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Virtual and augmented reality (VR and AR) are becoming increasingly acces-

sible and useful nowadays. This dissertation focuses on several aspects of designing

effective displays for VR and AR.

Compared to conventional desktop displays, VR and AR displays can better

engage the human peripheral vision. This provides an opportunity for more infor-

mation to be perceived. To fully leverage the human visual system, we need to

take into account how the human visual system perceives things differently in the

periphery than in the fovea. By investigating the relationship of the perception time

and eccentricity, we deduce a scaling function which facilitates content in the far

periphery to be perceived as efficiently as in the central vision.

AR overlays additional information on the real environment. This is useful

in a number of fields, including surgery, where time-critical information is key. We

present our medical AR system that visualizes the occluded catheter in the exter-

nal ventricular drainage (EVD) procedure. We develop an accurate and efficient

catheter tracking method that requires minimal changes to the existing medical



equipment. The AR display projects a virtual image of the catheter overlaid on the

occluded real catheter to depict its real-time position. Our system can make the

risky EVD procedure much safer.

Existing VR and AR displays support a limited number of focal distances,

leading to vergence-accommodation conflict. Holographic displays can address this

issue. In this dissertation, we explore the design and development of nanophotonic

phased array (NPA) as a special class of holographic displays. NPAs have the

advantage of being compact and support very high refresh rates. However, the

use of the thermo-optic effect for phase modulation renders them susceptible to

thermal proximity effect. We study how the proximity effect impacts the images

formed on NPAs. We then propose several novel algorithms to compensate for the

thermal proximity effect on NPAs and compare their effectiveness and computational

efficiency.

Computer-generated holography (CGH) has traditionally focused on 2D im-

ages and 3D images in the form of meshes and point clouds. However, volumetric

data can also benefit from CGH. One of the challenges in the use of volumetric data

sources in CGH is the computational complexity needed to calculate the holograms

of volumetric data. We propose a new method that achieves a significant speedup

compared to existing holographic volume rendering methods.
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Chapter 1: Introduction

Advances in virtual and augmented reality (VR and AR) allow us to explore

new ways to present information more efficiently and effectively. Our research in this

area has four foci. First, we explore ways to present information efficiently in wide

field-of-view (FOV) VR and AR devices that leverage the characteristics of the far

peripheral vision. Second, we explore how surgery can benefit from the use of AR.

Specifically, we develop an AR system that tracks a catheter in an external ventricu-

lar drain (EVD) procedure accurately in real-time and displays its position directly

in a surgeon’s field of view. Third, we explore the novel holographic technology

for the VR and AR displays. Conventional VR and AR near-eye displays based on

stereoscopic vision only provide one or a limited number of focal distances, leading

to vergence-accommodation conflict. Holographic displays allow a natural-to-senses

perception of objects and scenes by recreating the optical waves from the scene or

object. We have designed a nanophotonic phased array (NPA) which modulates

the phase using the thermo-optic effect. Our design has the advantage of a fast

refresh rate and being compact compared to other phase modulators such as liquid

crystal on silicon spatial light modulators (LCoS SLMs). However, the NPA suffers

from thermal proximity effect which diminishes the phase modulation accuracy. In
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this dissertation, we investigate how proximity effect affects the images formed by

an NPA. We propose several algorithms to address this challenge. We have carried

out numerical simulations to compare and contrast various algorithms in terms of

image quality and computational efficiency. Last, we explore ways to generate holo-

grams from volumetric data. Such techniques will be critical for visualization in

holographic displays. Computer-generated holography (CGH) has largely focused

on 2D images and 3D images in the form of meshes and point clouds. Volumetric

data can also benefit from holographic visualization. In order to tackle the com-

putational complexity of calculating the hologram of a volume, we develop a new

calculation method that brings the computation time from hours previously to mere

seconds. We also validate our method on an actual holographic display.

We introduce the background and contributions of our work in the rest of

this chapter. Then in Chapter 2, we introduce our work on perception in the far

periphery. In Chapter 3, we present our AR system that depicts the occluded

catheter position for EVDs. In Chapter 4, we describe our nanophotonic phased

array, and propose several proximity effect correction methods. In Chapter 5, we

cover our accelerated holographic volume rendering algorithm. We summarize our

contributions and propose the directions for future work in Chapter 6.

1.1 Perception in the Far Periphery

The far peripheral vision (beyond 60◦ eccentricity) is beginning to be supported

in the latest VR and AR headsets. While lacking in visual acuity, the far peripheral
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vision is capable of, and plays a crucial role for a variety of visual and cognitive

functions ( [10–12]). Making use of the far peripheral vision benefits the VR and AR

experiences by offering a larger display real estate. However, the visual properties

of the far periphery are different from those in the central vision because of the

physiological differences between the areas on the visual cortex responsible for the

respective types of vision.

Our goal is to investigate the visual properties in the far peripheral vision to

take advantage of the wider field of view in VR and AR headsets. We conduct a

study to explore the relationship between the perception time, which is the time it

takes to perceive a certain object, and the eccentricity. Specifically, we conduct a

user study to measure participants’ perception time of a series of size-scaled simple

patterns over several eccentricities. In the study, two types of patterns of different

scales (sizes) show up at different locations on a wide FOV display. The task of the

participants is to perceive the pattern and respond based on what they perceive.

We use an eye-tracker to make sure that the participants’ gaze is fixated at the

center of the display and record their response time as the perception time. In our

study, we had a total of 40 participants, all with normal or corrected-to-normal

vision. The collected data shows that it takes longer to perceive a given pattern

at a higher eccentricity than in the central vision; however, a larger pattern at a

higher eccentricity can be perceived in a similar amount of time as the original in

central vision. Our main contribution is deriving scaling functions with which the

objects displayed at higher eccentricities could be perceived as efficiently as in lower

eccentricities. Our scaling functions are valid from 40◦ to 70◦ eccentricity.
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Our study is related to M-scaling in psychophysics. Most past work on M-

scaling focuses on low-level visual functions such as contrast sensitivity. Rovamo

and Virsu [13] show that the contrast sensitivity functions with retinally scaled

stimuli are similar at different eccentricities. Grogoric et al. [14] conduct a study to

find the proper scales for objects to be recognized up to 40◦ eccentricity.

Making use of the far peripheral vision has several advantages. First, the

peripheral vision provides an opportunity for additional information to be displayed.

Second, displaying non-critical information in the far periphery can reduce visual

clutter in the central vision. Last but not the least, displaying content in the far

periphery is less intrusive to the central vision, allowing techniques such as subtle

attention management.

We show an example of this scaling function in Figure 1.1. To achieve the

same perception time as a 5◦ pattern at 10◦ eccentricity, the patterns at higher

eccentricities can be scaled according to our equal efficiency scales. Details are

available in Chapter 2 and peer-reviewed publication Sun et al. [15].
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(a)

(b)

Figure 1.1: An example of the equal-efficiency scales. At higher eccentricities (40◦

and up, patterns can be scaled according to our finding to achieve the same percep-
tion time as perceiving a 5◦ pattern at 10◦ eccentricity.
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1.2 AR Displays for Surgery

AR has transformative potential for a wide variety of applications, such as

entertainment, driving assistance, city planning, and manufacturing assembly guid-

ance. Our focus here is on leveraging AR capabilities for health care and medicine.

We have built several prototype medical AR systems in a collaborative effort with

the University of Maryland Shock Trauma Center.

The first prototype is a system that displays images from medical imaging ma-

chines directly in the healthcare provider’s field of view. In many surgical operation

scenarios, when the surgeon needs the information from an imaging device, he or

she needs to constantly move the sight away from the patient to look at a separate

screen. Our prototype can alleviate this psychomotor burden and help health-care

professionals to focus on giving the best possible care to the patient.

Our first prototype serves as a proof-of-concept that AR technology can ben-

efit medical procedures. It helped us resolve technical difficulties in developing AR

applications with multimedia. We have selected the Microsoft HoloLens AR head-

set as our platform for this project. It provides a good 6 degree-of-freedom (DOF)

inside-out spatial tracking and an optical see-through field of view of 30◦ × 17◦.

This FOV is small compared to most VR headsets. However, the Hololens offers

natural and intuitive user interfaces including hand gesture and voice recognition

and is suitable for our see-through AR prototypes. We use a video capture card

to convert the output signal from medical imaging machines to be ingested by our

system, which sends the images to the AR headset over WiFi. Based on this experi-
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ence, we proceeded to build another prototype system to assist surgeons in external

ventricular drain (EVD) procedures. EVD is a high-risk medical procedure that

involves inserting a catheter inside a patient’s skull, through the brain, and into a

ventricle, to drain cerebrospinal fluid relieving elevated intracranial pressure. Once

the catheter has entered the skull its tip cannot be seen. The neurosurgeon has to

rely on experience to guess its location inside the cranium and direct it towards the

ventricle using only anatomic landmarks.

Our prototype system tracks the catheter using a novel approach that does not

change how it feels to operate and projects the catheter’s image into the surgeon’s

field of view, aligned with the real catheter. Our tracking technique requires mini-

mum modification to the catheter. We color portions of the catheter with different

colors. By tracking the color bands with known lengths, we can infer the position of

the catheter. A simple one-step calibration tells the relationship between the camera

space and the display space. The position of the catheter is sent to the display via

WiFi and a virtual catheter is rendered to overlay the real (and occluded) catheter

to depict its position. We have conducted the preliminary tests in a controlled en-

vironment on a cadaveric head. Our collaborating surgeons are pleased with the

high accuracy and the low latency that we have been able to achieve. Figure 1.2

shows how our system is used in the test by a neurosurgeon and a see-through view

from the surgeon’s perspective. Details are available in Chapter 3 and peer-reviewed

publication Sun et al. [16].
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(a)

(b)

Figure 1.2: A surgeon using our EVD assistance system and the surgeon’s see-
through view.
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1.3 Correcting Proximity Effect in Nanophotnoic Phased Arrays

Holographic displays recreate the scene by modulating, phase, and sometimes

also the amplitude, of the optical wave. A phase modulator that can accurately

and independently control the phase of the wavefront is crucial to the successful

display of a hologram. While LCoS SLMs have been demonstrated to be useful as

phase modulators, they suffer from a relatively low refresh rate (below 200 Hz) and

complicated light source configurations.

Nanophotonic phased arrays are phased arrays operating at optical wave-

lengths. An NPA is composed of an optical power distribution system, a phase

modulation mechanism that can control the phase of each pixel individually, and

antennas for propagating phase-modulated light into the free space (Raval [17]). Sun

et al. [18] showed that nanophotonic phased arrays can also be used for generating

an optical wavefront which through careful phase modulation in the near field can

display complicated images (or 3D scenes) in the far field. One major advantage

of the NPAs over SLMs is their fast refresh rate. The thermal simulation with our

NPA design shows that it can complete a heat-cool cycle within 10 µs, suggesting a

refresh rate up to 100 kHz which is uniquely suitable for dynamic content as well as

time-division multiplexing operations such as color-switching or image smoothing.

In addition, the NPAs support integrated light sources. Lasers can be coupled into

the NPA via an optical fiber, distributed to each pixel and emitted by the on-board

antennas. This way, the NPA displays can be made more compact as optical opera-

tions such as beam expansion and polarization necessary for the typical LCOS SLM
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display systems are not necessary.

The successful display of desired 2D or 3D imagery lies in the precise and

independent control of the phases of the pixels in the NPAs. Most NPA displays,

such as those in Doylend et al. [19], Sun et al. [18] and our own design, depend

on the thermo-optic effect to modulate the phase of a pixel. The phase of a pixel

can be changed from 0 to 2π by adjusting the temperature of the pixel. However,

the thermal proximity effect, the phenomenon where the temperature of one pixel

affects the temperature of neighboring pixels, impacts the accuracy of phase modu-

lation and degrades the observed image. Therefore, to achieve the desired phase on

the near-field wavefront, this thermal proximity effect must be taken into consider-

ation. This is further complicated by the fact that most NPAs only have heating

mechanisms with no cooling capability, making some phase patterns impossible to

realize.

In Chapter 4, we explore the impact of the thermal proximity effect on the

observed images of holograms displayed on the NPA. The proximity effect can be

modeled as a convolution and we explore correcting the proximity effect with de-

convolution methods. Most NPA display systems including our design only have

phase modulation capabilities. We develop a novel proximity effect correction (PEC)

method based on the proximal optimization method. This method is applicable to

both the Fourier holograms usually for displaying images in the far field and the

Fresnel holograms for displaying 2D and 3D images at user-specified depths. Our

new method is also more effective and efficient than previous proximity effect cor-

rection methods based on the iterative phase retrieval algorithm. The results of our
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original no PEC proposed PEC proposed PEC

Figure 1.3: The first row of the middle two columns show the simulated observa-

tions of the Fourier hologram displayed on the NPA without any proximity effect

correction and with our proposed PEC method. The second row show the simulated

observations of the Fresnel hologram. Our PEC method can effectively correct the

proximity effect correction at the tested proximity effect level (σ = 0.66 px). The

simulated observation of the 3D volume by applying our proposed PEC method to

a stack of Fresnel holograms can be seen on the right.

proximity effect correction method can be seen in Figure 1.3. As can be seen, the

near-field phase modulation is negatively impacted by the thermal proximity effect.

Without proximity effect correction, the image quality of the formed image degrades.

Our proposed proximity effect correction method can effectively correct the prox-

imity effect and restore the image at the tested proximity effect level (σ = 0.66

px). We can even display a 3D volume by applying the PEC method to a stack of

Fresnel holograms at their respective depths. Details are available in Chapter 4 and

peer-reviewed publication Sun et al. [20].
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1.4 Fast Holographic Volume Rendering

Light has a wave-particle duality, meaning it could be modeled as a particle

traveling from one location to another as well as a wave propagating from the source.

Much of the computer graphics rendering techniques have been developed using the

particle model, a popular example of which is raytracing [21, 22]. However, as is

shown in Dennis Gabor’s experiments in the 1940s [23], a scene can be reconstructed

by recording and illuminating the interference pattern of an object wave and a

reference wave. With the advancement in electro-optics, there are devices that can

programmatically control the phase and amplitude of the light wave, such as spatial

light modulators (SLMs).

Computer-generated holography (CGH) refers to digitally computing the in-

terference pattern, either from a digital model or from specially captured images. Al-

though in its early stages, this technology promises to solve several significant exist-

ing problems in conventional VR and AR displays, such as vergence-accommodation

conflict due to the limited number of focal distances. Varifocal and light-field dis-

plays also offer a wider range of focal distances. However, the former usually involves

moving components while the spatial and angular resolutions of the latter are lim-

ited by optical diffraction as the pixel density increases. On the contrary, the quality

of CGH improves as the pixel density increases.

