrac-
tive shift due to the neutron beam impinging on the substrate at a near orthogonal
incident angle below the ’horizon’ of the sample. The ’horizon’ is defined as the
points where ¢; = 0 and 6y = 0. The refractive shift can be observed is real data
and is shown in figure 3.6.

This refraction ends up being simple to derive.

starting with the equation:

4
ky = nko = (kif) ko (3.18)
0

which can be rearranged to:
ki = \/k —4mp (3.19)
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Figure 3.6: A real data set with the refractive shift marked.

As shown in figure 3.5 we need to solve:

Ak, = ky, — ko, (3.20)

This can be substituted into the previous equation to get:

Ak, = \/ (k2 — d7p) — ko, (3.21)

The factoring here is complicated but ky >> p so doing a series expansion at

ko = oo gives:

2
k2 — dmp ~ kg, — Zpl (3.22)
0z

and can write:
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because its is known that:

ko, =

x

the final result is:

Ak, ~ — <2§p1>

a7
A

Akm ~ —>\P1

where the red indicates cancellations in the equations.

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

Here the resulting refractive shift for the ¢, direction is observed. Further-

more, it is somewhat evident that, when the beam exits the substrate at a nearly

orthogonal angle, the opposite shift will occur which can be calculated as:

Ak, ~ \p;
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Figure 3.7: A real data set with the refractive shift marked.

3.5 Substrate Modified Born Approximation Form Factor

As discussed in 3.2, the assumptions made in the first order kinematic ap-
proximation are only accurate at large ( vectors where the dynamic scattering
contributes less significantly to the overall scattering. In addition, other effects such
as a suppression of the neutron beam intensity at the 'horizons’'cannot be repro-
duced by the BA. One step toward improving the modeling is to assume that some
perturbation of the wavefunction occurs as a result of interaction with the sample.
The substrate modified Born approximation (SMBA) is a distorted wave Born ap-
proximation whereby the wavefunction is perturbed by the substrate/incident media

interface. This calculation takes the form:

IThe ’horizons’ are defined as the position in ¢ where either the incoming or outgoing angle are
orthogonal to the substrate. This regime generally exhibits significant dynamical scattering effects

which need to be captures by the modeling.
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D'ryz . . .
§ = / / / Ui p ("0 e’ %2) U dD,,. (3.30)
0

where:

U, = teiki? kin < 0 (3.31)
U, = etkizz fpe=hiz LS () (3.32)
s = e Fr frett k>0 (3.33)
W = te'kr=* ki, <0 (3.34)

where the solution to the wavefunction only considers the effects caused by
the incident media and substrate. Because this particular approximation does not
concern itself with what happens inside the sample, only the total reflected and
transmitted intensity needs to be solve. Starting with the standard matrix form, r
and t may be solved for using the k; or kf as the wave vector depending on which
wavefunction is being solved. In this form we extract a factor of ky so the matrix is

in terms of the refractive index n. The algebra can be carried out starting with:

t , 1+7r
etkswl — Nf (3.35)

Mgyt iNine (1 — 1)
r must now be extracted from the matrix. This can be rewrite as:
Mll(l + ’I") + Mlgininc(l — T) = teikS“bL (336)

M21<1 + 7") + Mggininc(l — T’) = insubteiksubL (337)
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Figure 3.8: A direct comparison of the BA and the SMBA theory function results

for a model of square pillars.

The t dependence may be removed by setting the two equations equal to each

other, leaving only r:

M21(1 —+ ’I“) 1 M22mmc(1 — r)

My (1+7) + Miging(1 — r) =ttt = — .
Msub Msub

(3.38)

Now the equation may be distributed to get all of the r values to one side.
Once rearranged and canceled the result is:
Mll + annc (M21 + Zn'mc]w’22)

r— 3.39
— M1 4 ingpe Mo + (May — inpeMas) ( )

M sub

With this equation, the solution to the wavefunction may be solved and used
to perturb the scattering calculated by the Born approximation.

Figure 3.8 shows the improvements after perturbing the BA by the wavefunc-
tion. The "horizons’ now are represented; however, they are different widths which
does not match the data obtained from the samples fabricated in chapter 4. Also,

the peak locations are the same as those calculated for the BA, which are known to
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be incorrect. Still, The application of the wavefunction shows how it contributes to

the scattering results.

3.6 Distorted Wave Born Approximation

The math involved for the DWBA calculation is substantially more compli-
cated than that used in any of the other approximations, but is currently the most
accurate treatment for calculating off-specular scattering. This section will cover
the math used for the DWBA implemented in this software. for the most part,
notation in this section will be borrowed from Kentzinger et al. [14] and one may
use this reference to supplement understanding of the formalism [14]. Tt starts by

envisioning the sample as a set of two different scattering potentials. written as:

V,=Vi+V, (3.40)

The p in this equation represents a dependence on the in-plane coordinates of
layer, [. V; is called the reference potential and is the in-plane average of layer, I,
which, as expected, has no dependence on the in-plane coordinates, ie. the average
is the same throughout the plane. The vector, le is called the residual potential

and is the difference between the full potential and the reference potential or:

A

which can easily be seen from rearranging the previous equation. The impor-

tance of this potential lies in it being the contributor to the in-plane and, therefore,
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the off-specular scattering. This will be seen in the formalism. Also, the residual

potential is defined so that:

<Vzp> —0 (3.42)
0
which just says that the in-plane average of the residuals is 0.

Now:
F = (Uso(ky,0)| Friltio(ki,0) ) (3.43)

must be solved for, which is written here in the bra-ket notation. In this case,
the bra and ket pertain to the spin states of the neutron and can be ignored, which

means:

I = |F? (3.44)

where I is the intensity of the scattering cross-section. This is more compli-

cated than it looks. We can break up [F into:

F=>"enFfyéa + énFfydy + dpFihéa + dpFfidy (3.45)

l
This equations deserves some explanation. First, this is the sum over all of
the layers in the sample. For each layer, 1, we want to sum over all of the factors
contributing to the scattering. The subscript f is designating the outgoing wave
and i is designating the incoming wave. The F components contain the information
about the sample which is interacting with the wavefunction. So the the first term

can be said to be representing the scattering events whereby the transmitted wave

5



in layer 1 of the incoming wave (cy;) interacts with the sample, F, and scatters into
an outgoing wave of cy. Each of the rest of the terms can be defined similarly.
The ¢ and d components are simply the amplitudes of the wavefunction. We have
seen this before in chapter 1 as the ¢ and d in 1.23. By following the derivations
both in chapter 1 and appendix A for the matrix in 1.27, One can use the specular
reflectivity calculation to determine almost directly the values for ¢ and d.

If the results of the matrix transfer are defined more appropriately in terms of

the solution to the wavefuntion and the derivative:

Ui Wi
— M, (3.46)
7o Vs 7o Pl

then the wavefunction and its derivative may be written (as is shown in the

derivation in 1):

U = cett? + deit? (3.47)

V' = ikce'*® — ikde*? (3.48)

Now the algebra can be carried out to solve for ¢ and d (not forgetting the é

term). Rearranging the wavefunction to solve for ¢ produces:

c=We ™" — de 2k (3.49)

and solving for d in the derivative gives:

76



koqjleikz

d = CeQikz _
ik

The two rearranged equations can now be combined to form:

) ) k_o‘;[//eikz )
c= \Ijeflkz o (CGQ’L]{?Z o - 6721kz
7

and distributing the exponential:

) ) ) k,o\:[jleikz )
c= \IIG_ZkZ . Ceszz€—2zkz o 6—2zkz

vk
The exponentials cancel leaving:
) koW’ .
c = \Ile—zkz —c— 0 6—zkz
ik
or
. koW’ .
2¢ = \Ijefzkz . 0 efzk:z
1k
From 1 we recall that:
ki = kony
so ko can be removed leaving:
. (VA
2¢ = \Ijefzkz o ._eflkz
mn

Cleaning up this equation gives:

. V4
P o (\I/ — —)
n

Carrying out the same procedure for d results in:

7

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)



) &
d = .5e " (\If + ,-) (3.58)

m

Interestingly, the derivations seen in appendix A are simply used to factor out
the values which we now need for this equation. we can use equation 3.57 and 3.58
to solve the ¢ and d values in this equation for each layer. Now that the formalism
needed to extract the wavefunction amplitudes has been derived, the F component

must be solved. This function is defined as:

Fpj = etttz gdl 1 (Q)) e o (3.59)

where a and ( are each of the respective ¢ and d values and the =+ is + for the
transmitted component and - for the reflected component. g is the Laue function
written as:
eiq?ﬁD -1

9= (3.60)
Wy

where D; is the thickness of layer 1. There are a large number of superscripts
and subscripts here but all have the traditional meaning and are only trying to
indicate that q is being specified very rigidly. The fi dependence can be observed

in the calculation of q as:
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A5y = Pp1+ pa (3.61)

45 = pp — pa (3.62)
455 = —pp + pa (3.63)
afh = —pp — pa (3.64)

Here, the p variables are just reformed versions of the wave vectors and can

be solved as:

Pa =\ (kasin(60))? — (/4012 (3.65)

where d is being used to designate either i or f and the 6 is either the incoming

or outgoing angle. These two components have also been observed in various forms

throughout chapter 1. One difference is that the z component of the wave vector

now depends on the layer depth. The second difference is an obvious cancellation of

the square and square root. This part of the equation was left in expanded form to

show that it is the formula for the location of the critical edge as was written in the

specular reflectivity portion of chapter 1. Using this equation, all of the q values

and, therefore, all of the components in the equation 3.61 may be solved for. The
last piece of the equation needed to be solve is E(Q”)

This component is where all of the scattering potential information is provided.

As an important reminder, the scattering potential is split into two components.

Both will be used to solve this function. The equation can be written as:
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E(Q) = plF(Q)) (3.66)

where F7(Q)) is the lateral Fourier transform of the residual potential and can

be written as:

m —igpPt(p
F(Qy = 5 /dpe QP% (3.67)

Unfortunately, keeping with the convention used in the cited paper means the
value for p used in these equations become quite confusing. Equation 3.67 indicates
that the in-plane Fourier transform of the residual potential for a given layer (p;)
relative to the reference potential for that layer (p;) is needed. This result is then
multiplied by the reference potential in equation 3.66 to give the potential needed
for equation 3.61. Conceptually, the z dependence in the potential is removed, the
in-plane Fourier transform taken, and then the z dependent potential is brought back
for the rest of the scattering calculation. This is how the g, scattering calculated
by this approximation becomes more accurate than the traditional BA. With all of
these functions defined, the non-magnetic off-specular scattering can be calculated.
It is important to note that the specular reflectivity will not be produced from this
calculation and must be explicitly placed into the scattering results at g, = 0. This
presents somewhat of an issue with matching the relative intensities of the specular
and off-specular results and is the most obvious deficiency of the DWBA. Still,
the ability to represent key features in scattering data make it a very attractive

candidate for modeling off-specular scattering.
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3.7 Magnetic First Order Born Approximation

The first order Born approximation discussed in 3.2 can be modified to include
magnetic scattering. Because neutron reflectometry is only sensitive to in-plane
magnetization (magnetization which is perpendicular the the wave vector transfer
direction) the Halpern-Johnson vector can be used to remove the magnetization
component in the direction of the wave vector transfer from the total magnetization.

This vector is defined as:

~ ~ ~

q=M-Q(Q-M) (3.68)

where Q is the unit vector of the wave vector transfer and M is the magnetiza-
tion vector. As with any vector, the Halpern-Johnson vector can be broken up into
its 3 directional components. Because the three orthogonal coordinates are defined
by the neutron polarization direction, they will be defined as q,, q, and q., where q,
is the vector direction aligned with the external field, H. First, the Halpern-Johnson

vector is calculated for the x, y and z coordinates:

6|y = My - Qy(@y ’ My) (3.70)
Elz = Mz - Qz(@z : Mz) (371)

Once these vectors are calculated, they can be transformed to match the ori-

entation of the neutron reflectometer. If the magnetic moment, M, is aligned in the
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y direction then we can use the vectors:

a = [010] (3.72)
b = [001] (3.73)
¢ = [100] (3.74)

results in:
Qo = gu * a1 + Gy * a2 + g, * a3 (3.75)
Elb:qx*bl+qy*62+EIz*b3 (376)
e = Go * €1+ qy * co + 4z * 3 (3.77)

Once this vector is obtained, the reflectivity for the non-spin-flip cross-sections

can be written as:

P =37 (Pt F Aapmag )@ (3.78)
l

and the spin-flip cross-sections, which only depend on the magnetic scattering

length density, can be obtained with:

TT¢7¢T - Z [(qb + iqc)pmagd@i@.ﬁl] (379)
l

By using this simplified calculation for modeling magnetic data, the qualitative

differences in scattering depending on magnetic field alignment may be determined.
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Chapter 4
Sample Fabrication and Data Acquisition

4.1 Overview

Because the calculations employed in this software are all approximations and
hold inherent (and sometimes unrealistic) assumption about the propagation of the
wave, experimental systems are required to understand both the capabilities and the
limitations of each approximation. The fabricated systems were designed to scatter
where the instrumentation is most sensitive, providing an ideal system for use in
analyzing the models. In addition, a collection of Ni gratings were fabricated to
elucidate information about the neutron coherence length. All of these samples were
fabricated using standard lithography processes in either the University of Maryland
FabLab or the NIST Center for Nanoscale Science and Technology. Presented here

are the details of the fabrication process.

4.2 Non-magnetic system

The project started by looking at systems that were commercially available.
An optical grating was purchased from Edmond Scientific to see if the scattering
from such a system would yield a well defined off-specular pattern. The results from

this system are shown in figure 4.1. The system is a sinusoidal grating with epoxy
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Figure 4.1: The results from the first sample measured for off-specular scattering.
A = 2778 : height from top of glass substrate to top of film. B = 200.0 : twice the

amplitude of the wave. C = 8733 : wavelength.

filler and a AIM gF, coating. This design presented a variety of issues. First, the
sinusoidal shape resulted in an effective density gradient in the ¢, direction, which
produces complicated scattering. Second, the hydrogen rich epoxy filling caused
the system to scatter incoherently. Third, the shape lends itself to complicated
dynamical scattering effects which are not so prevalent in other shape forms. Finally,
the grating period of 873.3nm is relatively small, resulting in off-specular scattering
at very high ¢,, where the instrumental sensitivity is low. As can be seen in figure
4.1, some off-specular scattering was measured; however, it became clear that no
commercial product fitting our criteria were available. We had to fabricated our
own.

The first fabricated system was a collection of Au pillars on a Cr/Si substrate.

This sample was used to gain information about the non-magnetic off-specular scat-
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Figure 4.2: The general progression of the Au sample fabrication. A) A schematic of
the sample. B) An optical microscopy image of the mask used to pattern the sample.

C) The S1813 layer after UV exposure. D) Optical image of the final sample.

tering. The general fabrication process is shown in figure 4.2A. The sample was
fabricated on a 3 inch, 10mm silicon substrate to ensure that the sample did not
bow once in the sample holder. Figure 4.2B shows an image of the mask used to

create the sample. The spacing was chosen to be 10um because in reciprocal space:

2T
1.0 % 1054

=6.28%107°A! (4.1)
which is the location of the first order diffraction peak. This g, position is well
above the instrumental resolution, which makes it easy to resolve from the specular
peak, but is close enough to ¢, = 0.0 that substantial scattered intensity is observed.
A 20A chromium adhesion layer was deposited using a Denton Discovery 550
at the CNST. This was followed by a layer of gold deposited by the same method.

A layer of hexamethyldisilazane (HMDS) was spin-coated onto the substrate to pro-

mote mask adhesion. Negative photo resist was then spincoated onto the metal.
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The resist was exposed using a Suss Microtec M6 aligner, also located at the CNST.
Figure 4.2C shows the photoresist after development. It is important to note that,
due to light leakage at the corners, the parallelepiped systems has rounded cor-
ners. This is unavoidable with the available mask and must be accounted for in the
modeled.

Once exposed, the resist was developed in the appropriate developer and rinsed
thoroughly. The Au was then etched using an aqua regia solution (HNOs : 3HCI :
20H50) until the Cr adhesion layer was visible. Wave dispersive spectroscopy was
used to to ensure that the Cr layer did not etch with the Au. Because this process
involved a wet etch, there was substantial feature size variation across the 3 inches
of substrate. This is primarily due to solution saturation were larger amounts of
etch metal are located. At the center of the wafer, a larger amount of Au is being
etched but fresh etchant cannot be cycled as quickly because of etch solution on the
outer area of the wafer. This results in a slower etch rate at the center of the wafer,
which is common for large area wet etch processes. Agitation can mitigate some
of this rate differential; however, it can never be fully eliminated. This is less than
ideal, and the issue is solved in later samples with a lift-off process. Figure 4.2D
shows an optical microscopy image of the sample after etching.

Once the sample was fabricated, scattering data was taken on the Advanced
Neutron Diffractometer/Reflectometer (AND/R) and the NIST Center for Neutron
Research (NCNR)[7] using a position sensitive detector (PSD).

Figure 4.3 shows the process of data reduction. First, a single data point is

measured on the PSD. This is a 6, plot for a given 6;, corresponding to the x and
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Figure 4.3: The data reduction process.
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Figure 4.4: Data from the Au sample at A) ¢ = 0,B)¢ = 45,C)¢ = 30.

y real space directions. The figure shows that in the vertical direction the intensity
extends a significant distance on the detector. This is due to the poor resolution
in the y direction, which increases the beam intensity impinging on the sample and
reduces count times. Because the resolution is poor in this direction, the data point
is integrated. This set of integrated points is plotted as a function of 6;, versus 6,,;.
Because data interpretation is much more intuitive in a ¢, versus ¢, plot, the data
is then converted to reciprocal space.

