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 Understanding large, slow biological changes in the oceans has been hindered by 

a lack of spatial coverage by direct measurements and a lack of temporal coverage by 

satellite remote-sensing observations. Global ocean surface chlorophyll, a proxy for 

phytoplankton standing stock, has been derived from satellites for over a decade. With 

these measurements, the strong connection between ocean physics and biology has 

become clear and provided new insights about what drives seasonal and interannual 

biological processes. At longer time scales, however, there are many unanswered 

questions about the variability of phytoplankton in the ocean that plays a critical role in 

the carbon cycle as well as the marine food web. Statistical reconstructions have been 

used by others to extend physical climate variables in space and time. Taking advantage 

of the fact that physical forcing has been found to be the primary driver of biological 

primary production in the tropical Pacific, especially during El Niño, the most closely 



 

   

correlated physical variables are used as predictors in a statistical reconstruction to extend 

monthly chlorophyll anomalies from just over a decade to just over five decades between 

1958-2008. The reconstructed chlorophyll is evaluated through leave-one-out-cross-

validation, compared to several independent data sets: in situ samples, another ocean 

color satellite data set, model output from a dynamic, fully-coupled ocean circulation-

biogeochemistry model. Highest skill in the tropical Pacific reconstruction is away from 

the coast and within 10o of the equator, including areas known as Niño 3/3.4/4. Over the 

half-century of chlorophyll anomalies, the most dominant climate pattern apparent in the 

reconstruction is associated with the interannual El Niño followed by the Pacific Decadal 

Oscillation. Biological distinctions emerged between the east Pacific El Niño events and 

those that only extend to the central Pacific. Chlorophyll anomalies were compared 

between regimes to ascribe physical forcing mechanisms. While the overall patterns were 

consistent with what is known about the impact of ENSO on biology, with the PDO 

primarily serving to amplify or damp ENSO, a narrow equatorial band consistently 

displayed an inverse response to the rest of the equatorial cold tongue: lower values 

during the PDO cool phase between 1958-1976, higher values during the PDO warm 

phase between 1977-1995. A likely explanation for this anomaly is linked to variability in 

the depth of the Equatorial Undercurrent that transports iron to the high-nutrient, low-

chlorophyll east Pacific. These and other ideas are explored to demonstrate the feasibility 

and utility of reconstructing ocean color chlorophyll to address open questions about 

large-scale, low frequency primary production that forms the base of the marine food web 

and plays an important role in Earth’s climate system.  
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1. Introduction 

1.1 Statement of the Problem 

Marine phytoplankton accounts for about half of all primary production on Earth 

and contributes to the ocean’s uptake of CO2 and long-term carbon sequestration [Field et 

al., 1998]. Since the beginning of the industrial age, the atmospheric CO2 concentration 

has increased from about 280ppm to more than 400ppm today, but the observed annual 

rate of increase has been half of that expected from fossil fuel and cement-manufacturing 

emissions [Sabine et al., 2004]. Without the ocean, atmospheric CO2 would be much 

higher than that currently observed. The ocean absorbs CO2 through physical solubility 

and biological mechanisms, known as pumps for their ability to transfer carbon down 

through the water for short and long-term storage. 

        

Figure 1.1 Column inventory of anthropogenic CO2 in the ocean. High inventories are associated 

with deep water formation in the North Atlantic (deepest sequestration) and intermediate and mode 

water formation between 30oN and 50oS.  Total inventory of colored region is 106 ± 17 Pg C or 1/3 of 

anthropogenic carbon emitted over the past two centuries. Figure from Sabine et al. [2004]. 
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Chemical concentration data collected by global oceanographic cruises during the 

1990s and a tracer-based reconstruction technique combined with modeling studies 

indicate that one-third of the anthropogenic CO2 produced over the past two centuries is 

stored in the ocean [Sabine et al., 2004]. Most of the carbon inventory has accumulated in 

the ocean’s interior, delivered there from the ventilated surface layers by either chemical 

or biological mechanisms. 

The solubility pump describes the oceanic uptake of CO2 during high latitude 

deep water formation and winter convection as well as subtropical mode water formation. 

Lower temperatures increase the solubility of CO2 and higher winds enhance its air-sea 

flux. Once it enters the ocean, carbon transport to the interior is largely determined by 

mixing and convection [Gnanadesikan et al., 2007; Gruber et al., 2009]. The solubility 

pump has been well observed for the past two decades. Coupled physical/biogeochemical 

models run to the end of the 21st century indicate global warming reduces the ocean’s 

capacity to absorb carbon in two ways: lowering the solubility of CO2 at higher 

temperatures and slowing convective overturning which transports carbon to the deep 

ocean interior for long-term storage [Sarmiento et al., 1998]. Natural climate variability 

also impacts the ocean’s uptake of carbon, as has been observed in the North Atlantic: 

CO2 uptake during subtropical mode water formation was greatly enhanced during the 

1990s positive phase of the North Atlantic Oscillation but decreased during the 2000s 

neutral and negative phases [Bates, 2012]. 

The biological pump describes the uptake of CO2 at the ocean’s surface by 

phytoplankton that are consumed by higher trophic levels and eventually expelled, 

enabling the small fraction not remineralized in the surface layer to fall below the 
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pycnocline. An even smaller fraction that settles to the ocean’s bottom and becomes part 

of the sediment, representing an important sink over long time scales. Although 

understanding of the biological pump is still in its infancy, modeling studies indicate that 

it may account for half of carbon uptake in the surface layer [Sarmiento et al., 1998]. 

Accounting for phytoplankton variability at low frequencies and basin scales is 

critical to understanding its role in the Earth’s climate system. The distribution of 

phytoplankton in the oceans is dependent upon the availability of nutrients and sunlight. 

Ecological changes related to climate have been seen in long-term regional sampling and 

modeling studies [Raitsos et al., 2005; Henson et al., 2009; Saba et al., 2010; Cianca et 

al., 2012], yet large-scale, long-term studies have been limited by the scope of available 

biological records [Behrenfeld et al., 2006; Martinez et al., 2009; Yoder et al., 2010].  

The first continuous global record of ocean biology collected by the Sea-viewing 

Wide Field-of-view Sensor (SeaWiFS) ocean color satellite mission from late 1997 

through 2008 enabled an unprecedented decadal view of the spatial distribution of 

chlorophyll in the ocean’s surface layer. This synoptic perspective revealed physical 

mechanisms that transport nutrients to fertilize blooms. In general, chlorophyll 

distributions are high along coasts, subpolar regions, eastern boundaries and along the 

equator, where nutrients are supplied through coastal run-off, aeolian deposition or 

upwelling from the light-limited deep ocean. Wind-driven mixing and cyclonic 

circulation cause vertical transport of nutrients to the surface waters from depth; winter 

convective overturning also supplies new nutrients to the surface as deep nutrient-rich 

water is ventilated. Chlorophyll concentrations are low in the central subtropical gyres as 

nutrients are depleted from surface waters and wind-driven anticyclonic circulation 
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causes downwelling, sending nutrients below the mixed layer. The distribution of blooms 

are apparent in seasonal averages calculated over the SeaWiFS mission (Figure 1.2). 

 

  

  

                

Figure 1.2 Seasonal distribution of chlorophyll-a averaged over the SeaWiFS mission (9/1997-2009) 

for Northern Hemisphere spring (top left), summer (top right), autumn (bottom left), winter (bottom 

right). Figure courtesy of NASA Ocean Biology Processing Group. 

 

For many years a simple view of vertical nutrient supply leading to blooms 

predominated. Spring bloom was defined as the time when surface mixing shoals to a 

critical depth where phytoplankton growth exceeds losses (Figure 1.3, top). However, 

new insights facilitated by a decade of satellite imagery have resulted in a three 

dimensional picture and much more nuanced understanding of the ‘critical depth 

hypothesis’ (Figure 1.3, bottom). The spatial and temporal resolution of ocean color 

spring 

autumn winter 

summer 
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remote sensing combined with high resolution physical variables, such as temperature 

and winds, plus in situ observations from floats and buoys has confirmed and clarified 

basin scale nutrient transport that fuels primary productivity [Sverdrup, 1953; Williams 

and Follows, 2003; Palter et al., 2005; Ayers and Lozier, 2010; Behrenfeld, 2010]. 

 

              

Figure 1.3 Physical processes affecting nutrient supply that fuels primary production: a) one-

dimensional view shows biomass export to depth is partly transferred back to the mixed layer 

through advection, convection, and diapycnic diffusion; and b) three-dimensional view is more 

complete depicting nutrient supply by gyres, eddies, fronts, jets, and convective overturning. Figure 

adapted from Williams and Follows [2003]. 
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Advection, convection, cross-frontal exchange, and diapycnal diffusion are processes 

now known to supply nutrients to phytoplankton in the euphotic zone. 

The connection between physical forcing and ocean biology has been elucidated 

by the synoptic view in ocean color satellite data records, yet the length of these records 

has limited their range from daily to interannual temporal scales. Lower frequency 

phytoplankton bloom variability is not well understood. Having an ocean color record 

span several decades would make it feasible to address an open question in climate 

science about how phytoplankton bloom patterns change in space and time over decadal 

and longer time scales.  

 

1.2 Motivation and background 

The ultimate goal of this study is to determine what large-scale chlorophyll 

patterns over 50 years reveal about the interaction of ocean biology with climate-scale 

variability. Ocean biology data collection lags ocean physics: there is not a continuous, 

well-calibrated direct measurement of any biological variable that spans both space (e.g. 

ocean basins) and time (e.g. multiple decades). This data paucity has limited the scope of 

our understanding of ocean biology at long length and time scales. A century-long study 

of phytoplankton inferred from global transparency data collected from secchi disks 

found nearly universal declines in biomass [Boyce et al., 2010], however it was shown by 

others that their technique of combining transparency data to more modern sampling 

introduced bias [Mackas, 2011; Rykaczewski and Dunne, 2011; McQuatters-Gollop et 

al., 2011]. There is a clear need for validated, multi-decadal ocean biological data sets. 
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In contrast, climate variability is much in evidence in physical variables, which 

are significantly better sampled by comparison. Prominent spatial patterns in temperature, 

atmospheric pressure and winds have been identified that are known to affect weather 

and climate around the world. The most dominant and truly periodic mode of climate 

variability is the seasonal cycle, with other modes being quasi-periodic or having a 

spectrum of temporal variability [Kaplan, 2011]. The first climate-scale pattern to be 

discovered, the Southern Oscillation, is associated with the surface air pressure difference 

between the eastern and western tropical Pacific Ocean. Normally, easterly equatorial 

trade winds push warm water toward the west with cold water upwelling along South 

America [Walker, 1924; Bjerknes, 1969; Philander, 1999]. During the negative phase of 

the oscillation, the zonal surface pressure difference is small, trade winds slack, the 

surface warm water pool normally in the west Pacific moves eastward, the thermocline 

deepens along the coast and upwelling diminishes off of South America, an effect termed 

El Niño by the Peruvian fishermen because it typically occurs at Christmas time. During 

the positive phase of the oscillation, the pressure difference is great, trade winds increase, 

the warm water pool is pushed farther west than normal, and upwelling increases, called 

La Niña as the opposite of El Niño. The combined effect of the Southern Oscillation in 

the atmosphere and El Niño in the ocean is known as El Niño Southern Oscillation 

(ENSO). The interannual ENSO cycle is recognized as the strongest mode of climate 

variability over the past century [Philander, 1990, McPhaden et al., 2006; Deser et al., 

2010; Messie and Chavez, 2011]. Whether this pattern is intensifying or changing is an 

area of active research [Federov and Philander, 2000; McPhaden et al., 2011; L’Heureux 

et al., 2013]. Lesser oscillations in sea-level pressure happen in other ocean basins: the 
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North Atlantic Oscillation and the North Pacific Oscillation [Walker, 1924]. The advent 

of satellite remote sensing and autonomous in situ sensors has greatly increased the 

observation network in space and time. Data assimilation techniques have evolved to 

handle larger volumes of data, to fill in missing data and to merge entire records from 

multiple sources. With these advances in data collection and computing power, climate 

oscillations at lower frequencies have been identified in the oceans (e.g. multidecadal 

Atlantic Multidecadal Oscillation [Schlesinger and Ramankutty, 1994]; multicentennial 

to millennial Atlantic Meridional Overturning Circulation [Schulz et al., 2007]). 

Large changes in atmospheric and ocean time series are used to define climate 

indices. In the Pacific, ENSO is defined using sea-surface temperature (SST) anomalies 

[Cane et al., 1986; Trenberth, 1997]. One index is the Ocean Niño Index (ONI), typically 

used from Niño 3.4 during December-February (DJF) when El Niño events peak 

[L’Heureux et al., 2012]. The Pacific Decadal Oscillation (PDO) is defined by the first 

principal component of the North Pacific SST anomaly field after subtracting the global 

mean [Mantua et al., 1997; Nigam et al., 1999]. The North Pacific Gyre Oscillation 

(NPGO) is the second principal component of SST and sea-surface height (SSH) 

[DiLorenzo et al., 2008]. Positive NPGO indicates an intensification of the geostrophic 

circulation between the Alaskan Gyre and the Subtropical Gyre, which increases 

transport of both the northward Alaskan Coastal Current and the southward California 

Current. These and other climate indices have been defined by raw or statistically 

analyzed observations using multi-decadal and century-long physical records.  

In order to understand the connection between low frequency forcing and 

biological response, climate indices have been correlated to chlorophyll and net primary 
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production, but results have all been limited by the length or extent of the biological 

observations. For example, in situ chlorophyll collected in the Canary Islands since 1994 

reveal anomalies sensitive to the low-frequency climate modes of ENSO and NAO 

[Cianca et al., 2012]. Deep ocean time series, such as BATS in Bermuda and HOT in 

Hawaii, show that ecosystem measurements collected over 20 years relate to the NAO 

and the NPGO. That the NPGO index has the highest correlation with net primary 

productivity at both sites implies a teleconnection between ocean basins [Müller et al., 

2008]. In the Pacific, NPGO is linked to ecosystem dynamics through wind-driven 

upwelling and horizontal advection of nutrients to fuel phytoplankton blooms [DiLorenzo 

et al., 2008], while the link to the Atlantic is harder to explain [Saba et al., 2010]. 

Several studies have noted that primary production at BATS is inversely 

correlated to the NAO: negative NAO is associated with stronger winds, more mixing, 

deeper MLD, cooler SST and increased primary production [Lomas et al., 2010; Saba et 

al, 2010]. When the NAO is in neutral or negative phase, the CO2 sink is short-term (less 

than 10 years). Conversely, during positive phases of the NAO, long-term storage of 

anthropogenic CO2 is enhanced because stronger stratification results in less mixing at 

the surface, but more diapycnal and isopycnal diffusion at depth during subtropical mode 

water formation [Bates, 2012]. Understanding how low-frequency physics impacts ocean 

biogeochemical cycling is still in its infancy.  

The regular, large-scale view afforded by ocean color records have led to new 

insights about the synchrony between ocean biology and physics. One study found that 

chlorophyll declines over the subtropical stratified ocean during 1999-2004 were strongly 

correlated to the Multivariate ENSO Index (MEI), r2 = -0.77, shown in Figure 1.4, caused 
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by enhanced stratification that suppressed vertical mixing and nutrient exchange 

[Behrenfeld et al., 2006]. Another study used the first principal components of global 

biological and physical data from satellites and other sources between 1993-2010 

combined with a phytoplankton model and found that interannual biological change can 

be explained directly from physics [Messie and Chavez, 2012]. Specifically, thermocline 

depth is the primary driver of biological variability during El Niño [Barber and Chavez, 

1983; Christian et al., 2002], with a high correlation (r = 0.89) between the MEI and the 

first mode of global chlorophyll. They found other factors to be secondary during El Niño 

(e.g. community structure) [Messie and Chavez, 2012].  

 

            

Figure 1.4 SeaWiFS monthly water-column integrated chlorophyll anomaly for the global 

permanently stratified ocean, defined as annual average SST > 15C roughly between 40oN - 40oS, 

(grey symbols, left axis) to multivariate ENSO, or MEI index (red symbols, right axis). Note reversed 

MEI axis. Figure from Behrenfeld et al. [2006]. 
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Multi-decadal changes in global phytoplankton abundances have been related to 

basin-scale forcing, namely the PDO and the Atlantic Multi-decadal Oscillation (AMO), 

shown in Figure 1.5, by utilizing the intermittent record of the Coastal Zone Color 

Scanner (CZCS) between late 1978 and mid 1986 in addition to the SeaWiFS chlorophyll 

record from late 1997 through 2006 [Martinez et al., 2009]. Because CZCS was a shared 

mission, not dedicated to ocean color, its CHL record is limited and primarily focused on 

the coastal United States, as detailed further in section 3.2.3. The data gap between 1983-

1997 made it impossible to directly compare CZCS and SeaWiFS, but they were each 

correlated to climate oscillations. 

  

     

Figure 1.5 CHL-SST combined EOF time amplitude (black, left axis) with climate indices (red, 

right axis) for CZCS (1979-1983) and SeaWiFS subsets (1998-2002) over a) Pacific Ocean, rPDO=0.66; 

b) Indian Ocean, rPDO=0.6; c) Atlantic Ocean, rAMO=0.75. Figure from Martinez et al. [2009]. 
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Despite such efforts to tease large-scale, low frequency information from the 

ocean color data collected, we remain sorely limited in our understanding of how climate-

scale variability affects phytoplankton bloom patterns. One technique that several studies 

have used to study climate-scale variability is statistical reconstruction to extend data 

spatially and temporally. Canonical Correlation Analysis (CCA) is one method to 

statistically reconstruct a sparse data set using longer records as proxies. CCA is a 

powerful statistical tool that takes advantage of high density data to produce 

mathematical relationships that can be used to reconstruct periods when one data set is 

sparse or non-existent. The success of the CCA method depends upon the selection of 

high quality proxies that have close correspondence to the target variable. Using 

covariance patterns between correlated variables, a more extensive modern data set can 

be used to predict or reconstruct an earlier data set in space or time. The high data density 

era is used as the training period to establish the correlation patterns with the more 

extensive data sets. Major patterns from the dominant modes are then projected back in 

time using the more extensive data sets to reconstruct the target variable. Over the past 15 

years, this and similar reconstruction methods have been applied to reconstruct an 

increasing number of physical climate variables backward in time. Historical sea-surface 

temperatures have been extended back to the 1860s [Kaplan et al., 1998; Smith et al., 

1996]; marine sea level pressure has been reconstructed back to the 1850s [Kaplan et al, 

2000]; global land-air-sea surface temperatures have been merged and reconstructed back 

to 1880 [Smith and Reynolds, 2005]; global oceanic precipitation has been extended back 

to 1900 [Smith et al., 2009]; satellite altimetry combined with historical tide gauge data 

were used to reconstruct sea level rise since 1950 [Church et al., 2004]. Reconstructions 
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identify large-scale, long-term variability and provide useful information on interannual 

climate variability. CCA has been successfully applied to extend physical climate data 

back more than a century, but has not previously been used to extend biological data. 

Reconstructing a biological variable presents challenges because ocean biology 

does not necessarily have a linear response to forcing mechanisms. Chlorophyll estimates 

have been extended through modeling studies [e.g. Follows et al, 2007; Henson et al., 

2009; Wang et al., 2009] but have not been statistically reconstructed. Because of the 

strong dependence of phytoplankton community structure upon physical forcing to 

supply the nutrients needed to bloom, and because physical measurements in the ocean 

generally have longer records with more complete coverage than those for ocean biology, 

well-correlated physical proxies could potentially be used to extend the biological record 

back in time. Statistical reconstruction using proxies is well-established in other 

disciplines and is valuable for comparison with other methods. Models include known 

mechanisms, while statistical reconstructions have the potential to capture large, complex 

signals including unknown mechanisms. It is conceivable that a model would exclude an 

important process that is not yet understood, a situation where a statistical reconstruction 

might have an advantage. Although the variance captured in a CCA reconstruction will 

only be as good as the covariance between the reconstructed variable and the proxies, 

selecting the most relevant proxies could reproduce the essential patterns.  

The advantage of a multi-decadal ocean color chlorophyll reconstruction over a 

long ocean time series, such as BATS and HOT, is its spatial information: the former are 

point source measurements which may or may not be representative of large-scale 

patterns. Using two-dimensional information collected by ocean color satellites over a 
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decade combined with a longer time series of proxy data, a statistical method can be 

applied to reconstruct the past few decades of ocean surface chlorophyll prior to ocean 

color. A two-dimensional ocean color reconstruction will elucidate how slowly varying 

patterns change in space and time with low-frequency oscillations.  

 

1.3 Objectives of this research 

Taking advantage of high resolution ocean color satellite data and its correlation to 

physical proxies, CCA will be used to extend the chlorophyll record during the entire 50 

years of a physical proxy data set. Reconstructing chlorophyll over five decades will bridge 

data collected during disparate ocean color eras, identify spatiotemporal patterns and links 

to climate phenomena, and isolate regional differences. 

Reconstructing the chlorophyll record back in time will permit a multi-decadal 

study at the relatively high data density of recent ocean color remote sensing observations. 

The gap between various ocean color satellite sensors will also be bridged by the 

reconstruction: CZCS (1979-1983), SeaWiFS (9/1997-2010), MODIS/Aqua (2002-2010). 

The 50 year reconstruction will highlight slow changes in spatial patterns, including 

internal variability in the ocean-atmosphere system which impacts nutrient supply to fuel 

primary production. The chlorophyll reconstruction will be used to identify low frequency 

patterns rather than trends. This is still very valuable information. For example, variability 

in the spatial extent of a regime and bloom timing can impact the efficiency of the 

biological carbon pump as in the North Atlantic mode-water formation region where 

autumn/winter primary production can be rapidly exported while spring bloom primary 

production cannot [Levy et al, 2005].  
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Climate-scale forcing can have global ramifications, but differences in biological 

provinces and their variation in response make it most practical to observe climate effects 

on biology in regional studies. Many studies have expounded upon the variation in marine 

phytoplankton bloom phenological characteristics and have defined various regions 

qualitatively [Longhurst, 1995] or quantitatively [Racault et al., 2012; Sapiano et al., 2012]. 

A chlorophyll reconstruction can address how climate system dynamics impact regional 

ocean biology. The tropical Pacific lends itself well to the first regional reconstruction due 

to its large extent, accounting for roughly 20% of global ocean productivity [Behrenfeld et 

al., 2006], biologically productive equatorial region, and relatively high data sampling as 

well as being a favorite site for modeling studies. The most prominent climate-scale 

oscillation is ENSO [Philander, 1990; McPhaden et al., 2006; Messie and Chavez, 2011] 

which originates in the equatorial Pacific but has world-wide teleconnections. It makes 

sense to focus the initial discussion about the effect of climate-scale oscillations on ocean 

biology in the tropical Pacific where ENSO is strongest.  

