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Printing methods are fast becoming important processing techniques for the 

fabrication of flexible electronics.  Some goals for flexible electronics are to produce 

cheap, lightweight, disposable radio frequency identification (RFID) tags, very large 

flexible displays that can be produced in a roll-to-roll process and wearable 

electronics for both the clothing and medical industries.  Such applications will 

require fabrication processes for the assembly of dissimilar materials onto a common 

substrate in ways that are compatible with organic and polymeric materials as well as 

traditional solid-state electronic materials.  A transfer printing method has been 

developed with these goals and application in mind.  This printing method relies 

primarily on differential adhesion where no chemical processing is performed on the 

device substrate.  It is compatible with a wide variety of materials with each 

component printed in exactly the same way, thus avoiding any mixed processing 



 

steps on the device substrate.  The adhesion requirements of one material printed onto 

a second are studied by measuring the surface energy of both materials and by surface 

treatments such as plasma exposure or the application of self-assembled monolayers 

(SAM).  Transfer printing has been developed within the context of fabricating 

organic electronics onto plastic substrates because these materials introduce unique 

opportunities associated with processing conditions not typically required for 

traditional semiconducting materials.  Compared to silicon, organic semiconductors 

are soft materials that require low temperature processing and are extremely sensitive 

to chemical processing and environmental contamination.  The transfer printing 

process has been developed for the important and commonly used organic 

semiconducting materials, pentacene (Pn) and poly(3-hexylthiophene) (P3HT).  A 

three-step printing process has been developed by which these materials are printed 

onto an electrode subassembly consisting of previously printed electrodes separated 

by a polymer dielectric layer all on a plastic substrate.  These bottom contact, flexible 

organic thin-film transistors (OTFT) have been compared to unprinted (reference) 

devices consisting of top contact electrodes and a silicon dioxide dielectric layer on a 

silicon substrate.  Printed Pn and P3HT TFTs have been shown to out-perform the 

reference devices.  This enhancement has been attributed to an annealing under 

pressure of the organic semiconducting material. 
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Chapter 1 Introduction 
 

1.1 Motivation 

Predominately based on silicon (Si) technology, solid-state electronics have 

dominated the revolution in information technology over the past several decades.  

Progress has been rapid; from the first semiconductor transistor in 1947, advances 

have followed Moore’s Law to the point where, in 2005, an Intel Pentium 4 processor 

contains approximately 42 million transistors in a two inch square package.  The 

modern era has seen juke boxes be replaced by iPods and pay phones be replaced by 

cell phones.  Today we can carry around laptop computers that operate at 2 GHz, 

have 100 GB storage capacity, are approximately one inch thick and weight only a 

few pounds!   

In addition to computer chips based on single crystal Si substrates, a flat panel 

display technology based on amorphous Si has emerged.  This has been an enabling 

technology for the proliferation of laptop computers, although the display still 

accounts for a large fraction of the weight of a laptop.  In the last five years, this 

technology has advanced to the point where flat panel displays are becoming 

ubiquitous as desktop computer monitors and televisions.  For example, 50 inch flat 

panel displays are commercially available and 103 inch displays have been 

showcased. 

What Si does, it does very well.  However, fabrication processes for these two 

Si technologies are complex, costly and require high processing temperatures.  Hence, 

they are not compatible with visions of disposable electronics, very large area 

displays, biocompatible electronics or wearable electronics.  To address these issues, 
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a new era of lightweight, flexible, biocompatible electronics that are as easy to 

produce as magazines or newspapers has been envisioned and is just beyond the 

horizon in development.  Two areas of rapid growth aimed at ushering in such an era 

are organic electronics and printing techniques for the fabrication of electronics on 

plastic substrates. 

Developing practical and effective methods for printing electronic circuits 

onto flexible substrates involves serious research issues in materials science.1  Efforts 

to address these issues are being driven by, among other things, the desire to 

manufacture large-area, flexible displays2 and large volumes of inexpensive radio 

frequency identification (RFID) tags.3  Other applications for which flexible 

electronics may also have a large impact are wearable electronics,4 chemical sensors5 

and medical testing.6  In order to meet the needs of these emerging technologies, 

fabrication methods that are compatible with organic and polymeric materials, as well 

as traditional solid-state electronic materials, are being developed.7-12  The broad goal 

is to develop methods for assembling dissimilar materials onto a common substrate in 

a way that is cost effective and scalable to large areas, similar to roll-to-roll printing.1 

 

1.2 Description of Transfer Printing 

Table 1.1 shows a comparison between five types of materials processing 

methods. The list includes photolithography (PL), micro-contact printing (µCP).13,14 

inkjet printing,15 nano-imprint lithography (NIL)16 and transfer printing (TP).  

Photolothography represents the benchmark by which all new device fabrication 

methods will be compared.  It has been the work horse for the fabrication of Si based 
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electronics for close to fifty years.  In its current form, PL is an expensive fabrication 

method that requires chemical processing in a batch mode of operation and is largely 

restricted to photoresist chemistry and inorganic semiconducting materials.  The other 

processes are potentially less expensive and scaleable to continuous processing.  

However, µCP, inkjet printing and NIL all require chemical processing which may 

not be compatible with a wide range of materials suitable for flexible electronics.   

 

Specifications PL µCP Inkjet NIL TP 
Resolution 32 nm 35 nm 20 µm 5-10 nm 5-10 nm 

Price $$$ $ $ $ $ 
 

Materials 
Resist on 
Inorganic 

Wafer 

PDMS w/ 
SAM 

Solution 
processible 

Inks 

Resist on 
Inorganic 

Wafer 

Wide Range 
of Materials 

Processing Batch Continuous Continuous Continuous Continuous 
Requires 
Chemical 

Processing 

Yes Yes Yes Yes No 

 
Table 1.1: List of specification for several fabrication methods. Photolithography 
(PL), micro-contact printing (µCP), Inkjet printing, nanoimprint lithography (NIL) 
and transfer printing (TP).  Other synonyms include polydimethylsiloxane (PDMS) 
and self-assembled monolayers (SAM). 

 

By comparison, transfer printing is potentially an inexpensive process, 

scaleable to continuous processing and does not rely on chemical processing.  As will 

be demonstrated in this thesis, transfer printing is compatible with a wide variety of 

materials and will be developed for the use of lightweight, flexible transparent 

substrates.  An added attraction of the transfer printing method is that it can be 

combined with NIL for simultaneous patterning of and printing onto a flexible 

substrate.  The transfer printing process, while expected to be compatible with high 

resolution printing at the scale of 5 – 10 nm, is primarily an assembly process by 
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which a printable layer can be transferred from one substrate (the transfer substrate) 

to a second substrate (the device substrate).  The transfer is complete if the printable 

layer adheres more strongly to the device substrate than to the transfer substrate as 

illustrated in Fig 1.1.   

 

 

Figure 1.1:  Illustration of the transfer printing method showing the printable layer 
being printed from the transfer substrate over to the device substrate. 

 

The transfer printing process, as developed here, has been performed using a 

Nanonex 2500 imprint machine.  This machine was originally designed for NIL and 

is shown in Fig. 1.2.  Transfer printing is in no way restricted to such a machine.  In 

general, all that is needed is for the printable layer to be brought into contact with the 

surface of the device substrate under the proper differential adhesion conditions.  

However, the Nanonex machine is convenient because it does not rely on a parallel 

plate configuration and will therefore allow printing onto non-flat substrates.  The 
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imprint machine has a split chamber with a sample tray that permits the printable 

layer to be vacuum sealed in contact with the two substrates.  The chamber can then 

be back filled with N2 gas as the pressure medium and is equipped with three         

500 Watt lamps for temperature control. 

 

 

Figure 1.2:  Photograph of the Nanonex 2500 imprint machine. 
 

The imprint machine has been used to print Au features onto PET and Kapton 

substrates; to print pentacene onto PVC, PET, latex and photoresist surfaces; to print 

InP bars onto a mixed PMMA/Au surface; to print carbon nanotubes onto a mixed 

PET/Au surface and onto Kapton and PC substrates; to print Ag nanowires onto a 
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PET substrate and to print graphene onto a PET substrate.  All of these examples will 

be discussed in Chapter 4. 

 

1.3 Adhesion Issues and Devices Fabrication  

With the transfer printing process demonstrated for a wide variety of 

materials, it is desirable to sequentially print all the components necessary for the 

fabrication of a thin-film transistor onto a plastic substrate.  Figure 1.3 highlights this 

assembly process for thermoplastic substrates, Au electrodes, polymer dielectric 

layers and organic semiconducting thin-films.  Thermoplastic substrates were chosen 

because they are lightweight, flexible and generally transparent.  Adhesion of a 

printable layer to the surface of a thermoplastic can be increased by heating to a 

temperature above the glass transition temperature of the thermoplastic material.  This 

promotes both physical and chemical adhesion by increasing the mobility of polymer 

chains so that they can move across the interface and/or move into intimate contact 

with chemically active site at the interface.  Gold electrodes were chosen because 

they are excellent conductors with a work function reasonably well matched with 

organic materials17 and can be easily fabricated on Si transfer substrates using 

photolithography.  Thermoplastic polymer dielectric layers were chosen because they 

have good dielectric properties and are easily processed by spin coating onto transfer 

substrates.  As with thermoplastic substrates, adhesion to polymer dielectric layers 

can be promoted by heating to a temperature above the polymer glass transition 

temperature.  Furthermore, they are generally flexible and transparent.  Organic 

semiconducting materials were chosen because they are lightweight and flexible.  
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Thin-films of these materials are essentially transparent and can be processed more 

cheaply than can inorganic semiconducting materials.  Since organic semiconducting 

materials are generally more sensitive to chemical, temperature and processing 

conditions than their inorganic counterparts, they are ideal materials for testing the 

robustness and limitations of the transfer printing method. 

 

 

Figure 1.3:  Transfer printing assembly process for the fabrication of organic thin-
film transistors onto plastic substrate.  The components are listed in the top panel and 
the printing steps with a description of the printable layer are listed in the bottom 
panel. 

 

The fabrication of organic thin-film transistors requires the assembly of 

dissimilar materials onto a common substrate.  During sequential transfer prints, the 

adhesion at previously printed interfaces and the cohesion of previously printed layers 
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must be larger than adhesion to the transfer substrate.  The works of adhesion and 

cohesion18 can be expressed as  

WC(i) = 2γi (1.1) 

WA(i/j) = γi + γj - γij (1.2) 

 

where γi is the surface energy of surface i and γij in the interfacial energy.        

Equation 1.2 is referred to as the Dupré equation.18  The total surface energy can be 

represented as a sum of components encompassing dispersive interactions and polar 

(non-dispersive) interactions such that γi = γi
D

 + γi
P.  As shown in Fig 1.4, the surface 

energy of a flat surface (S) is related to the contact angle (θ) of a liquid (L) on that 

surface by 

γS = γSL + γLcosθ (1.3) 

which is referred to as Young’s equation.19  By expressing the work of adhesion as a 

geometric mean of the works of cohesion19 WA(i/j) = 2[WC(i) WC(j)]1/2  and by 

including the dispersive and polar terms, Eqs. 1, 2 and 3 can be combined to give 

γL(1 + cosθ) = 2[γS
D

  γL
D ]1/2

 + 2[γS
P

  γL
P]1/2 (1.4) 

 

Using this equation along with standard liquids with known dispersive and polar 

surface energy components, such as the five listed in Table 1.2, values for γS
D

 and γS
P

 

can be calculated for a given surface. 
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Figure 1.4:  Surface energy components for a liquid drop on a flat substrate. 

 

Liquid γ  γD γP 
Water 72.8 21.8 51.0 

Glyserol 64.0 34.0 30.0 
Ethylene Glycol 48.0 29.0 19.0 

Formamide 58.0 39.0 19.0 
Diiodomethane 50.8 50.8 0.0 

 
Table 1.2:  List of surface energies for five standard liquids commonly used for 
contact angle measurements. 
 

 In a practical sense, the adhesion requirements for successful assembly of a 

transfer printed electrode subassembly using photolithographically patterned Au 

electrodes on a Si transfer substrate are enumerated in Fig 1.5.  This list includes (1) 

the Au electrodes must survive lift-off during fabrication and yet have a low enough 

adhesion to transfer off the Si transfer substrate. (2) The Au electrodes must have a 

high adhesion to the plastic substrate and (3) to the polymer dielectric layer. (4) The 

polymer dielectric layer must have a high adhesion to the plastic substrate. (5) The Si 

transfer substrate must have a low adhesion to both the polymer dielectric layer and to 

the plastic substrate. (6) The top surface of the electrode subassembly must be flat 

with the electrodes in the same plane as the top surface of the dielectric layer.  
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Figure 1.5:  List of adhesion requirement for the transfer printing of an electrode 
subassembly. 
 

The results of a non-optimized transfer printed electrode subassembly are shown in 

Fig. 1.6.  Stress flow patterns in the polymer dielectric layer can be seen in both the 

optical and AFM images.  Also the Au source/drain electrodes are seen to protrude 

above the surface.  The stress flow patterns can be alleviated by printing at a higher 

temperature and pressure.20  However, this also increases adhesion between the 

device substrate and the Si transfer substrate.  It was found that decreasing the surface 

energy of the Si transfer substrate allowed for good transfer printing results at the 

higher temperature and pressure printing conditions.  The surface energy of a Si 

transfer substrate after photolithographic processing is shown in Table 1.3 along with 

surface energies after both an O2 plasma treatment and a vapor phase exposure to 

(tridecafluoro-1,1,2,2-tetrahydrooctyl) trichlorosilane (FDTS).  It was determined that 
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PMMA and PHS could be spin coated onto and cleanly printed off a Si transfer 

substrate that was exposed to FTDS vapors for 2 min.  In contrast, PS and PC could 

be spin coated onto and cleanly printed off an as processed substrates. 

 

 

Figure 1.6:  Optical and AFM images of an electrode subassembly transfer printed 
under non-optimized conditions.  The AFM image on the left highlights the stress 
flow pattern visible in the surface of the polymer dielectric layer and the AFM image 
on the right highlights the protrusion of the source/drain electrodes above the polymer 
surface. 
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Processing of Si Wafer Surface Energy, mJ/m2 Spin Coatable and 
Transfer Printable 
Polymer Dielectrics 

Photolithography and  
O2 Plasma Etch 

63 _ 

Photolithography 61 PC, PS 
 

Photolithography and  
2 min. FDTS exposure 

23 PMMA, PHS 

Photolithography and  
2 hr FDTS exposure 

15 _ 

Table 1.3:  Surface energy of a Si transfer substrate after photolithographic 
processing of Au electrodes followed by, as noted, surface treatments.  Right most 
column indicates polymer dielectrics which could be spin coated onto these surfaces 
and used in transfer printing. 
 

 Specific details of the transfer printing process have been developed and will 

be discussed through out this thesis.  As an example of what is possible using the 

transfer printing method as an assembly tool for fabricating organic thin-film 

transistors onto plastic substrates, devices based on pentacene and P3HT were 

fabricated and characterized.  Their performance will be compared to that of 

reference devices fabricated by depositing the organic material onto the oxidized 

surface of a highly doped Si wafer.  Here the thermal oxide is the dielectric layer and 

the doped Si wafer is a global gate electrode.  Source/drain electrodes were 

evaporated either before or after the deposition of the organic material onto the oxide 

surface.  Details of the fabrication of these reference devices are found at the relevant 

places throughout the thesis.  
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1.4 Conclusion 

The body of work presented in this thesis has been designed to address 

research issues at the interface between organic semiconductor materials and the 

printing of active materials onto flexible substrates.  Emphasis will be placed on both 

the development of printing techniques to fabricate organic electronics onto plastic 

substrates and on the electronic characteristics for these fabricated devices.  Many of 

the results of this research have been published,21-25 as will be noted with references 

to the published work in the figures and text.  To begin with, in Chapters 2 and 3 a 

review of the state-of-the-art of organic semiconductor materials and printing 

technologies respectively will be presented.  In Chapter 4 details of the transfer 

printing process will be introduced.  The process will be discussed in detail in 

Chapter 5 in terms of the development of the transfer printing method for the 

fabrication of organic thin-film transistors.  The electronic characteristics of the 

fabricated OTFT devices will be presented and discussed for pentacene (Pn) devices 

in Chapter 6 and for poly(3-hexlythiophene) (P3HT) devices in Chapter 7.  The effect 

of transfer printing on the morphology of the organic film and device mobility will be 

presented and discussed in Chapter 8.  Concluding remarks and suggestions for future 

work will be discussed in Chapter 9. 
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Chapter 2 Organic Semiconductor Materials and Devices 

 

2.1 Introduction 

In general, organic semiconductor materials are composed of conjugated 

chains (containing two or more double bonds each separated by a single bond) of 

carbon atoms or two-dimensional structures of aromatic ring units.  As illustrated in 

Fig. 2.1, the benzene molecule containing six carbon atoms and the thiophene 

molecule containing four carbon atoms and one sulfur atom are common examples of 

such aromatic ring structures.  The semiconductor properties of organic molecules 

arise from a combination of the HOMO-LUMO gap and the overlap of the π orbitals 

of neighboring molecules.  Since the interaction between neighboring molecules is 

weak, the π orbital-overlap between neighboring molecules is sensitive to molecular 

alignment.  In a thin-film of organic material, larger overlap between molecules 

generally leads to a larger electron mobility in the film.  For electronics based on 

organic semiconductor materials, larger mobility typically translates into better device 

performance.  Therefore, mobility is an important metric by which organic materials 

will be judged and the goal is to develop organic thin films with higher mobility. 
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Figure 2.1:  Chemical structure of (a) a benzene molecule and (b) a thiophene 
molecule. 
 