A variety of measurements were taken on the Au films. Figure 4.4 shows a

selection of data taken from the Au sample as a function of in-plane rotation, ¢.

4.3 Magnetic system

A permalloy sample of the same type as the Au was fabricated to measure
the magnetic scattering. For this sample, the same mask was used; however, a
lift-off process was applied. First, a layer of MicroChem LOR-2A was spin-coated
onto a 10mm silicon wafer. This layer was baked, followed by a layer of Shipley

S1813 positive photoresist. The resist was then exposed and developed in a similar
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manner as the Au sample. The LOR layer develops away, leaving a S1813 lip
which was used to help ensure complete liftoff. Next, a 10504 layer of permalloy
was deposited onto the sample at the University of Maryland FabLab using the
Denton Ebeam/thermal evaporator. A crystal monitor was used to track the metal
deposition thickness. Finally, the sample was soaked in PG stripper. This removed
the polymer and any permalloy which was deposited on it, leaving only the permalloy
features which were deposited where the photomask had been removed. This method
of lithography ensures that there is minimal size variation between features across
the wafer by removing the metal wet etch step. Unfortunately, as seen in figure
4.5, the mask design did not take into account over-deposition from the somewhat
anisotropic sputtering deposition. This was a trade-off for mask re-usability for both
lift-off and standard lithography methods as each method would require different
mask corrections. Still, both the Object Oriented MicroMagnetic Framework loader
found in section 2.6 and the software infrastructure have the ability to handle such
complexities. For a more accurate representation, 4 overlayed Cylinder objects were

used. The modeling is shown in chapter 5.

4.4 Magnetic Gratings

For all models used in this software, knowledge about the neutron beam co-
herence length is required. The coherence length dictates the number of features the
neutron beam is probing and is important for modeling coherent versus incoherent

scattering. A more complete description of the coherence length and the studies
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Figure 4.5: SEM images of the permalloy samples.
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Figure 4.7: Schematic of the lift-off process.

carried out to determine it may be found in chapter 6.

For the coherence length studies carried out toward the end of this project,
grating samples were required. The principles used to determine the coherence
length can be found in chapter 6. Because the data analysis involved with the
determination of the neutron beam coherence length assumes a perfect repeating
structure, sample uniformity was critical. The lift-off process had proven to be a
successful fabrication technique for such uniformity requirements and was used in
the construction of Ni gratings. The grating sizes were fabricated from 1600um
down to .606um (all values are the grating period). They were produced in 4 differ-
ent sets with two different methods. The 1600um, 800um, 400pm, 200pum, 100um,
50pum, and 25um were fabricated using plastic masks from Output City inc. and
were exposed on the Karl Suss MJB-3 Mask aligner in the UMD FabLab. LOR-2A

was used as the spacing layer with S1813 as the photosensitive layer. Deposition
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for the 1600um to the 100pum were made using the Denton Discovery 550 at the
CNST because the sputtered films were determined by X-ray reflectometry to be
much smoother then those from e-beam evaporation. The Denton Discovery sput-
tering system produced films with approximately 30A of roughness while the e-beam
evaporation system had roughnesses of 504 to 60A. Unfortunately, the isotropic de-
position of the sputtering deposition technique prevented the smaller gratings from
being fabricated in this manner. Because the lift-off technique is dependent on the
the deposition being somewhat anisotropic (preferentially directional in its deposi-
tion: see figure 4.7) if the deposition is too isotropic, the metal film does not create
two separate pieces (deposition on the polymer and on the substrate) but rather
one continuous film which will either lift the feature off the substrate or prevent the
polymer from lifting off the unwanted metal. The limit for the CNST sputtering
system was found to be about 100um. For smaller grating periods, Ni was deposited
by either the Denton ebeam/thermal evaporator or the Temescal ebeam deposition
system at the UMD FabLab. Although these film qualities were not as good as the
sputtering system, they were sufficiently smooth and showed good scattering results.

Although the plastic masks were claimed to be good down to 10um, by 12.5um
the feature roughness introduced by the printing quality (dots per square inch)
resulted in very poor gratings. To makes smaller gratings, quartz masks were needed.
a 10um and 5um mask was purchased from compugraphix. The exposure was
carried out using hard and vacuum contact on the EVG 620 mask aligner at the
UMD FabLab. Other than increased rinse times, the procedure was the same as for

the larger masks. At this size the gratings started to deviate somewhat from the
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Figure 4.8: Width variation calculated for the 5um grating on the A) mask and B)

actual Ni grating.

intended 50/50 ratio of Ni to empty space. This is illustrated in figure 4.8. The
next mask included both 2um and 1pum gratings and attempted to compensate for
the deviation due to exposure edge effects by having 2.2pum to 1.8um and 1.2um
to 0.8um compositions. Figure 4.8 is representative of the grating quality for all
gratings and so only the 5um is shown explicitly.

The final sample was a 606nm grating which had to be fabricated using
nanoimprinting. the nanoimprint stamp was purchased from Lightsmyth inc. and
was coated with an anti-stick layer using the Nanonex Ultra-100. The imprint
was then performed using the Nanonex NX-2000. Both systems are located at the
CNST. The nanoimprint technique generally utilizes a dry etch rather than lift-off
to fabricate the system and, because Ni does not have a good dry etchant, SiN
was used as the grating layer. As seen in figure 4.9, the gratings were far lower in

quality than those produced by lift-off; a factor of both the technique and the size
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Figure 4.9: AFM of the nanoimprinted sample.

scale. Although, these gratings could not provide quantitative information about
the coherence length, they were of sufficient quality to determine whether or not the

coherence limit had be crossed.

4.5 Data Conversion

The data reduction process is somewhat crude at this point but still allows
the user to load .cgl files from AND/R and convert the data to Q space.
The rebinning process micro-slices the theta space array to allow for a more

accurate rebinning procedure. It uses the formula:

cos(fy) — cos(6;)
A= 0 (4.2)

sin(fy) + sin(6;)

where the middle component of the matrix is 0 because there is no g, compo-

nent. The data loading process is shown in figure 4.10
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Then the specific values needed to rebin the data to Q) space is entered. C) Finally,

the user can select a subset of the data that he or she wishes to model.
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Chapter 5
Modeling

5.1 Overview

Now that a software infrastructure has been developed, the formalism pre-
sented in chapter 3 can be used to model the real systems which were fabricated
in chapter 4. The real system referred to in the following models is the 5 micron
x 5 micron Au pillar system in the 10 micron x 10 micron lattice. The sample
was fabricated through standard lithography techniques and was etched using aqua
regia.

Because of the broad range of models supported by the software, the sensitivity
of the algorithms to specific parameters can be determined. Although the fitting
infrastructure has not been implemented, the software is designed to allow for the

implementation of fitting algorithms with relatively little effort.

5.2 Shape Differentiation

In samples with larger repeating structures, it is often important to differ-
entiate between feature shapes. For example, in the case of the wet etched Au
parallelepiped pillars described in section 5.1, the degree of corners rounding due

to the wet etch process should manifest itself in the resulting scattering data. To
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Figure 5.1: The shapes tested all filled the same volume of the unit cell. A) an xy
cross-section of the shape being modeled. B) Real data and the theory functions cal-
culated for each shape. C) An enlarged image of the third diffraction peak showing

differences in intensity.
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determine the sensitivity of off-specular reflectometry to these small variations, simu-
lations within the Born approximation were calculated. Figure 5.1 shows the results
of this study. Figure 5.1A shows five models with varying degrees of curvature.
For each of these models, the discretization size is kept constant to eliminate the
influences of element (in the finite element process) resolution on the scattering.
As the corners are rounded, the feature’s total volume fill decreases. Because this
decrease in volume fill can also change the calculated scattering results and adds a
variable which is not explicitly being tested, the size of the features are progressively
increased so that all model features have the same total material volume fill. The
‘curve’ value expressed in figure 5.1A refers to a normalized degree of curvature
which is defined during the model building process. The possible values go from 0,
totally square, to 100, totally rounded. More details on this parameter can be found
in section 2.3.

Once the models were built, they were compared to the gold pillar scattering
data collected of of the samples discussed in section 5.1. Figure 5.1B shows the
resulting theory function calculations and a ¢, slice for comparison. The scattering
is scaled to the first order diffraction peak and the g, slice is taken well above the

"horizons’ !

. In general, the models produce similar results; however, in the third
order diffraction peak, there is a significant degree of variation between the five
models. Figure 5.1B shows a magnified view of this peak. As the curvature de-
creases, the third order diffraction peak becomes increasingly suppressed. The third
order diffraction peak is also found to be below the background of the instrumen-

tation. This indicates that, even for such large feature spacings, it is not possible
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to distinguish between the different features experimentally. As the feature spac-
ing decreases, the diffraction peaks would push to larger ¢, values, making shape
differentiation even more difficult.

The conclusion from this study is that, for feature curvature, it is not possible
with the currently available reflectometry to easily distinguish between different
models at the feature sizes and spacings discussed in this model system. It may,
however, be possible with future reflectometers or features with larger spacings to

distinguish between different degrees of curvature.

5.3 Modeling using the Born Approximation

The first algorithm to evaluate is also the simplest. The kinematic or Born
approximation assumes no perturbation of the wavefunction inside the sample as is
discussed in 3.2. The modeling was carried out and can be seen in figure 5.2.

Some important features of the model are highlighted and labeled using let-
tered circles. Figure 5.2B is indicating where the 'horizons’ are on the data. In the
data, there is a suppression of the scattered intensity along the 'horizons’ which is
not observed in the BA modeling results. This is expected as the intensity suppres-
sion is primarily a result of wave perturbation by the sample. Figure 5.2A indicates
the region which is being averaged over in the 1D plot. This box shows that the av-

eraged intensity is over both refracted and non-refracted data as discussed in section

!The ’horizons’ are defined as the position in ¢ where either the incoming or outgoing angle are
orthogonal to the substrate. This regime generally exhibits significant dynamical scattering effects

which need to be captures by the modeling.
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3.4. The corresponding area in the 1D plot can be seen at figure 5.2E. The averaging
produces an effective splitting of the peaks; however, looking at the 2D data the
peaks are clearly an artifact produced by the refractive shift. The average is taken
over such a large area because the fringing in the @), direction do not match well at
low Q, which can make model comparisons difficult. Although the refractive shift is
not inherent to the Born approximation it must still be considered in the modeling.
Figure 5.2F shows the peak splitting, which is a result of the refractive shift. By
figure 5.2G the scattering is almost completely due to the refracted scattering and
the peak positions no longer match.

Figure 5.2H shows the background level from that data. The background is
preventing the modeling of the sixth and seventh diffraction peak. This modeling
provides a glimpse of how much information is lost under the instrumental back-
ground. It is clear that this technique is significantly limited by this background
and that further work is needed to improve the instrumentation.

Figure 5.3 shows modeling of the sample data modeled in figure 5.2; however,
in this model the refractive shift is now applied below the ’horizons’. Because
the refraction caused by entering and leaving the substrate at approximately an
orthogonal angle to the substrate sidewall below the ’horizons’ can be calculated
separately from the scattering calculation, the refraction can be applied directly to
the BA without altering the approximation formalism. Once applied, the diffraction
peak position below the "horizons’ are positioned properly in ¢,. One distinct error
is that the peaks seem to overlap in ¢, at the "horizons’ which is not how they appear
in the data. This is because at the "horizons’ the scattering intensity is supposed to
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be suppressed; a phenomenon that the BA cannot capture. To appropriately match
this scattering characteristic, a more robust calculation is needed.

Figure 5.3 also provides slices in both the ¢, and ¢, directions. The model
feature height is determined experimentally from profilometry measurements taken
on the sample and was validated with the DWBA calculation. Although the peak
fringing in the ¢, direction does not align with the data, the peak spacings are as
expected for a feature of this thickness. The mismatch between the data and the
theory is primarily due to the BA inability to reproduce substrate effects such as
the critical edge and total reflection. The ¢, slice now matches the diffraction peak
positions where scattering is primarily caused by refracted intensity. The point at
which the data is transitioning between scattered and refracted scattered intensity
in the averaged slice is still not well modeled because the 'horizons’ are not being
suppressed.

Some of the deficiencies seen in the Born approximation modeling may be
overcome by applying a simple perturbation to the wavefuction. The results of this

approximation are evaluated in the next section.

5.4 Modeling using the Substrate Modified Born Approximation

As described in chapter 4, the SMBA is the Born approximation algorithm
where the wavefunction is perturbed by the neutron beam interaction with the
incident media/substrate interface. The most notable result of this perturbation is

the effects observed at the ’horizons’ as is illustrated in figure 5.4. Comparing figure
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5.4 with figure 5.3, the duplicated peaks in g, slices near the "horizon’ are no longer
observed.

This model is more representative of the real system but there are clearly
inaccuracies in this approximation. The "horizon” asymmetry indicated by the brown
areas marked in figure 5.4 in the theory function calculation is a result of the critical
edge. At positive g, scattering, the "horizon’ is the result of an air-to-silicon critical
edge. at negative ¢, the sample stack is inverted and the critical edge is now the
result of silicon-to-air interface. The extreme asymmetry in the theory function is
not observed in the data.Comparing the results of the slices in ¢, and ¢, to those in
the BA, the same inaccuracies are observed. The ¢, marked in figure 5.4 with an
orange box exhibits the same phase misalignment observed in the BA and the ¢, slice
indicated in figure 5.4 by the green box match the correct peak positions but still
do not match the scattering intensity and structure where the intensity is averaging
over both refracted and non-refracted scattering (at approximately ¢, = 0.0003A).

A more rigorous treatment is needed to better match these areas.

5.5 Modeling using the Distorted Wave Born Approximation

As described in chapter 3, the full distorted wave Born approximation im-
plementation involves perturbing the off-specular scattering by the solution to the
wavefunction inside each layer of the sample. Because the solution cannot be solved
explicitly at the off-specular angles, the solution for the wavefunction at the specular

scattering is used instead. This calculation cannot reproduce the specular scatter-
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tation.
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ing and so the specular scattering must be included independently. To clarify, the
scattering at ¢, = 0 in the calculated theory function used in this software is really
the in-plane scattering which has been resolution corrected. The software does not
yet include the specular scattering because current forms of the theory do not pro-
vide a way to explicitly scale the off-specular scattering to the specular scattering.
In general, empirical methods are used to appropriately scale the two components
[14]. Figure 5.5 shows the results for the off-specular scattering calculation without
the specular scattering included. The scattering is empirically scaled to the second
order diffraction peak in the data. The parameters used to solve this scattering are
the same as those used in the BA and the SMBA. The substantial improvement
in agreement between data and theory at low q illustrates the advantages of us-
ing the DWBA. The ¢, slice long the first order diffraction peak (orange box) are
well-aligned and even show some minor structure (g, = 0.015) observed in the data.
Similar results are observed in the second order diffraction peak (purple box) where,
although the theory produces much more well-defined peaks, the profiles match quite
well. The third order diffraction peak (red box) starts to be significantly effected by
the instrumental background. The g, matches well until the third order diffraction
peak. This third order peak intensity mismatch is present in all of the modeling and
is difficult capture. The nature of the third order peak suppression is unclear and
needs further work for an explanation. Because the models in this software do not
yet include parameters for disorder, many of the deviation between the theory and
data may be due to disorder in the feature lattice and roughness between the sub-

strate/feature and feature/air interfaces. Also, given more time and computational
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resources, it is possible that better fit could be obtained.

5.6 Modeling Magnetic Samples

Because neutrons are sensitive to magnetic fields, it is important to be able to
model magnetic samples. The magnetic scattering is more complicated and requires
much more resources to carry out. To test the magnetic modeling capabilities a
square lattice of permalloy parallelepiped features was fabricated as discussed in
chapter 4. The fabrication processes produced rounded edges and dimples on the
sides of the features. Fortunately, the versatility of this software allows this rounding
and the dimples to be modeled. Figure 5.6 shows the fabricated sample and how
the sample was modeled in the software.

The software will utilize functionality from the Object Oriented Micro Mag-
netic Framework (OOMMEF) software package as discussed in chapter 2. The ability
to create OOMMEF input files and load OOMMEF output files provides a way to model
magnetic samples based on powerful magnetic moment minimization software. The
software takes the minimized unit cell and translates the resulting moments into a
magnetic scattering length density which may then be used by the modeling algo-
rithm. More details on this process may be found in section 2.6.

The DWBA may be used to accurately determine the feature height through
modeling. The DWBA results shown in figure 5.7 agree with the crystal monitor
and indicate the feature heights are 1100A. The model also shows the data to be

of poor quality which will make modeling difficult.
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Figure 5.6: A) An SEM image of the features produced by the fabrication process.
B) an optical image of the features. C) a slice of the scattering length density array
used for modeling D) a slice of the energy minimized magnetic moment array as
produced by the OOMMEF software for the saturated state and imported into the

off-specular software.
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Now that the appropriate parameters have been accurately determined using
the DWBA, the magnetic BA can be solved for. Figure 5.8 shows the results from
the model. Because there is not a large spin-flip contribution to the scattering, the
theory function does not indicate significant scattering, as is observed in the data.
In general, the theory functions used to model the real data have a data ’floor’
or lower limit placed on them because the q range for which the instrumentation is
sensitive to is much narrower than that which can be calculated. To better illustrate
that scattering is being calculated for the spin-flip states but at intensity that the
instrument is not sensitive to(below background), figure 5.8B shows the calculation
without adding a lower limit to the data values.

