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A fundamental problem in biology is understanding how and why things group

together. Collective behavior is observed on all organismic levels — from cells and

slime molds, to swarms of insects, flocks of birds, and schooling fish, and in mammals,

including humans. The long-term goal of this research is to understand the functions

and mechanisms underlying collective behavior in groups.

This dissertation focuses on shoaling (aggregating) fish. Shoaling behaviors in

fish confer foraging and anti-predator benefits through social cues from other individ-

uals in the group. However, it is not fully understood what information individuals

receive from one another or how this information is propagated throughout a group.

It is also not fully understood how the environmental conditions and perturbations

affect group behaviors. The specific research objective of this dissertation is to gain



a better understanding of how certain social and environmental factors affect group

behaviors in fish.

I focus on two ecologically relevant decision-making behaviors: (i) rheotaxis,

or orientation with respect to a flow, and (ii) startle response, a rapid response to a

perceived threat.

By integrating behavioral and engineering paradigms, I detail specifics of be-

havior in giant danio Devario aequipinnatus (McClelland 1893), and numerically

analyze mathematical models that may be extended to group behavior for fish in

general, and potentially other groups of animals as well. These models that predict

behavior data, as well as generate additional, testable hypotheses.

One of the primary goals of neuroethology is to study an organism’s behavior in

the context of evolution and ecology. Here, I focus on studying ecologically relevant

behaviors in giant danio in order to better understand collective behavior in fish.

The experiments in this dissertation provide contributions to fish ecology, collective

behavior, and biologically-inspired robotics.
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Chapter 1: Introduction and general background

1.1 Motivation

A group of fish darts away from a predator in a silvery flash, a flock of birds

morphs and twists in the sky, and crowds of pedestrians brush past each other on

the streets of New York. Collective behaviors1 are mesmerizing to watch and have

fascinated philosophers and scientists for centuries. As early as the 4th century B.C.,

Aristotle wrote on the collective behavior of fishes. In his work Historia Animalium,

he described the behavior of a shoal of fish as apolitical in that the advantages of being

a member in the school were passive, resulting from baseline coordination among

members (Peck, 1970). Aside from inspiring philosophers and being fascinating to

watch, the investigation into the collective behavior — in particular the collective

behaviors of fish — has many potential applications, specifically (i) in the protection

of fish shoals from man-made hazards, (ii) application to group behavior in other

1Collective behavior is defined as the behavior of aggregates who do not have procedures for
selecting or identifying leaders or members and where emergent behaviors not seen at the individual
level can be observed (Turner and Killian, 1957).
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species, including humans, and (iii) the design of sensors and controls for autonomous

vehicles.

Fish are a key part of the marine ecosystem and likely to be affected by hy-

drokinetic tidal turbines and hydrodams (Viehman and Zydlewski, 2015). However,

little is known about fish behavior around these fluid obstacles (Goodwin et al., 2014;

Hammar et al., 2013). Viehman and Zydlewski (2015) found that shoals of fish had

a lower probability of entering a turbine than individual fish, and also reacted at

greater distances from the turbine. This suggests that communities and groups of

fish differ from individuals in their behavior around obstacles. In order to better

protect fish, we must first understand the behavior of both individual and groups of

fish in different environmental conditions.

By quantifying both the behavior of groups and individuals in different eco-

logical environments, we may also gain a better understanding of group behaviors

in other animal groups as well, including humans. Humans are a social group-living

species. Although there are many differences in how humans and fish group together,

there are also shared characteristics in group behavior. The investigation of how

shoals of fish move and make decisions in groups can influence city and emergency

planning (Faria et al., 2009; Helbing et al., 2005), and lend potential insights into

political(Conradt and Roper, 2003, 2005; Couzin et al., 2011, 2012; Sumpter et al.,
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2008) and economic processes (Cont and Bouchaud, 1997; Orlean, 1995). Study-

ing fish cognition and behavior in groups may also help us understand more about

the evolution of human culture (Laland et al., 2011) and human decision-making

(Conradt et al., 2009; Kurvers et al., 2013).

With the investigation of emergent behaviors in fish, there is also the potential

application to bio-inspired robotics (Lauder and Madden, 2006). Because fish shoals

can coordinate without a specific leader, understanding fish interaction rules can help

influence the design of autonomous controls for multiple vehicles (Rubenstein et al.,

2014; Schmicl and Crailsheim, 2008). (Although leadership does seem to play a role in

fish and other group behaviors (Biro et al., 2010; Couzin et al., 2005; Krause et al.,

2000; Reebs, 2000)). The lateral line of fish (see Section 1.4.1) is also of interest

to engineers. Vision is currently the main sensory modality used for autonomous

vehicles. In cluttered, dark, or murky environments many autonomous vehicles have

trouble navigating, making environmental sampling, and rescue attempts difficult in

these environments. Use of a lateral-line inspired sensor for autonomous vehicles may

improve performance in these otherwise unfavorable conditions (Yang et al., 2011;

Zhang et al., 2015).
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1.2 Objectives

Advances in tracking software, including automated tracking and the ability

to deal with occlusions of individual agents (Butail and Paley, 2011; Perez-Escudero

et al., 2014) have allowed for quantitative results on individual movements to be

obtained. As a result, over the past decade there has been a surge of quantitative

data on group behavior. However, we still do not fully understand how or why

groups form, how information is transmitted between group members, or how the

environment modulates group behaviors.

While there has been extensive research on shoaling behaviors, much less at-

tention has been given to investigating what happens when a shoal is perturbed (e.g.,

from a predator attack). Additionally, there has been almost no research investigat-

ing the effects of how the fluid environment in which fish live affects group behaviors

(Rieucau et al., 2014a).

This research seeks to better understand how social and ecological factors influ-

ence decision-making behaviors in groups of fish and how information may propagate

through a group. Specifically, this dissertation combines tools from biology, engineer-

ing, and computer science to investigate the roles of group size, sensory noise, and

flow on rheotaxis and startle response behavior.
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The existing gaps of knowledge addressed in this dissertation are

1. Investigation of the effects of unbounded noise on synchronization;

2. Quantification of the effects of group size and flow on shoaling, rheotaxis and

startle response behaviors;

3. Prediction of the spread of information transmission through a group that

includes dynamics.

1.3 Behavioral ecology of giant danio Devario aequipinnatus

The phylogeny of giant danio has been debated over the years. The most recent

detailing of the phylogeny of the genus Danio has been detailed by (Fang, 2003;

Mayden et al., 2006), in which several species of fish were determined to belong to a

related genus, Devario. Devario aequippinatus was agreed to be the scientific name

for the species of giant danio.

Giant danio Devario aequipinnatus McClelland 1839 are a cyprinid minnow

species. They are surface-dwelling tropical fish species naturally occurring in South

and Southeast Asia, including northern India, Nepal, Bangladesh, Myanmar, and

Thailand. They inhabit freshwater, in flowing rivers or streams of moderate flow

speeds of up to two body lengths per second (BL−s) (McClure et al., 2006), and
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form loose aggregations or schools. They feed mainly on insects (McClure et al.,

2006). The giant danio reflect blue, green, and yellow tones. There is a bright yellow

central strip that extends along the body of the fish (Figure 1.1), and individuals

tend to have different body patterning. Their most common natural predators are

kingfishers (McClure field notes).

Giant danio were selected for these studies because their ecology and shoaling

behaviors make them ideal for studies of collective behavior in flow. Additionally,

giant danio have been previously used for a variety of behavioral studies investigating

their rheotactic, startle response, and shoaling behaviors.

With regards to foraging behavior and rheotaxis, Chapman and Kramer (1996)

investigated competitive tactics in giant danio when responding to zebrafish Danio

rerio intruders to a food source. They found that an individual giant danio was able

to successfully defend a food source agains a group of five zebrafish, but as the number

of zebrafsh intruders increased up to 20, the defense rate dropped, as indicated by the

precent of chases of intruder fish. Bak-Coleman et al. (2013) investigated rheotactic

behavior in giant danio with different sensory modalities and found that giant danio

exhibit rheotaxis even in the absence of light, and with the hair cells of the lateral

line ablated.

In experiments involving shoaling, Viscido et al. (2004) measured shoal charac-
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teristics in groups of four and eight giant danio in order to study individual behavior

and emergent properties in fish schools. Paley et al. (2007) detailed a coupled os-

cillator system with particles to model shoaling behavior, and used giant danios to

validate the model. They found that giant danios tended to show higher alignment

with close neighbors, while the overall group polarization remained low. Stienessen

and Parrish (2013) investigated shoal decision-making based on heterogeneity with

regard to information about a food source and detailed resulting shoal dynamics.

They found that the fish behavior was a combination of behaviors found in both the

trained or informed fish (searching behavior) and the uninformed fish (aggregating

tightly). By varying the number of uninformed giant danios, they provided evidence

that information is shared between individuals, and that uninformed fish play an

active role in the decision-making process. Bartolini et al. (2015) investigated the

effect of temperature on shoaling giant danios, and found that lower temperatures

lead to tighter shoals with reduced activity.

In order to visualize flow fields during swimming and startle response behaviors,

Zhu et al. (2002) used giant danio in examining three-dimensional flows during nor-

mal fish swimming. Epps and Techet (2007) studied the relation of kinematics and

the vortex wakes resulting from an escape response using particle image velocimetry

(PIV), again using giant danio.
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These studies and more demonstrate the rich social behaviors of giant danio,

and provide a basis for which to form additional hypotheses about group behavior.

(a) (b)

(c)

Figure 1.1: a) Photo of giant danio, used from Wikipedia through a Creative Com-
mons license; b) staining photo of giant danio superficial lateral line with DASPEI,
used with permission from the laboratory of Dr. Sheryl Coombs, and c) photo of a
shoal of giant danio in a laboratory tank.

1.4 Relation to previous literature

In order to appreciate the significance of the studies contained in this disser-

tation, it is necessary to discuss the basic ecology of shoaling and why fish group
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together, as well as what is known about the particular behaviors of interest. There

is a vast, interdisciplinary literature on shoaling behavior, rheotaxis, and startle re-

sponse behaviors in fish. The following sections will succinctly cover these topics,

focusing on studies most closely related to the research covered in this dissertation.

1.4.1 Shoaling and schooling behavior in fish

In the literature, several definitions have been used for schooling and shoaling

behavior. Breder (1967) used the word school to refer to any aggregate group fish.

However, this could then also refer to any group of fish that has come together for

a resource. Some scholars had thought that a school should only refer to groups of

fish that were both aggregating, and strongly aligned with each other. Shaw (1970)

defined a school of fish as any aggregation of fish that were mutually attracted to

each other. More nuanced definitions of schools and shoals later defined a school

of fish as a specific subset of a shoal in which individuals in the group show a high

degree of polarization, or alignment (Pitcher, 1983). This definition is also not easily

interpretable, since it may be difficult to tell why fish are aggregating. Additionally,

it is unclear what is a sufficient degree of polarization to distinguish between a shoal

and a school. Groups of fish typically show a spectrum of alignment that oscillates

over time (Miller and Gerlai, 2008). These definitions of groups of fish continue to
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be debated and criticized because of their lack of clarity and precision in terms of

quantification (Delcourt and Poncin, 2012). For the purposes of this dissertation, I

refer to all groups of fish as a shoal.

In general, shoaling behavior seems to be a result of a combination of three

forces acting on individuals in a groups: attraction, repulsion, and orientation (align-

ment). Attraction draws individuals to aggregate, where a repulsive force minimizes

the distance between individuals and may help reduce collisions, and the orientation

force allows groups to align their headings, creating a polarized shoal (Reynolds,

1987).

Benefits of shoaling behavior

Many species of animals live or forage in groups (see (Sumpter, 2006) for re-

view). In fishes, shoaling behavior is exhibited by almost half of all species at some

point in their lives (Shaw, 1978) and has been proposed to confer multiple advan-

tages, including predator avoidance, foraging, and hydrodynamic benefits.

The benefits of shoaling have been largely cast in terms of reducing predation

risk (Hamilton, 1971; Krause and Ruxton, 2002; Lima, 1995; Magurran, 1986; Mc-

Namara and Houston, 1992; Pitcher and Parrish, 1993; Pulliam, 1973), and there are

several mechanisms by which shoaling can confer anti-predator benefits.
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A large shoal is more likely to detect a predator, and detect one faster than

an individual, through an expanded sensory range. A group of animals, including

fishes, is capable of transferring directional information about discrete sources in

the external environment (Breder, 1959; Couzin et al., 2006; Magurran and Higham,

1988; Radakov, 1973; Ryer and Olla, 1991; Ward et al., 2008). Rapid predator evasion

and waves of information transmission have been observed in schooling fish in the

lab (Radakov, 1973), and in the field (Axelson et al., 2001; Gerlotto et al., 2006)

with model or natural predators. This evasion tactic, also known as the Trafalgar

effect (Godin and Morgan, 1985; Treherne and Foster, 1981), transmits information

within the school via waves of response that can spread faster than the speed of

an approaching predator (Radakov, 1973). Thus, social information transmission

is likely to play a role in the collective response to a predator, and allow for rapid

predator escape once a threat has been detected. However, the information content

(e.g., whether it conveys general alarm, the direction and speed of the approaching

predator, or the escape direction of nearby fish) is not well understood, including the

sensory mechanisms by which information is transmitted through the school.

Another hypothesis for a reduced predation risk benefit of shoaling is the di-

lution of risk (Bertram, 1978; Krause and Ruxton, 2002), which is based on the

assumption that, at a given time, only one group member is preyed upon during a
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solitary predator’s attack. This is debated to play a significant role for much larger

group sizes (i.e., massive marine shoals) (Rieucau et al., 2014a). Additionally, preda-

tors attacking a large school may experience a confusion effect (Ioannou et al., 2007;

Krakauer, 1995; Landeau and Terborgh, 1986; Milinski, 1984; Miller, 1922) by which

it is difficult to find and select a target to attack. However, very large shoals may

stand out in an open ocean, and laboratory experiments suggest that predatory fish

select for coordinated, collective motion in virtual prey (Ioannou et al., 2012).

The proposed foraging advantages of shoaling have not been as clearly demon-

strated as the anti-predatory ones. Shoaling can improve foraging activity when

information can be obtained from the foraging behavior of others to improve an indi-

vidual’s own exploitation of a patchy resource (Berdahl et al., 2013). It has also been

shown that individual fish choose to shoal with individual fish with whom they have

had previous foraging success (Krause et al., 2000), or with whom they are familiar

(Lachlan et al., 1998). Pitcher et al. (1982) found that groups of fish were able to

locate food faster than individuals.

Shoaling may also facilitate locating potential mates and may provide hydro-

dynamic advantages including decreased energy use (Hemelrijk et al., 2014; Weihs,

1973), although this is is difficult to measure empirically, and has been debated

(Pitcher and Parrish, 1993).
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Sensory basis of shoaling

While those are the reasons why fish group together, we also know a bit about

how they choose to aggregate, and how information might be shared between group

members.

In order to shoal, a fish must be aware of the locations (and possibly the

velocity) of its shoal-mates. Shoaling appears to be maintained through both vision

and the lateral line, although the lateral line seems to play an especially important

role. Partridge and Pitcher (1980) found a role of the lateral line in the positioning

of neighbors (shoals without a lateral line had increased frequency of a 90◦ bearing,

as well as effects on nearest neighbor distance and information propagation. Cahn

and Phyllis (1972) also found a role of the lateral line in the side by side spacing of

groups of tuna Euthynnus affinis.

Additionally, fish can sense their environment with their lateral line. The lateral

line is a system of flow-sensing sensory organs (neuromasts) found in many aquatic

vertebrates, especially fish. Each neuromast is composed of directionally sensitive

hair cells (stereovillae) embedded in a gelatinous cupula. The cupula couples the

movement of near-field water to the embedded hairs. Within each cupula, there

is a bidirectional axis of motion, based on hair cell orientation. Deflection of the

hair cell bundle in its preferred direction of motion results in ion channel opening
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and increased firing rate. Conversely, movement in the opposite direction produce

an inhibitory response (Dijkgraaf, 1963; Flock, 1965). Displacement of the hair cell

bundle orthogonal to the preferred direction of motion yields no response. Thus, these

hair cells are directional along a bi-directional axis, and when arrayed over the body

can allow directional sensing in multiple directions. There are two submodalities of

the lateral line system, categorized by the location of the neuromasts. When the

neuromasts protrude from the surface of the skin, they are referred to as superficial

neuromasts, and when these sensors are located in fluid-filled channels beneath the

surface of the fish, they are called canal neuromasts. The signals from superficial

neuromasts correspond to local flow velocity, and the sensory signals from the canal

neuromasts correspond to the pressure gradient between the pores. When examined

over the population of neurons, the fish is able to sense the pressure gradient length

body. The lateral line is important for the ecology and behavior of fish, and has

been shown to play a role in a variety of fish behaviors (Montgomery et al., 1995),

including shoaling (Cahn et al., 1965; Partridge, 1980) (also see Section 1.4.1), but

also startle response behavior (McHenry et al., 2009; Olszewski et al., 2012; Pitcher,

1980), prey capture (Kanter and Coombs, 2003), rheotaxis (Bak-Coleman et al.,

2013; Baker and Montgomery, 1999; Montgomery et al., 1997; Trump and Mchenry,

2013), and object localization (Goulet et al., 2008; Windsor et al., 2010).
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Given the demonstrated importance of the lateral line in shoaling behavior

and information transmission (Partridge and Pitcher, 1980), the fact that local flow

fields influence lateral line sensing, and that many fish encounter a variety of fluid

environments, it follows that there should be further investigation of fish shoaling

and information transmission in flow. This dissertation addresses some of these gaps

in the literature by investigating the effect of uniform flow on shoaling behavior and

information transmission during predator escape.

1.4.2 Rheotaxis

Rheotaxis is a robust, multi-sensory behavior in which fish and other aquatic

organisms tend to align themselves in the direction of flow (Arnold, 1974; Lyon,

1904). This form of taxis is generally positive (orienting upstream), but can be

negative (orienting downstream). Positive rheotaxis confers many potential benefits

to fish, including capture of downstream drifting prey (Gardiner and Atema, 2007;

Kleerekoper, 1978), orientation to currents for migration (Thorpe et al., 1981; Tytler

et al., 1978), aiding odor searches (Carton and Montgomery, 2003), and energetic

cost savings for fish attempting to maintain stream-wise positions in strong currents

(Montgomery et al., 1995).

Although rheotaxis is an important behavior in the survival of many fish and
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aquatic species, the benefits of group behavior have largely focused on anti-predation

(Hamilton, 1971; Krause and Ruxton, 2002). According to a review of schooling

behavior by Rieucau et al. (2014b), there has been conflicting evidence for some of

the anti-predator hypotheses, and little experimental evidence obtained for larger

groups. Thus, further work is necessary to investigate other possible benefits for the

evolution of shoaling behavior.