CGH has largely focused on 2D images or 3D scenes in the form of meshes or

point clouds. The Fourier transform is a common and efficient method to calculate

the hologram of a 2D image. Calculating the hologram of a 3D scene is compu-
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Figure 1.4: Sample results of our holographic volume rendering algorithm.

tationally intensive and usually involves converting the scene into a collection of

points directly visible from the hologram and calculating the hologram following

the Huygens-Fresnel principle. Modern computational hardware and acceleration

methods have enabled real-time calculation of holograms from 3D meshes.

Volumetric data from medical imaging can be visualized to reveal critical in-

formation about the organs and tissues. Volumes from physics simulations are also

used in the realistic rendering of fog, smoke and so on. Volume visualization can

benefit from the advantages of holographic displays. However, calculating the holo-

gram of a volume is an order-of-magnitude more complicated than calculating that

of a 3D mesh, as every voxel contributes to the perception of the volume instead of

only those closest to the hologram.

We develop a new method to calculate the hologram of volumetric data that

achieves significant speedup compared to existing holographic volume rendering

methods. We also show through simulations how to choose the light source for the

holographic display to strike a balance between the speckle noise and image sharp-

ness for the observation. Some simulated observations of our proposed method can

be seen in Figure 1.4. Details are available in Chapter 5.
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Chapter 2: Perception in the Far Periphery

2.1 Overview

Computer graphics has thus far primarily focused on high-fidelity rendering

that is best suited for the central vision. Rendering in the far peripheral vision

has not received much attention because most of the displays till now have only

had a narrow field of view (FOV). However, rapid advances in display technologies

are enabling head-mounted displays (HMDs) with an ever-increasing FOV. This

has necessitated a better understanding of how peripheral vision could assist in the

next-generation of VR and AR applications.

In this study, we are interested in the far peripheral vision, which suffers from

significantly diminished visual acuity compared to the central vision. Definitions

of the peripheral vision differ throughout the literature. In this chapter, the foveal

vision (within 2◦ from the fixation point), together with the perifoveal, is called the

central vision [2, 24]. The central vision covers the region from 0◦ to 8◦ eccentricity

and corresponds to the eye’s macula which is responsible for the high-resolution

color vision. Beyond the central vision is the peripheral vision. Near, middle, and

far periphery span 8◦ to 30◦, 30◦ to 60◦, and above 60◦ eccentricity, respectively [25].

All eccentricities in this study are horizontal. A visual representation can be seen
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Figure 2.1: Illustration of the human visual field. The central visual vision, near,
middle, and far peripheral vision are from 0◦ to 8◦, 8◦ to 30◦, 30◦ to 60◦ and beyond
60◦ respectively. This image is adapted from [2].

in Figure 2.1.

The visual property difference between the central and peripheral vision has

been used in foveated rendering such as Meng et al. [26–28] to save the computational

capabilities. In this chapter, we are more interested in the perception in the far

periphery and conduct a user study to investigate the perception time in the far

peripheral vision. We wish to find a quantifiable scaling function so the information

presented in the far periphery can be perceived as efficiently as in the central vision.
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Our study is related to concepts in psychophysics called cortical magnification

and M-scaling. Cortical magnification says that M, the diameter in the primary

visual cortex onto which one degree of visual field projects [29], is inversely linear to

the eccentricity E. The relationship can be formulated as follows. a is a coefficient

[24]

M−1(E) = M−1
0 (1 + aE) (2.1)

Variations of the formula exist in [13, 30–38]. This leads to M-scaling, which

says performance variations with eccentricity can be minimized by using appropri-

ately scaled stimuli ( [24]). M-scaling can be represented in the following equation.

S(E) is the scale at eccentricity E.

S(E) = S0(1 + E/E2) (2.2)

Our work makes the following contributions. First, many studies on M-scaling

focus on low-level visual properties such as contrast sensitivity [13], In our study,

participants are asked to perform a higher-level visual task by responding to different

patterns. We record the time for participants to respond to patterns of different

scales at different locations. This facilitates the determination of an appropriate

magnification for patterns at higher eccentricities so that they can be perceived in

a similar time as those in the central vision. Second, to our knowledge, we are the

first to test and report a scaling function in the far peripheral vision, applicable to

a field of view of up to 140◦ horizontally.
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2.2 Related Work

In this section, we introduce past studies related to our work on the peripheral

vision. These include the peripheral vision and wide FOV displays.

2.2.1 Peripheral Vision

Low-level visual properties like contrast sensitivity have been studied exten-

sively in the central vision (0◦ to 8◦ away from the fixation point, or eccentricity).

But there has been little work on the far peripheral vision (beyond 60◦ eccentric-

ity) or on high-level perceptual functions. Below we introduce related perceptual

psychology works on the peripheral vision.

Cortical magnification says that M , the diameter in the primary visual cortex

onto which one degree of visual field projects (Daniel and Witteridge [29]), is in-

versely linear to the eccentricity E. Various models have been proposed. Cowey and

Rolls [30] first fit the visual cortex electrical stimulation data provided by Brindly

and Lewin [31] to the inverse linear model (M−1(E) = M−1
0 (E/E2))with M0 = 8.55

mm/◦ and E2=1.746. Through medical imaging of the visual cortex, Horton and

Hoyt [32], Schira et al. [39] and Larsson and Heeger [33] derive different values for

M0 and E2. Rovamo and Virsu [13] propose adding an extra term for improved

accuracy M−1(E) = (1 + aE + bE3)M−1
0 and compile four equations for the four

half meridians separately. There is also the power function used by Tolhurst and

Ling [34], which is M−1(E) = M−1
0 (1 + aE)1.1 with M0 = 24.88 mm/◦.

This leads to M-scaling, which says performance variations with eccentricity
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can be minimized by using appropriately scaled stimuli ( Strasburger et al. [24]).

M-scaling can be represented as S(E) = S0(1 + E/E2) where S(E) is the scale at

eccentricity E. Rovamo and Virsu [13] adjust the stimuli presented in the periph-

ery using the function M−1(E), and the contrast sensitivity functions at different

eccentricities are made similar as a result. However, it is worth noting that the

cortical magnification and M-scaling concepts are not golden rules to “make every-

thing equally visible independent of eccentricity”. There are cases in which scaling

does not compensate for the decreasing M factor and even cases where the visual

performance is diminished [37, 38]. For more details on cortical magnification and

M-scaling, we refer readers to Strasburger et al. [24].

High-level visual functions like letter recognition are also peripheral vision

study topics. Strasburger et al. [24] propose a scaling function S(E) = 0.022E +

0.25
logC+2.07−0.0345E based on data from Strasburger [40] where C is the Michelson thresh-

old contrast. Grogoric et al. [14] find a linear scaling function from 0◦ to 40◦ eccen-

tricity to make objects presented in a virtual scene perceivable.

Studies have also shown that the peripheral vision is capable of, and some-

times plays an important part in, higher-level perceptual tasks like scene and object

recognition. Thorpe et al. [10] show that even at 70◦ eccentricity, an accuracy of

60.6% can be achieved in recognizing animal faces. Boucart et al. [11] compare

people’s ability to identify images of human faces, vehicles, and animals at different

eccentricities. The results show that human faces have an advantage over vehicles

and animals in terms of response time, and that advantage persists even at extreme

eccentricities up to 80◦. In scene gist recognition, Loschky et al. [12, 41] compare
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participants’ abilities to categorize a scene from a “window” (central portion of the

image) and a “scotoma” (blocking central portion, only keeping the peripheral part

of the image). They show that the peripheral vision is more important than central

vision in scene gist recognition, as recognizing a 30◦ radius scotoma achieves the

same accuracy as recognizing the whole image, and a 5◦ radius window is signifi-

cantly harder to recognize. Other studies have shown that peripheral vision allows,

though at a reduced level, recognition of facial expressions and emotions ( [42,43]).

Ren et al. [44] investigate whether a larger field of view improves searching

task performance in augmented reality. Their results show that a larger field of view

(108◦ × 82◦) leads to a shorter task completion time, but lowers the correctness com-

pared to a limited field of view (45◦ × 30◦). Kline and Witmer [45] conduct a user

study to investigate the effect of field of view on distance judgment in the virtual

environment and find that with a smaller field of view (60◦ × 38.5◦), participants

tend to overestimate distance while with a larger field of view (140◦ × 90◦) partic-

ipants tend to underestimate. Joneset al. show in [2,46] that adding stimulation in

the far periphery in a VR headset causes more accurate distance and size judgment

in a virtual environment and changes people’s walking behavior. A good literary

review on the effects of the field of view in virtual environments can be found in

Jones et al. [46].
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2.2.2 Wide FOV Displays

Researchers in the graphics community have long used the fact that the human

peripheral vision perceives less detail than the foveal vision. Oshima et al. [47] ana-

lyze user gaze direction and blur objects not in the user’s foveal vision to reduce ren-

dering complexity. In an augmented reality application, Ishiguro and Rekimoto [48]

display an icon above objects in the periphery of the user’s field of view and show

the detailed information when the user’s gaze is moved to that object. Jones et

al. [49] project images that are aesthetically matched with the content on the TV.

Positive user feedback shows that enriching the peripheral vision can improve the

interactive user experience.

The peripheral vision cannot be utilized in VR and AR without wide-FOV

displays. Various ways to build wide-FOV VR and AR displays have been proposed.

Most of the systems we review here support 100◦ horizontal FOV or greater. The

most straightforward system that extends the viewer’s FOV is the cave automatic

virtual environment (CAVE). Cruz-Neira et al. [50] create a 7′× 7′× 7′ cube-shaped

CAVE where images were projected to three side walls and the floor. It covers

the entire field of view when the viewer is facing the middle of the three projection

walls). There have been many iterations and variations of the CAVE system [44,51].

In an effort to study the immersion on desktop VR, Robertson et al. [52] use

two additional monitors (referred by them as peripheral lenses) on either side of the

main monitor. The total horizontal FOV using two peripheral lenses is approxi-

mately 38◦. Attaching additional monitors can possibly cover the entire FOV.
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In traditional HMDs, the two most important components are the display

panel and optics. Modifying either or both is a common method of enlarging the

FOV of HMDs. Nagahara et al. [53] build a prototype video see-through HMD that

uses a complicated configuration of an ellipsoidal and a hyperboloidal curved mirror

to reflect light from the display into the viewer’s eyes, covering 180◦ horizontal

FOV. Kiyoshi [54] creates an optical see-through HMD using a hyperbolic mirror

instead of a flat one to increase the horizontal FOV to 190◦. Dunn et al. [55] take

the optics design one step further to accommodate depth cues while achieving a

large field of view by using a flexible mirror membrane to reflect light from the

display. This allows a 90◦ by 45◦ binocular FOV. The membrane is also varifocal,

controlled by airtight cavities. The focal power can be adjusted with a gaze tracker.

Rakkolainen et al. [56, 57] use flexible OLED that curved around the viewer’s eye

and curved optics to reach super-wide FOV. They create proof-of-concept prototypes

using Fresnel lenses and achieved 232◦ × 130◦ and SI318◦ × 130◦ FOV.

Tiling display panels or optics can also increase the field of view. Massof et

al. [58] achieve 150◦ × 100◦ FOV by using a specially-molded array of Fresnel lenses

and surrounding each lens with 16 OLED panels. Tiling optics of tiny pinholes

has been used by Aksit et al. [59]. Given the pupil and aperture size and the

aperture-pupil and aperture-display distance, the FOV of a single aperture can be

calculated. To widen the FOV of the HMD, an array of pinholes is used. Specially

synthesized images are displayed on a cell phone, from which light travels across

the apertures to reconstruct the original images. The FOV is easily expandable

with larger displays and more apertures. Xiao and Benko [60] fill the periphery of
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the HMD with sparse arrays of high-contrast LED lights, dubbed sparse peripheral

display. Their prototypes based on existing commercial VR and AR HMDs can

achieve a FOV of 170◦ and 190◦ respectively.

Light-field and holographic near-eye HMDs, while in their early development

stages, have the potential to support a large FOV and address problems like the

vergence-accommodation conflict. A prototype by Huang et al. [61] uses a rank

1-factored light field, and has a FOV of 87◦ by 91◦. Maimone et al. [62] and Shi

et al. [1] use spherical light waves to address the limitations of a small diffraction

angle. The former demonstrates a prototype with an 80◦ horizontal FOV.

We compile below a list to include the different approaches and examples of

wide FOV displays as well as their resolutions in Table 2.1.

2.3 User Study Design

Figure 2.2: Top view and stimuli (left) of our user-study setup. In the experiment,
patterns appear one at a time. A photograph of our system used in the study (right).
Shown on screen is one of the possible use cases of the system.

We build a user study system that uses a large curved screen and eye-tracking

to simulate a wide FOV HMD. Stimuli of different sizes are displayed at various
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Table 2.1: List of wide-FOV virtual and augmented reality display techniques and
devices. The spatial resolution of a holographic display is the same as the SLM
pixel pitch when inside the depth of field [1]. The items with * are calculated from
measurement and other reported device specifications.

Display Max re-
ported

FOV (◦)

Color Angular
Resolution

Spherical wave holographic
display(2017) [1, 62]

80(H) RGB 3.74 µm

Stereoscopic factored light field
synthesis(2015) [61]

87 x 91 RGB 4.1 arcmin/pix*

Flexible mirror membrane(2017) [55] 90 x 45 RGB 3.4 arcmin/pix*
LCD and optics (Meta 2) 90 x 50 RGB 3 arcmin/pix

Detachable display and optics (Samsung
Gear VR, Google Daydream)

100(D) RGB 2.5 arcmin/pix*

Pinlight(2014) [63] 110(D) Mono 4.5 arcmin/pix*
Tiling display and Fresnel lenses(2003) [58] 150 x

100
RGB 3 arcmin/pix

LCD and catadioptrical optics(2003) [53] 180(H) RGB 5.7-10.5
arcmin/pix*

Projector and hyperbolic mirror(2007) [54] 190(H) RGB 60 arcmin/pix*
sparse peripheral display(2016) [60] 190(H) RGB 5.5 arcmin/pix*

OLED and Fresnel optics (HTC Vive,
Oculus Rift, StarVR)

210 x
130

RGB 5.5 arcmin/pix*

Curve display and optics(2016) [56,57] 318 x
130

RGB 5.4-7.5
arcmin/pix*

CAVE [44,50,51,64] full RGB 1.5-3
arcmin/pix*

Tiled desktop displays [52] full RGB 3-4 arcmin/pix*

eccentricities. Participants respond to the stimuli by pressing buttons on a controller

device. The responses are recorded. Our setup is illustrated in Figure 2.2.