In the past few decades, understanding of the dynamics of Earth’s atmosphere and 

how it interacts with the ocean has increased dramatically with respect to ENSO, 

although the physical processes are not completely understood. Recent studies of ocean 

biology in the tropical Pacific have indicated that sea surface chlorophyll is sensitive to 

the El Niño structure, which some say has shifted westward over the past decade [Turk et 

al., 2011; Radenac et al., 2012; Gierach et al., 2012]. The eastward advection of the west 

Pacific warm pool during El Niño events sometimes stops in the Central Pacific and 

sometimes extends all the way across the basin to the eastern Pacific [Trenberth and 

Stepaniak, 2001; Ashok et al., 2007; Lee and McPhaden, 2010; McPhaden et al., 2011; 
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Karnauskas, 2013]. As shown in the left panel of the figure from Turk et al. [2011] 

(Figure 1.6a), during neutral conditions equatorial sea surface temperatures (SST) are 

highest west of 160oE; during an eastern Pacific El Niño, the maximum shifts eastward 

toward the dateline with a minimum in the east that is about 3oC warmer as the east-west 

thermocline slope is flattened and coastal upwelling diminishes; during a central Pacific 

El Niño the SST maximum is higher near the dateline but the eastern minimum only 

warms about 1oC and coastal upwelling continues. SeaWiFS chlorophyll (CHL) 

concentrations experience maxima and minima locations and shifts that are roughly 

inverse to SST, as shown in the right panel (Figure 1.6c). During neutral phases, the CHL 

concentrations are less than 0.1 mg m-3 in the warm pool west of 160oE and gradually 

increase to 0.25 mg m-3 east of the dateline due to the upwelling of nutrients along the 

equator and along the west coast of South America. During both east and central El Niño 

events: the warm pool is advected eastward, the nutricline lifts behind it and the 

chlorophyll minimum rises above 0.1 mg m-3 in the west. During an east Pacific El Niño, 

the warm pool propagates all the way to the east side of the basin and suppresses coastal 

upwelling along South America causing decreased CHL concentrations in the eastern 

Pacific. During a central Pacific El Niño, the chlorophyll minimum extends to around 

170oE rising gradually east of 160oW. The total surface CHL integrated across the 

equatorial Pacific decreases much less during a central Pacific El Niño than during an 

eastern Pacific El Niño, as seen in Figure 1.6c [Turk et al., 2011]. Whether the recent 

trend of more frequent central Pacific El Niños is part of a natural periodic cycle or not is 

an area of active research and debate [Yeh et al., 2009; Lee and McPhaden, 2010; 
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McPhaden et al., 2011]. Regardless of the forcing, the eastward extent of the El Niño 

event impacts primary production and higher trophic levels.  

   

Figure 1.6 Mean winter (DJF) Optimally Interpolated SST (left) and SeaWiFS CHL (right) 

variation with longitude averaged between 1oN-1oS for neutral (black), Central Pacific El Niño (red), 

Eastern Pacific El Niño (blue) phases. Figure adapted from Turk et al. [2011]. 

 

One of the limitations of a chlorophyll reconstruction is that it can only be used to 

identify significant changes in spatial and temporal patterns, rather than any slow, steady 

change in total abundance. For example, periods of negative temperature anomaly may 

correspond to upwelling and enhanced productivity with reasonable confidence, but a 

slow warming trend does not necessarily mean a decrease in nutrients since a temperature 

change could also be due to change in cloudiness or latent heat flux. There is a fairly 

robust inverse relationship between SST and NO3 because nutrients upwell with colder 

water [Kamykowski and Zentara, 1986]. This relationship varies slightly with location 

and season, as does the nitrate-depletion temperature that indicates which types of 

phytoplankton can thrive in any location [Carder et al., 1999], but is otherwise relatively 

constant. Increasing atmospheric CO2 levels may change the SST-NO3 relationship 

toward warmer values, just as glacial episodes changed the relationship toward colder 
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values in the geologic record [Walsh, 1980]. A low frequency trend in primary 

production could restructure the marine ecosystem and alter the equatorial Pacific carbon 

cycle [Gierach et al., 2012]. Because a chlorophyll reconstruction using proxy data relies 

upon the short-term covariance between variables, any long-term trend in the proxy data 

could be reflected as a long-term trend in the reconstructed chlorophyll, yet such a trend 

would be speculative without in situ validation. Subtle long-term biological trends should 

be determined from the data directly, not by proxy. 

 

1.4 Organization of the dissertation 

The remainder of this dissertation is organized as follows: Chapter 2 explores 

various ways biological processes are observed in the global ocean, their relationship to 

physical oceanography and the prominence of the tropical Pacific when observing 

physical-biological processes. Chapter 3 leverages the correlation between phytoplankton 

chlorophyll and physical proxies in a 51 year statistical reconstruction, which is then 

validated and compared to in situ observations and CZCS ocean color data as well as to 

chlorophyll calculated by a fully-coupled three-dimensional physical-biogeochemical 

phytoplankton model. The transition between the largest El Niño event of the century and 

the La Niña that followed in 1998 is discussed for its exceptional characteristics. Chapter 

4 explores low frequency chlorophyll anomalies in the tropical Pacific and characterizes 

the climate-scale forcing and phytoplankton response that impacts higher trophic levels 

through bottom-up controls in the food web. Finally, Chapter 5 summarizes my research 

and highlights the significance of these conclusions with ideas for future research. 
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2. Observing biological processes in the ocean 

There is evidence of large-scale changes in marine biology as noted in the 

fisheries record over several centuries, yet the reason fish stocks shift in abundance and 

location and what happens to the rest of the marine food web in conjunction with these 

changes remain open questions [Llucha-Belda et al., 1989; Klyashtorin, 1998; Hare and 

Mantua, 2000; Overland et al., 2008]. Low frequency synchrony has been observed 

between climate-scale oscillations and ocean biology, especially ENSO [Chavez et al., 

2003; Messie and Chavez, 2012], but our mechanistic understanding of changes from the 

base of the food web on up has been constrained by sparse, sometimes incomplete, 

biological records. Direct measurement of marine life has traditionally been limited by 

the vastness and opacity of the ocean, not to mention its corrosive environment and 

propensity to biofoul long-term instruments. There is a need for intensive, regularly 

sampled observations of primary production to put our current understanding in context 

and address unanswered questions. From in situ to remotely sensed observations, this 

chapter gives an overview of what is known about phytoplankton variability from current 

measurements, discusses the capabilities and limitations of observing methods, elaborates 

on the data sets used in this study, explores major global spatial and temporal patterns 

coincident between physical forcing and ocean surface chlorophyll maps, then focuses on 

the tropical Pacific where physical forcing has been found to be the primary driver of 

biological anomalies. A discussion of the physical oceanography impacting biology in the 

tropical Pacific concludes the chapter, highlighting major pertubations to the normal or 

neutral state there. 
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2.1 Phytoplankton measurements and modeling 

In addition to its role at the base of the food web, phytoplankton is recognized as 

serving an important function in moderating Earth’s climate through processes such as 

the biological pump. Various research efforts seek to quantify and model phytoplankton 

by its biomass, primary production, carbon export and other characteristics. One of the 

easiest ways to observe phytoplankton from space is through its dominant 

photosynthetically active pigment, chlorophyll a. Typically called simply chlorophyll, 

phytoplankton pigments absorb more blue and red light than green, causing the spectrum 

of backscattered sunlight, or color of seawater, to shift from blue to green as the 

concentration of phytoplankton increases [Yentsch, 1960]. Methods to quantify biomass 

range from in situ measurements of single cells to synoptic scale satellite ocean color 

remote sensing of their signature in the visible portion of the electromagnetic spectrum 

[O’Reilly et al, 1998]. Different phytoplankton species vary in their nutrient and light 

requirements, life cycles, ranges, photoadaptation and package effect, making them 

difficult to quantify using standard criteria. For example, the covariation between light 

absorption and chlorophyll concentration is related to their photoadaptation: 

phytoplankton pigments adapt to low light levels by increasing their photosynthesis rate 

per unit of chlorophyll meaning two areas having the same chlorophyll concentration 

could have different rates of primary production [Bricaud et al., 1995]. Nonetheless, it is 

useful to try to quantify their abundance at varying spatial and temporal resolutions to 

better understand what controls ocean biology. Single point in situ measurements perform 

certain functions, such as identifying species composition. Averaging over large-scales 

serves other purposes, such as understanding the global biogeochemical cycle. 
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2.2 In situ observing methods: advantages and limitations 

There are several methods to determine phytoplankton concentrations through in 

situ measurements: spectrophotometry, fluorometry, and chromatography. The classical 

method of determining chlorophyll amount as a representation of phytoplankton 

concentration was by the labor-intensive spectrophotometry process of collecting a water 

sample, filtering it, and extracting chlorophyll for analysis by its absorbance [Vernon, 

1960]. Fluorometry also requires extraction to a filter and then uses a fluorometer to 

measure chlorophyll fluorescence [Yentsch and Menzel, 1963]. Underway fluorometry 

yields a lot more data, but relies on discrete samples for calibration due to the differences 

in local species’ fluorescence [Herman and Denman, 1977]. Despite refinement of 

spectrophotometry and fluorometry over the years, neither of them handle the complex 

range of pigments found in seawater [Holm-Hansen et al., 1965; Murray et al., 1986]. 

High-performance liquid chromatography (HPLC) is considered the most precise method 

of measuring multiple pigments through extraction and analytic chemistry [O’Reilly et 

al., 1998]. These methods are time-consuming and require an experienced analyst. 

Time series projects, including Bermuda Atlantic Time series Study (BATS) 

Hawaii Ocean Time series (HOT) and the European Station for Time series in the Ocean 

Canary Islands (ESTOC) have been collecting monthly chlorophyll concentration (CHL) 

measurements over the past two decades through fluorometry and HPLC [Ducklow et al., 

2009; Cianca et al, 2012]. Additionally, a couple of moored optical buoys (e.g. Marine 

Optical BuoY or MOBY off of Hawaii) have been deployed to measure in situ 

radiometric quantities for the purpose of vicariously calibrating ocean color satellite 

sensors [Clark et al., 2003], but optical buoys are expensive to maintain to the desired 
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accuracy. The National Oceanographic Data Center’s World Ocean Database includes a 

comprehensive archive of CHL measured in situ since 1957 from ships or buoys 

[Conkright and Gregg, 2003]. These data are high quality and accurate but extremely 

limited in space and time due to the expense of ship time and the size of the ocean 

(Figure 2.1). In more than 50 years of sampling, the most frequently sampled regions in 

the ocean have been sampled less than 50 times (i.e. not even enough to quantify the 

seasonal signal). Although not a direct in situ measurement, the World Ocean Database 

also includes phytoplankton color index (e.g. Continuous Plankton Recorder surveys in 

the North Atlantic) and secchi disk observations which have both been correlated to CHL 

[Raitsos et al., 2005; Boyce et al., 2010]. More recently, the new Bio-Argo float program 

has begun sampling vertical profiles to help quantify the small fraction of carbon that 

sinks to depth by the ocean’s biological pump [IOCCG, 2011]. 

 

           

Figure 2.1 NODC Ocean Station CHL casts per 1o bin collected since 1959 and archived within the 

World Data Center for Oceanography (previously World Ocean Atlas). 
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In summary, historical in situ sampling of marine phytoplankton lacks spatial and 

temporal coverage and has not been capable of characterizing the global ocean biology. 

Advances in bio-optical measurement methods, such as underway fluorometry and 

spectroscopy, have enabled the recent development of autonomous observation of 

biogeochemical processes in the ocean by profiling floats and gliders that, provided 

proper calibration and validation, have the potential operate on the temporal and spatial 

scale of the Argo physical profilers [Uz, 2006; Boss et al., 2008; Johnson et al., 2009]. 

 

2.3 Ocean color remote sensing: advantages and limitations 

Qualitative characteristics of water at the ocean’s surface, including chlorophyll 

concentrations (CHL), can be seen by bio-optical instruments on aircraft, satellites, and 

recently the International Space Station. These provide the potential for greater areal 

coverage than in situ measurements ever could, with satellite remote sensing providing 

the only global data set of ocean surface biology. Satellite ocean color remote sensing 

began with the limited Coastal Zone Color Scanner (CZCS) proof-of-concept mission in 

1978, which established the feasibility of deriving ocean surface CHL from satellite. 

CHL at the ocean’s surface can be derived from satellite observations using a band ratio 

algorithm of the visible light reflected back to the sensor from Earth after subtracting out 

the intervening atmosphere. Since the light backscattered to the satellite is primarily from 

the atmosphere (~90%) with the remainder received from the ocean, atmospheric 

correction is a critical and ongoing area of active research [Gordon and Clark, 1980; 

Gordon and Wang, 1994; Gordon, 1997; Wang, 2003]. Thick clouds block the satellite’s 

view of the ocean and result in missing ocean color data. Additionally, small amounts of 
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dust and sulfate aerosols were shown to bias ocean color retrievals in early processing 

[Moulin et al., 2001; Schollaert et al., 2003]. Subsequent reprocessing has continually 

improved methods to remove the aerosol signal [Ziauddin et al., 2010].  After subtracting 

the atmospheric component, CHL is estimated from the ratio of the green to blue bands 

based upon a statistical, empirical fit to high quality in situ data [O’Reilly et al., 1998]. 

Although ocean color remote sensing represents CHL at the surface, this 

information has been extrapolated to the rest of the water column by various studies. 

Some have used vertical pigment profiles to define relationships between surface CHL 

and its vertical distribution [Morel and Berthon, 1989; Uitz et al., 2006]. Column-

integrated CHL amounts can then be used to quantify biomass and, ultimately, primary 

production through complex algorithms [Saba et al., 2011]. Others have used ocean color 

in empirical algorithms to identify phytoplankton species composition [Brown et al., 

1994; Subramaniam et al., 2002; Alvain et al., 2005; Hirata et al., 2011]. Phytoplankton 

community structure shifts have been observed in ocean color due to climate oscillations. 

For example, in the equatorial Pacific ENSO is linked to shifts from the normal 

dominance by cyanobacteria (i.e. synechococcus) to fewer of them and increasing 

nanoeukaryotes during El Niño to larger phytoplankton dominance during La Niña (i.e. 

diatoms, chlorophytes) [Mackey et al., 2002; Masotti et al., 2011; Rousseaux and Gregg, 

2012]. As progress has been made utilizing ocean color data to make connections 

between biological parameters and their physical forcing mechanisms in disparate regions 

around the world, the growing length of the record has also enabled discoveries at lower 

temporal frequencies.  
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The global ocean color record now includes several satellites with sporadic 

coverage over several decades. Although CZCS enabled an unprecedented view of 

biology at the ocean’s surface between October, 1978 and June, 1986, the sensor was 

shared with other missions resulting in intermittent sampling of CHL [Feldman et al., 

1989]. The irregular distribution of observations derived from CZCS is displayed in 

Figure 2.2. The average number of monthly observations in each bin had its maximum 

for U.S. coastal waters, followed by mid-latitude coastal areas elsewhere, with practically 

no coverage over the open ocean and at high latitudes. Over the length of the mission, the 

average number of valid pixels in each scene gradually increased between 1979-1982. 

The 1982 eruption of El Chicón volcano in Mexico blew more material into the 

stratospheric aerosol layer than any time since Krakatau in 1883 [Hartmann and 

Mouginis-Mark, 1999] and interfered with CZCS ocean color retrievals. Following El 

Chicón, CZCS had reduced coverage (Figure 2.2, bottom), from which it was gradually 

recovering during its remaining four years before it abruptly quit in 1986. 
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Figure 2.2 CZCS observations. Mission average number of observations per bin (top), mission 

standard deviation of the number of observations per bin (middle), and total observations per month 

over the entire mission (bottom). Note that the mission was primarily coastal and focused on US 

territorial waters, thus largely ignoring the open ocean and other regions outside of the US domain. 

 

After the proof-of-concept CZCS demonstration, several subsequent international 

missions were launched to provide global ocean color data. Eleven years after CZCS 
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ended, the first dedicated ocean color sensor, Sea-viewing Wide Field-of-view Sensor 

(SeaWiFS) was launched in the United States in September, 1997. SeaWiFS provided 

continuous ocean color data for more than ten years followed by intermittent coverage for 

another three. The SeaWiFS mission provided stable, dedicated ocean color detection 

focused on a few key products, including CHL. Stringent accuracy requirements 

combined with a comprehensive quality control program including regular lunar sensor 

calibrations and characterization, bio-optical algorithm development, a high quality field 

measurement program with moored buoys, ships and time series stations, resulted in a 

data product which surpassed its accuracy goals and remains the highest quality ocean 

color data set to date [McClain et al., 2004; McClain, 2009].  

Several other ocean color sensors have experienced mixed results in longevity or 

quality since the launch of SeaWiFS. The Japanese Ocean Color Temperature Scanner 

(OCTS) was operational for less than nine months between 11/1996-6/1997 and suffered 

temporal degradation which could not be successfully corrected because there was no on-

board or stable external calibration source [Shimada et al., 1998]. Similarly, the Japanese 

Global Imager (GLI) flew for less than an annual cycle between 2002-2003. Two United 

States’ Moderate Resolution Imaging Spectroradiometers (MODIS) multi-disciplinary 

missions have had different successes. MODIS/Terra was launched in 2000 and continues 

to the present, but suffers significant sensor degradation and other problems that cannot 

be adequately corrected for ocean color retrievals [Franz et al., 2005]. MODIS/Aqua 

began in July, 2002 and continues to the present. Although MODIS/Aqua has suffered 

from being a multiple-purpose mission and having sensor degradation over time, it is the 

ocean color sensor that has produced high quality data most similar to that of SeaWiFS 
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[Meister et al., 2012].	
  The European Space Agency launched the European Medium 

Resolution Imaging Spectrometer (MERIS) ocean color sensor in March, 2002, which 

flew for 10 years until it failed in April, 2012. Several studies have concluded that 

MERIS needs to be vicariously calibrated for better correlation with the SeaWiFS data 

[Antoine et al., 2008; Hu et al., 2012]. Additionally, the MERIS swath was much 

narrower than those of SeaWiFS making global coverage less frequent [McClain, 2009]. 	
  

Only the SeaWiFS sensor was designed specifically for biological ocean science 

and is considered the highest quality, attaining the requirements necessary for climate 

research, with MODIS/Aqua data considered the next best [McClain, 2009]. For this 

thesis, both SeaWiFS and MODIS/Aqua level 3 9km, monthly CHL were obtained from 

NASA’s Ocean Color web site (http://oceancolor.gsfc.nasa.gov). The 2010 Ocean Color 

reprocessing includes corrections and inter-calibrations for both SeaWiFS and 

MODIS/Aqua [NASA GSFC Ocean Color Documents, 2011]. 

SeaWiFS CHL data through 2008 are used in this study because coverage was 

increasingly degraded after that, shown in Figure 2.3. Additionally, the physical 

variables, detailed in section 3.1.1, were available through 2008. For the entire 11+ year 

time series (9/1997-2008), the 9km resolution CHL were initially averaged over 5o bins 

with a landmask applied to exclude any pixel within 5o of the coast. Averaging the 

number of valid data each month shows the seasonal cycle and the drop-off in SeaWiFS 

coverage toward the end of the mission, with several months having sparse or totally 

missing data: January-March, 2008, July, 2008, May, 2009, September-October, 2009 

before the satellite finally failed in December, 2010. Despite these lapses, the SeaWiFS 
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mission provided an unprecedented view of global ocean color and the longest, highest 

climate-quality ocean surface CHL data record.  

 

Figure 2.3 Average number of valid data each month for SeaWiFS and MODIS/Aqua missions. 

 

The number of valid CHL data in each 5o bin were tallied, averaged, and plotted 

in Figure 2.4. Areas with the most data coverage generally receive the most sun and the 

least clouds: the subtropics, where bins could include up to 3600 valid data points in a 

month. Areas of persistent cloudiness, such as the Intertropical Convergence Zone, and 

seasonally low solar zenith angle toward the poles have the least coverage. The standard 

deviation of data density is basically the inverse of the average: areas with lower data 

density have higher variability. Because the CCA method requires a complete data set, 

polar regions north of 60oN and south of 60oS were excluded from this study as data there 

are missing during winter months due to extensive cloud cover and low solar zenith 

angle. Any other missing data were filled using a three dimensional median filter. 	
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Figure 2.4 SeaWiFS observations in each bin. Mission average number of observations per bin (top) 

and standard deviation of the number of observations per bin over the mission (bottom). 

 

The MODIS/Aqua ocean color data set started in July, 2002 and continues to the 

present at a relatively stable collection rate, as shown in Figure 2.3. Unfortunately 

MODIS/Aqua is a more complex system than SeaWiFS and its characterization and 

calibration has not been at the precision required for ocean-color applications [McClain et 

al., 2004; Franz, 2011]. MODIS/Aqua has been plagued with signal drift across all 

channels due to unstable sensor degradation. The SeaWiFS period can be extended 

during its intermittent coverage using the MODIS/Aqua CHL, which has been tuned and 

validated against SeaWiFS through 2010 with increased uncertainty after that [Franz, 

2011]. Other groups have merged the SeaWiFS and Aqua data sets, but they only include 

data when both sensors are available and leave gaps whenever SeaWiFS data are missing 
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[Maritorena and Siegel, 2005; Bryan Franz, personal communication]. There are 99 

months when both SeaWiFS and MODIS/Aqua are available: July, 2002 through 

December, 2010 (minus months missing SeaWiFS coverage). Time series from the two 

satellites indicate fairly good consistency between the sensors (Figure 2.5).  

	
   	
  

Figure 2.5 CHL average time series over extra-tropical (left column) and tropical regions for 

SeaWiFS (___) and MODIS/Aqua (----). Correlation coefficients for overlapping times are annotated. 

 

The CHL annual cycle is evident in Figure 2.5, including a pronounced spring 

bloom in most locations and a secondary fall bloom in many regions, most notably in the 

extra-tropical North Pacific and Atlantic. SeaWiFS and MODIS/Aqua generally match-
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up best where CHL are highest (e.g. Indian Ocean, r = 0.94, North Pacific, r = 0.92, and 

North Atlantic, r = 0.91) and worst in areas of low CHL or sparse coverage (e.g. Southern 

Ocean, r = 0.69). The Southern Ocean has low CHL due to its iron limitation [de Baar et 

al., 1995; Boyd et al., 2007] and is notorious for ubiquitous, fast-moving clouds making 

satellite coverage of the ocean infrequent. Imperfect match-ups between the two satellites 

are likely caused by seeing different areas and days within a monthly, 5o bin. CHL 

anomalies were calculated by removing the seasonal climatology. A linear relationship 

between SeaWiFS and Aqua was calculated for co-located bins (Figure 2.6). While the 

bias is negligible, there is an average slope of approximately 0.77 (SeaWiFS/Aqua). 

 

 

Figure 2.6 CHL deseasoned anomalies for all 5o bins: MODIS/Aqua plotted against SeaWiFS, with 

their regression line superimposed. The dotted diagonal line demonstrates a slope of 1. 
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Since the sensors cover slightly different eras, CHL concentrations compared with 

climatology not removed indicate an average slope of 0.9 (SeaWiFS/Aqua) and a global 

distribution shown in Figure 2.7. For most of the global ocean, SeaWiFS values are 

slightly lower than Aqua, except in the western tropical Pacific warm pool and small 

areas west of Africa and South America where Aqua had up to 40% lower CHL 

concentrations. SeaWiFS is the preferred data set, but Aqua can be used to fill its gaps. 

	
  

Figure 2.7 Distribution of SeaWiFS/MODIS/Aqua CHL: slope (top) and intercept (bottom). 