While the primary focus of previous research on collective behavior has been

on anti-predator benefits, there have been several studies investigating group ben-

efits of taxis. Grünbaum (1998) developed asocial and social random-walk models

for chemotaxis along a gradient using attractive and repulsive forces to mimic collec-

tive behavior; this study demonstrated that collective behaviors have the potential

to enhance taxis by providing a mechanism for averaging instantaneous movement

decisions over neighbors rather than averaging over time. Torney et al. (2009) inves-

tigated context-dependent search of a chemical gradient with fluctuating gradients

defined by patchy, heterogeneous information; by including social interaction terms

and observed that a group acts as a non-local spatial gradient sensor. Berdahl et al.

(2013) investigated emergent environmental sampling by moving animal groups; they

found that a group of fish has the ability to track a fluctuating environmental gradi-

ent.
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These studies are versions of the many-wrongs hypothesis (Codling et al., 2007;

Simons, 2004), which states that individuals average their preferred direction, lead-

ing to a compromise in route choice that leads to an improvement in navigational

performance. In one of the earliest studies of the many-wrongs hypothesis, Sir Fran-

cis Galton made a near-perfect estimate of the weight of an ox by using 787 guesses

made by others (Galton, 1907). The results of these studies support the hypothesis

that group behavior enhances taxis, as compared to solitary individuals, and provide

some possible mechanisms by which this benefit emerges.

Additionally, of these previous studies only Berdahl et al. (2013) tested their

modeling predictions experimentally. While theoretical results are generalizable,

testing modeling predictions is an important step in identifying what behavioral

rules animal groups use to make decisions (Sumpter et al., 2012). Testing model

predictions may also uncover species-specific navigational strategies based on ecology,

sociality, or sensory biology.

While rheotaxis has been extensively studied and is of interest to neuroethol-

ogists and fisheries biologists, it has yet to be fully appreciated as a group behavior,

despite ample evidence of group rheotaxis in nature (e.g., the upstream migration of

salmon to their natal spawning sites) and evidence of collective benefits in migration

(Berdahl et al., 2013; Ojima and Iwata, 2009). It has been shown that individuals
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in a group may gain additional information about the environment from observing

the behavior of their neighbors (Breder, 1959; Couzin et al., 2006; Radakov, 1973).

During rheotaxis, individual fish may use a combination of visual and lateral-line

sensing to perceive the relative motion of nearby fish in order to gain information

about the directionality of the local flow field (Partridge, 1980; Strandburg-Peshkin

et al., 2013). This dissertation investigates the effect of group size and sensory noise

on rheotaxis, from theoretical and experimental perspectives.

1.4.3 Startle response

In teleost fishes, the neural basis of startle-escape behavior has been studied in

much detail (Eaton et al., 2001; Korn and Faber, 2005). The behavior is controlled

by a system of reticulospinal neurons, including a pair of large Mauthner neurons

on which multimodal (auditory, visual and lateral line) inputs converge (Eaton and

Emberley, 1991; Fukami et al., 1965; Preuss et al., 2006; Zottoli et al., 1995). A

single action potential in one Mauthner cell reliably activates contralateral spinal

motor neurons causing a fast startle response away from a potential threat (Eaton

et al., 1977; Preuss and Faber, 2003; Preuss et al., 2006; Weiss et al., 2009). Startle

probability is a quantifiable behavioral measure that reflects the excitability of the

Mauthner cell system remarkably well (Neumeister et al., 2008, 2010; Preuss and
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Faber, 2003). In fact, Mauthner cells are regarded as decision-making neurons for the

execution of the startle response, and there is evidence for both ecological and social

regulation of the decision to startle at the level of the Mauthner cell (Neumeister

et al., 2010).

While quantification of startle probability has been investigated frequently in

individual fish, the evaluation of startle probability of groups of fish, as well as how

the startle probability varies under different flow conditions, has been rarely studied.

Godin et al. (1988) measured the probability as a function of school size of at least one

individual startling in a school of glowlight tetra Hemigrammus erythrozonus sub-

jected to an artificial threat stimulus (a brief flash of light); this study provides evi-

dence that the probability of detection increases with group size. Domenici and Blake

(1997) compared the kinematics of startle responses of solitary herring to schooling

herring and found that when responding to a sound stimulus, schooling herring had

longer latencies, but improved directionality. Marras and Domenici (2013) found

that in shoaling fish, some fish are more likely to lead or initial a startle response

before others. Studies of startle response behavior have been conducted in various

ecological conditions including turbid water (Meager et al., 2006), and hypoxic con-

ditions (Domenici et al., 2007). Turbidity decreased locomotor performance, and

likeliness of predator escape (Meager et al., 2006), and hypoxia decreased aggrega-
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tion behavior during shoaling, and increased latency for escape responses (Domenici

et al., 2007).

In addition to these experimental studies, there have been several modeling

studies investigating predator attack on a group. Godin et al. (1988) used classical

theories of signal detection to predict the number of fish responding. However, these

predictions underestimate the experimentally observed number of H. erythrozonus

responding. One explanation for the disagreement between model and experiment

is that the independent probability signal detection model used by Godin et al.

(1988) fails to take into account socially transmitted information. It could thus be

hypothesized that the probability of an individual fish responding in a group may

depend on the behavior of other shoal mates.

There have also been several models that simulate anti-predator behavior. Vabø

and Nøttestad (1997) developed a two-dimensional cellular automata to observe pat-

terns of group behavior in two dimensions that resembled patterns of prey escape

previously observed. Inada and Kawachi (2002) used a model of repulsion, attraction

and orientation to simulate the behavior of homogenous shoals of fish with and with-

out the presence of a predator and also observed various patterns of escape based

on the movement of the predator. Zheng et al. (2005) used a similar ROA model

as Inada and Kawachi (2002), but included the ability of a predator to catch prey
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agents, and investigated selfish or cooperative escape behaviors by prey on probabil-

ity of capture. They found that individuals behaving selfishly may lead to increased

predator confusion (as indicated by their simulated predator’s target switching). Lee

et al. (2006) investigated the dynamics of prey-flock escaping behavior in response

to a predator attack similarly to Inada and Kawachi (2002) and Zheng et al. (2005),

but in a molecular dynamics model. Some models of predator-prey interactions have

included evolutionary dynamics (Wood and Ackland, 2007).

However, there are few modeling approaches that have explicitly studied the

rapid information transmission that occurs during the startle response. A notable

exception is Kolpas et al. (2013) in which the authors modeled perturbations on a

group of fish by changing the heading of only one individual, then examining how

other individuals responded to the heading change based on different interaction

topologies. This model did not explicitly include startle behavior or transmission

of startle response behavior through a group. This dissertation develops a model

of information transmission in groups and uses it to investigate the influence of

social influence in the rapid escape from a predator. Additionally, experiments are

performed to investigate the effects of flow on information transmission in groups.
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1.5 Approach

A defining characteristic in the study of collective animal behavior is the in-

terplay between experiment and theory, coined the modeling cycle (Sumpter et al.,

2012). In their review paper, Sumpter et al. (2012) classifies modeling approaches

as either theory-driven, data-driven, or model selection. The theory-driven approach

starts from models informed by previous data and used to make predictions about

future experimental results. The data-driven approach attempts to explain experi-

mental data. Patterns are identified using informal models. The model selection ap-

proach evaluates models based on how closely each approximates the data (Sumpter

et al., 2012).

This dissertation incorporates elements of all these approaches. I generally

start from a theoretical standpoint, then collect experimental data to test theoretical

predictions. I then assess whether the experimental data can be predicted by the

model, and where the collected experimental data may lie in the parameter space

of the model. Figure 1.3 provides a simple schematic of my approach. I apply this

approach to each behavior of interest: rheotaxis, and startle response behavior.
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Experiment 

Model 

Rheotaxis Startle Response 

Figure 1.2: An illustration depicting the approach I use to investigate both rheotactic
and startle response behaviors.

1.6 Contributions of dissertation

This dissertation advances the current body of knowledge in the general fields

of collective behavior and fish ecology by integrating theoretical models with exper-

imental data on fish behaviors.

The contributions of this dissertation are

1. The extension of a noisy, non-Euclidean synchronization model to include a

reference direction and unbounded sensory noise. The classic Kuramoto model

(Kuramoto, 1975) of synchronization on the circle (see Section 2.5) is modified

to include unbounded sensory noise and a reference direction in order to model

rheotactic behavior in fish. Weak synchronization is demonstrated to be able

to occur in the presence of unbounded noise.

2. Investigation of the influence of sensory noise and group size on synchroniza-
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tion using novel measures of internal disagreement (ID) and external disagree-

ment (ED). Using the rheotactic model, the effect of group size and unspecified

sensory noise on both rheotaxis and shoal alignment are investigated. A gain

parameter in the model is used to specify whether agents are attending to the

external flow stimulus, neighbor information, or some combination of both, in

order to assess the role of social information in rheotaxis. Behavioral predic-

tions are generated from model results.

3. Quantification of the role of group size and flow speed on rheotaxis and shoaling

behaviors. Predictions from the theoretical results of the rheotaxis model,

namely that group size improves rheotaxis in noisy sensory conditions, is tested

experimentally. Fish of various group sizes are filmed in a flow tunnel under

different flow speeds. Measures of spatial and orientation characteristics were

measured. In order to better characterize the experimental data, a simple

aggregation model is formulated to complement the orientation-based rheotaxis

model.

4. Development and application of a probabilistic model for predicting information

transmission in groups. Modeling techniques from epidemiology and computer

science are applied novelly to the field of collective behavior to explicitly model
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the probabilistic nature of information transmission through a group, as well

as the resulting dynamics. This study makes multiple predictions about both

the propagation of information as well as group response to a threat, based on

different shoaling characteristics.

5. Experimental test of the role of uniform flow on shoal structure and startle

response probability in groups of fish. Hypotheses are formulated for how rheo-

taxis (alignment with respect to a flow) may affect startle response behavior

and shoal structure. Individual and groups of giant danio are exposed to loom-

ing fright stimuli in both a flow and a no-flow condition. Shoal characteristics,

and startle response characteristics are then measured. The results of the ex-

periment are fit to the model detailed in the previous chapter.

1.7 Organization of dissertation

The outline of the rest of this dissertation is as follows

In the first half of this dissertation, I discuss theoretical and experimental

studies investigating group rheotactic behavior. In the second half of the dissertation,

I detail experimental and theoretical studies on startle response behavior. Finally, I

summarize the dissertation contributions and suggest avenues for future research.
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Startle response 

Group rheotaxis
Part I

            Experiment

Part II

Chapter 4 

         Chapter 5          Chapter 6

Model

Chapter 3 

Figure 1.3: Illustration of the organization of this dissertation. Each part pertains
to a different behavior, either group rheotaxis or startle response. There are two
chapters within each part: a chapter on mathematical modeling, followed by an ex-
periment that either explicitly tests model predictions, or is fit to the model detailed
in the preceding chapter.

Chapter 2 provides background and justification for the choice of empirical

analysis techniques as well as modeling methods used. This chapter will serve as a

reference throughout the dissertation.

Chapter 3 presents a mathematical model in the form of an all-to-all, coupled-

oscillator framework over the non-Euclidean space of fish orientations to model group

rheotactic behavior. Individuals in the model measure the orientation of their neigh-

bors and the flow direction relative to their own orientation. These measures are

corrupted by sensory noise. The effects of sensory noise and group size on internal

(i.e., within the school) and external (i.e., with the flow) disagreement in orientation

are discussed, and model predictions are framed in the context of biological processes.

Chapter 4 tests the hypothesis that group size and flow speed affect shoaling

and rheotaxis. Group size and flow speed are varied. Measures of rheotaxis and
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shoaling are performed, including orientation with respect to neighbors and respect

to the direction of the flow, as well as the spatial variables of nearest neighbor

distance, shoal density, and shoal area. Results are placed in the context of previous

research, including the theoretical predictions of the previous chapter.

Chapter 5 develops a probabilistic model of information transmission and cou-

ples this model with the dynamic model described in Chapter 3. Three different

shoaling behaviors are categorized within the parameter space: non-shoaling, facul-

tative shoaling, and obligate shoaling, depending on whether the group follows the

synchronization model (shoaling), and whether the group has polarized initial orien-

tations (obligate shoaling) or random initial orientations (facultative shoaling). The

parameter space is explored, including inattentive and attentive behavioral states

in the model, defined by the value of the probability of information transmission

among neighbors. The percent of the group startling, the directionality of the escape

response over time, as well as internal and external (from the threat) disagreement

values over time are measured. This model generates predictions for behavioral re-

sults in comparative studies between different fish species.

Chapter 6 tests the experimental hypotheses that a uniform flow field will

affect startle response, shoal structure and information transmission. Competing

hypotheses are outlined, and the experiment is described. In the experiment, small
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groups of fish are startled by a looming stimulus in flow and no-flow contexts. Results

are stated and discussed. The experimental data is fit to the probabilistic model of

information transmission described in the previous chapter.

Chapter 7 summarizes the conclusions and contributions of the dissertation

and then discusses ongoing and future research ideas.

1.8 Statement about the use of experimental animals

The protocols for the research contained in this dissertation have been approved

by the Institutional Care and Use Committee the University of Maryland, College

Park. Relevant protocols were also approved by the Institutional Care and Use

Committee at Bowling Green State University for the experiments conducted on

that campus.
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Chapter 2: Mathematical background

The goal of this chapter is to provide background and justification for the choice

of empirical analysis techniques, as well as modeling methods used throughout this

dissertation. Some of the topics covered here briefly are extensive fields of research

in their own right. This chapter will only cover what is immediately relevant to

understand the methods used within the dissertation, and why the methods used

were chosen over other potential options. For readers seeking additional information,

further references are provided.

It should also be noted that for the study of collective behavior, analysis often

must borrow ideas and concepts from other fields. Typically, these ideas have come

from engineering or physics. In order to model and analyze some of the behavioral

phenomena of interest, I have borrowed mathematical concepts from engineering,

physics, epidemiology, and computer science. Some of the methods described here

are being novelly applied to the study of fish shoaling behavior.
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2.1 Individual-based tracking

For the experimental data in Chapter 6, in which the startle responses of in-

dividual fish were quantified, I used a custom individual-based, multi-fish tracking

system developed in MATLAB by Dr. Sachit Butail (Butail and Paley, 2011). This

tracking system automatically reconstructs the full-body trajectories of fishes using

two-dimensional silhouettes. The first step of the tracker is a background subtraction,

in which the dark silhouettes of the fish are detected against a white background.

The shape of each fish is then modeled as a series of elliptical cross-sections along a

flexible midline (Figure 2.1). The size of each ellipse is estimated using an iterated

extended Kalman filter (note that for a single overhead view, only one of the ellip-

tical axes is estimated and the other is assumed to be constant). The shape model

informs an optimization algorithm that locates the fish midline in each frame. The

tracking system was used to monitor the head position (the point midway between

the eyes) and head orientation of each fish throughout each trial. Verification and

correction of tracking error was performed with a custom MATLAB interface by

manually selecting points on the midline overlaid on the raw video frames.

For the rheotaxis experiments described in Chapter 4, data was tracked by

hand at a sampling rate of once per second for five seconds. While this provides less
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Figure 2.1: Sample of individually tracked fish, showing the fish silhouette, the series
of elliptical cross-sections used to estimate the midline and the midline of eight fish.

data than reconstructing the individual body shape and trajectory of the fish, the

additional data would not have provided much more information and would have

been costly in terms of time and computational power.

Calibration

Camera calibration must be performed in order to get the transformation func-

tion from the camera view to the world view. A distance between two points in the

camera view will be given in units of pixels, whereas we generally prefer length in

metric units. Ballerini et al. (2008) provides a thorough manual for both the reason-

ing and execution of camera calibration up to three-dimensions. Intrinsic calibration

(to obtain the camera parameters of focal length, distortion, skew coefficients and
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principal point) was performed once at the start of experiments, and again any time

the camera may have been moved. Extrinsic calibration (rotations, translations) was

performed once daily.

For camera calibration, I used the MATLAB Camera Calibration Tool Box

(Bouguet, 2008). Errors in the calibration were kept at less than half a pixel in x

or y coordinates. When limited to a single overhead camera view, the calibration

conversion from pixels to centimeters is restricted to a two-dimensional plane. Thus,

in a three-dimensional tank, when the actual depth of the fish are unknown, the

depth must be assumed. For the behavioral experiments described in the following

chapters, I assume the fish are located in a plane in the center of the tank. Calibration

was verified against a known image (a checkerboard pattern).

2.2 Analysis of spatial data

2.2.1 Nearest neighbor distance

The nearest neighbor distance (NND) is the distance from a focal fish to its

nth nearest neighbor. Figure 2.2 illustrates how the distance between two fish is

calculated. The NND measure has been used widely in collective behavior research,

mainly to ask how many neighbors influence an individual’s movement decisions. The

depression between peaks of the NND distribution has also been used to determine
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if different sub-groups were present Aoki (1980).

Focal fish

Neighboring fish

δ

θ

Figure 2.2: Illustration of neighbor distance and bearing. Each focal fish k fish has
a position in space notated by xk and yk coordinates. Time is not included in this
schematic. Note that the positional coordinates here can also be referenced in the
complex plane for compactness, as an alternative to Cartesian coordinates. Each fish
has an orientation notated by θ. I measure the distance to a neighboring fish as the
distance from the head (between the eyes) of the focal fish k to the same location on
the neighboring fish, l. The bearing of the focal fish relative to the neighboring fish
is given by δ, the angle between agent l’s orientation and agent k’s orientation.

2.2.2 Spatial autocorrelations

I calculated the spatial probability of neighbor position by considering each

fish in the shoal as a focal individual; the relative position and relative orientation of

every other fish in the shoal were considered over all time points of the undisturbed
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shoal (e.g, before fish were startled, when applicable). Therefore, each time the

neighbor was in a particular position, one count was added to the corresponding bin.

The relative position of a neighbor is expressed in Cartesian coordinates with the

focal fish at the origin oriented along the positive y-axis. Relative positions were

binned into 60× 60 bins using Matlab’s hist function. The probabilities for each bin

were computed by normalizing bin counts by the bin with the highest count (i.e., the

most visited bin). Elliptical contours of the first and second standard deviations of

a bivariate Gaussian distribution were fitted to these probabilities.

Wall effects may play a role in shoal structure. In order to minimize the effect

of possible wall effects, statistics on shoal structure excluded data points within one

body length of the wall. The distance of one body length was chosen, because the

range of lateral line sensing is approximately one body length. However, it is certainly

possible that visualizing walls or the shape of the working arena may influence shoal

structure as well.

2.2.3 The convex hull

The convex hull, Delaunay triangulation, and Voronoi diagram are all concepts

in computational geometry that are closely related to each other (de Berg et al.,

2008). In the field of collective behavior all three of these concepts are widely used;
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however in this dissertation I focus on the convex hull.