To better understand the accuracies and deficiencies of the resulting calcula-
tion, vertical and horizontal slices can be compared. Figure 5.9 shows a vertical slice
of the data. This comparisons shows that the data is of fairly poor quality and does
not give a good indication of the differences between the ++ and — scattering. Also,
the scattering for this data is measured at lower ¢, values which means the BA is
far worse at representing the data results than that of the Au features. This sample
modeling would benefit significantly from a magnetic DWBA calculation which has
yet to be implemented.

The horizontal slice shown in figure 5.10 indicates that the magnetic calcu-
lation does provide some insight into the sample’s magnetic characteristics. The
differences between the ++ and - - cross-sections are captured by the theory func-
tion and compare quite well to each other. This agreement shows that OOMMF

has minimized the saturated magnetic state appropriately. It also shows that the
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Figure 5.8: Spin flip and non spin flip cross-section data for the permalloy sam-
ples and their corresponding theory functions. A) with a data floor to match the

instrumental data range and B) no data floor.
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Figure 5.10: A horizontal slice of the two non spin flip cross-sections.

formalism used to convert the individual moments in the finite element matrix to a
magnetic SLD is also accurate. The sensitivity of the instrumentation to magnetic
variation in the the plane of the film has yet to be fully evaluated but, in this work,
it is assumed to be similar to the structural sensitivity.

Although the magnetic modeling shown in these results is fairly crude, it shows
two important features of the software. First, by tying our software to OOMMF, we
are able to model magnetic systems which would otherwise be complicated to model.
Second, the infrastructure design allows for the inclusion of magnetic modeling and,

with better approximations, will be able to handle even more complicated systems.
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Chapter 6
Coherence Length Determination

6.1 Overview

The coherence length of the neutron is the length over which the neutron
will interfere with variations in scattering potential simultaneously, allowing for the
characterization of individual features as they relate to the entire system. For vari-
ations in scattering potential over length scales larger than the neutron coherence
length, the neutron will interact incoherently with the sample. The effective in-plane
neutron coherence length can be an important factor in interpreting off-specular
reflectivity data as the measurement is sensitive to the in-plane structure. To accu-
rately model off-specular scattering data, knowledge of the neutron coherence length
properties is required. Part of the work in this thesis focuses on determining these
properties for neutrons as prepared in a typical reactor source neutron reflectometer.

The neutron beam employed for diffraction in a standard instrumental config-
uration consists of a non-interacting collection, or ensemble, of individual neutron
wave packets, each with a characteristic transverse coherence length perpendicular
to its normal wavevector, k. Of particular consequence is the projection of the trans-
verse coherence length onto the sample plane. Each neutron wave packet is com-
posed of a distribution of plane wave momentum eigenstates which, when summed

together to form a packet, localize the neutrons in space. Although representing
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a wave packet as a single plane wave can be useful for describing some scattering
phenomenon, it is neither physically realistic nor sufficiently adequate to accurately
describe all scattering behavior. One example where the plane wave approximation
is inadequate occurs when the effects of the coherent distribution of wavevectors
comprising an individual packet must be separated from effects associated with the
incoherent angular distribution of normal wavevectors of the packet forming a beam.
For our discussion and analysis of this subject, we will assume that all scattering is

elastic.

6.2 Effect of Transverse Coherence on Specular Reflection

The projection of the transverse coherence length can be split into a par-
allel and a perpendicular component as defined in figure 6.1B. For the geometry
and beam configuration used in neutron reflectometry, only study of the parallel
projection component is possible as the beam resolution in the perpendicular direc-
tion is so poor that an accurate determination would be unfeasible. One approach
for determining the transverse coherence length of the neutron wave packet inde-
pendently from the incoherent angular divergence of the beam is to investigate the
extent to which an individual neutron effectively averages over in-plane variations in
the scattering length density during the process of specular reflection. If we employ
a well-characterized set of diffraction gratings which possess sufficient long-range
order, we can semi-quantitatively determine the extent of the neutron transverse

coherence length. Specifically, if the projection of the neutron transverse coherence
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Figure 6.1: A schematic of the instrumental geometry used for the coherence length
measurements. Two coordinate systems are present in this work. The blue x, vy,
and z coordinate system refers to the coherence length projection onto the sample
where the y axis refers to the perpendicular projection component and x refers to
the parallel projection component(referenced to the scattering plane) The red x', y’,
and z’ coordinate system refers to the components of the coherences length where

y’ is the transverse direction and x’ is the longitudinal direction.
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length onto the grating structure, as shown in figure 6.1A is large enough to average
over a number of periods (i.e., one period being equal to the sum of the widths
of one Ni stripe plus intervening space), then the effective SLD of the film on the
substrate probed by the specular scattering is equal to the average in-plane scat-
tering potential resulting from the stripe and the spacing. Only a single critical Q
will be observed, corresponding to the specular reflectivity curve shown in figure
6.2A. If the projected transverse coherence length of the neutron is significantly less
than either the stripe or spacing width, the observed specular reflectivity will be
an area-weighted incoherent sum of the reflectivity for the Ni (on Si substrate) and
the bare Si substrate, as illustrated in 6.2B. The specular reflectivity for both of
the limiting cases (where the feature spacing is much greater or much smaller than
the coherence length) is negligibly affected by angular beam divergence typically
employed in such measurements. Consequently, the effect of a coherent distribution
of wavevectors in each neutron wave packet can be distinguished from that of the

incoherent ensemble of nominal neutron wave vectors within the beam.

6.3 Results of the Specular Reflection Measurements

The ferromagnetic Ni gratings were saturated in an applied field, and measured
with a polarized beam on the NG1 reflectometer at the NCNR. These measurements
resulted in a splitting of the critical Q associated with the specular reflection, de-
pending on whether the neutron spin eigenstate was plus or minus. This splitting

indicates that the scattering measured from the system was due to the magnetic
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Figure 6.2: Model results for the expected difference between coherent and incoher-

ent scattering from a system of nickel gratings.
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material Ni/Air(50:50) Ni Si Air

density(g/cm?) — 8912 2329 0.0
SLD(A™?) 4.71e-6 9.42e-6  2.07e-6 0.0
Critical Edge 1.54e-2 2.18e-2 1.02¢-2 0.0

gratings and not some other non-magnetic structure but is of no consequence in the
present consideration and can be ignored.

In the large grating period limit, where the neutron wave packet fails to ade-
quately average the in-plane variations in SLD associated with the grating structure,
the specular reflectivity appears as in figure 6.3, (for an 800 micron Ni stripe width),
The data show two distinct critical angles corresponding to the scattering potential
of the Ni stripe and the bare Si substrate. In the other limiting case, e.g., for a
stripe width of 10 microns the neutron wave packet effectively averages over the in-
plane variations in the SLD associated with the grating structure and only a single
critical Q is observed, corresponding to a SLD that is the average of Ni and the air
in the space between adjacent Ni stripes, as shown in figure 6.3. The exact values
for the SLD are provided in the table. Also shown in figure 6.3 is the specular reflec-
tivity curve for an intermediate case, where more complicated scattering processes
are observed. The transverse coherence length can be estimated by rotating the 10
micron grating to produce an effective periodicity based on the rotation angle. For
example, the effective grating periods at 45, 60, and 75 degree rotations is 28, 40,

and 77 microns respectively. The transverse coherence length of a neutron wave

119



8000
7000
6000

800 micron grating (vert. orientation)

3000

2500

25 micron grating (vert. orientation)

T 5000 /\ (+/9) 'EZOOO (+/+)
2 1000 / \ (+/4) 2 1500 /\ (+/)
% 3000 / (-/+) g 1000 Pa \ (C2]
£ 2000 — . / \‘,\/\, \ /)
1000 \[\
0 |- — . " 0 T SO 1
1000 0.01 0.02 0.03 0.04 0.05 500 0.01 0.02 0.03 0.04 0.05
Q, (A?) Q, (A?)
o 10 micron grating (vert. orientation)
600
500
E 400 - A
% 300 (/)
P/ =
- 100 A\
SR | VR
0.01 0.02 0.03 0.04 0.05
-100
Q, (A?)
Figure 6.3: Data for three representative case. the 800 micron grating exhibits

incoherent scattering, the 25 micron is approximately the coherent limit, and the 10

micron grating is mostly coherent scattering.

packet within the context of the instrumentation used for this study is estimated to
be on the order of 1 micron. More rigorous and quantitative analysis is currently
underway in preparation for a comprehensive publication reporting the results of
this study. This reference also contains the derivation for the 1 micron value esti-
mate in this thesis. The specifics will not be discussed here as the results have not

yet been published.
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Chapter 8
Future Work

8.1 Summary

This section will discuss some aspects of off-specular reflectometry modeling
which still need to be addressed before the technique can be utilized as a highly
reliable characterization tool. One of the greatest limitations not discussed in this
thesis is instrumentation. The samples used in this work are highly idealized to
scatter where the instrumentation is most sensitive. resolution and background
limit the instrument capabilities and still requires significant improvement. Still,
the available modeling software is also lacking and this chapter will discuss the

software requirements.

8.2 Future Work on Software

Because modeling reflectometry is a an iterative process, the current software
would benefit from a fitting engine. A fitting engine is a module which can auto-
matically iterate over the model parameters to minimize the differences between the
theory function and data. By automating this process, the user would be able to
save significant time over running each individual model and changing the param-

eters manually. The implementation of a fitting engine requires a thoughtful and
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creative means of parameterizing the model systems to ensure quick convergence
and that the resulting model is physically possible. Some design has been discussed
for use in this software; however, there was not enough time to implement these
features.

Although many of the calculations used in this software are parallelized, they
are still too slow for practical data fitting. The calculation speed can be improved
by both increasing the efficiency of the code (removing superfluous loops, storing
information that is needed in the future, etc.) and by increasing the number of
nodes or processors which the calculation may utilize. the later improvement can be
accomplished through the use of supercomputers, clusters, or commercial services
which use cloud computing. Implementation of both the coding efficiencies multi-
processing could require some significant code restructuring.

Because experimentalist are generally not well-adept at computer programing
(and are the primary users of neutron scattering instruments) the software would
benefit from a robust graphical user interface (GUI) which would make modeling and
data analysis easier to carry out. Although this software has some graphical interface
elements, there are places, such as model building, where a GUI could significantly
improve the modeling process. In addition, the current GUI applications should be
collected and implemented into one pieces of software. The current method of GUI
control is mostly script based and can lead to confusion.

For magnetic modeling, this software interfaces nicely with the OOMMEF soft-
ware package. Unfortunately, the importing and exporting required to use OOMMF
modeling is cumbersome and confusing. This process can be simplified by utiliz-
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ing an OOMMF function which handles batch processes through scripts. Although
this process was investigated, combining our Python code with the tcl back-end of

OOMMEF was complicated and the idea was abandon.

8.3 Future Work on Modeling

The models implemented in this software show that qualitative modeling of
simple features can be accomplished using finite element analysis. Still, additional
calculations and features must be added to the software before it can truly capture
all of the features in off-specular scattering.

Although the BA and SMBA calculations have been very useful under certain
conditions, the DWBA has shown superior modeling capabilities. The DWBA im-
plementation in this software still requires the addition of the specular scattering to
model the data completely. This is non-trivial as the off-specular and specular cal-
culations do not scale the same and are generally combined empirically using a real
data set. The DWBA also needs the full magnetic calculation implemented. This
can be found in reference [14] but was not implemented due to time constraints.

Some samples may require a study of how sample angle effects the scattering
data. To model this, the software needs a matrix rotation function. This is compli-
cated by the fact that the calculation is split into two components and needs to be
carefully implement. Similarly, a more robust lattice builder function which allows
the user to build arbitrary lattice structures would provide additional flexibility to

the software. An example of this feature can be found in the isSGISAXS software
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[17].

All real systems will have some disorder which will effect the scattering. Cur-
rently, the software has no way to model this disorder. To quantitatively model
experimentally relevant systems, this disorder will have to be modeled. Implement-
ing this parameter will also require an in-depth understanding of the neutron beam

coherence length which has yet to be fully characterized.

8.4 Future Work on Samples

Off-specular reflectometry would benefit from a greater variety of standard
systems to allow for a broader understanding of the software modeling capabilities.
For example, it is still unclear how well this scattering technique can differentiate
between differently shaped features with similar volume fills. Creating a set of
pillars with progressively more rounded edges would help answer this question. Also,
sample features with an in-plane averaged density gradient could also provide some
interesting scattering properties. The finite element method of calculation may not

be able to reproduce all of the scattering effects.

8.5 Future Work on Coherence Length

Initial steps have been taken to fully characterized the coherence length prop-
erties of the neutron beam. These results have provided some interesting findings
and warrant further investigation. The coherence length has been determined in the

direction parallel to the beam; however, the nature of the coherence length in the y
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Figure 8.1: An experiment which would allow for the study of magnetic coherence
length independently from the structural component. A) Gratings magnetization
aligned parallel with the neutron polarization B) Gratings magnetized perpendicular

to the neutron polarization direction.

direction is still unclear. Other phenomenon such as a dependence of the coherence
length on slit width and high dynamic scattering effects at feature spacings close to
the coherences length still need to be explored.

Another possible experiment is the study of the magnetic coherence length.
Figure 8.1 illustrates an experiment which would allow for the study of the purely
magnetic coherences length by studying the polarized reflection. The spin flip cross-
sections are only effected by the magnetic scattering and are independent of the

nuclear scattering component.
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Chapter 7
Conclusion

7.1 Summary

A software infrastructure has been developed using the Python computer pro-
gramming language for the modeling of off-specular neutron reflectometry scattering
data in a broad and extendable format which provides a generalized modeling en-
vironment with an openly reviewable and revisable set of scattering calculations.
This software was used to model the standard samples which were fabricated at the
NIST Center for Nanoscale Technology and the University of Maryland’s NanoFab
center.

This thesis focuses on comparing different algorithms for the modeling of off-
specular data from two-dimensionally ordered structures. The algorithms are ex-
tended from the specular reflectometry formalism and work carried out previously
on off-specular scattering data interpretation previously developed, as discussed
in chapter 1. First, a software infrastructure was developed which could handle
fast prototyping of both model representation methods and scattering calculations
as outlined in chapter 2. Once this infrastructure was developed, different algo-
rithms and mathematical treatments for the scattering calculations were formulated
in terms of how they would be coded into the finite element software and are pre-

sented in chapter 3. To test the calculations, real scattering data was required. For

126



this, large area patterns of simple parallelepiped features were fabricated using the
methods discussed in chapter 4. Once all of the required components were com-
pleted, the real data was modeled using different scattering algorithms to determine
each method’s accuracies and deficiencies, as discussed in chapter 5. Finally, all of
the calculations contained parameters for the neutron beam coherences length which
were arbitrarily set based on crude knowledge about the neutron beam properties.
For more accurate calculations, a value for the coherence must be determined. This
beam dependent parameter is studied in chapter 6.

The first approximation used to model these systems was the Born approxi-
mation. Even with this simple approximation, many mathematical treatments were
formulated to improve modeling accuracy. First, a Gaussian envelop was placed on
the structure factor calculation to more accurately represent the neutron beam co-
herence length. This eliminated artifacts produced between the off-specular diffrac-
tion peaks. For treatment of scattering calculations below the ’horizons’ refraction
effects due to the incident beam impinging on the substrate at a nearly orthogonal
angle. Finally, resolution effects from deviations in the incoming angle and neu-
tron beam wavelength were added to the calculation. The resulting theory function
calculations qualitatively matched the data at high Q values but were not able to
capture the scattering at low Q values or near the ’horizons’.

To improve the results obtained from the Born approximation, the wavefunc-
tion was perturbed by the neutron interaction with the interface between the sub-
strate and the incident media. This perturbation made the theory function cal-

culation much more complicated and increased the calculation time significantly.
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The resulting theory functions exhibited differences from the BA calculation at the
"horizons’; however, the calculation still show similar inaccuracies at low q values.
The final formalism implemented in this software was the distorted wave Born ap-
proximation which perturbs the wave function by neutron interactions with the sub-
strate, incident media, and sample. This improved the accuracy of the calculation
and qualitatively match the data much better then previous approximations.

We have found that, although BA does not capture all of the scattering details
observed in real scattering data, its speed relative to other calculations provides
a useful tool for obtaining quick estimates for parameter values. The substrate
modified Born approximation provides one more step toward modeling quality by
representing scattering effects at the horizons. This calculation was further improved
by calculating the refractive shift which occurs below the horizons of the sample.

Neutron coherence length studies were carried out to determine the surface
area over which a neutron beam would simultaneously probe. These properties are
dependent on how the neutron wave packet was ”prepared” before it reaches the
sample. The neutron coherence length in the z direction was found to be approx-
imately 1 micron. The coherence length of the neutron in the x direction was so

small that it could not be determined.

7.2 Final Thoughts

As the off-specular neutron reflectometry technique continues to mature, it is

clear that its contribution to materials characterization will be significant. Still, it

128



is a technique still in its infancy, and will require strong commitment from both the
neutron and general scientific community to fully realize its potential. This project
represents a modest attempt to apply the latest computational, experimental, and
mathematical methods to evaluate the technique’s current status, capabilities, and

limitations.
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Appendix A

Overview
Although the derivation of the transfer matrix is somewhat straightforward, it
is worth recording because a similar process in needed when providing the corrections

used in the theories.