The display we use in this study is a custom-made curve screen using 5 × 3

projector array, with a 6400 × 2100 resolution. This display has a 180◦ horizontal

FOV when viewed 236 cm away from the center of the screen. The system setup

can be seen in Figure 2.2 right. The eye-tracking device we use is a Tobii EyeX
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commercial eye tracker. The eye tracker is placed 163 cm away from the center of

the screen, slightly below eye level facing the user.

The system displays various patterns of different sizes at different eccentricities

according to a pre-determined randomized order. The response from the user’s game

controller is recorded at 60 Hz.

2.3.1 Task and Stimuli

We display two types of patterns, crosses and circles, as shown in Figure 2.2

left top. In the user study task, one type of pattern is specified as the target, and

the other is the distraction. The task is to perceive the pattern and respond to the

target pattern (by pressing a button on a controller) as soon as it appears and ignore

the distraction while keeping fixated at the center of the screen. For the purposes

of this study, we define the time from the appearance of the pattern to the button

being pressed is recorded as the perception time. We recognize that this includes the

time for the eye to perceive the pattern, the brain to understand the pattern, and

for the user to respond by pressing the button on the controller. If a participant

responds incorrectly, the stimulus will turn red. For example, when the cross is

specified as the target, and the circle is the distraction, the participant should press

a button on the controller as soon as he or she sees a cross on the screen, and do

nothing with a circle. Participants are further directed to keep looking at the center

of the screen and not move their heads or gaze directions. The cross-hair at the

center will turn green if the eye tracker confirms the participant is looking at the
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center and turns black otherwise.

Since our display supports 180◦ FOV and considering the space to display the

pattern at the outermost eccentricity, the stimuli are tested at eccentricities from 0◦

to 80◦, with a 10◦ interval. Because we are more interested in higher eccentricities, we

test stimuli at higher eccentricities at a wider scale range. Specifically, eccentricities

0◦, 10◦, 20◦ and 30◦ are tested at scales 5◦, 10◦ and 15◦, while eccentricities 40◦, 50◦,

60◦, 70◦ and 80◦ are tested at scales 5◦, 8◦, 11◦, 14◦, 17◦, 20◦, 23◦ and 26◦. The scale

ranges are determined after our pilot study. Each eccentricity-scale combination is

repeated 5 times for each pattern as the target and 2 times for each pattern as the

distraction (14 times in total).

2.3.2 User Study Procedure

The study is conducted with one participant at a time. We first explain to the

participants the purpose of this study. We then ask them to log their basic personal

information, including name, age, and whether or not they have vision correction.

We then explain how the study is conducted, and perform practice rounds of the

study. The experimenter answers any question at this point.

To reduce participant fatigue, the entire experiment is divided into four shorter

rounds between which the participants can take a break. Two rounds have the cross

as the target pattern; two have the circle as the target. For example, the circle is

repeated 5 times for each eccentricity-scale combination and the cross is repeated

2 times for each eccentricity-scale combination. These patterns are shuffled and
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divided into the 2 circle-target rounds. The opposite is done for the 2 cross-target

rounds. The 4 rounds are the same for each participant, but half go over them

in a cross1, circle1, cross2 circle2 order, and the other half in a circle1, cross1,

circle2, cross2 order. During each round, the experimenter stays out of the eye

tracker’s range. The experiment takes about sixty minutes for each participant.

After all the rounds are done, each participant was compensated with $10. During

the experiment, we recorded the participants’ eye movements and game controller

responses. We cross-referenced this data with the stimuli to determine the precise

perception time.

For the pilot user study, we had six participants. For the formal user study, we

recruited 40 participants (24 male and 16 female). Every participant had a normal

(31 participants) or corrected-to-normal vision (6 had eyeglasses and 3 used contact

lenses).

2.4 Results

We first visualize the perception time over all eccentricity-scale combinations.

Then we characterize the relation among the perception time, the eccentricity and

the scale. Finally, we quantify the optimal scaling at high eccentricities to achieve

the same perception time as in the central vision.

We first show the perception time over all eccentricity-scale combinations in

the form of a 3D surface mesh. The perception time is indicated both as the height

and by color. The surface mesh of the median (50th percentile), as well as the 25%
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Figure 2.3: Perception time of all eccentricity-scale combinations is presented as
a 3D colored mesh (top left). The three planes from top to bottom are the 75%
quartile, median (50% quartile), and 25% quartile of all participants. The perception
time at three scales (5◦, 10◦ and 20◦) is also shown.

and 75% quartiles of all participants, can be seen in Figure 2.3. In Figure 2.4, the

median perception time of participants over all eccentricity and scale combinations

is shown in greater detail, and we plot the linear relationship between scale and

eccentricity that will result in the same perception time (Section 2.4.3). Figures 2.3

and 2.4 show that generally, perception time increases as eccentricity gets higher,

and decreases as the scale becomes larger. One-way ANOVA test on the perception

time with each eccentricity-scale combination as a group has a p-value of 1.3×10−6,

giving us high confidence to reject the null hypothesis that the perception times

follow the same distribution.
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Figure 2.4: A color-coded map of the median perception time for all eccentricity-
scale combinations. Using our findings in Section 2.4.3, we plot the scales at higher
eccentricities to be perceived in the same time as a 5◦ pattern at 10◦ (red), 20◦

(orange) and 40◦ (yellow).
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2.4.1 Perception Time and Scale

The aim of this study is to determine the optimal scaling of the content dis-

played at higher eccentricities so that it is perceived in a similar time as in the

central vision. Specifically, for a pre-specified perception time T0, we want to find

at each higher eccentricity the scale at which the pattern’s perception time is equal

to T0.

First, we derive the relationship between perception time T and scale S at

a given eccentricity. We plot the perception time at each tested scale for a given

eccentricity directly from the user study data. We wish to represent the perception

time as a function of the scale. As can be seen in Figure 2.5, for a given eccentricity,

perception time generally decreases as the scale gets larger.

Judging from Figure 2.5, we fit the relation of perception time and scale as a

function in the following form.

T (S) = alog(S) + b (2.3)

T (S) is the perception time in milliseconds, S is the scale in degrees in the visual

field, and a, b are parameters. The function T (S) is calculated for each eccentricity

for each participant. We only calculate the perception time vs. scale relation on

eccentricities above 40◦ because we are interested in calculating this relationship for

the far peripheral vision.
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(a) (b)

(c) (d)

Figure 2.5: Figures (a), (b), (c) and (d) show the relation between perception time
and scale measured for a single user (participant 32) at 50◦, 60◦, 70◦ and 80◦ eccen-
tricities, respectively.

2.4.2 Perception Time and Eccentricity

We present the relation between perception time and eccentricity in Figure 2.6.

Specifically, we show the median perception time of all participants with 5◦, 10◦ and

20◦ patterns at higher eccentricities. When the size of the pattern is kept constant,

it takes longer for the patterns at higher eccentricities to be perceived. Perception

time decreases as the pattern size increases at the same eccentricity (see Figure 2.5).

As is shown, there is a clear difference between the time in perceiving the same-sized
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Figure 2.6: The perception time across eccentricities with an s-sized pattern is the
intersection of the plane scale = s and the perception time surface in Figure 2.3. The
intersection with 5◦, 10◦ and 20◦ scale planes are shown in (left). The intersection
curves are shown in (right).

pattern at a lower eccentricity versus at a higher eccentricity. The 150 ms difference

between perceiving a 5◦ pattern at 40◦ and 80◦ eccentricity is noticeable and it is

meaningful to characterize the scaling at higher eccentricities to bridge this gap.

2.4.3 Equal-Efficiency Scale at each Eccentricity

With the function T (S), we can calculate for any given eccentricity the scale

at which the pattern is perceived within a given amount of time. Therefore, we can

plot the relations of eccentricity and scale for a desired perception time. We call

this the equal-efficiency scale.

Given a target perception time, we calculate the equal-efficiency scale for each

participant and present the median of all participants in Figure 2.7. We note that

we only test within the scale range of [5,26]◦. The equal-efficiency scales at 80◦

eccentricity for a sizable portion of the participants are outside our tested range

and therefore cannot be considered valid. The equal-efficiency scales within the
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(a) (b)

Figure 2.7: Equal-efficiency scales that produce the same perception time as (a) a
5◦ pattern at 10◦ eccentricity and (b) perceived in 450 ms. These are the median
over all participants.

tested range exhibit a linear relationship between scale and eccentricity. S(E) =

αE + β, 40 ≤ E ≤ 70.

We present the parameters for a few example target perception time choices

in Table 2.2. We can either use a fixed perception time, e.g. 450 ms, or we can

specify a target pattern, a pattern of a given size at a given eccentricity. The time it

takes to perceive this pattern is used as the target perception time. We also conduct

one-way ANOVA tests on the equal-efficiency scales of all participants for each high

eccentricity with the null hypothesis being that equal-efficiency scales over different

eccentricities follow the same distribution.

We illustrate the equal-efficiency scales in a theme park navigation example in

Figure 2.8. We choose the target perception time to be the perception time of a 5◦

sized pattern at 10◦, 20◦ and 40◦, respectively. The patterns at higher eccentricities

are scaled so they can be perceived within the target perception time. The target

perception time increases as the eccentricity goes from 10◦ to 40◦. The target equal-
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Table 2.2: Parameters of the equal-efficiency scales fitted to a linear model. The
valid range of eccentricity is [40, 70]◦. Analysis of variance is conducted with the all
participant’s equal-efficiency scale at a certain eccentricity as a group. We include
the last 5 rows because the equal-efficiency scales at 70◦ eccentricity are no more
than 4◦ above the tested range.

Target perception time α β dF F p-value

5◦ at ecc 10◦ 0.47 -11.04 3 7.02 0.0002

5◦ at ecc 20◦ 0.55 -16.3 3 11.96 4.46× 10−7

5◦ at ecc 30◦ 0.54 -15.08 3 7.96 5.75× 10−5

5◦ at ecc 40◦ 0.54 -17.64 3 12.48 2.45× 10−7

10◦ at ecc 10◦ 0.52 -13.11 3 4.78 0.0033

10◦ at ecc 20◦ 0.58 -14.8 3 9.3 1.13× 10−5

10◦ at ecc 30◦ 0.65 -16.52 3 7.04 0.0002

15◦ at ecc 10◦ 0.65 -18.49 3 4.22 0.0067

15◦ at ecc 20◦ 0.51 -6.67 3 5.32 0.0017

15◦at ecc 30◦ 0.67 -18.74 3 5.31 0.0017

efficiency scales decrease as a result. The scales in Figure 2.8 are calculated using

the linear equations in Table 2.2.

2.5 Conclusion

Wide FOV VR and AR displays enable information perception in the far

periphery. In this work, we conduct a user study to investigate the perception

time in the far peripheral vision. We found that patterns can be scaled linearly

with the eccentricity it is shown at to reach a constant perception time. Based

33



on these equal-efficiency scales, we can optimally scale the content displayed at

higher eccentricities so that it can be perceived efficiently. Our finding is useful for

designing VR and AR experiences that are able to leverage the entire human visual

system’s field of view.
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Figure 2.8: Visualization of equal-efficiency scales for a notional theme park navi-

gation. The Star Wars attraction logo is scaled at various eccentricities using equal-

efficiency scales. The target perception times are the perception time of a target

pattern of size 5◦, at eccentricities (top) 10◦, (middle) 20◦, and (bottom) 40◦ (these

are shown with red dashed boxes). Theme park image reproduced with the permis-

sion of Bernie Kelm, https://www.rocket9.net.
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Chapter 3: AR Displays for Surgery

3.1 Overview

External ventricular drain (EVD) placement involves inserting a very small

clear plastic tube into a lateral ventricle of the brain. Once the catheter is inside

the skull, its position can no longer be directly observed, and the neurosurgeon must

rely on his or her experience and knowledge of human anatomy to guide placement

of the catheter. Huyette et al. [65] and Kakarla et al. [66] retrospectively assess

the accuracy of ventriculostomy catheter placement by comparing postprocedure

CT scans with preoperative scans. The former study includes 98 ventriculostomy

catheter placements and finds that in the author’s institution, it requires on average

2 passes to successfully place the catheter, and 22.4% of those successful placements

end up in nonventricular spaces. The latter includes studies of 346 patients and

finds that 13% of the catheter placements are suboptimal, resulting sometimes in

unfunctional drainage. Furthermore, Woo et al. [67] finds that catheter misplace-

ment is a significant independent predictor of catheter-associated hemorrhage. In a

radiographic simulation, Robertson et al. [68] finds that the traditional method of

EVD trajectory selection and placement is predicted to have a 19% chance to impact

a cortical vein. These results show that there is still much room for improvement. A
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method of visualizing the location of the catheter inside the skull would be of great

assistance to the surgeon.

A few EVD visualization techniques have been proposed. Cutler et al. [69]

have developed a system in which an optical marker is attached to the catheter and

tracked by the camera on a head-mounted display (HMD). Other medical instrument

tracking techniques by Low et al. [70], Najafi et al. [71, 72], Stolka et al. [73] and

Fan et al. [74] make use of markers of different kinds.

Figure 3.1: The view observed by the surgeon (captured with HoloLens mixed reality

capture function). This is a realistic surgical scenario where EVD is performed on

a cadaveric head. Additional information could be shown such as the CT slice at

the tip of the catheter if a CT volume is registered to the patient. The CT image

shown in this figure serves as an illustration of this potential. Other medical imaging

visualization techniques such as in Bista et al. [3, 4] may also be used.

Preliminary tests with Microsoft Kinect 2.0 showed that the thinness of the
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catheter makes it hard to detect and track with commodity depth sensors. The

shortcomings of infrared depth sensing, in this case, are out of the scope of this

chapter. Instead, we devise a new optical marker and tracking technique, suitable

for augmented reality. We label a portion of the catheter with three distinct colors.

One design principle we have observed after consulting our medical collaborators

is making minimal changes to the catheter. Our modification does not change the

catheter in any way that would make it feel different to operate. We develop an

algorithm to detect the color bands and then use them to calculate the position

of the catheter. This way, even if the tip of the needle is occluded, we still know

where it is and are able to visualize it, as long as enough of the colored portion

remains visible. We display a virtual catheter overlaid on the real catheter directly

in the user’s field of view using a see-through Microsoft HoloLens, which allows the

surgeon to better focus on the patient while still having access to the relevant data

and provides better depth perception and understanding of the operating context.