A convex set is the region such that, for every pair of points within it, the

straight line segment that joins pairs of points is contained within the region. The

convex hull is the set of points that is the smallest convex set in Euclidean space

(Preparata and Shamos, 1985). The convex hull is useful in studies of collective

behavior in several ways. The interior of the convex hull is the area contained by

the group. Dividing this area by the number of individuals in the group yields an

estimation of density. In order to calculate the convex hull of groups of fish, I used

the built-in MATLAB functions convhull, which also generates the area of the convex

hull. Figure 2.3 illustrates an example of the convex hull for a small group of fish.

Figure 2.3: Illustration of the convex hull for a group of fish. Fish positions are
marked. The outermost fish are the coordinate points for the polygon of the convex
hull. This is illustrated by the purple line. The area within the purple bounds would
be the calculated area of the shoal.
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2.3 Analysis of orientation and heading

2.3.1 Quantitative analysis of circular data

The orientations of fish and simulated agents lies on the circle. Every chapter

in this dissertation deals with circular data, whether it be the analysis of fish ori-

entations or modeling orientations of simulated agents. As such, the treatment of

circular data deserves some mention here.

Analytical and statistical methods used for points on a line will not always be

effective for points on the circle. Fisher (1993) provides techniques for handling circu-

lar data. Visualization of circular data generally occurs on a circular plot. Compass

plots use arrows to indicate a direction and magnitude of a vector; rose histograms

plot frequency of angular data. In order to statistically assess if a distribution is

uniform on a circle, I use Rayleigh tests. More advanced statistics involving circular

data are not used in the dissertation. In order to sample sensory noise on the circle,

I use a von Mises (VM) distribution (Mardia and Jupp, 1999). A normal Gaussian

distribution when placed on the circle would lead to overlapping tail ends, increasing

the probability of extreme values being selected. Thus, a distribution meant for the

circle should be used. The two main options are the wrapped Gaussian or the VM ,

which is a close approximation of the wrapped Gaussian, avoids overlapping tails,
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and is straightforward to implement. A VM distribution is characterized by its mean

and concentration, σkl (roughly, the reciprocal of variance).

2.3.2 Polarization and the phase order parameter

In the multi-agent model described by Kuramoto (1975), synchrony is quanti-

fied using the complex phase order parameter defined as

pθ ,
1

N

N∑
k=1

expiθ
t
k =

1

N

N∑
k=1

(cos θtk + i sin θtk) (2.1)

where θtk is the orientation at time t of agent k, N is the number of agents, and

i =
√
−1. The magnitude |pθ| represents the level of alignment in orientation and

ranges from 0 to 1, with values of one to represent fully aligned (see Figure 2.4).

(The magnitude of pθ is also referred to as vector strength.) The orientation of pθ

indicates the direction of the average velocity.

Low vector strength ~ 0 High vector strength ~ 1

Figure 2.4: Illustrating the magnitude component of polarization, the vector
strength. Low vector strength indicates weak alignment, whereas high vector
strength indicates strong alignment.
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2.3.3 External and internal disagreement

In the coupled oscillator model introduced by Kuramoto (1975), synchrony is

quantified using a complex-phase order parameter pθ. In the stochastic consensus

literature (Huang and Manton, 2009), the following definition is used to character-

ize the asymptotic behavior in weak consensus: E|θtk|2 < ∞ for all t and k and

limt→∞ E|θtk − θtl |2 = 0 for all pairs k, l, where E is the expected value operator.

However, the roots of a complex number are multi-valued, as seen in the simple

example of z1/2 = ±
√
z. In order to achieve a single difference between two angles,

this dissertation introduces two alternative measures of disagreement in orientation

used in combination with measures previously discussed. These measures are based

on chord length on the unit circle, illustrated in Figure 2.5. The internal disagreement

(ID) measure quantifies the median level of disagreement within the school, and

the external disagreement (ED) measure quantifies the median level of disagreement

between each fish and a reference direction (e.g., the direction of flow, or the direction

away from threat). To compute ED and ID, I use the median statistic because the

distribution of chord lengths was highly skewed, and the median captures highly

skewed or bimodal data better than other statistics such as the mean or mode.

Let zTk,l , |eiθ
T
l − eiθTk |/2 ∈ [0, 1], where T is a sufficiently large time such that

weak consensus is reached. The orientation θTk of fish k at time step T is converted
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to eiθ
T
k , a complex unit phasor. When taking the difference between two angular

values, there is no unique answer; thus the chord length is used instead. The value

zTk,l is half of the chord length between points eiθ
T
l and eiθ

T
k on the unit circle; the

maximum chord length equals two.

For ID, I take the median of zTk,l over all pairwise differences in orientation

within each trial, Z̃T = median{zT1,2, zT1,3..., zT1,N , zT2,2, zT2,3, ..., zTN−1,N}. For ED, I com-

pute Z̃T
0 = median{zT0,1, zT0,2, ..., zT0,N}. The number of values in the ID set is N2−N/2

and, in the ED set, N . Let mZ̃T denote the median disagreement in synchronization

for Monte Carlo trial m. The ID value is the median disagreement in orientation

over all Monte Carlo trials, i.e., ID = median{1Z̃T ,2 Z̃
T , ...,M Z̃T}. Similarly, the

ED value is ED = median{1Z̃T
0 , ...,M Z̃T

0 }.

2.3.4 Characterizing a startle response

Detecting a startle response is a problem of peak detection in a time-varying

signal. I first characterized a startle response using the angular rate of rotation of

the fish’s head orientation (Domenici and Blake, 1997), which is estimated by the

tracking system (Butail and Paley, 2011). I then compared a numerical (two-point)

differencing method over time to a threshold of 3000◦/sec to determine whether a

startle response occurred. I determined the threshold by measuring the angular rate
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Figure 2.5: Fish orientations lie on the circle, as shown by the black lines extending
from the fish. When calculating the difference between orientations, there are two
potential answers, α and β. The chord length, in green, is a unique answer to the
difference in orientations between agents. Since the diameter (purple dashed line) of
the unit circle is equal to 2, the maximum difference between any two agents would
be 2. The chord length divided by 2 bounds the difference in orientation between
two agents between 0 and 1.

of rotation during rapid turning in a sample of fish, and by reviewing all videos

with another reviewer. Another potential method that was not used in Chicoli et al.

(2014) to detect startles is to finding all peaks in the data. Any peaks that do not

differ significantly from the average angular rotation rate of fish during the control

(no stimulus) may be discarded as slower swimming turns.

2.4 Graph theory

A graph G is a series of nodes and edges (Mesbahi and Egerstedt, 2010), which

provide a representation of how information is shared between agents in a network. In

the simplest case, an all-to-all communication graph, each agent interacts with every
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other agent, G = (N ,E) with nodes N = {1, ..., N} and edges (k, l) ∈ E ⊆ N × N

such that the graph G satisfies (k, l) ∈ E for all k 6= l. However, graphs can take

many forms. The edges between nodes can be associated with a direction, as in a

directed graph, and a weight, as in a weighted graph. There may also be special

nodes in a graph.

With regards to fish behavior, the graph of fish interactions is usually termed

the interaction topology. We do not yet fully understand the interaction topologies

of fish schools (or other animal groups), but there are several hypotheses. The two

main theories for interaction in groups have been a topological based interaction

model and metric distance based interaction model. In the topological model, focal

individuals attend to a certain number of nearest neighbors, irrespective of their

distance from the focal individual. The metric distance model hypothesizes that

individuals attended to all neighbors within a given distance. Figure 2.6 gives an

illustration of these two topology types. Interactions between agents are also likely

to be sensory-based (Strandburg-Peshkin et al., 2013).

Partridge (1980) showed that velocities and headings of saithe Pollachius virens

correlate with those of their first two nearest neighbors at slow speeds, but only with

those of the first nearest neighbor at high speeds. Partridge (1980) also demonstrated

that bearing to the first three nearest neighbors in saithe and herring Clupea haren-
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(a) (b)Metric distance Topological distance 

Figure 2.6: Depiction of (a) metric and (b) topological interaction topologies. The
focal fish is in red, fish affected the focal fish’s behavior are in yellow.

gus is non-random, implying that at least the first three neighbors are influential.

Herbert-read et al. (2011) found that individual mosquitofish seem to attend to the

closest individual fish. Ballerini et al. (2008) found evidence that starlings Sturnus

vulgaris may pay attention to as many as six or seven nearest neighbors, which the

authors note corresponds to their cognitive capacity. Patrtridge et al. (1983) showed

that the distribution of neighbors is affected by shoal size in bluefin tuna Thynnus

thynnus.

2.5 Synchronization and coupled oscillator models

I investigate the effects of sensory noise and group size on rheotactic perfor-

mance using a mathematical model of coupled phase oscillators based on Kuramoto

(1975). Originally developed in physics, the Kuramoto model has been adopted in
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neuroscience to investigate neural control and information processing (Rosbash et al.,

2004). It has also been applied to the study of collective behavior in biological groups

(Leonard et al., 2012; Nabet et al., 2009). Phase oscillator models have motivated

studies on stability analysis (Jadbabaie et al., 2003; Moreau, 2005) and stabilization

of planar collective motion (Paley et al., 2007; Sepulchre et al., 2008). Previously,

Mahmoudian and Paley (2011) investigated phase synchronization in the presence of

bounded noise.

In cooperative controls theory, synchronization differs from consensus in the

following sense: consensus takes place in a Euclidean space, such as the real line,

whereas synchronization takes place in a non-Euclidean space, such as the circle.

Synchronization is connected to the biologically relevant behaviors of alignment and

rheotaxis in fish because these quantities are described by phase angles, and a phase

angle is a point on a circle. In collective behavior, each fish synchronizes its orien-

tation with that of its neighbors so that the school heads in a common direction. In

rheotaxis, individuals also synchronize with the direction of the flow.

The original Kuramoto model (in discrete time) is given by

θtk = θt−1k + ψk +
κ

N

∑
l∈Nk

sin(θl − θk), k = 1, ..., N. (2.2)

where θk is the orientation of agent k, and ψk is the natural frequency of agent k,
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κ/N is the gain, normalized by the number of agents, and Nk denotes the neighbor

set of k.

I modify this model in Chapter 3 to model noisy synchronization and rheotaxis

behavior in fish. The noisy synchronization model is written as:

θtk = θt−1k + 0 +
∑

l=0,l∈Nk

κtkl sin(θtl − θtk + ωtkl), k = 1, ..., N. (2.3)

Note that in the noisy synchronization model, I have dropped the natural frequency

parameter ψ. This term is the agent’s natural frequency. If included, each agent

would rotate at the specified frequency rate without any external input. Since rotat-

ing about in circles without a stimulus is not a behavior generally observed in fish,

it is excluded. There is also the addition of the reference direction, l = 0, which can

be interpreted as the direction of the flow when modeling rheotaxis, or an escape

direction when modeling startle response behavior. Finally, the gain κ moves inside

the sum, making the gain dependent on the value of l, and an unbounded noise term

ωkl is included, which is also dependent on the value of l. The purpose of setting the

gain and the noise to be dependent on l is so that these parameters can be adjusted

independently for when a focal agent is comparing its orientation to the reference

direction, or to the orientations of other agents. This allows for evaluation of the

relative roles of external versus internal cues in the process of synchronization. This
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model is detailed more extensively in Chapter 3.

2.6 Susceptible-Infected-Removed (SIR) models

I use a model of information transmission to study startle propagation in

groups, focusing on fish schools. The model used is known in computer science

and epidemiology literature as a susceptible-infected-remove (SIR) model. SIR mod-

els are based on three main probabilities (i) the probability of an individual being

susceptible to infection, (ii) the probability of being infected, and (iii) the probability

of being cured (Billings et al., 2002; Kermack and McKendrick, 1927; Mesbahi and

Egerstedt, 2010). Here, I change the terminology slightly to refer to (i) the probabil-

ity of a fish being susceptible to startle response, (ii) the probability of a fish being

startled by either a directly perceived threat or cues from its neighbors, and (iii) the

probability of remaining in a startled state, if previously startled. Once out of the

startled state (completed the startle response), agents cannot be re-startled, hence

the removed portion of the model name. Theoretically and biologically, if left for a

long enough period of time, startles could occur again. However, my goal here is to

examine the spread of a single, isolated startle event.

An important aspect of this model is the inclusion of time t. Let P ext = P t
k

be the probability that agent k detects and responds to an external signal, such as
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a predation threat, at time t, where k = 1, ..., N and N is the number of agents

in the group. Pk, the probability of agent k being in a startled state includes the

probability of indirect detection of threatening stimuli through the interactions with

other agents. Let P int=Pk,l be the probability that agent k perceives (and responds

to) a cue from agent l and P sus=Pk,k be the probability that agent k sustains the

response state from one time step to the next. The notation Nk denotes the neighbor

set of k, which is the set of agents that generate information received by agent k.

Suppose, without loss of generality, that the stimulus occurs at time t = 0, and this

is the only time instant in which agents can directly perceive and respond to the

threat directly. P t
k, for t > 0, is thus the probability at time t that agent k sustains a

response from the previous time step t− 1, or detects and responds to a neighboring

agent that is in the response state at time t− 1. While there are multiple ways to be

informed of the presence of a threat, there are still binary states of startled and not

startled in the model. The probability of being in a startled or not startled state at

t > 0 is based on the probabilities of P sus and P int. The probability of not startling

is given by

P (not startle) = 1− (P sus ∪ P int − P sus ∩ P int), (2.4)

where P sus ∪P int = 1− (1−P sus)(1−P int). Equation 2.4 can then be re-written as
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the following:

P (not startle) = 1− (1− (1− P sus)(1− P int)). (2.5)

The probability of startle is then

P (startle) = 1− (1− P sus)(1− P int). (2.6)

At any time step t, each agent k thus has the following probability of being startled

P t
k = 1− (1− Pk,kP t−1

k )
∏
l∈N t

k

(1− Pk,lP t−1
l )(1− P t−1

k ), (2.7)

where 1− P t−1
k is the probability that agent k was not startled at the previous time

step.

Figure 2.7 illustrates how a startle response can spread through a group, in

graph form. Figure 2.7(a) shows the fixed, directional, interaction topology. Startle

state is indicated by a red fill in (a) and a red-outlined circle in (b). Agent 1 startles

at t = 0, and it can then spread the startle to connected agents 2, 4, and 5. At time

t = 5 the startle spreads to agent 4, who can now spread the startle to agents 2, 3,

and 5. At t = 10, agents 2 and 5 have become startled as well.
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Figure 2.7: (a) Fixed interaction between agents (fish) depicted by a graph. Nodes
of the graph are fish, and arrows are directional edges of the graph. (b) Another
representation of the graph in (a). Red filled agents or outlined circles are in a
startled state, and can spread the startle to connected agents.
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Part I: Group Rheotaxis
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Chapter 3: Rheotaxis performance increases with group size in a cou-

pled phase model with sensory noise

3.1 Introduction

This chapter presents a mathematical model in the form of an all-to-all, coupled-

oscillator framework over the non-Euclidean space of fish orientations to model group

rheotactic behavior. I expand on our current understanding of the factors governing

rheotaxis in flow and on taxis in uncertain environments, by investigating synchro-

nization of particles with sensory noise, in the context of fish behavior in a flow field.

In the model, each individual obtains measurements of the relative orientation of

other individuals as well as the relative orientation of an external reference direc-

tion, the flow. Sensory noise is represented by the uncertainty in each individual’s

measurements. I vary the level of sensory noise, as well as the group size. Monte

Carlo simulations numerically illustrate the influence of sensory noise and group size

on internal (i.e., within the shoal) and external (i.e, with the flow) disagreement in
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orientation. I find that in high noise conditions, the use of neighbor cues and group

size improves rheotactic behavior. By relating the model to biological processes, I

generate testable predictions about fish behavior.

The contributions of this chapter are (i) the extension of a noisy, non-Euclidean

synchronization model to include a reference direction and unbounded sensory noise;

and (ii) investigation of the influence of sensory noise and group size on synchro-

nization, using novel measures of internal and external disagreement. The model

generates testable experimental predictions, which may have implications for fish

ecology, collective behavior, and flow sensing. While this study emphasizes shoals of

fish, the general model framework may be applied to other animal and engineered

collectives. A version of this chapter has been previously published in (Chicoli et al.,

2015).

3.2 Noisy synchronization model

Starting with random initial phases drawn from a uniform distribution on the

circle, each individual gathers measurements of the relative direction of the reference

direction and of its neighbors’ relative phases to determine the change in its own

orientation. The measurements obtained by each individual contain additive sensory

noise.
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Consider a network (Mesbahi and Egerstedt, 2010) of N phase angles indexed

by k = 1, ..., N and coupled via an all-to-all, undirected communication graph G

= (N ,E) with nodes N = {1, ..., N} and edges (l, k) ∈ E ⊆ N × N such that the

graph G satisfies (l, k) ∈ E for all l 6= k. In the absence of noise, these angles

synchronize with one another and with the reference direction; their dynamics are

modeled as a stochastic difference equation (Higham, 2001; Papoulis and Pillai, 2002)

(see Section 2.4). The reference direction is a special node in the graph, associated

with the index k = 0 and, without loss of generality, is fixed at zero radians.

Noise is sampled from a VM distribution, where the noise concentration (see

Section 2.3.1) depends of the values of k and l such that

σkl =



σ0 when k = 0,

0 when k = l, and

σ otherwise.

(3.1)

Figure 3.1 illustrates three VM distributions with low, moderate, and high sensory

noise, respectively. When individual k compares its orientation to the reference direc-

tion, the noise is sampled from a VM distribution with concentration σ0, and when

fish k compares its orientation to another individual, the sensory noise is sampled

with concentration σ. Sensory noise may be higher when visibility is poor (Meager
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et al., 2006) or if bulk flow interferes with inter-individual communication (Chicoli

et al., 2014).
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Figure 3.1: Example von Mises distributions with concentration values 102, 100 and
10−2.

Let t represent the discrete time index. The orientation of individual k at time

t is denoted by θtk, k = 0, 1, ..., N , where θt0 = 0 represents the reference direction.

Each orientation is updated according to the following stochastic difference equation:

θt+1
k = θtk +

N∑
l=0

κkl sin(θtl − θtk + ωtkl), (3.2)

where ωtkl represents the sensory noise value at time t with concentration value σkl

as above and κkl is the coupling gain between pair k and l. Note that the sine term

linearizes to θtl − θtk + ωtkl when the agreement is sufficiently small.

The gain κkl is of importance for the synchronization behavior of the model
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3.2 (Kuramoto, 1975). Namely, κkl > 0 yields synchronization and κkl < 0 yields

incoherent behavior. Here I specify κkl > 0 to vary based on

κkl =



κ0 when l = 0,

0 when l = k, and

κ otherwise.