A.1 Wave Transfer Matrix Derivation

To derive:

L) sin(kyL 1
ot _ | costbul) o sinteurL) i o (A1)

il{?[[[t —k]] Sin(k?[[L) COS(k‘[[L) Zk?[(l —7’)

we start with the 4 boundary conditions:

l+r=c+d (A.2)

B(l-r)=c—d (A.3)

ceik][L + de—kIIL — t€+kIIIL (A4)

cetkirl _ Je—kil — kiiryotkinnL (A 5)
krr '

Equation A.3 can be rearranged to:

c=1+r)—d (A.6)
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which can be substituted into equation A.4 to yield:

:—I(l—r)zlJrr—d—d (A7)
ky
20 = (147) = (1= 1) (A8)

With d we can now solve for c:

2e =27 (1 )4 2d (A.9)
kir
/C[ /{7]
2% =2 (1—7) 4 (L+r)——(1—7r) (A.10)
krr 545
k1
2ce=(1+r)+-—(1-r) (A.11)
Kir

These can be brought into A.5:

k - ;
(1) 4 (0 =) [ W | (1) = (1= )| emihork = gpehant (A12)
k?[[ kII

it is convenient here to substitute:

A

(1+7) (A.13)

B=(1-r) (A.14)

Which gives:
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{A + ﬁB} etikirl {A — ﬁB} e kil — gpethinrk
kir kir

Distributing the exponential gives:

Ae+ik[]L+ kl B€+’ik11L+Ae—ik11L _ kI Be—ik[[L — 2t6+k‘][[L
kll 17

Here we can apply Euler’s formula:

k ..
QﬁBZ sm(kHL)

2Axcos(krrL)
7\

Y

A€+lk11L + Aefzkle_F B€+Zk11L o Be*lk[}L — 2t€+k111L
11 11

resulting in:

k .
11

The same substitution can be applied to equation A.5 to yield:

[A ¥ ﬁB} gihirl _ [,4 - ﬁB} L. [P
kir krr kir

; kr ., kr krir
Aettrit 1 2 Betkirk _ pe~kul o 78 Bkl — 92l g thiiL
1 1 kr1

EL B2 cos(ikrr L)
2Aisin(ikr L) N

la ~N

A > ko, ki krrr
Aelk[]L _Ae—k[]L+ Belk11L+ Be—k[[L — 2 te+kIIIL
11 kII kI]

k k
Aisin(ky L) + —Bcos(ky L) = ~Ltethrl
krr krr
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It is convenient to multiply through by k;;:

k k
k/’[[Ai Sin(/{[[L) + k?[[—IB COS(/{[[L) = k‘j[ﬂteJrkHIL <A23)
Err Err
k'[[Ai Sin(/{?[[L) + k'[B COS(]{?[[L) = k[[]teJrk”IL <A24)

We can also multiply by ¢ to get:

Zk?[[A? SiIl(k’]]L) + Z]{?]B COS(k?[[L) = il{?]]]t6+kIIIL (A25)

—l{?]]A Sin(k?][[/) + lk?]B COS(/{Z[]L) = ik?]]ﬂf€+k1uL <A26)

Now we can reform equation A.18 and A.26 into a matrix:

tetkirkl cos(krrL)A LIa sin(kr;L)iB
= o (A.27)
Z'k][[t€+k1HL —]C][ Sin(k}[[L)A COS(k[[L)]C]iB

The common multiplies in column 1 and column 2 can be taken out and solved

using a matrix multiply. This is written as:

tetkitl cos(kyrL) —sin(krL) A
= " (A.28)
ik[[[f}€+kIIIL _kII Sin(k[[L) COS(]C[]L) Z]i][B

We can replace A and B and pull out the common turn on the left hand side

to yeild:
t COS(k‘[[L) % SiIl(k‘[[L) (1 + T)

ekl — ‘ (A.29)
ik[[]t —k[] Sin(k’][L) COS(I{?[[L) Zk[(l —T)
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Appendix B

Overview
The Born approximation starts with the integral form of the reflection calcu-
lation. Because this is important to the rest of the derivation, but somewhat long,

it is derived in its completion in this appendix.

B.1 Integral Form of the Reflectometry Calculation Derivation

It is convenient to derive the integral form for the one dimensional case. Start-
ing from 1.22:
52

Before the wave enters the sample, it is described as an unperturbed plane

wave as seen in region I of figure 1.4:

sz — eik02+ Tefikoé’ (Bz)

The scattering length density p, can be written as the sum of the scattering
length density felt by the unscattered wave plus the that of which the wave is

perturbed by:

Pz = Poz T P12 (BB)
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To combine equation B.1 and equation B.3 we create:

62

L=
022

+ k%z — 47Tp0z

which gives:

[5—22 + kg, — 4 (po- + plz)] ), =0
[% + k. — 4mpo. — 47Tp1z} P, =0
[L —4mpi] . =0
Ly, —4mpi, =0

Lz/}z - 47Tplz¢z

(B.5)
(B.6)
(B.7)
(B.8)

(B.9)

We can make 1,9 the unperturbed wave equation which follows equation B.1

to give:

L¢0z =0

Defining the Green’s function for the equation:

LG(2|2") = 476,

(B.10)

(B.11)

Allows for the equation to be rewritten in terms of the Green’s function. As

Discussed in section B.2, We know that LG should satisfy:

LG =0,
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We have defined our LG(z|z) to be 4mw(z — 2’). So we can deduce that:

LG
= 5, B.1
4m Oo-s (B.13)
It was also shown that:
fz _/ (Szfz’fz’dz/ <B14)

where the f, is B.9 with an 2’ dependence. We can put these into the equation

to form:

fZ - ffooo %47"0151@:@2/ <B15)
fZ = ffooo LGplz’wz’dZ, <B16)

Because of B.10, the equation can also be written:

o0

fz = Libo. + / LGpipdz (B.17)

—00

carrying out the rest of the steps outlined in B.2, we get:

L, = Ly, + / LGpr)dZ (B.18)

The L has no 2z’ dependence so:
Lip, = Lipo. + L 72 Gprotp.dz (B.19)
V. = o, + [Oo Gprathads (B.20)
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It is somewhat straight forward to show that,because p — 0z — —oc:

U, = e L re*% a5 2 + —0c0 (B.21)

which is just the equation for a plain wave in free space, as discussed in 1 At
this point it becomes useful to look at the limit of equation B.9 and equation B.11

as z — oo. They are:

U, — €% 4 rpe™ % as 2 — —o0 (B.22)
and
/ 2m —ik,z
G(z]Z') — e Uy, as z — —00 (B.23)
respectively.
Now, given the three previous equations,the asymptotic solution may be de-
rived.

These three equations can be put into equation B.20 to give:

e T o N TGRS / ?e—“ﬂzz%z/ prabadz (B.24)
oo UKy

or, pulling out the independent portion of the integral:

) ) . . 2 . o0
ezkzz + Te—zkzz _ ezkzz + Toe—zkzz + %e_lkzz/ \Iloz/p1zf¢z/d2’, (B25)
1R, _

[e.e]
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Now we can reduce the equation to:

o » o » » ~
eth=? 4 pemikez = eikez 4 poemikez 4 i—’;e ez (2 Woupratpd?! (B.26)

P =g + 2 70 Woupratds! (B.27)
r=T"To + f \I/()Zplz'(ﬁzdz <B28)

Two last alterations put this equation in the form that is started with in 3. In

the specular case:

Q = 2k. (B.29)
and the wavefunction for the initial wave is a plane wave:
Wy, = e'ho:* (B.30)

which can be incorporated into equation B.28 to make:

=70+ | 1/2)Q f eh0:2 p, . dz (B.31)

=T+ % fooo eikozzplz¢zdz (B.32)

B.2 Green’s Function Reference

Because it can be somewhat unfamiliar, Green’s functions are a way to solve
inhomogeneous differential equations through the use of known boundary conditions.

In general, an operator and Green’s function are defined such that:

LGy = Gy (B.33)
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where L is the defined operator (for our purposes it is equation B.4) and G is
the Green’s function. The ¢§ is the Dirac delta function which necessarily has the

identity:

/ Opdr =1 (B.34)

[e.e]

It also has an important translation property which is utilized in this applica-
tion. In the case where the integration of a § function with a (z — 2’) dependence

and a function with a dependence on an individual component leads to:

/ (Sm,x/fx/dl‘/ = fm <B35)
which means that:
/ LGm,x’fw’dm/ = / 5x—x’fa:’dx/ = fx (B36)

We have intentionally set up our equations so that we can solve for ¥, and so

that:

LV, = f, (B.37)

which can be inserted into equation B.36 to give:

LV, = / LGy forda’ (B.38)

—0o0

Finally, the L is not dependent on z’ so it can be pulled out of the integral to
give:
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U, = ffooo Gy forda! (B.40)

This is what is derived in B.1.
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Appendix C

Overview

This appendix holds the long form algebra or the magnetic reflectometry

derivations. The tables are taken from [4].

C.1 Combining the wave equations

We start with:

[% + %2 - 47TP++Z} Wy, —dmp, V_ =0 (C.1)

[% + %2 - 47?,0__4 V. —dmgp_ VU, =0 (C.2)

Because the result of both equations equal zero, these two equations may be
multiplied to form an uncoupled fourth order equation. It is a simple algebraic
distribution but is complicated somewhat by the fact that only the ¥, components

contribute to the equation.

52 Q2 52 Q2
({@ + T Ampig. | Uy, — 47TP+—Z‘I’—Z) ({@ + Vi drp__ | V_, — 47Tp_+z\11+z)

Now, distributing out the wave function:
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022 4 022 4

(C4)
This can be distributed which combines the wave functions to form ¥, ,. Each

row in the equation array is the included results from each distribution:

o 2
Bl + G Vs = ftmp Ve )
2 2 )2 2
Ly, + LLy,, —drp__ LU, (C.6)
2
_%47TP++Z‘I’iz - 47TP++Z%‘I’12 + (A7) psp.p—— Vg, (C.7)

—(47)*py—p—y. Vs, (C.8)

Now we can pull out the ¥, component and combine like terms to yeild:

= (C.9)
G —dr(prr. —p) i (C.10)

2\ 2 ; )
<%> = Q*(prs. = po) + (AT (PP, — Pi—p—+.) (C.11)

We can now make the prefix on the second order derivative F' and the non-

derivative dependence G to yield:

54 52

C.2 Magnetic scattering potential in terms of Nb and Np

Starting with the wave equations in terms of their basic scattering potential:

142

52 2 52 2
(_q/+z + Q_\Ij"l‘z - 47Tp++z\:[[+z - 47Tp+_zg[_z> (_g{_z + Q_‘ll_z - 47Tp__z\:[[_z - 47Tp_+z\:[[+z

N\

/



[—ﬁﬁ + Vit — E} o +V, v =0 (C.13)

2m 622

T 2m 22

[ R R V. E} U Vo, W, =0 (C.14)

Which can be converted to a matrix form:

h2 (52 1 0 V++Z V+7z 1 0 ‘I]+
—— + —E =0 (C.15)

2m 022
01 Vo V.. 01 W

z

Where the magnetic potential can be written in terms of the magnetic number

density and the scattering length:

2mh? Np. Np, —iNp
Vag = & ! (C.16)

pr_iny _sz

and the nuclear potential can be written as:

orn2 | Nb 0 orh? [ Pv 0
Vy = =7 (C.17)
m m
0 Nb 0 pn
so the total combined scattering potential is:
oni2 | No+Np. Np, —iNp oh2 | P++  P4-
V=" i (C.18)

m
Np, +iNp, Nb— Np, pP—t P

C.3 Magnetic transfer matrix derivation

We can start with the magnetic wave function described in C.21 and the roots

in C.20.
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Sy = \/4w(Nb + Np) — Q*/4

Sy = =51

S3 = \/An(Nb— Np) — Q2 /4

Sy =—S3

— 4 Sjz
\Il+z - Zj:1 Cje !

_ 4 Sz
U =5 _Dje>

we solve for D in terms of C to get:

D —C Si+ Q%4 —dn(pry — p—s) _
TSR —p)
j - T P

where p; can be written out for each root as:

_ _ Np—Np:+Np:+ilNpy
M1 = H2 = NprNp.+Np.—ilNpy

— — Np+Npz—Npz—iNpy
M3 = [ Np+Np-—Npz+iNpy

When z = 0:

\IJ+0261+CQ+C3+C4

U_) = mCr + p2Co + p3Cs + p14Cy
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(C.20)

(C.21)

(C.22)

(C.23)

(C.24)

(C.25)



and their derivatives with respect to z are:

V', = 81C; + S2Cs + S3C5 + SuCy

‘IILO = Sl,ulcl + SQ,U/QCQ + S3M3C3 + S4M4C4

This leads to the matrix:

v,

z

v_

z

/
\Ij+z

\I//

z

Ay
Aag
A33

Ags

/
\Il-i-o

v

where the values for A;; have been tabulated in C.4

(C.26)

(C.27)

(C.28)

Using the identities in C.5, the final transfer, matrix may be written as:

ty
t_

St

iQ
Q_

All
Az
Az

A41

A12
A22
As

A42

Ais
A23
A33

Aus
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A14
A24
Az

A44

iQ

]

O

2

]+ +T’+

I +r_

2 <I+ + 7“+)

(I_+r)

(C.29)



C.4 Transfer matrix elements

AH = 2A[,LL3 COSh(Sl(Sz) — M1 COSh(Sg(SZ>]
Ay = 2A[py s cosh(S16,) — py pug cosh(S30,)]
A31 = 2A[M3 Cosh(515z) — M1 COSh(S3(52)]

A41 = QA[,MLU?, smh(Sléz) — U143 Slnh(Sg(Sz)]

Ajp = —2A[cosh(S10,) — cosh(S56,)]
Agg = —2A[py cosh(S10,) — sz cosh(S50,)]
A32 = —2A[smh(5152) - Slnh(5352>]

Asy = —2A[py sinh(S10,) — ps sinh(S30,)]

Alg = 2A[,u3 smh(Sléz)/Sl — U1 Slnh(Sg(sz)/Sg]
Agg = 2A[,u1,u3 sinh(Sléz)/Sl — U113 sinh(53(5z)/5'3]
A33 = 2A[,LL3 COSh(Sl )/Sl 1251 COSh(S3 )/Sg]

Ay = 2A[pyps cosh(S16,)/S1 — pips cosh(S30,)/.Ss)

A14 = —QA[SIHh(Sl )/Sl — Slnh(Sg )/Sg]
Aoy = —2A[py sinh(S10,)/S1 — pgsinh(S36,) /53]
Ay = —2A[cosh(S16,)/S1 — cosh(S30,)/Ss]

Agy = —2A[py cosh(S10,)/S1 — pg cosh(S39,)/Ss5]
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C.5 Polarized neutron reflection and transmission identities

Uiy, =1 =T 9/ v, = %h

Uy =1 =T &9 v, =92

Uy, =1 = Rye'd/? v, = §7"+
. Q- /2 _ i
U, =r_=R_e%? U = %r,

Uy, =ty = Toe9/? v, = L,

=t =T %2 U, =9
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Appendix D

Software Manual

This appendix contains the manual for the software. It is generated using
Sphinx from the in-code documentation. It also include installation instructions
and how to use the methods illustrated in the UML diagram in appendix E. The

documentation only includes descriptions of the most pertinent modules.

148



OsRefl Documentation
Release 1.1.1

Christopher Metting

October 03, 2011



1 User’s Guide
1.1 Introduction

2 Reference
2.1  Model Creation .
2.2 Calculations
2.3 Data Load .
2.4  .omf File Loader

3 Indices and tables
Python Module Index

Index

CONTENTS

o

42
42

45

47

49




OsRefl Documentation, Release 1.1.1 OsRefl Documentation, Release 1.1.1

Contents:

CONTENTS 1 2 CONTENTS



CHAPTER
ONE

USER’S GUIDE

This section gives an overview of the Off-Specular reflectometry modeling software. Read this to have an idea how
the modeling software works and how it can be used to model scattering from a sample.

1.1 Introduction

This is an instruction manual on how to use the current infrastructure developed to model off-specular neutron scat-
tering data. The manual covers the basic attributes of the software as well as how to build and model a specific
sample.

1.1.1 Installing the Software

There are many scientific libraries which are needed to run this code. All of the libraries are free and can easily be
installed simultaniously by going to Link pythonxy and installing their product. In addition, if a Cuda compatable
Nvidia GPU device is available, pyCuda must also be installed which may be downloaded at Link pycuda. Once these
packages are installed, the osrefl package needs to be installed.

The software package may be downloaded at: http://www.reflectometry.org/danse/software.html
A link to the source code may also be found on this site.

‘Windows: For a windows install, download the osrefl executable, double click to run it, and follow the on screen
instructions.

Linux: Download the source code from the link on the reflectometery.org website or go to:
http://danse.us/trac/reflectometry/browser/trunk/osrefl

Once the software is in the desired location, open up a command line prompt (either a terminal in linux or command
prompt in windows). Change the directory to the top level (first) osrefl folder and type:

python setup.py build_ext --inplace

This will build the C code in the appropriate place and allow the software to run.

1.1.2 Running Examples

The examples included in this software are located in the top level osrefl folder in a folder called ‘examples’. To run
the default example, change the directory to the top level osrefl folder and use the command:
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python osrefl.py

This will run AuFit.py which is the model for an Au pillar system. This can easily be changed for any of the example
file by:

python osrefl.py examples/<filename>

For example:

python osrefl.py examples/BA_demo.py

This is also the procedure for running your own modeling scripts.

1.1.3 To Begin Modeling

This documentation provides instructions on how to write a simple model script. The first requirement is the import
statements. Only two import statements are needed for the script to run. They should look like:

import scatter, sample_prep

sample_prep holds all of the code for creating a model. Scatter hold all of the information about the different approx-
imations that can be used.

1.1.4 Creating a Unit Cell

This section reviews how to create a model to be scattered off of. There are for main model creation tools; GeomUnit,
K3D, OOMFUnit, and GrayImgUnit. Each of these can be used to produce a discretized unit cell.