2.2 Classes of Nontraditional Semiconductors 

Organic semiconductor materials can be classified into four categories:         

1) small molecules, 2) conjugated polymers, 3) “geometrical molecules” and            

4) inorganic/organic hybrids. 

The small molecule category consists of three subcategories: 1) acenes and 

oligophenylenes, 2) heterocycle-based linear oligomers and 3) two-dimensional fused 

rings.  The general structures of acenes and oligophenylenes are shown in Fig. 2.2 

along with well-known examples.  The most famous example of these types of small 

molecule materials is pentacene (Pn) which consists of five ring units.  Pn molecules 

crystallize in a triclinic crystal structure with two molecules per unit cell that are 

packed to form a herringbone motif as shown in the right panel in Fig. 2.3.  There are 

at least four unique crystal polymorphs for Pn that are defined by their layer 

spacing.23  When deposited as a thin film on a flat substrate, terraced grains form as 

illustrated in the left panel of Fig. 2.3.  Both the deposition conditions and the 

substrate surface properties affect the grain size of the Pn film.26 

The structures of several heterocyclic rings are shown in Fig. 2.4 along with 

examples of molecules from the thiophene sub-category.  The best known of these 
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molecules is sexithiophene (6T) which consists of six thiophene rings connected to 

form a planar molecule.  The molecules are arranged in a monoclinic crystal 

structure.  There are four molecules per unit cell forming a layered structure with two 

molecules per layer arranged in a herringbone motif.27  Hexyl groups can be 

substituted, for example, at the α and ω sites to produce the molecule                   

α, ω-dihexylsexithiophene (α, ω DH6T).  Additionally, the hydrogen atoms of the 

hexyl group can be replaced by fluorine atoms to produce an n-type semiconductor       

α, ω-diperfluorohexylsexithiophine (α, ω DFH-6T). 
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Figure 2.2:  Structure of Oligophenylenes and (n)-Acenes with examples of several 
acene molecules.  [Adapted from Gamota1 Figs. 2.2.1 and 2.2.2] 
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Figure 2.3:  AFM image (left panel) of Pn thin film deposited onto an untreated 
SiO2/Si substrate.  The panel on the right illustrates the crystal structure of Pn. 
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Figure 2.4:  Structure of several heterocyclic rings with an example of a 
sexithiophene molecule and two related derivatives.  [Adapted from Gamota1 Figs. 
2.2.5 and 2.2.6] 
 

In addition to linear chains of heterocyclic ring units, molecules built up from 

two-dimensional fused rings can also be synthesized and constitute the third sub-

category of small molecule materials.  Two examples of such materials are shown in 

Fig. 2.5.  Naphthalene carbodianhydride (NTCDA) and the related imide- substituted 

naphthalene carbodiimide (NTCDI) are well studied examples of n-type 

semiconductor materials.28  NTCDI forms a triclinic crystal structure with parallel 

planes of molecules with an interplane spacing of 0.3 nm.  In the plane, each 

molecule is canted by 13˚ to maximize the hydrogen bonding between the imide and 

carbonyl groups of neighboring molecules.29 
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Figure 2.5:  Structure of the 2-D fused ring molecule naphthalene carbodianhydride 
(NTCDA) and the related naphthalene carbodiimide (NTCDI).  [Adapted from 
Gamota1 Figs. 2.2.18] 
 

The polymeric class of semiconductor materials is represented in Fig. 2.6 by 

several structures of materials.  The polythiophene (PT) structure has shown a rich 

behavior with poly (3-hexylthiophene) (P3HT) emerging as a highly studied material 

and the related poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) 

(PEDOT/PSS) material having been synthesized as a conducting organic material 

compatible with solution processing.  As shown in Fig. 2.7, P3HT consists of a 

polymer chain of thiophene molecules with a hexyl group substituted at one of the 

carbon sites not neighboring the sulfur atom.  The polymer is referred to as 

regioregular if neighboring molecules exhibit head-to-tail oriented hexyl groups.  

P3HT molecules order in a lamellar semi-crystal with the molecular stacking 

direction dependent on the degree of regioregularity.30  PEDOT/PSS is a conducting 

polymer material synthesized from a thiophene backbone.31  The addition of 

poly(styrene sulfonic acid) renders the molecule water soluble and results in a good 

film-forming material with high conductivity (10 S/cm).  PEDOT/PSS has been used 

with inkjet32 and micro-contact33 printing methods to form electrodes for thin-film 
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transistor (TFT) devices.  Another example of an important polymeric organic 

material is polyaniline (PANI), which has also been used as a conducting polymer for 

the fabrication of all-polymer electronic devices.34  The conductivity of PANI is 

controllable through oxidation/reduction  and acid/base reactions and can be varied 

from 10-9 to 102 S/cm. 

The “geometrical molecule” category consists primarily of fullerenes and 

carbon nanotubes (CNTs).  These carbon-based materials are, in fact, not organic 

because they lack hydrogen; however, they do represent an important category of 

nontraditional semiconductor material.  CNTs have shown great promise as 

semiconductors with individual tubes exhibiting mobilities up to 80,000 cm2/Vs.35  

Although plagued with the existence of intermixed metallic tubes, CNT mats have 

recently been studied as an easily processible material for active semiconductor 

layers.21  Although the aspect ratio is much larger (i.e. the diameter of the CNT is 

many more times smaller than its length in comparison to spaghetti) CNT mats can be 

loosely thought of as cooked spaghetti noodles randomly deposited onto a surface, 

where both the length of individual tubes and the number of tubes in the mat can be 

controlled. 

 The organic/inorganic category consists of a layered inorganic material 

intercalated with an organic material.  These materials are of interest because they 

have the potential to be processed in the same manner as organic materials but have 

electronic properties similar to inorganic materials.  An example of this type of hybrid 

material is tin iodide perovskite intercalated with m-fluorophenethylammonium ions 

(C6H4FC2H4NH3)2SnI4.  The material forms a monoclinic crystal structure that 
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consists of sheets of corner-sharing distorted SnI6 octahedra separated by bilayers of 

fluorophenethylammonium cations.36 

 

 

Figure 2.6:  Structures of several types of polymeric semiconductor materials.  
Poly(p-phenylenevinylene) (PPV), poly(thiophenol) (PTP), poly(p,p’–biphenol) 
(PBP), poly(thienylene vinylene) (PTV), poly(pyrrole) (PPy), poly(thiophene) (PT) 
and poly(aniline) (PANI).  [Adapted from Gamota1 Figs. 2.3.2] 
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Figure 2.7:  Structure of regioregular poly(3-substituted thiophene) and an example of 
regioregular P3HT.  [Adapted from Gamota1 Figs. 2.3.4] 
 

2.3 Electronic Properties of Organic Semiconductors 

Throughout the last half of the twentieth century and into the beginning of the 

twenty-first century, much work has been done in the area of organic semiconductor 

materials.  Typically, organic devices are constructed as thin-film transistors (TFTs).  

The geometries of such devices are shown in Fig. 2.8 and are referred to as a) bottom 

gate - bottom source/drain (S/D), b) bottom gate - top S/D, c) top gate – top S/D and 

d) top gate – bottom S/D.  Historically (as a platform for testing the electronic 

properties of organic semiconductor materials) OTFTs have been fabricated on 

thermally oxidized silicon (SiO2/Si) substrates in the bottom gate configurations with 
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either top or bottom S/D electrodes.  For these devices the Si substrate is highly 

doped and used as a global gate with the SiO2 as the dielectric layer.  Throughout this 

thesis, such devices on SiO2/Si substrates will be referred to as reference devices and 

will be a benchmark against which the performance of the flexible devices fabricated 

using transfer printing methods will be judged. 

 

 

Figure 2.8:  Thin-film transistor geometries showing the relative orientation between 
electrodes and semiconductor components.  Top-left panel illustrates a top-
gate/bottom-S/D configuration.  Top-right panel illustrates a bottom-gate/bottom-S/D 
configuration.  Bottom-left panel illustrates a top-gate/top-S/D configuration.  
Bottom-right panel illustrates a bottom-gate/top-S/D configuration. 

 

It has been determined that the semiconductor properties of an organic thin-

film transistor (OTFT) are confined to the first few monolayers at the interface near 

the dielectric layer and that they are limited by charge trapping at this interface.37,38  

The chemistry and roughness of the substrate surface has also been shown to affect 

the measured mobility of a OTFT device.26 
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The electronic transport properties of OTFTs are typically studied by 

measuring the current flow (ID) from the source to the drain electrodes as a function 

of bias voltages applied between the S/D electrodes (VD) and between the 

Gate/Source electrodes (VG).  Figure 2.9a shows the output characteristics of a Pn 

reference device, which is a plot of ID vs VD for various values of VG.  Figure 2.9b 

shows the transfer characteristics (transconductance) of a Pn reference device, which 

is a plot of ID vs VG for a fixed value of VD.  Important macroscopic parameters such 

as mobility, threshold voltage (VT), On/Off ratio, subthreshold slope and contact 

resistance can be determined from these current-voltage characteristics as will be 

discussed in the Sections 2.4, 2.5 and 2.6. 
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Figure 2.9:  (a) Output (ID vs. VD) and (b) transfer (ID vs. VG) characteristics of a Pn 
reference device with L = 100 µm and W = 3 mm.  (An optical image of an associated 
Pn reference device can be found in Fig. 5.2) 
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2.4 Determination of Mobility 

The following discussion has been adapted from Gamota1 section 4.2.3.1.  For 

the analysis of OTFTs, it is standard practice to utilize current-voltage models 

developed from the gradual channel approximation for inorganic MOSFET devices.  

Here, the current density can be expressed as 

J(x) = σ dΦ/dx     (2.1) 

where J(x) is the current density in the semiconductor channel, σ is the conductance 

and dΦ/dx is the gradient of the potential in the channel.  For a semiconductor 

material 

σ = n e µ        (2.2) 

where n is the number density of charge carriers, e is the charge per carrier and µ is 

the mobility of the carrier.  The current in the semiconductor channel (ID) can be 

expressed as 

ID (x) = - ∫ ∫ J(x) dy dz = - µ dΦ/dx   ∫ ∫  n e dy dz = - µ dΦ/dx W Q(x)              (2.3) 

where W is the width of the channel and Q(x) is the 2D charge density in the channel. 

 The charge in the semiconductor channel can be expressed as a function of 

applied voltages and internal potentials (such as the difference in work function of the 

metal contacts to the semiconductor channel, the depletion charge and the potential 

difference between the Fermi level and the intrinsic level) such that 

Q(x) = -C(VG – VSC(x) – VT)     (2.4) 

where C is the capacitance of the gate dielectric layer per unit area and VSC(x) is the 

voltage across the semiconductor channel. 

Equations 2.3 and 2.4 can be combined to give 
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ID (x) = µ W C (VG – VT – VSC (x)) dΦ/dx   (2.5) 

With the current through the channel a constant, then 

ID = 1/L ∫ ID (x) dx      (2.6) 

Inserting Eq. 2.5 into Eq 2.6 and integrating for x = 0 to L (with the assumption VSC 

varies linearly between the source and drain electrodes) then gives the following 

expression for the current 

ID = µ (W/L) C ((VG – VT) VD – VD
2 /2)   (2.7) 

Two regions of interest can be seen in the output characteristics plot in Fig. 2.8a.  

Where VD < (VG – VT), referred to as the linear region, Eq. 2.7 can be approximated 

as 

ID = µ (W/L) C (VG – VT) VD     (2.8) 

For larger values of VD, referred to as the saturation region, the current saturates and 

Eq. 2.7 can be approximated as 

ID = µ (W/2L) C (VG – VT)2     (2.9) 

In practice, both Eqs. 2.8 and 2.9 are used to calculate the mobility of an 

OTFT and are referred to as the linear field-effect mobility and the saturation field 

effect mobility, respectively.  Since the assumptions used in the derivation of Eqs. 2.8 

and 2.9 are not strictly valid for organic materials, the linear and saturation field 

effect mobilities are not, in general, equal.  However, they do represent an agreed 

upon figure-of-merit for which various OTFT devices can be compared and 

quantified. 
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2.5 Determination of Threshold Voltage, On/Off Ratio and 

Subthreshold Slope 

It is standard practice to determine the threshold voltage from a plot of       

ID
1/2 vs VG.  In the saturation region where VD < (VG – VT) a linear fit to the data can 

be extrapolated back to ID = 0 V.  The point where the extrapolation crosses the 

voltage axis is referred to as the threshold voltage. 

The on/off ratio can be determined as the ratio of the largest measured current 

to the smallest measured current.  This can be determined by inspection of a semi-log 

plot of ID vs VG as seen in Fig. 2.9b.  The subthreshold slope can be determined from 

the same plot.  It is defined as the change in gate voltage associated with a one-

decade change in current in the region below the threshold voltage. 

 

2.6 Determination of Contact Resistance 

OTFTs often have a relatively large resistance at the interface between the 

electrode and semiconductor layer.  If this contact resistance is on the order of or 

larger than the resistance of the semiconductor channel, the current-voltage 

measurements and thus the calculated mobility values can be adversely affected.  It is 

possible to determined the contact (or parasitic) resistance RP = RS + RD where        

RS (RD) is the resistance at the source (drain) contact.  For a set of OTFTs fabricated 

with different L and the same W, the total resistance, RT = RCH + RP (channel 

resistance plus parasitic resistance), of the OTFT device can be determined from the 

slope of the linear region of the output characteristics and plotted as a function of 
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channel length for various gate voltages.39  RP can then be determined as the intercept 

(L = 0) value of the resistance axis.  The mobility can then be corrected for contact 

resistance39 from this plot using the equation 

! 

" dRon /dL( )
#1[ ]

"VG
= µ VG,T( )WCgate ,     (2.10) 

where Ron is the slope determined from the RT vs L plot.  Equation 2.10 can be 

obtained from Eq. 2.8 by explicitly accounting for how the resistance (dVD /dID) 

changes as a function of channel length. 

 

2.7 Growth Properties of Organic Films 

 One goal of organic electronics has been to develop materials with mobilities 

approaching or surpassing that of amorphous Si.40,41  Since carrier mobility is related 

to molecular alignment, much effort has gone into studying and optimizing the 

morphology of organic semiconducting materials of which Pn and P3HT are 

important and commonly used examples.  Thin films of these materials are typically 

formed onto a carefully prepared substrate by either thermal deposition, spin coating 

in solution or drop-casting from solution.  The growth surface of such a substrate is 

usually the top surface of the device dielectric layer.  This surface does not only 

influence the growth morphology of the film but also influences carrier transport in 

the film.  Both surface roughness and surface energy are important properties of the 

substrate.  For example, a surface roughness greater than 3 – 5 Å has been associated 

with decreased mobility in Pn films.42-44  Also changes in surface energy (by 

treatment with different self-assembled monolayers) of a SiO2 dielectric layer or by 
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the use of different dielectric materials have been correlated with changes in 

mobility.30,45-63  In the majority of cases studied, the observation of changes in 

morphology have been limited to correlations.  The fact that changes in surface 

energy change the growth mode as well as the electrostatic interactions at the 

dielectric/semiconductor interface, make it difficult to develop a systematic 

understanding of the effects on mobility.  Overall, it is clear that transport properties 

of organic semiconducting materials are affected by a variety of issues such as 

materials purity, deposition conditions, ambient doping, etc. that have not been well 

controlled in much of the literature. 

 It is well established, regardless of the deposition conditions, bottom gate – top 

S/D (i.e. top contact) thin-film transistor (TFT) devices typically exhibit better 

performance than bottom gate – bottom S/D (i.e. bottom contact) TFT devices.64  This 

has been attributed to better nucleation and growth of the organic film on the 

dielectric surface as compared to the electrode surface.65  For bottom contact devices, 

the electrodes are patterned onto the dielectric surface prior to deposition of the 

organic film.  Therefore the poor ordering of the organic film at the edge and surface 

of the electrode is believed to increase the carrier injection barrier.66  Thus the 

presumably favorable geometry, in which the S/D bias is applied directly at the 

interface where the gate voltage induces the conduction channel, has not been 

available for use in OTFT devices. 

 In the alternate geometry with top contact devices, the electrodes are patterned 

onto both the dielectric surface and over a fully formed organic film.  Because 

organic semiconducting materials are typically sensitive to chemical processing, top 
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contact electrodes cannot be patterned using photolithography.  For this reason they 

are most commonly thermally deposited through a shadow mask.  In the simplest 

interpretation, the organic film exhibits the same ordering at the edge of the 

electrodes as in the channel between the electrodes.  However, it is known that for the 

most common electrode material, gold, there is substantial interdiffusion of the 

deposited gold into the semiconductor film, with unknown effects on the nature of the 

interface.  Furthermore, for this application, shadow masks are limited in resolution to 

a feature size of about 100 µm.   

 From the discussion above, it is clear that developing a clean and controllable 

method for fabricating the interface of S/D electrodes with the organic semiconductor 

is highly desirable. 