(3.3)

The values κ0 and κ are coupled according to Nκ+ κ0 = 1, so that as group size N

increases, the influence of each neighbor decreases. I investigate several cases of κ0

and κ values: for κ0 = 1, there is no influence of the neighbors; for κ0 = 1/2, the

influence of the reference direction is equal to that of all neighboring fish; for κ0 = 0,

there is no influence of the reference direction, for κ0 = 1/3 there is slight preference

for neighbors, and for κ0 = 2/3 there is preference for the reference direction.

Table 3.1 summarizes the model parameters. Each parameter combination

was run for 500 Monte Carlo trials and each trial ran for 2,000 time steps. The

University of Maryland supercomputing resources were used to conduct the research

in this paper. Running through all group sizes for one parameter set takes twenty-

four hours or more.
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Table 3.1: Summary of model parameters

Model parameter Symbol Values

Group size N 2, 4, 8, 16, 32, 64, 128
Conc., flow σ0 102,100, 10−2 rad.
Conc., neighbors σ 102,100, 10−2 rad.
Gain, flow κ0 0, 1, 1

2
,1
3
,2
3

3.3 Modeling Results

Figure 3.2 shows agent orientations over time, as well as the histogram of

orientation distributions from four typical trials to illustrate the time course of each

phase angle. Figures 3.2a,c depict the case when there is low noise in both the

neighbor orientation and the reference direction; the group size is N = 4 and 32,

respectively. Both of these simulations show strong alignment with the reference

direction. Figure 3.2b,d shows simulations with moderate noise (σ0 = σ = 100) in

both the reference direction and in neighbor orientation. In these trials, there is no

qualitative difference in synchronization based on group size.

3.3.1 No gain on reference direction

When κ0 = 0, the reference direction is ignored. Figures 3.3a,b show the

internal and external disagreement measures under various levels of neighbor noise

(σ = 102, σ = 100, and σ = 10−2). With no gain on the reference direction,
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Figure 3.2: Typical runs (N=4, N=32) in the presence of low noise, σ = σ0 = 102

(a,c) and moderate noise, σ = σ0 = 100 (b,d).

individuals rheotact at chance levels (the disagreement in orientation on the circle

for random values is approximately 0.7), regardless of what the noise is in neighbor

orientation (Figure 3.3a). Internal disagreement decreases as group size increases in

the presence of moderate sensory noise (Figure 3.3b, orange).
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3.3.2 No gain on neighbor orientation

When κ = 0, neighbor orientation is ignored. Figures 3.3c,d depict the internal

and external disagreement measures under various levels of noise in the reference

direction (σ0 = 102, σ0 = 100, and σ0 = 10−2). External and internal disagreement

values increase with increasing noise levels, indicating reduced synchronization. Al-

though there is no effect of group size on either ED or ID, performance on both

measures is better than chance, because all individuals have knowledge of the refer-

ence direction.

3.3.3 Equal gain on reference direction and neighbor orientation

When κ0 = 1/2 (i.e., the influence of the reference direction equals that of

all neighbors), results are organized based on the noise in the reference direction to

assess how group size and noise in neighbor orientation affect the ED and ID values.

There is no effect of group size when there is low noise in both the reference direc-

tion and neighbor orientation (Figures 3.4a,b yellow). However, when there is low

noise in the reference direction, and moderate to high noise in neighbor orientation

(Figures 3.4a,b orange and blue), the ED and ID values decrease with increasing

group size, N . When there is moderate noise in the reference direction, there is

a slight decrease in ED and no significant difference in ID values with increasing
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group size (Figures 3.4c,d). Both ED and ID values decrease with decreasing noise

levels in neighbor orientation. When there is high noise in the reference direction

(Figures 3.4e,f), there is a decrease in ED with increasing group size for all values of

neighbor orientation noise, σ, but no difference in the ID values. Both ED and ID

values decrease with decreasing noise levels in neighbor orientation.

3.3.4 Higher gain on neighbor orientation

When κ0 = 1/3 the results appear almost identical to the results of κ0 = 1/2

(not shown). Agents have a slightly higher gain on neighbor orientation than the

reference direction. When there is low to moderate noise in the reference direction

and low noise in neighbor orientation, there is no effect of group size on ED or ID.

When there is moderate to high neighbor noise, the ID and ED values decrease with

increasing group size, N . The effect of group size in these cases is most prominent at

the lowest group sizes. Both ED and ID values decrease with decreasing noise levels

in neighbor orientation. When there is high noise in the reference direction, there

is a decrease in ED with increasing group size for all values of neighbor orientation

noise, σ, with the largest effects occurring when there is low to moderate noise in

neighbor orientation. Both ED and ID values decrease with decreasing noise levels

in neighbor orientation.
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3.3.5 Higher gain on the reference direction

When κ0 = 2/3 the agents have a slightly higher gain on the reference direction

than on neighbor orientation. When there is low to moderate noise in the reference

direction, there is little to no effect of group size. Both ED and ID values decrease

with decreasing noise levels in neighbor orientation. When there is high noise in the

reference direction, there is a decrease in ED with increasing group size N only when

there is the lowest value of neighbor orientation noise, σ. When there is moderate

and high neighbor noise the ED values are mostly random. Conversely, the ID

values increase with increasing group size with low to moderate noise in neighbor

orientation, especially at lower group sizes. This is shown next to the ID values of

κ0 = 1/3 for comparison (Figure 3.5).

3.4 Discussion

Grünbaum (1998) quantitatively demonstrated the effect of the many-wrongs

principle (Simmons, 2004), which states that inherent noise in a system may be

damped out through multiple samples. These results demonstrate the effects of social

information on rheotaxis, a simple yet robust behavior found in fish and invertebrates.

I find potential limitations of the many-wrongs principle, in the extreme cases when
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the individuals are randomly aligned (for very high noise) or when perfectly aligned,

social information does not improve taxis. Additionally, when there is higher gain

on a noisy reference direction and moderate to high noise in neighbor orientation, as

the group size increases, rheotaxis does not improve and shoal alignment decreases.

By introducing noise in intra-shoal signaling as well as in an external reference, I

investigate the relative roles of each cue.

I find that (i) under environmentally plausible conditions, the use of neighbor

cues in groups improves rheotactic behavior; (ii) this improvement is limited to cases

when there is high sensory noise in sensing either the flow direction or neighbor cues;

and (iii) when there are external cues about the flow, fish align with each other, and

the addition of neighbor cues do not improve intra-shoal alignment.

This work extends the engineering results of Mahmoudian and Paley (2011) by

analyzing weak consensus on the N -torus with additive noise. The previous work

analyzed solutions to weak consensus on the N -torus with additive noise bounded

by π/2. I elaborate on this finding by numerically testing weak synchronization with

unbounded noise levels, and find that with unbounded noise, individuals may still

reach weak synchronization.
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3.4.1 Effect of sensory noise on synchronization

When individuals have reliable information regarding the direction of the flow

(which we interpret to be the reference direction), group size does not affect synchro-

nization. However, when information regarding the flow direction is noisy, increasing

group size improves synchronization to the flow. This result suggests that rheotact-

ing fish may rely more on social information when their own information is uncertain.

It has been previously shown that there may be costs to using socially acquired infor-

mation if this information is incorrect (Giraldeau et al., 2002; Laland and Williams,

1998; Rieucau and Giraldeau, 2009). Thus when personal information is more accu-

rate (i.e., when fish perceive the external or flow environment accurately), there may

be a detriment to relying on noisy neighbor information. There is also some evidence

that behaviors can change adaptively based on environmental context, including dy-

namic interactions between individuals (Kurvers et al., 2013; Torney et al., 2009;

Viscido et al., 2005).

Rheotaxis is a robust and multi-sensory behavior (Bak-Coleman et al., 2013).

However, the contribution of different sensory modalities to rheotactic behavior may

vary by ecology. For example, fish in murky environments may rely more on other

sensory modalities in order to compensate for the noisy visual information (Meager

et al., 2006). This idea could be tested experimentally using a comparative study with
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species of shoaling fish from different habitats, or by experimentally manipulating

available cues, e.g., by conducting experiments in the dark or by temporarily blocking

the lateral line (Brown et al., 2011; Trump et al., 2010).

3.4.2 Effect of group size on synchronization

These results rely on the assumptions that there is all-to-all communication

between individuals that are identical. Neither assumption is realistic. Although

I have chosen to investigate the all-to-all interaction case, in part to match the

assumptions laid out by Mahmoudian and Paley (2011), the model described here is

applicable to limited interaction topologies as well (Sepulchre et al., 2008).

Group size made the most significant improvement in the rheotaxis model when

there was high noise in sensing the flow. In this case, information from many neigh-

bors significantly improves synchronization to the reference direction when compared

to the asocial case (Figures 3.3c,d) in which individuals with no neighbor information

orient to the reference direction at chance levels. Once the group size increases past

N = 8, there is a significant effect of group size on improving rheotactic performance

(Figure 3.4e). Based on these results, group size has the largest benefit to shoals

in noisy conditions. Testing this hypothesis experimentally may yield additional

insights into the roles of multi-sensory integration and group behavior in rheotaxis.
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Figure 3.3: (a,b) Synchronization results when the gain on flow is zero (κ0 = 0).
(c,d) Gain on neighbors is zero (κ0 = 1). (a,c) ED and (b,d) ID, over all group sizes,
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(c,d) σ0 = 10−2 (blue). Length of bars represent the upper and lower quartiles.
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Figure 3.4: The effect of group size on synchronization results when there is both
neighbor and flow information (κ0 = 1/2) for low (a,b), moderate (c,d) and high
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of neighbor noise within each of these flow noise conditions. Length of bars represent
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Figure 3.5: The effect of group size on internal disagreement (ID) when there is a
slight preference for neighbor orientation (κ0 = 1/3) (a), or a slight preference for
the reference direction (κ0 = 2/3) (b) in the presence of high flow noise (σ0 = 10−2).
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for each condition. Length of bars represent the upper and lower quartiles.
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Chapter 4: Effects of flow speed and group size on rheotaxis and

shoaling in giant danio

4.1 Introduction

This chapter experimentally tests the predictions established in Chapter 3,

namely that group size will improve rheotactic performance under certain environ-

mental conditions. Groups of giant danio, from one to thirty-two individuals were

tested in flow speeds from 0 cms−1 to 12 cms−1, and their positions and orientations

during the trial were measured. I find that there is no effect of group size on rheo-

tactic behavior for giant danio; however there is an effect of group size on shoaling

behavior, as nearest-neighbor distance decreases with group size.

The contributions of this chapter are: (i) quantitative behavioral data of giant

danio under different group size and flow speeds; (ii) presentation of a simple model

of aggregation; and (iii) comparison of behavioral data to the proposed aggregation

model as well as to previous theoretical data on group taxis.
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4.2 Materials and methods

4.2.1 Experimental animal care

Fish were fed Tetramin flakes and pellets (Tetra, Melle, Germany) at the same

time of day, once daily after trials had been completed. Fish were maintained at

21◦–23◦ Celsius on a 14/10 light/dark hourly cycle.

4.2.2 Experimental set-up

Flow-tank experiments were carried out in 180 liter flow tank designed by Loligo

systems (Loligo Systems, Tjele, Denmark). Fish were tested in part of the working

area of the tank with dimensions 40 cm x 25 cm x 25 cm. Four collimators were

used to establish laminar flow (Lagor et al., 2013). The original Loligo collimator

was placed in the tank, plus two additional nomex honeycomb straighteners (Nomex,

Ohio, United States), and an additional Loligo straightener. The collimators were

placed 7 cm apart. The Hach FH950 portable flow meter (Hach, Colorado, US) was

used to calibrate the flow tank and get a relation between speed of the motor in hertz

and speed in cms−1. At the end of each day, a 25% water change was performed on

the flow tank in order to reduce the accumulation of possible odor cues.

A dorsal view of the fish was recorded at 30 fps using a Casio EX-F1 camera
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(Casio Worldwide), with a spatial resolution of 640 x 480 pixels. The camera was

mounted 87.6 cm above the base of the working area. Four lights illuminated the

working area. In order to minimize reflections of light off the water, the lights were

angled towards the ceiling so only indirect, uniform light was cast onto the working

area. A side view of the fish was additionally provided by a mirror placed three

inches away from the tank, at a 45◦ angle. The mirror view was captured by the

overhead Casio camera. However, in order to access the working area of the tank,

the mirror had to be moved regularly, and thus the intrinsic mirror calibration may

not be consistent between trials. For this reason, three-dimensional information was

mainly used to verify tracking. Figure 4.1 illustrates the flow tank to scale, as well

as the mirror and camera placement.

4.2.3 Experimental design

The experiment was a completely randomized, blocked design. Fish were se-

lected for a particular group size pseudo-randomly from 250 fish in the lab. A random

number generator in MATLAB was used to select random numbers of length one to

the particular group size, out of the entire number of fish in the lab at the time (that

had not run in a trial on the previous day). Groups were run in time blocks from

9:00–11:00, 11:00–13:00, 13:00–15:00 and 15:00–17:00. Each group size was run at
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Figure 4.1: Experimental set-up, illustrating the Loligo flow tunnel, overhead camera
and mirror placement.

least once in each time bock (plus one more trial in one of the time blocks) to control

for possible time of day effects.

The experiment consisted of three independent variables: group size, flow speed

and flow direction (increasing or decreasing). Levels of group size were one, two,

four, eight, sixteen and thirty-two fish. Seven flow speeds were tested from 0 to 3

Hz (corresponding to approximately 0–12 cms−1) at intervals of .5 Hz. Each flow

speed was presented twice in a given trial. The first presentation of each flow speed

was at increasing intervals from 0 to 3 Hz. The second presentation of a given flow

speed was decreasing from 3.0 to 0.0 Hz. The decreasing flow speed was used as a
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control to test for any differences based on length of time in the tank, or potential

order effects.

Five replicates of the experiment were conducted (i.e. for group size two, there

were five unique sets of two fish). Multiple dependent variables of internal difference

(ID), external difference (ED), nearest neighbor distance (NND), area of the group,

density of the group, and standard deviation in x- and y-positions (cross-stream and

stream-wise, respectively) were calculated.

Group size and flow speed are fixed factors. Flow direction is a nested within

flow speed, and replicate is a random variable, coupled to group size, and nested

within flow direction and flow speed. Group sizes of one and two fish were used as

controls.

4.2.4 Experimental protocol

Trials were conducted during the day between 09:00 and 17:00. At the start

of the day, extrinsic calibration was performed. Before the start of each trial, water

quality and water temperature of the experimental tank and home tank was measured

to ensure they did not differ in quality, and that the temperatures did not differ by

more than two degrees. At the start of the trials, fish were transferred from their

home tank to the experimental tank and placed in the working area to habituate for
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thirty minutes in the tank, with the lights on and flow tunnel motor on and set to 0

Hz. Once the habituation period was over, fish were filmed for one minute at each

flow speed (as well as filmed during the transitions between flow speeds). This is

illustrated in the schematic in Figure 4.2.

The camera and flow tank motor could not be easily automated. An experi-

menter changed the flow speed and triggered the camera remotely from within the

experimental room, hidden from sight by a curtain. Trials were conducted in silence,

with the exception of some inevitable motor noise from the flow tank.

Place fish in 
flow tank. ~30 min.

habituation

Film for 
1 minute

While flow speed  <3.0 
Hz, increase flow speed 
by 0.5Hz

Film for 
1 minute

Decrease flow speed 
by 0.5 Hz until back 
at 0.0 Hz

Place fish 
back in tank.

Figure 4.2: Experimental protocol

4.2.5 Statistical analysis

All statistical analyses were conducted in MATLAB and R (R Development

Core Team, 2013, R 3.2.3, with RStudio Desktop 0.99.491).

The majority of the statistical analysis was performed using Linear Mixed

Models. The full model in R was lmer(response.variable ∼ group.size × flow speed
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× increasing + (flow speed + increasing | idx), where idx is the replicate tied to group

size (i.e, 2 fish, replicate 1 and 4 fish, replicate 1, etc.). Data was not scaled before

model fitting. Significance levels were set at p >0.05 or t >2. Flow speed and group

size were initially run as factors in order to investigate potential non-linear trends

in the data. No significant trends were found, so group size and flow speed were

estimated to be linear variables for simplification. Diagnostic tests were performed

on the model fits to verify model assumptions1.

Rayleigh tests (Batschelet, 1981) were used to determine whether the phase

order parameter distributions differed significantly from random in the absence of

flow.

4.2.6 Aggregation model

This experimental data contains both orientation and positional information,

whereas the model presented in Chapter 3 modeled orientation alone. Here, I devel-

oped a simple model of aggregation for which to compare the positional data from

the experiment to.

Inspired by the rheotaxis model and notation in (Chicoli et al., 2015), consider

1Additionally, since the residuals were not perfectly normal, and there are small sample sizes,
Bayesian models were also run in R assuming an inverse chi-squared prior based on the measured
variance of the random variable. The main results did not differ from the lmer, and only the lmer
results are reported here.
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Figure 4.3: Sample data, showing fish, head and nose positions (green dots and stars,
respectively) as well as fish orientation, and the direction into the flow.

the position rkt = xkt + iykt ∈ C of agent k = 1, ..., N at time t, expressed in complex

notation for compactness. Let rkl represent the pairwise coupling gain and ωklt the

interaction noise level. The collective model in discrete time is

rt+1
k = rtk +

∑
l∈Nk

κkl(r
t
l − rtk + ωtkl). (4.1)

Unlike the rheotaxis model, there is no reference direction in (Equation 4.1). Conse-

quently, the constraint κ0 +Nk = 1 reduces to κ = N−1, where we assumed identical

gains κkl = κ. Furthermore, let ωtkl be drawn from a zero-mean normal distribution
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with identical variances σ2 for all pairs k and l. We have

rt+1
k = rtk +

1

N

∑
l∈Nk

(rtl − rtk + ωtkl) =
1

N

∑
l∈Nk

rtl +
1

N

∑
l∈Nk

ωtkl , r̄t +
1

N
ω̄t, (4.2)

where r̄t represents the centroid (average) position at time t and ω̄tk is the total

interaction noise on agent k at t divided by N . Since the sum of normally distributed

random variables is normal with variance equal to the sum of the variances, ω̄tk has

variance Nσ2/N2 = σ2/N.

Therefore, the expected value of the position of agent k is the centroid position

and its variance is σ2/N , where σ2 is the variance in the measurement noise of

relative position in Equation 4.1. This observation implies the density of agents

near the centroid increases with N and the expected nearest-neighbor distance is

proportional to 1/N for complete interaction topologies.

4.3 Experimental Results

4.3.1 Effects of flow speed and group size on rheotaxis

I quantify rheotaxis by measuring the external disagreement (ED) measure.

The ED is highly correlated with internal disagreement (ID) r(346) = 0.8369 and
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|pθ|, r(346) = 0.8691.

As previously documented, giant danio show positive rheotaxis in a flow field,

as indicated by a significant effect of flow speed on the ED (Table A.1). Additionally,

the degree of rheotaxis increases with flow speed. Figure 4.4a shows the ED values

over group sizes and flow speeds.