 

The slope and intercept of theses regressions were used to scale the Aqua time 

series. Combining the data using scaled or unscaled Aqua indicates little difference in 

most regions, but scaling appears to slightly damp CHL concentrations in the subtropical 

North Pacific and North Atlantic and to slightly amplify them in the western tropical 

Pacific and Indian Ocean. Empirical Orthogonal Functions calculated on both yielded 

insignificant differences in mode partitioning and times of greatest variability. 
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2.4  Biological variability in space and time	
  

To determine optimal binning in space and time to filter out mesoscale features, 

autocorrelations were first calculated on 5o bins (Figure 2.8). Temporal decorrelation 

scales are approximately 1.5 months for subpolar waters; 2 months, subtropical; 3.5 

months near the equator. The zonal spatial decorrelation scales are about 20o at subpolar 

latitudes and about 30o at subtropical and equatorial latitudes. Meridional spatial 

decorrelation scales are about 5o for the subpolar region and 5-10o for subtropical and 

tropical regions. That zonal autocorrelations are larger than meridional indicates greater 

zonal homogeneity. Meridional autocorrelations are not shown because there are only 

three or four bins per region. Autocorrelations of the monthly, 2o CHL are comparable.  

 

Figure 2.8 Decorrelation scales for monthly, 5o SeaWiFS chlorophyll averaged over three regions 

(subpolar, subtropical, equatorial): temporal decorrelations (top); zonal decorrelations (bottom).	
  	
  



 

 35 

Monthly CHL anomalies were calculated by removing the seasonal cycle. All 

calculations were first log-transformed because CHL approximates a log-normal 

distribution [Campbell, 1995], with its global variability shown in Figure 2.9. Greatest 

CHL variability is in areas of high productivity where ocean circulation brings nutrients 

from depth into the euphotic zone: subpolar gyres and upwelling regions along the 

equator and coasts. There is also high variability in areas of coastal run-off or where 

storm-induced mixing provides intermittent nutrients leading to episodic blooms, such as 

the Indian Ocean. Areas of very low variability include the central subtropical gyres, also 

areas of low CHL concentration (recall  Figure 1.2). The eastern equatorial Pacific 

upwelling region has relatively constant productivity, but is known to be iron-limited 

[Martin et al. 1994]. Regions of high CHL values typify an exponential distribution, 

however the exponential distribution has been found to be unsuitable for the oligotrophic 

waters of the tropics and subtropics [Sapiano et al., 2012]. Because the remainder of this 

study focuses on the tropical Pacific, the CHL calculations are not transformed. 

 

 

Figure 2.9 Monthly deseasoned CHL anomaly standard deviations (mg m-3) between 1998-2008, 

with calculations performed on log-transformed CHL. Hereafter CHL are not log-transformed. 
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2.4.1  Physical oceanography impacting biology	
  

Cross-correlating CHL to physical variables provides indications about the 

physical-biological interactions leading to phytoplankton blooms. Simple Ocean Data 

Assimilation (SODA) version 2.1.6 includes temperature and salinity profiles, ocean 

currents, wind stress and SSH available 1958 through 2008 [Carton and Giese, 2008]. 

The MLD was calculated as the level at which there is a 0.2C difference from the 

temperature at 5m depth. CHL anomalies cross-correlated against SST anomalies (Figure 

2.10, top) yield predominately inverse values in the tropics and subtropics, which depend 

upon cooler, deeper water to fertilize the surface, while the relationship is more positive 

in subpolar regions that tend to be light-limited and require stratification so that the 

nutrient-rich surface layer does not extend deeper than the euphotic zone. The cross-

correlation of CHL to MLD (Figure 2.10, bottom) is generally positive in areas that are 

nutrient-limited (e.g. subtropics); negative in areas that are light limited (e.g. subpolar 

gyres), with more complicated dynamics along the equator. 
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Figure 2.10 Temporal cross-correlations between monthly anomalies of CHL and SST (top) and 

between monthly anomalies of CHL and MLD (bottom) for the period 9/1997-2008.  

 

The other physical variable correlated with nutrient supply to the surface layer is 

wind, which can cause mixing, divergence and Ekman pumping. Off the equator, the 

Earth’s rotation causes the surface currents to veer to the right of the winds in the 

Northern Hemisphere and to the left in the Southern Hemisphere. In the tropics, this 

means easterly trade winds cause northward (southward) flow north (south) of the 

equator and divergence at the surface that causes upwelling along the equator. Planetary 

vorticity (f) is positive to the right in the Northern Hemisphere and negative to the left in 

the Southern. North of the equator, positive wind stress curl (  τ) results in upward 
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motion, called Ekman suction (+wek); negative wind stress curl (-  τ) results in 

downward pumping (-wek): 
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Kahru et al. [2010] cross-correlated CHL with winds from the assimilation of 

satellite-derived winds and conventional winds. Figure 2.11 shows these have a very 

similar distribution to that between MLD and CHL, not surprising since the MLD results 

from wind-driven ocean circulation and mixing. They find more complex relationships in 

equatorial regions. Specifically in the equatorial Pacific, they note that high winds in the 

west correspond to easterly or westward winds that induce equatorial divergence and 

upwelling combined with other possible mechanisms including the island effect of the 

Kiribati Islands [Messie et al., 2006], changes in the New Guinea coast currents that 

supply iron to the equatorial undercurrent [Ryan et al., 2006], and the erosion of the west 

Pacific warm pool barrier layer [Murtugudde et al., 1999]. Warm and cool anomalies 

generally appear in the western and central basin and propagate eastward as equatorial 

Kelvin waves [Carton and Giese, 2008]. Kahru et al. [2010] ascribe the negative 

correlation between wind speed and CHL in the east to remote forcing: westerly wind 

bursts in the west Pacific warm pool region generate equatorial Kelvin waves that 

propagate eastward and deepen the nutricline in the east, reducing biological 

productivity. Conversely, low winds in the west precede shoaling of the nutricline in the 

east and enhanced productivity. Despite many interesting regional variations in physical-

biological processes, it is clear from the global maps of cross-correlations between 
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physical variables and CHL that the strongest correlations are found in the tropical 

Pacific, which is known for having strong physics that dominates the biology there. 

 

Figure 2.11 Cross-correlations (r) between monthly anomalies of wind speed and CHL at 25km 

resolution for the period 11/1996-2008. Black curves indicate r = 0. Western equatorial Pacific and 

eastern equatorial Pacific are delineated. Figure adapted from Kahru et al. [2010].  

 

 

2.4.2 Importance of the tropical Pacific	
  

Understanding large-scale, low frequency biological patterns in the tropical 

Pacific, the largest ocean region on Earth, will deepen our understanding of the impact of 

the climate system upon primary production. Many phenomena experienced there have 

global repercussions: upwelling in the eastern and equatorial Pacific provides nutrients to 

fuel roughly 20% of new biological production in the world’s oceans [Chavez and 

Togweiller, 1995; McPhaden and Zhang, 2002] and causes the largest oceanic source of 

CO2 to the atmosphere [Feely et al., 1999]; the west Pacific warm pool is the location of 

greatest oceanic heat source to the atmosphere [Lewis et al., 1990]. The tropical Pacific 

ocean drives ENSO, the strongest climate-scale oscillation with a quasi-periodic 

frequency typically between 2-7 years, whose effects are wide-ranging and central to 
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understanding the global ocean-atmosphere system. Equatorial physical-biological 

patterns have been observed to be more complex due to regional interactions, making 

isolating and understanding them a high priority [Kahru et al., 2010]. Recent efforts have 

begun addressing complex biophysical patterns through observations and modeling 

studies in the vast expanse of the equatorial Pacific [Murtugudde et al., 2002; Chavez et 

al., 2003; Marzeion et al., 2005; Messie and Radenac, 2006; Wang et al., 2009; Kahru et 

al., 2010; Jin et al., 2013].  

The equatorial Pacific is characterized by two main features at the surface: a 

mesotrophic, upwelling cold tongue that extends from the east toward the center and an 

oligotrophic, low salinity, surface warm pool in the west. Geostrophic flow is 

anticyclonic around the subtropical gyres in the North and South Pacific. Near the 

equator, easterly trade winds prevail and are strongest east of the dateline. West of the 

dateline, winds are lighter and decrease almost to zero near the warm pool. The easterly 

winds cause zonal flow to the west, where the western boundary causes water to pile up 

setting up a west-east pressure gradient.  On the equator, the apparent force caused by the 

Earth’s rotation goes to zero and forcing mechanisms that determine basin scale fluid 

motion are a balance between the zonal pressure gradient and wind-induced vertical 

frictional forces: 
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The most general description of oceanic flow in the tropical Pacific is that it is 

primarily zonal. A cross-section at 140oW highlights permanent currents in the region 

(Figure 2.12).  

 

 

Figure 2.12 Zonal velocity (m/s) for a TAO array transect at 140oW plotted by Ocean Data View. 

 

The westward flowing North and South Equatorial Currents (~2oN and ~4oS) converge in 

the surface waters of the west Pacific warm pool and become the North Equatorial 

Counter Current flowing eastward around 7oN, driven by the Intertropical Convergence 

Zone winds [Talley et al., 2011]. Below the surface on the equator, around 100m at 

140oW, the eastward strong (>100cm sec-1) Equatorial Undercurrent (EUC) follows the 

pycnocline, deepest in the west about 200m, sloping upward toward the eastern boundary 

and the upwelling zone in the east [Knauss, 1960]. Surface CHL decreases in the east 

during El Niño and increase during La Niña have been linked to the shut down and 

recommencement of the iron-rich EUC [Wilson and Adamec, 2001].  Coincident with the 

EUC, sub-surface CHL sampled along the equatorial upwelling region has revealed that 
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the deep CHL maximum slopes upward from west to east, sampled at 50-60m in the 

central equatorial Pacific to 30-40m in the east [Pennington et al., 2006]. Below the EUC 

lies a weaker westward flow extending down to 1000m, with eastward subsurface 

countercurrents on either side of the equator [Tsuchiya, 1972]. 

 At the surface, easterly trade winds along the equator combine with Ekman 

transport north and south of the equator to cause divergence at the surface resulting in 

equatorial upwelling. Observations indicate that nearly 80% of the variance in near-

surface current in the tropical Pacific is caused by the climatological geostrophic field 

(63%) and wind-driven currents in the presence of stratification (15%) [Ralph and Niiler, 

1999; Lagerloef et al., 1999]. Seasonal variation in Ekman pumping (i.e. equation 1 in 

section 2.4.1) and planetary Rossby waves affect current positions. For example, the 

North Equatorial Counter Current shifts northward (southward) of its annual mean on the 

western (eastern) boundary during the first half of the year, reversing the pattern during 

the second half of the year [Hsin and Qiu, 2012].  

The boundary is dynamic between the oligotrophic, low salinity, surface warm 

pool in the west and the mesotrophic, upwelling cold tongue that extends from the east 

toward the central equatorial Pacific. This boundary extends vertically deeper than 40m 

impacting seasonal-to-interannual climate variations by its effect upon large-scale 

atmospheric convection [Maes et al., 2010]. The eastern edge of the strongly stratified 

warm pool has distinct hydrological features and ecosystem dynamics [Le Borgne et al., 

2002], yet has no clear physical front and is thus problematic to identify at the surface 

using temperature. Surface CHL is a more robust, reliable indicator of the warm pool’s 

eastward extent [Maes et al., 2010], shown in a CHL profile (Figure 2.13).   
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Figure 2.13 Vertical, zonal distribution of CHL on the equator at the eastern edge of the warm 

pool collected by the Flupac cruise in September-October 1994 and contoured at 0.05 mg m-3 

intervals. Figure adapted from Le Borgne et al. [2002]. 

 

 

There is evidence that slow changes have been taking place in physical and biological 

processes in the tropical Pacific, caused by some combination of natural decadal-scale 

oscillations and anthropogenic effects [McPhaden and Zhang, 2002]. 

 

2.4.3  Characteristics of surface chlorophyll in the tropical Pacific 

Variability in tropical Pacific CHL is primarily due to the basin-scale 

modification of the west-east thermocline slope during ENSO that impacts nutrient 

supply and primary production across the basin [Barber and Chavez, 1983; Radenac and 

Rodier, 1996]. In the neutral phase, the thermocline and nutricline are extremely deep in 

the western equatorial Pacific (approaching 200m). The surface layer is strongly stratified 

with a warm SST (~ 30C), which has been noted as the strongest oceanic heat source to 

the atmosphere resulting in convection and a fresher surface caused by precipitation [Gill 

and Rasmusson, 1983]. The thermocline and nutricline slope upward toward the surface, 
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rising to less than 50m in the east. Upwelling results in cooler SST along the coast and 

equator in the eastern tropical Pacific as well as higher biological productivity due to the 

nutrients it lifts into the sunlit surface waters. Zonal displacement of the warm pool has 

been identified as an indicator of the onset of the El Niño phase of ENSO [Picaut et al., 

1996; Picaut et al., 1997]. At the initiation of an El Niño, a Kelvin wave displaces the 

stratified, oligotrophic warm pool eastward. Deeper water then rises in the west behind it, 

evident in temperature profiles as well as the depth of the Equatorial Undercurrent, lifting 

nutrients toward the euphotic zone. During El Niño conditions, the trade winds weaken 

and the NECC strengthens [Hsin and Qui, 2012], the west-east slope of the thermocline 

flattens and the thermocline deepens in the east. With the suppression of upwelling and 

its supply of cool, nutrient-rich deep water, primary production drops and SST increases 

in the east. The maximum SST anomaly is sometimes in the east (Niño3 region: 150oW-

90oW) and sometimes in the central equatorial Pacific (Niño4 region: 160oE – 150oW) 

[Ashok et al., 2007; Lee and McPhaden, 2010; Radenac et al., 2012].  

For this regional study of tropical Pacific biology, the CHL data were binned to 2o 

because the finer resolution provides useful meridional information, particularly in the 

vicinity of the equator. The top panel of Figure 2.14 shows tropical Pacific surface CHL 

at 2o monthly resolution averaged between 9/1997-2008. Upwelling along the west coast 

of the Americas causes average CHL values greater than 0.4 mg m-3; equatorial 

upwelling fuels CHL concentrations greater than 0.3 mg m-3 with a gradual decrease 

westward away from the coast. The west Pacific warm pool is evidenced by CHL values 

less than 0.1 mg m-3 [Maes et al., 2010]. In the lower panel, time series for the two pixels 

marked as * and ◊ on the map roughly represent the east side of the west Pacific warm 
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pool and the westward extension of the cold tongue respectively. Overall, the ◊ location 

had higher CHL. The * location normally had less than 0.1 mg m-3; CHL values more 

than 0.1 mg m-3 indicate times when the warm pool was displaced away from the * 

location. Months when the dashed line fell below 0.1 mg m-3 and the * values were greater 

coincide with El Niño during DJF: 1997/98, 2002/03, and 2006/07 as the warm pool 

moved east. The 1997/98 El Niño event completely disrupted the biogeochemical 

properties in the equatorial Pacific [Chavez et al., 1999] and resulted in an extreme spike 

in surface CHL values at the * pixel (> 0.4 mg m-3) as the EUC and nutricline shoaled 

[McClain et al., 1999], raising nutrients into the euphotic zone there. 

 

 

Figure 2.14 Top: monthly averaged CHL (mg m-3) where ◊ is roughly the western edge of 

equatorial upwelling and * marks the eastern edge of the warm pool.  Bottom: monthly values at 

each spot.  
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The standard deviations (σ) of the monthly CHL anomalies (Figure 2.15) 

generally approximate the average map with greater variability in areas of higher values. 

A notable exception is the * location, which has higher σ than other oligotrophic areas. 

Positioned at the east side of the warm pool, there the normally deep nutricline is 

maintained by a salinity barrier layer, except when the warm pool propagates east during 

El Niño and west during La Niña. With the reduction in barrier thickness, a shoaling 

EUC and nutricline [McClain et al., 1999] combine with upwelling-favorable winds and 

enhanced vertical mixing to supply nutrients to the euphotic zone [Ryan et al., 2002], as 

evidenced in early 1998 with the extremely high CHL anomaly at * which was twice the 

maximum value of any anomaly during the rest of the time series that otherwise ranged 

+/-0.1 mg m-3 at both locations. Anomalies at the ◊ cold tongue location fell lower than at 

* during El Niño events of 1997/98 and 2002/03 when the warm pool shifted eastward. 

    
Figure 2.15 Standard deviation of deseasoned monthly CHL (mg m-3). As in Figure 2.14, ◊ is 

toward the western edge of the equatorial upwelling and * is near the eastern edge of the warm pool. 

The bottom panel shows the timeseries for these two spots as a dashed line and *’s, respectively. 
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While the standard deviation map indicates areas where CHL varies, a signal-to-

noise ratio (SNR) map gives information about changes that are likely to be detected and 

those that may be missed by an observation method. Here the SNR was calculated by 

equation (3) following the method of Ballabrera-Poy et al. [2003]: 

SNR = (σa
2 + σs

2)/σe
2                                               (3) 

where the ‘signal’ is the sum of the interannual and seasonal variance (σa
2 + σs

2) and the 

‘noise’ is the estimated error (σe
2), all shown in Figure 2.16.   

 

Figure 2.16 Interannual CHL variance (top); seasonal CHL variance (middle); estimated temporal 

error (bottom).  
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At basin-scale, the signal in monthly, 2o ocean color CHL is primarily due to 

interannual and seasonal variance while the noise is due to features that cannot be 

adequately sampled at this resolution. The interannual variance, σa
2 (Figure 2.16, top), is 

the variance in the deseasoned CHL (September, 1997 - December, 2008). The seasonal 

variance, σs
2 (Figure 2.16, middle), is the variance in the seasonal climatology. 

Interannual variance is dominated by changes caused by ENSO primarily along the 

equator and along the coast of the Americas. Seasonal variance is smaller, due to the 

near-absence of seasons in the tropics, with some seasonality along the coast in the east, 

especially in the vicinity of the Costa Rica dome, and some weaker signal along the 

equator and slightly north in the vicinity of the seasonal migration of the Intertropical 

Convergence Zone which reaches its maximum northward extent in July and southward 

extent in January.   

The estimated temporal error, σe
2 (Figure 2.16, bottom), is the difference at the 

origin between the autocorrelation function of the CHL anomalies and a Gaussian curve 

fitted to the data for lags of 1 to 5 months, by the method of Ballabrera-Poy et al. [2003]. 

Unresolved variability or noise is greatest in areas that do not conform to the Gaussian 

curve fit to the temporal autocorrelation, this could be caused by fast or transient features 

that are apparent within one month but negligible in the months before and after. Low 

noise means there is a good fit between the autocorrelation function and the Gaussian 

curve implying little or slow changes between zero and five months. Both the greatest 

signal and greatest noise are in the east toward the coast of the Americas as well as along 

the equator. As shown in Figure 2.17, the SNR is greatest where signal is greater than 

estimated noise: within ~10o of the equator from the west Pacific eastward to about 
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140oW, due to the higher interannual and seasonal variance there as well as the relative 

low error or good fit between the autocorrelation at zero lag and its Gaussian estimate. 

 

Figure 2.17 Signal-to-noise ratio (SNR) where signal is defined as the combination of interannual 

and seasonal variance, noise is estimated from the difference between the temporal auto-correlation 

function and a Gaussian fit for monthly CHL: 9/1997-12/2008. 

 

Oligotrophic gyres generally have low signal-to-noise ratios except in active bloom 

areas with large contrast [Uz and Yoder, 2004; Yoder et al., 2010; Beaulieu et al., 2013]. 

The higher SNR north of the equator toward the east Pacific is due to a combination of 

greater seasonal variance combined with lower estimated error, implying slow patterns 

that vary gradually between months (e.g. seasonal migration of the Intertropical 

Convergence Zone). The low SNR in the productive east Pacific cold tongue along the 

equator east of 140oW occurs where estimated noise exceeds signal, due in part to fast-

moving and transient features that are present one month but gone the next, such as 

tropical instability waves [Evans et al., 2009].  

To summarize this chapter on observing biological processes in the ocean, there is 

a lack of complete spatial coverage by direct measurements and limited range of temporal 
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coverage by the ocean color satellite record to determine climate-scale variability of 

biological features in the ocean directly.  Existing measurements have enabled an 

understanding of physical forcing that leads to nutrient entrainment and blooms. The 

most prominent biological-physical patterns in the existing data sets are in the tropical 

Pacific, due to its size and the dominance of ENSO as an interannual perturbation. Across 

the equatorial Pacific, El Niño is associated with weaker easterly trade winds, reduced 

upwelling, warmer temperatures and reduced CHL in the east and increased CHL in the 

west Pacific warm pool. Its opposite phase, La Niña, is associated with stronger easterly 

trade winds, enhanced upwelling, an extended cold tongue, and greater equatorial 

divergence leading to enhanced Ekman pumping north and south of the equator that 

causes upwelling, supplying nutrients leading to higher CHL anomalies in the east. In this 

area of the tropical Pacific, where climate-scale forcing is great and CHL variability is 

tightly coupled to physical variability, longer physical records have good potential to 

serve as proxies to statistically reconstruct and extend the CHL record. 
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3.  Reconstructing chlorophyll over 51 years 

Continuous coverage by satellite ocean color sensors over a decade confirmed 

that primary production is forced by basin-scale physical oceanography, which is 

likewise linked to atmospheric circulation. Winds force underlying ocean currents, 

transporting nutrients that fuel primary production and ultimately higher trophic levels in 

the food web. As wind-driven patterns in the ocean reflect the shifting circulation of the 

atmosphere, it is increasingly evident that the atmosphere oscillates at various 

frequencies. How the atmosphere drives or is driven by the ocean at multi-decadal and 

lower frequencies is an open question. Climate-scale oscillations have been noticed in 

fish catch records, although the link between climate forcing and ocean biology is not 

clearly understood. As discussed in the previous chapter, an observational record that 

resolves climate-scale ocean biology does not currently exist. Numerical modeling alone 

is also unlikely to resolve climate-scale ocean biology because many key parameters 

describing interactions between biological variables remain poorly constrained. A long-

term view of ocean color CHL over several decades or more would enhance our 

understanding of low frequency changes happening at the base of the food web. This 

chapter compares physical variables best correlated to ocean biology, gives an overview 

of statistical reconstruction methods used to extend limited data sets with longer proxy 

records, uses them to reconstruct CHL in the tropical Pacific, and clarifies what can and 

cannot be reconstructed by a statistical reconstruction including its uncertainties. The 

reconstruction is evaluated by comparison with several independent fields. The training 

CHL data set includes the largest El Niño of the century in 1997/98, followed by its 

transition to La Niña in 1998/99, which merits additional discussion as a unique case. 
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3.1 The statistical reconstruction 

When data sets are correlated, analytical techniques may be applied to determine 

scales of variability and a denser record may be used to increase the resolution of a 

sparser record through statistical reconstruction by one of two methods: 1) interpolation 

of an existing data set that has gaps [e.g. Alvera-Azcárate et al., 2007] or 2) using the 

covariance between variables to extend the sparser data set [e.g. Smith et al., 1996]. An 

example of the latter, canonical correlation analysis (CCA) is a statistical method for 

quantifying linear relationships among two or more variables in order to reconstruct a 

target variable [Barnett and Preisendorfer, 1987; Bretherton et al., 1992]. Other statistical 

methods exist, such as multi-variate empirical orthogonal functions (MEOF) [Alvera-

Azcárate et al., 2007]. Because the connection between ocean and atmospheric dynamics 

is well-established at seasonal and interannual scales, a growing body of physical climate 

variables have been extended back in time using such statistical reconstructions: sea-

surface temperatures, back to the 1860s [Smith et al., 1996; Kaplan et al., 1998]; marine 

sea level pressure, back to the 1850s [Kaplan et al, 2000]; sea level, back to 1950 

[Church et al., 2004]; land-air-sea surface temperatures, back to 1880 [Smith and 

Reynolds, 2005]; oceanic precipitation, back to 1900 [Smith et al., 2009]. While 

statistical reconstructions have successfully extended physical variables by more than a 

century, the method has not previously been used to extend biological data back in time. 