 

2.8 Toward Flexible Circuits 

Important goals for the synthesis of organic semiconductor materials have 

been to improve the mobility of the films and to develop both p-type and n-type 

materials that can be deposited as thin-films onto flexible substrates.  In 1977, 

Heeger, Shirakawa and MacDiarmid discovered that the conductivity of the 

conjugated polymer polyacetylene could be varied over 11 orders of magnitude by 

adding trace amounts of donor or acceptor materials.67  For their work, they won the 

2000 Nobel Prize in Chemistry.  Later, in 1983, Ebisawa reported a field effect 

behavior using the same material.68  One of the first reports of TFT behavior in the 

organic semiconductor materials P3HT and 6T came from Assadi69 in 1988 and 

Horowitz70 in 1989, respectively.  The TFT behavior of the small molecule 
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semiconductor material Pn was reported in 1991.71,72  By 1993, Garnier had begun to 

synthesize a variety of hexyl substituted 6T molecules with α,ω-DH6T exhibiting 

ordered films with a mobility a factor of 25 larger than 6T.  The n-type organic 

semiconductor material NTCDI was first investigated by Katz28 in 1996. The mobility 

of this material was improved in 2000 by attaching partially fluorinated side chains to 

the molecule. 

Beyond the synthesis and characterization of organic semiconductor materials 

for TFT applications is the build-up of integrated circuits.  A demonstration of this 

came as early as 1995.73  In this work, a five stage ring oscillator was fabricated on a 

Si substrate with both Pn and poly(thienylene vinylene) (PTV) as the active organic 

semiconductor material.  Doped polysilicon was used as the gate electrode with gold 

S/D electrodes deposited onto a silicon nitride dielectric layer.  Integrated circuits 

consisting of all polymer components on a flexible substrate were demonstrated in 

1998.34  A 15 bit mechanically programmable code generator was fabricated on a 

polyimide substrate with PTV as the organic semiconductor material.74  PANI was 

used to fabricate electrodes that were separated by a poly(hydroxystyrene) (PHS) 

dielectric layer.34 

The fabrication of these electronic circuits based on organic materials has 

typically been done using traditional processing methods such as photolithography 

and thermal evaporation.  These methods use hazardous chemicals and complex, 

costly equipment.  Such techniques were designed for fabricating devices from 

inorganic materials and therefore, do not necessarily exploit the properties of organic 

materials.  The real advantage of flexible electronics will come from the development 



 

 34 

of simple, cost effective methods for fabricating large volumes of flexible, light-

weight electronics that have been specifically designed and optimized to take 

advantage of the unique properties of both organic semiconductor materials and 

flexible substrates. 
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Chapter 3 Printing 

 

3.1 Introduction 

Printing is an ancient art dating back to the 8th and 9th centuries A.D.            

An example of such a printed work is the Diamond Sutra, shown in Fig. 3.1.  This 

was fabricated using a technique referred to as block printing.  Printing using 

movable type based on clay75 was invented in 1041 and based on metal76 in 1232.  

Ushering in a more modern style of printing, Gutenberg is credited with having 

invented the modern printing press in the 1450s.  Lithography, which is a form of 

printing based on a planographic process that relies on patterning inks onto a flat 

surface using hydrophilic and hydrophobic interactions, was invented in 1798. 

The semiconductor industry has developed a form of pattern transfer for the 

fabrication of solid-state electronics based on Si called photolithography.  The 

technique relies on a change in solubility of a photo-sensitive film (photoresist) when 

exposed to ultraviolet (UV) light.  The photoresist is applied to and patterned on Si 

wafer substrates in the manufacturing of computer chips and on glass substrates in the 

manufacturing of flat panel displays.  Either way, the fabrication methods are limited 

to batch processing of finite size substrates.  Serious efforts are underway to develop 

larger scale manufacturing processes that can fabricate electronic devices in a 

continuous fashion in a manner more similar to the fabrication of magazines or 

newspapers.  In order to accomplish this, the added requirement of flexible substrates 

will be needed.  As a testimony to the importance of such efforts, Xia10 lists no less 

than 18 different non-photolithographic patterning methods being developed to 
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fabricate devices at the micrometer and nanometer length scales.  The table is 

reproduced here as Table 3.1.  The earliest reference dates back to 1974, with a 

majority of the references coming from the 1990’s.  Even though printing is an old 

technique with a rich history in fabricating and/or reproducing images and writing, it 

is being revisited as a method for fabricating active electronic devices and circuits. 

 

 

Figure 3.1:  Diamond Sutra.  One of the oldest known examples of a printed 
document.  [By permission of the ©British Library Board. All Rights Reserved] 
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Method Resolution[a] Ref. 

Injection molding 10 nm 77-82 

Embossing (imprint) 25 nm 83-91 

Cast molding 50 nm 92-94 

Laser ablation 70 nm 95-100 

Micromachining with a sharp stylus 100 nm 101 

Laser-induced deposition 1 µm 102,103,104 

Electrochemical micromachining 1 µm 105 

Silver halide photography 5 µm 106,107,108 

Pad printing 20 µm 109 

Screen printing 20 µm 110 

Ink-jet printing 50 µm 111-115 

Electrophotography (xerography) 50 µm 116,117 

Stereolithography 100 µm 118-121 

Soft lithography  122-125 

Microcontact printing (µCP) 35 nm 13,14 

Replica molding (REM) 30 nm 126 

Microtransfer molding (µTM) 1 µm 127 

Micromolding in capillaries (MIMIC) 1 µm 128 

Solvent-assisted micromolding (SAMIM) 60 nm 129 

[a] The lateral dimension of the smallest feature that has been generated. 
These numbers do not represent ultimate limits. 

 
Table 3.1.  Non-photolithographic methods for micro- and nanofabrication.10 
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Various types of printing techniques will be reviewed in this chapter as they 

pertain to the patterning and/or assembly of components needed to fabricate active 

electronic devices. 

The printing industry has been primarily interested in reproducing pictures 

and/or text on a page.  Both are passive features composed of two components - an 

ink and a substrate (the page).  The ink is designed for passive color and high visual 

contrast against the substrate.  The substrate can be made from various materials such 

as paper, plastic, metals, glass, etc.  For the printing of active devices the substrate 

materials may not change much but the ‘inks’ will have to be very different.  Visual 

contrast and passive color will no longer be important properties.  Admittedly, 

transparency over certain optical ranges may be important for some applications; 

however, active ‘inks’ will primarily be chosen for their conductivity, semiconducting 

properties or insulating properties.  Such ‘inks’ will need to be prepared and 

processed in ways that optimize these properties.  This will most likely require 

techniques very different from those used to prepare and process passive inks, 

therefore traditional printing techniques will be only briefly discussed.  The bulk of 

this chapter will be dedicated to introducing and reviewing printing methods being 

developed that will meet the needs for printing active materials. 

 

3.2 Traditional Printing 

Traditional printing as defined here includes techniques such as gravure 

printing, pad printing, screen printing and flexography.  With these techniques, an ink 
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is spread on a plate or drum that contains regions that hold or store the ink.  An 

example of a gravure cylinder is shown in Fig. 3.2a.  The engraved cells hold the ink, 

which is then transferred to the substrate upon printing.  Pad printing is similar to 

gravure printing but incorporates an additional step with the ink first transferred to a 

pad and then transferred off the pad to the substrate upon printing as shown in       

Fig. 3.2b.  Screen printing involves ink being squeegeed through a screen where the 

image to be printed is contained in the screen.  The holes in the screen allow ink to be 

transferred to the substrate as illustrated in Fig. 3.2c.  Flexography uses a flexible 

rubber (or photopolymer) plate that contains a raised image.  The flexible plate is 

attached to a cylinder and the raised image is covered with ink.  The ink is then 

transferred from the raised surface to the substrate as shown in Fig. 3.2d. 

The uniformity in these traditional printing methods is governed by how 

evenly the ink can be distributed across the printing surface.  This is typically 

achieved by carefully controlling the rheology of the ink and spreading the ink onto a 

series of rollers.130  Inks are highly engineered substances that contain pigments (for 

color), resins (for wettability, tack and gloss), solvents (for resin solubility and ink 

fluidity) and additives (for rub resistance, drying characteristics, ink body, etc.).  

These inks must be able to uniformly coat the printing plate (or cylinder) without 

drying and must be able to be transferred to the substrate without spreading.  They 

must dry quickly once printed and not rub off the substrate.  They must also retain a 

high visual contrast and not fade over time.  The mixing and spreading process that 

these inks are subjected to can be both mechanically and chemically harsh. 
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Figure 3.2:  Examples of different types of traditional printing.  a) gravure printing,  
b) pad printing, c) screen printing and d) flexography printing.  [Adapted from 
Gamota1 Figs 3.4.2, 3.5.1, 3.6.1 and 3.3.1] 
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This works well for passive inks that have been optimized for high visual 

contract but, in general, may not be compatible with active inks that will need to be 

optimized for characteristics such as electrical properties.  Therefore it will be 

necessary to look beyond traditional printing methods in order to develop printing 

techniques compatible with active materials. 

 

3.3 Electrophotographic Printing 

The most common form of electrophotographic printing is laser printing 

which was developed as a form of photocopying.  With this technique, the ink is a 

very fine powder referred to as toner.  The toner is fed using a roller.  The image to be 

printed is created by exposing a photoconductive drum to laser light.  The 

photoconductive drum becomes negatively charged where exposed to light.  The 

toner adheres to the negatively charged areas on the drum and is then transferred to a 

substrate by a positive charge generated under the substrate.  To date this type of 

printing has not found much success in the printing of active materials for flexible 

electronics. 

 

3.4 Inkjet Printing 

Inkjet printing15 is a digital form of printing that can be performed either in a 

continuous mode or a drop-on-demand mode.  For the continuous mode, a stream of 

droplets passes through a set of signal drive electrodes.  An electrical pulse to the 

electrodes causes a droplet to be deflected to the substrate.  Undeflected droplets are 

collected and recirculated back to the ink reservoir.  For the drop-on-demand modes, 
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a piezoelectric pulse is used to create a droplet by pushing ink through a nozzle.  

Nozzles are typically 20 – 30 µm in diameter and create ink droplets of about           

10 – 20 pL.  Droplet-on-demand mode results in better printing quality when 

compared to continuous mode inkjet printing with feature resolution on the order of 

20 – 50 µm for standard inkjet printing. 

Viscosity and surface tension are important parameters of the ink.  Ink must 

fill the nozzle in approximately 100 µs and not drip out between demands.  This 

typically requires a viscosity range of 2 – 100 cp and a minimum surface tension of 

about 35 mN/m.  To prevent the ink from drying and clogging the nozzle, a liquid 

such as ethylene glycol can be added at a level of 10 – 20%.  If an ink contains 

particulates, the particulates must remain uniformly suspended in the ink and not 

contribute to clogging in the nozzle.  This usually requires a particulate size less than 

1 µm. 

High molecular weight polymers tend to be too viscous to easily print using 

inkjet printing.  However inkjet printing of waxy and low molecular weight polymers 

is possible.  Printed droplets can exhibit pinholes and can have a tendency to bead up 

when printed onto non-absorbent substrates (such as plastics).  Also, edge roughness 

and printing resolution can be affected by droplet spreading characteristics and can be 

difficult to control.  Some material’s printing problems can be overcome by 

incorporating additives into the ink that can be post processed, such as the addition of 

UV curable polymers.  Also precursor materials can be used directly as inks that are 

post processed such as precursor metal solutions. 
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A wide range of materials have been successfully inkjet printed.  Calvert15 

lists nanoparticle suspensions, sol-gels, conducting polymers, ceramic powders, 

solder, DNA and proteins as materials that have been inkjet printed.  All of these 

materials must either be suspended or dissolved in order to be inkjet printed.  Some 

organic semiconductor materials tend to be insoluble (pentacene for example) and, 

therefore, soluble forms of these materials have been investigated.131 Other organic 

semiconductor materials tend to be very sensitive to drying conditions such as 

P3HT.132  In either case inkjet printing of these materials has, to date, typically 

resulted in low quality films. 

There have been attempts to improve the resolution associated with inkjet 

printing.  One method used an undisclosed print head technology at part of a super-

fine inkjet printing system.133  This system is reported to have achieved a line width 

of 3 µm.  Also, Sirringhaus134 has developed a droplet-on-droplet technique in which 

the second droplet does not wet the first droplet.  When printed, the second droplet 

slides off the first droplet, producing a sub 100 nm gap between the printed features, 

which are then used as source/drain electrodes for an OTFT device. 

 

3.5 Soft Lithography 

Photolithography is a well-known method for patterning flat surfaces.  A layer 

of photoresist is spread uniformly on a surface and exposed with visible or UV light 

through a mask containing a pattern.  The photoresist is then developed to expose the 

underlying surface only in the patterned area.  The photoresist layer can then be used 

as an etch mask or as a window through which other materials can be deposited onto 
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the underlying surface.  Photolithography has been used for decades in the fabrication 

of inorganic electronics; however, it has several disadvantages that limit its usage for 

non traditional materials: it allows for very little variation in the chemistry of either 

the resist layer or the substrate and it can only be performed on flat surfaces in a batch 

processing mode. 

In an attempt to go beyond the limitations of photolithography, soft 

lithographic methods have been developed, as listed in Table 3.1.  Soft lithography 

encompasses techniques such as microcontact printing13,14 (µCP), replica molding126 

(REM), microtransfer molding127 (µTM), micromolding in capillaries128 (MIMIC), 

and solvent-assisted micromolding129 (SAMIM).  These techniques all have in 

common a patterned elastomeric mold or stamp [typically made from 

polydimethylsiloxane (PDMS)].  Since the stamp (mold) is flexible, these techniques 

are compatible with non-flat surfaces. 

Soft lithography techniques have also been used to print patterned layers from 

PDMS stamps onto substrates.  For example, Au evaporated onto the patterned 

surface of a PDMS stamp and then treated with a thiol terminated SAM has been 

printed onto a GaAs substrate.135  Also PDMS features have been printed onto Si 

substrates by treating the patterned surface of a PDMS stamp with a fluorinated SAM 

and then adding an extra layer of PDMS.136  When contacted to the Si substrate, the 

top layer of PDMS can be transferred to the Si surface. 

Unlike photolithography, which transfers a pattern using optical techniques, 

soft lithography is a direct printing method.  Also, the stamp (mold) can be replicated 

from a reusable master template.  Therefore, soft lithography has the potential to be a 
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less complex and less expensive method of patterning compared to photolithography.  

Additionally soft lithographic techniques can be used to directly pattern a wider range 

of surfaces comprised of polymers, sol-gels, biological materials, organic thin films 

and colloidal materials, in addition to inorganic surfaces. 

 

3.6 Nanoimprint Lithography 

 In addition to the limitations discussed above, pattern sizes produced by 

photolithography are limited by the resolution of the optical system used to transmit 

light through the mask.  Through decades of hard (and smart) work this resolution 

limit has been steadily reduced at, however, the expense of increased complexity and 

cost of the fabrication equipment.  Nanoimprint lithography90 (NIL) has been 

developed as a patterning technique that can simultaneously improve pattern 

resolution and reduce both equipment complexity and cost.  It is based on a rigid 

template containing a patterned surface.  The template is pressed into a resist layer 

that has been coated onto a substrate.  Two types of NIL have been developed and are 

referred to as hot and cold embossing.  Hot embossing uses a thermoplastic resist 

layer and cold embossing uses a UV curable liquid layer.  The general process is 

illustrated in Fig. 3.3a. 

In hot embossing, the patterned template surface is placed in contact with the 

thermoplastic resist layer.  The resist layer is heated up above its glass transition 

temperature and the template is pressed into the resist layer.  After a specified time 

the resist layer is cooled down below its glass transition temperature and the pressure 



 

 46 

is released.  The template is then removed to reveal a replica of the template surface 

contained in the surface of the resist layer. 

In cold embossing [sometimes referred to as step-and-flash imprint 

lithography137 (SFIL)] the patterned template surface is placed in contact with a UV 

curable liquid layer.  The resist layer is then cured by exposure to UV light.  The 

template is then removed to reveal a replica of the template surface contained in the 

surface of the resist layer.  In this case, the template (or possibly the substrate) must 

be transparent to UV light.  This is similar to replica molding126 which typically uses 

a flexible template; however, SFIL has been developed using a rigid, transparent 

template. 

Several variations of hot embossing have been reported138,139 as a means of 

reducing the operating pressure and/or temperature.  One technique eliminates the 

resist layer entirely.140  NIL is also being expanded to include imprinting into a 

variety of active materials as opposed to sacrificial resists.141  The resolution of NIL 

has been demonstrated at the 10 nm level.142  Most of the developmental work 

associated with NIL is directed toward inorganic substrates and is targeted as a 

disruptive technology competing against photolithography and e-beam lithography. 

As is illustrated in Fig. 3.3b, the same processing method used for NIL can be 

used to transfer a patterned layer (printable layer) from one substrate (the transfer 

substrate) to a second substrate (the device substrate).  The only requirement is that 

the printable layer adhere more strongly to the device substrate than to the transfer 

substrate.  This process was developed during this thesis research and will be referred 

to as transfer printing.  In general, the transfer printing process does not rely on 
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temperature, but only on contact of the printable layer to the surface of the device 

substrate where an appropriate differential adhesion exists between the two interfaces 

containing the surfaces of the printable layer.  Think of decals for detailing model 

cars and airplanes or temporary tattoos. 