There was a significant interaction between flow direction and flow speed on

ED values (Table A.1). As flow speed increases more fish rheotact and the ED value

decreases as a result. The reverse trend occurs when flow speed decreases.

There were no significant effects of group size on the ED (Table A.1).
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Figure 4.4: Effect of flow speed, group size and replicate on dependent variables of
(a) ED, (b) ID. Increasing and decreasing flow speed changes are pooled together.
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4.3.2 Effects of flow speed and group size on group alignment

Figure 4.5 shows polar histograms of fish orientation across group sizes and

flow speeds. The orientations of giant danio in no-flow were compared to a uniform

distribution. Group sizes of 8 and 32 were significantly different than a uniform

distribution (Rayleigh tests, n = 49, N = 2: mean length = 0.1119, p = .5438,

N = 4: mean length = 0.1577, p = 0.2973, N = 8: mean length = 0.3406, p =

0.003, N = 16: mean length = 0.069, p=0.7938, N = 32: mean length = 0.3583,

p = 0.0016). There seems to be a tendency to orient towards 90◦ in the no-flow

condition, which is likely due to the reflectivity of the wall in the working area of the

flow tank.

Figure 4.4b shows the ID results over group sizes and flow speeds. At the lowest

flow speeds, data are close to .7, which would indicate random orientations. This

combined with the results from the Rayleigh test suggest giant danio weakly align

their orientations.

There was a significant effect of flow speed on the ID. This is because as fish

align independently with the flow, they by consequence align with each other as well.

Tables A.2 shows the results of all independent variables on the ID.
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Figure 4.5: Rose histograms of fish orientation over group sizes and flow speeds.
Note that these histograms are not scaled.
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4.3.3 Effects of flow speed and group size on group aggregation

In order to investigate spatial data of the shoal, I first investigate the deviation

in fish position. As group size increases, the standard deviation in both the x- and

y- positions increase significantly (Tables A.3 and A.4). This is shown in Figure 4.6.

There are also significant interactions between group size, flow speed, and flow di-

rection in the y-direction (Table A.4) and a significant interaction of flow speed and

direction in the x-direction (Table A.3).
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Figure 4.6: Effect of flow speed, group size and replicate on dependent variables of
(a) std x-position, (b) std y-position. Increasing and decreasing flow speed changes
are pooled together.

Nearest-neighbor distance decreases significantly as group size increases (Ta-

ble A.5), as seen in Figure 4.7(a). There are are also significant interactions between

group size and flow, and flow direction (Table A.5). Shoal density is not effected by
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group size or flow speed (Table A.6 Figure 4.7(b)).

4.3.4 Space utilization

There is a possibility that the NND decreases with group size simply because

there are more fish in the working area, and there is limited available space for

the fish to spread themselves apart. To investigate this possibility, I calculated the

area of the shoal (Table A.7, Figure 4.7(c)) based on the convex hull. Shoal area is

correlated with the variation in the standard deviation in x-position r(346) = 0.6955

and y-position r(346) = 0.764 of shoal members. (Note, that in Figure 4.7(c) only

group sizes 4–32 are valid and group size two is set to zero, because at least three

points are required to compute a convex hull). As the group size increases, the total

area taken up by the group increases. However, this is not due to lack of space.

The average area of the 32 fish group size is approximately 500 cm2, which is half

the total available two-dimensional area available (1000 cm2). Figure 4.7(d) shows a

sample image from a 32 fish trial, demonstrating group aggregation.

4.3.5 Results of the aggregation model

An aggregation model was developed in order to fit to the spatial component

of the experimental data. This model was not thoroughly evaluated, but several
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Figure 4.7: Effect of flow speed, group size and replicate on dependent variables of
(a) NND (b) density of shoal, (c) area of shoal, and (d) image of experimental data
with 32 fish demonstrating aggregation. For (a)-(c), increasing and decreasing flow
speed changes are pooled together.

simulations were run using different interaction topologies. The results of these

simulations are shown in Figure 4.8. The trend observed in the data, is a decrease in

NND with group size at a rate of 1/
√

(N) (yellow triangle). When the model is run

with limited interaction topologies, specifically when agents interact with their four
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closest neighbors (red square), the NND decrease comes closer to what is observed in

the data, as opposed to when run with an all-to-all interaction topology (blue cross).

The trend for standard deviation (purple star) with a limited topology is also shown.

Similarly to the experimental data, the standard deviation in xy-position increases

with group size.
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Figure 4.8: Aggregation model predictions in nearest neighbor distance. The yellow
line with triangles shows the trend in the experimental data, in which NND decreases
as a function of 1/

√
N . The line with blue crosses shows the model results run with

all-to-all interaction topology. The line with red squares shows the model run with a
limited interaction topology of the four closest neighbors. The line with purple stars
is the standard deviation in xy-position for the limited interaction topology.
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4.4 Discussion

This study is the first, to the best of my knowledge, test the prediction that

group size improves rheotaxis under different flow conditions. I varied group size

with 1, 2, 4, 8, 16, and 32 giant danio and flow speeds from 0 cm−s to 12 cm−s.

As expected, giant danio show positive rheotaxis that increases with increasing flow

speed. Contrary to theoretical predictions, however, rheotaxis did not vary with

group size under any of the flow conditions tested. I find that NND decreased with

increasing group size, and developed a simple model similar to the previous noisy

synchronization model of rheotaxis that predicts this trend.

4.4.1 Flow speed, group size and rheotaxis performance

Theoretical predictions from (Chicoli et al., 2015; Grünbaum, 1998; Torney

et al., 2009) predict that in noisy sensory conditions, group size will improve taxis.

One potential mechanism for a group benefit is the many-wrongs principle, which

states that by averaging instantaneous movement decisions over neighbors, rather

than averaging over time, individuals in a group can improve their performance.

However, in this experiment, group size did not have an effect on rheotaxis.

There are several reasons why this may be. The first is that rheotaxis may be
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too simple and robust of a behavior to show group size effects. Rheotaxis is multi-

sensory behavior that can occur even in the complete absence of certain sensory

modalities (Bak-Coleman et al., 2013). Additionally, group size effects depend on

task difficulty. Sasaki et al. (2013) found that ant colonies outperform individuals

when a sensory discrimination task is difficult, but not easy (although this particular

result may involve a speed-accuracy trade-off).

Another potential explanation is that neighbor position is a more relevant cue

for shoaling fish than neighbor orientation, and thus social information based on

heading was largely unattended to. (Herbert-read et al., 2011) had found that in

mosquitofish Gambusia holbrooki, attraction was the most important factor in fish

shoaling, and that alignment only played a weak role in group cohesion. Addi-

tionally, Viscido et al. (2004) performed experiments on groups of four and eight

giant danio, as well as simulated behavior using a model of repulsion, attraction and

orientation. They found that only a weak alignment force was necessary in their

simulations to reproduce experimental behavior (1–2% of the attraction/repulsion

forces). These authors also suggest that alignment forces play a secondary role to

positional cues during shoaling behavior. The data in this study also suggests that

alignment forces between shoal mates may be weak. The experimental data here lies

within the parameter space of the theoretical predictions in Chapter 3 — namely
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the case when there are no explicit social interactions among group members. Since

the synchronization model presented in Chapter 3 only includes interactions based

on orientation and alignment, this would support the hypothesis that positioning is

a more important factor in shoaling than alignment.

Finally, there is a methodological consideration. In this study, I reduced the

strength of the flow signal. However, in a uniform flow field, there may not be

much of a baseline noise factor. In this case the signal, once at detection threshold,

would be easily perceived. Additionally, there is an increased probability that eddies

or other turbulent structures will form at higher flow speeds, thereby potentially

increasing noise as well as the signal. That said, establishing what noise means in

a fluid environment is not a straightforward task, especially when interested in fish

behavior. Behaviorally, fish prefer different flow environments based on the species,

sex, and body size (Hockley et al., 2014; Liao and Cotel, 2005), but also on flow

speed, turbulence and vortex structure (Lupandin, 2005). Additionally, turbulence

may provide additional sensory cues for fish. Direct effects of turbulence on rheotactic

performance have been measured in only two studies that I am aware of, one of which

showed that rheotactic performance was enhanced in turbulence under both light and

dark conditions (Pavlov et al., 2000) and one which showed no effect of turbulence

(Trump and Mchenry, 2013).
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4.4.2 Increased aggregation with group size

Nearest neighbor distances were found to decrease as group size increased, sug-

gesting that fish may choose to stay closer together when there are more individuals

to group with. Shelton et al. (2014) found a decrease in NND with group size in

zebrafish Danio rerio. However, the authors found that when density was controlled

for, NND of groups of four and eight fish were statistically similar. The amount of

available space may be a factor in the results presented in this chapter, and should

be further investigated. Soria et al. (2007) found that in the bigeye scad Selar

crumenophthalmus, the nearest neighbor distance decreased when the group size in-

creased, in contrast to the bobbed flagtail, Kuhlia mugil, where NND was constant.

Viscido et al. (2004) did not find a change in NND between four and eight fish in

giant danio. One possibility for the discrepancy between the results is that NND

oscillates over time. Miller and Gerlai (2008) and Viscido et al. (2004) had recorded

the danio groups for a much longer period of time. Another possibility is that in the

previous study, only two groups sizes were used, and group size trends may not be

as evident.

The observed decrease in NND with group size may be a result of positive

feedback. Positive feedback is the amplification of events through recruitment or

reinforcement (Bonabeau, 2007; Camazine et al., 2001), and positive feedback loops

86



are one of the main principles of collective behavior in animal groups (Sumpter,

2006). Some other examples of positive feedback in collective systems are well known,

including ant pheromone trails that attract other ants (Bonabeau, 2007; Deneubourg

and Gross, 1989) and the grouping of cockroaches to a shelter (Canonge et al., 2011;

Jeanson and JeanLouis Deneubourg, 2007). In group behavior, this is also called local

enhancement (i.e., when an individual is drawn to an area because of the presence

of another individual) (Reader et al., 2003).

The aggregation model presented here, much like the rheotaxis model, is overly

simplified. These models are not intended to fully describe fish behavior. Rather,

these models capture aspects of shoaling and rheotactic behavior, can predict simple

behavior under certain circumstances, and make very few assumptions. Figure 4.8

shows the predicted effects of the aggregation model on NND as group size increases.

In an all-to-all interaction topology, NND decreases at a rate of approximately 1/N .

The experimental data shows a much slower decrease in NND, at a rate of approx-

imately 1/
√
N . Numerically analyzing the model for a limited interaction topology

gets much closer of an estimate to the behavioral data. In addition to limited inter-

action topologies, the noise parameter in the model plays an important role. If the

noise scales with the number of agents, the results also come closer to the experi-

mental data. Both limited interaction topologies and noise values that scale with N
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are biologically plausible.
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Part II: Startle Response and Information Transmission
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Chapter 5: Probabilistic information transmission in a network of

coupled oscillators

5.1 Introduction

Groups of fish vary greatly in their shoaling behaviors from loose aggregations,

to shoals and schools (see Section 1.4.1). However, many species of fish also exhibit

dynamic shoaling behaviors that change over time (Miller and Gerlai, 2008; Viscido

et al., 2004). Breder (1959) defined obligate shoaling fishes as those that are polarized

constantly, and facultative shoaling fishes, which are those that are only polarized

occasionally. This terminology is generally used to specify different shoaling behav-

iors as a result of different environmental contexts (e.g., shoaling in the presence of

a threat) (Delcourt and Poncin, 2012). In this study, I use the term obligate to refer

to shoals that are polarized before the presence of a threat and facultative to refer

to shoals that seek to polarize once a threat is detected.

While differences in shoaling behavior have been observed in fishes, it is unclear
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how the degree of polarization affects the response to predation. Individuals already

aligned toward one another are able to respond more quickly to movement changes

made by their neighbors (Couzin et al., 2002), and therefore respond more rapidly to

the location of prey or unknown changes in their environment (Laland et al., 2011).

Domenici and Blake (1997) hypothesized that when herring are shoaling, the ability

of each fish to correct its trajectory following turns towards the stimulus is enhanced,

and that shoaling fish may have an advantage when trying to correct their towards

responses, as they may integrate information from the external stimulus with that

from internal information from startled neighbors.

This study uses numerical simulation and modeling methods to test the hy-

pothesis that strong alignment improves a shoal’s response to a threat. To do so, I

apply a simple model of epidemic contagion (see Section 2.6) to model the proba-

bility of response to a threat. This model is then paired with the dynamics of the

synchronization model described in Chapter 3. With this joint model, I am able

to investigate the spread of information through a network and study the resulting

orientation dynamics resulting from interactions with other agents.

In order to compare between shoaling behaviors, I categorize agent behavior as

either non-shoaling, obligate shoaling, or facultative shoaling. Additionally, I control

for the individual effects of startling due to an external threat, or via neighbor cues,
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by examining the responses of each shoaling type in both the presence or absence

of social cues. When there are social cues from neighboring agents, these shoals

are referred to as attentive. When there is no use of social cues, these shoals are

referred to as inattentive. I then measure the proportion of fish startling over time,

the directionality of the response, and the cohesion of the shoal after the startle

response, in order to assess differences in response between different types of shoaling

behavior.

The contributions of this chapter are (i) application of a probabilistic model

of epidemics to the study of animal behavior; (ii) testing the biological hypothesis

that shoal cohesion improves predator escape; (iii) quantification of the effect of

attentiveness to startle propagation (via the variable P int); and (iv) investigation of

the variation in response based on network connectivity. This work has application

to the study of collective behavior in fish shoals and other animal groups.

5.2 Methods

5.2.1 Coupled oscillator synchronization model

I use the synchronization model previously described in Chapter 3. For review,

let t represent the discrete time index, and the orientation of individual k at time

t is given by θtk. When not startled, agents are steered according to the following
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stochastic difference equation

θt+1
k = θtk +

κ

N

N∑
l=1

sin(θtl − θtk + ω1), (5.1)

where ω1 represents sensory noise value at time t. Here the noise is drawn ran-

domly from a Gaussian distribution, N(0, σ1) (degrees). The gain κ is of importance

for the synchronization behavior of the model Kuramoto (1975). Namely, κ > 0

yields synchronization and κ<0 yields incoherent behavior.

5.2.2 Probabilistic model of information transmission

This model is a version of the SIR epidemic model, described in Section 2.6, and

is also a discrete-time Markov chain. A discrete time Markov chain is a dynamical

system composed of S discrete states. In this study, there are two states for each

agent: a susceptible state, and an infected (or startled) state. These states and the

transitions between them area based on the probabilities in the model (Figure 5.1).

The state of each agent over time can also be represented as a cellular automata

(Figure 5.2). In the cellular automata, each cell represents an agent k at a time step

t. The color of the cell represents the agent’s state.
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Figure 5.2: Image depicting change in agent state over time as a cellular automata.
Blue indicates a non-startled state and yellow indicates a startled state. On the first
time step, ten agents startle due to the external threat via P ext. On subsequent time
steps, the startle propagates throughout the shoal.
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5.2.3 Behavioral Rules

Agents execute different behavioral rules depending on what signal initiated

the startled state (external threat via P ext or internal cue via P int), and whether the

startle has just been initiated or is sustained (P sus).

When there is no disturbance or threat to the shoal, agents synchronize at a

rate dependent on the gain of the synchronization model, κ. At time t = 0 agents

have probability P ext of responding to an external threat. When startled directly

from a threat via P ext, agents react to an impulse by instantaneously reorienting —

with some variation due to noise — towards a reference direction, θs. Without loss

of generality, the reference direction is considered to be the direction away from the

threat, and is set at zero degrees. This is given by the equation

θtk = θs + ω2, (5.2)

where θs = 0◦, and ω2 is the variability of directionality in the startle response

drawn randomly from a Gaussian distribution, N(0, σ2) (degrees). This is a simplistic

behavioral rule, but serves to simulate the rapid turning behavior of fish during an

escape response.

At following time steps, t > 0, agents that are currently in a susceptible state
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(they have not yet been startled) respond to startled neighbors with probability

P int. If startled from neighbor cues, agents react to an impulse directing them in the

average orientation of their startled neighbors, given by

θt+1
k =

∑
l∈Nk(startled)

θtl + ω2 (5.3)

Following the initial transition to a startled state, if agents remain in the star-

tled state via P sus, they follow the behavioral rules of the synchronization model as

they would in the susceptible state. While sustaining a startled state agents may

still continue to propagate the response.

5.2.4 Parameter space

Table 5.1 details the model parameters and the parameter values explored in

this study. Simulations were run for 100 time steps. The startle model typically

lasted no more than the first 10 time steps for the value of P sus used.

5.2.5 Shoaling types

Three shoaling behaviors are investigated: obligate, facultative, and non-shoaling.

Obligate shoaling agents are characterized by being initially polarized, and then con-

tinuing to follow the synchronization model. Facultative shoaling agents start in
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Table 5.1: Parameter space of probabilistic startle model
Parameter Symbols Values
Probability of startling to threat P ext 0.05, .1, .5
Probability of startling to neighbor cues P int 0, 0.05, .1, .5
Probability of sustaining a response P sus .5
Coupling gain between agents κ 0, .2
Initial orientation (obligate) θ0 180◦

Initial orientation (facultative, non-shoal) θ0 random
Standard deviation of noise in synchrony model σ1 2◦

Standard deviation noise in startle response σ2 20◦

Number of agents N 100
Connectivity of random graph c 1, .5, .2

random orientations, but in the presence of a threat follow the rules of the synchro-

nization model. Non-shoaling agents do not follow the synchrony model.

In addition to these shoaling types, I also distinguish between attentive and

inattentive shoals, based on the space they occupy in the probabilistic startle model.

Namely, if P int>0, the shoal is considered attentive, and the startle will spread,

whereas if P int<0, then the shoal is considered inattentive and the reaction to the

threat does not spread throughout the group. The inattentive group also serves as

a control to compare the effects of social information transmission within a group.

Table 5.2 shows the parameter values for each shoaling type, and Figure 5.3 details

the behavior of each shoal type in words.
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Attentive Inattentive

Obligate shoaling

Facultative shoaling

Non-shoaling

Initial conditions: polarized
Follow synchonization model

Information about a threat spreads

Initial conditions: polarized
Follow synchonization model

Information about a threat DOES NOT spread

  Initial conditions: random orientations
Follow synchonization model

Information about a threat spreads

 Initial conditions: random orientations
Follow synchonization model

Information about a threat DOES NOT spread

Initial conditions: random orientations
DOES NOT follow synchonization model

Information about a threat spreads

 Initial conditions: random orientations
DOES NOT follow synchonization model

Information about a threat DOES NOT spread

Figure 5.3: Categorization of shoaling behavior in the model.