We only need to do a one-time calibration to determine the transformation between

the HoloLens and the camera. Testing shows our system achieves high accuracy

and low latency. We also show the usefulness of our system in a realistic surgical

environment on a cadaveric head. An example of the view directly observed by the

surgeon is shown in Figure 3.1.

Our system takes a step beyond Cutler et al.’s pioneering research [69], and

improves on several aspects. First, our tracking technique does not require sig-

nificant changes to the shape and weight of the catheter. Second, since we use a

stationary camera for tracking, it does not require the user of the head-mounted
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display to be looking at the catheter to track. This allows the surgeon to freely look

anywhere without losing the tracking of the catheter. Finally, the capability of our

system is not tied to the HMD. We empirically observed a lag of 1.43 s in Cutler

et al. [69]’s video demonstration1, which is likely caused by the HMD’s inability to

keep up with the processing. In our system, the images from the camera, as well

as the medical volume are processed separately on another machine, and results

are sent to the HMD wirelessly. This allows for faster and more accurate sensing

and higher fidelity medical images. Our system can be naturally integrated with

existing medical image registration techniques. A proposed example is illustrated

in 3.1 where the CT slice at the tip of the catheter is displayed if the CT volume is

registered with the patient. Due to the scope of this study, we do not perform the

medical image registration but refer interested readers to surveys by Kersten-Oertel

et al. [75] and Meola et al. [76].

In short, we built an augmented reality EVD tracking and visualization system

that

• overlays a virtual catheter onto a user’s field-of-view, mimicking the position

of the real catheter,

• leaves the catheter functionally unchanged, and

• is accurate and responsive.

1We observed this at 0:50 and 0:51 in video https://youtu.be/qqykWW9f41Q
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3.1.1 Technical Details from Previous AR Ultrasound System

Before developing this AR assistant system for EVD, we developed an AR ul-

trasound system where we gained a lot of experience in developing AR applications.

The AR ultrasound system streams the video from a medical imaging machine live

to be viewed in an AR head-mounted display. With this, the surgeons can focus

on the patient during a procedure instead of having to look away to look at various

monitors. For the sake of completeness, we document these technical details.

The AR platform we use is the Microsoft HoloLens2. We develop and de-

ploy the Hololens application (client application) from a Windows machine. The

application is designed with Unity3 and the C-sharp scripting language.

The HoloLens is completely tetherless. The information, both the location of

the catheter and the medical images are sent to the Hololens from another program

(feeder program) running on a separate machine via WiFi. The feeder program for

the AR ultrasound system is developed with Unity and C-sharp. And the feeder

program in the AR assistant system for EVD is developed with C++ and OpenCV.

We use the User Datagram Protocol (UDP) in our system (DatagramSocket in the

.Net framework and Winsock4).

To get the live medical images from the imaging machines, we use a portable

video grabber (AV.io5) to send the output from the imaging machines to the feeder

2https://www.microsoft.com/en-us/hololens
3https://unity3d.com/
4https://docs.microsoft.com/en-us/windows/desktop/winsock/windows-sockets-start-page-2
5https://www.epiphan.com/products/avio-hd/
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programs as a webcam signal.

With this setup, it is possible to send the same information to multiple HoloLenses

from one instance of the feeder program. We have found success with two HoloLenses.

3.2 Related Work

External ventricular drainage has undergone numerous iterations in materials

and techniques since it was first performed in the 1740s. The complete documen-

tation of the evolution of EVD is out of scope for this chapter; readers can refer to

Srinivasan et al. [77]. In this section, we will review recent developments in EVD

catheter placement techniques. In addition, we discuss augmented reality use cases

in neurosurgery.

3.2.1 Catheter Placement

Proper catheter placement is key to the success of an EVD procedure. A 2016

Neurocritical Care Society study (Fried et al. [78]) found that with a stabilization

tripod (“Ghajar guide”) or other technical adjuncts such as CT guidance, stereotac-

tic navigation could improve accuracy and/or lower the number of EVD procedures

performed on a patient.

The “Ghajar guide” is a catheterization assistance device in current clinical

use, invented by Jamshid Ghajar in 1985. It is a tripod-shaped device that can

be securely placed on the patient’s skull; the catheter travels along the axis of the
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device and can be stabilized as it goes into the skull. A study by O’Leary et al. [79]

found that successful catheterization can be achieved either using a Ghajar guide or

freehand, but that a smaller distance to target was achieved with the Ghajar guide.

For ventricle exploration and catheter placement training, Phillips and John [80]

developed a simple web application that lets trainee surgeons practice simulated

catheterization (catheter placement) via a personal computer. Cros et al. [81] in-

corporated haptic feedback into the ventriculostomy simulator; users feel a “pop”

sensation when the catheter pierces the ventricular surface.

Krombach et al. [82] conducted a free-hand catheterization simulation before

performing the actual surgery. In simulations, MRI images were registered onto the

patient’s head with fiducials. A pointer instrument was tracked by infrared diodes

attached to it. The surgeons used the pointer to virtually move the catheter and

the position of the catheter was evaluated.

Luciano et al. [83] developed the ImmersiveTouch ventriculostomy simulation

system. Stereoscopic goggles are tracked electromagnetically and represent the head

position. A hand stylus is tracked mechanically and can offer different resistance

sensations to simulate catheter moving in different types of tissue. This way, the

displayed content can change according to the user’s point of view and the virtual

catheter is visualized based on the location of the hand stylus. Haptic feedback is

provided to perceive the interaction between the virtual catheter and the virtual

brain model. ImmersiveTouch is used in studies by Banerjee et al. [84], Lemole et

al. [85], Schirmer et al. [86] and Yudkowsky et al. [87].

Tai et al. [88] 3D-printed an actual physical phantom head (manikin head
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for medical procedure simulations) from the reconstruction of CT images and used

the brain model as an EVD training platform. This platform provides a realistic

anatomical structure and visual/haptic feedback.

The most recent experimental EVD development is by Cutler et al. [69]. In

their system, a rigid catheter is attached to an optical marker, in this case, a piece of

paper. The marker’s, and therefore the catheter’s position is tracked by the camera

on an HMD, which displays the virtual catheter image as well as a 3D model of

the damaged part of the brain. This way, as long as the marker is in the camera’s

field of view, the catheter can be visually tracked, even when the tip is occluded.

The system compellingly demonstrates how the advances in sensing and displays

can create intuitive and reliable assistance to neurosurgery. Somewhat similar to

Cutler et al. [69] but used in biopsy and ablation are Lin et al.’s HoloNeedle [89] and

Kuzhagaliyev et al. [90], where the needle is tracked using the OptiTrack6 system

and a virtual needle is displayed in an AR headset to align with the real one. In Lin

et al.’s HoloNeedle, the biopsy needle’s shape is further obtained with embedded

Fiber Bragg Grating sensors to take the needle bending into consideration. All the

systems mentioned above make a significant change to the shapes of the instruments

to accommodate their tracking techniques which our method avoids (more detail in

Section 3.4). Najafi et al. [71,72] use a closed-form formula to calculate the trajectory

of a needle instrument based on the live footage from a single camera attached to

an ultrasound probe and guide the needle angle to reach the target shown in the

ultrasound image. Our system is different in that the exact location of the catheter

6https://optitrack.com/
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tip is calculated visualized directly in the user’s field of view via an AR HMD. Stolka

et al. [73] use stereo cameras to detect the 5DOF information of a needle marked

with pseudo-random binary sequence(PRBS) patterns and display the needle in

the ultrasound image or project a line on the patient’s skin to mimic the needle’s

location. A generalized version incorporating multiple medical imaging and probing

modalities has been proposed in Basafa et al. [91]. Our system is different in that

it uses perspective foreshortening of color bands on the catheter to estimate the tip

location from a single camera with higher precision than the prior art.

3.2.2 Augmented Reality Displays for Neurosurgery

One type of augmented reality technique being used in neurosurgery is over-

laying detailed preoperative medical images on intraoperative images. Masutani et

al. [92] experimented with overlaying preoperative 3D vascular models onto intra-

operative X-ray fluoroscopy images via medical fiducial markers. Two clinical test

cases showed the registration reprojection displacement to be below 2.6 mm. Lovo

et al. [93] reconstructed volumes from cerebral MR scans and overlaid the volumes

onto intraoperative cerebral images.

One step further is to track the imaging probe (or microscope) during surgery

and overlay meaningful information such as anatomy models onto the intraoperative

images. Edwards et al. [94–96] developed and tested an AR microscope-assisted

guided intervention system that tracked the microscope and overlaid 3D medical

images on the two eyepieces. Shahidi et al. [97], Scholz et al. [98] experimented
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with similar setups using surgical endoscopes. Kockro et al. [99] developed a hand-

held AR system, Dex-Ray, that overlays medical volumes or other images onto a

live stream video. Low et al. [70] used Dex-Ray integrated with the Dextroscope

system (an immersive medical image viewing system) and performed meningioma

(a type of usually noncancerous brain tumor) excision on five patients. Inoue et

al. [100] tracked off-the-shelf webcams to overlay anatomical medical structures on

the webcam images.

Sauer et al. [101] and Maurer et al. [102] developed an AR video see-through

surgery navigation HMD and demonstrated its use on a phantom head with encour-

aging results. Two color cameras record the real-world scene, and one additional

camera tracks the retroreflective optical markers attached to the phantom head.

A medical MR (magnetic resonance) volume aligned with the head phantom is dis-

played stereoscopically on the HMD. Abe et al. [103] develop an AR guidance system

for percutaneous vertebroplasty where the insertion location and intended insertion

orientation is displayed in an AR HMD. Trials on the phantom show improved ac-

curacy using this system, and successful clinical trials demonstrate the practical

usability. Abhari et al. [104] engineer a mixed reality system that facilitates the

training and planning for a brain tumor resection procedure and demonstrated the

greatly improved performance of junior residents and the reduction in time to per-

form clinically relevant tasks by clinicians. Li et al. [105] conduct clinical EVD trial

where manually aligned CT holograms are shown in an AR headset to display the

catheter placement trajectory and target location. The catheter is not tracked or vi-

sualized, but it took the AR-assisted group fewer passes and less time on average to
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complete the procedure. Azimi et al. [106] develop a mixed reality surgical training

system that integrates functionalities such as preoperative procedure visualization

and real-time performance assessment and demonstrate a catheter placement train-

ing session where the system informs the trainee of the orientation error, though

the system’s tracking accuracy is not reported. Very recently, Meola et al. [76] and

Guha et al. [107] present two thorough surveys on the past work in which AR is

used for neurosurgery.

3.3 System

Figure 3.2: System Overview
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Our system consists of three components: a sensing unit, a processing unit

and a display unit in addition to the modified catheter itself. The functions of each

component are described in Section 3.3.1, as well as the actual hardware used for

each component. The way the system is operated in our experiment is described in

Section 3.3.2. Finally, the calibration between the sensing unit and the display unit

is described in detail in Section 3.3.3.

3.3.1 System Components

The sensing unit captures the live footage of the operation area that contains

the modified catheter. The processing unit analyzes the footage and calculates the

catheter’s position in the camera’s reference system (camera space), which is then

sent via a wireless network to the display unit. The display unit uses a transfor-

mation obtained at the calibration step (more detail in Section 3.3.3) to transform

the received catheter’s location into the HMD’s reference system (HMD space) and

displays the virtual catheter at that transformed location to overlay the physical

catheter. A general illustration of the system, as well as the intended use scenario,

can be seen in Figure 3.2. The workflow of our system is depicted in Figure 3.3. An

actual view captured using HoloLens’s mixed reality capture function is shown in

Figure 3.1.

The sensing unit is an off-the-shelf Logitech c920 web camera fixated on a

tripod. The reason we use a separate camera, rather than the one integrated into

the display, is to avoid being limited by the quality of the integrated camera and
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the processing capabilities of the display, as well as reduce network latency. The

processing unit is an Alienware laptop computer with an Intel i7 7820HK processor

running at 2.9GHz. The display unit is a Microsoft Hololens tetherless AR head-

mounted display.

The catheter used in our experiment is a Codman R© EDS 3TM clear ventricular

CSF catheter. This catheter measures 35 cm in length which is typical of catheters

used in EVD. Fried et al. [78] suggest that, in surgical scenarios, the catheter should

not penetrate the skull by more than 6.5 cm, therefore the place the color bands

at 7 cm away from the tip. We use three color bands each 3.8 cm in length (see

Figure 3.5 for an illustration).

3.3.2 System Operation

When using this system, the user wears the HMD which displays a virtual

catheter. The virtual catheter can be dragged around in the HMD space with hand

gestures. After the user manually aligns the virtual catheter with the physical one

observed through the HMD, the user issues a calibration command which triggers

the system to calculate the mapping from the camera space to the HMD space. The

system then uses this mapping to transform the catheter’s location in the camera

space into HMD space as mentioned above for the subsequent frames, until a new

calibration command is issued when the users see fit.

In the experiment, the surgeons held the rear portion of the catheter as illus-

trated in Figure 3.2 to avoid occluding the color bands.
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Figure 3.3: The workflow of the system

3.3.3 Reference System mapping

Our algorithm calculates the position of the catheter in the camera’s reference

system (camera space). To be able to visualize the catheter in the HMD, a way to

transform from camera space to the HMD’s reference system (HMD space) is re-

quired. We achieve this by doing a one-time calibration with the calculated catheter

position in camera space and the virtual catheter position in HMD space. Suppose

the coordinate of the catheter in its own reference system (model space) is AM . At

a certain frame, Tcam and Thmd transform AM into camera space and HMD space

respectively. We want to find a transformation Tcam→hmd that will transform from

camera space to HMD space.

TcamTcam→hmdA
M = ThmdA

M (3.1)
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Figure 3.4: Reference system mapping

In order for this to work with every AM , we simply take

Tcam→hmd = T−1camThmd (3.2)

Then with every frame where a new Tcam is calculated from the position of the

catheter in the image, we can calculate a corresponding Thmd and display the virtual

catheter. Reference system mapping is illustrated in Figure 3.4

3.4 Catheter Tracking

We develop a way of tracking the 3D position of the catheter in real-time,

enabled by three color bands painted on the catheter (see Figure 3.5). The three

color bands are adjacent, and we know each of their lengths and locations relative

to the catheter; the colors only need to be sufficiently distinct to be identified in the
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image.

Figure 3.5: A drawing of the catheter and the color bands. The color bands need

to be distinct and continuous. The lengths of the three color bands, as well as the

uncolored forward portion (from the catheter tip to the beginning of the first color

band) of the catheter, are known. With the lengths and the positions of the color

band endpoints detected in camera space, we can calculate the 5-DOF (no roll)

information of the catheter, and infer the position of the tip.