It is with such a process that we wish to develop the ability to fabricate 

flexible electronics.  Plastic substrates present an obvious choice of materials for this 

application, not only because they are flexible, but also because of their low density, 

optical clarity, low cost, compatibility with roll-to-roll processing, etc.  There are two 

main classes of plastics – thermoplastics and thermosets.  Once fully cured, thermoset 

plastics are highly cross-linked polymers that are not easily reprocessed.  They are 

used extensively as adhesives, of which epoxy is an example.  In contrast, 

thermoplastic polymers can be reprocessed by heating to a temperature above their 

glass transition temperature.  This is the temperature at which the viscosity of the 

thermoplastic material is low enough for the materials to flow.  In general, both types 

of plastic should be compatible with the transfer printing process.  However, the 

contents of this thesis will primarily be limited to the incorporation of thermoplastic 

polymers into the fabrication of flexible electronics as both substrate and dielectric 

materials. 
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Figure 3.3:  Illustration of a) Nanoimprint Lithography (NIL) and b) the transfer 
printing method.22 
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In Chapter 4, the transfer printing method will be presented as a general 

process for transferring a variety of printable materials onto thermoplastic substrates.  

The process will be extended to allow the sequential assembly of all the components 

needed to fabricate organic thin-film transistors (OTFTs) onto a single, flexible, 

plastic substrate.  Each component, be it a metallic electrode, a polymer dielectric 

film or an organic semiconductor film, will be printed in the same manner (elevated 

pressure and temperature for some period of time) thus avoiding both the complexity 

of mixed processing methods and the use of harsh or incompatible chemicals.  Unlike 

other printing processes such as inkjet143 and micro-contact printing144,145, the transfer 

printing process is inherently compatible with nano-scale features16 and the resulting 

devices will be shown in Chapters 6 and 7 to be as good as or better than similar 

reference devices fabricated on inorganic, rigid substrates using traditional processing 

methods. 
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Chapter 4 Transfer Printing Methods 

 

4.1 Introduction 

In the previous chapter, transfer printing was introduced.  The process is 

relatively simple and is expected to be compatible with many different materials (both 

organic and inorganic).  The technique relies on differential adhesion, which can be 

understood in terms of the work of adhesion at the interfaces between the printable 

layer and the transfer substrate and between the printable layer and the device 

substrate.  These interfaces are labeled as (TS/PL) and (DS/PL) respectively as 

previously noted in Fig. 3.3b. 

The work of adhesion (cohesion) can be defined as the reversible work done 

to separate unit areas of two different (identical) materials from contact to infinity, in 

vacuum.18 The works of cohesion and adhesion can be related to the surface energies 

of a materials in the following ways 

WC(i) = 2γi (4.1) 

WA(i/j) = γi + γj - γij (4.2) 

where γi is the surface energy of materials i and γij is the interfacial energy.    

Equation 4.2 is referred to as the Dupré equation. 18 

When printing an unpatterned layer (a uniform material that covers the surface 

of the transfer substrate) to a uniform device substrate, the work of adhesion of the 

printable layer is required to be larger at the interface with the device substrate 

(interface DS/PL) than at the interface with the transfer substrate (interface TS/PL).   
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The requirement for the differential adhesion is straightforward: 

WA(DS/PL)  > WA(TS/PL)  (4.3) 

When Eq. 4.3 is satisfied, the printable layer will remain on the device substrate 

once the transfer substrate is removed.  However, if the print material’s work of 

cohesion is less than the works of adhesion for the printable layer with both substrates 

(WA(DS/PL) and WA(TS/PL) > WC(PL)), then the printable layer will be only 

partially transferred.  Such a partial printing is referred to as inking. 

If, during the transfer printing process, the transfer substrate makes contact 

with the device substrate (as would be the case for a patterned printable layer) then, in 

addition to Eq. 4.3, the work of adhesion between the substrates must be less than the 

work of cohesion of both of the substrates so that the substrates do not stick together 

and can be cleanly separated, that is   

WC(DS) and WC(TS) > WA(DS/TS)    (4.4) 

must be satisfied. 

A printable layer can contain multiple layers and can also be sequentially 

assembled onto a device substrate, as illustrated in Fig 4.1.  For this, the work of 

adhesion at the interface between the transfer substrate and the printable layer must 

be less than the work of adhesion associated with all other interfaces between surface 

i and surface j and also less than the work of cohesion of all other layers.  These 

adhesion and cohesion requirements for sequential and multiple layer printing are 

expressed as 

 WA(TS/PL) < WA(i/j) and WC(i))     (4.5) 
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Figure 4.1:  Illustration of the transfer printing method for simultaneous printing of 
multiple layers and for sequential printing of layers.22 

 

4.2 Transfer Printing Procedure 

Transfer printing was accomplished using a Nanonex 2500 imprint machine, 

which uses a sample configuration as shown schematically in Fig. 4.2.  This machine 

utilizes gas as the pressure medium, allowing imprint pressures up to 600 PSI and 

three 500 Watt tungsten-halogen lamps as the heat source, allowing a maximum 

temperature of 300 ˚C.  In general, a transfer substrate containing a printable layer is 

placed onto a device substrate with the printable layer sandwiched between the two 

substrates.  The substrates are placed in the imprint machine between two silicone 

rubber sheets.  The imprint chamber is closed and evacuated to a pressure of -14 PSI 

for 3 min. and the rubber sheets are mechanically sealed together by a solenoid 

actuated metal ring, resulting in a vacuum seal around the substrates.  The desired 

chamber pressure and sample temperature is achieved by back-filling the imprint 

chamber with dry nitrogen gas and then turning on the lamps.  The lamps are PID 

(proportional, integral, derivative) controlled and the temperature is monitored by a 

thermocouple in contact with a Si wafer positioned in contact with the bottom rubber 

sheet as illustrated in Fig. 4.2.  Alignment of features in sequential printing steps was 
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performed prior to insertion into the printing chamber using a Nanonex 2500 manual 

contact aligner that was modified to hold 1 cm square substrates. 

To characterize the success of a transfer print, both the transfer substrate and 

the device substrate were observed visually under an optical microscope.  In addition, 

a height profilometer and an atomic force microscope were used to measure surface 

profiles and changes in surface properties resulting from a transfer print. 

 

 

Figure 4.2:  Schematic illustration of the transfer print configuration.  The top and 
bottom sections of the chamber seal against the sample tray.  The solenoids engage 
the ring against the sample tray to vacuum seal the sample (transfer 
substrate/printable layer/device substrate stack) between two silicone rubber sheets.  
The chamber is pressurized using N2 gas and heated using three, 500 Watt lamps.  
The temperature is measured with a thermocouple (T/C) in contact with a Si wafer 
piece.22 
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As an illustration of what is possible with transfer printing a number of 

examples are presented below. 

 

4.3 Gold Printed onto Plastic 

Figure 4.3 shows an example of 200 nm wide Au lines transfer printed onto a 

PET device substrate.  The Au lines were fabricated onto a Si transfer substrate using 

e-beam lithography.  A typical printing condition for Au onto PET is 500 PSI and  

170 ˚C for 3 min.  Figure 4.4 shows a similar example of a 200 µm wide Au line 

printed onto PET.  The Au line was fabricated onto a Si transfer substrate using 

photolithography.  Prior to printing, the Au line was used and an etch mask for the Si 

transfer substrate that was subsequently plasma etched in a PlasmaTherm 790 to a 

depth of 700 nm.  After printing, the Au feature was found to be embedded below the 

plastic surface by the depth of the substrate etch, as shown in the accompanying 

graph from a line profile scan.  As a third example, Fig. 4.5 shows a serpentine Au 

line printed onto a kapton substrate.  The Au line was fabricated onto a Si transfer 

substrate using photolithography.  Before printing, polyimide (HD-2562 from Miro-

Systems) was spin coated (for example at 4000 rpm for 60 sec. and baked at 110 ˚C 

for 3 min.) onto the transfer substrate containing the patterned metal line.  The double 

layer was then transfer printing at 250 PSI and 150 ˚C for 3 min. 
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Figure 4.3:  Optical image of 200 nm Au lines transfer printed onto a PET substrate.21 
 

 

 

Figure 4.4:  Optical image of a 200 µm Au line transfer printed onto a PET substrate.  
Prior to printing, the Au was used as an etch mask and the Si substrate was etched to 
a depth of 700 nm.  The profilometer scan shows that the Au line is embedded below 
the surface of the PET substrate by the depth of the transfer substrate etch.146 
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Figure 4.5:  Optical image of a Au serpentine line transfer printed onto a Kapton 
substrate.  The profilometer scan shows that the Au lines protrude above the surface 
of the kapton.146 
 

4.4 Pentacene Printed onto Plastic 

Figure 4.6 shows three examples of pentacene transfer printed onto a) PVC,  

b) PET and c) latex device substrates.  As will be discussed in detail later, the 

optimum printing conditions for Pn are 600 PSI and 120 ˚C for 3 min.  Figure 4.7 

shows the result of a Pn film printed onto a patterned layer of photoresist.  The Pn 

film was thermally deposited onto a SiO2/Si transfer substrate in a high vacuum 

deposition chamber.  A layer of photoresist was spin coated and patterned onto a Si 

device substrate using standard photolithography.  The photoresist pattern contained 

features in the resist layer that were at least 2 mm long and separated by 

approximately 4 µm.  This example illustrates that transfer printing can be employed 

to both print and pattern a Pn film.  Figure 4.8 shows an example of transfer printing 

a bilayer containing both Au and Pn films.  Here a Pn film was thermally deposited 

onto a SiO2/Si transfer substrate in a high vacuum deposition chamber.  Then, a Au 

film was thermally deposited through a shadow mask.  The SiO2/Si transfer substrate 
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contained regions of just Au, regions of just Pn and regions of Au over Pn.  All three 

regions were successfully transfer printed as can be seen in the figure. 

 

 

 

Figure 4.6:  Optical images of Pn films transfer printed onto (a) PVC, (b) PET and  
(c) latex substrates.146 

 

4.5 Inorganic Features Printed onto Plastic 

Figure 4.9 shows an example of InP bars printed onto a PET device substrate 

that contained an electrode subassembly from previous printing steps.  The InP bars 

were fabricated as part of a MEMS device.147  They were suspended above an air gap 

and connected to the transfer substrate only at the ends of each bar.  For this example 

the requirements for transfer of a bar was that the adhesion of the bar to the surface of 

the device substrate be larger than the mechanical strength of the connection at the 

ends of the bar.  Based on this example and other work,148,149 it is expected that many 

other inorganic materials and geometries can also be transfer printed. 
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Figure 4.7:  Optical image of a 4µm line patterned into a Pn film.  As shown in the 
before and after illustrations, the Pn was patterned by transfer printing against a 
patterned layer of photoresist.146 

 

 

 

Figure 4.8:  Optical image of a Pn/Au bilayer tranfer printed onto a PET substrate.21 
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Although the focus of this thesis is organic electronics on flexible substrates, 

the ability to print inorganic objects patterned at the micron or submicron scale onto 

plastic substrates presents compelling opportunities for the fabrication of versatile, 

high-speed flexible electronics.150  This should be seriously considered as an 

important direction for future work. 

 

 

Figure 4.9:  Optical image of InP bars transfer printed onto a PET substrate 
containing previously printed electrodes.  The top left image shows the InP substrate 
containing the bars prior to printing.  The top right image shows the InP substrate 
after printing.  The bottom right image shows the InP bars after having been printed 
onto the PET substrate.146 
 

4.6 Carbon Nanotubes Printed onto Plastic 

Figure 4.10 shows an example of a network of carbon nanotubes (CNT) 

printed onto a PET substrate.  A set of electrodes were first printed onto the PET 

substrate and then a patterned CNT network was aligned with and printed onto the 
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device substrate surface (which included areas of both Au and PET).  The CNT 

network was grown via CVD using Fe catalyst particles on a SiO2/Si substrate with 

methane and ethylene feed gasses.  The network was patterned using standard 

photolithography to define areas where the CNTs were protected by photoresist.  The 

CNTs not protected by the patterned photoresist were removed using an oxygen 

plasma treatment.  After patterning the CNT network, the protective layer of 

photoresist was removed with acetone. 

Spray coated CNT films have also be transfer printed onto both Kapton and 

polycarbonate (PC) substrates, as shown in Fig. 4.11(a) and (b) respectively.  CNTs 

purchased from Carbon Solutions were dispersed in deionized water containing 

sodium dodecyl sulfate surfactant molecules to minimize clumping.  A 0.1% solution 

was spray coated onto a SiO2/Si transfer substrate through a metal stencil mask.  For 

the example in Fig. 4.11a, the transfer substrate containing the CNT film was spin 

coated with polyimide (HD-2562 from Miro-Systems) at 4000 rpm for 60 sec. and 

baked at 130 ˚C for 3 min.  The CNT/PI bilayer was then transfer printed onto a 

Kapton device substrate at 250 PSI and 150 ˚C for 3 min.  For the example in        

Fig. 4.11b, the transfer substrate containing the CNT film was spin coated with a       

7 wt% solution of PC in cyclohexanone at 2500 rpm for 60 sec. and baked at 90 ˚C 

for 3 min.  Prior to use, the PC solution was heated to 90 ˚C and filtered through a 

series of filters with the last step using a 0.2 µm filter.  The CNT/PC bilayer was then 

transfer printed onto a PC device substrate at 500 PSI and 150 ˚C for 3 min. 
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Figure 4.10:  SEM image of CNT network transfer printed onto a PET substrate 
containing previously printed Au electrodes.146 

 

 

 

Figure 4.11:  Optical images of spray coated CNT films after having been transfer 
printed onto (a) Kapton and (b) polycarbonate substrates.  The profilometer scan 
shows the roughness of the polymer/CNT surface after printing.  Courtesy of A. 
Southard, UMD.146 
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4.7 Metallic Nanowires Printed onto Plastic 

Figure 4.12 shows an example of network of Ag nanowires that were printed 

onto a PET device substrate.151  200 nm diameter Ag nanowires were 

electrochemically grown in the pores of a commercially available alumina membrane.  

The nanowires were harvested, dispersed in water and drop-cast onto a SiO2/Si 

transfer substrate.  The nanowire network was printed onto a PET device substrate at 

500 PSI and 175 ˚C for 3 min.  In general the diameter of the nanowires and the 

density of the network can be changed, thus providing a control of both the 

transparency and resistance of the printed network.151 

 

 

Figure 4.12:  Optical image of Ag nanowires printed onto a PET substrate.146 
 

4.8 Single Atomic Layers Printed onto Plastic 

Figure 4.13 shows an example of a graphene sheet (single atomic layer of 

graphite) printed onto a PET device substrate containing a previously printed set of 

electrodes).152  The graphene sheet was obtained by rubbing graphite onto the surface 
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of a SiO2/Si transfer substrate.  A set of electrodes were first printed onto the PET 

substrate and then the graphene sheet was aligned with and printed onto the device 

substrate surface (which included areas of both Au and PET).  This image shows part 

of a flexible graphene TFT device (before the addition of the gate electrode and 

dielectric layer).152 

 

 

Figure 4.13:  Optical image of a graphene sheet (a) before printing and (b) after  
transfer printing onto a PET substrate containing previously printed S/D electrodes.152 
 

The preliminary results obtained for graphene raise exciting possibilities for 

developing transfer printing as an improved materials preperation method for this 

important new electronic material.  More generally, the transfer printing process will 

enable other layered materials such as dichalcoginides and clay minerals to be printed 

as isolated, single atomic layers, onto a variety of substrates. 

The transfer printing process introduced above and the accompanying 

examples of materials printed onto plastic substrates represent compelling evidence of 
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the utility of this method as a technique for the fabrication of electronic devices on 

plastic substrates.  As an example, the fabrication of OTFTs on plastic substrates will 

necessitate the sequential assembly of dissimilar materials onto a common substrate.  

The methodology developed for the sequential printing of materials incorporated into 

the fabrication of OTFTs will be presented and discussed in detail in the next chapter. 
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Chapter 5 Flexible OTFT Devices Transfer Printed onto Plastic 

Substrates 

 

5.1 Introduction 

The examples discussed in Chapter 4 illustrate the simplicity and versatility of 

the transfer printing method and the variety of materials that are compatible with the 

process.  Some of the examples allude to the ability to use the transfer printing 

method to sequentially assemble dissimilar components onto a single substrate.  This 

ability can be exploited to develop the means for fabrication of thin-film electronics 

onto flexible substrates.  Thin-film transistors typically consist of a gate electrode, a 

set of source/drain (S/D) electrodes separated from the gate by a dielectric layer and a 

semiconductor film in contact with both the S/D electrodes and the dielectric layer 

(see Fig. 2.8 in Chapter 2).  As an example of what can be accomplished, transfer 

printing methods have been developed for the fabrication of TFTs based on both 

organic and carbon based semiconductor materials.  Even though OTFTs will be 

highlighted in this thesis, it is important to realize that the transfer printing method is 

also compatible with a wide range of inorganic semiconductor materials. 

A flexible OTFT device system that is based on using thermoplastic materials 

for both the device substrate and the dielectric layer has been designed.  Since gold 

(Au) has been shown to have a work function compatible with organic 

semiconductors17 and because Au electrodes can be fabricated relatively easily on 

silicon (Si) transfer substrates by photolithographic methods, Au was chosen as the 

material for both the gate and S/D electrodes.  The initial work of fabricating OTFTs 
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onto flexible substrates focused on successfully demonstrating the printing of active 

OTFT devices based on using pentacene (Pn) (a small molecule semiconductor), 

poly(3-hexylthiophene) (P3HT) (a polymeric semiconductor) and carbon nanotube 

mats (CNTM) (a macromolecule) as the active component.21 

In the following sections, the general preparation of printable layers on 

transfer substrates will be discussed.  Several important requirements associated with 

the sequential assembly of these printable layers on a thermoplastic substrate will 

then be presented and discussed. 