Table 5.2: Shoaling categories
Behavior Initial conditions Gain Attentive, Inattentive
obligate polarized κ > 0 P int > 0, P int = 0

facultative random κ > 0 P int > 0, P int = 0
non-shoaling random κ = 0 P int > 0, P int = 0

5.2.6 Analysis metrics

The proportion of the shoal startled is measured at each time step, which gives

an indication of how many fish were startled (see Figure 5.4), as well as how rapidly

the information spread. These results will be the same for all shoaling types because

the interaction topology governing the results of the probability model is fixed, and

does not interact with the synchronization model for the cases investigated here.
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The orientation dynamics of the responses are measured over time as well and

compared between the shoaling groups. I characterize a successful escape from the

threat as orienting within ± 20◦ of the reference direction, and investigate two critical

time points. The first time point is when all startles have just completed. The second

time point is at the end of the simulation.
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Figure 5.4: Exemplary plots depicting proportion of shoal startling over time.

5.3 Results

I combined a model of orientation synchronization based on coupled oscillators

combined with a model of information propagation to predict how information would
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be transferred through a group and how shoaling behavior would affect the dynamics

of the startle response.

5.3.1 Startle propagation

I first examine the roles of topology, P int and P ext on the spread of information

through the group. Figure 5.5 shows the average proportion of the shoal startling

for given P int and P ext values, and three different network topologies, specified by

percent connectivity.

As expected, more highly connected topologies have a higher proportion of

agents responding to the threat. Additionally, the proportion of the shoal startling

tends to increase with increasing values of P int and P ext. A non-intuitive exception to

this result, is that at higher values of P int (i.e, 0.5), there are more agents responding

when P ext is lower, as opposed to higher. This unexpected result can be attributed to

the removal aspect of the SIR model, and the value of P sus. If more fish startle due

to P ext, and the startle completes before it can spread, this would result in an overall

reduced propagation of the response. This result indicates an interaction between

the three probabilities in the model, and the proportion of agents startling.

The rate of information spreading happens fairly rapidly in all topology cases,

with peak responses occurring in the first (when the connection topology is very low)
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or second time step. The difference in peak number of responses between topologies

can be seen in Figure 5.5. At low values of P int and P ext there is the greatest

difference in the results between interaction topologies. At P int = 0 the isolated

effect of P ext is shown.
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Figure 5.5: Bar plot illustrating the max proportion of the shoal startled (averaged
over 300 Monte Carlo runs) for sample values of P ext and P int. Error bars are 95%
confidence intervals.
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5.3.2 Orientation dynamics

Next, I compare the response dynamics between shoaling groups, focusing on

the results for the all-to-all interaction topology. Figures 5.6 and 5.7 show the average

proportion of successful escapes at the time step when the last startle state ended

(Figure 5.6) and the last time step in the simulation (Figure 5.7).

At the completion of the startle responses in the group, obligate shoaling agents

show a higher proportion of the shoal escaping the threat as compared to facultative

and non-shoaling groups. The exceptions to this are when the shoal is inattentive (no

neighbor information), or when P ext is high. When there is no social information,

facultative and non shoaling groups show higher proportion of agents oriented away

from the threat. However, this is due to the fact that these groups are initialized in

a random orientation at the start of the simulations. So, by chance more agents are

likely to be oriented away from the threat. Given that the average number of agents

startling in all shoal groups is the same, the agents that startle in the obligate shoal

group exhibit a more accurate response, according to this criteria (Figure 5.6).

Figure 5.7 illustrates the proportion of agents oriented to the reference direc-

tion at the end of the simulation. There are noticeably more facultative shoaling

agents oriented towards the reference direction than obligate shoaling agents, and

approximately 10% more than immediately following the startle responses, suggest-
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ing that non-startled agents were recruited to the direction away from the threat, but

at a much slower rate. In comparison, there are significantly fewer obligate shoaling

agents oriented towards the reference direction at the end of the simulation than

immediately following the startle responses, suggesting a strong influence of the role

of non-startled agents in determining the orientation during the synchrony model.
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Figure 5.6: Bar plot illustrating the average proportion (over 300 Monte Carlo runs)
of the shoal oriented ±20◦ from the reference direction at the time of the last startle
response. Error bars are 95% confidence intervals.
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Figure 5.7: Bar plot illustrating the average proportion (over 300 Monte Carlo runs)
of the shoal oriented ±20◦ from the reference direction at the last time step of the
simulation. Error bars are 95% confidence intervals.

Thus, obligate shoaling agents respond much more rapidly than facultative

shoaling agents to a threat (0- 20% more of the shoal escaping at the end of the last

startle response). Facultative shoaling fish, however, are able to exert stronger influ-

ence on their shoal-mates orientation through the synchronization model. Figure 5.8

depicts waterfall plots of histograms of agent orientation over time, normalized by
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30,000 (100 agents × 300 Monte Carlo runs) and bound between 0 and π.

5.4 Discussion

In this study, I use an epidemic model paired with a model of coupled oscillators

to model information transmission in groups of fish. I examine potential differences

in startle response behavior based on shoaling properties and investigate the spread

of information transmission through a group using a model of contagion. To the best

of my knowledge this is the first study to apply an epidemic model to the study of

fish startle response behavior and the first to numerically analyze potential effects of

polarization on startle response behavior.

I find differences in startle response behavior between shoaling types. This is

true even for attentive obligatory and facultative shoals, where the only difference

between them is the initial orientation of the shoal when the threat is introduced. The

results of the model reinforce the idea that there are benefits of polarized shoaling

(Couzin et al., 2002). The model also predicts that randomly oriented shoals may

better at transferring information to uninformed individuals, leading to a slower, but

more accurate response. A speed-accuracy trade-off may be a strategy used by fish

shoals in the response to a predator (Domenici and Blake, 1997).

I investigated different values of P ext and P int, which varies the number of

106



informed individuals and the rate of information transmission among group members.

The model proposed here could thus be used to vary group size and the number of

informed individuals over the parameter space to assess the conditions under which

knowledgeable individuals have the most influence. A small number of knowledgeable

individuals has been previously shown to elicit a response from both small and large

groups (Gueron et al., 1996; Huse et al., 2002; Mirabet et al., 2008; Reebs, 2000).

However, in smaller groups, a greater proportion of knowledgeable individuals is

needed to elicit a response (Couzin et al., 2005; Huse et al., 2002), and it is more

likely that inaccurate decisions will be made (Ward et al., 2008).

In this study, low probabilities of P ext and P int were used. The greater the

number of connections between agents, the lower this number needs to be to avoid

saturation of the response. It may also be possible to scale this parameter with

distance or number of neighbors, such that an agent may have a high probability of

interacting with close neighbors, but reduced probability of being startled by more

distant neighbors. Additionally, the parameter P sus was kept fixed for this study.

However, the value of P sus has bee shown to play an important role in the timing of

epidemic spreading.

While I use a very simple version of the model to investigate startle response

behavior in shoals, the model is powerful given its simplicity and also quite generaliz-
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able. As it is, the joint model proposed herein includes two behaviors (synchronizing

and startling), that occur on different time scales, and may involve separate network

interactions. This model may be used to test other hypotheses regarding startle re-

sponse behaviors in fish, including information transmission based on location within

a shoal, different network interactions, and heterogenous groups. It is important to

note that the synchronization model and the probabilistic startle model operate inde-

pendently in this study, but may interact depending on how the interaction topology

between agents is specified. Additionally, this model may be used to investigate

different information-transmission or decision-making behaviors in animal groups.
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Figure 5.8: Waterfall plots displaying orientation histograms over time for all three
shoaling types, P ext = 0.05, P ext = 0.05 Note the time scale plots the first five time
steps when most startles occur, then plots once every 10 time steps up until 50, by
which time the startles have long ended.
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Chapter 6: Effect of flow on group structure, startle response and

information transmission

6.1 Introduction

This chapter quantifies startle response rates to an external threat (a visual

looming stimulus) for solitary and groups of eight fish in flow and no-flow conditions.

The data is fit to the probabilistic model of information transmission from Chapter

5 that includes socially transmitted information. This model predicts the number of

fish responding in both the flow and no-flow conditions. The aims of this study were

to determine the effects of flow on the collective transmission of threat information

within groups of fish, as measured by the number of fish responding to an external

threat, as well as to investigate the effect of flow on information transmission.

Fishes use a variety of sensory modalities to receive information from a preda-

tor or other fish in the school, including vision (Dill, 1974; Guthrie and Muntz, 1993),

olfaction (Ferrari and Chivers, 2006; Mathuru et al., 2012) and lateral line sensing
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(McHenry et al., 2009; Mirjany et al., 2011). Although the extent to which ambi-

ent currents might affect the ability of fishes to detect predators either directly or

indirectly is unknown, currents would be expected to have a large impact on the

flow-sensing lateral line system. For example, local hydrodynamic disturbances pro-

duced from the C-start escape maneuvers of fishes in response to a predator are

capable of stimulating the lateral line of nearby fish in a school (Tytell et al., 2008),

but the ability of fishes to detect these local flows may be masked by the presence of

ambient water motions, such as those in a stream (Coombs et al., 2001; Engelmann

et al., 2002). On the other hand, the fact that flow elicits rheotactic behavior means

that fishes are more likely to be aligned in a common direction, which is typically

upstream. Individuals already aligned toward one another are able to respond more

quickly to movement changes made by their neighbors (Couzin et al., 2002) and

therefore respond more rapidly to the location of prey or unknown changes in their

environment (Laland et al., 2011). Rheotacting fishes should thus have less direc-

tional noise, meaning that deviations from the polarized direction such as startle

responses may be more easily detected via vision or the lateral line. Additionally,

increased alignment has the effect of minimizing relative motion between adjacent

fish, thus reducing hydrodynamic and optical-flow noise generated by the movements

of nearby fish.
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Behavioral results indicate that (i) school formation is altered in flow such that

fish orient upstream while spanning out in a crosswise direction; (ii) the probability

of at least one fish detecting the looming visual stimulus is higher in flow than no

flow for both solitary and groups of eight fish, but (iii) the probability of three or

more individuals responding is higher in no flow than flow. Taken together, the

behavioral results indicate a higher probability of stimulus detection in flow but

a higher probability of internal transmission of information in no flow. Behavioral

results were well-predicted by a computational model of collective fright response that

included the probability of both direct (based on classic Signal Detection Theory) and

indirect (i.e. via interactions among group members) detection of external (threat)

signals. This model provides a new theoretical framework for analyzing the collective

transfer of information among groups of fish and other organisms. A version of this

work has been previously published (Chicoli et al., 2014).

6.2 Experimental design

The experiment was a multi-way design with two within-subjects variables (flow

condition and looming speed) and one between-subjects variable (social context).

Both flow condition and social context had two levels: flow present (7 cm−s) or

flow absent (0 cm−s) and solitary (1 individual) or social (group of 8), respectively.
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To assess the probability of startle response, fish were exposed to blank trials (no

stimulus) and five different looming speeds (20, 40, 80, 160 and 320 cm−s). Different

loom speeds were used so that stimulus-response functions could be generated.

Both blank and stimulus trials of varying loom speeds were presented randomly

with inter-stimulus intervals ranging from 3 to 10 min. Eight replicates of solitary

and grouped individuals were presented twice with each stimulus in both the flow

and no-flow conditions in a repeated-measures, counter-balanced blocked design (half

of the replicates were exposed to the flow condition first and the other half exposed

to the no-flow condition first). Before the start of each trial, I measured the water

temperature of the experimental tank to ensure that the temperatures did not deviate

from the home tank or change over time by more than 2◦ C. Fish were then transferred

from the holding tank to the experimental tank using a plastic-lined net, which

provided a cushion of water around the fish, in order to minimize stress and possible

damage to the lateral line system. Trials were conducted during the day between

09:00 and 17:00 on two consecutive days with one day of tests in flow and the other

in no-flow. Each replicate was tested at the same time of day to help avoid potential

confounds from order and time-of-day effects.

I automated the experiments using custom scripts in Linux (OpenSuse version

11.2) and Matlab to create movies of the stimulus presentation as well as a 30 min
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Figure 6.1: Experimental arena depicted working area, and verification screen, show-
ing a stimulus. The side of the screen where the black square is located is the side
where the stimulus is being shown.

acclimation period. During habituation and inter-trial intervals, the monitors dis-

played blank white screens. The stimulus movie was played on VLC media player

(videolan.org) at 60 fps from a single Linux computer with an extended desktop

display. This display was split three ways by a multi-monitor adapter (Dell Multi-
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monitor hub adapter, DP-to-DVI, 64XHK) to the left and right side monitors, as

well as to a small verification screen (Figure 6.1). (The verification screen displayed

movies being shown on either screen, with a black square in either the upper-left or

upper-right corner corresponding to the active monitor.) To coordinate data cap-

ture with the timing of stimulus presentation, the camera was triggered through a

data acquisition board (National Instruments USB-6525, http://www.ni.com), via

a five-volt signal to a video-capture module connected to the camera (Midas 2.0

AD2M Module for auto-download/auto-reset/auto-triggering, http://xcitex.com). I

recorded behavior was recorded for 8 s, which is the maximum recording time of

the camera hardware. However, this is enough time to capture startle responses,

even taking into consideration the variability in latency and duration (Meager et al.,

2006).

6.3 Experimental approach

6.3.1 Experimental set-up

I carried out these experiments at Bowling Green State University in the lab-

oratory of Dr. Sheryl Coombs. The flow tank there was a rectangular, plexiglass

channel (154 × 28 × 35 cm) filled to a depth of 25 cm (Figure 6.2) and similar in

design to that described by (Vogel and Labarbera, 1978). I tested fish in the cen-
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Motor & Impeller
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Return Tube

Figure 6.2: (a) Schematic of the flow tank (adapted from (Vogel and Labarbera,
1978). An impeller drives water through a return tube. The collimators reduce
turbulence and fish were tested in the 25.4 × 25.4 cm working area. The working
area is backlit with evenly distributed fluorescent lighting. (b) Top view of the
working area during a flow trial. Arrows illustrate the direction of flow. (c) Three-
dimensional illustration of the flow tank with overhead mounted camera, connected
to a computer outside the experimental room. Stimuli are presented to either side
of the tank by the computer monitors attached to a computer that generates the
stimulus movies (Chicoli et al., 2014).

tre of the flow tank in a removable compartment with dimensions of equal length

(25 × 25 cm) to avoid possible directional bias. Water in the flow tank was circu-

lated through a 20.32 cm (8 in.) polyvinyl chloride return pipe via a 12.7 cm (5 in.)

aluminum impeller blade attached to a chem-stirrer (IKA Laborteknik RW 20DZM

http://www.ika.com). Water circulation was facilitated with a baffle placed at the
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downstream end of the tank. Turbulence created by the chem-stirrers was reduced

with two coarse collimators consisting of plastic egg crates (3 cm thick with 1 cm

pores) placed at the upstream and downstream end of the flow tank. Additionally,

a fine collimator composed of drinking straws (3 cm in length) was located between

the upstream coarse collimator and the working compartment. The flow tank had

been calibrated using dye to create a curve for converting impeller speed (rpm) to

flow velocity (cm−s). The flow speed used ( 7 cm−s or 468 revolutions per minute)

corresponds to two body lengths per second (BL−s). Although flow speeds normally

encountered by giant danio in the wild are not well characterized, this speed is suf-

ficient to evoke rheotactic behavior and was probably well within the range of flow

speeds encountered in their natural habitats (McClure et al., 2006).

Two 43 cm liquid crystal display (LCD) monitors (Dell P170S, 60 Hz) were

placed on each side of the flow tank’s working area for stimulus display. An ad-

ditional 20 cm monitor (Accele Electronics, Inc. Accelevision 20 cm LCD module

LCD3LVGA, http://www.iatft.com) was placed outside the working area, for veri-

fication of the stimulus display. A dorsal view of the fish were recorded at 400 fps

using a high-speed camera (Itronx DRS Data and Lightning RDT high-speed cam-

era, http://www.itronx.com), with a spatial resolution of 1280 × 1024 pixels. The

working area was backlit with a 34-watt bulb diffused 1/4 stop by an optical diffuser
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to provide uniform, upwelling light within the tank.

6.3.2 Stimulus design

A looming stimulus is a two dimensional image of an approaching object. A

definitive characteristic of a looming stimulus is that as collision becomes imminent,

both angular size and speed grow non-linearly with time, while time to collision

decreases linearly with time. For two dimensional stimuli, the time to collision is

defined as the moment when the angular size θ(t) subtended by the silhouette on

the retina reaches 180◦ (Gibson, 1958). (Note here that θ refers to angular size of

the image subtended on the retina to coincide with previous literature. However,

throughout the dissertation, θ will refer to the heading of a fish). The looming image

may also collide with the eye-plane of the observer, and in that case the calculations

are termed time to passage, and are based on relative change of angle between the

object and the observer line of sight.

Looming stimuli consisted of a computer-generated series of black-on-white

disks that increased in size to give the appearance of a constant approach velocity

Dill (1974) until they reached a maximum size of 15 cm, and positioned so that the

entire stimulus was present on the monitor. Five stimuli with various approach speeds

(20, 40, 80, 160 and 320 cm−s) were generated in Matlab (2007, R2007a Mathworks,
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Natick, MA, USA, http://www.mathworks.com). The stimulus speeds fall within

the range of swimming speeds of the giant danios’ natural predators (Shahnawaz

et al., 2010).

6.3.3 Statistical analysis

Statistical analysis was performed in the stats package in R (version 2.14).

General linear mixed models (GLMM) for binomial response assessed how well the

factors of flow condition, group size and stimulus speed predicted the frequency of

startle responses. Groups were included in the model as a random factor. Differences

in vector strength between flow and no-flow were compared using Wilcoxon rank

tests. Rayleigh tests (Batschelet, 1981) were used to determine whether the phase

order parameter distributions differed significantly from random. An equality of

variance F-test was used to assess differences in school structure between flow and

no-flow, in both the x and y directions. For all statistical tests, significance level was

set to P<0.05.

6.3.4 Model of information transmission

The probabilistic model predicts how information flows through a network (see

Section 2.6 and Chapter 5) and gives insight into the experimental results, even
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though the interaction network and interaction probability P int cannot be measured

directly from the experimental data. Thus, the experimental data was fit to the

model to assess where the results lie in the model parameter space, as well as to

compare differences in information transmission between flow and no-flow trials.

In order to fit the model to the data, a fast probabilistic optimization technique

known as simulated annealing (Aarts, E. H. L., Korst, J. H.M.&van Laarhoven,

2003) was applied. This method mimics the physical process of gradually cooling a

physical material to decrease defects, effectively minimizing the system energy (the

cost function). By occasionally accepting points that raise the cost function, this

algorithm avoids being trapped in local minima in early iterations and is able to

explore globally for better solutions. The cost function in this case was the average

mean-squared error between the model fit for the cumulative probability distribution

of startle responses and the number (1–8) of simulated fish responding over five

simulation runs (looped over 20 instances of the data).