In the current observational records, ocean biology has been correlated to physics 

over interannual, basin scales. Understanding the connection between lower frequency 

physical forcing and ocean biology is less well-understood because the longest complete 

high resolution data set, sea surface CHL, spans just over a decade. Here a statistical 
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reconstruction of CHL is developed, exploiting its correlation with longer-record physical 

variables that relate to the depth of the nutricline. Physical variables such as temperature 

have been much better sampled in space and time (i.e. more than five decades) and can be 

considered for use as proxies. Reconstruction skill depends partly upon how well CHL 

covaries with the physical predictors used in the reconstruction. The reconstruction is 

performed in EOF-space to filter out higher frequency patterns. The skill of the 

reconstruction depends partly upon how much CHL variance is captured in the dominant 

modes. 

 

3.1.1 Selection of physical predictors 

Simple Ocean Data Assimilation (SODA) version 2.1.6 is a reanalysis of ocean 

climate that provides complete fields of physical variables from 1958 to 2008. This 

version uses the Geophysical Fluid Dynamics Laboratory (GFDL) modular Parallel 

Ocean Program (POP) model version 2.1, forced by surface wind stress from 

ERA40/QSCAT winds [Carton, 2013; Carton and Giese, 2008]. SODA is constrained by 

the constant assimilation of observed temperatures, salinities and altimetry using an 

optimal data assimilation technique. Observations come from the World Ocean Database 

2009. Extending the SODA record beyond 2008 requires winds from the NOAA-CIRES 

20th Century Reanalysis, which were still being examined at the time of this study 

[Grodsky, personal comm.]. SODA includes temperature profiles from which mixed 

layer depth (MLD) was defined as the depth of 0.2oC difference from the temperature at 

5m, salt, zonal and meridional currents (u, v), zonal and meridional wind stress (τx, τy), 
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and sea surface height (SSH). The 20oC isotherm (T20) was used to characterize the depth 

of the thermocline. The SODA data were binned consistently with the CHL data. 

Monthly 9km SeaWiFS (R2010.0) CHL data between September, 1997 through 

December, 2008 were averaged over 2o bins centered on the equator in the tropical 

Pacific (20oN-20oS). CHL was initially log-normally transformed, as that is standard 

pretreatment procedure in productive regimes. In the oligotrophic waters of the tropics 

and subtropics, however, the lognormal distribution has been found to be unsuitable 

[Sapiano et al., 2012]. For this study, despite the large upwelling region, log-normally 

transforming CHL gave too much weight to the edge of the west Pacific warm pool. 

Thus, linear calculations of CHL were used instead. The spatial and temporal resolutions 

were selected from the decorrelation scales of monthly CHL in the equatorial region (5-8o 

meridionally, 3.5 months). Zonal decorrelation scales decrease to about 200km in the lee 

of islands in the tropical Pacific [Matthews et al., 2011]. Gaps toward the end of the 

record were filled with MODIS Aqua CHL and any remaining missing data were filled 

using a 3x3 median filter, repeated three times. An expanded land mask excludes pixels 

within 2o of the coast. Annual cycles were removed. CHL were smoothed over three 

months using a 1-2-1 weighted moving average to retain important low frequency 

information while minimizing mesoscale features. 

CHL was cross-correlated with physical variables to find the most suitable 

proxies to use in a CCA reconstruction. CHL in the tropical Pacific shows the strongest 

anti-correlation with SST (Figure 3.1, top) due to being nutrient-limited rather than light-

limited and having the primary nutrient source from cooler, deep water. Inverse cross-

correlation with MLD (Figure 3.1, middle) in the east Pacific corresponds to upwelling, a 
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shallow nutricline and high production. In the west Pacific warm pool, the mixed layer is 

decoupled from the thermocline and nutricline by the salinity barrier layer. Sea level has 

been found to be a robust indicator of the thermocline depth in this region [Turk et al., 

2001] and, by extension, an indicator of nutricline depth and nutrient availability to the 

euphotic zone. The correlation between CHL and SSH (Figure 3.1, bottom) is strongly 

inverse along equatorial upwelling areas and in the warm pool as a thicker surface layer 

causes a deeper nutricline and negative CHL anomaly. The depth of the 20oC isotherm is 

also considered a proxy for the thermocline depth, but its relationship with CHL was not 

as robust as SSH and is not shown here.  

 

Figure 3.1 Cross-correlations for the period 9/1997-2008 between: CHL and SST (top), CHL and 

MLD (middle), CHL and SSH (bottom). Boxes delineate areas for Figure 3.2, 3.3, 3.4. 
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The student’s t-test (4) [Fisher, 1921] was applied to test for significance: 

                                         (4) 

For a 136 month-long time series filtered over 3 months, n = 45 and r > 0.45 is highly 

statistically significant (p < 0.001). Dark blue and red indicate significantly correlated 

areas (Figure 3.1).  Time series plots show the variation of each pair for the delineated 

boxes. In the oligotrophic west Pacific area (Figure 3.2), the strongest correlation is with 

CHL and SST: r = -0.80, next with SSH: r = -0.53, and insignificant with MLD: r = -0.04. 

The extreme 1998/99 La Niña caused twice the typical CHL while SST cooled and SSH 

decreased as stratification eroded when the warm pool propagated east. The moderate 

central Pacific El Niños in 2002/03, 2004/05, 2006/07 are evident in decreased CHL, 

increased SST and SSH. A moderate La Niña in 2007/08 had high CHL and cool SST.  

 

Figure 3.2 Western equatorial Pacific time series (165-175oE): CHL (red, both panels) with SST 

(top) and SSH (bottom). Average cross-correlations for each area noted. 
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In the central Pacific area (Figure 3.3) there is a strong correlation between CHL 

and SST, r = -0.75, while SSH has its strongest correlation with CHL here: r = -0.67. The 

extreme 1997/98 El Niño and 1998/99 La Niña events are more pronounced than in the 

west and east areas. Lesser central Pacific El Niños are evident in 2002/03 and 2006/07, 

while the 2004/05 El Niño barely registers. 

    

 

Figure 3.3 Central equatorial Pacific (160-140oW):  variables as in Figure 3.2. 

 

In the east Pacific, SST has the strongest correlation with CHL, r = -0.64, though 

less than for the two areas to the west (Figure 3.4, top). SSH and CHL are correlated 

slightly less, r = -0.58 (Figure 3.4, bottom). Here MLD and CHL are significantly 

correlated in the absence of the salinity barrier layer, r = -0.49, though not as strongly as 

CHL covaries with the other two variables. During El Niño, the basin-wide west-east 

thermocline slope relaxes, shoaling in the west and deepening in the east along with the 

nutricline resulting in and less productivity and less CHL. During La Niña events, 
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easterly winds and upwelling resume, the basin-wide thermocline slope is reestablished, 

the nutricline likewise shoals bringing more nutrients toward the surface leading to more 

CHL. The extreme 1997/98 El Niño and 1998/99 La Niña are most pronounced. Weaker 

El Niños in 2002/03 and 2006/07 register as low CHL anomalies. A positive CHL peak in 

2003 during a weak La Niña barely registered as a negative Oceanic Niño Index.  

 

 

Figure 3.4 Eastern equatorial Pacific (120-110oW): variables as in Figure 3.2. 

 

Wind-driven upwelling and vertical mixing can supply nutrients to the euphotic 

zone, thus CHL anomalies were cross-correlated with wind (Figure 3.5). Zonal wind 

stress is weakly correlated with CHL toward the east where remotely forced thermocline 

and nutricline depths have the greatest control upon CHL anomalies. West of 140oW the 

response to local forcing is greater and the relationship between zonal wind stress and 

CHL is inverse (i.e. easterly winds enhance upwelling and nutrients supplied from depth 

to increase CHL). Meridional wind stress correlations with CHL are strongest just north 
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of the equator where southerly (i.e. off equator) wind has a direct relationship with CHL 

through vertical Ekman pumping (Figure 3.5 middle). Wind stress magnitudes and CHL 

covary directly west of 180o (Figure 3.5, bottom) meaning stronger winds correlate with 

more CHL there, primarily through turbulent vertical mixing [Ryan et al., 2002]. East of 

the dateline, the horseshoe pattern of inverse correlation and the weak positive correlation 

in the narrow area between 120-140oW indicate blooms in the cold tongue are primarily 

controlled by non-local forcing, i.e. large-scale thermocline depth variation. Wind-driven 

vertical mixing and upwelling can secondarily contribute to blooms between 120-140oW.  

 

Figure 3.5 Cross-correlations between normalized anomalies of CHL (9/1997-2008) and zonal wind 

stress, τx (top); meridional wind stress, τy (middle); magnitude of wind stress, |τ| (bottom).  
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Figure 3.6 displays the zonal distribution of CHL, SST, SSH and MLD over time 

where the 1997/98 El Niño stands out in all variables. East of 150oW, SST is 

anomalously high in 1997/98 as are SSH and MLD, while CHL is depressed. By contrast, 

the El Niños in 2002/03, 2004/05, 2006/07 display smaller warm anomalies and less 

pronounced CHL anomalies. When conditions enter a La Niña phase, trade winds 

intensify and the east-west thermocline slope and upwelling are exaggerated. Equatorial 

upwelling expands westward causing positive CHL anomalies along the equator. During 

the training period, a La Niña phase began strongly in 1998/99, returned in 1999/2000, 

then weakened in 2000/01 and returned in 2007/08. These can be seen in Figure 3.6 as 

positive CHL anomalies. The 1998/99 La Niña corresponded with huge blooms that 

yielded a 40% increase in primary production over normal years [Chavez et al., 1999].  

 

 

Figure 3.6 Longitude-time distribution of averages (5oS-5oN) of deseasoned CHL (left), SST (2nd 

from left), SSH (3rd from left) and MLD (right). Niño4 is between the dotted and solid lines; Niño 3 is 

eastward of the solid line. Note the 1997/98 east Pacific extreme El Niño predominately in Niño3. 
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There is ongoing debate about whether El Niños are changing from predominately 

east Pacific types to more frequent central Pacific types [Lee and McPhaden, 2010]. The 

physical forcing mechanisms of the two types of El Niño are not completely understood 

but have slightly different manifestations. Both experience eastward advection of the 

warm pool, with less eastward extent for the central Pacific El Niños. Only the east 

Pacific El Niño experiences the basin-wide flattening of the west-east thermocline slope 

that causes the cessation of upwelling in the east [Radenac et al., 2012]. Fewer east 

Pacific El Niños would have implications for biological productivity because central 

Pacific El Niños are more geographically confined and do not experience the basin-wide 

thermocline shift [Turk et al., 2011; Radenac et al., 2012]. During a central Pacific El 

Niño (e.g. 2002/03, 2004/05, 2006/07), the eastward advection of the warm pool causes a 

deeper thermocline in the central Pacific and a decrease in biological productivity near 

the dateline, while the east Pacific continues to be productive. During an east Pacific El 

Niño (e.g. 1997/98), the warm pool extends all the way east depressing the thermocline 

there and causing the collapse of upwelling off of South America, resulting in the loss of 

vertical nutrient input to the equatorial Pacific. Several studies have argued that shifting 

spatial patterns in the extent of El Niño events could contribute to a restructuring of 

marine ecosystems [Boyce et al., 2010; Turk et al., 2011], yet whether the shift toward 

more central Pacific El Niño events is a long-term trend or part of a lower frequency 

cycle is still an open question [McPhaden et al., 2011].  

Because of the consistently strong inverse correlation between CHL and SST 

caused by stratification in the western warm pool and upwelling in the cold tongue, SST 

is an obvious choice for a predictor. Additional predictors were compared with the goal 
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of finding one that best complements SST as an indicator of nutrient entrainment that 

could fuel phytoplankton blooms. Another factor to consider is how physical forcing 

changes over time. For example: whether a cool anomaly is getting cooler or warmer 

could indicate continued deep water entrainment or the onset of stratification which could 

serve to cut-off the supply of new nutrients or allow nutrients already entrained to remain 

in the sunlit euphotic zone. The time derivative of SST was calculated by taking the three 

point difference between the preceding month, current month, and following month. For 

the four Niño regions, the relationship between CHL and d(SST)/dt was always positive 

but never significant, with the highest correlation coefficient of 0.25 for Niño 3 region. 

Time derivatives of other physical variables showed less correlation to CHL. The skill of 

each proxy was defined by the fraction of area significantly correlated to CHL (Table 

3.1), with 1 being perfect skill and 0 being no skill. After testing many variables as the 

second predictor, the best choice became SSH due to its consistency across most of the 

tropical Pacific (evident in Figure 3.1, bottom). Highest skill means that changes in SST 

and SSH are more representative of processes leading to blooms than other variables. 

Although these two reflect similar dynamics, they are somewhat independent as SSH 

represents thermocline depth while SST represents how quickly cooler water upwelled 

from depth gains heat as it is transported westward and away from the equator at the 

surface. Their average cross-correlation with each other is 0.41, with greater values 

toward the equator meaning that they are slightly less independent of one another there. 

Table 3.1 Skill (0-1) or fraction of total area significantly correlated to CHL in the tropical Pacific 
variable SST SSH MLD T20 d(SST) 

dt 
 τx τy  |τ| τ2 

skill 0.51 0.31 0.14 0.16   0 0.09 0.01 0.02 0.05 
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3.1.2 Selection of statistical method  

Several statistical reconstruction methods exist. These generally involve multiple 

regression of correlations between spatial fields of the most predictively important 

variables in a predictor data set to explain the variance in a predictand data set [Barnett 

and Preisendorfer, 1987]. This is in contrast to ordinary multiple regression, which is a 

point-to-point regression. The training data consisting of predictors and predictand are 

first orthogonalized, or converted into empirical orthogonal function (EOF) spectral 

space. The dominant modes are used to reduce the number of degrees of freedom and 

capture major variations while filtering out much of the noise [Davis, 1976; Barnett and 

Preisendorfer, 1987; Smith et al., 2009]. An additional advantage of filtering a time series 

by projecting it onto a subset of the EOFs is that it can make the statistical reconstruction 

less susceptible to sampling fluctuations [Barnett and Preisendorfer, 1987].  

According to Barnett and Preisendorfer [1987], canonical correlation analysis 

(CCA) is at the top of the hierarchy of regression modeling approaches. Bretherton et al. 

[1992] compared different reconstruction methods to determine the advantages of each 

toward detecting coupled patterns in climate data and found that CCA in EOF spectral 

space is superior to CCA of non-orthogonalized data. In their study, the multi-variate 

EOF (MEOF) method extracted a coupled pattern more accurately than the CCA method, 

but MEOF exhibited a bias toward the leading EOF and a potential to identify a coupled 

signal that is actually orthogonal to the true coupled signal. Bretherton et al. [1992] 

concluded that the CCA applied in EOF spectral space is superior for longer time series 

or when the coupled signal does not resemble the EOFs of the individual fields. Both 

MEOF and CCA are tested here to determine which performs best for this reconstruction. 
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The percentage of the combined CHL/SST/SSH variance explained by each of the 

first 15 modes is apportioned as follow: 29.9, 15.0, 8.0, 4.4, 3.0, 2.7, 2.6, 2.3, 2.1, 1.9, 

1.7, 1.6, 1.5, 1.4, 1.4 for a total of 80% of the variance. After mode five, there is little 

coherence between the spatial functions for the three variables and no basin scale 

patterns. After mode seven, the values in the spatial functions approach zero. The spatial 

and temporal distributions of the first four modes indicate the dominant basin-scale 

patterns (Figures 3.7, 3.8, 3.9, 3.10). Normalized fields of predictors and predictands are 

used in the MEOF analysis to find combined relationships. The predictors are used to 

estimate the time-series weights for the MEOF and to weight the predictand component 

[Jolliffe, 2002; Weare and Nasstrom, 1982]. 

Modes do not necessarily correspond to physical processes, however, some 

combination of features can be inferred by the spatial and temporal distribution of their 

patterns. The first mode (Figure 3.7) looks like the main ENSO pattern.  The second 

mode (Figure 3.8) appears to be a low frequency variation to the ENSO pattern, perhaps 

part of the NPGO. The third and fourth modes (Figure 3.9 and Figure 3.10) contain 

higher frequency variation to the dominant modes, likely due to wind variability but are 

less and less coherent and increasingly impacted by mesoscale features.  
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Figure 3.7 CHL/SST/SSH combined EOF mode 1 explains 30% of the total variance: CHL (top 

map), SST (middle map), SSH (bottom map) and the time-varying amplitude (bottom). 
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Figure 3.8 CHL/SST/SSH combined EOF mode 2 explains 15% of the total variance: CHL (top 

map), SST (middle map), SSH (bottom map) and the time-varying amplitude (bottom). 
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Figure 3.9 CHL/SST/SSH combined EOF mode 3 explains 8% of the total variance: CHL (top 

map), SST (middle map), SSH (bottom map) and the time-varying amplitude (bottom). 
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Figure 3.10 CHL/SST/SSH combined EOF mode 4 explains 4.4% of the total variance: CHL (top 

map), SST (middle map), SSH (bottom map) and the time-varying amplitude (bottom). 
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The CCA uses normalized fields to define a coordinate system that optimizes the 

correlation between the predictor and the predictand [Barnett and Preisendorfer, 1987]. In 

EOF spectral space, the correlation in the leading modes is partitioned between the 

predictor (SST and SSH) and predictand (CHL) data sets to find the space and time 

evolution of SST and SSH that best predicts CHL variability (see Appendix).  

The number of modes applied to a statistical reconstruction is determined by how 

much variance is contained in the modes. To avoid artificial predictability, the number of 

parameters used as statistical estimators is limited [Davis, 1976]. Prior to taking EOFs for 

both types of reconstruction, the deseasoned anomalies were normalized by their standard 

deviations for nondimensional data with signals of comparable magnitude. All bins were 

weighted by cos(lat) to account for distortion away from the equator in cylindrical 

projection. For both the EOF on CHL alone and the combination of CHL, SST and SSH, 

15 modes were significantly different than noise by Rule N and the bootstrapped 

eigenvalue tests [Overland and Priesendorfer, 1982; Jackson, 1993]. To test the best 

combination of modes to use in this study, up to 15 modes were compared by their root-

mean-square errors (RMSE) and cross-correlations between the original SeaWiFS CHL 

and the cross-validated CHL reconstruction. The cross-validation method is described in 

section 3.2.1. As shown in Figure 3.11, using ten modes yielded the lowest RMSE with 

highest correlations over the Nino areas and the entire tropical Pacific (e.g. RMSE=0.26, 

r=0.93 in Niño 4).  
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Figure 3.11 RMSE and r for SeaWiFS and cross-validated CHL reconstructed with 9-15 

modes (color) for all bins (.), Nino area averages (*), and tropical Pacific averages (◊).  

 

Ten modes account for 71% of the variance in the EOF of CHL alone and 72% of 

the variance for combined SST and SSH. The percentage of the total variance contained 

in each of the first ten modes is 30, 15, 8, 4.4, 3, 2.7, 2.6, 2.3, 2.1, 1.9, 1.7, 1.6, 1.5, 1.4, 

1.4. The spatial and temporal distributions of the first four CCA modes are shown 

(Figures 3.13, 3.14, 3.15, 3.16). Mode 1 (Figure 3.12) primarily reflects basin-wide 

ENSO patterns with El Niños in 1997/98, 2002/03, weakly in 2004/05, 2006/07 and La 

Niñas in 1998/99 – 2000/01, 2005/06, 2007/08. The second mode (Figure 3.13) yields a 

pattern similar to the PDO [Mantua and Hare, 2002]. The third mode (Figure 3.14) and 

fourth mode (Figure 3.15) highlight smaller, higher-frequency fluctuations, either from 

atmospheric effects or adjustment to the two main modes.  Patterns past mode four are 

increasingly noisy and show decreased spatial coherence, so they are not displayed here. 
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Figure 3.12 CCA mode 1 explains about 13% of the total variance with spatial functions: SST   

(top map), SSH (middle map), CHL (bottom map) and the time-varying amplitude (bottom). 
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Figure 3.13 CCA mode 2 explains about 12% of the total variance with spatial functions: SST   

(top map), SSH (middle map), CHL (bottom map) and the time-varying amplitude (bottom). 
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Figure 3.14 CCA mode 3 explains about 12% of the total variance with spatial functions: SST   

(top map), SSH (middle map), CHL (bottom map) and the time-varying amplitude (bottom). 
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Figure 3.15 CCA mode 4 explains about 10% of the total variance with spatial functions: SST   

(top map), SSH (middle map), CHL (bottom map) and the time-varying amplitude (bottom). 
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An a priori estimate can be made about the potential of a reconstruction that uses 

the dominant EOF modes to reproduce the signal in the original data. The variance of 

the first ten EOF modes is divided by the variance of the original CHL data to yield the 

Fraction of Variance Resolved, FVR (Figure 3.16). 

 

Figure 3.16 Fraction of Variance Resolved (FVR) by the dominant EOF modes (top) calculated by 

dividing the variance of the dominant ten EOF modes (middle) by total variance in CHL (bottom). 

 

A reconstruction using ten modes is thus expected to capture the majority of the 

CHL variance within 10o of the equator and more than 80% of the total variance in the 

equatorial area west of 120oW.  The first ten modes do not adequately capture the higher 
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variance near coastal margins and the low variance in the oligotrophic subtropical gyres. 

The EOF method selects time functions that explain as much of the variability as 

possible over the whole domain, emphasizing modes of variability that are in phase over 

large areas. Propagating localized features (e.g. eddies, waves and coastal features) can 

be well-resolved in the ocean color imagery and appear as high SNR (by the Ballabrera-

Poy et al. method discussed in section 2.4.3) but break up into multiple higher EOF 

modes that do not get included in the reconstruction. An EOF in real number space does 

not account for phase changes as a function of location as a complex EOF would. 

Propagating features such as planetary waves, captured in monthly composites, are 

resolved by a Gaussian fit to the temporally lagged autocorrelation function due to their 

smoothly propagating nature, contributing to a high SNR (Figure 2.17) but are not 

included in the dominant EOF modes because of being localized. The spatial 

distribution of the FVR indicates that using ten EOF modes in the reconstruction will 

capture basin-scale features impacting CHL variability, but localized features and those 

close to the coasts or having very low variability will not be resolved. 

 

3.1.3 Chlorophyll reconstruction 

After both CCA and MEOF reconstructions were calculated using ten modes with 

the same predictors, SST and SSH, an inspection of individual months showed that the 

methods are consistent. Both reconstruct major spatial patterns, with slight differences in 

smoothing and smaller scale patterns, evident in any given month and shown here for 

December, 1997 (Figure 3.17). 
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Figure 3.17 Deseasoned CHL for December, 1997: SeaWiFS (top), CCA (middle), MEOF(bottom). 