 

5.2 Fabrication of Au Electrodes onto Si Transfer Substrates 

Both 100 nm thick Au gate and 30 nm thick Au S/D electrodes were 

fabricated directly onto Si transfer substrates using standard photolithography.  To 

facilitate the transfer printing of the Au electrodes, subsequent treatments to the Au 

surface were developed in order to adjust adhesion strength.  It was found that, after 

metals deposition, the adhesion of the Au electrode could be improved by exposure to 

a 200 Watt, 19 SCCM, 250 mTorr O2 plasma for typically 5 min.  Where needed, 

chemical modification of the electrodes and transfer substrate surfaces was performed 

after fabrication of the electrodes.  Such surface treatments typically included a vapor 

phase exposure to benzyl mercaptan for 2 hrs in a custom made vapor deposition 

chamber and then exposure to (tridecafluoro-1,1,2,2-tetrahydrooctyl) trichlorosilane 

(as a release layer) for 2 min. in a second vapor deposition chamber.  After each SAM 

treatment the electrode assemblies were rinsed in 2-propanol (IPA) and at the end 

stored in a dry nitrogen purge box. 
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5.3 Dielectric Polymers Spin Coated onto Si Transfer Substrates 

Several different polymers were used as dielectric layers.  The details for each 

material are presented below. 

 PMMA was used as purchased from MicroChem with a molecular weight of 

950,000.  Concentrations of both 4% in anisole (A4) and 7% in anisole (A7) were 

used depending on the desired film thickness.  The PMMA was spin coated at either    

2500 rpm or 4000 rpm depending on the desired film thickness and baked on a 

hotplate at 90 ˚C for 3 min.  The resulting dielectric film thickness ranged from      

200 - 600 nm depending on the polymer concentration and spin coating speed. 

 Polyhydroxystyrene (PHS) (also called polyvinylphenol) was used as 

purchased from Sigma Aldrich with a molecular weight of 8,000 and was typically 

dissolved to a concentration of ~5 wt% in IPA.  Typically the PHS was spin coated at 

4000 rpm or 2500 rpm for 60 sec. and baked on a hotplate at 150 ˚C for 3 min.  Prior 

to spin coating, the solution was filtered through a 0.2 µm filter.  The resulting 

dielectric film thickness ranged from 200 - 600 nm depending on the solution 

concentration and spin speed. 

Polystyrene (PS) was used as purchased from Sigma Aldrich with a molecular 

weight of 280,000 and was typically dissolved to a concentration of ~7 wt% in 

toluene.  Typically the PS solution was spin coated at 2500 rpm for 60 sec. and baked 

on a hotplate at 90 ˚C for 3 min.  Prior to spin coating, the solution was filtered 

through a 0.2 µm filter.  The resulting dielectric film thickness was approximately 

720 nm. 
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Polycarbonate (PC) (GE Lexan 1300) with a molecular weight of 

approximately 39,000 was typically dissolved to a concentration of 10 wt% in 

cyclohexanone.  Typically the PC solution was spin coated at 2500 rpm for 60 sec. 

and baked on a hotplate at 90 ˚C for 3 min.  Prior to spin coating, the solution was 

heated to ~85 ˚C and filtered through a set of filters of decreasing pore size with the 

last step using a 0.2 µm filter.  The resulting film thickness was approximately       

460 nm. 

Polyimide (PI) PI2562 was purchased from HD Microsystems.  For some 

applications, such as an adhesion layer for printing to Kapton substrates, the PI was 

used as purchased.  For other applications T9039 thinner was added to the PI in order 

to obtain thinner films.  Typically the PI was spin coated at 4000 rpm for 60 sec. and 

baked on a hot plate at 110 ˚C for 3 min.  The resulting film thickness was 

approximately 1.8 µm for undiluted PI and 720 nm for a dilution of approximately 

2:1 (PI2562:T9039). 

 

5.4 Organic Film Deposition onto SiO2/Si Transfer Substrate 

 The Pn organic semiconductor material with a purity of 95% was used as 

purchased from Sigma Aldrich.  It was loaded into a high vacuum thermal deposition 

chamber and evaporated at a rate of 0.1 Å/sec with the Pn crucible at 180 ˚C and the 

sample holder at approximately 30 ˚C.  A 50 nm thick film of Pn was evaporated 

through a stainless steel shadow mask onto a silicon wafer with a 500 nm thick layer 

of thermal oxide (SiO2/Si).  When removed from the deposition chamber, the Pn film 

was immediately stored in a dry nitrogen purge box. 
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The P3HT organic semiconductor material was used as purchased from Merk.  

The 94.5% regioregular P3HT, with Mn =13,000 and Mw=26,200 g/mole, was 

dissolved in chloroform (>98%, Aldrich) to a concentration of 0.5 mg/mL.  The 

P3HT solution was dispensed manually onto the SiO2/Si substrate after passing 

through a 0.2 micron PTFE filter.  Spin casting was performed under ambient 

conditions with an acceleration of 1000 RPM/s up to a speed of 1250 RPM for         

60 seconds followed by a 2 min. bake at 80 ˚C.  The resulting P3HT film thickness 

was approximately 20 nm. 

The CNT films were grown on a SiO2/Si transfer substrate by chemical vapor 

deposition (CVD)35.  Prior to growth, the substrate was dipped first into a 30 µg/mL 

solution of Fe(NO3)3 in 2-propanol and then into hexane.  Using the iron particles as a 

catalyst, the nanotubes were then grown in a tube furnace at 900 °C using a mixture 

of H2, CH4, and C2H4 feed gases.153 

 

5.5 Issues and Requirements for both Single and Multi- Layer Transfer 

Printing 

 As outlined above, transfer printing requires (1) that the necessary differential 

adhesion be established for a printable layer between the surface of the transfer 

substrate and the top surface of the device substrate in each sequential step of 

fabrication and (2) that, for a patterned printable layer, the work of adhesion between 

the surface of the transfer substrate and the surface of the device substrate be low 

enough to allow the transfer substrate to be cleanly removed after printing.  

Furthermore, the structure and properties of the printed components must be 
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maintained without degradation during the printing process.  The fabrication of 

OTFTs on plastic using the transfer printing method was first developed with PET as 

the transfer substrate, a Pn semiconductor film patterned onto a SiO2/Si transfer 

substrate, Au electrodes patterned onto a Si transfer substrate and PMMA a dielectric 

layer.  These are not necessarily the optimum materials and definitely are not the only 

materials that can be incorporated into flexible electronics via transfer printing.  They 

are, however, the materials that were first used to develop the transfer printing 

method.  Therefore, in the following sections, the issues and specific methods 

associated with developing the transfer printing process for the fabrication of the 

flexible device system will be based on these materials. 

 

5.5.1 Differential Adhesion 

The first print process to be addressed is the transfer of the Au gate electrode 

to the PET device substrate.  Gold is known to adhere poorly to the surface of a        

Si wafer (characterized by a thin native oxide layer and therefore referred to as a SiO2 

surface)154.  Consistent adhesion between the SiO2 transfer substrate surface and the 

Au electrode is established by first cleaning the Si wafer.  The cleaning process 

consisted of sequential 5 min. soaks in trichloroethylene (TCE), acetone, methanol 

and IPA followed by a rinse in IPA and a 20 min bake in a 120 ˚C drying oven.  

Standard photolithography was performed followed by the deposition of Au directly 

onto the Si surface (i.e. omitting the Ti or Cr adhesion layer used in standard 

lithography).  This allows the work of adhesion between the Au electrode and the 

SiO2 surface to be large enough for the electrodes to survive lift-off and yet small 
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enough to transfer print to PET.  However, Au electrodes did not always cleanly 

transfer print to an untreated PET surface, but routinely transfer printed to a corona 

(high voltage electrical discharge) treated PET surface (i.e. the treated surface of as-

purchased Dupont Mulinex 453/700).  These observations lead to conclusions 

concerning the comparative works of adhesion and cohesion: 

  WA(Au/PET+corona) > WA(Au/PET) ~ WA(Au/SiO2) 

  Wc(Au) > WA(Au/SiO2) 

A full list of all cohesion and adhesion conditions determined from every step of the 

transistor fabrication process is presented in Table 5.1. 

In printing patterned electrodes, both the electrode surface and the transfer 

substrate surface come into contact with the device substrate.  Under the print 

conditions for the Au electrodes, it was found that the bare SiO2 transfer surface 

could not be removed from the PET device surface without destroying the device.  

This suggests that there is too high a work of adhesion between the PET and SiO2: 

WC(PET) < WA(PET+corona/SiO2). 

 A similar problem occurs in nanoimprint lithography (NIL) where higher pressure 

and temperature have been associated not only with improved filling around template 

structures and decreased stress flow patterns,20 but also with increased adhesion of the 

imprint resist layer to the template.155  To counteract the increased adhesion, NIL 

imprint templates are typically treated with a fluorinated silane self-assembled 

monolayer (SAM).156  This SAM treatment acts as a release layer to decrease the 

surface tension of the template surface, and thus the work of adhesion to most other 

materials. 
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Sequential 
Print Step 

Adhesion Requirement  
 

WA(SiO2/Au)  
< 

WA(SiO2 with RL/ PET)  
< 

Gate 
electrode 

WC(Si) 
WC(PET)  
WC(Au)  

WA(Au+Thiol/PET) 

WC(PET) 
 WC(Si) 

 
WA (PMMA/SiO2 with RL)  

< 
WA (Au/SiO2)  

< 
Dielectric and 
Source-Drain 

Electrodes 
 

WC(Si) 
WC(PMMA) 

WC(Au) 
WC(PET) 

WA(PET/PMMA) 
WA(PMMA/Au) 

WA(PET/Au+Thiol) 

WC(Si) 
WC(Au) 

WC(PMMA) 
WC(PET)  

WA(PMMA/Au+Thiol) 
WA(PMMA/Au) 

WA(PET/Au+Thiol)  
WA(Pn/SiO2) 

< 
WA(SiO2/PMMA) 

< 
WA(SiO2/Au) 

< 
Patterned Pn 

layer 
WC(Pn) 

WC(PMMA) 
WC(PET) 
WC(Au) 

WC(SiO2) 
WA(Pn/Au) 

WA(Pn/PMMA) 
WA(PMMA/Au+Thiol) 

WA(PMMA/Au) 
WA(PMMA/PET) 

WA(PET/Au+Thiol) 

WC(PMMA) 
WC(PET) 
WC(Au) 

WC(SiO2) 
WA(PMMA/Au+Thiol) 

WA(PMMA/Au) 
WA(PMMA/PET) 

WA(PET/Au+Thiol) 
 

WC(PMMA) 
WC(PET) 
WC(Au) 

WC(SiO2) 
WA(PMMA/Au+Thiol) 

WA(PMMA/Au) 
WA(PMMA/PET) 

WA(PET/Au+Thiol) 
 

Table 5.1:  For each sequential printing step, the adhesion rule is that for all interfaces 
between the surface of the transfer substrate and the (possibly mixed) surface of the 
device substrate, the work of adhesion must be less than both the works of cohesion 
for all materials above and below that interface and the works of adhesion for all 
interfaces above and below that interface.  This is illustrated here for the model OTFT 
discussed in Section 5.2.2.  Note that the (before printing) top surface of the Au 
electrodes is treated with a thiol compound causing the two Au surfaces to have 
different works of adhesion.  In addition, the  SiO2 transfer substrate surfaces with Au 
electrodes were treated with a release layer (RL) after fabrication of the electrodes, as 
noted in the text.22 
 

 

 

 



 

 73 

 

 

The same procedure can be used in transfer printing to reduce the work of adhesion 

between the SiO2 transfer surface and the PET device surface.  However, the release 

layer must be applied so as not to affect the transfer printing of the Au gate electrode.  

If applied before fabrication of the Au electrode, it was found that the release layer 

reduced the adhesion of Au to the Si transfer substrate surface so severely that the 

electrodes did not survive lift-off.  Therefore, application of the release layer after 

fabrication of the metal electrodes was investigated. 

The release layer molecule, (tridecafluoro-1,1,2,2-tetrahydrooctyl) 

trichlorosilane, is specifically designed with a silane end group that will attach to a 

SiO2 surface and is not expected to attach to a metallic surface.  However, it was 

found that following direct exposure of the transfer substrate containing Au 

electrodes to the release layer, the Au electrodes did not transfer print to PET.  Since 

the silane end group is known to react with water, the lack of transfer was attributed 

to the release layer molecules reacting with adsorbed water molecules on the surface 

of the Au electrodes (e.g. WA(Au/SiO2) >WA(Au+silane/PET+corona). 

The problem was overcome by protecting the metallic surface during the 

application of the release layer.  This was accomplished by first treating the Au 

electrode surface with a thiol terminated SAM, benzyl mercaptan, to saturate the Au 

surface so that there was no place on the electrode surface where a release layer 

molecule could attach.  This procedure led to successful transfer printing of the Au 

electrodes as determined visually upon removal of the transfer substrate after printing.   
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Modifications of the work of adhesion can be expressed as: 

WA(SiO2+silane/PET+corona) < WC(PET)  

WA(Au/SiO2) < WA(Au+thiol/PET+corona). 

The same two-step SAM treatment was found to facilitate successful transfer printing 

of the Au S/D electrodes from a Si transfer substrate when the top surface of the 

device substrate was the PMMA surface of the dielectric layer.  This yields a similar 

conclusion about the relative work of adhesion for Au transfer to PET and PMMA: 

  WA(Au/SiO2) < WA(Au+thiol/PMMA). 

 It was found, experimentally, that treatment with octadecanethiol improved 

the adhesion of Au to PMMA and PET in comparison to treatment with benzyl 

mercaptan.  The reason is assumed to be related to increased entanglement of the 

longer chain molecule at the Au/polymer interface.  The octadecanethiol treatment 

was used only in special cases such as larger area electrodes.  Additionally, an         

O2 plasma etch applied to the surface of the Au electrode was found to increase 

adhesion at the Au/polymer interface.  The mechanism for this increase may be 

related to the removal of organic contaminants but this has not been verified and is an 

area of possible further investigation. 

The polymer dielectric layer can be assembled onto the device substrate using 

any one of three methods:  (1) spin coated directly onto the device substrate, (2) spin 

coated onto a blank (possibly surface treated) Si transfer substrate and transfer printed 

onto the device substrate or (3) spin coated onto the transfer substrate containing the 
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S/D electrodes and transfer printed as a double layer onto the device substrate.  The 

third method was used because it eliminated one transfer printing step.  Transfer 

printing of the polymer dielectric and Au source-drain electrodes requires the 

adhesion characteristics (for more detail see Table 5.1): 

WA(PET/PMMA)>WA(PMMA/SiO2+ silane). 

The final transfer printing step involves the patterned organic semiconductor 

layer.  For the device geometry in Fig. 5.1, the organic layer must transfer to a mixed 

surface containing both metallic and polymeric species.  Transfer printing Pn onto 

such a device substrate prepared with 100 nm thick Au S/D electrodes embedded into 

PMMA yielded the results shown in Fig. 5.2a.  As can be seen in the profilometer line 

scan, the S/D electrodes protrude about 30 nm above the PMMA surface.  The 

protrusion of the electrodes is surprising since the PMMA layer was spin coated onto 

the transfer substrate containing the S/D electrodes prior to transfer printing.  It seems 

likely that elastic stresses are generated around the electrodes during the printing 

process, and then are relaxed by a displacement of the electrodes when the transfer 

substrate is removed.  The transfer substrate containing the Pn film shows clear 

evidence of remaining Pn after transfer printing of the organic semiconductor layer.  

The pattern of the residual Pn on the transfer substrate after printing indicates a low 

adhesion of the thin Pn film to the PMMA surface of the device substrate.  The 

incomplete transfer of the Pn layer is consistent with a protrusion of the electrodes, 

preventing conformal contact between the Pn layer and the full device substrate 

surface (comprised of both Au electrode surface and PMMA dielectric surface).  

Repeating the process for the Pn layer with thinner electrodes (20 - 30 nm Au) 
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yielded the result shown in Fig. 5.2b.  The thinner transfer-printed electrodes protrude 

by only ~ 5 nm and the transfer substrate, after printing, shows no observable residual 

Pn.  Devices fabricated with the thinner electrodes yielded far more consistent device 

properties than those fabricated with thicker electrodes.  The important differential 

adhesion characteristics for printing the patterned Pn onto the source-drain assembly 

are: 

  WA(Pn/PMMA)>WA(Pn/SiO2) 

  WA(Pn/Au)>WA(Pn/SiO2) 

  WC(PMMA)>WA(PMMA/SiO2). 

 

 

Figure 5.1:  Illustration of the cross-sectional structure of a bottom-contact transfer 
printed OTFT device.22 
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Figure 5.2:  Profilometer scan of (a) 100 nm and (b) 20 nm thick S/D electrodes (100 
µm wide) printed onto a PMMA coated PET substrate with corresponding optical 
image of electrodes after printing the Pn.  Also shown are optical images of the Pn 
transfer substrate after printing showing the residual Pn.  Note: the magnification is 
the same for all the optical images.22 
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5.5.2 Assembly of Model System using Transfer Printing 

The first transfer printing step (illustrated in Fig. 5.3a) was to print the gate 

electrode onto the PET device substrate.  The sample (printable layer between 

transfer and device substrate) was placed in the imprint machine with the transfer 

substrate on the bottom and a Si blank on top of the device substrate.  The printing 

was performed at 500 PSI and 170 ˚C for 3 min. 