GeomUnit

GeomUnit uses a mathematical description of the shapes in a sample to produce the unit scale to be scattered from.
The first step is to create the shapes that are in the sample. A full list is documented in the code and an example is
show below:

Au = Ellipse(SLD = 4.50684 -6,dim=[3.75e4,3
6, 2

42e 75e4,700.01)
Cr = Layer(SLD = 3.0le-6,thickness_value =

0.0)

Here, a gold ellipse and a chrome adhesion layer are produced.

The modelling software allows the user to specify a centre value for manipulation of shape location in 3D space. To
make the shape localisation easier, some tools have been created to orient shapes relative to other shapes. For example:

Au.on_top_of (Cr)
Will place the centre of the gold feature such that the ellipse base is flush with the adhesion layer. Other tools like this
help orient the model and are explicitly defined in the documentation.

Once the shapes are created and oriented appropriately, they can be added to a Scene. A Scene is a container class
which holds all of the shapes that make up a model. By allowing for the addition of an arbitrary amount of shapes,
arbitrarily complex systems can be produced. The Scene is simply created by:

scene = Scene ([Au,Cr]

Now we can produce the GeomUnit object. This objects contains the rest of the pertinent unit cell information such as
dimension and discritization count:
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GeomUnit = GeomUnit (Dxyz = [ 1,scene = scene)

Finally, we need to run a producer command that will tie the GeomUnit object to the infrastructure that handles all
discretized unit cells:

unit = GeoUnit.buildUnit ()

GraylmagUnit

A unit cell can also be created using the GraylmagUnit. This loader inputs a grey scale .png image file whose grey
scale values are related to the SLD of that layer. When an object is created:

a = GrayImgUnit ()

A file loader will open asking the user to choose the images file. The file name may also be scripted into the call:

img = sample_prep.GrayImgUnit (newres = numpy.array([15

Once the object has been created, the universal ‘Unit” must be created. For this, the software needs to know the rest of
the unit cell information such as unit cell dimensions, discretizeation count and image scaling factor:

unit = img.unitBuild(Dxyz = [8480. 0,3500.0], scale = 1.0e-5,inc_sub=[0.0,2.07843

Note:

* This unit building method assumes the image is extended infinity in the y direction which is the direction into
the image, ie. the image is of the x-z plane of the sample and the direction into the image is y.

K3DUnit

This unit is created from the K-3D software. This software allows an output file that contains a list of points and
plains that make up the shapes in the 3D model. This loader pares through these shapes using a point tracer method
to determine whether or not a point falls inside the polyhedron. Although slow and limited in its modelling capability
relatively complicated structures can be created easily using this method.

OOMMFUnit

This unit loader creates a magnetic sample using the magnetic minimization software call Object Oriented MicroMag-
netic Framework. This allows for both the flexibility of a dicritized system with an simple way to produce magnetic
structures.

1.1.5 Creating a Model

A unit is only one piece of the information needed to produce a scattering model. The model must also have a Lattice
which contains the information about the repeat structure:
lattice = Rectilinear([20,20,1],unit)

A Q_space object which tells the model where to calculate the scattering in reciprocal space:

q_space = Q_space([-.0001,-0.001,0.00002],([.0001,0.001,0.04],[200,50,200])

and a Beam object which provides the model with information about the probing beam:

1.1. Introduction 5
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beam = Beam (!

), None, None, 0.05, None)

Once these objects are created they can be combined to form a Calculator object. This class is made to:
 Ensure that the user has provided all of the necessary pieces to calculate the scattering.
* Makes calculating scattering using different theories convenient.

This is created by:

sample = Calculator (lattice,beam,g_space,unit)

1.1.6 Theory Function
Now that the software has everything it needs to calculate off-specular scattering, a modelling formalism must be

chosen. The option here can be found elsewhere in the documentation but the modelling itself is easily run by the
convention:

sample.BA()

Each theory calculation is a method on the calculator object. The user can now specify if they would like to run a
resolution correction on the sample. This is done by:

sample.resolution_correction ()

1.1.7 Viewing
To view the scattering, the user simply needs to script:
sample.viewUncor ()

to view the uncorrected scattering or:

sample.viewUncor ()

To view both the corrected and uncorrected plots side-by-side use:

sample.viewCorUncor ()

to view the output plots.

1.1.8 Modeling Data

In the examples folder is a python script called AuFit.py. This
this software. This will go through the steps taken in this file.

s an example of how to compare a fit to real data using

Data Loading

First, a model must be created as was shown in the previous section. The data included for this example was taken
from Au pillars on a Si/Cr substrate. The data loading is all completed through GUI interfaces and only requires one
line of code in the script. First, the data is loaded using the:

Au_measurments = Data()

call which is found in the osrefl.loaders.andr_load module.
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This call will bring up a file selector where multiple .cgl data files may be loaded and combined. Use the ‘“Choose input files” bu
The next window will be the data selection window. This allows the user to select a specific subset of their data
to model. This is important as modeling can be long and areas that don’t have data should not have models
calculated for it.

Model Building
The models are build in the sample way as described in the model building section of this manual. One
key additional command that is useful is:

g_space = Au_measurments.space

This command takes the q space values and point count from the selected data q space and uses it as the points to solve
the model for. This is convenient for calculating models in the most effcient manner.

Model/Data Interactor

There is now a view and GUI interactor for the data and model. This can be used by:

test_data.fitCompare (Au_measurments,titles = [’C del Label’])

where the method is run on the model and given the data as a parameter. Other options can be found in the method
description in this documentation.

1.1. Introduction 7
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stub: (floatlangstroms) Provides a hard cut-off for the thickness of the cone. this allows for the
CHAPTER creation of a truncated cone object who side slope can be altered by using different z component
values while keeping the stub parameter fixed.

.—.<<o center: (float,[3]langstroms) The x, y, and z component of the central point of the cone. In the case
that the center is set to [None,None,None] the shape will be put in the bottom corner of the unit
cell (the bounding box will start at (0,0,0).

Ms: (floatlangstroms) The magnetic SLD of the material for this shape.

m m ﬂ m m m z O m discritize (x_points, y_points, z_points, cell_to_fill, mag_to_fill)

Overview:

This module takes in x,y, and z points and fills the matrix array with the SLD of the shape for the
points that fall within the shape

. Parameters:
2.1 Model Creation

x_points: (floatlangstroms) An array of x points to be determined if they fall within the cone.
2.1.1 osrefl.model.sample_prep y_points: (floatlangstroms) An array of y points to be determined if they fall within the cone.

z_points: (floatlangstroms) An array of z points to be determined if they fall within the cone.

class osrefl.model.sample_prep.Beam ?S«ia:%%ﬂ%@:m, a:niax\&.«ﬁ\/\a:q, background=None, cell_to_fill: (float,arraylangstroms) This is the SLD matrix of the unit cell. It is filled by the
wavelength_div=None, resolution=None) render function
Bases: object .

Overview: mag_to_fill: (float,arraylangstroms) This is the Ms matrix of the unit cell. It is filled by the
’ render function.
Hold the beam information. These are all of the instrument characteristics the have an effect on the Returns
. urns:
scattering.

Parameters(__init cell_to_fill: (arraylangstroms) The discretized unit of the form factor built unit cell.

wavelength: (floatlangstroms) For reactor source, the wavelength is used to calculate the resolution height () .
L Overview:
of the instrument.
angluar_div: (floatldegrees) The angular divergence of the beam Returns :6. Sﬁ.&. height of the cone. H:_m differs from z:&c._@mw. which only describes the an.
ness of the individual cone whereas this method returns the maximum z-value of the shape in the
background: (floatlintensity) This is the dark counts on the detector unit cell.
resolution: (float) Generally, spallation sources have a resolution that they use as a beam parameter. Returns:
Note: height: (floatlangstroms) The total height of the cone object (measures the top most part of the
*This class is primarily developed for a reactor source but is open to parameters needed for a spallation cone in z.)
source. is_core_of (element, offset=[0, 0, 0])
. Overview:
class osrefl.model.sample_prep.Cone (SLD, dim, stub=None, center=[None, None, None],

Ms=0.0) This method is used to place the Shape ‘self” into the center of the Shape element. This creates a
Bases: osrefl.model.sample_prep.Shape core shell type geometry.
Overview: Parameter:
Uses the generic formula for a cone feature to create a cone object. Also allows for the creation of a element: (Shape) The Shape object that is being embedded into the selected Shape object
truncated cone by providing a cut-off parameter for the thickness. “self*(The shapes who's center value is being altered).
Parameters(__init

Note:

SLD: (float| angstroms"2) The scattering length density of the cone. «In the case of use with a Layer Object, the Shape object will only be placed in the center in the

dim: (float,[3]langstroms) The x component, y component and thickness of the cone respectively. z-direction because it’s location in the x-y plane does not make a difference.
x is the radius of the cone base in the x direction and b is the radius of the cone base in the y length ()
direction. Overview:

Returns the maximum length of the cone (x direction).
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Returns:

length: (floatlangstroms) The total length of the cone object (absolute distance in x)

on_top_of (element)

Overview: This method alters the center value of a shape object so that the Shape who’s on_top_of method
was called is located on top of the Shape ‘element’.

Parameter:
element: (Shape) The Shape object that is being put on top of the selected Shape object
‘self”(The shapes who’s z-component center value is being altered).

thickness ()
Overview:

Returns the total thickness of the cone.
Returns:

thickness: (floatlangstroms) The total thickness of the cone object (absolute thickness).

width ()
Overview:

Returns the maximum width of the cone (y direction).
Returns:
width: (floatlangstroms) The total width of the cone object (absolute distance in y)

class osrefl.model.sample_prep.Ellipse (SLD, dim, center=[None, None, None], Ms=0.0)
Bases: osrefl.model.sample_prep.Shape

Overview:
Uses the generic formula for an Ellipse feature to create a Ellipse object: (22/a?) + (y?/b%) = 1.
The dim variable will be in the form [a,b,z]. This class can also be used to make a cylinder by setting
dim[0] = dim[1]

Parameters(__init__

SLD: (floatlangstroms”2) The scattering length density of the Ellipse.

dim: (float,[3]langstroms) The ‘a’ component, ‘b’ component and thickness of the Ellipse respectively.
‘a’ is the radius of the Ellipse in the x direction and ‘b’ is the radius of the ellipsoid in the y direction.

center: (float,[3]langstroms) The X, y, and z component of the central point of the Ellipse. In the case
that the center is set to [None,None,None] the shape will be put in the bottom corner of the unit cell
(the bounding box will start at (0,0,0).

Ms: (floatlangstroms) The magnetic SLD of the material for this shape.
Note:

*This class is different than Ellipsoid which builds a lenticular shaped object where as this class produces a
pillar shaped object.

discritize (x_points, y_points, z_points, cell_to_fill, mag_to_fill)

Overview: This module takes in x,y, and z points and fills the matrix array with the SLD of the shape for
the points that fall within the shape.

Parameters:

2.1. Model Creation
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x_points: (floatlangstroms) an array of x points to be determined if they fall within the Ellipse.
y_points: (floatlangstroms) an array of y points to be determined if they fall within the Ellipse.
z_points: (floatlangstroms) an array of z points to be determined if they fall within the Ellipse.

cell_to_fill: (float,arraylangstroms) This is the SLD matrix of the unit cell. It is filled by the
render function.

mag_to_fill: (float,arraylangstroms) This is the Ms matrix of the unit cell. It is filled by the
render function.

height ()
Overview:

Returns the total height of the ellipsoid. This differs from thickness which only describes the

thickness of the individual Ellipse whereas this method returns the maximum z-value of the shape
in the unit cell.

is_core_of (element, offset=[0, 0, 0])

Overview:

This method is used to place the Shape ‘self” into the center of the Shape element. This creates a
core shell type geometry.
Parameter:
element: (Shape) The Shape object that is being embedded into the selected Shape object
‘self’(The shapes who’s center value is being altered).
Note:
«In the case of use with a Layer Object, the Shape object will only be placed in the center in the
z-direction because it’s location in the x-y plane does not make a difference.
length()
Overview:
Returns the maximum length of the Ellipse (x direction).
on_top_of (element)
Overview: This method alters the center value of a shape object so that the Shape who’s on_top_of method
was called is located on top of the Shape ‘element’.
Parameter:
element: (Shape) The Shape object that is being put on top of the selected Shape object
‘self’(The shapes who’s z-component center value is being altered).
thickness ()
Overview:
Returns the total thickness of the Ellipse.
width ()
Overview:

Returns the maximum width of the Ellipse (y direction).

class osrefl.model.sample_prep.Ellipsoid (SLD, dim, center=[None, None, None], Ms=0.0)
Bases: osrefl.model.sample_prep.Shape

Overview:
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Uses the generic formula for a Ellipsoid feature to create a Ellipsoid object. This object can be used
to create a sphere by setting dim[0] = dim[1] = dim[2]

Parameters(__init__):
SLD: (floatlangstroms”2) The scattering length density of the Ellipsoid.

dim: (float,[3]langstroms) The ‘a’ component, ‘b’ component and ‘c’ component of the Ellipsoid
respectively. ‘a’ is the radius of the Ellipsoid in the x direction, ‘b’ is the radius of the Ellipsoid
in the y direction, and ‘c’ is the radius of the Ellipsoid in the z direction.

center: (float,[3]langstroms) The x, y, and z component of the central point of the ellipsoid. In the
case that the center is set to [None,None,None] the shape will be put in the bottom corner of the
unit cell (the bounding box will start at (0,0,0).

Ms: (floatlangstroms) The magnetic SLD of the material for this shape.
Note:
«This is a lenticular shaped object.

discritize (x_points, y_points, z_points, cell_to_fill, mag_to_fill)
Overview:

This module takes in x,y, and z points and fills the matrix array with the SLD of the shape for the
points that fall within the shape

Parameters:

x_points: (floatlangstroms) an array of x points to be determined if they fall within the Ellip-
soid.

y_points: (floatlangstroms) an array of y points to be determined if they fall within the Ellip-
soid.

z_points: (floatlangstroms) an array of z points to be determined if they fall within the Ellipsoid.

cell_to_fill: (float,arraylangstroms) This is the SLD matrix of the unit cell. It is filled by the
render function.

mag_to_fill: (float,arraylangstroms) This is the Ms matrix of the unit cell. It is filled by the
render function.

height ()

Overview: Returns the total height of the layer. This differs from thickness which only describes the
thickness of the individual layer whereas this method returns the maximum z-value of the shape in the
unit cell.

is_core_of (element, offset=[0, 0, 0])
Overview:

This method is used to place the Shape ‘self” into the center of the Shape element. This creates a
core shell type geometry.

Parameter:

element: (Shape) The Shape object that is being embedded into the selected Shape object
‘self’(The shapes who’s center value is being altered).

Note:

eIn the case of use with a Layer Object, the Shape object will only be placed in the center in the
z-direction because it’s location in the x-y plane does not make a difference.

on_top_of (element)

Overview: This method alters the center value of a shape object so that the Shape who’s on_top_of method
was called is located on top of the Shape ‘element’.

Parameter:

element: (Shape) The Shape object that is being put on top of the selected Shape object
‘self’(The shapes who’s z-component center value is being altered).

thickness ()
Overview:

Returns the total thickness of the layer.
width ()

Overview: Returns the maximum width of the Pyramid (y direction)

class osrefl.model.sample_prep.GeomUnit (Dxyz=[None, None, None], n=[None, None, None],

scene=[None], inc_sub=[None, None])
Bases: object

Overview:

This is a producer of a Unit_Cell object. Given a Scene of Shape objects and other key parameters
(defined below), this class will render a three dimensional numpy array of the SLD of the unit cell
along with the magnetic SLD in the case the it is defined.

Parameters:
Dxyz: (float,[3])l(angstroms) The x,y and z real space size of the unit cell.

n: (int,[3]l(count) The number of elements the X, y and z axis of the unit cell will be divided into.
This is how course/fine the unit cell is discretized into.

scene: (Scene) A scene object which holds the collection of shapes to be rendered into the unit cell.
The renderer renders shapes in the order they are provided. Multiple shape are rendered by only
filling unit cell array values where they have not yet been changed by previous shapes. For
example, in the case of a core/shell scenario, the shapes should be listed so that the core is listed
before the shell.

inc_sub: (float,[2]l) [SLD of incident media,SLD of Substrate]. This holds the scattering length
density for the incident and substrate media respectively. The attribute does not currently hold
the neutron absorption of the materials which is negligible.

Parameters(Class):
value_list: (float,(3)langstroms)

This is a list of arrays for the x,y and z directions. Each array contains the real space distance
of the array element from the origin. (eg. for 4 points at a step size of .2 angstroms in the x
direction, value_list[0] = array([0,0.2,0.4,0.6])

unit: (float:3D arrayl| angstroms”2)

This is the discretized representation of the structural unit cell. This is the array for which
the scattering is calculated.

mag_unit: (float:3D arraylangstroms”2)

This is the discretized representation of the magnetic unit cell. This is for the case of
unpolarized neutrons where a value is given for the magnetic SLD which differs from the
structural SLD.

step: (float:[3]langstroms)
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This is the reals space step size for the unit cell in the x, y and z direction. It is the total real
space increment that a single array value represents.

Note:

*The renderer uses the mathematical formulas provided in the calculation.py file for each shape class to
determine if each point in the 3D array falls within the shape.

«If Dxyz[2] is not defined, the class chooses a value that will end just above the top of the tallest feature in
the unit cell (adds approximately one layer of incident media).

Currently, the x,y and z values represent the real space value at the beginning of the discretized unit rather
than the value of the unit at the center. This must be revised.

buildUnit ()
Overview:

Producer method: This method produces a Unit_Cell object from the rendered geomUnit object.
Because this is is the original development of Unit_Cell, the conversion is pretty simple and most
of the parameters are in the exact form needed by Unit_Cell.