 

Understanding where the reconstructions perform best is important for qualifying 

their strengths and limitations. Comparing the CCA and MEOF reconstructions against 

the original SeaWiFS CHL (Figure 3.18, top panels) shows that the MEOF is comparable 

and often out-performs the CCA reconstruction over the Niño areas during the dependent 

period. As expected, locations of high FVR match-up best between reconstructed and 

original CHL. Both reconstructions correlate highest with the original along the equator: 

Niño 4 (rMEOF=0.97; rCCA=0.93), Niño 3.4 (rMEOF=0.94; rCCA=0.91), Niño 3 (rMEOF=0.90; 

rCCA = 0.87). The match-ups are still significant (r > 0.45, p < .001) but lower for coastal 

Niño 1&2 (rMEOF=0.88; rCCA=0.82), where FVR is lower and variance is higher.  
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Figure 3.18 Correlations between the original and reconstructed CHL from 9/1997-12/2008: for 

CCA (top, left map) and MEOF (top, right map). Colored bins have significant correlations. Boxes 

show Niño areas. Lower four panels are time series averaged over the Niño areas for original (black), 

MEOF (red), CCA (blue) with average correlations to original CHL annotated for the latter two. 
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The skill of both methods is associated with how well the ENSO events were 

captured by the reconstructions. In all four Niño regions, the reconstructions tracked the 

original CHL anomalies fairly well. The main differences between the original and 

reconstructed CHL fields are in the timing and magnitude of the ENSO events. It is 

expected that some of the magnitude would be damped in the reconstructions because 

they only used the first ten modes. Damping is notable during the 1998/99 La Niña in the 

central and eastern Pacific (Niño 1&2, 3, 3.4). The reconstructions were slow to register 

the CHL peak during the 2005/06 La Niña in all four areas, though the transition out of 

that La Niña was accurately reconstructed in timing and magnitude. In Niño 4, the CCA 

reconstruction was slow to register the 1998/99 and 2007/08 La Niña peaks and 

exaggerated their magnitudes. The Niño 1&2 coastal area includes more variability than 

the dominant EOF modes capture, as demonstrated by the lower SNR there. 

Nevertheless, the correlations between the original and reconstructed CHL are significant 

over all four Niño areas and 86% of the entire tropical Pacific indicating that the 

statistical reconstructions successfully reproduced the majority of the variability in the 

CHL time series. That reconstructed CHL matches the original so closely confirms that 

large-scale biological variability can be reproduced by physical proxies in the tropical 

Pacific where the physical signals are large. Before the reconstructed data are interpreted 

for their scientific content, it is necessary to validate them and quantify their uncertainties 

to understand where and when they successfully represent CHL anomalies and where and 

when they do not. 
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3.2 Validation and quantification of uncertainties 

To determine skill and where the method is successful, CHL reconstructions were 

cross-validated against the training data by excluding the SeaWiFS CHL for each month 

plus and minus some number of months during the model training and then comparing 

the reconstruction of the central excluded month to the original SeaWiFS CHL over all 

136 months of training data to determine how well they were reproduced. Several 

combinations of months were tested for exclusion to determine the best number to 

maintain a robust reconstruction while minimizing the chance that the central excluded 

month would have any input to the reconstruction. Comparing the CHL reconstruction to 

independent records during the pre-SeaWiFS period, the reconstructed CHL were 

validated against any and all in situ sea surface CHL in the neighborhood, estimates 

derived by an independent ocean color sensor, CZCS, which operated between 1978-

1986 as a proof-of-concept ocean color mission, and to output from a fully-coupled 

physical-biogeochemical ocean model. Finally, uncertainties in the observations and 

reconstruction model are quantified and discussed. 

 

3.2.1 Cross-validation against training data 

Cross-validation is a method commonly used to assess how a statistical model 

performs by holding out data from the training period, reconstructing the target 

variable and then comparing the original data left out to its reconstruction [Barnett and 

Preisendorfer, 1987; Smith et al., 1996; Mann et al., 1998; Smerdon et al., 2011]. 

Leaving out an increasing number of months was tested. By seven months, the 

relatively small length of the training record caused the reconstruction to diverge 
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markedly from the original data, thus five months was determined to give the best 

balance between enough months retained to train a robust reconstruction and enough 

months excluded to ensure the central month had minimal input to the reconstruction. 

The cross-validation reconstruction was performed for each month while holding out 

that month +/-2 months and then the central excluded month was compared to the 

original training data and repeated for all 136 months of the training data set. As shown 

in Figure 3.19 and Figure 3.20, the cross-validation of the CCA and MEOF 

reconstructions most closely fit the left-out training data within 5-10o of the equator.  

 

 

Figure 3.19 Leave five out cross-validations using SeaWiFS training data and reconstructing CHL by 

CCA (top) and MEOF (bottom) during the dependent period (9/1997-2008). Colored bins show significant 

correlations. Boxes show Niño areas that correspond to the average time series in Figure 3.20.  
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Cross-validations show highest fidelity by both models in the equatorial areas 

(Niño 3, 3.4, and 4) with r~0.8-0.9, while Niño 1&2 has r ~ 0.7 for the MEOF method 

and r~0.6 for the CCA. Both models fare worst during the extreme ENSO 1997-1999, 

slightly out of phase and damping the amplitude of the La Niña toward the east Pacific. 

Otherwise, cross-validations indicate the methods capture the major patterns in timing 

and magnitude. Where both MEOF and CCA cross-validate well gives confidence in 

using statistical reconstructions there.  

 

Figure 3.20 Comparisons of SeaWiFS CHL (black) to leave-five-out-cross-validations of CHL 

reconstructed by CCA (blue) and MEOF (red) and averaged over four Niño regions. Average 

correlations with the original SeaWiFS CHL are annotated for each area. 
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3.2.2 Comparison to independent data sets 

Independent data are important for validation, as a close match-up between a 

reconstruction and training data could be caused by overfitting rather than true skill by 

the method. The reconstructed CHL were compared to available in situ data, in situ data 

mapped to EOF spectral space, CZCS ocean color estimates and output from a fully-

coupled biogeochemical model. 

 

In situ data comparison 

As detailed in Chapter 2, in situ data collection of biological parameters lags data 

collection of physical parameters such as temperature. National Oceanographic Data 

Center (NODC) climate data records include about 10,000 casts containing CHL in the 

tropical Pacific between 1958 and 2008 (recall Figure 2.1). Limiting surface observations 

to depths less than 20m yields 27,540 data points. Averaging these observations over the 

four Niño areas typically yielded less than 100 months of match-ups with the 

reconstruction (~16%) and weak, insignificant correlations (r ~0.1 for three areas and r = 

0.2 for Niño 4). By comparison, the in situ observations and training CHL also show 

weak, insignificant correspondence (r < 0.1 for three areas and r = -0.2 for Niño 4). It has 

been shown that EOFs can be used to regress in situ data onto spatial patterns and 

improve their skill compared to traditional in situ only analysis [Smith et al., 1996; Smith 

and Livezey, 1998]. When there were at least three observations in a bin, the sparse data 

were interpolated to a regular 2o grid using the first five EOF modes which explain 66% 

of the total variance of the in situ data set. Original and reconstructed in situ observations 

were compared to the CHL reconstruction, as shown in Figure 3.21. After interpolating 



 

 84 

the sparse data using the EOF method, there is still too much scatter to yield statistically 

significant match-ups with the reconstructions. Only a rough correspondence is evident 

between the in situ and reconstructed CHL (r~0.3 in Niño 3 and 3.4). The absence of in 

situ data for each bin in the area contributes to the discrepancy. Also, the in situ data are 

point source measurements collected over discreet days, usually with too few of them in a 

month to truly represent the monthly average. The training data used in the reconstruction 

are large area averages sampled by satellites as often as daily and then averaged over the 

month. The difference in the two collection methods and amount of data being averaged 

makes their comparison a rough approximation. That they are within an order of 

magnitude of each other is encouraging, though cannot be called validation. 
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Figure 3.21 Reconstructed CHL (--), original CHL (--), NODC observations (+) and observations 

reconstructed using first 5 EOF modes (◊), with correlation coefficients annotated for each area. 

 

CZCS ocean color data comparison 

The CZCS ocean color sensor operated between 1978-1986 as part of a shared 

mission whose primary focus was the coastal zone of the United States. Elsewhere, data 
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coverage was sparse, as detailed in Chapter 2. The July 2011 reprocessed CZCS CHL 

were acquired and compared to the CHL reconstruction in the tropical Pacific. Match-ups 

were best near the coast where there were 50% more observations due to the sensor’s 

mission: Niño 1&2, the best covered area, had about 1000 valid CZCS observations per 

bin each month compared to 700 in Niño 4, the least covered area. Despite widely 

varying coverage, all available data were averaged over the Niño regions and compared 

to the reconstructed CHL, shown in Figure 3.22. The cross-correlation between CZCS 

and reconstructed CHL is best in Niño 1&2 with r = 0.6 and degrades away from land: 

Niño 3, r = 0.5; Niño 3.4, r = 0.3; Niño 4, r = 0.2. CZCS observations in all areas indicate 

a high CHL anomaly in 1979/80 that is absent in the reconstruction. Since that year was 

unremarkable in the Niño indices, the CZCS data may have experienced an artifact, such 

as an atmospheric correction problem. In 1982, there were positive CHL anomalies in 

CZCS, notably in the equatorial Niño areas, corresponding to a weak La Niña in 1981/82. 

A strong El Niño followed in 1982/83 and a pronounced decrease in CHL is apparent in 

1982/83 in Niño 1&2. In 1982 El Chicón volcano in Mexico erupted: its gases and 

particles encircled the Earth between the equator and 30oN for more than six months and 

then spread more widely [Robock, 2002], likely biasing the CZCS measurements since 

such extreme aerosol events that obscure the ocean are difficult to completely correct 

[Gordon, 1997]. CZCS CHL matches up closer to the reconstruction than in situ CHL, 

but data paucity and possible atmospheric correction issues render it problematic.  
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Figure 3.22 Reconstructed CHL (-) and CZCS CHL (-x-) averaged over four Niño regions. 
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Fully-coupled physical-biogeochemical ocean model comparison 

Output from a fully coupled three dimensional physical-biogeochemical model 

developed at basin-scale for the tropical Pacific between 30oS-30oN was used as an 

independent data set for validation [Wang et al., 2009]. The biogeochemical model 

includes three nutrients (nitrate, ammonium, dissolved iron) and seven biological 

categories (small and large phytoplankton, zooplankton and detritus, and dissolved 

organic nitrogen) [Wang et al., 2008]. This model has been shown to have good fidelity 

for simulating ecosystem dynamics [Wang et al., 2005] and spatial and temporal variation 

in biogeochemical fields [Wang et al., 2008]. Its ocean general circulation model is based 

on a primitive-equation, sigma-coordinate model coupled to an advective atmospheric 

mixed layer model [Gent and Cane, 1989; Murtugudde et al., 1996] forced by 6-day 

mean surface wind stress from the National Centers for Environmental Prediction 

reanalysis [Kalnay et al., 1996], and climatological monthly mean solar radiation, 

cloudiness, and precipitation. CHL was calculated using a dynamic model with a non-

steady C:Chl ratio covarying with four environmental parameters, i.e. irradiance, nitrate 

and iron concentrations and temperature. Modelled CHL was cross-correlated against the 

SeaWiFS CHL used to train the reconstructions (Figure 3.23, top), the CHL reconstructed 

against the CCA method (Figure 3.23, middle) and the CHL reconstructed against the 

MEOF method (Figure 3.23, bottom). The modeled CHL showed best validations within 

10o of the equator and better in the central equatorial Pacific than in the eastern equatorial 

Pacific. Over the entire tropical Pacific, 22% of model vs. SeaWiFS bins are significantly 

correlated (r > 0.45, p < 0.001); 20% for model versus CCA CHL; 19% for model versus 

MEOF CHL. 
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Figure 3.23 Model CHL cross-correlated with original from 9/1997-2007 (top); model CHL cross-

correlated with reconstructions over the independent period from 1988-8/1997 using CCA (middle) 

and MEOF (bottom). The Niño regions delineated correspond to the time series in Figure 3.24. 

 

The time series were averaged over each Niño area and plotted for the modeled 

CHL and original CHL during the dependent period and the two reconstructions with the 

model for the independent period (Figure 3.24). The model is closer to the original CHL 

and the reconstructions in the west, i.e. Niño 4 (r ~ 0.9) than in the east (r ~ 0.5). 



 

 90 

Comparisons between the model and reconstructions are best over the equatorial areas. In 

the east Pacific, Nino 1&2, the complexities of the biological system appear to be 

captured less by the model.  

 

Figure 3.24 Time series corresponding to areas delineated in Figure 3.23: Niño 1&2 (top), Niño 3 

(2nd), Niño 3.4 (3rd), Niño 4 (bottom): model CHL (grey), compared to CCA CHL (blue), MEOF CHL 

(red), SeaWiFS CHL (black). Area average cross-correlation coefficients are annotated. 
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Table 3.2 Cross-correlations of CHL reconstructed using CCA or MEOF with SeaWiFS during the 
dependent period, model and CZCS CHL during the independent period. 

 Nino 1&2 Nino 3 Nino 3.4 Nino 4 

SeaWiFS/CCA* 
9/1997-2008 

0.58 0.78 0.85 0.88 

SeaWiFS/MEOF* 
9/1997-2008 

0.68 0.75 0.86 0.93 

Model / CCA 
1988-8/1997 

0.58 0.84 0.89 0.87 

Model / MEOF 
1988-8/1997 

0.51 0.74 0.83 0.87 

CZCS / CCA 
1978-1986 

0.61 0.46 0.34 0.16 

CZCS / MEOF 
1978-1986 

0.50 0.27 0.19 0.07 

* Comparisons with SeaWiFS are leave five out cross-validations. 

 

Summarizing the performance of the two comparable reconstruction methods: 

cross-validations against the original SeaWiFS CHL indicate MEOF out-performs CCA 

over three out of four Niño areas during the dependent period. When compared to the 

biogeochemical model and CZCS CHL during the independent period, reconstruction by 

CCA out-performs the MEOF method in three out of four Niño areas. Independent data 

are important for validation, as a close match-up with training data could be caused by 

overfitting rather than true skill by the method. Furthermore, Bretherton et al. [1992] 

compared different methods to determine the advantages of each toward finding coupled 

patterns in climate data and found that the MEOF method extracted the coupled pattern 

more accurately than the CCA method used in this study but MEOF exhibited a bias 

toward the leading EOF and may not be as stable over the independent part of a 

reconstruction. They found that the CCA method applied here is superior for longer time 
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series or when the coupled signal does not resemble the EOFs of the individual fields. For 

all of these reasons, the CCA method was selected for use by this study. 

 

3.2.3 Uncertainty estimates  

Uncertainty in the final results stems from the cumulative uncertainty in the 

observations, including their pretreatment, and the uncertainty in the method, which 

includes the ability of the proxies to represent the variability in the target field and that 

due to the number of modes applied in the statistical reconstruction and how much of the 

total variance they can never resolve. 

 

Observational uncertainty 

Bailey and Werdell [2006] found a root-mean-square error (RMSE) of 0.406 on 

log-transformed individual daily scenes of SeaWiFS CHL at native resolution of 300m to 

1.1km over the deep ocean compared to the highest quality in situ samples collected 

within +/- 3 hours of the satellite overpass. This value decreases with greater data density, 

grid box size and smoothing. By binning to 2o monthly resolution and smoothing over 

three months, random errors could be reduced by two orders of magnitude for the higher 

number of degrees of freedom of each data point. The number of degrees of freedom of 

each data point is conservatively estimated as 𝑁 ~100, where N~200x30x3 assuming 

the 2o bin averages include at least 25% cloud-free pixels, 30 days in a month, and 

smoothing over 3, however, in case all pixels going into each average are not completely 

independent the estimate of degrees of freedom can be pessimistically reduced to one 

order of magnitude. Thus binned, smoothed CHL concentrations in the tropical Pacific 
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used in this study are estimated to have an observational uncertainty no more than 0.04 

RMSE in log-transformed units or less than 1% of the CHL value. 

SODA 2.1.6 includes winds from ERA40 and QSCAT, and hydrographic data 

from World Ocean Database 2009 and the International Comprehensive Ocean-

Atmosphere Data Set [Woodruff et al., 2011]. Atmospheric and oceanic observations 

used within SODA provide complimentary information that improve each other’s 

accuracy, such that it may be reasonable to make a simplifying assumption that the ocean 

observations are perfect [Carton et al., 2012]. SODA has many screening and filtering 

steps to include only the highest quality observations, however, the input observations 

undoubtedly include some systematic errors (e.g. due to changes in observing systems 

such as the introduction of satellite observations in 1981, the increase in the height of 

shipboard anemometers, scarcity of data during earlier times) and random errors [Carton 

and Giese, 2008]. Random errors cancel out when large numbers of observations are 

averaged together, so this type of error can be minimized by using well-sampled eras and 

averaging over relatively large bins and are thus of minor importance in this large scale 

study. Systematic uncertainty in the global SST record has been less than 0.2oC since the 

1950s and then decreased further in the 1980s with increased fleet observations, satellite 

measurements and the initiation of drifting and moored buoys [Kennedy, 2014]. Over the 

tropical Pacific, SST has a seasonal range of approximately 5oC, thus systematic error 

could be up to 4%. According to the online Satellite Altimetry Data User Handbook 

[http://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_duacs.pdf], SSH has 

approximately 2.5cm noise level. Average SSH values vary up to one meter in the 

tropical Pacific, thus systematic error could be almost 3%. 
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Data pretreatment 

The number of modes used in the reconstruction was optimized for this region 

such that each mode contains significant variance, meaning at least 1% of the dominant 

mode. For the CCA method, CHL variance explained in the first ten modes is 71% and 

72% for combined SST and SSH. Thus, almost a third of the variability is excluded prior 

to calculating a reconstruction. Since this study is focused on climate scale patterns, the 

loss of small-scale, high frequency ‘noise’ is generally desirable, except in cases where 

the high frequency pattern signals the initiation of a climate-scale event, such as westerly 

wind bursts that initiate El Niño events. Analyses suggest that excluding high frequency 

patterns adds insignificant uncertainty to the climate-scale patterns [Liu et al., 2015]. 

 

Method uncertainty  

All components of method uncertainty can be quantified by comparing the 

reconstruction to the original data, including how well the proxies represent the target 

variable and how well the dominant modes capture its low frequency signal. The 

reconstruction had the closest match-ups to the original data away from the coasts and 

toward the equator where physical signals dominate the biology.  Differences between 

the original data and the reconstruction during the dependent period were used to 

calculate RMSE in normalized units, with uncertainty ranging from RMSE~0.27 for the 

equatorial Niño areas and RMSE~0.6 for Niño 1&2. For the independent period, cross-

validations were used to estimate the average normalized RMSE = 2(1− 𝑟)  [Smith et 

al., 1995], which ranges from RMSE~0.5 in Niño 4 to RMSE~0.9 in Niño 1&2. RMSE 
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calculations were unnormalized using the standard deviations and plotted with the CHL 

anomalies (Figure 3.25).  

 

 

Figure 3.25 Reconstructed CHL (blue) +/- RMSE (dotted blue) and original CHL (black). RMSE 

during the dependent period is calculated between the original and CCA CHL; RMSE during the 

independent period is estimated using the leave-five-out-cross-validations, as described in the text. 
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Uncertainty in the final results 

In this kind of statistical reconstruction, the main uncertainty is due to the method. 

Observational uncertainty is demonstrated to have a minimal contribution to the final 

results by testing it. If systematic errors are uniform, their effect can be ameliorated by 

deseasoning and analyzing anomalies. If, however, systematic errors are random and non-

uniform, they could potentially introduce some error that would propagate through to the 

final results. To illustrate the relative contribution of the data error, several extremes of 

hypothetical observational errors were tested to characterize the sensitivity of the final 

results to observational errors. Random months and bins of the SST data set were 

perturbed by 0.2oC and CHL was reconstructed with all other parameters being the same 

(i.e. same training data and EOFs): a systemic bias applied to the entire basin and a 

random bias over a 10ox4o box on the equator at 140oW was tested for a single month up 

to five years. Perturbations of the SST record caused less than 1% difference to the CHL 

reconstruction in every case, with the exception of the last case (equatorial box over five 

years) that spiked a 0.01 mg m-3 difference in Nino 1&2 during the 1982/83 ENSO or 

almost 5% difference to CHL concentrations there during that time. The equatorial Nino 

areas had CHL differences that remained around 1% or less for all of the perturbations of 

the SST records. Likewise, SSH was perturbed by 2.5cm over the same box for five years 

and yielded consistent magnitudes with different temporal variability. Only the 1997/98 

El Nino caused a spike of about 5% of the CHL signal in Nino 1&2, while the equatorial 

Nino areas were always within 1-2%.  
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Because the reconstruction is performed in EOF spectral space, the final results are 

much less sensitive to observational errors than they would be with other computational 

techniques. Observations are first mapped to EOF spectral space using the orthogonality 

property of the spatial functions. Therefore the uncertainty introduced by an 

observational error at one location does not impact the results only at that place, but 

instead influences the amplitude for the entire domain, so the propagation of errors is not 

a local problem. Furthermore, any observational errors that do not project onto one of the 

dominant modes have no appreciable effect on the results, so the sensitivity of the results 

to observational errors cannot be fully characterized without specifying the errors in 

space and time. The observational error contributions estimated here for extreme 

hypothetical systematic errors in the observations are still relatively small and the main 

uncertainty in the statistical reconstruction stems from the method of reducing the data to 

the dominant modes.  

How well the EOF modes are defined during the training period and continue to 

capture the dominant variability in the reconstruction period determine the method 

uncertainty. Truncating the signal through EOF space has been found to be the most 

stable small-sample method [Bretherton et al., 1992]. Yet reducing the variance to ten 

modes immediately excludes about a third of it over the dependent period, resulting in 

essentially all of the uncertainty in the equatorial Niño 4 area and approximately half of 

the uncertainty in coastal Niño 1&2. The reduction of variance is primarily manifest in 

damping (Figure 3.25). The reconstructed CHL demonstrates high fidelity in capturing 

general patterns, notably ENSO, but damps their amplitudes, occasionally exceeding the 

margin of error (e.g. in 1998/99 in Nino 3, 3.4 and 1&2; 2006/07 in Nino 3.4 and 4). 
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Cross-validation is used to assess the skill of statistical reconstructions [Barnett and 

Preisendorfer, 1987; Smith et al., 1996; Mann et al., 1998; Smerdon et al., 2011] and 

provides the best analysis of the overall uncertainty in the final results. The spatial 

distribution of the errors is consistent with the fraction of variance resolved by the first 

ten modes (Figure 3.16) as all other sources of error are shown to be at least an order of 

magnitude smaller. The uncertainties in the dependent period were quantified through 

RMS differences with the training data and are lowest within 10o of the equator (~24-

30%); errors are double that or more away from the equator and toward the coasts. 

Uncertainties in the independent period were approximated through cross-validation and 

are within acceptable limits for open ocean, equatorial areas (e.g. Niño 3/3.4/4~50%), but 

unacceptably large toward the coasts (e.g. Niño 1&2 ~90%). 

 

 

3.3 Extreme El Niño and La Niña in 1998 

Data thinning experiments have shown that the SODA SST observations are 

adequate to capture the 1990s, including the extreme ENSO event, while the sampling 

density of the 1920s and 1940s would have been inadequate to catch it [Giese and Ray, 

2010]. During the dramatic transition from the 1997/98 El Niño to the 1998/99 La Niña, 

the greatest difference in CHL was between December 1997 and December 1998 in the 

original and reconstructed CHL. In Figure 3.26, greater CHL in 1998 is shaded red; 

greater CHL in 1997 is blue. Note that the ends of the color scale indicate values greater 

than 0.15 mg m-3 and less than -0.15 mg m-3, respectively, which is the range for the area 

of interest. Positive ΔCHL reflects higher CHL during La Niña in coastal and equatorial 
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upwelling areas. In the west Pacific warm pool, CHL was higher during El Niño and 

returned to oligotrophic conditions during La Niña. Overall, the original CHL (Figure 

3.26, top) has more spatial variability than the reconstruction (Figure 3.26, bottom) since 

the reconstruction uses the dominant ten modes. The differences west of the cold tongue 

are due to the reconstruction being smoother and having less variability.