The second step (illustrated in Fig. 5.3b) was to align the PMMA coated S/D 

electrodes with the previously printed gate electrode.  The transfer substrate 

(containing both S/D electrodes and polymer dielectric layer) and the device substrate 

(containing the gate electrode) were aligned, brought into contact and held together 

by static forces.  The aligned substrates were placed in the imprint machine with the 

transfer substrate on the bottom and a Si blank on top of the device substrate.  The 

PMMA dielectric layer and S/D electrode double layer were transfer printed at       

500 PSI and 170 ˚C for 3 min.  At this point the device substrate contained a bottom 

gate – bottom S/D electrode sub-assembly and was ready for printing of the organic 

semiconductor layer (illustrated in Fig. 5.3c).  As will be discussed in detail in 

Chapter 6, the conditions for transfer printing the Pn layer were found to have 

important effects on the transport properties of the resulting device.  The optimized 

pressure/temperature conditions for Pn transfer printing were found to be 600 PSI and 

120 ˚C.  Figure 5.3 pictorially illustrates the transfer printing recipe presented above 

used for the fabrication of OTFTs on a plastic substrate.  An optical image of a 

fabricated device is shown in Fig. 5.4. 
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In addition to OTFT devices, capacitors were also fabricated using the transfer 

printing method.  For this application, two identical electrodes were printed onto a 

PET device substrate.  The first electrode was printed in the same way as the gate 

electrode and the second electrode was printed in the same way as the S/D electrodes.  

A typical capacitor geometry consisted of two, 3 mm x 200 µm Au electrodes 

separated by a polymer dielectric layer.  Such a capacitor was used to measure the 

capacitance used in Eq. 2.10. 

 

 
 

Figure 5.3:  Illustration of the transfer printing recipe for the fabrication of bottom 
gate/ bottom S/D OTFT devices onto flexible substrates.  (a) illustrates the printing of 
the gate electrode, (b) illustrates the printing of the dielectric and S/D electrodes and 
(c) illustrates the printing of the semiconductor. 

 

 

Figure 5.4:  An optical image of a typical transfer printed device.  Note that the Pn 
layer is visible on the right half of the image.  The faint vertical line over the 
electrodes in the center of the image is the edge of the patterned Pn layer.  This device 
has a 200 µm wide gate electrode, a channel length L = 9 µm and a channel width    
W = 100 µm.22 
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5.6 Conclusion 

Materials combinations and transfer printing methods that allow complete 

device fabrication using only the properties of differential adhesion have been 

developed for the fabrication of an organic TFT on a flexible substrate.  The 

incompatibility of the adhesion properties of some interface pairs was addressed by 

using SAMs to modify the surface tension.  The process has been demonstrated for a 

model system consisting of a Pn thin film transistor on a PET substrate with Au gate 

and S/D electrodes separated by a PMMA (PHS) dielectric layer.  The relative 

adhesion strengths and the order of the materials layers needed for successful 

fabrication were established, with results listed systematically in Table 5.1.  The 

result allows the device components to be sequentially assembled onto the plastic 

substrate via transfer printing, avoiding the need for any mixed processing of the 

device substrate.  Continuing work on characterizing and understanding the adhesion 

properties for different materials combinations is important for achieving the full 

potential of transfer printing. 
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Chapter 6 Electronic Characteristics of Transfer Printed Pn TFTs 

 

6.1 Introduction 

Being able to transfer materials sequentially is a necessary, but not sufficient, 

condition for creating electronic devices with transfer printing.  The other necessary 

conditions are that the transferred materials retain their electronic properties as 

semiconductors, conductors and dielectrics, and that high quality interfaces between 

the materials can be established in printing.  In this chapter, it will be demonstrated 

that successful results have been achieved using the non-traditional electronic 

material pentacene, which has been incorporated into transfer printed thin-film 

transistors. 

 

6.2 Proof-of-Concept of Printed Pn TFTs 

More detailed studies have been performed on Pn devices fabricated using the 

transfer printing techniques.  The preliminary transfer printing recipes for these 

devices were not optimized but were similar to those described in Chapter 5.  The 

current-voltage (ID-VD) curves for such a device, with channel length L = 21 µm and 

channel width W = 100 µm, are shown in Fig. 6.1.  These data exhibit a classic TFT 

response as a function of gate voltage.  This device has a saturation field-effect 

mobility of 0.09 cm2(Vs)-1 and an on/off ratio of approximately 104. 

 



 

 82 

 

Figure 6.1:  Output characteristics (ID vs. VD) for a proof-of-concept Pn TFT device 
fabricated on a PET substrate via transfer printing.21 

 

For comparison, reference devices were fabricated using the as-grown, non-

printed Pn film as deposited onto the SiO2/Si substrate.  These devices have a channel 

length of L = 100 µm and a width W = 3 mm.  An optical image of a Pn reference 

device is shown in Fig. 6.2.  Output and transfer characteristics for a typical reference 

device were shown previously in Figs. 2.9a and b, respectively.  Reference devices 

fabricated using Pn films from several depositions were measured and the mobility 

was found to be variable within the range 0.08 – 0.13 cm2/Vs.  Even without 

optimization, the proof-of-concept Pn devices fabricated using transfer printing 

perform on par with Pn reference devices. 
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Figure 6.2:  Optical image of a Pn reference device with L = 100 µm and W = 3 mm.  
The two large squares are the Au S/D electrodes.  The continuous Pn film in the 
center of the image is visible only where covered by the Au electrodes.  The bright 
spots are dots of Ag paint used to connect Au wires to the electrodes.  The dark 
background is the SiO2 surface of the substrate. 

 

6.3  Optimization of Printed Pn TFTs 

Further work has been conducted to optimize the fabrication of transfer 

printed Pn TFTs.  During the optimization work, devices with both PMMA (referred 

to as Pn/PMMA/PET) and PHS (referred to as Pn/PHS/PET) dielectric layers were 

fabricated.  Performance of these devices was examined as a function of both printing 

pressure and temperature.  The calculated mobility of a selection of such devices is 

shown in Fig. 6.3.  Included in the figure for comparison is the range of mobility 

values for the reference devices.  Clearly, the transfer printed devices show an 

optimum mobility for printing conditions of 600 PSI and 120 ˚C.  It is seen that, for 

properly chosen transfer printing parameters, the transfer printed devices have a 
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larger mobility than the reference devices.  This is interesting because the active part 

of the Pn film for a transfer printed device is the (as-grown) top surface, which (prior 

to printing) exhibits a terraced structure shown previously in Fig. 2.3 as opposed to 

the (as-grown) bottom surface in contact with the SiO2/Si substrate that is presumably 

much smoother and has been optimized for good transport characteristics.  The good 

quality of a transfer printed device suggests that the (as-grown) top surface has gone 

through a structural change during the transfer printing process.  This will be 

discussed in detail in Chapter 8. 

In order to evaluate the transport properties of optimized Pn transfer printed 

devices, sets of devices with different channel lengths (L = 3 – 45 µm) were 

fabricated where the Pn layer was printed at 600 PSI and 120 ˚C for 3 min.  The 

output (ID vs. VD) and transfer (ID vs. VG) characteristics for a Pn/PMMA/PET device 

with channel length  L = 15 µm are shown in Fig. 6.4 and those for a Pn/PHS/PET 

device with channel length L = 12 µm are shown in Fig. 6.5.  From these and the 

associated data for all the devices as a function of channel length and gate voltage, the 

total resistance, RT, (ie. slope in the linear region) of each ID vs VD curve was 

determined in the voltage range VD = -5 to -15 V.  The plot of total resistance vs 

channel length for the Pn/PMMA/PET and Pn/PHS/PET device sets is shown in   

Figs. 6.6a and b, respectively.  As discussed in Chapter 2 the contact resistance was 

determined from the intercept of the plot of RT vs L and the mobility corrected for 

contact resistance was determined using Eq. 2.10.  These values along with threshold 

voltage, on/off ratio and subthreshold slope are listed in Table 6.1. 
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Figure 6.3:  Mobility of transfer printed Pn devices with PMMA (circles) and PHS 
(diamond) dielectric layers as a function of printing conditions compared with 
mobility range of Pn reference devices, shaded area.22 
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Figure 6.4: (a) Output (ID vs. VD) and (b) transfer (ID vs. VG) characteristics of a 
transfer printed Pn TFT with a PMMA dielectric layer, a channel length L = 15 µm 
and a channel width W = 100 µm.22 
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Figure 6.5: (a) Output (ID vs. VD) and (b) transfer (ID vs. VG) characteristics of a 
transfer printed Pn TFT with a PHS dielectric layer, a channel length L = 12 µm and a 
channel width W = 100 µm.22 
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Figure 6.6:  Resistance vs Channel length for Pn OTFTs with a (a) PMMA and        
(b) PHS dielectric layer.  Straight lines represent linear fits for each gate voltage that 
is extrapolated to L = 0 µm.22 
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Dielectric Layer µ, cm2/Vs VT, Volts S, V/Decade On/Off Ratio RP, MΩ 

PMMA 0.237 -7 3.5 ~105 2 

PHS 0.2 34 6 >105 0.5 

Table 6.1:  Pn OTFT device parameters for Pn layer printed at 600 PSI and 120 ˚C.  
Note: µ is mobility1, VT is threshold voltage1, S is sub-threshold slope1 and RP is the 
parasitic (contact) resistance.39,22 

 

The mobilities listed in Table 6.1 for the Pn devices with different polymer 

dielectrics are similar.  However, the threshold voltage associated with the PHS 

dielectric layer is much larger than that associated with the PMMA dielectric layer.  

This is expected to be related to the polar nature of these polymers and will be 

discussed in more detail in terms of the polymer surface energies in context with the 

P3HT devices presented in Chapter 7. 

 

6.4 X-ray Measurements of Transfer Printed Pn Films 

To characterize the effect of transfer printing on the film structure of an 

organic semiconductor film, x-ray diffraction (XRD) experiments were performed 

under ambient conditions on a 1” square Pn film transfer printed onto a PMMA 

(PHS) coated PET substrate.  (00l) x-ray diffraction patterns of the Pn films were 

measured in a coupled Θ-2Θ reflection geometry.  Details of the experimental 

procedure and of the basal spacing correlation length calculations are presented 
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elsewhere.23  Briefly, the basal spacing correlation length refers to the number of 

molecules well correlated (i.e. arranged crystallographically) with each other in the 

direction normal to the substrate surface. 

Although Pn has been shown to exhibit four polymorphs (with basal spacings 

of 14.1 Å, 14.4 Å, 15.1 Å and 15.4 Å), 50 nm thick films thermally deposited onto a 

SiO2/Si substrate exhibited the 15.4 Å phase as shown in the lower panel of Fig. 6.7.  

After transfer printing (see Fig. 6.7, upper panel) the 15.4 Å phase persisted 

indicating that the printing process did not affect the rotation of Pn molecules along 

the (00l) direction. 

The basal spacing correlation length (a measure of the crystalline grain size of 

the Pn film perpendicular to the substrate surface) was investigated as a function of 

printing conditions, with the results plotted in Fig. 6.8 as a percent increase compared 

to an unprinted Pn film as deposited onto an SiO2/Si transfer substrate.  The basal 

spacing correlation length for the printed films is equal to or greater than that of an 

unprinted Pn film for all the printing conditions that were studied.  Furthermore, the 

correlation length and the mobility are both largest for the same printing conditions of 

600 PSI and 120 ˚C (compare Fig. 6.8 with Fig. 6.3).  Even though the x-ray 

measurements are a bulk measurement, and the transport properties are associated 

with the semiconductor/dielectric interface,157 it is clear that the out-of-plane structure 

of the Pn film changes irreversibly under the same conditions of pressure and 

temperature that yield an increase in mobility. 
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Figure 6.7:  (00l) x-ray diffraction patterns of 50 nm Pn films (upper panel) after 
having been transfer printed onto a PMMA coated PET substrate and (lower panel) as 
deposited (i.e. unprinted) on a Si wafer with a 500 nm thick thermally oxidized 
surface.  The first three (00l) reflections are visible along with, as labeled, reflections 
from the associated substrate.22 
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Figure 6.8:  Percent increase (compared to Pn on SiO2 before printing) of basal 
spacing correlation length as a function of Pn printing conditions.22 

 

6.5 Conclusion 

Based on the above results for Pn (a small molecule semiconducting material), 

the transfer printing method appears to be quite promising for the fabrication of high-

quality flexible organic electronics.  In an attempt to prove the robustness of these 

results, it is desirable to extend this printing process to other materials such as 

polymeric semiconductor materials.  This has been done for P3HT as will be 

discussed in the next chapter. 



 

 93 

Chapter 7 Electronic Characteristics of Transfer Printed P3HT TFTs 

 

7.1  Proof-of-Concept of Printed P3HT TFT 

P3HT devices were fabricated using the transfer printing technique as a 

further test of the impact of transferprinting on the electronic characteristics of printed 

materials.  The transfer printing recipe for this device was initially not optimized but 

was similar to that described in Chapter 5 for Pn.  The current-voltage (ID-VD) curves 

for such a device are shown in Fig. 7.1.  Though of low quality, these data exhibit a 

TFT response as a function of gate voltage.  The device was measured in ambient 

conditions, which is known to dramatically affect the mobility and on/off ratio of 

P3HT devices39 and is likely responsible for the poor on/off ratio and transistor 

action. 

 

7.2 Optimization of Printed P3HT TFTs 

Further work was done to optimize the fabrication of transfer printed P3HT 

TFTs.  During the optimization work, devices with a PMMA dielectric layer on a 

PET substrate (P3HT/PMMA/PET), devices with a PS dielectric layer on a PET 

substrate (P3HT/PS/PET) and devices with a PC dielectric layer on a PC substrate 

(P3HT/PC/PC) were all fabricated.  The specific printing conditions of the gate 

electrode were the same as for the previously fabricated Pn devices with the 

exception that a printing temperature of 130 ˚C was used with the PC substrate.  For 

the printing of the combined polymer dielectric layer and S/D electrodes, the surface 

treatments, printing conditions and dielectric properties are listed in Table 7.1.     
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Prior to printing of the P3HT film, the transfer substrate was cleaved into ~1 cm 

square pieces and the P3HT films were patterned manually into 3mm squares using a 

fine tipped cleanroom swab.  It was determined empirically that the optimum printing 

condition for the P3HT layer was 600 PSI and 100 ˚C for 3 min. 

 

Figure 7.1:  Output characteristics  (ID vs. VD) for a Proof-of-concept P3HT TFT 
device fabricated onto a PET substrate with a PMMA dielectric layer using the 
transfer printing method.21 
 

7.3  Fabrication of P3HT Reference Devices [by A. Southard] 

 In order to better study the contact resistance and mobility of P3HT, a set of 

reference devices with varying channel length (L) were fabricated.  These reference 

devices were made and tested by A. Southard of UMD and are included here for 

completeness.  They are important as a performance metric for the transfer printed 
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P3HT devices.  These devices were fabricated by patterning Au S/D contacts using 

standard photolithography onto an SiO2/Si substrate (a 10 Å thick chromium wetting 

layer and a 100 nm thick Au layer were deposited via thermal evaporation and lift-off 

was performed).  A set of S/D electrodes was fabricated with channel lengths          

L= 3 – 1300 µm and width W = 200 µm.  The substrate and electrodes were rinsed 

with semiconductor grade acetone, methanol, and isopropanol (IPA) and dried with 

nitrogen prior to spin casting the P3HT film.  A gate contact was made by removing 

P3HT from around the periphery of the device with a cleanroom swab, scratching 

through the oxide layer with a diamond scribe and filling in the scratch with silver 

paint.  Devices were kept inside a nitrogen glove box until electrical characterization 

was performed under a separate N2 atmosphere on a Cascade probe station. 

 

7.4 Optimized Printed P3HT Device Characteristics 

Sets of transfer printed devices were fabricated for each different dielectric 

material with L = 3 to 45 µm.  The output and transfer characteristics of a 

P3HT/PMMA/PET device with channel length L = 15 µm and channel width           

W = 100 µm are shown is Figs. 7.2a & b respectively.  The linear region of the output 

characteristics was fitted to a straight line in the region from the source/drain voltage 

Vd = -5 to -15 V for gate voltages Vg = -20 to -60 V.  The slopes of these linear fits 

represent the total resistance (contact resistance + P3HT channel resistance) and are 

plotted in Fig. 7.3 as a function of channel length (L) for each gate voltage.  From this 

graph, the contact resistance was determined by extrapolating the resistance curves to 

L = 0 and the mobility (corrected for contact resistance) was determined using        
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Eq. 2.10.  For each polymer dielectric layer a 3 mm x 200 µm capacitor was 

fabricated by replacing the S/D electrodes by an electrode with a 3mm x 200 µm 

feature that overlapped an identical area of a gate electrode.  For each capacitor, the 

capacitance was measured using a BK Precision 820 capacitance meter.  The obtained 

values are listed in Table 7.1. 

 The contact resistance, mobility, threshold voltage and on/off ratio for the 

P3HT/SiO2/Si reference devices and the P3HT/PMMA/PET, P3HT/PS/PET and 

P3HT/PC/PC flexible devices are listed in Table 7.2. 