The inputs to the simulated annealing algorithm was the position of all the

fish from the experimental data at the start of the stimulus, a topology network

specifying fish interactions, and a fixed value for the model variable P sus. Let the

parameter P sus represent the duration of a startle, and let P sus = 100 ms, which is an

average duration for a startle response (although startle speeds and durations often
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exhibit variability (Eaton et al., 1977)). The model was optimized to find the values

of P ext and P int that minimized the cost function. Multiple simulated annealing

runs were conducted using a Boltzmann cooling schedule (Aarts, E. H. L., Korst, J.

H.M.&van Laarhoven, 2003). Simulated annealing runs were terminated when the

cost function did not change beyond a given tolerance.

I investigated several instances of metric and topological distance topologies

for neighbor interaction (see Section 2.4).

6.4 Results

6.4.1 Alignment in flow and no flow

I computed the phase order parameter pθ for groups of fish in flow and no flow. I

refer to the magnitude of the phase order parameter during the first time step (frame)

as the initial vector strength; the average over all time steps (video frames) of an

undisturbed school I refer to as the time-averaged vector strength (Figure 6.3a,b).

A two-tailed, paired Wilcoxon signed-rank test indicated that the time-averaged

vector strength was significantly higher in the flow condition (Mdn = 0.92, n = 88)

than the no-flow condition (Mdn = 0.42, n = 83, Z = -6.97, P<0.001). Moreover,

fish headings in flow were not randomly distributed with respect to the upstream

direction (mean vector direction = 3◦; V test, V = -22.1, P<0.95), whereas those in
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no-flow were randomly distributed (mean vector direction = 166◦; V test, V = 79.9,

P<0.001). Thus, the upstream rheotactic behavior in flow enhances the degree of

inter-fish alignment. Nevertheless, the distribution of orientations was significantly

non-random in both the flow (Rayleigh test; Z = 78.9, P<0.001) and no-flow group

conditions (Rayleigh test; Z = 7.25,P<0.001) suggesting that groups of fish were

partially aligned even in the absence of flow due to their inherent schooling behavior.

Since the proclivity of fish to head upstream may have biased the direction

from which looming stimuli were received, individual orientation with respect to the

stimulus location was measured at the onset of each stimulus trial (Figure 6.3c,d).

As expected, fish heading upstream in flow were more frequently oriented at 90◦

or 270◦ with respect to the stimulus, given that they were always presented from

one of two computer monitors on either side of the tank (Figure 6.3c). In contrast,

fish in no-flow were more randomly oriented with respect to the stimulus direction

(Figure 6.3d). However, the response frequency of fish to the startle stimulus in

the no-flow condition did not appear to depend on stimulus direction; the response

probability was uniformly distributed (Rayleigh test; Z = 2.01, P<0.05), binned

data with bin spacing of .35 radians). Rayleigh tests could not be carried out on

the flow trials, since the flow data had multiple modes, which violates the necessary

statistical assumptions.

123



6.4.2 Neighbor position and school structure

Two-dimensional neighbor distance in BL was calculated for each individual at

each time step during stimulus presentation when no fish were startling. I collected

data from the start of the stimulus until the first reaction, if one was detected, or

until the end of the stimulus presentation. No differences were observed in behavior

or position even in the presence of a stimulus, unless a startle response occurred

that disturbed the school. A two-tailed, paired Wilcoxon signed-rank test indicated

that the nearest-neighbor distance was larger in flow (Mdn = 0.70, n = 88) than

in no-flow (Mdn = 0.69, n=83, Z =-2.97, P<0.5). However, the actual size of

the difference (0.01 BL, i.e., approximately 3–4 mm) was very small. There was

no significant difference found in a measure of density given by the ratio of the

distance of first and second nearest neighbors in flow (Mdn = 0.68, n = 88) or no-

flow (Mdn = 0.68, n = 83, Z = -0.19, P<0.05). The spread of neighbor position

was calculated (Figure 6.4a,b) by creating a two-dimensional histogram and fitting

a bivariate Gaussian distribution to the data. The overall shape of the groups in

flow was elongated in the crosswise direction, being more oblong (Figure 6.4a) than

circular (Figure 6.4b). The shape differences along the transformed x and y axes

were tested with an equality of variance test (x direction: F = 1.29; df = 2327 (flow)

and df = 2491 (no-flow); P<0.001; y direction: F = 1.11; P<0.05). It was also
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observed that fish in the flow condition tended to spend most of their time upstream

(Figure 6.4c) whereas fish in the no-flow condition were largely located downstream

(Figure 6.4d).

6.4.3 Response probability

No startle responses were observed during the control (blank) trials and, across

all conditions, the fastest looming speeds (80, 160 and 320 cms−1) were all signif-

icantly better at predicting startle responses than the 20 cms−1 stimuli (80 cms−1:

Z = 3.39, P<.001; 160 cms−1: Z = 2.93, P<.003; 320 cms−1: Z = 3.4, P<.001).

In general, the probability that at least one fish responded to the looming stimulus

increased as a function of stimulus speed for both solitary and grouped fish in both

flow and no-flow conditions (Figure 6.5). In addition, the probability of one fish

responding was generally greater in the flow condition (filled symbols) compared to

the no-flow (open symbols) condition (Figure 6.5).

A general linear mixed model was run in R, using flow condition, solitary vs.

grouped state and stimulus speed in order to predict response probability. Results

of this model are summarized in Table 6.1. Only the three highest loom speeds (80,

160 and 320 cms−1) were used in this analysis to ensure that stimulus levels were

detectable across all conditions. The effect of replicate groups was controlled for by
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adding it as a random factor in the model. No evidence of interaction between the

two factors of flow condition and social context was found (Z = -0.138, P>0.8, AIC

= 645.4). Flow and solitary/group states were significant predictors of response fre-

quency (flow: Z = 2.42, P<0.05; group size: Z = 4.21, P<0.001), i.e., the probability

of at least one fish responding was greater for grouped compared to solitary fish and

in flow compared to no-flow.

6.4.4 Model including social information fits experimental data

Although there was a higher probability of at least one fish responding to each

of the 80, 160 or 320 cms−1 loom stimuli in the flow condition compared to the no-

flow condition, the mean number of grouped fish responding in flow (M = 2.65, n =

88) and no flow (M = 2.53, n = 83) did not differ (Mann-Whitney U-test, Z = -0.38,

P<0.7). Thus, while there was a higher probability of at least one fish responding

in flow compared to no flow, a greater number of fish responded in no flow. This

observation indicates higher probabilities of stimulus detection in flow but higher

probability of internal information transmission in no flow, as shown in the pooled

frequency distributions of the number of fish responding in flow (Figure 6.6a) and

no-flow (Figure 6.6b) conditions. A G-test comparing these frequency distributions

in flow and no flow indicates that the two distributions are statistically different
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(G= 4.44, df = 1, P <0.05). The differences in the number of fish responding can be

further distinguished by fitting the frequency distributions with polynomial models

to show higher probabilities of one or two fish responding in the flow condition,

but lower probabilities of three or more fish responding as compared to the no-flow

condition (Figure 6.6c). The flow condition does not appear to have an effect at

higher numbers of fish responding (7–8 fish), which may be due to very small sample

sizes (in only a few trials did the entire school startle).

Table 6.1: Linear mixed-effects model investigating the effect of stimulus speed,
group size and flow condition on response. Replicate groups were controlled for as a
random effect

95% C.I.
Fixed Effect Level Value S.E. z -value P -value Lower

bound
Upper
bound

Intercept -2.2533 0.4102 -5.493 <0.001 -3.0573 -1.4492
Stimulus speed 40 0.63420 0.4089 -1.524 >0.05 0.1677 1.5771

80 1.4171 0.4169 3.399 <0.001 -0.1784 1.4246
160 1.2065 .4121 2.928 <0.005 0.5999 2.2343
320 1.6823 0.4209 3.996 <0.001 0.3988 2.0142

Flow 0.8724 0.3595 2.426 <0.05 0.8574 2.3368
Group size n =8 0.8724 0.3595 2.426 <0.05 0.8574 2.3368
Group:Flow 0.0619 0..5129 -0.138 >0.05 -0.0943 1.0671

Next, the data were fitted to a probabilistic model of startle response that

included the affect of socially transmitted information (see Methods). Figure 6.7

shows sample fits of the model outcomes (simulated data) to the experimental data
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for the flow (Figure 6.7a) and no-flow (Figure 6.7b) conditions. The shaded regions

illustrate the range of typical outputs of the model based on one standard deviation

from the mean output. The parameters for the model that best fit the data were

optimized using simulated annealing (see Methods). The model values determined

by this optimization approach are shown in Figure 6.8, for both nearest-neighbor

and proximity-based topologies for flow (black squares) and no flow (open circles).

The results indicate that, regardless of the network topology, the probability of

detecting an external threat P ext is higher in the flow condition than the no-flow

condition, as was seen in the experimental results. However, the model predicts that

the probability of detecting and responding to neighboring fish, P int is higher in the

no-flow condition than in the flow condition, which could not be observed directly

from the experiments. Additionally, the results of the model suggest that P ext does

not depend on the interaction topology, whereas P int decreases exponentially as the

presumed number of interacting neighbors increases.

6.5 Discussion

To the best of my knowledge, this study is the first to examine school struc-

ture, startle response probability, and information transmission in the environmental

context of a flow field (Rieucau et al., 2014a). For many species, social interaction
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and predator avoidance are important parts of behavioral ecology and several studies

have attempted to model and understand how schooling fish might handle predator

avoidance (Lemasson et al., 2009; Wood and Ackland, 2007; Zheng et al., 2005).

However, these studies lack a key ecological factor (flow) that fishes often experience

in their natural habitats. Flow brings with it benefits (e.g., drifting prey) as well

as challenges, such as hydrodynamic noise and disruption of positional stability. It

was demonstrated that (i) the polarity and two-dimensional shape of grouped fish in

the flow condition are altered relative to the no-flow condition such that fish orient

upstream while spanning out in a cross-stream direction; (ii) the probability that at

least one fish responds to a looming visual stimulus is higher in flow than in no flow;

and (iii) the number of fish responding to the looming stimulus is higher in no flow

than flow. Furthermore, a computational model of collective startle response was

developed that predicted the results; the model indicated that, relative to no flow,

flow impairs the transmission of social information in the form of propagated startle

responses.

6.5.1 The effect of flow on group formation and polarity

It is well-known that fishes exhibit rheotactic behaviors in the presence of

flow (Arnold, 1974; Lyon, 1904). Thus, the finding that the flow condition caused
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solitary fish and grouped fish to orient predominantly upstream is not new. The

change in the two-dimensional shape of the group in the flow condition, however,

is a new finding that may have implications for threat detection in flow, although

fish tend to elongate their shape in their direction of travel (Bumann et al., 1997).

Given that fish in flow tended to be located further upstream than those in no flow

(Figure 6.4), it is possible that the observed cross-stream distribution in flow was

the result of a wall effect. That is, the upstream barrier might have prevented fish

from moving further upstream, causing them to span out in a cross-stream direction.

Although wall effects cannot be ruled out, they seem less likely given that the data

analysis excluded all instances in which individuals were less than 1 BL away from

the wall. Alternatively, fish may position themselves in order to increase rheotactic

performance. Rheotaxis is a robust behavior with many potential benefits, including

enhanced detection of prey and energy conservation (Arnold, 1974; Montgomery

et al., 1997). Visual (optical-flow) cues appear to be sufficient for rheotaxis under

many conditions (reviewed in Arnold (1974)). By positioning themselves laterally to

each other, fish may be obtaining enhanced visual cues (about other fish) that would

otherwise be absent.

Interestingly, Partridge (1980) showed that ablation of the lateral line affects

the structure of saithe Pollachius virens schools in a manner that appears to be
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similar to the effects of flow observed in this study on group structure of giant danio.

That is, lateral-line-impaired satire showed an increase in the frequency of neighbors

directly alongside at about 90◦ compared to control groups (all senses intact) or

visually deprived groups. Thus, it is conceivable that the flow conditions of this

experiment may have had similar disabling effects on the lateral line. That is, the

surrounding ambient flow may have masked the ability of giant danio to detect the

flow signals generated by neighboring fish. In this regard, there is both behavioral

(Coombs et al., 2001) and physiological evidence (Chagnaud et al., 2007; Englemann

et al., 2002) that unidirectional (DC) flow does indeed compromise the ability of the

lateral line to detect oscillatory (AC) flows, such as those generated by a swimming

fish (Kalmijn, 1988). This general scenario is consistent with the finding that social

transmission of information may be greater in no flow than in flow (Figure 6.8).

6.5.2 Startle response probability and information transmission

For both individual and groups of eight fish, the probability of at least one fish

responding was higher in flow. This result was somewhat unexpected, given that

fish in the flow condition were expending much more energy by swimming into the

flow. The simplest explanation is that because the orientations of fish in no-flow were

random over time, the stimulus may have been positioned outside the visual field of
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the fish (i.e., in the blind zone), thus reducing the overall probability of detection.

This is in contrast to the flow condition, where rheotaxis induced by the flow field

allowed the stimuli to largely lie within the visual field (Figure 6.3).

Although there was a higher probability of at least one fish responding in the

flow condition, results showed lower probabilities of four or more fish responding in

flow as compared to the no-flow condition. Explanations as to why fish in the flow

condition did not appear to be responding may deal with both detection abilities

and response abilities or proclivities. Fish in the flow condition were expending

more energy than they would in no flow to swim against the flow and to maintain

position so that they were not displaced downstream. The decision to respond to

the looming stimulus was thus more costly in flow than in no flow. Thus, it may

be possible that fish in flow were detecting signals from their neighbors regarding a

threat, but that their threshold criterion for responding was higher. Given that the

individual probability of response was higher in flow for solitary fish, an increased

threshold for response is an unlikely explanation. Another explanation is that the

crosswise distribution of fish into side-by-side positions may have prevented those in

the interior of the group from having a direct line of sight to the looming stimuli,

partially occluding the vision of fish on the interior of the school. This is also unlikely,

given the small working area and the size of the looming stimulus. Finally, flow
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signals produced by the movements of neighboring fish were weaker (because fish

were further apart and flow signals attenuate very steeply with distance) and/or

masked by the ambient flow, making the transmission of hydrodynamic information

from one individual to the next more difficult.

Fishes use a variety of sensory modalities to receive information regarding the

presence of a threat, including vision (Dill, 1974; Guthrie and Muntz, 1993), olfaction

(Ferrari and Chivers, 2006; Mathuru et al., 2012), and lateral line sensing (McHenry

et al., 2009; Mirjany et al., 2011). The predatory stimulus used in these experiments

was purely visual. While the presence of any unimodal cue may be strong enough

to elicit a startle response, the use of multi-modal cues has been shown to improve

accuracy in predator detection in the mosquitofish, Gambusia holbrooki (Ward et al.,

2010). Fish in a school may gain additional visual, hydrodynamic, and olfactory cues

from their neighbors that support the presence of a threat, or be in conflict with it

(e.g., neighbors not responding to the looming stimulus). Thus, if hydrodynamic

and visual cues from neighboring individuals are masked or occluded in the flow

condition, fish may have a lower probability to respond. This may be true even for

giant danio detecting the looming stimulus if they additionally receive conflicting

information from other fish that do not respond.

After the publication version of this study came out (Chicoli et al., 2014),
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another study performed startle response experiments in the Hawaiian stream goby

in flow and no-flow conditions (Diamond, 2015). These researchers also found effects

of flow on the probability of responding, and came to a similar conclusion that flow

may mask important hydrodynamic signals important for responding to a threat

directly, or for responding to neighbor cues.

6.5.3 Variability of startle responses

Experimental analysis of the response latencies of startling fishes have pro-

vided evidence that certain fish are more likely to respond to a potential threat than

others (Marras and Domenici, 2013). The wide range of response latencies (207 -

907 ms) measured in this study is indicative of substantial variability in responsive-

ness. Whether or not this variability can be attributed to individual performance

differences or stimulus differences (e.g. the orientation of the fish re: the looming

stimulus) is uncertain. The tracking software used in this study does not allow the

maintenance of individual identities to be preserved between trials, so it was not pos-

sible to determine whether some individuals were more likely to respond than others.

Moreover, the latency measures cannot distinguish between responses elicited by the

looming stimulus itself vs. those that may have been elicited by the startle responses

of other fish. Indeed, several startle responses occurred after the looming stimulus
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ended, suggesting the possibility of the latter.

From a mechanistic perspective, it is interesting to note that the range of

response latencies measured in this study is very similar to that measured from

freely swimming goldfish C. auratus in response to looming stimuli shown to be

effective at eliciting Mauthner cell-mediated escape responses (Preuss et al., 2006).

A site of multisensory integration, the Mauthner cell relies on the sum of all of its

sensory inputs in order to reach the threshold level for firing and initiating the escape

response (Korn and Faber, 2005). Whereas the visual input is indirectly relayed to

the Mauthner cell from a visual processing region of the midbrain, both lateral line

and auditory inputs are direct from the sense organs themselves (Zottoli et al., 1995).

Thus, the transmission of information from the visual system is slower and delayed

relative to that from mechanosensory systems. Moreover, different senses in different

species have different influences on the probability of M cell firing (Canfield and Rose,

1996). In goldfish, for example, visual or auditory inputs alone are capable of exciting

the M cell, whereas lateral line inputs may bias the probability of a response but only

in combination with inputs from other senses. Thus, at least some of the variability

in startle response latency may be explained in terms of the relative contributions

of different senses, which in this study involves vision (via the looming stimulus),

as well as the potential for auditory and lateral line senses (via the movements of
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nearby startled fish).

6.5.4 Modeling information transmission

While social information cannot be measured directly from the experimental

data, it can be hypothesized that the increased number of fish responding in the

no-flow condition may be a result of increased information transmission. To test

this hypothesis, a probabilistic model to predict the number of fish startling was

developed. Fitting the model to the data indicated increased internal information

transmission P int in the no-flow case for all topologies. The results of the model

agree with the prediction that social information transmission is higher in the no-

flow condition. It is not well understood how fishes transmit information between

individuals, or what interaction networks fishes are using. For the analysis here,

both neighbor-based and proximity-based topologies were used to determine when

fish might be interacting with each other. Fishes may also use a sensory-based topol-

ogy (Strandburg-Peshkin et al., 2013), however the results of the model presented

are robust to network topology, in that for all network topologies simulated, the

same pattern of values P int higher in no flow and P ext higher in flow was observed

(Figure 6.8).
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Figure 6.3: Time-averaged vector strength and direction associated with groups of
eight fish in flow (a) and no-flow (b), where the orientation 0◦ is in the upstream
direction. Vector strength ranges from 0 to 1, with 1 being the highest degree of align-
ment. Probability of individuals in solitary trials responding to a looming stimulus
according to orientation with respect to the stimulus location at stimulus onset in
flow (c) and no-flow (d), where the orientation 0◦ is in the stimulus direction. Length
of rose histogram indicates the frequency with which individual fish are oriented in
any given direction at the time of stimulus onset, whereas the color indicates the
probability of a response, computed from the total number of solitary trials (Chicoli
et al., 2014).