Note:

*The GeomUnit object must be rendered first. If it has not been rendered the method will do it auto-
matically.

render ()
Overview:

Uses the discretized method contained in each Shape object in a Scene to create a 3D numpy
array of SLD values which can be used to solve the scattering from.

Note:

*This module fills the unit cell array with Shape objects in the order that they are listed in the Scene ob-
ject. Shapes that are later in the list will write over those that came earlier. This means, for example,in
the case of a core-shell sample, the outer shell object must be entered before the core.

value_extend ()
Overview:

This module takes the individual values of step and length and creates a list of three arrays [x,y,z]
that contains the real space value for each discrete piece of the unit cell array.

class osrefl.model.sample_prep.GrayImgUnit (newres=None, filename=None)
Bases: object

Overview:

This class creates a Unit_Cell object from a gray scale image by loading an image and the parameters
that are correlated with that image.This class assumes that the direction into the picture is the same
straight through. The user may choose this axis.

Parameters:

newres (float,[2]Icount) Sometimes, the .png file is much higher in resolution than is needed for the
scattering calculation. The user has the option of choosing a new resolution to down-scale the
image file to.

Note:

«Currently, this only supports images that are colored to be on scale with the scattering length density values
of the profile.

This file load system takes in .png files.
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*When loading the image, it assumes that the image is a three channel load but that each channel is equal.
This can be much improved by counting channels and handling RGB files.

unitBuild (Dxyz, scale, inc_sub=[None, None])
Overview:

Producer method: This method produces a Unit_Cell object from the parameters that are carried
over from the .omf loaded by the OOMMFUnit class. The object that this method produces is
needed to work with the calculation APL

Parameters:
Dxyz: (float,[3]langstroms)

The real space length, width and height represented by the image. Because it is assumed
that the image is the x z direction, the Dxyz[1] or Dy is meaningless here. It is left in
only to allow for the consistency of Dxyz.

scale: (floatlfactor)

This parameter allows the user to uniformly scale the image values by a factor. This is
to allow for directly scaling the image to SLD values.

Note:
*The user should be allowed to choose the axes on the image.

*Some structure should be put together for manually assigning SLD values to colors on the map. This
will only be needed if image loading becomes a highly used load system.

class osrefl.model.sample_prep .Hexagonal (repeat, unit)
Bases: osrefl.model.sample_prep.Lattice

Overview:

A lattice structure that is packed in a hexagonal ordering. This is produced by solving the rectilinear
structure factor for two phases of repeating units and adding these phases together.

0 = feature phase 1 O = feature phase 2 ~ = spacing
Hexagonal:
.0~0~0~0~0
0~0~0~0~0~0
.0~0~0~0~0
0~0~0~0~0~0
Parameters:
Repeat: (float,[3]lcount) The number of repeats of the unit cell in the x, y and z direction.

Unit: (Unit_Cell) a Unit_Cell object from which the unit cell length, width and height parameters
can be obtained.

Note:
«This is a Lattice object and can uses methods from Lattice.
gauss_normalize (args)
phase_shift (Q)
Overview: Used internally to solve a 0.5 phase shift for both the x and y directions.

Parameters:
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0: (q_space) a Q_space object.
Note:
*Used to superimpose two rectilinear lattice structures over each other.

rect_f£t (Q, repeat_mod=[None, None, None])
Overview:

Solves the structure factor for the Q points in the q_space object. Using this method solves the
structure factor before integrating over the q steps. If used explicitly without integrating over
the q steps aliasing errors can be introduced into the scattering.This is especially true where the
g-step is course in the gx direction which can lead to mismatch in intensities between the negative
and positive gx diffraction peaks.

Parameters:
Q: (q_space) a Q_space object.

repeat_mod: (float,[3],count) A repeat modifier for the repeat attribute of a Lattice object. This
is necessary when the effective repeat of a specific lattice type is different than the lattice
spacing requested by the user.

Note:
*This calculation should be used in conjunction with integration over the x direction.

struc_calc (Q)
Overview:

This is the calculation of the structure factor for a hexagonal lattice. It returns the structure factor
integrated over the gx direction by solving the scattering for two phases of rectilinear scattering
and adds the results.

Parameters:
Q: (q_space) a Q_space object.
x_calc_sfx (gx)

Overview: Used internally to solve the structure factor for a given qx value in the gx direction. This is
possible because the qx, qy, and qz components are separable.

Parameters:
gx: (float) aqgx value.
Note:

*This method is used in conjunction with the integration call to obtain the structure factor that is
returned.

x_calc_sfx shift (gx)
Overview:

Used internally to solve the structure factor for a given gx value in the gx direction. This solution
applies a 0.5 phase shift to the wave solution which can be combined with the unshifted solution
to give a solution to the scattering from a hexagonal lattice.

Parameters:
gx: (float) aqgx value.
Note:
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*This method is used in conjunction with the integration call to obtain the structure factor that is
returned.

x_gauss_sfx (gx, args)

y_calc_sfx(qy)
Overview:

Used internally to solve the structure factor for a given qy value in the qy direction. This is
possible because the gx, qy, and gz components are separable.

Parameters:
qy: (float) a qy value.
Note:

*This method is used in conjunction with the integration call to obtain the structure factor that is
returned.

y_calc_sfx shift (gy)
Overvie

Used internally to solve the structure factor for a given qy value in the qy direction. This solution
applies a 0.5 phase shift to the wave solution which can be combined with the unshifted solution
to give a solution to the scattering from a hexagonal lattice.

Parameters:
qy: (float) a qy value.
Note:

*This method is used in conjunction with the integration call to obtain the structure factor that is
returned

class osrefl.model.sample_prep.K3DUnit (filename, k3d_scale=1.0, SLD_list=[None])
Bases: object

Overview:

This class is for a shape that is entered as a list of polygons and points from k3d modeling software.
Parameters

filename(str): The name of the file that was exported from the k3d model software.

SLD _list([]) The list of scattering length densities. there should be the same number of SLDs as
there are shapes in filename(A”-2).

class K3D_Shape (vertices=None, edges=None, numpoly=None, numpoint=None)
Overview:

This contains variables to define a shape
Parameters
vertices the points in space that make up a shape

edges Array containing the thicknesses of all layers in the substrate given in the order: Sample
Bottom —> Feature/Substrate Interface

class K3DUnit .K3D_Shape_Collection (description_list=None, correction_scaling=1)
Overview:

This contains the information for the description of multiple features
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Parameters
feature[x] is an object of type Shape

description_list a list of objects of type shape that holds the edges, vertices and Sof all of the
features

K3DUnit.discritize (x_points, y_points, z_points, cell_to_fill, mag_to_fill)
Overview:

This method will turn a given K3D file of shapes into a numpy matrix of scattering length densi-
ties.

Note:
*This is done for a given Unit_Cell Object

K3DUnit.height ()
Overview:

This module takes in a K3D_Shape object and determines its height in real space
Note:
«features is of type K3D_Shape

K3DUnit .k3d_listform (point_array, poly_array, num_polygons, num_points, shapelist)
Overview:

This method forms the list of features needed to create the scattering matrix.
Parameters

point_array An array of points in 3d space that make up a feature.

poly_array for numbers that represents the points that make up a polyhedran face.

num_polygons total number of polygons that make up a feature

num_points number of points that make up a feature

shapelist the list of features that the new feature is being added to

class osrefl.model.sample_prep.Lattice
Bases: object

Overview: Abstract Class: This class is an abstract class which holds objects which describe the lattice struc-
ture of the repeating feature. These objects also hold the calculations required to determine the structural
contribution to the scattering. Structure factors solved using these methods can be solved by integrating
over the course g-spacings to reduce errors introduced by aliasing. Currently supported classes are:

Rectilinear: A lattice structure that is spaced evenly in the x and y direction and is aligned with
these directions.

010101010
010101010
010101010
Hexagonal: A lattice structure that is packed in a hexagonal ordering.
_01010101010
0101010101010
_01010101010
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gauss_normalize (args)
phase_shift (Q)
Overview: Used internally to solve a 0.5 phase shift for both the x and y directions.
Parameters:
Q: (q_space) a Q_space object.
Note:
*Used to superimpose two rectilinear lattice structures over each other.

rect_f£t (Q, repeat_mod=[None, None, None])
Overview:

Solves the structure factor for the Q points in the q_space object. Using this method solves the
structure factor before integrating over the q steps. If used explicitly without integrating over
the q steps aliasing errors can be introduced into the scattering.This is especially true where the
g-step is course in the gx direction which can lead to mismatch in intensities between the negative
and positive gx diffraction peaks.

Parameters:
0: (q_space) a Q_space object.

repeat_mod: (float,[3],count) A repeat modifier for the repeat attribute of a Lattice object. This
is necessary when the effective repeat of a specific lattice type is different than the lattice
spacing requested by the user.

Note:
*This calculation should be used in conjunction with integration over the x direction.
x_calc_sfx(qx)

Overview: Used internally to solve the structure factor for a given gx value in the gx direction. This is
possible because the gx, qy, and qz components are separable.

Parameters:
gx: (float) a gx value.

Note:

*This method is used in conjunction with the integration call to obtain the structure factor that is
returned.

x_calc_sfx shift (gx)
Overview:

Used internally to solve the structure factor for a given qx value in the gx direction. This solution
applies a 0.5 phase shift to the wave solution which can be combined with the unshifted solution
to give a solution to the scattering from a hexagonal lattice.

Parameters:
gx: (float) a gx value.

Note:

*This method is used in conjunction with the integration call to obtain the structure factor that is
returned.

x_gauss_sfx (qx, args)
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y_calc_sfx(qy)
Overview:

Used internally to solve the structure factor for a given qy value in the qy direction. This is
possible because the gx, qy, and gz components are separable.

Parameters:
qy: (float) a qy value.
Note:

*This method is used in conjunction with the integration call to obtain the structure factor that is
returned.

y_calc_sfx shift (qy)
Overview:

Used internally to solve the structure factor for a given qy value in the qy direction. This solution
applies a 0.5 phase shift to the wave solution which can be combined with the unshifted solution
to give a solution to the scattering from a hexagonal lattice.

Parameters:
qy: (float) a qy value.
Note:

*This method is used in conjunction with the integration call to obtain the structure factor that is
returned

class osrefl.model.sample_prep.Layer (SLD, thickness_value,

Ms=0.0)
Bases: osrefl.model.sample_prep.Shape

center=[None, None, None],
Overview:

Creates an object that extends the length and width of the unit cell but is parameterized in the thick-
ness direction.

Parameters(__init__

SLD: (floatlangstroms”2) The scattering length density of the Pyramid.
thickness_value: (floatlangstroms) The thickness of the layer.

center: (float,[3]langstroms) The x, y, and z component of the central point of the layer. Although
allowed to be provided, the x and y component play no role in the layer location. the pertinent
parameter here is only the z component.

Ms: (floatlangstroms) The magnetic SLD of the material for this shape.
discritize (x_points, y_points, z_points, cell_to_fill, mag_to_fill)

Overview: This module takes in X,y, and z points and fills the matrix array with the SLD of the shape for
the points that fall within the shape

Parameters:
x_points: (floatlangstroms) an array of x points to be determined if they fall within the layer.
y_points: (floatlangstroms) an array of y points to be determined if they fall within the layer.
z_points: (floatlangstroms) an array of z points to be determined if they fall within the layer.

cell_to_fill: (float,arraylangstroms) This is the SLD matrix of the unit cell. It is filled by the
render function.

mag_to_fill: (float,arraylangstroms) This is the Ms matrix of the unit cell. It is filled by the
render function.

height ()
Overview:

Returns the total height of the layer. This differs from thickness which only describes the thick-
ness of the individual layer whereas this method returns the maximum z-value of the shape in the
unit cell.

is_core_of (element, offset=[0, 0, 0])
Overview:

This method is used to place the Shape ‘self” into the center of the Shape element. This creates a
core shell type geometry.

Parameter:

element: (Shape) The Shape object that is being embedded into the selected Shape object
‘self’(The shapes who’s center value is being altered).

Note:

«In the case of use with a Layer Object, the Shape object will only be placed in the center in the
z-direction because it’s location in the x-y plane does not make a difference.

on_top_of (element)

Overview: This method alters the center value of a shape object so that the Shape who’s on_top_of method
was called is located on top of the Shape ‘element’.

Parameter:

element: (Shape) The Shape object that is being put on top of the selected Shape object
‘self’(The shapes who’s z-component center value is being altered).

thickness ()
Overview:

Returns the total thickness of the layer.

class osrefl.model.sample_prep.OOMMFUnit

Bases: object
Overview:

This class is used to create a Unit_Cell object from a .omf file output from the Object Oriented
Micromagnetic Framework (OOMMEF) software. It will produce a unit cell which has the structure
unit array as well as a list of three arrays of the same size as the unit array which contains each of the
three magnetic vector components. This information allows for the calculation of the four magnetic
scattering cross-sections for the given system.

Note:

«Currently, this only supports systems that are constant in the z-direction.(eg. an SEM image of the feature
is used as a mask to create a 2D image that OOMMEF then calculates the minimized magnetic character
for. The results are assumed to be consistent through the depth of the shape. This also only supports single
feature unit cells.

unitBuild (SLD, inc_sub=[None, None])
Overview:
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Producer method: This method produces a Unit_Cell object from the parameters that are carried
over from the .omf loaded by the OOMMFUnit class. The object that this method produces is
needed to work with the calculation API.

Parameters:

SLD: (floatlangstroms”2) When doing an OOMMEF simulation, the software does not care
about the structural SLD, however, to calculate the full off-specular scattering this infor-
mation is needed. At the time of Unit_Cell creation the user must specify the structural SLD
for the magnetic feature being loaded by OOMMEFUnit.

Note:
*Produces a Unit_Cell object.
*This may not be the best place for the SLD input. This will have to be evaluated.
class osrefl.model.sample_prep.Parallelapiped (SLD, dim, center=[None, None, None],
Bases: osrefl.model.sample_prep.Shape Ms=0.0)
Overview: Uses the generic formula for a parallelapiped feature to create a parallelapiped object
Parameters(__init__):
SLD: (floatlangstroms”2) The scattering length density of the sphere.
dim: (float,[3]langstroms) x, y and z dimensions of the feature.

center: (float,[3]langstroms) The x, y, and z component of the central point of the sphere. In the case that
the center is set to [None,None,None] the shape will be put in the bottom corner of the unit cell (the
bounding box will start at (0,0,0).

Ms: (floatlangstroms) The magnetic SLD of the material for this shape.

discritize (x_points, y_points, z_points, cell_to_fill, mag_to_fill)
Overview:

This module takes in X,y, and z points and fills the matrix array with the SLD of the shape for the
points that fall within the shape

Parameters:

x_points (floatlangstroms) an array of x points to be determined if they fall within the paralle-
lapiped.

y_points (floatlangstroms) an array of y points to be determined if they fall within the paralle-
lapiped.

z_points(floatlangstroms) an array of z points to be determined if they fall within the paralle-
lapiped.

cell_to_fill (float,arraylangstroms) This is the SLD matrix of the unit cell. It is filled by the
render function.

mag_to_fill(float,arraylangstroms) This is the Ms matrix of the unit cell. It is filled by the render
function.

height ()
Overview:

Returns the total height of the parallelapiped. This differs from thickness which only describes
the thickness of the individual sphere whereas this method returns the maximum z-value of the
shape in the unit cell.

2.1. Model Creation 23

OsRefl Documentation, Release 1.1.1

is_core_of (element, offset=[0, 0, 0])
Overview:

This method is used to place the Shape ‘self” into the center of the Shape element. This creates a
core shell type geometry.

Parameter:

element: (Shape) The Shape object that is being embedded into the selected Shape object
‘self’(The shapes who’s center value is being altered).

Note:

In the case of use with a Layer Object, the Shape object will only be placed in the center in the
z-direction because it’s location in the x-y plane does not make a difference.

length ()
Overview:

Returns the maximum length of the parallelapiped (x direction)
on_top_of (element)

Overview: This method alters the center value of a shape object so that the Shape who’s on_top_of method
was called is located on top of the Shape ‘element’.

Parameter:

element: (Shape) The Shape object that is being put on top of the selected Shape object
‘self’(The shapes who’s z-component center value is being altered).

thickness ()
Overview:

Returns the total thickness of the parallelapiped.

width ()
Overview:

Returns the maximum width of the parallelapiped (y direction)
class osrefl.model.sample_prep.Pyrimid (SLD, dim, stub=None, center=[None, None, None],
Ms=0.0)
Bases: osrefl.model.sample_prep.Shape
Overview: Uses the generic formula for a Pyramid feature to create a Pyramid object.
Parameters(__init__):
SLD: (floatlangstroms”~2) The scattering length density of the Pyramid.

dim: (float,[3]langstroms) The x component, y component and thickness of the cone respectively. x is
the length of the Pyramid base and y is the width of the Pyramid base.

stub: (floatlangstroms) provides a hard cut-off for the thickness of the Pyramid. this allows for the cre-
ation of a trapezoidal object who side slope can be altered by using different z component values while
keeping the stub parameter fixed.

center: (float,[3]langstroms) The x, y, and z component of the central point of the Pyramid. In the case
that the center is set to [None,None,None] the shape will be put in the bottom corner of the unit cell
(the bounding box will start at (0,0,0).