We use a pinhole model to represent the camera. As seen in Figure 3.6, P

is the center of projection of the pinhole model and is the origin point in camera

space. We observe in the image the 2D coordinates of the catheter A′, B′, and C ′

(Figure 3.6 shows three endpoints of two color bands as an example). Given that we

know the lengths of the color bands |AB| and |BC|, this becomes a simplified version

of the perspective three-point problem (P3P) thoroughly studied and documented

in [108–111]. In a general P3P problem, there could be as many as four solutions.

In our case, where the three points are collinear, there could be two solutions, of

which only one is desired. Determining the correct solution requires finding the

angle between the catheter and its image in the image plane, shown in Figure 3.6.
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Figure 3.6: We need to find the angle α between the catheter and its image. Let A,

B, and C be three endpoints of two consecutive color bands. The color bands are

of equal length a. P is the center of projection in the pinhole camera model. The

distance between B and P is b

We describe our approach to the P3P problem below. First, we use a geometric

method to find α in Section 3.4.1. Then we calculate the position of the catheter in

Section 3.4.2. Finally, we extract the segments’ endpoints A′, B′ and C ′ from the

image in Section 3.4.3.

3.4.1 Angle α

We denote the three endpoints of two consecutive color bands as A, B, and

C in Fig 3.6, and the center of projection as P . The images of A, B and C are A′,

B′ and C ′ on the image plane. Given the camera intrinsics which can be obtained

by a one-time calibration, we can explicitly represent P , A′, B′ and C ′ with exact
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coordinates in pixels. We can calculate the angles

∠APB = ϕ1 = acos
PA′ ·PB′

|PA′||PB′|
(3.3)

∠BPC = ϕ2 = acos
PB′ ·PC′

|PB′||PC′|
(3.4)

Now assume the two color segments are of equal length a (Assume |AB| =

|BC| = a) and |PB| = b. Trigonometric equations give the following relations. δ is

the angle ∠ACP .

a

sinϕ1

=
b

sin(π − ϕ1 − ϕ2 − δ)
(3.5)

a

sinϕ2

=
b

sinδ
(3.6)

δ can be solved with the following equation.

δ = arctan(
sinϕ2sin(ϕ1 + ϕ2)

(sinϕ1 − sinϕ2cos(ϕ1 + ϕ2))
) (3.7)

Then we can calculate α = π − β − δ. α could be either positive or negative

depending on whether A is farther away from the image plane than C or closer.

When A is closer than C (Figure 3.6), α > 0. When A is farther, α < 0.

3.4.2 Position of Catheter

With the 3D orientation, we can calculate the position of the catheter in

camera space. In Figure 3.7, AB represents a color band. AT represents the portion

of the catheter from the tip to the color band. AT may not be entirely visible from

the camera. A′, B′, and T ′ are the images of A, B and T on the image plane,
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Figure 3.7: Finding the position of the catheter in camera space. P is the center

of projection. TA is the uncolored forward portion of the catheter. AB is the first

color band on the catheter.

respectively. We know the lengths of A′B′ because we have detected them in the

image. We also know the lengths of PA′ and PB′ as well.

The actual catheter is in the plane formed by P and T ′B′, and we know its

orientation. But it could be on any line that is parallel to TB, for example, T ′′B′′.

We can set PA′′ = mPA′. The actual ratio m does not really matter because a

different ratio only leads to a parallel line to BC. We can assume, for example,

m = 10, and let PB′′ = kPB′. Then A′′B′′ = PB′′ − PA′′ = kPB′ − PA′′.

We know the angle formed by the catheter and its image α, which is the angle

formed by A′′B′′ and A′B′.

A′′B′′ ·A′B′ = |A′′B′′||A′B′|cosα (3.8)

54



Equation 3.8 can be further transformed into

kPB′ ·A′B′ − PA′′ ·A′B′ =
√
k2PB′2 − 2kPB′PA′′ + PA′′2|A′B′|cosα

(3.9)

All the values in Equation 3.9 are known except for k. We can solve k and thus

find the position of B′′. It is worth noting that Equation 3.9 is a quadratic equation,

and there could be two solutions for k. Judging from Figure 3.7, if α > 0, B should

be further away from the image plane than A. Therefore k should be greater than

the assumed ratio of |PA′′| over |PA′| and vice versa.

Now that we know the length of the catheter color band AB in the real world,

we can calculate the position of the color band AB in the camera space.

PA =
|AB|
|A′′B′′|

PA′′ (3.10)

PB =
|PA|
|PA′′|

PB′′ (3.11)

Since we know where AB is on the catheter, we can calculate the position of

the catheter in camera space. For example, we can calculate the position of the tip

in camera space since we know the lengths of the uncolored forward portion of the

catheter and the color bands.

PT = PA− |AB|
|AT |

AB (3.12)

It is worth noting that we can calculate the position of the catheter with two

adjacent color bands. We use three color bands to make our system robust against

occlusion and improve accuracy when all three are visible.
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3.4.3 Color Band Detection

In the color band detection step, the input is an image I of the catheter

(Pcatheter being all the pixels that belong to the catheter), and the output is the

locations of the endpoints of the color bands. The accuracy of the color band detec-

tion is the most important factor in finding the catheter tip. To reliably detect the

endpoints of the color bands, we develop a new algorithm (see Figure 3.3). Starting

from the original image (Figure 3.8 (a)) and its undistorted result (Figure 3.8 (b)),

we first use simple thresholds to get the most of the pixels P ∗catheter ⊆ Pcatheter of

the catheter in the image. We then fit these pixels to a line, which we call the axis

Laxis of the catheter (Figure 3.8 (c)). The gradient GLaxis along the direction of

Laxis is calculated using a variation of Sobel filter KLaxis that is weighed anisotrop-

ically according to Laxis (Figure 3.8 (d)). GLaxis has high values near the border

of two different colors. After smoothing using a median filter, the gradient map is

thresholded into binary images G∗Laxis with positive values where the borders are

(Figure 3.8 (e)). Finally, we take the weighted centers of the connected components

of G∗Laxis as the endpoints of color bands (Figure 3.8 (f)). Our processing technique

is robust against blurry images caused by motion, as seen in Figure 3.8 (g, h, i).

3.5 Results

In this section, we analyze the performance of our proposed algorithm. First,

we measure the stability of our tracking algorithm. Then we test tracking accuracy

on a 2D planar grid as well as a specially designed and printed 3D grid. Finally, we
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(a) original (b) undistorted (c) axis

(d) gradient (e) binarized (f) endpoints

(g) blurry image (h) gradient (i) endpoints

Figure 3.8: Detecting endpoints. (g), (h) and (i) show detecting endpoints in an

image where the catheter is blurry because of movement. Our algorithm is able to

handle this case.
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test the latency compared with a third-party tracker.

3.5.1 Stability

Given the color segment endpoints detected in the image, our tracking algo-

rithm will output the computed catheter position. The instability in the tracking

algorithm comes from random noise in each frame. The noise could cause the same

endpoint in two frames to be detected a few pixels apart, even when the catheter

stays still.

We measure the stability as the root mean square of the change of calculated

tip in camera space in two consecutive frames as in Niehorster et al. [112] while

keeping the catheter still. Given n frames, and the tip of the catheter in frame i as

xi, the stability is measured as

SRMS =

√√√√ 1

n− 1

n−1∑
i=1

||xi − xi+1||2 (3.13)

Several factors could influence the stability of the tracking algorithm, including

lighting conditions, thresholds for color segmentation, and distance from the camera

to the catheter. In a typical lab setting, our algorithm achieves a stability of 0.33 mm

as measured over 870 frames.

3.5.2 Accuracy over a 2D Grid

To test the accuracy of the tracking algorithm, we move and point the tip

of the catheter at the intersections of a grid. The grid, 8.16 cm × 8.16 cm in size,

is printed on a white sheet. This provides enough space to test the accuracy of
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(a) (b)

Figure 3.9: Setup for testing (a) the tracking accuracy over a 2D grid, and (b)

tracking accuracy over a 3D grid with the 3D CAD model in the lower right

catheter movement, more than the 6.5 cm suggested by Fried et al. [78]. The setup

for this test can be seen in Figure 3.9 (a).

We assume the center intersection of the grid to be a reference point. Before

the test, a 2D marker is placed on the workbench, and its up and right directions

(parallel to the edges of the paper sheet the marker is printed on) in the camera space

are detected. The sheet with the grid is then placed on top of the marker with the

edges aligned. Therefore, the grid has the same up and right direction as the marker,

and with its size known, we know the position of each grid intersection relative to

the reference point. When moving along the grid, the catheter’s orientation is kept

relatively fixed and its tip position in the camera space is recorded. Then the tip

positions relative to that when the tip is pointed at the reference point is compared

to positions of the grid intersections relative to the reference point.

Figure 3.10 shows the catheter tip locations on the grid with the reference

point as the origin. Blue circles indicate the grid intersections, and the orange
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Figure 3.10: The accuracy of our catheter tracking approach over the grid. The

red circles indicate the grid intersection. The blue crosses indicate the computed

catheter tip position.

crosses are the detected catheter tips. The average distance from the catheter tip

to the corresponding grid intersections is 0.58 mm.

3.5.3 Accuracy over a 3D Grid

We also demonstrate the accuracy of our algorithm when the catheter is mov-

ing in vertical space. To construct a reliable ground truth, we use a 3D-printed

structure where square grids of blind holes are on its three faces (see Figure 3.9).
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The centers of the blind holes are d =10 mm apart in both directions which we man-

ually verified with a caliper. Each blind hole is designed to be a cone with 1 mm

radius and 3 mm height. On each face, there are 8× 8 blind holes.

When testing on each face, one of the center blind holes (for example (m,n)

on the 8× 8 grid) is chosen as the reference point. The location of the tip when the

needle tip is inserted into each blind hole (i, j) is recorded as T (i, j). We construct

the ground truth G(i, j) as the designed distance of each blind hole to the reference

point G(i, j) =
√

(m− i)2 + (n− j)2d. The distance between the calculated tip

and the reference at each blind hole is D(i, j) = ||T (i, j)− T (m,n)||2. The average

accuracy on the face f is then Accf = 1
64

∑
i,j abs(G(i, j)−D(i, j)).

In this test, AccA = 0.49 mm, AccB = 0.93 mm, AccC = 1.12 mm. The overall

average accuracy on all three faces is 0.85 mm.

3.5.4 Latency

We measure our system’s latency compared to an HTC Vive tracker. This

latency is measured as the time elapsed between the tracker update and our system

catheter’s location update. In our test, we rapidly move the catheter, which is

attached to the tracker, and record for each frame the distance from the catheter tip

(tracked with our system and by the HTC Vive tracker) to their original location

recorded at the beginning of the test. The distances are then plotted, and we

manually measure the average time by which our system lags the tracker. Figure 3.11

(a) shows the plotted distances that we recorded. Manual measurements show an
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(a) (b)

Figure 3.11: The latency of our system compared to an HTC Vive tracker (a) and

the various components of our system’s latency in image capture and processing (b).

average latency of 95.01 ms. A break down of the latency can be seen in Figure 3.11

(b).

There are two factors in the latency with respect to the HTC Vive tracker. It

takes about 72 ms for our camera (together with the driver, and OpenCV functions)

to capture and store the image. The processing takes an additional 22.60 ms on our

machine, which uses an Intel i7 7820HK processor running at 2.9GHz. As we show

in Table 3.1, undistorting takes the longest time, 10.05 ms per frame (44.42% of the

total processing time). Speed up may be achieved by performing color segmentation

first and undistorting only the pixels of the color bands. The next most time-

consuming task is calculating the gradient along the catheter axis, (6.81 ms per

frame, 30.12% of total processing time). Our current implementation is on the

CPU. A GPU is likely to reduce the processing time through parallelization. A

professional-grade camera with a low image capture time can greatly reduce the

latency.
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ID Function Avg time per frame

(ms)

Percentage in

processing (%)

1 Undistort 10.04 44.42

2 Color segmentation 1.05 4.64

3 Erosion 0.23 1.02

4 Get axis 0.93 4.13

5 Gradient 6.81 30.12

6 Connected components 1.15 5.08

7 Weighted centroids 0.92 4.09

8 Calculate catheter position 0.21 0.92

Other 1.26 5.58

Total 22.60 100.00

Table 3.1: Time breakdown of functions in our tracking algorithm.

3.6 Discussion

We have demonstrated a novel method of tracking a catheter tip and projecting

it onto an augmented reality (AR) display. In combination with CT scan projection

into the skull, this could allow for a safer, better, and more accurate way to place

an external ventricular drainage into the brain of a sick patient. The first challenge

we address is significantly enhancing the accuracy and latency of our system over

the state-of-the-art augmented reality systems for this procedure such as Cutler et

al. [69].
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External ventricular drainage is a technically difficult procedure. It involves

placing a catheter several centimeters into the brain through tissues of varying den-

sity including bone, dura, brain, and cerebral spinal fluid. In addition, it is generally

performed in bright light with blue sterile drapes. These realities can potentially

affect the accuracy of the AR tip projection in difficult-to-predict ways and needed

to be validated in our study. Furthermore, the AR system should not interfere with

procedure performance by not hindering the surgeon placing the drain. A purely

computational evaluation of our approach would not have been sufficient to assess

the efficacy of our augmented-reality approach in such challenging environments.

In order to validate the true feasibility of AR-assisted EVD placement, we have

carried out our evaluation in a realistic experimental environment, which included

a cadaveric head, using sterile drapes and the existing EVD placement kits, closely

mimicking actual EVD placement in a patient. After inserting the catheter tip at

the insertion point, the surgeons advanced the catheter in a straight line. During

the process, the displayed virtual catheter projection aligned well with the visible

portion of the real catheter and the pace at which the real and the virtual catheter

moved matched. The surgeons have reported that the handling of our slightly mod-

ified catheter feels identical to a traditional catheter. The surgeons, while aware of

the HMD, did not find it cumbersome.

Tests show that our system is accurate with sub-millimeter accuracy and low

latency. If further improvements in accuracy and latency were needed, we could

do so with the following enhancements. First, a professional-grade camera with a

higher resolution, higher dynamic range, and lower latency could improve tracking
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by enhancing our ability to discern the segment endpoints and reduce the overall la-

tency. With a higher resolution, the camera could be farther away from the catheter

without compromising tracking quality, thus allowing a larger tracking area. All this

comes with a higher computational burden. At the moment, our algorithm is imple-

mented on a CPU but is highly parallelizable. Implementing a parallel GPU version

of the algorithm is a high priority in our future work. At present, we observe around

167ms end-to-end latency between moving the real catheter and its updating the

virtual catheter in the HMD. In our current system, we use an independent camera

and a laptop for processing, but it would be desirable to explore an all-in-one setup.