137



-4 -2 0 2 4
Relative position L-R in BL

-4

-3

-2

-1

0

1

2

3

4

R
el

at
iv

e 
po

si
tio

n 
F-

B 
in

 B
L

0

0.2

0.4

0.6

0.8

1

-4 -2 0 2 4
Relative position L-R in BL

-4

-3

-2

-1

0

1

2

3

4

R
el

at
iv

e 
po

si
tio

n 
F-

B 
in

 B
L

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25

5

10

15

20

25

cross−stream (cm)

st
re

am
w

is
e 

(c
m

)

50

0

50

150 100 50 0
5 10 15 20 25

5

10

15

20

25

st
re

am
w

is
e 

(c
m

)

cross−stream (cm)

50

0

150100 50 0

(a) (b)

(c) (d)

Figure 6.4: (a) and (b) Probability density functions of relative position. Color
corresponds to the number of points in each bin, normalized by the bin with the
most points. Red circles are one standard deviation away from the mean, white
circles are the average nearest-neighbor distance. (a) flow (b) no-flow; (c) and (d)
Scatterplots and corresponding histograms of individual position in the tank (Chicoli
et al., 2014).
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Figure 6.5: Response probabilities of at least one fish startling at various stimulus
speeds in individual (squares) and groups of eight fish (circles). Error bars are the
standard error of the mean. There were eight blocks for each condition and, within
each of the blocks, each stimulus was shown twice (16 measurements per point).
Filled black symbols indicate flow and empty symbols indicate no-flow (Chicoli et al.,
2014).
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Figure 6.6: Frequency distributions of the number of giant danio responding in (a)
flow and (b) no flow. (c) Cumulative probability distribution of the number of fish
responding (black squares are flow trials, empty squares are no-flow trials). Dotted
lines with corresponding black and empty symbols for flow and no-flow, respectively,
show polynomial model fits to the distributions

140



Figure 6.7: Example of an optimal fit of a probabilistic model (empty bars, simulated
data) to the cumulative probability distributions of a certain number of giant danio
startling in (a) flow and (b) no flow (black squares, experimental data; grey shaded
region, mean fit of the model ±s.d.

.
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Figure 6.8: Semi-log plots of optimized values of P ext (the probability of directly
responding to a threat) and P int (the probability of responding to cues from other
individuals) in flow (black squares) and no flow (white circles) for (a) and (c) n-
neighbor and (b) and (d) metric distance topologies. In the n-neighbour topology,
fish receive signals from the closest n number of neighbors, whereas in the metric
distance topology networks, fish receive signals from all neighboring fish within a
given radial distance.
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Summary and Conclusions
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Chapter 7: Conclusions and suggestions for future work

Each of the preceding chapters detailing original work in this thesis has a section

discussing the results and implications of that work. This chapter provides a brief

summary of the contributions of this dissertation, and suggest potential areas for

ongoing and future work.

7.1 Summary of contributions

This dissertation couples mathematical modeling and behavioral experiments

to investigate the effects of group size and different flow conditions on both rheotaxis,

and startle response behaviors in fish.

Chapter 3 develops a noisy synchronization model that includes a reference

direction, and unbounded sensory noise in order to model rheotaxis behavior. The

reference direction corresponds to the direction of the flow, and the noise term is

placed on each agent’s ability to sense either the relative flow direction, or the relative

direction of its neighbors. Varying the noise term in the model manipulates the

145



accuracy of information each agent receives. This model allows for comparisons of

behavior and performance given different sensory conditions and certainty about the

environment. When applied to rheotaxis, the model indicates that orientation to the

reference direction can occur (albeit weakly) even in the presence of sensory noise,

and predicts that group size only improves behavior in high sensory noise conditions

(i.e., when an individual agent has high uncertainty regarding the direction of the

flow).

Chapter 4 tests the predictions of Chapter 3 by varying group size and flow

speed and quantifying the resulting rheotactic and shoaling behaviors in giant danio.

I find that small groups from 2–32 giant danio do not show any effect of group size on

rheotaxis, corresponding to the results from the synchronization model when there

is no neighbor interaction. However, there was a decrease in NND as group size

increased, which is predicted by a limited interaction topology model of aggregation.

Chapter 5 proposes a probabilistic model of information transmission in groups,

and couples this model with the coupled oscillator dynamics of Chapter 3. To the

best of my knowledge, this is the first application of SIR models commonly used in

computer science and epidemiology to the investigation of the spread of information

transmission in collective groups of animals (other than humans). This model spec-

ifies probabilities for responding to an external threat, being startled by neighbors,
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and remaining in a startled state. The probability model alone yields results that

resemble a cellular automata, with two explicit states: startled and non-startled.

When paired with the coupled oscillator system behavioral dynamics can be evalu-

ated. Importantly, the parameter space of the oscillator model was categorized into

non-shoaling, facultative shoaling and obligate shoaling types, based on the level

of alignment of group members. The model predicts faster spreading of the startle

response in previously polarized groups (obligatory shoalers), and slower, but more

accurate responses in facultative shoalers.

Chapter 6 experimentally investigates the effects of flow on shoal structure,

response probability, and information transmission in groups of eight giant danio

compared to solitary fish. There was a greater probability of at least one fish re-

sponding in the flow condition, but the responses did not spread as far or as often

through the group indicating lower probability of information transmission. The

cumulative probability distributions of the number of fish responding was fit to the

model in Chapter 5. The lateral line has been shown behaviorally and physiologically

to be masked by bulk flow (Englemann et al., 2002). Given this, it is possible that

the lateral line was masked by the flow in the flow condition, resulting in the decrease

in information transmission. This suggests that the lateral line may be important

for information transmission in shoals.
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7.2 Ongoing work and suggestions for future research

7.2.1 Synchronization in noisy environments

The noisy synchronization model in Chapter 3 demonstrated that weak con-

sensus could still occur in the presence of unbounded noise. It would be interesting

to perform numerical and analytical solutions when these assumptions do not hold.

The most immediate next step would be to run the model under different interaction

topologies, other than all-to-all, that are more biologically plausible. Additionally,

more complex graph types may be introduced to test the limits of synchronization.

(Skardal et al., 2015) previously investigated frustrated and heterogenous networks

in which synchronization is likely to erode. By characterizing the conditions that

lead to the erosion of synchronization, it may be possible to mitigate these effects in

both natural and unmanned systems. In biology, hypotheses may be generated when

a synchronized group of fish or other animals may dissolve or break apart. For future

research involving group dynamics, it may also be interesting to explore associative

memory models (in addition to heterogenous populations), such that agents can dy-

namically associate with the other connected agents. It has been well established

that fish can recognize and preferentially associate with certain individuals (Krause

et al., 2000). Thus a dynamic, heterogenous graph may be formed based on a mem-
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ory of which agents have better knowledge of a reference direction. (The reference

direction in Chapter 3 represented the direction of the flow, however the reference

direction can be generalized to any direction of interest such as when foraging or

navigating).

7.2.2 Group size benefits

Chapter 4 laid out several potential hypotheses for why there was no observed

group size effect on rheotaxis. Namely, that giant danio may be attending to either

a limited interaction topology, may only be attending to neighbor positional infor-

mation, or that the task was overly simple. It would be interesting to explore these

hypotheses further. One potential experiment to potentially increase the difficulty

of the task would be to perform a similar experiment, but have a conflicting signal,

for example optical flow cues, in the opposing direction of a flow field.

The studies in this dissertation involve small groups of fish or agents. Exper-

imentally, a maximum of 32 fish were tested, and in simulation, a maximum group

size of 128 was used. However, in large marine shoals, the number of individuals in

the group can be in the thousands. It is quite likely that many of the experimental

laboratory results may not apply to these vary large groups (Rieucau et al., 2014a).
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7.2.3 Information transmission in groups

The studies in this dissertation suggest that the lateral line may be an impor-

tant factor in rapid information transmission for shoals of fish. Experiments could

be performed that explicitly test this hypothesis. One way to do this would be to

temporarily block the lateral line (LL) with gentamicin or cobalt chloride. While

these methods have been show to kill the hair cells of the lateral line with some

probability (Brown et al., 2011; Trump et al., 2010), although verification of hair

cell death with dye (DASPEI) is necessary. LL+ and LL- may then be exposed to

a visual stimulus. The results from the lateral line ablated groups could then be

compared to the group behavior in uniform flow. The prediction would be that if

the flow masks the lateral line of fish, then fish behavior in flow would be similar to

that of lateral line ablated groups.

In the startle response experiment in this dissertation, it is impossible to know

which fish were startled by the looming stimulus and which were startled by the

reaction of neighboring fish. Because a visual looming stimulus was used with free-

swimming fish, there is no way to be sure if or when a given individual fish detected

the stimuli. In order to investigate information transmission with regards to startle

response in fish, a few ’informed’ fish should be startled while the other nav̈e fish

would then only be responding to cues from neighboring fish. One method to do
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this might be to classically condition fish to startle in response to a conditioned

stimulus. In classical, or Pavlovian conditioning, an unconditioned stimulus (US)

which naturally elicits a response, is paired with a neutral stimulus, that under

normal conditions would not elicit any response. When the neutral stimulus is paired

with the unconditioned stimulus, they can become associated, causing the previously

neutral stimulus to now elicit a reaction. The previously neutral stimulus becomes

the conditioned stimulus (CS). Fish have been trained using positive reward to expect

food following the flashing of a light (Stienessen and Parrish, 2013). Aversive training

techniques can also be used (Soria et al., 1993), and may include showing images of

predators, exposing the fish to aversive chemical stimuli or using shock. Thus, it may

be possible to train fish to elicit an escape response (not necessarily M-cell driven)

and assess how the response spreads throughout a group.

Another potential way to experimentally measure information transmission

through a group might be possible to implant a small pizoelectric device to slightly

shock a single fish (or several) but it may be quite difficult to be sure the electricity

does not propagate through the water.
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7.2.4 Modeling multi-sensory integration

Multi-sensory integration and the sensory cues used for group behaviors was an

important aspect in the behavioral studies conducted in this dissertation, but as not a

focus of modeling work. It would be of interest in future studies to attempt to model

the role of different sensory input on group behavior to better make predictions or

tease apart the relative roles of different visual, hydrodynamic or chemical cues used

in information transmission in groups. One way to do this in the startle model may

be to incorporate known information about the neurobiology of the startle response

of fish into the model. As started in Chapter 6, the Mauthner cell is an integrate and

fire neuron, that receives multi-modal input. Rather than having a two-state model

of startles and non-startled, the model may be modified to capture the integration

of information, perhaps such that a certain threshold must be met before an agent

enters into the startled state.

Additionally, there are neurobiological effects of the environment that can influ-

ence the excitability of the M-cell through neuromodulation. Additionally, a previous

stimulus may also cause a decrease in the probability of response, called pre-pulse

inhibition (Medan and Preuss, 2011, 2014). Both of these mechanisms play a role

in M-cell responses, and can be included in the startle model by adding additional

states.
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7.2.5 Individual differences

Another topic of interest is individual differences. While I have largely con-

sidered shoals of fish as being composed of homogenous individuals, there is huge

variation among individual fish in terms of behavior (Burns et al., 2012; Krause et al.,

2000; Marras and Domenici, 2013; Nakayama et al., 2012). Fish may be individually

marked with a visual implant elastomer) (VIE) (Northwest Marine Technology Co.)

to analyze the behavior of each fish individually over trials, and new advances in com-

puter vision harness the power of machine learning to detect individuals even if the

individual is lost from frames or occluded (Perez-Escudero et al., 2014). Investigat-

ing individual differences influences information transmission and decision-making

in groups is a topic that is deserving of more research. From a theoretical per-

spective, heterogenous groups can also be simulated in the models discussed in this

dissertation.
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Table A.1: Linear mixed effects model investigating the effect of group size, flow
speed and flow direction on external disagreement (ED). Replicate groups were con-
trolled for as a random effect.

Scaled residuals
Min 1Q Median 3Q Max
-2.7733 -0.5327 -0.0171 0.5297 4.1099

Random effects
Groups Name Variance Std.Dev Corr.
idx Intercept 9.714e-04 0.0311

flow speed 4.240e-06 0.00201 -0.27
increasing 1.209e-03 0.0347 0.66,0.90

Residual 3.168e-03 0.0562
Fixed effects

Estimate Std. Error t-value
Intercept 0.4669 0.0172 27.117
group size 0.0007 0.0010 0.760
flow speed -0.038 0.0032 -11.648
increasing 0.0417 0.0231 1.808

group size: flow speed -0.0001 0.0001 -0.554
group size:increasing -0.0003 0.0013 -0.232
flow speed:increasing -0.0104 0.0045 -2.277

group size:flow speed:increasing 0.0003 0.0002 1.277
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Table A.2: Linear mixed effects model investigating the effect of group size, flow
speed and flow direction on internal disagreement (ID). Replicate groups were con-
trolled for as a random effect.

Scaled residuals
Min 1Q Median 3Q Max
-3.3788 -0.5261 0.0039 0.5852 3.6728

Random effects
Groups Name Variance Std.Dev Corr.
idx Intercept 4.734e-04 0.0217

flow speed 4.998e-07 0.0007 0.10
increasing 1.168e-04 0.0108 0.55,0.89

Residual 3.199e-03 0.0565
Fixed effects

Estimate Std. Error t-value
Intercept 0.4753 0.0159 29.897
group size -0.0017 0.0009 1.799
flow speed -0.0289 0.0032 -8.942
increasing 0.0066 0.020 0.319

group size: flow speed -0.0001 0.0001 -0.826
group size:increasing 0.0004 0.0012 0.327
flow speed:increasing -0.0055 0.0046 -1.212

group size:flow speed:increasing 0.0002 0.0002 0.839
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Table A.3: Linear mixed effects model investigating the effect of group size, flow
speed and flow direction on standard deviation in x-position (cross-stream). Repli-
cate groups were controlled for as a random effect.

Scaled residuals
Min 1Q Median 3Q Max
-2.1664 -0.5980 -0.1323 0.4455 4.2518

Random effects
Groups Name Variance Std.Dev Corr.
idx Intercept 0.06407 0.2531

flow speed 0.0260 0.1612 0.41
increasing 0.2362 0.4760 0.04,-0.90

Residual 1.6448 1.282
Fixed effects

Estimate Std. Error t-value
Intercept 2.784 0.3370 8.261
group size 0.1144 0.0204 5.609
flow speed 0.1304 0.0881 1.480
increasing 0.9019 0.4914 1.835

group size: flow speed -0.0045 0.0053 -0.854
group size:increasing -0.0307 0.0295 -1.038
flow speed:increasing -0.2607 0.1044 -2.497

group size:flow speed:increasing 0.0089 0.0062 1.418
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Table A.4: Linear mixed effects model investigating the effect of group size, flow
speed and flow direction on the standard deviation in y-position (stream-wise). Repli-
cate groups were controlled for as a random effect.

Scaled residuals
Min 1Q Median 3Q Max
-2.1478 -0.6618 -0.1255 0.4255 3.6915

Random effects
Groups Name Variance Std.Dev Corr.
idx Intercept 1.416e+00 1.1900

flow speed 1.1514e-08 0.000 -1.00
increasing 3.572e-01 .597636 -0.55,0.55

Residual 3..191e+00 1.7863
Fixed effects

Estimate Std. Error t-value
Intercept 3.937 0.5820 6.765
group size 0.2163 0.0352 6.140
flow speed 0.1397 0.1022 1.368
increasing 1.3396 0.06776 1.977

group size: flow speed -0.0150 0.0062 -2.429
group size:increasing -0.1212 0.0407 -2.971
flow speed:increasing -0.4250 0.1454 -2.922

group size:flow speed:increasing 0.0267 0.0087 3.045
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Table A.5: Linear mixed effects model investigating the effect of group size, flow
speed and flow direction on NND. Replicate groups were controlled for as a random
effect.

Scaled residuals
Min 1Q Median 3Q Max
-2.9523 -0.4041 -0.0430 0.2750 5.3543

Random effects
Groups Name Variance Std.Dev Corr.
idx Intercept 1.2524 1.1191

flow speed 0.0026 0.051 -1.00
increasing 0.0349 0.1867 1.00

Residual 4.4253 2.1037
Fixed effects

Estimate Std. Error t-value
Intercept 5.514 0.636 8.669
group size -0.0891 0.0385 -2.316
flow speed 0.1642 0.1213 1.353
increasing 2.050 0.7711 2.658

group size: flow speed -0.0104 0.0073 -1.415
group size:increasing -0.1114 0.0464 -2.401
flow speed:increasing -0.5846 0.1712 -3.413

group size:flow speed:increasing 0.0286 0.0103 2.769
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Table A.6: Linear mixed effects model investigating the effect of group size, flow
speed and flow direction on shoal density. Replicate groups were controlled for as a
random effect.

Scaled residuals
Min 1Q Median 3Q Max
-4.0024 -0.2490 -0.0810 0.1258 7.6848

Random effects
Groups Name Variance Std.Dev Corr.
idx Intercept 0.0027 0.0517

flow speed 0.0026 0.051 .01
increasing 0.0349 0.1867 0.34,-0.94

Residual 0.0042 0.0650
Fixed effects

Estimate Std. Error t-value
Intercept 6.872e-02 2.284e-02 3.008
group size -7.753e-05 1.383e-03 -0.056
flow speed 4.817e-03 4.797e-03 1.004
increasing 2.292e-02 2.585e-02 0.887

group size: flow speed -9.090e-05 2.904e-04 -0.313
group size:increasing -1.240e-04 1.556e-03 -0.080
flow speed:increasing -4.360e-03 5.299e-03 -0.823

group size:flow speed:increasing 7.752e-05 3.195e-04 0.243
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Table A.7: Linear mixed effects model investigating the effect of group size, flow
speed and flow direction on shoal area. Replicate groups were controlled for as a
random effect.

Scaled residuals
Min 1Q Median 3Q Max
-3.2662 -0.3833 -0.0462 0.1936 4.9202

Random effects
Groups Name Variance Std.Dev Corr.
idx Intercept 3272.643 57.207

flow speed 2.881 1.697 -0.1
increasing 147.865 12.160 0.02,-1.00

Residual 3987.622 63.148
Fixed effects

Estimate Std. Error t-value
Intercept -35.4281 23.6873 -1.496
group size 19.8910 1.4341 13.870
flow speed 3.6188 3.6495 0.992
increasing 25.8551 23.3801 1.106

group size: flow speed 0.2210 2.904e-04 -3.242
group size:increasing -4.8562 1.4022 -3.451
flow speed:increasing -6.7547 5.1422 -1.314

group size:flow speed:increasing 0.8003 0.3102 2.580
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