Ms: (floatlangstroms) The magnetic SLD of the material for this shape.

discritize (x_points, y_points, z_points, cell_to_fill, mag_to_fill)
Overview:
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This module takes in X,y, and z points and fills the matrix array with the SLD of the shape for the
points that fall within the shape

Parameters:
x_points: (floatlangstroms) an array of x points to be determined if they fall within the Pyramid.
y_points: (floatlangstroms) an array of y points to be determined if they fall within the Pyramid.
z_points: (floatlangstroms) an array of z points to be determined if they fall within the Pyramid.

cell_to_fill: (float,arraylangstroms) This is the SLD matrix of the unit cell. It is filled by the
render function.

mag_to_fill: (float,arraylangstroms) This is the Ms matrix of the unit cell. It is filled by the
render function.

height ()
Overview:

Returns the total height of the Pyramid. This differs from thickness which only describes the
thickness of the individual Pyramid whereas this method returns the maximum z-value of the
shape in the unit cell.

is_core_of (element, offset=[0, 0, 0])
Overview:

This method is used to place the Shape ‘self” into the center of the Shape element. This creates a
core shell type geometry.

Parameter:

element: (Shape) The Shape object that is being embedded into the selected Shape object
‘self’(The shapes who’s center value is being altered).

Note:

«In the case of use with a Layer Object, the Shape object will only be placed in the center in the
z-direction because it’s location in the x-y plane does not make a difference.

length ()
Overview:

Returns the maximum length of the Pyramid (x direction)
on_top_of (element)

Overview: This method alters the center value of a shape object so that the Shape who’s on_top_of method
was called is located on top of the Shape ‘element’.

Parameter:

element: (Shape) The Shape object that is being put on top of the selected Shape object
‘self’(The shapes who’s z-component center value is being altered).

thickness ()
Overview:

Returns the total thickness of the Pyramid.

width ()
Overview:

Returns the maximum width of the Pyramid (y direction)
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class osrefl.model.sample_prep.Q space (minimums, maximums, points)
Bases: osrefl.model.sample_prep.Space

Overview:

Holds all of the information for the g-space output for which the scattering will be solved. Many of
the attributes provided in this class make access to information about the scattering easier.

Parameters(__init__):

minimums: (float,[3]langstroms) The minimum q values that the user would like solved. The data
is in the form: [minimum X, minimum y, minimum z]

maximums: (float,[3]langstroms) The maximums q values that the user would like solved. The
data is in the form: [maximums X, maximums y, maximums z]

points: (float,[3]langstroms) The number of points that the user would like the provided q space
(defined by the minimums and maximums) split into. The data is in the form: [x points,y
points,z points]

Parameters(Class):
q_step: (float,[3]langstroms”-1) The reciprocal space step size for the x,y and z dimensions.

q_list: (float,(3)[array]langstroms”-1) The total list of values being solved for in the x, y and z
directions.

q_refract: (float,[array]langstroms”-1) When the neutron beam is transmitted through a substrate,
the beam refracts, altering the effective gx value. This is recorded in this variable. Its value is
dependent on the ki and ko values for a specific qx,qy, gz combination.

k_space: (float,[array]langstroms) This is the equivelent k-space values for the given set of q val-
ues.

getExtent ()
Overview:

This method is used to get the minimum and maximum plot area of the Q_space object which
can be directly fed to a pylab plotting object.

Returns:

(arraylangstroms”-1) Returns an array in the form [Q7", Qmar Qmn Qmar]

getKSpace (wavelength)
Overview:

This method creates an attribute which holds the equivalent k-space values for a given set of Qs.
Returns: (arraylangstroms)
normalize ()
Overview:

Creates 3 arrays which contain the gx, qy, and qz value which are normalized by the total q
magnitude.

Returns:
(list,3D arraylangstroms”-1) The normalized Q values.

vectorize (type="float’)
Overview:
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Turns the q information given by a q_space object into vectors to allow for vector math. Uses the
numpy reshape functionality.

Parameters:
type(str): Allows the user to define the type of the numbers that q is. (eg. float, complex)

class osrefl.model.sample_prep.Rectilinear (repeat, unit)
Bases: osrefl.model.sample_prep.Lattice

Overview:

A lattice structure that is spaced evenly in the x and y direction and is aligned with these directions.
This is essentially a girded ordering. The ASCII art represents this structure.

0 = feature

~ = spacing
0~0~0~0~0
0~0~0~0~0
0~0~0~0~0
Parameters:
Repeat: (float,[3]lcount) The number of repeats of the unit cell in the x, y and z direction.

Unit: (Unit_Cell) a Unit_Cell object from which the unit cell length, width and height parameters
can be obtained.

Note:
*This is a Lattice object and can uses methods from Lattice.
gauss_normalize (args)

gauss_struc_calc (Q, strucRefract=False)
Overview:

This structure calculation applies a gaussian convelution to the delta function diffraction peaks
produced by the structure factor to produce a more accurate theory function. The convelution
represents The combination of the diffraction from the lattice with the coherence length of the
probing beam.

Parameters:

Q: (Q_space) The scattering produced by the structure factor of the model is calculated for the
q range supplied by this Q_space object.

phase_shift (Q)
Overview: Used internally to solve a 0.5 phase shift for both the x and y directions.
Parameters:
Q: (q_space) a Q_space object.
Note:
*Used to superimpose two rectilinear lattice structures over each other.

rect_f£t (Q, repeat_mod=[None, None, None])
Overview:
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Solves the structure factor for the Q points in the q_space object. Using this method solves the
structure factor before integrating over the q steps. If used explicitly without integrating over
the q steps aliasing errors can be introduced into the scattering.This is especially true where the
g-step is course in the gx direction which can lead to mismatch in intensities between the negative
and positive gqx diffraction peaks.

Parameters:
Q: (q_space) a Q_space object.

repeat_mod: (float,[3],count) A repeat modifier for the repeat attribute of a Lattice object. This
is necessary when the effective repeat of a specific lattice type is different than the lattice
spacing requested by the user.

Note:
*This calculation should be used in conjunction with integration over the x direction.

struc_calc (Q)
Overview:

Returns the structure factor for a rectilinear lattice integrated over the qx steps.
Parameters:

Q:(q_space) = a Q_space object.
Note:

*The direct solution is calculated to get the y and z structural components. The integrated solution for
the gx direction is then solved and applied over the direct solution. This is somewhat inefficient and
can be streamlined.

theta_struc_calc (theta)
x_calc_sfx(qx)

Overview: Used internally to solve the structure factor for a given gx value in the gx direction. This is
possible because the gx, qy, and gz components are separable.

Parameters:
gx: (float) a gx value.
Note:

*This method is used in conjunction with the integration call to obtain the structure factor that is
returned.

x_calc_sfx shift (gx)
Overview:

Used internally to solve the structure factor for a given gx value in the gx direction. This solution
applies a 0.5 phase shift to the wave solution which can be combined with the unshifted solution
to give a solution to the scattering from a hexagonal lattice.

Parameters:
gx: (float) a gx value.
Note:

*This method is used in conjunction with the integration call to obtain the structure factor that is
returned.

x_gauss_sfx (gx, args)
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y_calc_sfx(qy)
Overview:

Used internally to solve the structure factor for a given qy value in the qy direction. This is
possible because the gx, qy, and gz components are separable.

Parameters:
qy: (float) a qy value.
Note:

*This method is used in conjunction with the integration call to obtain the structure factor that is
returned.

y_calc_sfx shift (qy)
Overview:

Used internally to solve the structure factor for a given qy value in the qy direction. This solution
applies a 0.5 phase shift to the wave solution which can be combined with the unshifted solution
to give a solution to the scattering from a hexagonal lattice.

Parameters:
qy: (float) a qy value.
Note:

*This method is used in conjunction with the integration call to obtain the structure factor that is
returned

class osrefl.model.sample_prep.RoundedParPip (SLD, dim, center=[None, None, None],
curve=0.0, Ms=0.0)
Bases: osrefl.model.sample_prep.Shape

Overview: It is rarely the case that a sample has totally sharp corners. This shape allows the user to determine
the extent to which the corners are rounded.

Parameters(__init__):
SLD: (floatlangstroms”2) The scattering length density of the sphere.
dim: (float,[3]langstroms) x, y and z dimensions of the feature.

center: (float,[3]langstroms) The x, y, and z component of the central point of the sphere. In the case that
the center is set to [None,None,None] the shape will be put in the bottom corner of the unit cell (the
bounding box will start at (0,0,0).

Ms: (floatlangstroms) The magnetic SLD of the material for this shape.

discritize (x_points, y_points, z_points, cell_to_fill, mag_to_fill)
Overview:

This module takes in x,y, and z points and fills the matrix array with the SLD of the shape for the
points that fall within the shape

Parameters:

x_points (floatlangstroms) an array of x points to be determined if they fall within the paralle-
lapiped.

y_points (floatlangstroms) an array of y points to be determined if they fall within the paralle-
lapiped.

z_points(floatlangstroms) an array of z points to be determined if they fall within the paralle-
lapiped.
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cell_to_fill (float,arraylangstroms) This is the SLD matrix of the unit cell. It is filled by the
render function.

mag_to_fill(float,arraylangstroms) This is the Ms matrix of the unit cell. It is filled by the render
function.
height ()
Overview:

Returns the total height of the parallelapiped. This differs from thickness which only describes
the thickness of the individual sphere whereas this method returns the maximum z-value of the
shape in the unit cell.

is_core_of (element, offset=[0, 0, 0])
Overview:

This method is used to place the Shape ‘self” into the center of the Shape element. This creates a
core shell type geometry.

Parameter:
element: (Shape) The Shape object that is being embedded into the selected Shape object
‘self’(The shapes who’s center value is being altered).
Note:
«In the case of use with a Layer Object, the Shape object will only be placed in the center in the
z-direction because it’s location in the x-y plane does not make a difference.
length ()
Overview:
Returns the maximum length of the parallelapiped (x direction)
on_top_of (element)
Overview: This method alters the center value of a shape object so that the Shape who’s on_top_of method
was called is located on top of the Shape ‘element’.
Parameter:
element: (Shape) The Shape object that is being put on top of the selected Shape object
‘self’(The shapes who’s z-component center value is being altered).
thickness ()
Overview:
Returns the total thickness of the parallelapiped.
width ()
Overview:
Returns the maximum width of the parallelapiped (y direction)
class osrefl.model.sample_prep.Scene (shapelist= : )
Bases: object
Overview:
This class is used to aggregate the different Shape objects that form a complete unit cell. It is used
primarily by GeomUnit as a queue of objects that can be rendered into the unit cell array.

Parameters:

shapelist:(Shapel[]) = a list of Shape objects to be put into the scene.

30 Chapter 2. Reference



OsRefl Documentation, Release 1.1.1

Note:

*The Shapes may be entered as a list or as individual items.
add_element (element)
Overview:
Adds a shape object to the Scene object.This may be useful in the case where the Scene has been
created and the user just wants to add one more Shape to it.
Parameters:
element A Shape object to add to a scene.
query_center (limit="min’)

Overview:

This method returns the vertical component of the center points of the Shape objects in the Scene.
Parameters:
limit: (string) Allows the user to filter through the vertical center values of the Shape objects to
return only the desired result.

Returns
*‘max’ returns the highest center value in the scene.

*‘min’ returns the lowest center value in the scene. This is the location of the vertical component of
the center values in real space.

«‘all’ returns an array of all of the centers of all of the shapes.
query_height (limit="max’)
Overview:

This method determines the maximum height of the Scene object (with an option to return the

minimum if limit is given a value). This is not a thickness measurement so the highest Shape in
the scene is not necessarily the thickest.

Parameters:
limit: (string) Allows the user to filter through the heights of the
Returns
Shape objects to return only the desired result.
*‘max’ returns the highest shape in the scene.

*‘min’ returns the lowest shape in the scene. This is the location of the top of the shape who’s
top is lowest in real space.
«‘all’ returns an array of all of the heights of all of the shapes.
Note:
*Each shape in a Scene has its own height method. When this module is called, it searches

through the heights of all of the Shape objects in Scene to determine what the height of the
unit cell should be. It then records this value in Dxyz as the z value.

class osrefl.model.sample_prep.Shape
Bases: object

Overview:
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Abstract Class: The different possible shape descriptions that can be used to build the unit cell. This
class allows for the definition of shapes for a unit cell with different properties to be treated, on a
fundamental level, as a geometric structure that can be added to a unit cell.

Note:

*Although all shapes are different, they all have the notion of a ‘bounding box’, which is a Parallelapiped

shape that can encompass the shape. Methods that treat the bounding box of a shape rather than the
individual attributes that make the shape are held in this class.

is_core_of (element, offset=[0, 0, 0])
Overview:
This method is used to place the Shape ‘self” into the center of the Shape element. This creates a
core shell type geometry.
Parameter:
element: (Shape) The Shape object that is being embedded into the selected Shape object
‘self’(The shapes who’s center value is being altered).
Note:
«In the case of use with a Layer Object, the Shape object will only be placed in the center in the
z-direction because it’s location in the x-y plane does not make a difference.
on_top_of (element)
Overview: This method alters the center value of a shape object so that the Shape who’s on_top_of method
was called is located on top of the Shape ‘element’.
Parameter:

element: (Shape) The Shape object that is being put on top of the selected Shape object
‘self’(The shapes who’s z-component center value is being altered).

class osrefl.model.sample_prep.Space

Bases: object

Overview:

Abstract Class - This is a an object that holds the information about the space that the theory function
is being calculated for.

class osrefl.model.sample_prep.Sphere (SLD, r=1.0, center=[None, None, None], Ms=0.0)

Bases: osrefl.model.sample_prep.Shape
Overview:

Uses the generic formula for a sphere to create a sphere object.

Parameters(__init__

SLD: (floatlangstroms”2) The scattering length density of the sphere.

r: (floatlangstroms) The radius of the sphere.

center: (float,[3]langstroms) The X, y, and z component of the central point of the sphere. In the
case that the center is set to [None,None,None] the shape will be put in the bottom corner of the
unit cell (the bounding box will start at (0,0,0).

Ms: (floatlangstroms) The magnetic SLD of the material for this shape.

discritize (x_points, y_points, z_points, cell_to_fill, mag_to_fill)
Overview:
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This module takes in X,y, and z points and fills the matrix array with the SLD of the shape for the class osrefl.model.sample_prep.Theta_space (minimums, maximums, points)
points that fall within the shape

Bases: osrefl.model.sample_prep.Space
Parameters:

Overview:
x_points: (floatlangstroms) an array of x points to be determined if they fall within the sphere. In some cases, it may be desirable to calculate the scattering from a model in theta space. This object
acts like a Q_space object but the calculations are carried out in real space not reciprical space.
z_points: (floatlangstroms) an array of z points to be determined if they fall within the sphere. Parameters(__init__):

cell_to_fill: (float,arraylangstroms) This is the SLD matrix of the unit cell. It is filled by the
render function.

y_points: (floatlangstroms) an array of y points to be determined if they fall within the sphere.

minimums: (float,[2]langstroms) The minimum theta values that the user would like solved. The

is i . [gmin_ gmin
data is in the form: [0, 67

mag_to_fill (float,arraylangstroms) This is the Ms matrix of the unit cell. It is filled by the

maximums: (float,[2]langstroms) The maximum theta values that the user would like solved. The
render function.

data is in the form: [, gmax

in out
. points: (float,[2]langstroms) The number of points that the user would like to calculate for. (defined
height () by the minimums and maximums) split into. The data is in the form: [0;,, 0out]
Overview: y P - 2 [Oins Oour
Returns the total height of the sphere. This differs from thickness which only describes the Parameters(Class):
thickness of the individual sphere whereas this method returns the maximum z-value of the shape theta_step: (float,[2]ldegrees) Step size in 6;,, and 0,
in the unit cell. theta_list: (float,(2)[array]ldegrees) The total list of values being solved for in 6;,, and 0,,;.
Hm\nonm\wm (element, offset=[0, 0, 0]) q cale (wl)
Overview: .
Overview:

This method is used to place the Shape ‘self” into the center of the Shape element. This creates a This calculates the total Q vector based on the given theta values
core shell type geometry.

Parameters
Parameter:

element: (Shape) The Shape object that is being embedded into the selected Shape object

wl: (floatlangstroms) The wavelength of the probing beam.
‘self’(The shapes who’s center value is being altered).

Return:
Note: q_vector: (arraylangstroms”-1) An array of Q vectors calculated for the combination of 6;,,
. . . . . . heta, lues for this object.
«In the case of use with a Layer Object, the Shape object will only be placed in the center in the and thetagy values for this objec
z-direction because it’s location in the x-y plane does not make a difference. vectorize (type="float’, unit="deg’)
length () Overview:
Overview:

Turns the theta information given by a theta_space object into vectors to allow for vector math.
. L Uses the numpy reshape functionality.
Returns the maximum length of the sphere (x direction) 24 P 4

on_top_of (element) Parameters:

Overview: This method alters the center value of a shape object so that the Shape who’s on_top_of method

type(str): Allows the user to define the type of the numbers that theta is. (eg. float, complex)
was called is located on top of the Shape ‘element’. class osrefl.model.sample_prep.Unit_Cell (Dxyz, n, unit, value_list, step, mag_unit=None,

magVec=[None, None, None], inc_sub=[None,
None], rawUnit=None)

Parameter:

element: (Shape) The Shape object that is being put on top of the selected Shape object Bases: object
‘self’(The shapes who’s z-component center value is being altered).

Overview:
thickness ()

Overvi Contains the information for the processed unit cell information. This class makes the implemen-
'VErview:

tation of scattering calculations easier by by creating one structure that only contains information
Returns the total thickness of the sphere. necessary for the theory function calculation, regardless of how that information was obtained.

width () Producer Classes:

Overview:

GeomUnit
Returns the maximum width of the sphere (y direction)

Uses geometric shape parameters to calculate the discretized unit cell. Magnetic support is included in the form
of a unit cell which contains the magnetic SLD values.

2.1. Model Creation
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OOMMEFUnit

Uses the .omf output format produced by the Object Oriented MicroMagnetic Framework software. to created
both the structure and magnetic scattering arrays. The Unit_Cell objected created by this class will contain the
structural SLD as well as a list of arrays which contain the x,y, and z magnetic components. This can be used
by the magnetic approximations to calculated the four magnetic cross- sections.