   

Figure 3.26 La Niña – El Niño CHL differences for December 1998 minus December 1997 

averaged for the original CHL (top) and reconstructed CHL (bottom). Note the end points of the 

color scale represent values greater than 0.15 mg m-3 and less than -0.15 mg m-3 respectively.  

 

The differences in the physical variables show similar spatial distributions (Figure 

3.27) to the CHL. The most striking difference is that positive ΔCHL extends more than 

20o farther west along the equator than the negative ΔSSH in an area of very weak ΔSST. 

During El Niño, SST was warmer and SSH was higher in the east and central equatorial 

upwelling regions. During La Niña, SST was warmer and SSH was higher to the west 

while CHL concentrations decreased. Physical change appears consistent with changes in 

>

<

>

<
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the original CHL (Figure 3.26, top), thus the inability of the reconstruction changes 

(Figure 3.26, bottom) to exactly replicate the difference between the phases of ENSO is 

most likely caused by mesoscale features distributed to higher EOF modes. The dominant 

EOF modes give more weight to basin-scale phenomenon, leading to localized 

discrepancies between original and reconstructed CHL. 

 

Figure 3.27 La Niña – El Niño differences in physical variables: December 1998 minus December 

1997 for SSH (top) and SST (bottom).  

 

Overall, both the fully-coupled physical-biogeochemical ocean model 

comparisons and the leave-five-out-cross-validations indicate the CHL reconstruction has 

good skill in the equatorial Pacific where the physical forcing is strong. Results were 

inconclusive for the sparse in situ samples and CZCS data set. Reconstruction skill is 

highest away from the coast in the western Pacific and decreases toward the east and the 

coasts. Because the statistical reconstruction uses the ten dominant modes out of 136, the 

reconstructed CHL has a smaller amplitude than the original CHL. Differences between 



 

 101 

the reconstruction and the original data could be due to the absence of higher modes, 

which may help to describe the extreme transition from the large El Niño in 1997/98 to 

La Niña in 1998/99.  Using the most closely correlated physical predictors, this statistical 

reconstruction extends 2o, monthly CHL anomalies from just over a decade to just over 

five decades. The effect of climate-scale physical forcing on surface CHL patterns and 

related ocean biology in the tropical Pacific are explored in the next chapter. 
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4. Low frequency chlorophyll anomalies in the tropical Pacific 

 Quantifying slow changes in marine phytoplankton is important for understanding 

their impact upon ecosystems as well as their role in regulating climate. The ability to 

observe and model complex physical-biological patterns has improved, especially over 

the vast expanse of the equatorial Pacific. Yet even the most realistic models remain 

sensitive to unknown parameters. A multivariate statistical reconstruction has the 

advantage of being able to include phenomena, known and unknown, that are large 

enough to impact dominant modes of variability. As detailed in Chapter 2, many 

processes experienced in the tropical Pacific have global ramifications. There is evidence 

that slow changes have been taking place in biological features, either through natural 

low frequency oscillations or anthropogenic effects. This chapter discusses the 

interannual and decadal CHL variability captured in the training and reconstruction 

periods and how large-scale CHL patterns are impacted by low frequency climate 

oscillations.  

 

4.1 Variability over the training period: 1997 - 2008 

Understanding mechanisms influencing the spatial distribution of tropical Pacific 

CHL during the training period provides insight into what can be reconstructed. 

Continuous ocean color satellite derived CHL exists between September, 1997 and 

December, 2008. The correlation of physical variables to CHL during the training 

period established the linear relationships in the CCA method which were used to 

reconstruct CHL over the entire proxy record. A CHL bloom caused by a unique 

process independent of the physical oceanographic variables used in the training period 
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may not be fully reconstructed (e.g. fertilization by dry deposition of aerosols). 

Processes not explicitly represented in the training period could be represented in the 

reconstruction if a linear weighted sum of the reconstruction modes can account for the 

process. However, processes will always be better represented in a reconstruction when 

they are represented in the training data. Highest CHL is found in the east, near the 

coast, and along the equatorial cold tongue where high variance in CHL, SST and SSH 

corresponds to upwelling of nutrients along a shallow thermocline. High variance but 

low mean CHL is found in oligotrophic areas. Thermocline uplift in this region is 

associated with Kelvin, Rossby and tropical instability waves and has been shown to lift 

nutrients into the euphotic zone causing blooms [Turk et al., 2001]. The variability of 

CHL is made more visible by normalizing the standard deviations by the means to 

enable oligotrophic areas with high variability to stand out along with consistently high 

CHL areas (Figure 4.1). 
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Figure 4.1 Standard deviation of the deseasoned anomalies normalized by the mean for SSH (top), 

SST (middle), and CHL (bottom) between September, 1997 – December, 2008. 

 

The largest forcing mechanism in the tropical Pacific appears to be ENSO, with 

residual forcing by seasonal and other smaller effects. While the beginning of the period 

experienced the largest eastern Pacific El Niño of the century in 1997/98, subsequent El 

Niños only reached the central Pacific, centered near 150oW (2002/03, 2004/05, 2006/07) 

[Radenac et al., 2012]. The three central Pacific El Niño events registered in Niño 4, were 

barely discernable in Niño 3.4, and are not distinguishable in Niño 1&2 and 3. Five La 

Niñas during the training period (1998/99, 1999/2000, 2000/01, 2005/06, 2007/08) versus 

four El Niños contributed to a cooler training period that may have been more productive 
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than normal. Smaller, higher frequency variability is especially apparent in Niño 1&2, 

but most of the variability in the other three areas corresponds to ENSO events. El Niño 

and La Niña events cause the dominant variability as the oligotrophic warm pool shifts 

east during El Niño and west during La Niña. 

  

4.2 Variability over the reconstruction period: 1958 - 2008 

In the reconstruction, CHL patterns are most evident when viewed as anomalies 

from a mean seasonal cycle. The period over which the cycle is defined is somewhat 

arbitrary. Since there is the least uncertainty over the training period, its climatology 

could be used to define anomalies. However, low frequency variability causes differences 

in the long-term averages between the training and reconstruction periods. The training 

period is mostly during a decade of higher productivity. Because of this, reconstructed 

CHL was demeaned in reference to the reconstruction period seasonal climatology.  

Changes in CHL and physical variables are plotted for each longitude averaged 

over 5oS-5oN between 1958-2008 (Figure 4.2). The covariation between CHL and the 

physical variables is strongest and most consistent with SST and more subtle with SSH. 

Although deseasoned anomalies were reconstructed, a weak annual cycle remains 

suggesting slight changes in the annual cycle over the reconstruction period. The most 

prominent feature in the Hovmöller plot is El Niño, where a less productive, warmer, 

thicker surface layer begins in the west Pacific and propagates eastward – sometimes as a 

very strong anomaly that reaches the east Pacific (e.g. 1982, 1997) and sometimes as a 

less obvious lower CHL, warmer, thicker surface layer that reaches the central Pacific 

and is weaker toward the east (e.g. 1958, 1994, 2004). After ENSO, a multi-decadal 
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signal is faintly evident as the cool phase prior to 1976 dominated by positive CHL 

anomalies, especially just before the end of the phase; the following warm phase until 

1998 has less CHL; finally, during the cool phase through 2008, positive CHL anomalies 

are more common, with the exception of the western half of the equatorial Pacific where 

negative CHL anomalies predominate. Processes linking physical changes to ecosystem 

changes are complex and multivariate, but several that have been observed and reported 

in the literature are evident in the time-longitude plots, most obviously changes 

associated with El Niño and La Niña events [Radenac et al., 2012; Turk et al., 2011]. 
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Figure 4.2 Longitude–time plots of reconstructed CHL (left), SST (2nd), SSH (3rd), MLD (right) 

between 1958-2008. Niño 4 is between dotted and solid lines; Niño 3 is east of solid line.   
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4.2.1 Interannual patterns in chlorophyll 

The dominant signal in this region is ENSO, an interannual oscillation of roughly 

three to seven years that typically peaks in December but varies in intensity, extent and 

duration. During a very strong El Niño, when the Ocean Niño Index or ONI > 2, the west 

Pacific warm pool propagates eastward along the equator toward the coast of the 

Americas. A rising thermocline in the west results in higher CHL there; a depressed 

thermocline in the east, lower CHL east of 160oE. During the reconstruction period, there 

were three very strong El Niños that started in 1972, 1982, 1997 (Figure 4.3). 

 

Figure 4.3 Annual CHL anomalies during very strong El Niño events (ONI > 2) that formed during 

1972 (top), 1982 (middle), 1997 (bottom). Averages are centered on December +/- 6 months. 
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There are changes in CHL that correspond to canonical El Niño events such as 

these three very strong episodes. Below the oligotrophic west Pacific warm pool, the 

nutricline is normally deep (~200m). At the start of El Niño events, the easterly trade 

winds weaken allowing the west Pacific warm anomaly to propagate eastward along the 

equator through the eastern half of Niño 4 and Niño 3. As the warm anomaly moves 

eastward, its deeper surface layer, with positive SSH and MLD anomalies, causes the 

reduction of equatorial upwelling to the surface. Without its supply of nutrient-rich deep 

water, surface CHL decreases toward the east as the nutricline is pushed below the 

euphotic zone there. By contrast, in the west, a rising thermocline results in a cooler, 

shallower surface layer with negative SSH and MLD anomalies and positive CHL 

anomalies associated with the rise of the nutricline into the euphotic zone [Turk et al., 

2001]. While El Niño events generally follow this basic pattern, there is much variability 

in their magnitude, eastward extent, and duration. The three very strong El Niños were 

the most pronounced over the 51 year time series. Strong El Niños (2 > ONI > 1) started 

in 1957, 1965, 1986, 1991, 1994, 2002, and almost in 2006. Stronger warm anomalies 

correspond to less CHL, as evidenced in Figure 4.2. 

Although the effect of an El Niño event upon primary production is primarily 

related to its strength, its eastward extent also affects biology. CHL anomalies are more 

pronounced when the El Niño extends all the way to the east compared to those that stop 

mid-way. Years are classified as a central Pacific El Niño when the warm anomaly is 

greatest there, defined by the DJF Niño4 index greater than the DJF Niño3 index 

[McPhaden et al., 2011; Yu et al., 2012], as happened in 1958/59, 1963/64, 1968/69, 

1977/78, 1987/88, 1994/95, 2002/03, 2004/05, with examples shown in Figure 4.4. 
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Figure 4.4 Average CHL anomalies during central Pacific El Niño events that formed during 1958 

(top), 1987 (second), 1994 (third), 2004 (bottom), centered on December +/- 6 months. 1958 started as 

a strong El Niño (2 >ONI > 1), but turned weak by February while the other three remained strong. 
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Although the physical processes that cause central Pacific El Niño events are not 

completely understood, they appear to have different forcing and consequently result in a 

different effect upon biology [Turk et al., 2011; Radenac et al., 2012]. A central Pacific 

El Niño does not experience the basin-wide cessation of the trade winds nor the 

subsequent relaxation of the east-west thermocline slope [Ashok et al., 2007; McPhaden 

et al., 2011]. It does experience zonal advection of the warm pool that is limited in its 

eastward extent by westward equatorial surface currents from the eastern basin, thought 

to be a local response to wind forcing that may originate in the subtropics [Yu and Kao, 

2007; Kao and Yu, 2009; Yu et al., 2012; Karnauskas, 2013]. The biological impact of a 

central Pacific El Niño is limited to decreased CHL in the central Pacific, while wind-

driven equatorial and coastal upwelling farther east continue to support productivity. 

Because a central Pacific El Niño does not experience basin-wide relaxation of the 

thermocline slope, its effect on nutricline depth and biological processes is localized to 

150-180oE and less pronounced than that of an east Pacific El Niño, as evidenced in 

Figure 4.4 and the figure by Turk et al. [2011] shown in Figure 1.6 as well as other 

studies [DiLorenzo et al., 2010; Radenac et al., 2012; Messie and Chavez, 2012]. Coastal 

and equatorial upwelling in the east continue, thus a central Pacific El Niño has a smaller 

effect upon primary productivity over the entire region than that of an east Pacific El 

Niño. At the termination of any El Niño, the normal west-east thermocline slope returns 

or develops an exaggerated slope corresponding to La Niña.  

The opposite ENSO phase, La Niña, manifests as enhanced equatorial upwelling 

(negative SST, MLD and SSH anomalies) lifting deep nutrients into the euphotic zone 

and resulting in positive CHL anomalies throughout the cold tongue. During the 
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reconstructed period, La Niña events (ONI < -1) began in 1964, 1970, 1973, 1975, 1988, 

1998, and 2007, with examples shown in Figure 4.5. Although some studies have noted 

increasingly frequent El Niño events limited to the central Pacific and fewer La Niña 

events, in this study there is no clear trend toward more frequent central Pacific El Niños 

nor less frequent La Niñas during the reconstructed CHL time series, but rather evidence 

that lower frequency variability impacts interannual variability.  

 

Figure 4.5 Annual CHL anomalies during very strong La Niña events (ONI < - 2) that peaked 

during 1973 (top), 1988 (middle), 1999 (bottom). Averages centered on December +/- 6 months. 
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The unique perspective provided by a 51 year ocean color CHL reconstruction in 

the tropical Pacific shows the dominance of the ENSO pattern on ocean biology, the 

difference between eastern and central Pacific El Ninos, and slower changes that impact 

the strength of the interannual patterns. The interannual spatial patterns in the multi-

decadal CHL reconstruction are roughly consistent with those identified by several 

previous studies, namely the ocean color distributions associated with different phases 

and eastward extents of ENSO [e.g. Wilson and Adamec, 2001; Ryan et al., 2002]. If 

central Pacific El Ninos increase in frequency, as some have suggested, then prevailing 

equatorial biological dynamics would be expected to change [Turk et al., 2011; Gierach 

et al., 2012; Radenac et al., 2012]. During the reconstruction period, central Pacific El 

Nino events appeared more pronounced in 1994, 2002, 2004 than in 1958, 1968, 1986, 

meaning that negative CHL anomalies were increasingly negative between 150-180oE 

with stronger positive anomalies farther east toward the end of this study. The last decade 

of the reconstruction (i.e. the SeaWiFS period used in previous studies) was more 

productive in the tropical Pacific overall than the preceding four decades, owing in part to 

lower frequency oscillations that will be discussed next. 

 

4.2.2 Decadal patterns in chlorophyll 

A multi-decadal CHL reconstruction enables the first synoptic view of slow 

changes in a tropical Pacific biological record. While the interannual ENSO patterns are 

clearly the dominant signal in the tropical Pacific biology, there are some interesting 

decadal patterns that appear to enhance or dampen interannual patterns. As shown in 

Figure 4.6, the first decade of the reconstruction period (1958-1967) had close to average 
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CHL amounts over most of the tropical Pacific with the exception of the Costa Rica 

Dome where CHL was higher than normal; elsewhere there was slightly higher CHL in 

the cold tongue except along the equator where CHL was lower. Between 1968-1977, 

there were much higher CHL values near Central America and the cold tongue except 

along the equator east of 160oW where it was lower; over much of the warm pool in the 

west, CHL was lower than average. Between 1978-1997, the pattern reversed: lower 

CHL values around the Costa Rica Dome and in the cold tongue, with higher values in 

the warm pool and along the equator east of the dateline. For the last decade of the 

reconstruction, 1998-2007, the pattern nearly reversed again with higher CHL around the 

Costa Rica Dome and the cold tongue. However, this decade did not have an opposite 

CHL anomaly along the equator. The cold tongue did not extend as far west and north, 

likely due to several central Pacific El Niños between 2002-2005 that seemed to have a 

strong impact on the decadal average, giving it more similarity to the 2004 annual 

average (Figure 4.4, bottom). An inspection of monthly and annual anomalies shows that 

by 2008 the pattern resembled the 1968-1977 decadal average. Decadal variability in the 

Pacific is typically evaluated using the PDO index. The climate forcing mechanisms 

causing these interannual and decadal differences in ocean biology across the tropical 

Pacific are considered next. 
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Figure 4.6 Decadal averages of reconstructed CHL anomalies, as annotated for 1958-2007. 
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4.3 The connection between large-scale climate oscillations and biology 

Climate oscillations are recurring fluctuations in the ocean-atmosphere system 

that are evident in physical variables, such as temperature, and sometimes evident in 

biological records. One way to classify a quasi-periodic pattern that has been identified 

but not yet attributed to a known mechanism is through a climate index that uses several 

physical variables representative of the large-scale phenomena [Drinkwater et al., 2010]. 

The National Weather Service Climate Prediction Center calculates the Ocean Niño 

Index (ONI), which is one index among many used to represent the interannual ENSO 

signal. Although ENSO has been discussed extensively in many observational and 

modeling studies over the past 30 years, skill of its prediction has declined in the past 

decade indicating the limitations of current understanding [McPhaden, 2012].  

The Pacific Decadal Oscillation (PDO) is an index created by Nate Mantua at the 

University of  Washington’s Joint Institute for the Study of the Atmosphere and Ocean 

that represents decadal forcing in the Pacific. PDO is the oceanic expression of the 

dominant ocean-atmosphere variability in the North Pacific and provides a link between 

the tropics and extra-tropics. Proxy and instrumental records support the idea that PDO 

variability originates in the tropics [Evans et al., 2001], with the greatest effect upon 

climate and biology outside the tropics [Hare and Francis, 1995; Mantua et al., 1997; 

Mantua and Hare, 2002]. The PDO cool phase is characterized by stronger tropical 

easterly trade winds, a steeper west-east pycnocline slope along the equator and enhanced 

upper ocean meridional overturning circulation [McPhaden and Zhang, 2002] which all 

support greater upwelling along the equator. Where the nutricline is shallow enough, this 

upwelling supplies nutrients to fuel phytoplankton blooms, similar to a La Niña pattern. 
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By contrast, during a warm PDO phase, easterly trade winds weaken, the normal west-

east pycnocline slope relaxes, meridional overturning circulation slows and equatorial 

upwelling decreases. A PDO warm phase tends to enhance an El Niño pattern and 

suppress a La Niña pattern while the PDO cool phase tends to do the opposite. 

Reconstructed CHL cross-correlated to the 12-month smoothed ONI and PDO indices 

shows ENSO with the dominant correlation, but PDO significant as well with a similar 

pattern over most of the region (Figure 4.7). 

 

 

Figure 4.7 Top: monthly variation in ONI from NWS CPC (red) and PDO from UW JISAO (blue) 

indices smoothed over 12 months. Middle: CHL anomalies correlated with DJF ONI (1958-2008). 

Bottom: CHL correlated with PDO.  
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As evidenced in the plot of ONI and PDO (Figure 4.7, top), six years were 

classified as weak to strong La Niña events (ONI < -0.5) compared to five comparable El 

Niño events (ONI > 0.5) during the cool PDO phase between 1958-1976. During the 

warm phase between 1977-1998 there were seven El Niños, two very strong (ONI > 2), 

and four La Niña events, one of which was strong. The cross-correlation between ONI 

and CHL indicates an inverse relationship over most of the tropical Pacific with positive 

correlations in the west Pacific warm pool and around the edges of the tropics (Figure 

4.7, middle). The correlation between PDO and CHL also has an inverse relationship 

over most of the tropical Pacific with a cool or negative PDO phase associated with 

greater CHL, except in the west Pacific warm pool and around the edges of the tropics 

and a narrow band along the equator between 120-150oW, coincidentally where the 

correlation between CHL and ONI is weaker (Figure 4.7, bottom). The pattern between 

CHL and the PDO index in this narrow equatorial band implies the PDO warm phase is 

associated with greater CHL while the cool phase is associated with less CHL. Why the 

warm phase of the PDO is associated with greater CHL in this band and the cool phase 

with less will be explored later in this chapter. In addition to the PDO strengthening or 

weakening individual El Niño and La Niña events, modelling studies show these low 

frequency changes to ENSO have a significant impact on circulation at interdecadal and 

century timescales [Mann et al., 1995]. 

The ONI is centered on Niño 3.4 and characterizes all El Niño events, while the 

distinction between east Pacific (EP) El Niño and central Pacific (CP) El Niño is captured 

in the EP and CP indices created at UC Irvine (http://www.ess.uci.edu/~yu/2OSC/). The 

strength of the EP ENSO is determined by removing the Niño 4 SST index and then 



 

 119 

performing a regression-EOF analysis on the SST anomalies. The strength of the CP 

ENSO is calculated likewise except by removing the Niño 1&2 index. These two types of 

El Niño are distinguished by their evolution and teleconnections: an EP El Niño is more 

strongly linked to thermocline variation and is generated through tropical atmospheric-

oceanic coupling while a CP El Niño is more strongly associated with subtropical Pacific 

atmospheric forcing which has teleconnections to the Asian-Australian monsoonal 

variation [Yu and Kao, 2007; Kao and Yu, 2009; Yu et al., 2012]. 

The CHL reconstruction was cross-correlated against the UC Irvine EP and CP 

ENSO indices to further compare and contrast the discernable effect central and eastern 

Pacific extents of El Niño has upon biology (Figure 4.8). Both have significant 

correlations with CHL: the relationship with the EP indicates an unsurprising spatial 

distribution in contrast to the CP pattern. An EP El Niño deepens the thermocline across 

the basin, shutting down the vertical nutrient supply along the equator and resulting in 

less CHL eastward of 180o as reflected in the negative CHL-EP cross-correlations 

(Figure 4.8, top). The spatial pattern displayed by the correlation of CHL with the CP El 

Niño is remarkably similar to the correlations with the PDO, most notably for the 

narrow band along the equator between 110-130oW (Figure 4.8, bottom). The CP index 

correlates more closely with ONI (r = 0.75) than with PDO (r = 0.46). A CP El Niño 

extends to Niño 4 but not farther eastward than 180o, interrupting the upwelling and 

advection of nutrients and causing negative CHL anomalies in the central Pacific, but 

allowing equatorial upwelling to continue to provide nutrients to surface waters in the 

east. The distinctions in the CHL patterns between PDO warm and cool regimes are 

explored in greater depth next. 
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Figure 4.8 Top: monthly variation in EP (red) and CP (blue) indices smoothed over 12 months. 

Middle: CHL correlated with EP index (1958-2008). Bottom: CHL correlated with CP index.  

 

The reconstruction starts and ends during a cool phase of the PDO. Between 1977 

through the mid 1990s, a warm phase of the PDO dominated. Reconstructed CHL 

anomalies were averaged from 1958-1976 during the cool phase (Figure 4.9) and from 

1977-1995 during the warm phase (Figure 4.10). The PDO cool phase had higher CHL 

over the tropical Pacific in a horseshoe pattern, with lower CHL along the equator east of 

the dateline, in the west Pacific warm pool and toward the edges of the tropics.  
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CHL anomaly averaged over cool PDO phase (1958 – 1976) 

  
 

Figure 4.9 Cool phase, 1958-1976, average CHL anomalies with Niño regions delineated (top); time 

series averaged over Niño regions (bottom).  