This is highly likely with further advances in commodity HMDs. Current-generation

AR HMDs often suffer from drift in spatial tracking. In our studies, this has ranged

from 2.15mm to 6.35mm, depending on the amount of user head movement. Com-

plementing the 3D spatial tracking with 2D optical tracking like in Frantz et al. [113]

should be able to improve spatial tracking accuracy.

In our system, the calibration between the camera space and the HMD space

is performed manually to make sure the observed virtual catheter aligns with the

observed physical virtual catheter. Therefore very little optical misalignment has

been observed in our experiment as long as the user does not remove or adjust

how the HMD is worn. The integration of eye-tracking technology in most of the

next-generation HMDs should further improve optical alignment.

Most catheters used in EVD (such as Integra R©, Medtronic R©, and Codman R©)

measure longer than 30cm and there is sufficient space to include color bands, as

outlined in our approach, on clinical catheters. To further mitigate occlusion-related
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Figure 3.12: Our system being used in a cadaver study

concerns around color bands, one could explore adding additional redundant color

bands. Last but not least, attention needs to be paid to the clinical safety of catheter

modification. Technologies such as VisiMark R©7 could be used to create medical-

grade markings to serve as the color bands. Alternatively, the catheter could be

constructed with medical-grade silicone of various colors and go through standard

sterilization. Slight changes would need to be made to the color band detection

process.

7http://www.surfacesolutionsgroup.com/coatings/visi-mark/
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3.7 Conclusion

We present an augmented reality surgical visualization and tracking system

that can assist surgeons in EVD catheter placement. Compared to existing similarly-

purposed systems, our system does not require changing the shape or weight of the

medical instruments. Our main technical contributions include 1) a low-latency,

high-performance way to track catheters and other 5DOF thin cylindrical objects,

and 2) an image processing algorithm to extract tracking color segment endpoints

in an image. Tests show that our system achieves a 0.58 mm accuracy on a 2D

plane and an accuracy of 0.85 mm in 3D space. Processing for each frame takes

22.60 ms on a moderately powerful computer. Both the accuracy and speed can be

further improved with higher-quality cameras and parallel implementation. We have

tested our system in a realistic surgical environment with a cadaveric head. Our

color marker and tracking technique can be applied to other medical procedures

where the precise location of a very thin medical instrument is needed, such as

needle-guided biopsies and minimally invasive surgeries.
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Chapter 4: Correcting the Proximity Effect in Nanophotonic Phased

Arrays

4.1 Overview

Nanophotonic phased arrays (NPA) are phased arrays operating at optical

wavelengths. An NPA is composed of an optical power distribution system, a phase

modulation mechanism that can control the phase of each pixel individually, and

antennas for propagating phase-modulated light into free space. NPAs can efficiently

steer optical waves in the desired direction and do so efficiently without any moving

parts. Thus, they have found widespread applications in optical communications

(such as Khalighi and Uysal [114]), range-finding (such as Poulton et al. [115]), and

other fields. Recently, Sun et al. [18] and Notaros et al. [116] demonstrated the use

of the NPA as an augmented reality holographic display. In this application, the

NPA generates an optical wavefront. Through careful phase modulation, text and

images (or 3D scenes) can be displayed for the observer to see. This use of NPAs is

of particular interest for graphics research into near-eye displays (NEDs).

Near-eye displays have become more popular with virtual and augmented real-

ity (VR and AR) going mainstream. In the current VR and AR headsets, users’ eyes
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can only focus at one or a small number of depths. This vergence-accommodation

conflict (VAC) can lead to visual discomfort, nausea, and cybersickness. Focus-

tunable displays have been shown to provide a preferable viewing experience [117].

Varifocal displays and light field displays have been proposed to address this issue

but they are either limited in angular resolution or involve multiple moving com-

ponents. Holographic displays recreate the optical wave field of 2D images or 3D

scenes. Therefore, the light observed by the user looks as if it is coming from the real

image or object, allowing viewing from different perspectives. Holographic displays

also form images and 3D scenes at the desired depths for eyes to naturally focus on,

thereby addressing VAC.

A holographic display modulates the phase and/or amplitude of light at each

pixel location to form the desired wavefront to be observed. Previously, Liquid

Crystal on Silicon Spatial Light Modulators (LCoS SLMs) are the most common

phase modulators for holographic displays. However, NPAs have gained popularity

recently. One major advantage of the NPAs over SLMs is their fast refresh rate.

One refresh cycle on the NPA includes heating each pixel to a certain temperature

corresponding to the desired phase and cooling down to ambient temperature. The

simulation with our NPA design shows that it can complete a refresh cycle within

10 µs, suggesting a 100kHz refresh rate which is uniquely suitable for dynamic con-

tent as well as time-division multiplexing operations such as color-switching and

higher dynamic range. The only other microdisplay capable of kHz-refresh rates

is the Digital Micromirror Device (DMD). It has been used for creating near-eye

displays in Rathinavel et al. [118]. However, the DMD can only modulate binary
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amplitude patterns which limits the fidelity of its image in a single frame. The

NPA is capable of continuous phase modulation. In addition, the NPAs support

integrated light sources where a laser is coupled to the NPA via an optical fiber,

distributed to each pixel and emitted by the on-board antennas. In this way, the

NPA displays can be made more compact as optical operations such as beam expan-

sion and polarization necessary for typical LCoS SLM or DMD display systems are

not required. LCoS SLMs also suffer from pixel voltage crosstalk and non-linearity

mapping between phase and voltage which hinder accurate phase modulation.

Thermally-modulated NPAs, such as those in Doylend et al. [19], Sun et al. [18]

and our design, depend on the thermo-optical effect of the materials to modulate the

phase of a pixel. The phase of a pixel can be changed from 0 to 2π by changing the

temperature of the pixel. The precise and independent control of the phase is needed

to ensure the successful display of desired 2D or 3D imagery. However, the thermal

proximity effect (PE), the phenomenon where the temperature of one pixel affects

the temperature of neighboring pixels, impacts the accuracy of phase modulation

and degrades the observed image. A simulated example of the proximity effect

negatively impacting the formed image of some Fourier holograms can be seen in

Figure 4.1. Therefore, in order to form the desirable images, this thermal proximity

effect must be taken into consideration. This problem is further complicated by

the fact that most NPAs only have heat generation mechanisms, with no cooling

capability, making some phase patterns impossible to realize.

There has been limited study on the problem of thermal proximity effect on

NPA holographic displays. But the proximity effect is present in many processes
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(a) Without PEC (b) Basic Iterative PEC (c) Iterative PEC (d) Proximal PEC

Gemayel et al. [119]

Figure 4.1: Nanophotonic phased arrays suffer from thermal proximity effect where

one pixel being heated affects the temperature of nearby pixels. This causes in-

accurate phase modulation and noise in the formed image of Fourier holograms as

shown in (a). The current state-of-the-art methods, as shown in (b), are not able to

sufficiently correct the proximity effect for our use case. We propose two proximity

effect correction (PEC) methods for Fourier holograms on the NPA which are able

to reduce the noise, as shown in (c) and (d). The proximal PEC method has the best

correction effectiveness. Images are chosen from the Common Objects in Context

dataset [5]. The proximity effect correction for Fresnel holograms is discussed in

Section 4.5.

71



and devices. In beam electron lithography and optical communication using SLMs,

the proximity effect is modeled as a convolution, such as in Peckerar et al. [120]

and Persson et al. [121]. In the former case, the correction is conducted as a de-

convolution with non-negative constraints on the solution. In the latter case, the

Gerchberg-Saxton phase retrieval algorithm is slightly modified to produce a result

that is somewhat resistant to the proximity effect. Sun et al. [122] also consider the

thermal proximity effect on NPAs as a convolution and perform deconvolution on

the phase under the assumption of perfect amplitude modulation.

In this chapter, we consider the practical but more challenging case of phase-

only holograms on NPAs. Based on the thermo-electric simulations, we also model

the proximity effect as a convolution. We first propose two new proximity effect

correction methods for the Fourier holograms. The first method works by integrat-

ing deconvolution into the phase retrieval algorithm. The second method uses the

proximal algorithm to directly optimize the displayed image on the NPA considering

the proximity effect. In addition, we propose a proximity effect correction method

for Fresnel holograms also based on the proximal algorithm. Fourier holograms are

based on the Fraunhofer diffraction approximation where propagating a wavefront

to a plane very far away (far field) can be approximated with a Fourier transform.

Fourier holograms are fast to compute and are good for reconstructing 2D images

in the far field. However, since Fourier holograms do not specify the depths of the

formed images, they are not suitable for 3D scenes. Fresnel holograms, on the other

hand, are based on the more accurate Fresnel diffraction approximation which is

applicable closer to the source than the far field and can specify the depths of the
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formed imagery. An illustration of the diffraction approximations and hologram

types can be seen in Figure 4.2. For more detail, please refer to Goodman [123] and

Voelz [6]. The closer range is more suitable for near-eye displays and the ability to

specify the depth allows the users to focus on the correct focal distance. This is

where holographic displays and computer-generated holography truly shine. Vari-

ous methods have been proposed to calculate the Fresnel holograms of 3D objects

and display them in SLM-based holographic displays, including by Shi et al. [1] and

Maimoneet al. [62]. No proximity effect correction method has been proposed for

Fresnel holograms on the NPA.

We start by investigating how the proximity effect negatively affects the ob-

served image quality on a phase-only NPA holographic display. We implement the

new proximity effect correction methods mentioned above and compare their correc-

tion effectiveness with existing solutions. Computational simulations are run with

proximity effect of varying severity and both qualitative and quantitative results are

presented. The factors affecting the correction effectiveness and processing time of

the methods are also investigated.

In summary, the goal of this chapter is to explore the proximity effect on NPA

holographic displays and propose new methods of correction. To the best of our

knowledge, this is the first detailed analysis of phase-only NPA-based holographic

displays with the thermal proximity effect and the first to come up with effective

solutions.

The rest of the chapter is organized as follows. In Section 4.2 we briefly sum-

marize the existing literature on several related topics including near-eye displays,
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Figure 4.2: The Rayleigh-Sommerfeld model provides a highly accurate, but also

computationally expensive, diffraction model. It is applicable one wavelength away

from the source. When the propagation distance is farther, the Fresnel diffraction

approximation, which is less computationally expensive than Rayleigh-Sommerfeld

diffraction may be used. Holograms computed using the Fresnel diffraction are called

Fresnel holograms. They can be reconstructed at the user-specified depths, such as z1

and z2. The Fresnel diffraction approximation is considered acceptable when NF =

w2

λz
< 30 ( [6]), where w is the radius of the source field, λ is the wavelength and z

is the propagation distance. Farther away when NF � 1, the Fraunhofer diffraction

approximation can be used where the propagation can be approximated with a

Fourier transform. Holograms based on the Fraunhofer diffraction are called Fourier

holograms and are the fastest to compute. In our NPA design, w = 1 mm. Given a

typical green light wavelength λ = 530 nm, the Fresnel diffraction is acceptable for

z > 62.89 mm and Fraunhofer diffraction is suitable for z � 1886.79 mm.
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NPAs, computer-generated holography, and proximity correction. In Section 4.3,

we describe how we model the proximity effect on an NPA display. Then in Section

4.4 and 4.5, we describe our proposed proximity effect correction methods for the

Fourier holograms and Fresnel holograms, respectively.

4.2 Related Work

We introduce some of the existing work on the various topics related to this

chapter. This includes work on NPAs, NEDs, computer-generated holography and

the proximity effect correction.

4.2.1 Nanophotonic Phased Arrays

The phased array has been an active area of research since its invention. The

microwave version of the phased array was first realized in the mid 1940s [124]

and since then it has seen widespread use in applications such as radio detection

and ranging (RADAR), broadcasting, and astronomy. The invention of the optical

version of the phased arrays, the nanophotonic phased arrays, was made possible

due to several advances starting from the invention of the laser in the early 1960s

and high-precision silicon photonics fabrication.

Optical beam steering using one-dimensional NPAs allows stable, rapid, and

precise beam steering without mechanical motion while providing large scanning an-

gles. Two-dimensional NPAs have several applications, including LiDAR scanning

and free-space optical communications. What is of particular interest to us is its

75



use as a holographic display. Sun et al. [18] demonstrate a novel NPA architecture

capable of integrating an optical directional coupler, a 2π tunable phase modulator

and a nanoantenna within a compact 9 µm× 9 µm unit and an infrared image con-

taining text information which can be observed in the far field. Building an NPA on

a silicon nitride platform can break its operating wavelength limitation and expand

its applications into the visible spectrum. Raval et al. [125] show a static image

with the horizontal parallax and a viewing angle of 5◦ generated on an NPA oper-

ating at 635 nm wavelength. Notaros et al. [116] demonstrate for the first time an

NPA-based visible-light near-eye holographic projector where a holographic image

encoding methodology has been used and a 3D cube can be observed by the eye.

However, in most of the works mentioned above, the phase shift for each pixel has

been hard-coded during manufacturing and cannot be dynamically changed. As a

result, only static images were shown. A notable exception is the work by Sun et

al. [18] where a small-scale (8× 8) array with active phase tuning is used to demon-

strate infrared beam steering. Our NPA design supports active phase tuning for

visible light and addresses the challenge of correcting thermal proximity effect that

comes with thermally modulated NPAs. A phased array with acousto-optic phase

modulation has also been shown by Grinenko et al. [126].

4.2.2 Near-eye Displays

Traditionally, near-eye displays use binocular vision to provide the parallax

depth cue [127, 128]. While these displays and the modern commercial headsets
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can provide a very good field-of-view, they can only afford a single focal distance

which leads to the vergence-accommodation mismatch. A comprehensive study by

Rolland et al. [129] provides an engineering specification on the number of focal

distances that is required to suppress the vergence-accommodation mismatch. To

provide multiple focal distances, Akeley et al. [130] use several beamsplitters placed

at different distances from the viewer to reflect the content from a single LCD

monitor. Dunn et al. [55] use a deformable membrane controlled by airtight cavities

to modulate the focal distance. A gaze tracker is used to sense the desired focal

distance. Commercialized focus-tunable lenses have also been used address VAC

and vision correction in near-eye displays in Chakravarthula et al. [131] and Xia et

al. [132]. Akşit et al. [133] and Kim et al. [134] use a motorized linear stage to move

the optical combiner and the MOLED display on the optical axis to adjust the focal

distance.