K3DUnit

Loads a raw data fill which is exported by the k3d modeling software K-3D software. This type of creation does
not support magnetic representations.

GrayImgUnit

Loads a .png image and turns it into a 3D SLD array. It extends the image in the y direction where the sensitivity
to scattering is low.

add_media ()
Overview:

Adds a top and bottom layer to be the SLD of the incident medium and the substrate.
Note:

*This addition is important for the DWBA modeling where the calculation assumes that the top and
bottom layer are semi-infinite.

generateMIF (mifData=None)

mag_view ()
Overview:

Outputs a 3D rendered viewing of the magnetic unit cell array using MayaVi.

repeat (xy_repeat)
Overview:

Creates copies of the single unit cell array in the x-y direction as specified by the user.
Parameters:

xy_repeat: (int,[2]lcount) The number of times the unit cell is repeated in the x and y direction
(including the original unit).

view ()
Overview:

Outputs a 3D rendered viewing of the unit cell array using MayaVi.

viewSlice ()

2.2 Calculations

2.2.1 osrefl.theory.scatter

class osrefl.theory.scatter.Calculator (lattice, probe, space, feature, omf=None)
Bases: object
Overview:

This holds all of the information for calculation of scattering for reflectometry. This allows a user to
build a sample, request an output and based on an approximation choice, produce scattering.

Parameters:
lattice: (Lattice) see Latt ice for more information.
probe: (Beam) see Beam for more information.
space (space) see Q_space or ~sample_prep.theta_space for more information.
feature: (Unit_Cell) see Unit_Cell for more information.

omf: (Omf) This is an object which holds the magnetic moment information about the sample. It
contains three arrays of the the same size as the unit cell which hold each of the x, y, and z
components of the magnetic moment.

BA()
Overview:

This Born Approximation calculation is written entirely in Python and assumes that the scattered
beam is so small that the transmitted beam is essentially t=1. This makes for a simple calculation,
however, it does not allows for the capturing of the dynamically effects seen in real scattering.

Because of the simplistic nature of this calculation. Some tricks can be used to speed up the
calculation. This version of the BA calculation uses a chirp-z transform (CZT) to solve the Form
Factor. The chirp-z is essentially a FFT which allows for solving the transform anywhere on the
sphere. With this, we can solve for any Q range without wasting any resources calculating for
areas we don’t need.

The Form Factor calculation is:

—i

2
FF = mwmA # (1.0 — exp*dew=*Aey.sy QNMJT:::LV

Qa,y.z

It is also normalized by the surface area:

4 2
Normfactor = A‘nn . »i&“ﬁ bﬁ,@v

For the formalism to the structure factor see Rectilinear () or Hexagonal ()

DWBA (refract=True)
Overview:

SMBA ()
Overview:

This is a Python implementation of the cudaSMBA (). It is significantly slower and was only
really used for testing and validation purposes. Still, it may be useful in the future and is available
in this package.

SMBAfft (precision="float32’, refract=True)
Overview:

cudaBA (precision="float32’, refract=True)
Overview:

This version of the Born Approximation (BA) uses a scattering kernel that is written in
C++ and was developed for solving the Substrate Modified Born Approximation(SMBA) (see
cudaSMBA () ). This kernel normally takes in a set of incoming and outgoing wave functions to
perturb the probing wave with. Because the BA assumes that the wavefunction does not change
as a function of sample penetration, The incoming and outgoing wavefunctions are set so that t =

1, effectively solving the long hand version of the BA (see 1ongBA ()).
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The advantage of this method is that it can distribute the calculation across multiple GPU devices and the transmitted beam is:
solving the problem significantly faster.

. . t=10+7
This form factor is also normalized

For the formalism to the structure factor see Rectilinear () or Hexagonal ()
Now the wavefunction for the perturbation is solved for. The wave function used for the pertur-

Parameters precision: (strlprecision) bation is dependent on the direction of the incoming and outgoing beam:
This parameters allows the user to toggle between float32 and float64 precision. For most For ki, < 0.0:
nvidia graphics cards, the float32 is handled better and makes for significantly faster calcula-
tions.
refract: (bool) Wi, = tx expikIdes

This parameters toggles the refractive shift calculation. Generally, the refractive index of the

substrate of a sample cause a shift in effective Q below the horizons. setting refract to TRUE Yin, = 0.0
will cause a shift of:
For k;, > 0.0:
Qo + A * Psubstrate "
at —¢, values and:
Wip, = 1% oxv\;.:?r
Gz = A * Psubstrate
cudaMagBA (precision="float32’, refract=True)
L. s N Uip, =1 % oxw\%: Ags
cudaSMBA (precision="float32’, refract=True)

Overview

. L . L. N For ko < 0.0:
The Substrate Modified Born Approximation (SMBA) is a variation of the Born Approximation

(BA) where by the scattering is perturbed by the wavefunction of the income and outgoing wave-
function as it interacts with the incident media/substrate interface. This perturbation gives rise to
the horizons of the sample where the beam enters directly from the side face of the substrate. Vour, =

This calculation uses C++ calculation kernels on the nvidia GPUs. It uses binders from pyCuda
to simplify the kernel parallelization. There are two C++ calculation kernels used for this calcu-

lation. B
The first kernel can be found in wavefunction_kernel. cc. it solves for the wavefunction
for a wave interacting with the incident media/substrate interface. it first calculates the scattering For kous > 0.0:
vector:
kj =njko = Wout, =t * mxc\:gbf
Once this is solved for, the reflection and transmission is calculated for the substrate/incident
media stack. This is a matrix equation: Your, = 0.0
MAz = ¢ (kiAz) With these pieces of information, the SMBA can be solved for. The final form factor is:
—kisin(kiAz)  cos(kiAz)
D 2
.y,
FF = * (1.0 — exp™ = Q.N*D&.fv * [ Wy, * M {rhounit * n&t?@i =*Day E P
and the reflection is: ey 2 n=0
My + (ixng* Mop) + =L« (=M — i % no * Mop) This form factor is also normalized
. ) Y] . X
r= . N .
—My 1 +ixng* M :\;\MQEH — ik mng* Moo) For the formalism to the structure factor see Rectilinear () or Hexagonal ()
Parameters precision: (strlprecision)
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This parameters allows the user to toggle between float32 and float64 precision. For most
nvidia graphics cards, the float32 is handled better and makes for significantly faster calcula-
tions.

refract: (bool)

This parameters toggles the refractive shift calculation. Generally, the refractive index of the
substrate of a sample cause a shift in effective Q below the horizons. setting refract to TRUE
will cause a shift of:

Gz + A * Psubstrate
at —¢, values and:

Gz = A * Psubstrate

fitCompare (other, extraCompare=None, titles=["other’, ‘self’])
Overview:
This method plots two different data sets on the sample window for an easy visual comparison of
the data.

Warning: This method is obsolete!

generalCompare (otherData, titles)

longBA ()
Overview:

For testing and validation, it can be handy to have a long-hand version of the Born Approxi-
mation. This BA is written entirely in Python and solves the form factor using an explicit sum
instead of the FFT or CZT modules. It is slow! The form factor is:

Dy 2

# (1.0 — eapi*dew = Auy.zy M {rhounis * exp™ Qs flbf?JV
n=0

FF = nvmﬂ

Qz.y,z

This form factor is also normalized
For the formalism to the structure factor see Rectilinear () or Hexagonal ()

magneticBA ()
Overview:

This calculation solves the Born Approximation for a magnetic sample using an Omf.

For any magnetic scattering, four cross-sections must be solved for. First, the magnetic scattering
length density must be obtained. This can be found

Parameters:

struc_cell: (float:3D arraylangstroms”2) The structural scattering potential of the feature be-
ing scattered off of.

Q: (q_space) A Q_space object that holds all of the information about the desired q space output.

lattice: (Lattice) A lattice object that holds all of the information needed to solve the structure
factor of the scattering.

space: (Space) Holds all of the information about the experimental beam needed to apply beam
dependent corrections to the data.

omf: (Omf) This is an object which holds the magnetic moment information about the sample.
It contains three arrays of the the same size as the unit cell which hold each of the x, y, and z
components of the magnetic moment.

partial magnetic_BA()
Overview:

This calculation does the magnetic born approximation but assumes that the contribution to the
magnetic SLD from the qx and qy components of the magnetic moment are negligible and the
whole system can be estimated as only containing magnetic contribution in the qz direction.

Warning: This method is not accurate for magnetic moments aligned in the q directions and
should not be used!

Parameters:

struc_cell: (float:3D arraylangstroms”2) The structural scattering potential of the feature be-
ing scattered off of.

mag_cell: (float:3D arraylangstroms”2) The magnetic scattering potential of the feature being
scattered off of.

0Q: (q_space) A Q_space object that holds all of the information about the desired q space output.

lattice: (Lattice) A lattice object that holds all of the information needed to solve the structure
factor of the scattering.

beam: (Beam) Holds all of the information about the experimental beam needed to apply beam
dependent corrections to the data.

partial magnetic_BA_ long ()

qz_slice (¢qz=0.0)
Overview:

This plots a slice in the y direction designated by the qz. in the case where there is corrected
resolution data, it also will give the gz slice from the resolution corrected data.

Parameter:

gz: (float,angstroms”-1) The qz value that is being sliced over. This does not average over a
range. It will choose the closest qz value that was solved for by the calculation and produce
a log plot of the results.

resolution_correction|()
Overview:

Applies a resolution correction to the data using the beam information from a
sample_prep.Beam included in scatter.Calculator class. It applies a gaussian cor-
rection for the beam’s angular divergence and the divergence in beam energy.

Returns
self.corrected_data (float,arraylangstroms”-2)

Fills in the the values for this attribute of the scatter.Calculator. If this method
is not run, the value of this attribute is None.

viewCor ()
Overview:

Uses the magPlotSlicer.py module to view the resolution corrected models. This module includes
tools for:
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«Slice averaging for the data vertically and horizontally
*Viewing linear and log plots of both 2D slices and 3D image plots
Altering of the color axis scale

viewCorUncor ()
Overview:

Uses the magPlotSlicer.py module to view both the resolution corrected and uncorrected models.
This module includes tools for:

«Slice averaging for the data vertically and horizontally
*Viewing linear and log plots of both 2D slices and 3D image plots
*Altering of the color axis scale

viewUncor ()
Overview:

Uses the magPlotSlicer.py module to view the uncorrected models. This module includes tools
for:

«Slice averaging for the data vertically and horizontally
*Viewing linear and log plots of both 2D slices and 3D image plots
«Altering of the color axis scale

view_corrected (Ibl=None, vmin=None, vmax=None)
Overview:

This plots the resulting scattering with the resolution correction. The user should make sure they
have run the scatter.resolution_correction () method before using this method.

Parameters:
Ibl: (str) This parameter can be used to change the title of the plot.

vmin: (floatlAngstroms”-2) This is the minimum intensity value plotted on the 2D plot. Any
intensity value below this value is plotted as the minimum.

vmin: (floatlAngstroms”-2) This is the maximum intensity value plotted on the 2D plot. Any
intensity value below this value is plotted as the maximum.

view_linear ()
Overview:

Generally used for testing purposes, this view plots the intensity on a linear scale rather then a
log scale. This can be useful when troubleshooting a calculation.

view_uncorrected (lbl=None, vmin=None, vmax=None)
Overview:

This plots the resulting scattering without any resolution correction applied to the scattering cal-
culation. This can be useful for studying the effects that the resolution has on the data measured
from the instrument.

Parameters:
Ibl: (str) This parameter can be used to change the title of the plot.

vmin: (floatlIAngstroms”-2) This is the minimum intensity value plotted on the 2D plot. Any
intensity value below this value is plotted as the minimum.

2.2. Calculations
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vmin: (floatlAngstroms”-2) This is the maximum intensity value plotted on the 2D plot. Any
intensity value below this value is plotted as the maximum.

2.3 Data Load

2.3.1 osrefl.loaders.andr_load
class osrefl.loaders.andr_load.Data
Bases: object
Overview:

This is a data loader for .cgl files which is converted into a format that can be understood by the rest
of software infrastructure.

view ()
Overview:

This module plots out the data for viewing.

2.4 .omf File Loader

2.4.1 osrefl.model.omf loader

class osrefl.model.omf_loader.Omf (filename=None)
Bases: object
Overview:

‘When the Object Oriented Micro Magnetic Framework (OOMMF) solves the magnetic minimization,
it saves the results in a .omf file. This class allows the user to load the information from a .omf file
about the magnetic moments in the sample and save them as a python array.

It also works for the oommf12a4pre-20080627 version of OOMMF
Parameters

M (array,floatlangstrom): The total magnetic moment vector of the scattering.

mx (array,floatlangstrom): The x component of the magnetic moment vector.

my (array,floatlangstrom): The y component of the magnetic moment vector.

mz (array,floatlangstrom): The z component of the magnetic moment vector.

parameters (dictionary,str) Holds a dictionary which is generated from the header of the .omf file.
This is useful for obtaining other information about the model run.

Note:

This class contains other attributes which are not generally used for calculation purposes. The user should
look in the code for information on these attributes.

Warning: The .omf file loaded by this module MUST be created from the mmDisplay screen.

Creating a .omf file for loading

*Run oommf.tcl
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«Select the appropriate server for processing the calculations(this is the local machine for non-
distributed calculations.)

«Select oxsii from the mmLaunch box.

*In the Oxsii window select File>>load and select the .mif file created by the OsRefl software.
(see sample_prep.Unit_Cell.generateMIF ())

*Run the magnetic minimization by pressing the “Run” button
*Add a mmDisp from the mmLaunch menu

Selection Input:

[ Output [ Destination [ Schedule
| Magnetization Output [ mmDisp<object for output> | Send Button

«In File >> Save As.. create a .omf file
Note:
*The omf loader supports Text, Binary-4, and Binary-8 formats

ConvertRho ()
Overview:

There is a factor C’ which is used to convert the magnetic moment to a magnetic scattering length
density. Because the OOMMEF software allows for different units, the C' must be chosen based
on the OOMMEF model.

Returns (array[3]langstroms”-2)
downsample (down_factor=10)
Overview:

This method resamples x,y data into bigger boxes. It does this by averaging the surrounding
moments and assigning this weighted average to the rest of the data.

Note:

*Qx, Qy resolution is typically much worse than exchange length Qz resolution is pretty good, so this
method does not resample in the z direction.

Warning: This module requires file *rebin_simple.py* which is not a common package.

generate_coordinates ()
Overview:

Calculates the x, y and z values for each of the discretized units in the model from the information
obtained from the header file.

generate_normalized m()
Overview:

The moments given in this file are the absolute magnitudes. This method normalizes the data by
the total moment.

view ()

viewFixedZ (plot_title=None, z_layer=0)
Overview:

This method shows a color plot of the angle between mx, my.

2.4. .omf File Loader 43 44 Chapter 2. Reference
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INDICES AND TABLES

* genindex
* modindex

* search
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Appendix E

Software Diagram

This appendix is a diagram of the software layout. It is Unified Modeling
Language(UML) diagram of the main class structure involved in this software. It
can be used as a reference for the software flow. For a more detailed explanation of
what each class does, refer to the software instruction manual in appendix D. The
diagram is split into 3 different section because of space limitations but they are all
related by the red relation arrows. Figure E.1 illustrates a majority of the classes
used to calculate the the scattered data. Figure E.2 illustrates the possible unit
building utilities and how they related to the calculations. The most complicated
of these unit building options is the GeomUnit class which is comprised of a Scene

of Shape objects. The possible Shape objects are illustrated in figure E.3.
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Legend

feature:Unit_Cell
lattice:Lattice
Probe:Beam
space:Space
omf:Omf = None

Attributes

Filename:str=None

Relation

OOMMF
Software

Dxyz:float

wavelength:float = None

:r::'ttﬂoat Angular_div :float= None
valu-e list:float Background:float = None
step:ﬁoat Wavelength_div:float = None

Resolution:float=N
mag_unit:float=None esolution:float=None

magVec:float=[None,None,None]
inc_sub:float=[None,None]
rawUnit:float=None

Minimums:float
Maximums:float
Points:int

Maximums:float
Points:int

H_strt_xyz:float=[0.0,500.0,0.0]
H_end_xyz:float=[0.0,0.0,0.0]
step:int=5

Figure E.1: UML diagram of the main calculation components involved in the theory

function calculation.
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See previous
chart

Generates

Dxyz:float=[None,None,None]
n:int=[None,None,None]
scene:Scene=[None]
inc_sub:float=[None,None]

Filename:str
newres:float=None K3d_s_ule:ﬂoat=1.0
filename:str=None SLD_list:float=[None]

Shapelist:Shape=[]

—

Figure E.2: UML diagram of the unit building classes. These classes can all be used

to build the finite element models from which scattering may be calculated.
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SLD:float

r:float=1.0
center:float=[None,None,None]
Ms:float=0.0

SLD:float

dim:float
center:float=[None,None,None]
Ms:float=0.0

curve=0.0

SLD:float

dim:float
center:float=[None,None,None]
Ms:float=0.0

stub:float=0.0

See previous chart

SLD:float

dim:float
center:float=[None,None,None]
Ms:float=0.0

SLD:float

dim:float
center:float=[None,None,None]
Ms:float=0.0

SLD:float

dim:float
center:float=[None,None,None]
Ms:float=0.0

stub:float=0.0

SLD:float
thickness_value:float
center:float=[None,None,None]
Ms:float=0.0

SLD:float

dim:float
center:float=[None,None,None]
Ms:float=0.0

Figure E.3: The Shape classes available to build a Scene for modeling.
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