 As is evident in Table 7.2, the contact resistance determined for the three 

flexible device sets is noticeably lower than for the reference device set.  This implies 

a better metal/semiconductor interface associated with laminated electrodes as 

compared to spin coating the semiconductor film over the top of the electrodes.  

Furthermore, as previously seen for Pn devices, the mobility of the printed P3HT 

devices is larger than that of the reference devices.  In Chapter 6, Section 3, the origin 

of these results for Pn was attributed to annealing under pressure.  It is expected that 

the same mechanism is valid for P3HT and will be discussed in detail for Pn films in 

Chapter 8. 
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S/D Electrodes & 
polymer dielectric  

 
P3HT/PMMA/PET 

 
P3HT/PS/PET 

 
P3HT/PC/PC 

Electrode 
Thickness 

 

45 nm 45 nm 45 nm 

Electrode Surface 
Treatment 

O2 plasma 
& 

Benzyl mercaptan 
SAM 

 

O2 plasma 
 

O2 plasma 
 

Transfer Substrate 
Surface Treatment 

Release Layer 
SAM 

 

None None 

Polymer/Solvent 7% 950K PMMA 
in 

Anisole 
 

7% 40K PS  
in 

Toluene 

10% PC  
in 

Cyclohezanone 

Polymer spin 
coating 

2500 rpm for  60 
sec 

Bake 90 ˚C for 3 
min. 

 

2500 rpm for  60 
sec 

Bake 110 ˚C for 3 
min. 

2500 rpm for  60 
sec 

Bake 90 ˚C for 3 
min. 

 
Polymer thickness 
(prior to printing) 

 

600 nm 
 

720 nm 460 nm 

Printing Conditions 
 

500 PSI 
170 ˚C 
3 min. 

 

500 PSI 
170 ˚C 
3 min. 

500 PSI 
150 ˚C 
3 min. 

Dielectric layer 
capacitance 

4 nF/cm2 3.2 nF/cm2 6.3 nF/cm2 

Table 7.1:  Parameter associated with the fabrication and printed of the S/D eletrodes 
and polymer dielectric layers onto plastic substrates.25 
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Figure 7.2: (a) Output (ID vs. VD) and (b) transfer (ID vs. VG) characteristics of a 
transfer printed P3HT TFT with a PMMA dielectric layer, a channel length L = 15 
µm and a channel width W = 100 µm.25 
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Figure 7.3: Resistance vs Channel length for P3HT TFTs with a PMMA dielectric 
layer.  Straight lines represent linear fits for each gate voltage.25 
 

 

 

Device (# of devices) 
 

µ, cm2/Vs RP*W, 
MΩ*cm 

VT, Volts On/Off 
Ratio 

P3HT/SiO2/Si  (9) 
Reference samples 

0.007 0.56 13 ~5x104 

P3HT/PMMA/PET  (15) 
 

0.0186 0.18 18.5 ~105 

P3HT/PS/PET  (13) 
 

0.0196 0.13 -9.5 ~5x104 

P3HT/PC/PC  (14) 
 

0.0408 0.23 -5 ~104 

Table 7.2:  Device properties of reference and flexible P3HT OTFTs.25 
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7.5 Dielectric Effects 

In addition to the devices listed in Table 7.2, transfer printed P3HT OTFTs 

were also fabricated with PHS dielectric layers.  These devices, however, appeared to 

behave as though they had a threshold voltage so large that they could not be turned 

off with an applied gate voltage up to 60 V.  For this reason, these devices have not 

been included in the results listed above.  However these devices are of interest in that 

the Pn devices with a PHS dielectric layer also exhibited a large threshold voltage in 

comparison to those with a PMMA dielectric layer as shown in Table 6.1.  Clearly the 

semiconductor/dielectric interaction is important in terms of device performance.   

Others59,58 have studied the role of dielectrics in the performance of OTFTs and have 

shown that surface roughness, charge trapping and surface energies are important 

parameters.  For most of these reports, the organic semiconductor was deposited 

directly onto the dielectric surface.  The morphology of the resulting thin film is 

therefore extremely sensitive to the growth process. 

Transfer printing provides the advantage that the formation of the 

dielectric/semiconductor interface is not a growth process, but rather a mechanical 

contact between two pre-existing surfaces.  Thus, changes in resulting morphology 

due to annealing during the transfer printing process will presumably be dependent 

only on differences in polymer chemistry at the semiconductor/dielectric interface.  

This should be the case for the results shown in Table 7.2 for the P3HT OTFTs using 

three different dielectric materials.  For these devices, the threshold voltage appears to 

track the polar component for surface energy (as determined from contact angle 

methods158) as is shown in Fig. 7.4.  Work in is progress to expand these results to 
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include other polymer dielectric materials such as PVN, PαMS, PVPyr, PVC, PVA, 

PVAc and PI dielectric layers. 

 

 

 

Figure 7.4: Plot of Threshold voltage vs polar component of the surface energy for 
P3HT devices fabricated with PMMA, PS, PC and PHS dielectric layers.  Note: the 
threshold voltage is estimated for the devices fabricated with PHS.25 
 

 

7.6 Conclusion 
  Three different polymer gate dielectrics have been used in fabricating 

high quality P3HT TFT devices on flexible substrates via the transfer printing 

process.  The devices are easily assembled onto a PET substrate with either a PMMA 
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or PS dielectric layer or onto a PC substrate with a PC dielectric layer, with minor 

processing changes (e.g. use of release layers) to adjust for differences in adhesion. 

The contact resistance of all the flexible OTFT devices presented here is notably 

better than that of the unprinted reference devices.  Also, the mobility of all the 

flexible OTFT devices presented is better than that of the unprinted reference devices.  

Flexible devices based on Pn that were presented in the previous chapter showed 

similar improvements.  It was shown that the choice of dielectric materials can 

strongly affect the properties of the resulting OTFT device.  The different substrate 

and dielectric materials along with the incorporation of both small molecule and 

polymeric organic semiconductor materials into OTFT devices constitutes an 

important step toward illustrating the simplicity and flexibility of the transfer printing 

process. 
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Chapter 8 In-situ Transport Measurements of Transfer Printed 

Pn Thin-Films 

 

8.1 Introduction 

The transfer printing process can be thought of as an annealing under 

pressure.  Therefore, the process may create conditions that modify certain materials 

properties, thus affecting the characteristics of fabricated devices.159  For the organic 

semiconductor Pn, we have previously shown that transfer printing can produce 

devices with mobilities approximately a factor of two better than devices constructed 

from (unprinted) vapor-deposited Pn with thermally deposited top contacts.22  

Understanding the mechanism for such changes in properties may allow further 

improvement in the design and fabrication approaches.  Here we address the question 

by directly measuring device characteristics during the transfer printing process.  The 

key results show that annealing under pressure has the potential to dramatically 

improve the transport properties of electronic devices that use organic films as the 

active component. 

In an active OTFT, an accumulation layer is generated at the 

semiconductor/dielectric interface by the application of a gate voltage, thus allowing 

a source-drain (S/D) current to flow in the channel.  Since the active region of the 

OTFT device is localized to within a few nanometers of the interface between the 

organic semiconductor and the dielectric material,38,157,160,161 much effort has gone 

into improving the structure of the organic layer at this interface.26,42,72,162-164  In 

developmental research, OTFTs have been fabricated by thermally depositing a Pn 
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thin-film onto a doped silicon wafer with a thermal oxide surface (SiO2/Si).  With the 

addition of evaporated top-contact S/D electrodes, the resulting device (here referred 

to as the reference device) uses the oxide layer as the dielectric and the wafer itself as 

the gate electrode.40,49,165-168  In this geometry, (see Fig. 8.1a), the as-grown bottom 

surface of the Pn film is in contact with the dielectric layer and the terraced top 

surface (see AFM image, Fig. 2.3) plays little or no role in device performance.  

When using transfer printing techniques, the organic semiconductor layer, after 

having been thermally deposited onto a sacrificial SiO2/Si wafer (referred to as a 

transfer substrate), is transfer printed onto a plastic substrate containing an electrode 

subassembly as is illustrated in Fig 8.1b.  This device (here referred to as the flexible 

device) is configured as a bottom-contact Pn OTFT with the as-grown top surface of 

the Pn film in contact with the dielectric layer. 

During transfer printing it is possible to think of having both a reference and a 

flexible device in parallel as is illustrated in Fig. 8.2a (i.e. stack Fig 8.1a on top of 

Fig. 8.1b while retaining only one set of S/D electrodes).  The reference device then 

consists of a doped Si global gate, a SiO2 dielectric layer and laminated top-contact 

S/D electrodes.  For this device, the as-grown bottom surface of the Pn film is in 

contact with the dielectric layer.  The flexible device then consists of a patterned Au 

gate electrode, a polymer (in this case PMMA) dielectric layer and bottom-contact 

S/D electrodes.  For this device, the as-grown top surface of the Pn film is in contact 

with the dielectric layer.   

In order to avoid cross-talk between the reference and flexible devices during 

in-situ transport measurements, it was necessary to 1) eliminate the printed Au gate 
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electrode from the reference device and 2) replace the SiO2/Si substrate with a quartz 

substrate for the flexible device.  The two modified devices are shown schematically 

in Fig. 8.2b and c.  So as not to be confused with the original configurations of the 

reference and flexible devices shown in Fig. 8.1, the in-situ devices will be referred to 

as control and plastic devices, respectively.  Unfortunately, the quality of the as-

grown Pn film is not as good on the quartz substrate as on the SiO2/Si substrate.  This 

means that the mobility values measured for the plastic device will be lower than 

what has been previously reported for flexible devices that have shown a factor of 

two improvement as compared to control devices 22.  In spite of this limitation, 

however, the in-situ measurements can still be used as an important probe with which 

to study transport properties of transfer printed Pn films. 

For the control device, a 50 nm thick Pn film was thermally deposited onto a 

thermally oxidized Si transfer substrate.  The doped Si wafer was used as the gate 

electrode and the 500 nm thick SiO2 layer as the dielectric.  Gold S/D electrodes were 

transfer printed onto a PET substrate and used as laminated top contact electrodes.  

For the plastic device, a 50 nm thick Pn film was thermally deposited onto a quartz 

transfer substrate and then placed on top of an electrode subassembly that was 

previously transfer printed onto a polyethylene terephthalate (PET) substrate with Au 

gate and S/D electrodes separated by a 600 nm thick poly(methyl methacrylate) 

(PMMA) dielectric layer.  The channel width was 100 µm and the channel length was 

6 µm for both the control and plastic devices. 

Given these two device geometries, it is possible to investigate properties of 

the semiconductor layer by studying the effects of transfer printing.  Since both the 
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control and plastic devices experience the same transfer printing environment, any 

changes will be due to the transfer printing process itself.  In order to implement these 

comparisons, we have developed the capability to perform in-situ transport 

measurements on OTFTs during the transfer printing process.  The setup for these   

in-situ experiments will be presented and the results discussed below 

 
 
Figure 8.1:  (a) Cross-section illustration of the OTFT reference device geometry with 
thermally evaporated electrodes highlighting the as-grown pentacene bottom surface 
as the active device interface. (b) Cross-section illustration of the OTFT flexible 
device geometry highlighting the as-grown pentacene top surface as the active device 
interface.24 
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Figure 8.2: (a) Cross-section illustration of the typical geometry for transfer printing 
pentacene to a flexible electrode subassembly, which can be thought of as a reference 
device and flexible device sharing the same semiconducting layer. (b) Cross-section 
illustration of the OTFT control device geometry using the as-grown pentacene 
bottom surface as the active device interface. (c) Cross-section illustration of the 
OTFT plastic device geometry using the as-grown pentacene top surface as the active 
device interface. 

 

8.2 Experimental Setup 

To perform in-situ transport measurements in the imprint machine, a 

modification of an existing thermocouple feedthrough was made to include an 

electrical feedthrough for the drain and gate connections and grounding the source to 

the imprint chamber and to the source measure unit (Keithly 2400 SourceMeter).  

Connections to the device were made by passing the wires through a small hole in the 

bottom silicone sheet, which was subsequently sealed with silicone caulk.  The wires 

were connected to the device electrodes with silver paint.  To ensure a reproducible 
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temperature profile in the imprint chamber, a blank piece of Si wafer was placed 

below the silicone rubber sheets as a heat sink in contact with the thermocouple.  The 

temperatures reported here are the thermocouple temperatures unless otherwise noted. 

 

8.3  In-situ Transport Data and Discussion 

For in-situ measurements, the printing sequence was to first increase pressure 

up to 600 PSI, second to increase temperature in steps up to a maximum value, third 

to decrease temperature back down to room temperature in similar steps and finally to 

release the pressure.  At each step of temperature or pressure, output and transfer 

characteristics where measured.  For the plastic and control devices, sets of in-situ 

transport measurements are shown in Figs. 8.3a - c and Figs. 8.3d - f respectively.  

These were acquired at 600 PSI & 30 ˚C (before heating), 600 PSI & 170˚C (during 

heating) and 600 PSI & 30 ˚C (after heating).  As can be easily seen by a comparison 

of Figs. 8.3a and c, the room-temperature transistor response of the plastic device has 

drastically improved after heating.  The transport characteristics then remained 

essentially constant as the pressure was released.  In contrast, the control device  

(Figs. 8.3d and f) shows a strong OTFT response before heating and a notable 

decreased response after heating. 

From the data in Fig. 8.3, mobility as a function of printing condition is 

plotted in Fig. 8.4, where the mobility was calculated using the Eq. 2.8.  Fig. 8.4a 

corresponds to the plastic device and Fig. 8.4b corresponds to the control device.  

Several important features are evident.  First, consistent with a previous report,169 

laminated electrodes, as compared to thermally deposited electrodes result in a 
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substantial improvement in mobility for the control device (compare dark column to 

light gray column at 30 ˚C before heating in Fig. 8.4b).  

 

Figure 8.3:  In-situ ID vs. VD transport measurements of the flexible device for 
thermocouple temperatures of (a) 30 ˚C before heating, (b) 170 ˚C during heating and 
(c) 30 ˚C after heating, and of the reference device for thermocouple temperatures of 
(d) 30 ˚C before heating, (e) 170 ˚C during heating and (f) 30 ˚C after heating.  All 
data correspond to a pressure of 600 PSI.24 
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Second, for the control device, the increase in mobility from 30 ˚C to 90 ˚C can be 

described using the Arrhenius equation for mobility  

µ = µoexp(-Ea/kBT)        (8.1) 

where µo is the free carrier mobility, Ea is the activation energy and kB is Boltzmann’s 

constant.  Fitting the data below 90 ˚C, on heating, results in an activation energy of 

19 meV which is consistent with recently reported activation energies for Pn.167,170  

For temperatures above 90 ˚C, the mobility of the control device decreases with 

increasing printing temperature and remains dramatically below what would be 

expected from Eq. 8.1 (filled circles in Fig. 8.4b) after cooling.  In contrast, the 

mobility of the plastic device dramatically increases with printing temperature above 

120 ˚C and a net improvement remains after the sample is cooled.  These two 

mobility vs. temperature profiles demonstrate irreversible changes taking place at the 

semiconductor/dielectric interface at the imprint temperatures and pressures. 

The transfer printing process is seen to improve the transistor behavior of the 

plastic device, which incorporates the as-grown top surface, and negatively affect the 

behavior of the control device, which incorporates the as-grown bottom surface.  This 

may not be surprising when considering the nature of the two Pn surfaces.  The as-

grown bottom surface forms on the SiO2/Si substrate surface and is therefore flat; in 

contrast, the as-grown top surface exhibits a terrace structure171 (Fig. 2.3).   
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Incorporating this terraced surface into an OTFT device would result in isolated 

islands of Pn in contact with the dielectric layer.  At such an interface, any electrical 

transport from island to island would require out-of-plane transport which would 

reduce the performance of the OTFT device and is consistent with the low mobility of 

the plastic device prior to an increase in printing temperature. 

 

Figure 8.4:  Mobility of the (a) flexible device and (b) reference device during  the 
heating and cooling phases of the transfer printing process with pressure held at 600 
PSI.  The red dots in (b) correspond to the calculated mobility due only to thermal 
excitation.  The second (light gray) bar in (b) for 30 ˚C corresponds to the mobility of 
a reference device with thermally deposited top electrodes.24 
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As discussed in Chapter 6, x-ray diffraction measurements indicate that the 

basal spacing correlation length of a 50 nm thick Pn film increases as much as 35% 

during transfer printing.22,23  This is a bulk measurement and therefore, does not give 

a direct measure of the morphology at the dielectric interface; however, it does prove 

that the arrangement of Pn molecules in the film is irreversibly modified during 

transfer printing.  We can assume therefore that the Pn molecules at the as-grown top 

and as-grown bottom surfaces are also rearranged during printing.  Since the initial 

growth parameters for the deposition of the Pn film on the SiO2 dielectric surface 

were optimized for mobility at the Pn/SiO2 interface, it is not surprising that any 

rearrangement of the Pn molecules at the as-grown bottom surface would result in a 

less optimum interface with respect to mobility (i.e. lower mobility for a transfer 

printed reference device).  In addition, heating may introduce unfavorable changes in 

the interaction of the laminated electrodes with the Pn.  In contrast, the original top 

surface of the Pn film has poor transport characteristics.  In this case, given sufficient 

molecular mobility to change the crystal habit, it is unlikely that the as-grown top 

surface of the Pn film retains its original terraced structure under the transfer printing 

conditions of 600 PSI and 120 ˚C (sample temperature).  Smoothing of the Pn film to 

conform to the dielectric layer would allow the electronic transport to become more 

two-dimensional and is a reasonable explanation for the observed improvement of the 

electronic mobility of the transfer printed plastic device. 
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8.4 Conclusion 

In-situ transport measurements of a Pn OTFT during the transfer printing 

process have been performed.  The printing of the organic film onto a flexible 

substrate and the lamination of S/D electrodes onto a reference device both resulted in 

higher mobility devices than a reference device with thermally deposited, top S/D 

electrodes.  By comparison of these in-situ results for the Pn/PMMA/PET devices, it 

is concluded that the morphology of the P3HT thin-film also changes due to thermal 

annealing under pressure in such a way as to improve the mobility of the printed 

OTFT devices.  Since Pn is a small molecule material and P3HT is a polymeric 

material, it appears that annealing of organic thin-films is a general process that, for 

the appropriate printing conditions, has the potential to dramatically improve the 

transistor properties of an organic thin-film. 