Light field displays encode the radiance as a function of position and angle [135]

and have been shown to approximate the accommodation to the extent limited by

the angular resolution [136]. Light field displays have been implemented based on a

variety of underlying hardware platforms such as microlens arrays [137], attenuating

LCDs [63, 138–140], and holographic optical elements combiner layer with projec-

tors [141, 142]. Pamplona et al. [143] and Huang et al. [144] show that light field

displays can correct impaired vision such as myopia and presbyopia and higher-order

aberrations. A method to compute the optimal imagery on such displays with mul-

tiple focal planes has been described [145]. However, the angular resolution of light

field displays is limited by the number of different views which together with the
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spatial resolution is bound by the device’s form factor and pixel density. Attempt-

ing to further increase pixel density can lead to undesirable diffraction artifacts.

Padmanaban et al. [146] solve this problem to some degree with Overlap-Add Stere-

ogram (OLAS) at the cost of more intensive computation. Mi et al. [147, 148] have

shown that the accommodation problem can be circumvented with a type of retinal

scanning display that directly projects the image onto the user’s retina.

Holographic displays have been built with pre-recorded holographic optical

elements [133,134] or with dynamic phase spatial light modulators [1,62] or a com-

bination of both [149]. This technology has the potential to fully address some hard

problems faced by the current generation of VR and AR near-eye displays such as

vergence-accommodation conflict. However, the refresh rate and form factor of the

holographic displays falls short of what the NPA technology can provide.

For more details on near-eye displays we refer the interested reader to the

comprehensive survey by Koulieris et al. [150].

4.2.3 Computer-Generated Holography and Phase-Only Holograms

Various methods have been proposed for computer-generated holography (CGH).

For Fourier holograms, the holographic pattern of an image in the far field can be

calculated as its Fourier transform. Lohmann et al. [151] show that a binary repre-

sentation of the Fourier hologram can achieve good reconstruction quality for letters

in a 2D image.

Fresnel holograms are calculated by considering the various scene objects, such
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as points and polygons, as a collection of light sources. Waters [152] synthesized a

Gabor-style hologram by calculating the interference pattern from the light emitted

by each point on an object and the illumination beam. Directly computing the

interference pattern from every point is computationally intensive. Lucente [153]

uses a look-up table corresponding to the interference contribution from points at

each location in the image space and achieves a 43× speedup. Yoshikawa et al. [154]

use approximation methods to calculate the distance from a point source to a holo-

graphic pixel. Stereograms are small regions of a hologram. They each record the

diffraction pattern of a portion of the scene instead of the entire scene and are used

in Lucente and Galyean [155], Xu et al. [156], and Shi et al. [1] to reduce the amount

of computation. More recently, Eybposh et al. [157] train an unsupervised convolu-

tional neural network that outputs the near-field phase for a given desired image in

real-time. Peng et al. [158] employ a camera in the hologram calculation process to

iteratively optimize the hologram based on captured observation from the camera.

These holograms are used to train a neural network that can output high-quality

holograms in real-time.

Ziegler et al. [159] develop a conversion technique between the light field repre-

sentation and the holographic representation of a scene. Padmanaban et al. [146] use

this conversion to develop the OLAS algorithm to escape the trade-off between spa-

tial and angular resolution in traditional light-field displays. Ways to add occlusion

or change lighting in a hologram have also been explored in Ziegler et al. [160].

While an optical wavefront contains both phase and amplitude, many currently

available holographic displays are only capable of modulating either only the ampli-
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tude or only the phase. Akşit [161] use a learning-based optimization approach to

calculate the amplitude hologram that enhances the spatial resolution by up to four

times when illuminated with a fast-refreshing locally-addressable backlight. The

NPAs we are investigating here is only capable of phase modulation. Therefore,

a method to convert fully complex holograms to phase-only holograms is required.

Gerchberg and Saxton [162] proposed the first of a family of iterative phase re-

trieval algorithms that generate a near-field phase pattern which coupled with a

predefined near-field amplitude pattern can propagate to form the desired far-field

amplitude. We discuss this algorithm and our modifications in Section 4.4.1. The

original Gerchberg-Saxton (GS) algorithm uses Fourier transform to approximate

the Fraunhofer diffraction over a long distance. Fresnel diffraction is also frequently

used in a similar way when the propagation distances are shorter.

Several researchers have made modifications to the iterative phase-retrieval

algorithm. Masuda et al. [163] added a binarization step after the propagation

from the object plane to the hologram plane to extract a binary phase. Similarly,

Persson et al. [121] and Gemayel et al. [119] add a convolution step to counter the

pixel voltage crosstalk on SLMs. However, these methods require heavy padding

of the image to be effective and in our opinion do not make the full of the limited

resolution on holographic displays. Nevertheless, we include these methods as the

most recent existing proximity effect correction method even though the cause of

proximity effect in our case is different.

A recent work on phase retrieval is Chakravarthula et al. [164] using non-

convex optimization based on Wirtinger derivative. Our proposed proximal prox-
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imity effect correction method also uses non-convex optimization and shows that it

can effectively and efficiently correct thermal proximity effect in NPAs.

4.2.4 Proximity Effect Correction

Parikh [165] introduces a self-consistent technique that provides a mathemat-

ically unique solution to the PEC problem given the proximity function by solving

a set of linear equations. This technique is accompanied by a second technique

that compensates for the unaddressed regions by solving an overdetermined system

of equations. Carroll [166] expresses the PEC problem as a linear programming

problem with constraints derived from the addressed and unaddressed pixels.

Chow et al. [167] use an image deconvolution approach based on the convo-

lution theorem to efficiently solve the PEC problem. Similarly, a matrix inversion

approach to deconvolution is tested by Peckerar et al. [168]. These deconvolution-

based methods are likely to produce negative entries in the result, which is not

physically acceptable. Simple techniques have been proposed to address this prob-

lem such as setting them to zero (chopping) and adding a background value equal

to the absolute of the minimum entry (shifting) in Marrian et al. [169]. A more ad-

vanced method to avoid negative entries is to add a regularizer to the cost function

in the gradient-descent method. One such regularizer used in [168, 169] is propor-

tional to the Shannon entropy of the pattern. Alternatively, Peckerar et al. [170]

express the non-negative requirement as well as the incident dose as constraints

in a linear programming problem that minimizes the total dose. Sun et al. [122]
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try a number of PEC methods including quadratic programming on an NPA model

that suffers from proximity effect in phase modulation but assumes independent and

ideal amplitude modulation. Our work addresses the more practical, but also more

challenging case of thermal proximity effect correction on a phase-only NPA.

There are many more PEC methods in E-beam lithography that we are not

able to cover in the entirety here. We refer interested readers to Li [171] for a

thorough review.

4.3 Nanophotonic Phased Array

This section describes the basic structure and operation of an NPA display.

The description is based on an NPA of our design currently under development.

The differences between this NPA design and previous NPAs such as those in Sun et

al. [18] and Raval et al. [125] are out of the scope of this chapter. The focus of this

chapter is the thermal proximity effect which is common in all thermal-modulated

NPAs and its correction methods. Therefore, we first explain the phase modulation

in Section 4.3.1, followed by how we model and quantify the thermal proximity effect

in Section 4.3.2.

4.3.1 Phase Modulation

Figure 4.3(a) shows the schematics of the NPA we have developed. Each array

unit (a pixel) consists of a tunable thermo-optical phase shifter that is coupled to an

optical antenna. The refractive index of the phase shifter changes with temperature.
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Figure 4.3: The NPA display with electronic and optical layers is shown in (a). The

optical power is evenly distributed into each pixel. Therefore, the near-field (b) has

uniform amplitude. The antennas (c) propagate the near-field wavefront to form

the image to be observed at the desired depth.

Therefore, phase modulation can be achieved by heating each pixel. Special efforts

have been put into reducing the physical size of the phase shifter while maintaining

its sensitivity to temperature change. This way, the array can be small and a

complete 2π phase shift can be achieved with a relatively small temperature range,

thus achieving high energy efficiency. The optical power is evenly distributed into

each pixel by a precise design of the directional couplers. Therefore, a uniform

amplitude is achieved in the near field, as shown in Figure 4.3(b). The phase of the

NPA holographic display pixel is modulated with the temperature. An electronic
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chip (green layer in Figure 4.3(a)) is used to control the heating of each pixel.

There is a linear relationship between the phase φj of a pixel j and its tem-

perature Tj (above room temperature), expressed in Equation 4.1.

φj = γTj (4.1)

Note that Tj must be non-negative for physical feasibility. From the simu-

lations run on our design, γ is inferred to be π
175

rad ◦C−1 for 630 nm red laser.

With precise phase shifter design, γ is proportional to the wavelength, i.e. γ = π
147

rad ◦C−1 for green (530 nm) and γ = π
124

rad ◦C−1 for blue (445 nm) lasers. Given

the desired 2D phase pattern of a hologram, we can find the desired 2D temperature

profile T̃ with Equation 4.1.

4.3.2 Thermal Proximity Effect

The thermal proximity effect in the NPAs is the phenomenon where one pixel

affects the neighboring pixel’s temperature when it is being heated. Similar prox-

imity effects are present in beam electron lithography and LCoS SLMs. In Peckerar

et al. [120] and Persson et al. [121], the relation between the energy deposited and

energy absorbed and the pixel voltage crosstalk are both modeled as convolutions.

We also model the thermal proximity effect in the NPAs as a convolution. To quan-

tify the proximity effect, we simulated a 5 × 5 array where we supplied the center

pixel with power and measured the temperature on all pixels. An illustration of

this thermal proximity effect can be seen in Figure 4.4. The data for this figure is

obtained from fitting a Gaussian to the 25 values from the simulation on a 5 × 5
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array which is described below.

Figure 4.4: Thermal crosstalk arising from power being supplied to the center pixel

on a 5× 5 array.

Using the measurement, we derive the following relationship:

Tk→j = Tke
− d(j,k)

2

σ2 (4.2)

Tk→j refers to the temperature rise in pixel j caused by pixel k, Tj and Tk are

the temperatures of pixels j and k before considering the proximity effect and d(j, k)

is the distance between pixels j and k measured in pixels (px). The temperature

T̂j of pixel j considering the proximity effect is the sum of Tj and the contributions

from all surrounding pixels, expressed in Equation 4.3. The temperature of the

entire NPA can be expressed as the convolution in Equation 4.4 where T and T̂ are

the 2D temperature profiles before and after considering the proximity effect and ∗

is the convolution operation.
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T̂j = Tj +
∑
k 6=j

Tk→j (4.3)

T̂ = T ∗Kσ (4.4)

We derive that σ = 0.66 px based on the data obtained from thermal-electrical

simulations. The convolution kernel Kσ in Equation 4.4 can be constructed using

σ. We have used kernels of size 7× 7 in our simulations.

The severity of the thermal proximity effect is quantified by the value of σ.

Even though we derived that in our current design σ = 0.66 px, factors such as the

thermal conductivity of the materials of the NPA and the pixel pitch could affect

this value. For example, if the pixel pitch is reduced, heating one pixel would affect

the temperature of its neighboring pixels more as they are closer to the pixel being

heated. The impacts of the thermal proximity effect and the effectiveness of the

correction methods are presented with varying levels of the thermal proximity effect

in Section 4.4.3.

4.4 Proximity Effect Correction for Fourier Holograms

In this section, we describe our novel proximity effect correction methods for

Fourier holograms in phase-only NPA holographic displays. The first method is

based on the Gerchberg-Saxton iterative phase retrieval algorithm. In this method, a

deconvolution step is introduced to the source amplitude constraint in each iteration.

We refer to this method as the Iterative Proximity Effect Correction (IPEC) method.

The second method which we call the Proximal Proximity Effect Correction (PPEC)
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method, is based on the proximal algorithm. We use the proximal algorithm to

directly find a near-field phase pattern that minimizes the difference between the

far-field intensity it forms under the proximity effect and the desired image.

4.4.1 Iterative Proximity Effect Correction

The Gerchberg-Saxton iterative phase retrieval algorithm is a classic and well-

known algorithm for calculating phase-only holograms. Here we focus on how we

integrate proximity effect correction into it. For completeness, we present a detailed

description of this algorithm in Section 4.4.1.1.

The pseudocode for the IPEC method is presented in Algorithm 1. The inputs

to this algorithm are S, T ∈ RM×N , the source and target amplitude patterns each

of size M × N . The source amplitude S is the near-field amplitude on the NPA.

According to Section 4.3, S is uniform in our setting. The target amplitude T is the

amplitude we wish to form in the far field. The phase retrieval algorithm finds the

near-field phase that coupled with S produces the far-field amplitude T . A random

initial phase φ0 ∈ RM×N may be used to initialize the algorithm. The function “phs”

returns the phase of a complex wavefront. We use the Fourier hologram model where

the propagation of the near-field wavefront to the observation plane is approximated

with a Fourier transform. F represents the discrete Fourier transform. Let P (φ)

be the function that applies the proximity effect to the phase pattern φ. P−1 is the

reverse process.

We integrate the proximity effect correction into the phase retrieval algorithm
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Algorithm 1: Iterative Proximity Effect Correction

input : S, T , φ0

output: φr

A = F−1(T · eiφ0);

while Within maximum iteration do

φr = P−1(phs(A));

B = S · eiP (φr) (source amplitude constraint);

C = F(B);

if Termination condition met then

break;

end

D = T · eiphs(C) (target amplitude constraint);

A = F−1(D);

end

by modifying the step of the source amplitude constraint. Originally, the source

amplitude constraint is applied by having B take the amplitude S and the phase of

A. In our iterative proximity effect correction method, B takes the same amplitude

S but the phase after taking the proximity effect and its correction into account.

Specifically, the phase is P (P−1(phs(A))). P−1 takes into consideration the non-

negative constraint. Therefore, in most cases, P (P−1(φ)) 6= φ.

A good termination condition can be the difference, ‖T − |C|‖F, between the

amplitude of C and the target T becoming small enough. While this works well
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with the original phase retrieval algorithm, we find it hard to define a threshold

when P−1 is introduced. Instead, we terminate when the minimum and maximum

values of |T − |C|| are not updated for several consecutive iterations.

In our setting, P is a convolution, i.e. P (φ) = K ∗ φ where φ is a 2D phase

pattern. P−1 is therefore a deconvolution with non-negative constraints. We can

express P−1 in the following form. MKx = φ is the matrix form of the convolution.