 
Positive CHL anomalies dominate most of the region during the cool phase, but 

negative anomalies dominate along the equator, with the exception of the west half of 

Niño 4 (Figure 4.9, top). Time series averaged over each Niño area (Figure 4.9, bottom) 

indicate large negative anomalies associated with the strong El Niños of 1957/58, 

1965/66, and 1972/73. La Niña years had the opposite, not equal, effect as slight positive 

CHL anomalies in 1964/65, 1966-1968, 1970/71, 1973/74. Niño 1&2 had the largest 

variations. Equatorial Niño areas had damped amplitudes by comparison. El Niño was 

stronger in Niño 3 than Niño 4 during 1965/66, contributing to the lower CHL average 

eastward of the dateline. The La Niña events in 1970/71 and 1973/74 were stronger in 

Niño 4 than Niño 3, supporting higher mean CHL values in Niño 4 over the cool era. 
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CHL anomaly averaged over warm PDO phase (1977 – 1995) 

 

Figure 4.10 Warm phase, 1977-1995, average CHL anomalies with Niño regions delineated (top); 

time series averaged over Niño regions (bottom).   

 

The warm phase of the PDO experienced the reverse pattern (Figure 4.10), 

averaged here between 1977-1995 to avoid the extreme El Niño of 1997/98. Although 

negative CHL anomalies predominated in most of the tropical Pacific, there was a band 

of positive anomalies along the equator between 110-160oW (Figure 4.10, top). The 

corresponding time series (Figure 4.10, bottom) demonstrate the largest decreases during 

strong El Niño years: 1982/83, 1991/92 and moderate in 1986/87 and 1994/95. The large 

La Niña in 1988/89 corresponded with increases. Again, greatest magnitudes were for 

coastal Niño 1&2, with equatorial Niño areas having damped amplitudes. Plotting CHL 

anomalies by month and averaging over warm and cool phases of the PDO confirms that 

the cool era had more CHL overall with different annual cycles for each PDO phase and 

Niño area despite large interannual scatter (Figure 4.11).  
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Figure 4.11 Niño 4 (top left), Niño 3.4 (top right), Niño 3 (bottom left), Niño 1&2 (bottom right).  

CHL anomaly (mg m-3) averaged for cool (____) and warm (____) PDO phases and each month (x 

and +). Months range from 0 (January) to 12 (December).  

 

During the PDO cool phase, average seasonal cycles in all areas had sharp 

decreases in CHL roughly between October and February with gradually increasing CHL 

during the rest of the year. The warm regime had increasing CHL between February and 

July, declining the rest of the year. In the difference between the two PDO eras, warm 
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phase minus cool shown in Figure 4.12, it is apparent that the warm phase of the PDO 

generally experienced less primary production except for the narrow band of positive 

anomalies along the equator between 110-160oW and in the west Pacific warm pool. 

Along the equator east of the dateline (Niño 3 and Niño 3.4), positive CHL anomalies 

were greater and negative anomalies smaller during the warm regime. West of the 

dateline (Niño 4) and away from the equator, the differences were reversed: the cool 

regime had positive CHL anomalies. Physical forcing differences between the PDO 

phases that could impact timing and location of phytoplankton blooms are explored next.  

 

 

Figure 4.12 CHL differences over a PDO cycle: warm phase (1977 – 1995) minus earlier cool phase 

(1958 – 1976). Niño regions are delineated.  

 

4.3.1 Physical forcing of biology evidenced at the ocean’s surface 

The physical variables were averaged for the same cool and warm PDO time 

periods and then differenced, warm minus cool, shown in Figure 4.13. SST differences 

confirm the warmer warm phase across the tropical Pacific, except for negligible 

differences in the west away from the equator (Figure 4.13, top). SST differences do not 
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have the same spatial distribution as CHL because the CHL shift only occurs in places 

where the nutricline rises into the euphotic zone in the equatorial upwelling zone. More 

importantly, the difference map demonstrates that using SST as a proxy within a CHL 

reconstruction does not merely reflect a change in SST. Likewise, SSH differences also 

do not have the same distribution as CHL, as well as being different from SST. For the 

Nino areas along the equator, SSH differences between the cool to the warm regime 

reflect that SSH decreased in the west Pacific and increased in the east Pacific (Figure 

4.13, second). Away from the equator, SSH increased with greatest positive differences 

near 10oN. Winds variables also indicate differences between regimes that may have 

contributed to the CHL patterns. Zonal wind stress (τX) had maximum increases between 

regimes along the equator between 110-140oW where winds were anomalously easterly 

during the cool phase and westerly during the warm (Figure 4.13, third). Meridional wind 

stress (τY, not shown) indicates a southerly anomaly between 0-5oN during the warm 

phase that would tend to support equatorial convergence, with the opposite pattern 

supporting divergence during the cool phase. Wind stress magnitudes indicate that winds 

were stronger in the central Pacific during the warm phase, but stronger in the east Pacific 

during the cool, not shown here. Wind stress curl (  τ) was greater or more cyclonic 

toward the equator during the warm phase (Figure 4.13, bottom). Winds transfer 

momentum, cause vertical mixing of the ocean’s surface layer, and may induce upwelling 

in combination with the Coriolis force and geography, but winds only lead to 

phytoplankton blooms if they act together with a nutricline shallow enough to lift 

nutrients into the euphotic zone. 
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  warm PDO phase (1977-1995) - cool PDO phase (1958 – 1976) 

 

Figure 4.13 Average differences in physical variables between the warm and cool regimes: SST 

(top), SSH (2nd from top), zonal wind stress (3rd from top), wind stress curl (bottom). Niño areas are 

delineated. Missing data are shaded white. 
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A zonal band of greater wind stress curl between the equator and 10oN coincides 

with the North Equatorial Current (NEC) and Counter Current (NECC). Here there were 

stronger positive wind stress curl anomalies during the warm phase and more negative 

wind stress curl anomalies in the cool phase. Wind stress triggers westward propagating 

long baroclinic Rossby waves around 5-6oN that influence the intensity of the NECC and 

cause a southward shift during El Niño events with up to 25% larger transport [Johnson 

et al., 2002; Hsin and Qiu, 2012]. Since the NECC is a surface current, it has an indirect 

effect on CHL. Away from the equator, positive wind stress curl can cause Ekman 

pumping (wek), as shown in equation (1) from section 2.4.1, which could raise or lower 

the nutricline into or out of the euphotic zone. The cool phase experienced downward 

Ekman pumping within 5o of the equator (Figure 4.14), depressing the nutricline there. 

 

PDO cool phase average Ekman pumping (1958 – 1976) 

 
 
Figure 4.14 Ekman pumping averaged over the PDO cool phase from 1958-1976 (top), with time 

series averaged over each Nino area as indicated (bottom): positive is upward, negative is downward. 
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The warm regime experienced upward Ekman suction within 5o of the equator 

(Figure 4.15), which could have lifted nutrients into the euphotic zone if the nutricline 

was shallow enough. CHL anomalies might be correlated to Ekman pumping, with less 

CHL during downward pumping and more during upward suction, yet only the 

anomalous band of CHL along the equator is consistent with this generalization and it 

would be a neighborhood effect since Ekman pumping depends upon the Coriolis force 

that goes to zero on the equator. CHL in the rest of the region not being consistent with 

average Ekman pumping could indicate that the nutricline was too deep in those areas for 

Ekman pumping to supply nutrients to fuel phytoplankton blooms at the surface. Off the 

equator, a combination of waves, eddies and horizontal advection may have supplied 

nutrients to the cold tongue. 

PDO warm phase average Ekman pumping (1977-1995) 

 
Figure 4.15 Ekman pumping averaged over the PDO warm phase from 1977-1995 (top), with time 

series averaged over each Nino area as indicated (bottom): positive is upward, negative is downward. 
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To further explore causes for the anomalous CHL band along the equator in Niño 

3 and 3.4, inner areas were defined as +/- 3o of the equator and outer areas were defined 

from 3-10oN. As shown in Figure 4.16, El Niño events during the cool PDO phase had 

CHL decrease in the inner equatorial areas preceding the outer areas. During La Niña, 

however, CHL increased simultaneously for all areas, but the CHL anomalies away from 

the equator continued to increase longer to a greater magnitude while CHL anomalies in 

the inner areas decreased sooner to lower values. During the warm PDO regime, the areas 

away from the equator had larger negative CHL anomalies while CHL in the inner 

equatorial area recovered faster from El Niño and experienced positive anomalies during 

several years that the outer areas did not, namely in 1984, 1990, 1992, 1994  (Figure 4.16, 

bottom panel). Generally, CHL anomalies in the inner equatorial areas seemed to 

experience the less common ENSO phase more intensely (e.g. El Niño during the cool 

PDO era, La Niña during the warm PDO era), while CHL anomalies away from the 

equator were consistent with prevailing PDO and ENSO states.  

CHL anomalies were cross-correlated against physical variables for the inner and 

outer areas within Niño 3 and 3.4 during the warm and cool PDO regimes to determine 

physical mechanisms impacting biology. Variables were cross-correlated for up to six 

month leads and lags; quarterly averages were compared. Only zero lag, plus and minus 

one quarter are included in Table 4.1 as no correlations were significant beyond that, with 

r > 0.38 the highly statistically significant threshold (p<0.001). SST had the strongest 

significant correspondence with CHL everywhere, inverse for all areas during both 

regimes. SSH was significantly correlated to CHL in Niño 3, declining slightly in Niño 

3.4 where correlations between wind and CHL increase.  
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CHL anomaly during cool PDO phase (1958 – 1976) 

 

CHL anomaly during warm PDO phase (1977-1995) 

 

Figure 4.16 Niño 3 and 3.4 divided into inner (3oS-3oN) and outer (3-10oN) areas: CHL averaged 

over the cool PDO regime from 1958-1976 (top) and corresponding time series averaged over the 

delineated areas (2nd panel). CHL averaged over the warm PDO regime from 1977-1995 (3rd panel) 

and corresponding time series for the delineated areas (bottom).  
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Easterly trade winds support equatorial upwelling that can bring deep nutrient-

rich water toward the surface to fuel phytoplankton blooms. Over both PDO eras, zonal 

wind stress (τX) anomaly correlations with CHL were inverse everywhere, except the 

Niño 3 outer area (Table 4.1). Zonal wind stress had the largest, inverse correlation to 

CHL anomalies for the inner area of Niño 3.4 (r ~ -0.7), second only to the inverse 

correlation between SST and CHL there (r ~ -0.9). Westerly τx anomalies are generally 

associated with El Niño events, particularly in Niño 4. Strong El Niños during both 

regimes were associated with positive τx anomalies and negative CHL anomalies. 

Positive τX anomalies over the inner areas would result in less surface divergence and 

equatorial upwelling, contributing to negative CHL anomalies. Indeed, during both 

regimes, the correlations between zonal wind stress and CHL were generally inverse, yet 

the averages over both PDO eras shows that during the warm, both τX and CHL were 

positive for the band along the equator; during the cool, they were negative.  

The PDO warm regime experienced more westerly wind anomalies more 

frequently and to a greater magnitude, as shown in Figure 4.17. The warm era had four 

strong El Niño events; the cool regime had three, contributing to the average τX 

differences. Stronger, more frequent El Niños during the PDO warm era are consistent 

with the τx and SST PDO anomalies, but inconsistent with CHL PDO anomalies in the 

narrow band along the equator. To explore whether the anomalous CHL average along 

the equator could be due to a stronger response to El Niño during the cool regime and to 

La Niña during the warm one, quarterly and annual averages were compared over both 

eras to try to understand the variability in the relationship between zonal winds and CHL. 
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Zonal wind stress averaged over PDO cool phase (1958 – 1976) 

 
  
Zonal wind stress averaged over PDO warm phase (1977 – 1995) 

 

Figure 4.17 Zonal wind stress anomalies for same time periods and areas as Figure 4.17: Niño 3 

and 3.4 divided into inner (3oS-3oN) and outer (3o-10oN): Cool PDO era average anomalies (top) and 

time series over inner areas (2nd panel). Warm PDO era average (3rd panel) and times series (bottom).  
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The variability in zonal wind stress quarterly and annual averages were compared 

to CHL anomalies over both eras for the narrow equatorial band with the opposite CHL 

response. Zonal wind variability (e.g. standard deviations or maximums normalized by 

the mean) had no discernable effect upon CHL response. Quarterly zonal wind anomalies 

plotted against quarterly CHL anomalies (Figure 4.18) have an inverse relationship 

during both eras, with more scatter during the warm era due to greater variability in zonal 

winds during the more frequent El Niño events then. 

 

Figure 4.18 Quarterly zonal wind stress anomalies and CHL anomalies for the equatorial band 

(3oS-3oN, 110-150oW) during the cool PDO era (blue +) and warm PDO era (red x). 

 

Whether the interannual El Niño pattern dominated the long-term average over 

the PDO regimes and whether the type of El Niño events, east or central, contributed to 

the anomalous equatorial band is now explored. Monthly zonal wind anomalies were 

plotted against the monthly CHL anomalies for the east Pacific El Niño events (EP > 1) 

and central Pacific El Niño events (CP > 1). While zonal winds were generally positive 

and CHL negative during all El Ninos, there was no consistent relationship between zonal 

winds and CHL for the central Pacific El Ninos, likely because central Pacific El Niños 

are associated with variation in the northern subtropical high pressure [Yu et al., 2012]. 
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Conversely, east Pacific El Niños had some outlying negative zonal winds during the 

decay of the 1982/83 El Nino that lead to an overall positive correlation between zonal 

winds and CHL, inconsistent with the inverse correlation in the time series over the warm 

and cool eras and unlikely to indicate any meaningful tendency. Overall, there did not 

appear to be a consistent difference in zonal winds and CHL between east Pacific or 

central Pacific types of El Niño. Comparing observations of pycnocline flow over the 

past 50 years, McPhaden and Zhang [2002] found a 25% decrease in equatorial upwelling 

between the 1970s and 1990s as the PDO oscillated from cool to warm phase. Whether 

this CHL pattern is a manifestation of the slow down in meridional overturning 

circulation reported between PDO eras is investigated next with a focus on how such 

subsurface forcing could impact primary production at the ocean’s surface. 

 

4.3.2 Subsurface physical forcing and its impact on biology 

In addition to responding to changes in wind-driven mixing, surface CHL 

anomalies may respond to deeper ocean dynamics at low frequencies. As introduced in 

section 2.4.2, the waters of the tropical Pacific contain two distinct nutrient regions due to 

the prevailing winds: macronutrient-rich waters in the eastern cold tongue where easterly 

winds predominate, and the oligotrophic surface waters of the warm pool in the west [Le 

Borgne et al., 2002]. In the nitrate climatology from the World Ocean Atlas, most nitrate 

at 100m is found in upwelling regions off the west coast of Central and South America 

and near the equator (Figure 4.19, top); the nutricline slopes west-east, as shown in the 

zonal cross-section (Figure 4.19, middle); upwelling along the equator and Costa Rica 

Dome to the north is seen in the meridional transect along 110oW (Figure 4.19, bottom).  
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Figure 4.19 Nitrate climatology, World Ocean Atlas 2009. Top: Nitrate map at 100m with zonal, 

meridional transects (white lines). Middle: Nitrate profile at 0oN. Bottom: Nitrate profile at 110oW. 

 

Despite an abundance of macronutrients, the east tropical Pacific is an iron-

limited, high-nutrient, low-chlorophyll region. Zonal transects have confirmed that iron 

enters the eastward-flowing Equatorial Undercurrent (EUC, recall Figure 2.12) from 

sedimentary sources on the coastal Papua New Guinea slope in the west [Gordon et al., 

1997; Mackey et al., 2002a; 2002b; Slemons et al., 2010]. The 1997/98 El Niño CHL 

minimum in the east Pacific was linked to EUC cessation; its recommencement preceded 

the end of El Niño by several months [Wilson and Adamec, 2001]. Subsurface current 

structure has been used to infer EUC iron transport [Ryan et al., 2002]. The EUC was 

observed by Acoustic Doppler Current Profilers (ADCP) from the Tropical Atmospheric-
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Ocean/Triton Array nearly continuously between 1990 and 2010, revealing its intensity 

and vertical migration. The TAO/Triton ADCP record at 140oW began after the PDO 

cool phase that ended in 1976, but it shows some differences in the EUC between the 

warm phase that ended around 1998 and the cool phase that followed (Figure 4.20).  

 

Figure 4.20 Zonal velocity (cm s-1) from the TAO/Triton equatorial ADCP at 140oW from April, 

1990 through 2008 (bottom axis) with the depth (left axis) and strength of the EUC (color bar). 

Positive velocities are eastward. Figure courtesy of TAO Project Office/PMEL/NOAA. 

 

The eastward EUC tended to be deeper and weaker during the warm phase (1990-

1998) and shallower and stronger during the cool (1999-2010). The ADCP readings at 

165oE, 170oW, and 110oW confirm this shoaling tendency by the EUC, which at first 

seems consistent with the finding that there was a slowdown in the upper tropical Pacific 

circulation during the PDO warm phase [McPhaden and Zhang, 2002].  
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Recent modeling studies predict a strengthening of the EUC in response to 

anthropogenic forcing [Luo et al., 2009; Sen Gupta et al., 2012]. A long-term 

strengthening of the EUC since the mid-1800s has been observed in the SODA 2.2.6 

assimilation of ocean general circulation models with quality-controlled observations of 

SST [Drenkard and Karnauskas, 2014]. Inspection of SODA zonal velocities since 1958 

show that between 120-150oW the EUC shoaled most during La Niña events (~30m) 

compared to its background state, with a long-term trend of a ~20m shallower EUC over 

the 50 years of the reconstruction, as shown in Figure 4.21 for 130oW.  

 

Figure 4.21 Depth of the EUC (m) in SODA at 130oW between 1958 and 2008. Individual data 

points are shown (·) and plotted as a line that was smoothed over 12 months. 

 

While variations in the EUC depth due to ENSO are apparent, a prominent long-

term shoaling trend obscures decadal patterns, as shown in Figure 4.22. Between 120-
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150oW, the average EUC depth during the PDO cool phase (1958-1976) was 120m; then 

110m during the PDO warm phase (1977-1995), and 102m during the beginning of the 

later cool phase included in this study (1998-2008). The average shoaling trend in EUC 

depth between 1958 and 2008 was more than 0.5 m yr-1. A shoaling trend by the EUC is 

evident at varying magnitudes over most of the basin from a maximum of ~1m yr-1 near 

150oE while east of 100oW the maximum zonal velocity had a deepening trend (Figure 

4.22). The impact of these changes in the EUC speed and depth on biology over the long-

term is explored next. 

 

Figure 4.22 EUC depth averaged over the PDO phases: lines indicate average values at each 

longitude over the PDO eras; median values are included for the cool (x) and warm (+) phases.  

 

The conceptual model of the equatorial Pacific is that the easterly trade winds 

typical along the equator cause the surface layer to pile up in the west, forcing the 
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pycnocline and EUC to slope downward there. A pycnocline that is deep in the west and 

shallow in the east induces a geostrophically balanced meridional inflow towards the 

equator in both hemispheres [McCreary and Lu, 1994]. Anomalous westerly winds near 

the equator cause the pycnocline tilt to relax, resulting in deepening in the east, shoaling 

in the west, and reduced equatorward geostrophic transport. McPhaden and Zhang [2002] 

found that the depth of the pycnocline became shallower by about 10–30m west of 

160°W and deeper by about 10–30m between 120°–150°W in the 1990s relative to the 

1970s. Consistent with the findings of McPhaden and Zhang [2002], from the cool phase 

of the PDO (1958-1976) to the warm (1977-1995), the EUC became 20m shallower west 

of 160°W and about 10m deeper east of 100oW, indicating a steeper pycnocline tilt 

during the cool phase. Between 120-150oW, the EUC was 20m shallower during the 

warm phase compared to the cool, a significant difference because it raised the EUC 

toward the euphotic zone, extending to a depth of approximately 100m [Chavez et al., 

1999]. During the first cool phase, the EUC did not rise to that depth until east of 120oW. 

This EUC depth difference could explain the anomalous CHL band between 120-150oW 

during both eras: during the warm era, the EUC was shallower and supplied iron to the 

euphotic zone in this band. Furthermore, during the last decade of the reconstruction, the 

EUC was even shallower and the entire cold tongue displayed high CHL with no 

anomalous equatorial band between 120-150oW (recall Figure 4.6), consistent with the 

EUC supplying iron to the otherwise high-nutrient, low-chlorophyll cold tongue and 

influencing low frequency CHL variability. While this theory is logical, it is only as good 

as the SODA reanalysis upon which it is based. Assuming that SODA zonal velocities are 

representative of the real ocean, this explanation is plausible. For further corroboration, 
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CHL was compared to surface layer iron from the fully-coupled physical biogeochemical 

model [Wang et al., 2008] detailed in section 3.2.4. The location of recurring anomalous 

CHL is delineated by the blue box in Figure 4.23 and plotted against corresponding iron 

integrated over the euphotic zone to the 1% light level, defined as 60m by Ryan et al. 

[2002]. Strong correlation (r~0.7) confirms that higher amounts of iron covary with 

greater CHL. By contrast, in the west the EUC is far below the euphotic zone; there is 

negligible surface layer iron and it has a weak correlation with CHL (r~0.5). 

  

Figure 4.23 Reconstructed CHL anomalies averaged 1988-2008 (top) with blue box on the equator 

corresponding to the blue (x) in the scatter plot (below) of the monthly CHL against modeled iron 

[Wang et al., 2008] integrated over the euphotic zone (r~0.7). The red box on the equator in the west 

corresponds to the red (☐ ) in the scatter plot and smaller cross-correlation (r~0.5). 
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Other studies have linked phytoplankton bloom episodes to the efficiency of the 

vertical processes that lift nutrients into the euphotic zone, namely the shoaling of the 

EUC and the strength of easterly trade winds [Wilson and Adamec, 2001; Ryan  et al., 

2002; Messie et al., 2006; Gierach et al., 2013]. The shoaling of the EUC is here shown 

to be the primary driver of low frequency patterns in phytoplankton blooms along the 

equator, which can differ from the prevailing ENSO or PDO pattern. The easterly trade 

winds influence larger-scale bloom patterns over the tropical Pacific in general, but have 

much less of a correspondence to the anomalous CHL band along the equator over the 

long-term average.  

 

4.4 Implications for higher trophic levels 

Climate oscillations affecting phytoplankton have implications for higher trophic 

levels. Although the mechanism for biological regime shifts are not completely 

understood, fluctuations of fish stocks in widely separated regions over long term 

records, on the order of 100-1000 years, support a view of global scale climate influence 

[Schwartzlose et al., 1999; Cury et al., 2007]. Two categories of mechanisms have been 

ascribed to fisheries regime shifts: continuous modification (e.g. trends in food or 

temperature) or episodic environmental events over a season that trigger ecosystem 

changes [Schwartzlose et al., 1999]. Changes in gyre circulation exert a major influence 

on interdecadal shifts. The direction and velocity of atmospheric circulation, ocean 

currents and upwelling affect the rate of nutrient transfer into the euphotic zone, which in 

turn affects primary production and has been correlated to the harvest of small pelagic 

fish [Bakun, 1990; Bakun and Cury, 1999]. Tuna populations across the tropical Pacific 
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respond to large climatic changes and are projected to be redistributed as the warm pool 

expands [Lehodey et al., 1997; Bell et al., 2013]. Multidecadal fluctuations of fish in the 

Japan-Kuroshio, California, Peru-Humboldt, and even Australia systems have been 

shown to have cross-basin synchrony driven by similar climatic forcing rather than 

fishing pressure [Kawasaki, 1983; Schwartzlose et al., 1999; Bakun, 2001]. It has been 

noted that biological regime shifts sometimes precede physical variability, suggesting the 

possibility of marine organisms as harbingers of climate shifts [Hare and Mantua, 2000; 

Chavez et al., 2003]. The CHL reconstruction is compared to fish data to look for low 

frequency patterns in basin-scale primary production that could impact higher trophic 

levels through bottom-up control. 