The ability to perform these in-situ measurements provides opportunities for 

new data analysis.  Taken together, x-ray measurements and in-situ measurements 

show that improvements for the flexible device can be attributed to a rearrangement 

of the Pn molecules at the Pn/dielectric surface.  It is reasonable to conclude that the 

improvement in mobility of the flexible device is related to an evolution toward a 

more two-dimensional surface during the transfer printing process.  However, the 

resulting interface cannot be as good as the as-grown bottom surface, since the 

previously observed mobility improvement21,22 (~2x) is less than the improvement 

due to laminated S/D electrodes for the reference device.  This might suggest that the 
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annealing-induced rearrangement of the Pn molecules at the dielectric/Pn interface 

does not produce a complete relaxation of the initial terraced interface.  This shows 

that there is room for further improvement of organic electronics printed onto flexible 

substrates.  Additionally, such improvements should not be limited to transfer printed 

organic semiconductor films.  A similar thermal annealing under pressure may have 

benefits for other printed organic films such as those deposited using inkjet 

techniques. 
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Chapter 9 Concluding Remarks and Suggestions for Future Work 

 

9.1 Introduction 

Material combinations and transfer printing methods that allow complete 

device fabrication using only the properties of differential adhesion have been 

developed for the fabrication of organic TFTs on a flexible substrate.  The relative 

adhesion strengths and the order of the materials layers needed for successful 

fabrication were established empirically.  The incompatibility of the adhesion 

properties of some interface pairs was addressed by using SAMs to modify the 

surface tension of the appropriate interface.  The process has been demonstrated most 

extensively for a model system consisting of a Pn thin film transistor on a PET 

substrate with Au gate and S/D electrodes separated by a PMMA dielectric layer.  

The results allow the device components to be sequentially assembled onto the plastic 

substrate via transfer printing, avoiding the use of any chemicals and the need for any 

mixed processing on the device substrate.  All the components are assembled onto the 

devices substrate in exactly the same way using only pressure and temperature. 

In addition, a number of OTFTs were fabricated using both Pn and P3HT 

organic semiconductor materials, several different dielectric materials (PMMA, PHS, 

PS and PC) and two different substrate materials (PET and PC).  All the devices 

showed high-quality TFT behavior and low contact resistance in comparison to the 

unprinted reference devices using an SiO2 dielectric layer of a Si substrate. 
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Extending this research will involve addressing both a broader materials base 

and fabrication methods for flexible electronic applications.  A selection of issues that 

will need to be addressed are illustrated in the following sections. 

 

9.2 CNT CTFTs on Flexible Substrates 

A bottom-gate, bottom-contact CNT TFT device fabricated via transfer 

printing from a film deposited on a SiO2/Si transfer substrate by chemical vapor 

deposition (CVD)35 is shown in the SEM and AFM inset images of Fig. 9.1.  In the 

SEM image, the CNTs show up as dark due to charging of the insulating PMMA.172  

In the AFM image, the CNTs are clearly seen crossing the boundary onto the Au 

electrode.  The gate-voltage dependence of the current at two drain voltages is shown 

for a top-gate, top-contact CNT device.  The current increases for both positive and 

negative gate voltages, which is consistent with ambipolar behavior.  Previous reports 

of CNT films on SiO2 and polyimide (with no gate electrode and transferred by 

etching the original SiO2 support) found only p-type behavior.173,174  The large 

hysteresis in gate voltage observed in CNT devices on SiO2
175,176 is not observed in 

this device.  The current in this transistor does not go to zero due to the presence of 

metallic CNTs in the film; high on-off ratios would require processing capable of 

selecting only the semiconducting tubes.  This work is being expanded in 

collaboration with Vinod Sangwan of UMD and currently includes sets of both 

bottom and top gate CNT CFTs on PET substrates for channel lengths ranging from  

3 µm to 105 µm.177 
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Figure 9.1:  Transfer characteristics (ID vs. VG) at fixed drain voltages of 1.0 V (top 
curve) and 0.5V (bottom curve) for CNT TFT.  Inset shows SEM and AFM images of 
the CNT film in the source-drain region after transfer printing onto a PMMA-coated 
PET substrate containing previously printed Au electrodes.21 
 
9.3 Graphene CTFTs on Flexible Substrates 

An optical image of a graphene sheet transfer printed onto a PET substrate 

containing previously printed Au S/D electrodes was shown in Fig. 4.13.  This work 

was done in collaboration with Jian Hao Chen of UMD.  Figure 9.2 shows the 

transfer characteristics of a top gate device that exhibits field effect mobility of 
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1.0x104 cm2/Vs for holes and 4x103 cm2/Vs for electrons.152  Because of its atomic 

thickness, graphene constitutes a noval active device material that has recently 

commanded much interest.178,179,180  Prior to this example of graphene on plastic, this 

material was confined to the substrates SiO2 or SiC for which fabrication processes 

have been developed. 

 

 

Figure 9.2:  Transfer Characteristics of a top gate graphene CTFT printed onto a PET 
substrate with a PMMA dielectric layer.152 
 

9.4 Surface Modifications to Control Adhesion 

A list of materials that have either been incorporated into high-quality devices 

or at least successfully printed onto a flexible substrate in the course of this research 

is provided in Table 9.1.  Several entries are also included for materials that have 

been tested, but have not yet been successfully printed.  Of course, there is a large list 
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of additional materials that one could envision as interesting materials to incorporate 

into flexible electronics.  In a systematic attempt to expand our understanding of 

printable materials, six polymer dielectric layers and a Au feature have been 

separately printed against thirteen plastic substrates.  The results of this printing test 

are shown in Fig. 9.3.  Several observations can be noted by examining the 

information in Fig 9.3.  1) Kapton (except for the printing of Au features) is one of 

the best substrates for transfer printing.  Kapton also has the highest glass transition 

temperature of all the plastic/polymer materials as can be seen in the plot in Fig. 9.4. 

2) Printing is better on plastic substrates with larger surface energies and worse on 

plastic substrates with lower surface energies as can be seen in the plot in Fig. 9.5.  

Therefore chemical adhesion, and not just physical adhesion, must be important in the 

transfer printing process.  3) It is evident that materials containing oxygen double 

bonds print better (see Appendix A for the chemical structure of each of the 

plastic/polymer materials). 

Understanding such printing trends is necessary to develop a predictive 

understanding of the issues of adhesion.  One approach, now underway, is to correlate 

the ability to transfer print material A onto substrate B with the surface energies of 

these materials. 

In evaluating WA(A/B) and WA(A/C), the surface energies in the Dupré 

equation (Eq. 4.2) can be separated into dispersive and polar components.  Broadly 

interpreted, two materials which both have either strong dispersive (oleofilic) or 

strong polar (hydrophilic) components are likely to adhere well.181  For instance, a 

SiO2 surface can be characterized as polar (γTot = 287 mJ/m2, γD = 78 mJ/m2,             
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γP = 209 mJ/m2), whereas an organic surface can be characterized as dispersive (e.g. 

for PET, γTot = 47 mJ/m2, γD = 33 mJ/m2, γP = 10 mJ/m2).182,183  Noble metals like Au, 

which do not form a polar oxide, adhere weakly to SiO2; however, their electrons are 

highly polarizable, promoting stronger adhesion to materials with dispersive surfaces 

such as PET.  In continuing work, the contact angle method19 is being used to 

determine the surface energy components of the materials listed in Fig. 9.3. 

In addition Professor Teng Li of UMD is working to create a software 

program that can simulate the transfer printing process.  His efforts could 

dramatically improve our attempts to incorporate new and/or surface treated materials 

into the fabrication of flexible electronics via the transfer printing method.  In 

addition to the insights discussed above, Fig. 9.3 is expected to be an important 

metric against which Professor Li can test his simulations. 

A final observation from the results in Fig. 9.3 comes from noting that, for 

both corona treated and untreated PET and FEP substrates, the treated substrate is 

better for printing.  Figure 9.6 shows that these treated substrates, as compared to the 

untreated substrates, have a larger polar surface energy component; therefore, it can 

be concluded that a properly performed surface treatment that results in more polar 

surface can substantially increase the adhesion of a plastic/polymer material and thus 

substantially improve transfer printing processes. 

In order to study the effects specifically of plasma surface treatments of 

plastic/polymer materials and to control the transfer printing of such materials, a 

collaboration with Dr. Deuk Yeon Lee (a postdoc at UMD with Professor Gottlieb 

Oehrlein) and others at NIST has been established to develop an indirect plasma 
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treatment process that can be used to modify the surface of a polymer in order to 

increase adhesion.  So far indirect O2 plasmas have been used to modify the adhesion 

of a PMMA surface and N2 plasmas to modify the adhesion of a PET surface.           

A treated PMMA film was successfully transfer printed onto a PET substrate using 

the printing conditions; 500 PSI and 80 ˚C for 3 min.  Printed at the same conditions, 

an untreated film did not successfully print.  Work is underway to quantify and 

optimize this demonstration of improved adhesion and expand the treatment method 

to other materials of interest. 

In addition to plasma treatments as a surface modifier, it should be possible to 

graft functional groups or dissimilar long chain polymers to many surfaces as a means 

of establishing a specific chemical interaction or physical entanglement.184  Both 

types of surfaces modifications should be able to increase adhesion. 
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Substrate Dielectric Electrode Semiconductor 

Polyethylene 
Terephthalate 

Polymethylmethactylate Au Films Pentacene 

 
Polycarbonate  

 
Poly(hydroxystyrene) 

200 nm Dia. 
Ag 

nanowires 

 
CNT mats 

Polyvinyl Chloride Polycarbonate  
CNT mats 

P3HT 

Polydimethylsiloxane Polystryrene  
PEDOT:PSS 

Graphene 

Polyethylene 
Naphthalene 

Poly(α-methylstyrene)  DFH4T 

Kapton Polyimide  PDI 

FEP Glass Resin  Chitosan 

Bold (GREEN) - Incorporated into Printed Device 
Underline(BLUE)- Successfully Test Printed 
Italics (RED) - Unsuccessfully Test Printed 
 

Table 9.1:  Materials that have been successfully transfer printed and incorporated 
into high-quality OTFTs are shown in bold (green). Materials that have been 
successfully transfer printed but not incorporated into high-quality devices are shown 
in underline (blue). Materials that have not been successfully transfer printed are 
shown in italics (red). 
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Figure 9.3: Transfer printing results, in percent printed, for six polymer dielectric 
materials and a Au feature printed against thirteen plastic substrates. 
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Figure 9.4:  Glass transition temperature for plastic substrates that appear in Fig. 9.3. 
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Figure 9.5:  Surface energy for plastic substrates that appear in Fig. 9.3. 
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Figure 9.6:  Dispersive (red) and polar (blue) componentd of the surface energy for 
the treated and untreated PET and FEP substrates that appear in Fig. 9.3. 
 

9.5 Submicron Scale Devices 

Device sizes at the nanometer scale should be achievable with the transfer 

printing method, limited only by the ability to pattern the printable layer, and the edge 

fidelity in the transfer printing.  Since transfer printing is very similar to NIL, the 

same resolution limitation might be expected to be possible with both methods.         

A resolution of 10 nm has been shown with NIL.142  An example of transfer printing 

200 nm Au lines was shown in Fig. 4.3.  Also the printing of individual CNT and 

inorganic nanowires is a logical extension of the ability to print low density versions 

of the examples shown in Figs. 4.10 and 4.12, respectively. 
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9.6 Circuit Fabrication 

In order to expand the transfer printing method to useful applications (and 

ultimately to a roll-to-roll fabrication process), the method will have to be 

demonstrated for large area substrates.  In this direction we have printed 36 transistors 

onto a single, 1 inch piece of plastic.  These devices are shown in Fig 9.7. 

Another goal is to fabricate electronic circuits, containing complex 

combinations of individual devices, on plastic substrates.  Figure 9.8 illustrates a first 

attempt at transfer printing two devices that can be hooked up to create an inverter 

circuit.  The next step is to incorporate vias into the printing process so that different 

printed layers can be electrically connected as part of the printing process.  An 

illustration of the succesful printing of vias is shown in both Figs. 9.9 and 9.10 

showing a working solenoid with 24 vias and a transformer made from stacking two 

planar spiral solenoids, respectively.  This work is being pursued in collaboration 

with Andrew Tunnell and Vince Ballarotto at the Laboratory for Physical Sciences.  
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Figure 9.7:  Optical images of a set of 36 OTFTs transfer printed onto a 1” square 
PET substrate.146 

 

 

 

 



 

 129 

 

Figure 9.8:  Optical image of two transfer printed OTFTs devices on the same PET 
substrate.  These devices can be electrically connected to make an inverter circuit. 

 

 

 

Figure 9.9:  Optical image of a solenoid fabricated using sequential transfer printing 
steps onto a PET substrate.  The bottom set of Au lines are connected to the top set of 
Au lines by printed vias.146 
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Figure 9.10:  Optical image of transformer printed onto PET substrate.  The device 
was constructed from the sequential printing of Au lines and vias. (Courtesy of A. 
Tunnell, UMD) 
 

9.7 Self-Aligned Electrode Subassemblies 

Figure 9.11 illustrates a concept that might make it possible to print self-

aligned electrode subassemblies.  The concept is based on work established by 

Professor John Fourkas of UMD which uses a two photopolymerization process to 

fabricate 3D structures on a substrate.185  A bridge and associated shadow mask could 

be fabricated onto a substrate.  A metallic film could be deposited through the shadow 

mask such that the metal coated the bridge and is shadowed by the bridge.  The metal 

coated bridge becomes the gate electrode and the disconnected two metal features 

become the S/D electrodes.  The width and length of the bridge define the channel 

length L and width W of the electrode subassembly.  The height of the bridge defines 

the dielectric thickness.  The shadow mask can then be removed and a polymer 

dielectric spin coated onto the substrate surface.  This can all be transfer printed over 

to a flexible device substrate to create an electrode subassembly that has been self-
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aligned and has a polymer dielectric layer.  The printing of a semiconducting film 

would then complete the fabrication. 

 

 

Figure 9.11:  Conceptual illustration of a self-aligned electrode subassembly created 
using a two-photo polymerization technique. 
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9.8 Summary 

 The research reported here provides a broad overview of materials issues and 

potential applications for transfer printing.  Specifically, this method has been 

developed 1) for the placement of organic, inorganic and nanoscale materials and     

2) for the sequential assembly of dissimilar materials all onto plastic substrates.  The 

transfer printing method was expanded to the fabrication of high quality TFTs onto 

plastic substrates. 

Because of their sensitivity to environmental and processing conditions, the 

emphasis on organic semiconductor materials has provided an excellent metric by 

which to highlight the advantages and potentials of transfer printing.  Continuing 

research into materials adhesion, size scaling and multi-step fabrication for complex 

printed circuits is expected to lead to further advances toward low-cost, flexible 

electronics. 
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Appendix A Chemical Structures of Polymers 

 

 

Polyethylene  (PE)   Tg = -120 ˚C 

 

CH
3

CH
3

CH
3

CH
3  

Polypropylene (PP)  Tg = -20 ˚C. 

 

Cl Cl Cl Cl  

Polyvinylchloride (PVC)  Tg = 81 ˚C. 

 

OH OH OH OH  

Polyvinylalcohol (PVA)  Tg = 49 ˚C. 

 

O O

COCH
3

COCH
3

O

COCH
3

O

COCH
3  

Polyvinylacetate (PVAc)  Tg = 28 ˚C. 
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Fluorinated Ethylene Propylene (FEP) commonly referred to as Teflon. Tg = 225 ˚C. 

 

 

Polystryene (PS)  Tg = 100 ˚C. 

 

CH
3 CH

3
CH

3
CH

3  

Poly(α-methylstryene) (PαMS)  Tg = 106 ˚C. 

 

OH OHOH OH  

Poly(hydroxystyrene) (PHS)  Tg = 167 ˚C 
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N N N N  

Poly(vinylpyridine) (PVPyr)  Tg = 142 ˚C. 

 

O

N

O

O
O
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O

O H
3
C CH

3

 

Polyimide (PI) commonly referred to as Kapton.  Tg = 385 ˚C 

 

OO

CH
3

CH
3

CC

O

 

Polycarbonate (PC)  Tg = 150 ˚C. 

 

O

C

O
O

C

O

C

H
2

H
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Polyethylene Terephthalate (PET)  Tg = 85 ˚C. 
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Polyethylene Naphthalene (PEN)  Tg = 125 ˚C. 
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Nylon 6,6  Tg = 45 ˚C. 
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Polymethylmethacrylate (PMMA)  Tg = 105 ˚C. 
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