Nearly 70% of the world’s tuna harvest comes from the Pacific, with Skipjack the 

dominant species in the region, distributed throughout the equatorial and subtropical 

surface mixed layer, but predominately found around the eastern edge of the west Pacific 

warm pool [Lehodey et al., 1997]. This front is the boundary between eastward currents 

in the warm pool and westward currents in the cold tongue and its zonal extension is 

primarily influenced by ENSO variability [LeBorgne et al., 2002]. The tuna population 

has been observed to shift eastward with the convergent front during El Niño and 

westward during La Niña events. Because the front consists of a warm, fresh layer at the 

surface, the barrier layer, above more saline, warm waters above the thermocline, SST is 

known to be an unrealiable indicator of its eastern boundary. Cruises to sample the east 

edge of the warm pool hydrography, nutrients and biology concluded that the edge is 

coincident with the western limit of CHL during active upwelling, but may become 

separated if upwelling stops, for example in the event of a downwelling Kelvin wave in 
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which the salinity and CHL fronts separated by 2-5o while zooplankton biomass did not 

separate from the hydrological boundary [Rodier et al., 2000]. Surface salinity and ocean 

color data have both been used to identify the eastern edge of the warm pool, where the 

frontal zone is defined as 0.1 mg m-3 CHL concentration [Maes et al., 2010]. To delineate 

this edge and compare it to tuna distributions collected during 1988-1995 by Lehodey et 

al. [1999], reconstructed CHL were averaged between 5oN-5oS at each longitude, 

smoothed over three months and six degrees (Figure 4.24).  

 

Figure 4.24 Left: Monthly CHL where the thick black contour demarcates 0.1 mg m-3. Niño 4 is 

between dotted and solid lines; Niño 3 is east of solid line.  Right: Monthly mean tuna catch per unit 

effort (CPUE) where the pink line indicates the longitudinal center of gravity of CPUE, the blue line 

indicates the 29oC SST isotherm, the dashed red line indicates the Southern Oscillation Index. All 

variables were smoothed over three months. Figure on right from [Lehodey et al., 1997].  
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For six of eight years included in the tuna study, 1988-1993, the longitudinal 

variation of the 0.1 mg m-3 CHL contour aligns more closely with the distribution of tuna 

catch per unit effort (CPUE) over time than the SST front. The median separation 

between the tuna distribution indicated by the center of gravity of the CPUE and the CHL 

edge was 9o, compared to 18o for the SST definition. The RMS error is 12o between the 

CPUE longitude and the CHL edge and 25o between CPUE longitude and the SST edge. 

For example, in 1992 the tuna CPUE and 0.1 mg m-3 CHL contour reached their 

maximum eastward extent near the dateline and 170oW, respectively while the 29oC SST 

contour was located near 150oW, a 30o or >3,000km discrepancy. Likewise, from 1988-

1990 the tuna CPUE and the CHL contour averaged within 10o of each other, while the 

SST contour averaged 15o farther east.   

To compare the east edge of the warm pool defined by the 0.1 mg m-3 CHL 

contour to climate indices, the contour was smoothed over 12 months over the entire 

reconstruction time series, along with the ONI and PDO indices. The CHL contour most 

closely corresponds to the ENSO signal (r = 0.85), shifting eastward during El Niño and 

westward during La Niña, followed by the PDO with a lesser but still significant 

correlation (r = 0.61). Plotting the east edge next to the ONI index to represent ENSO and 

the PDO index demonstrates this correspondence through the span of the reconstruction 

(Figure 4.25). Only three of the strongest El Niños of the period pushed the edge east of 

the dateline (1957/58, 1982/83, 1997/98). The significant correlation of the CHL contour 

with ENSO and PDO is not surprising given the dominant effect physical forcing has on 

biology, yet there remains some variability in the CHL data that is not associated with 

typical climate indices. Smaller scale, localized forcing of primary production as well as 
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non-physical factors (e.g. fishing pressure, migration of the tuna or their prey) could 

influence the location of this species that occupies a niche near the top of the food web. 

               

Figure 4.25 Left: Monthly CHL where contour demarcates 0.1 mg m-3 smoothed over 12 months. 

Niño 4 is between dotted and solid lines; Niño 3 is east of solid line. Right: Oceanic Niño Index (ONI) 

in black and Pacific Decadal Oscillation (PDO) in red, both smoothed over 12 months.  

 

In addition to basin-scale climate patterns in marine predators such as tuna, 

several studies show cycles of Pacific salmon and other fish species. The PDO has been 

linked to shifts in Pacific fish regimes around 1950, 1975, and the late 1990s. As 
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illustrated in Figure 4.26, a fisheries regime has been identified that oscillates between 

anchovy-dominated for about 25 years and then sardine-dominated [Lluch-Belda et al., 

1989; Chavez et al., 2003; Lehodey et al., 2006]. While fishing and predation play a role 

in fisheries abundance or collapse, the periodicity and synchrony of anchovies and 

sardines caught around the Pacific basin suggests a climatic cause.  

 

 

 

Figure 4.26 Percent of peak value of sardine and anchovy populations in Japan-Kuroshio system 

(top) and Peru-Humboldt system (bottom). Figure adapted from [Lehodey et al., 2006]. 

 

These pelagic fisheries vary over periods of about 50 years in coherence with 

large-scale variations in air and ocean temperatures, atmospheric CO2, and climate 

indices such as the PDO [Chavez et al., 2003]. It has been noted in the literature that 
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fisheries landings in Peru were primarily anchovies during periods of stronger meridional 

overturning circulation, upwelling and higher primary production (1950-1975, then again 

after the late 1990s) or sardines when there was less meridional transport, weaker 

upwelling, and lower primary production (1975 - late 1990s) [Chavez et al., 2003]. 

Sardine regimes are characterized by a deeper thermocline and nutricline, weaker 

upwelling, warmer temperatures, lower nutrients, primary production, and CO2 

anomalies, the latter of which is measured at the Mauna Loa observatory with the annual 

cycle and long-term anthropogenic trend removed. By contrast, anchovy regimes 

experience a shallow thermocline and nutricline, stronger upwelling, cooler temperatures, 

higher nutrients, primary production, and CO2 at Mauna Loa, implying possibly more 

CO2 outgassing from equatorial upwelling assuming all other carbon sources were 

roughly constant [Chavez et al., 2003]. Anchovies feed on large zooplankton; sardines 

feed on phytoplankton and small zooplankton closer to the base of the food chain 

[Schwartzlose et al., 1999].  Sardines are more tropical and expand their range poleward 

during warmer periods. Anchovy thrive during cooler periods and do not expand far 

enough poleward during warm regimes to avoid increased temperatures, indicating an 

inability to adapt [Schwartzlose et al., 1999]. Only the regime shift in the late 1990s 

coincided with the ocean color era: the ocean ecosystem response was evident in both 

surface CHL as well as the higher trophic levels. All earlier biological regime shifts are 

missing a large-scale picture of primary production. This statistical reconstruction of 

CHL affords the opportunity to see the large-scale differences in primary production 

during anchovy and sardine regimes.  
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During the period from 1958 through 1975, an anchovy regime prevailed in the 

eastern Pacific coinciding with the PDO cool phase [Chavez et al., 2003; Lehodey et al., 

2006]. In the CHL reconstruction, there was a pattern of very strong positive CHL 

anomalies (greater than 1 mg m-3) along the coast of Central and South America, with the 

exception of small parts of Nino 1&2 (Figure 4.9). After the regime shifted to a warm 

phase in 1976-1977, the CHL reconstruction shows the CHL values switched as well. 

Strong negative anomalies, reaching lowest values of less than -1 mg m-3 off of Central 

America, were associated with the warm phase of the PDO during the sardine fisheries 

abundance (Figure 4.10). Although the CHL reconstruction does not yield information 

about phytoplankton community structure, it can be inferred that plentiful blooms support 

the larger zooplankton that feed anchovies while sparse blooms support the smaller 

species that feed sardines. 

Low frequency variability in basin-scale biology as measured by fish catches has 

a known synchrony with interannual and decadal climate oscillations that is now shown 

to correspond to coherent spatial patterns in statistically reconstructed CHL maps. In the 

west Pacific warm pool, surface CHL has been demonstrated as a useful way to 

determine the eastern extent of tuna distributions which are primarily modified by ENSO 

and secondarily modified by the PDO. In the eastern tropical Pacific near the coast of 

South America, high CHL anomalies during the anchovy regime preceded and followed 

low CHL anomalies during the sardine regime. The CHL reconstruction across the 

tropical Pacific illuminates the effect of low frequency climate forcing on primary 

production, which has significant implications for ocean biology across trophic levels as 

well as the carbon cycle. 
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Table 4.1. Cross-correlations between CHL and physical variables for each regime 
PDO cool regime (1958-1976) 
Niño 3 Inner  -1 quarter lag  zero lag  +1 quarter lag 
CHL - SST  -0.65  -0.89  -0.69 
CHL - SSH  -0.68  -0.83  -0.54 
CHL - τx  -0.45  -0.36  -0.22 
CHL - τY  -0.05  -0.31  -0.29 
Niño 3 Outer    
CHL - SST  -0.76  -0.92  -0.70 
CHL - SSH  -0.69  -0.76  -0.53 
CHL -  τx   0.02   0.06   0.02 
CHL -  τY   0.43   0.42   0.17 
CHL - (  τ)  -0.39  -0.38  -0.19 
Niño 3.4 Inner    
CHL - SST  -0.55  -0.87  -0.76 
CHL - SSH  -0.64  -0.78  -0.53 
CHL -  τx  -0.66  -0.77  -0.55 
CHL -  τY   0.01  -0.04   0.01 
Niño 3.4 Outer    
CHL - SST  -0.77  -0.94  -0.73 
CHL - SSH  -0.50  -0.49  -0.31 
CHL -  τx  -0.48  -0.34  -0.16 
CHL -  τY   0.33   0.47   0.33 
CHL - (  τ)  -0.43  -0.55  -0.40 
 
PDO warm regime (1977-1995) 
Niño 3 Inner  -1 quarter lag  zero lag  +1 quarter lag 
CHL - SST  -0.68  -0.90  -0.73 
CHL - SSH  -0.77  -0.88  -0.58 
CHL -  τx  -0.19  -0.34  -0.43 
CHL -  τY  -0.05   0.07   0.20 
Niño 3 Outer    
CHL - SST  -0.78  -0.90  -0.69 
CHL - SSH  -0.80  -0.87  -0.60 
CHL -  τx   0.26   0.23   0.05 
CHL -  τY   0.68   0.74   0.55 
CHL - (  τ)  -0.56  -0.60  -0.50 
Niño 3.4 Inner    
CHL - SST  -0.64  -0.88  -0.71 
CHL - SSH  -0.71  -0.73  -0.39 
CHL -  τx  -0.54  -0.73  -0.64 
CHL -  τY   0.08   0.30   0.42 
Niño 3.4 Outer    
CHL - SST  -0.78  -0.89  -0.67 
CHL - SSH  -0.66  -0.65  -0.37 
CHL -  τx  -0.22  -0.08  -0.00 
CHL -  τY   0.61   0.75   0.61 
CHL - (  τ)  -0.55  -0.69  -0.57 
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5. Discussion 

In addition to their impact upon fisheries and the marine food web, CHL spatial 

patterns also have biogeochemical implications, such as the ocean’s uptake of 

atmospheric CO2. While it is unclear how increasing levels of atmospheric CO2 will 

impact primary production in the ocean over the long-term, it is clear from this study that 

slow changes caused by ocean circulation pattern shifts impact ocean surface CHL. It has 

been noted that the Walker circulation has strengthened since the 1950s in the 

atmosphere above the tropical Pacific, creating a positive feed-back loop [L’Heureux et 

al., 2013]: enhanced SST gradients strengthen Walker circulation, stronger equatorial 

winds enhance upwelling leading to cooler SST anomalies in the east and strengthening 

Walker circulation. Faster circulation also increases sea-level rise in the western tropical 

Pacific [Church et al., 2004] and strengthens surface and subsurface currents [Qiu and 

Chen, 2012]. Simultaneously, the EUC in the subsurface ocean has strengthened and 

shoaled since the mid-nineteenth century [Drenkard and Karnauskas, 2014]. Such long-

term trends may reflect internal multi-decadal variability, but their coexistence with the 

increasing positive trend in global mean temperatures leads to the supposition that 

anthropogenic forcing plays a role. These reconstructed CHL were not used to detect any 

secular trend, as that would require a more robust in situ data set to anchor the beginning 

of the record with greater confidence. Nonetheless, the EUC variability observed and 

linked to CHL variability along the equator has a long-term trend of strengthening and 

shoaling that has been ascribed to anthropogenic changes. In situ data and modeling 

studies indicate that interannual climate variability affects phytoplankton community 

composition, with the equatorial Pacific experiencing radical taxonomic shifts in 
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response to ENSO [Uitz et al., 2010; Rousseaux and Gregg, 2012]. Whether 

phytoplankton abundance will increase, decrease or experience a change in species 

composition over long time scales are areas of active research.  

Extending this reconstruction farther back in time would be challenging without a 

complete, well-validated observational record to provide useful skill. This study started in 

1958 when the frequency of hydrographic observations greatly increased [Carton et al., 

2012]. More recently, SODA 2.2.6 has assimilated observations of SST only to extend 

the record back to 1871. The reconstruction could be calculated back to 1871 using SST 

as the only predictor, with additional testing to determine the best method and the optimal 

number of modes for that application. Another option would be to add a second predictor 

from another record, such as sediment trap or corals, although these could have coarser 

resolution (i.e. annual or decadal) and would insert new uncertainties. This study 

demonstrates that there is the potential that a longer multi-decadal statistical 

reconstruction of CHL could be performed in the tropical Pacific, with the caveats noted,  

and could yield an even greater understanding of lower frequency patterns in ocean 

surface phytoplankton.  
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6. Concluding remarks 

Interannual variability in ocean surface biology has been well-documented with 

ocean color remote sensing since 1997, yet the effect of decadal and multi-decadal 

climate oscillations on oceanic primary production has been unknown at basin scales due 

to the lack of a broad coverage data set spanning multiple decades. Here a method was 

developed to statistically reconstruct ocean color CHL in the tropical Pacific taking 

advantage of the strong physical forcing of biology in this region. Using the most highly 

correlated variables as proxies, SST and SSH from SODA, the ocean color CHL record 

was extended back to 1958. The reconstructed CHL were validated against a fully 

coupled physical-biogeochemical model [Wang et al., 2008] as well as sparse in situ 

observations. This reconstruction shows that tropical Pacific phytoplankton biomass 

oscillates at low frequencies due to physical forcing, both locally driven and originating 

outside the tropics. Changes in meridional overturning circulation between PDO regimes 

combined with changes in the strength, frequency and eastward extent of ENSO all 

impact CHL at basin-scale and have world-wide ramifications. Additionally, long-term 

trends in the depth of the EUC influence phytoplankton blooms for a narrow region along 

the equator toward the east. 

The largest periodic variability across the tropical Pacific is interannual due to 

ENSO. While the impact of ENSO is observed in the existing ocean color record, this 

multi-decadal reconstruction adds to the record many more events of varying strength, 

duration and zonal extent. The differences between the east Pacific El Niño and central 

Pacific El Niño are observed with greater clarity over 51 years, revealing the contrast in 

CHL spatial patterns due to their distinct forcing mechanisms. The east Pacific El Niño 
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results from basin-scale thermocline flattening that causes nearly universal declines in 

phytoplankton standing stock, except in the west Pacific warm pool region which 

experiences more productivity. The central Pacific El Niño is a localized response to 

wind forcing that pushes the warm pool east toward the dateline, reducing CHL on the 

equator and slightly away from the equator in a wishbone pattern, while productivity 

continues as usual to the east along the equator and coast of South America.  

Biological variation with the PDO has a smaller magnitude, but is clearly 

important because it strengthens or weakens ENSO, as well as leading to synchronous 

changes in higher trophic levels. For most of the tropical Pacific, extending from the 

Americas westward to the edge of the warm pool, the PDO cool phase is associated with 

greater CHL while the warm phase has less. This basin-scale pattern in ocean biology is 

generally consistent with conditions at the ocean’s surface, namely zonal winds, wind 

strength and SST.  

Contrary to this larger pattern is a narrow band along the equator between 110-

150oW that had the opposite productivity tendency over the cool PDO regime between 

1958-1977 and the warm PDO regime between 1978-1997. This area had its own 

response in CHL often different from the rest of the region in annual, decadal and multi-

decadal averages associated with the cool or warm phase of the PDO. The mechanism 

most likely to cause this narrow anomalous CHL band is the depth of the EUC, which 

supplies iron to the high-nutrient, low-chlorophyll, iron-limited region. Easterly winds 

along the equator that support divergence and upwelling do not lead to blooms if the 

nutricline is below the euphotic zone or if there is a decrease in iron supply by the EUC. 

Low frequency changes in the depth of the EUC impact CHL at the surface by shoaling 
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and providing iron to the euphotic zone. Ocean current velocities from the TAO array 

observations and SODA reanalysis indicate a shoaling trend by the EUC over the past 

five decades. During the PDO cool phase between 1958-1977, when the cold tongue had 

an overall positive CHL anomaly, the EUC was at its deepest for the reconstruction 

period and there was a negative CHL anomaly along the equatorial band. During the 

PDO warm phase between 1978-1997, the cold tongue had a predominately negative 

CHL anomaly, yet there was a positive anomaly along the equator where the EUC rose 

into the euphotic zone between 110-150oW. By the end of the reconstruction, between 

1998-2007, the PDO was in a cool phase yet the EUC was at its shallowest and the CHL 

anomaly along the equator was positive. These observations support a conclusion that 

over most of the tropical Pacific, winds are the predominant forcing mechanism 

controlling CHL variation, while over the equatorial strip the depth of the EUC 

determines productivity through iron supply. 

The CHL spatial patterns identified here have important ecological implications. 

CHL can be used to demarcate the convergent front on the eastern edge of the west 

Pacific warm pool. The front’s location in the CHL reconstruction corresponds well to 

the center of gravity in the skipjack tuna catch record. Previous studies linked low 

frequency climate oscillations to the anchovy and sardine fisheries shifts around the 

Pacific basin as well as fluctuations in tuna catches in the west and east tropical Pacific. 

This reconstruction now contributes a long-term, basin-scale view of primary production, 

as these low frequency patterns have an impact on higher trophic levels that is an area of 

active research.  
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One of the biggest questions in climate science today is: how much carbon can the 

ocean take up through biological and chemical processes and export to great depths for 

long-term carbon sequestration? Although high resolution global CHL measured by 

satellite over a decade revolutionized our understanding of physical controls of biological 

processes in the ocean, we cannot answer the carbon export question with surface CHL 

alone. We need a vertical view to link primary production to how much carbon sinks out 

of the surface layer to the deep ocean. Regular measurements of the vertical structure of 

CHL and other biological variables are in their infancy, but in a few years emerging 

technologies such as Bio-Argo floats will be able to sample subsurface biological 

processes. This work has established that CHL patterns can be reconstructed using 

physical proxies. With a well-resolved training data set, we should then be able to relate 

surface CHL patterns to vertical profiles and processes to develop a statistical 

reconstruction of carbon export. 
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Appendix 

The CCA method in this study is described in detail by Barnett and Preisendorfer [1987]. 

Briefly, the analysis involves training spatial correlation functions of the predictand 

(CHL) and predictor (SST and SSH) fields during the training period. First, EOFs are 

calculated on deseasoned, normalized pairs of the predictand and predictors: 

SST&SSH x, t =        𝜅!
!
!𝛼! 𝑡 𝑒! 𝑥

!

!!!

                      𝑥   =   1,2,… ,𝑝 

CHL x!, t =      𝜆!
!
!  𝛽! 𝑡 𝑓!(𝑥!)

!

!!!

                        𝑥’ = 1,2,… , 𝑞 

(A1) 

Where κj and λj  are eigenvalues; αj(t) and βj(t), principal components; ej and fj are 

orthonormal eigenvectors. The number of predictor and predictand spatial points is p and 

q, respectively. Typically the number of EOF modes used is much less than the minimum 

of p and q to filter out noise and variations that cannot be reliably modeled. 

Optimal representation of CHL in terms of SST&SSH is obtained by first forming 

the set of all linear combinations of the αi  and βj in EOF spectral space:  

 𝒖   =      𝛼!𝑟!
!
!!!    and   𝒗 =      𝛽!𝑠!

!
!!!              (A2) 

where r and s are unit vectors in Euclidean vector space. For each choice of r and s, the 

correlation of u and v is maximized if r and s are the eigenvectors of the system: 

𝐂𝐂𝑻 𝒓𝒋   =     𝝁𝒋𝟐𝒓𝒋                                𝒋 = 𝟏,𝟐,… ,𝒑 

                  𝐂!𝐂 𝒔𝒌   =     𝝁𝒌𝟐𝒔𝒌                            𝑘 = 1,2,… , 𝑞   (A3) 
where rj = [r1j,r2j,…rpj]T and similarly for sk, which form orthonormal sets of vectors in 

EOF spectral space by matrix theory, and µj are called canonical correlation coefficients.  
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Remembering (A2), the canonical component vectors are calculated: 

  𝒖𝒋   =      𝛼!𝑟!"
!
!!!  and   𝒗𝒌 =      𝛽!𝑠!"

!
!!!   (A4) 

 

All of which permits the representation of SST&SSH and CHL datasets as linear 

combinations of their canonical component vectors: 

    SST&SSH x, t   =   𝑢! 𝑡 𝑔! 𝑥
!

!!!

    𝑤ℎ𝑒𝑟𝑒  𝑔!(𝑥)   =    𝑆𝑆𝑇&𝑆𝑆𝐻 𝑥, 𝑡 𝑢!(𝑡) ! 

    CHL x′, t   =   𝑣! 𝑡 ℎ! 𝑥′
!

!!!

                            𝑤ℎ𝑒𝑟𝑒  ℎ!(𝑥′)   =    𝐶𝐻𝐿 𝑥′, 𝑡 𝑣!(𝑡) ! 

           (A5) 

The components of the canonical map vectors, gj and hk, show the correlation between 

SST&SSH and CHL and their respective canonical component time series (j or k) at a 

given location (x or x’). A linear combination of the canonical component vectors uj of 

the predictor dataset (SST&SSH) can represent the n-dimensional predictand vector, 

CHL(x’,.) = [CHL(x’,1,…t(x’,n)]T,  by projecting the CHL vectors onto the q-

dimensional vector space spanned by the first q of the uj; j=1,…,q < p: 

CHL x!, t = 𝜇!𝑢! 𝑡 ℎ!(𝑥!)
!!!

!!!

                            𝑥! = 1,2,… , 𝑞′′ ≤ 𝑞 

                            𝑡 = 1,2,… ,𝑛  (A6) 

where 𝑞’’ < q is the number of canonical modes retained for the reconstruction. The 

number of modes retained can be determined by observing the q” value which yields the 

maximum significant reconstruction skill. 
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