MK ∈ RMN×MN . φ,x ∈ RMN×1.

P−1(φ) = argmin
x
‖MKx− φ‖22 (4.5)

s.t. x ≥ 0

A basic deconvolution method is matrix inversion. If MK is non-singular,

which it is in our case, we can simply take x = M−1
K φ. In practice, it is faster and

more robust to solve the linear system MKx = φ. However, this method is likely

to produce a solution that contains negative entries corresponding to a temperature

lower than the room temperature. This is physically impossible to achieve on the

current design of the NPA.

A more robust deconvolution method is quadratic programming, which is for-

mulated in Equation 4.6. Traditional quadratic programming algorithms such as

the interior-point algorithm can be used. Alternatively, we can use gradient descent

to minimize the cost function in Equation 4.6 and use a regularizer to ensure the

solution is non-negative.
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min
x

1

2
xT(MT

KMK)x+ (−φTMK)x (4.6)

s.t. x ≥ 0

In the simulations, we use the quadratic programming deconvolution method

described above.

4.4.1.1 Gerchberg-Saxton Iterative Phase Retrieval Algorithm

The iterative proximity effect correction method integrates proximity effect

correction into the classic Gerchberg-Saxton iterative phase retrieval algorithm. For

completeness, we describe the original GS algorithm here.

We have a target amplitude pattern T that we want to form in the far field and

a fixed source amplitude pattern S in the near field. We wish to find the near-field

phase that when coupled with S can be propagated to the far field to form T . In the

traditional iterative phase-retrieval algorithm, there are four complex wavefronts, A,

B, C, and D (shown in Figure 4.5). A and B are located in the near field while

C and D are located in the far field. In the initialization step, a common way to

initialize A is to set it as the inverse Fourier transform of the target amplitude with

the random initial phase φ0.

Then in each iteration, B is formed by applying source amplitude constraint

on the hologram plane, expressed as B = S ·eiφA . B is then propagated to the object

plane to form C. If the termination condition is met here, A’s phase (same as B’s

phase) is the retrieved phase of the algorithm and C is the expected wavefront in
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Figure 4.5: Iterative phase retrieval algorithm

the far field. Otherwise, the iteration continues as the target amplitude constraint

is applied on the object plane, expressed as D = T · eiφC . A is then formed by

propagating D to the hologram plane.

The phase retrieval algorithm may also specify a signal region. In this case, we

only want to ensure that the farfield amplitude matches T only in the signal region.

We specify the signal region as I, and the rest of the region as background II. We

denote the signal and background region on a 2D field A as AI and AII respectively.

AI ∪ AII = A. The target amplitude constraint will be applied separately for the

signal and background regions.
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DI = TI · eiphs(CI) (4.7)

DII = CII (4.8)

4.4.2 Proximal Proximity Effect Correction

In the proximal proximity effect correction method, we set out to find the near-

field phase pattern that minimizes the difference between the far-field intensity it

forms under the proximity effect and the desired image I. Namely, given the image

I ∈ RM×N , we want to find the non-negative near-field phase pattern X ∈ R+M×N

that minimizes g(X) in Equation 4.9. U(X) is the intensity of the wavefront the NPA

with input phase X forms in the far field, which can be calculated in Equation 4.10.

Again, P (X) is the result of the proximity effect on the input phase X. It should

be noted that the proximity effect should be applied to the temperature instead of

the phase. However in our case, since there is a relationship between the phase and

temperature on the NPA, we directly use the phase X for simplicity in the problem

formulation.

g(X) = ‖U(X)− I‖2F (4.9)

U(X) = |F(eiP (X))|2 (4.10)

Proximal algorithms are generally used for solving convex optimization prob-

lems [172]. However, as is shown in Heide et al. [173] and will be shown in Sec-

tion 4.4.3, the proximal algorithms can also work well on our non-convex problems.
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The proximal algorithms work by repeatedly evaluating the proximal operator.

The proximal operator of a function f is defined as follows ( [172]). λ is the step

size parameter.

proxλf (v) = argmin
x

(f(x) +
1

2λ
‖x− v‖22) (4.11)

To enforce the non-negative constraint, we add an indicator function to the

cost function f(X) in Equation 4.12.

f(X) = g(X) + c(X) (4.12)

c(X) = I[0,+ inf)(X) (4.13)

Various proximal algorithms have been proposed. In this chapter, we use the

accelerated proximal gradient algorithm. This algorithm splits the cost function into

two parts, one of which is differentiable. In our case, f(X) is the differentiable term.

Let Xk and λk be the solution and the step size in iteration k. Y k is the extrapolated

solution in iteration k whose purpose is to move the solution a step further towards

convergence. g′τ (Z, Y ) = g(Y ) + tr(∇g(Y )(Z − Y ))T + 1
2τ
‖Z − Y ‖2F and β ∈ (0, 1)

are used in the line search method (Beck and Teboulle [174]) to determine the step

size τ . The algorithm is carried out iteratively according to Equation 4.14.

Y k+1 = Xk + ωk(Xk −Xk−1)

Xk+1 = proxλkc(Y
k+1 − λk∇g(Y k+1)) (4.14)
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A simple choice for ωk is k
k+3

[172]. The proximal operator of the indicator

function proxλc(v) projects the input v into the non-negative space. The gradient

of the function g(X), ∇g(X), has been derived in Section 4.4.2.1. The function

“Re” takes the real components of a complex value. X is the complex conjugate

of X. K is the convolution kernel. The pseudocode for this algorithm is shown in

Algorithm 2.

∇g(X) = 4K ∗ Re{[ieiP (X) · F((U(X)− I) · eiP (X))]} (4.15)

4.4.2.1 Derivation of PPEC Gradient

Here we document the derivation of∇g(X). To reiterate, g(X) is the difference

between the far-field image U(X) formed from near-field phase X under proximity

effect and the desired image I expressed in Equations 4.9 and 4.10.

We use the notation Mij to indicate the element at index [i, j] in a matrix M .

For simplicity, we may also use U or P to represent U(X) or P (X).

∂g(X)

∂Xij

= Tr[(
∂g

∂U
)T

∂U

∂Xij

] (4.16)

= Tr[2(U − I)T
∂U

∂Xij

] (4.17)

Let Q = U − I, and ∂g(X)
∂Xij

becomse the following.

∂g(X)

∂Xij

= 2
M−1∑
m=0

N−1∑
n=0

Qmn[
∂Umn
∂Xij

] (4.18)
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Algorithm 2: Proximal Proximity Effect Correction

input : X0, I, τ , β

output: X

X = X0;

Xprev = X;

while Within maximum iteration do

Y = X + ω(X −Xprev);

while true do

Z = proxτc(Y − τ∇g(Y ));

if g(Z) < g′τ (Z, Y ) then

break;

else

τ = βτ ;

end

end

Xprev = X;

X = Z;

if Termination condition met then

break;

end

end
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Now we take a look at Umn.

Umn = |F(eiP (X))|2mn

= [F(eiP (X))]mn[F(eiP (X))]mn (4.19)

= (
M−1∑
k=0

N−1∑
l=0

eiPkle−i2πm
k
M e−i2πn

l
N )·

(
M−1∑
k=0

N−1∑
l=0

e−iPklei2πm
k
M ei2πn

l
N ) (4.20)

∂Umn
∂Xij

=
M−1∑
k=0

N−1∑
l=0

∂Umn
∂Pkl

∂Pkl
∂Xij

(4.21)

∂Umn
∂Pkl

= ieiPkle−i2πm
k
M e−i2πn

l
N [F(eiP )]mn +

(−ie−iPkl)ei2πm
k
M ei2πn

l
N )[F(eiP )]mn (4.22)

Now let Hmn
kl = ieiPkle−i2πm

k
M e−i2πn

l
N [F(eiP )]mn, Equation 4.22 becomes the

following.

∂Umn
∂Pkl

= Hmn
kl +Hmn

kl (4.23)

Take Equation 4.23 and 4.21 into Equation 4.18, we get the following.

∂g(X)

∂Xij

= 2
M−1∑
m=0

N−1∑
n=0

Qmn

M−1∑
k=0

N−1∑
l=0

(Hmn
kl +Hmn

kl )
∂Pkl
∂Xij

(4.24)

Since Qmn and ∂Pkl
∂Xij

are real, we know that ∂g(X)
∂Xij

is real, which is what we

expect.
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∂g(X)

∂Xij

= 4Re(Sij) (4.25)

Sij =
M−1∑
m=0

N−1∑
n=0

Qmn

M−1∑
k=0

N−1∑
l=0

Hmn
kl

∂Pkl
∂Xij

(4.26)

=
M−1∑
m=0

N−1∑
n=0

Qmn

M−1∑
k=0

N−1∑
l=0

ieiPkle−i2πm
k
M e−i2πn

l
N [F(eiP )]mn

∂Pkl
∂Xij

(4.27)

=
M−1∑
k=0

N−1∑
l=0

M−1∑
m=0

N−1∑
n=0

{Qmn[F(eiP )]mne
−i2πkm

M e−i2πl
n
N }ieiPkl ∂Pkl

∂Xij

(4.28)

=
M−1∑
k=0

N−1∑
l=0

{[F(Q · F(eiP ))]kl ieiPkl} ∂Pkl
∂Xij

(4.29)

It is easy to follow that as long as ∂Pkl
∂Xij

is constant (P being a convolution is

one such case), S and therefore ∇g can be calculated as follows.

S = P{F [Q · F(eiP )] · ieiP} (4.30)

∇g = 4Re(S) (4.31)

4.4.3 Simulations

We have carried out our computational simulations on a dataset containing 29

real-life images (Sheikh et al. [7, 8]) and an additional newspaper image containing

text from the CHRONIC dataset (Smits and Faber [9]). Our software implementa-

tion uses Matlab running on an Intel 9900K CPU. We present the simulation results

in color as our proximity effect correction methods are applicable to all wavelengths.
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Multi-color displays can be easily implemented by coupling three lasers into the

NPA.

4.4.3.1 Implementation and Test

As mentioned before in Section 4.4.1, we perform the deconvolution by min-

imizing the residual ‖MKx − φ‖22 while maintaining x ≥ 0. Specifically, the cost

function f(x) to minimize in the proximal algorithm is the following.

f(x) = g(x) + c(x) (4.32)

g(x) =
1

2
xT(MT

KMK)x+ (−φTMK)x (4.33)

c(x) = I[0,inf](x) (4.34)

We use the accelerated proximal gradient algorithm. The gradient of g(x) is

evaluated as the following.

∇g(x) = MT
KMK − φTMK (4.35)

For the PPEC method, we use the accelerated proximal algorithm exactly

like described in Section 4.4.2. We use the residual change to determine when to

terminate the algorithm. Let Xk be the solution in iteration k. The residual is

g(Xk) from Equation 4.9. Let rk be the change in iteration k compared to the

previous iteration. We terminate the algorithm when rk drops below 0.001 for 10

consecutive frames.
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rk =
abs(g(X)k − g(X)k−1)

g(X)k−1
(4.36)

.

In addition to showing the simulated reconstructions of the far-field images,

we also quantify the quality of these images with structural similarity index (SSIM)

from Wang et al. [175]. The power of the luminance, contrast, and structure terms

we use in the SSIM are all 1. SSIM(I, R) measures the similarity between the input

image I and the reference image R. When I and R are identical, SSIM(I, R) = 1.

As the similarity decreases, so does the SSIM. We have also considered two other

image quality metrics, the classic Peak Signal-to-Noise Ratio (PSNR) and a neural

network-based perceptual similarity by Zhang et al. [176]. We did not find any

contradictions between these image metrics and direct observation in our tests. The

larger the proximity effect level, the more noise is present and the lower the quality

metric score gets. More detail on these image quality metrics in our test can be seen

in Section 4.4.3.2.

4.4.3.2 Image Quality Metrics

In order to quantitatively assess the negative impacts of proximity effect and

the effectiveness of the correction, a metric for image quality is needed. We look at

three image quality metrics and pick one to use in our simulations. The three are

Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM) from Wang

et al. [175] and a neural network-based perceptual image quality metric from Zhang
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et al. [176].

The first two are well-known image quality metrics. Given the reference image

R and the image in question I whose quality we want to quantify, the PSNR is

defined as follows. The images R and I have the same size M ×N .

PSNRR(I) = 10log10(
max(R)2

MSE(R, I)
) (4.37)

MSE(R, I) =
1

MN

M−1∑
i=0

N−1∑
j=0

(Rij − Iij)2 (4.38)

The PSNR treats each pixel separately. Even though it is a good metric for

reporting the `2 difference, it is not suitable for structured signals such as images.

The SSIM is a perceptually inspired image metric and is defined as follows.

SSIMR(I) = L(I, R)α + C(I, R)β + S(I, R)γ (4.39)

L(I, R) =
2µIµR + C1

µ2
I + µ2

R + C1
(4.40)

C(I, R) =
2σIσR + C2

σ2
I + σ2

R + C2

(4.41)

S(I, R) =
σI,R + C3

σIσR + C3

(4.42)

L(I, R), C(I, R) and S(I, R) are the luminance, contrast and structural terms,

with µ, σ being the mean and standard deviation of the respective images. σI,R is

the cross-covariance for I and R. α, β, γ and C1, C2 and C3 are parameters. We

use the default parameters, i.e. α = β = γ = 1, C1 = (0.01D)2, C2 = (0.03D)2,

C3 = C2

2
. D is the dynamic range of the images, which is 255 for the uint8 images

we use.
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Zhang et al. [176] find that some of the loss functions based on the deep features

of image synthesis applications are uniquely suitable to express the quality of the

image. In their study, there are cases where the perceptual similarity’s choices align

more with humans while the images PSNR and SSIM think are better are actually

considered worse by humans. It has also been shown that the perceptual similarity

also performs well on images outside the domain of training image datasets. The

metric value d produced by their network1 represents the “perceptual difference”.

To keep up with the PSNR and SSIM where larger metric value means better image

quality, we use s = e−d to express the “perceptual similarity”.

We want the image quality metric to reflect the severity of the proximity effect

and treat every image equally. Specifically, we want to see the increasing severity

of proximity effect reflected in the metric for every image. Additionally, when the

severity of the proximity effect is fixed, we want the variance of how the metric scores

every image to be as small as possible. Therefore, we assess the three image quality

metrics in two ways. First, we apply increasing levels of proximity effect to one

image and observe how the metrics change. The results can be seen in Figure 4.6.

Next, we fix the proximity effect and plot the metrics on the entire image

dataset of 29 images. We want the variance over the images to be as small as

possible. The results can be seen in Figure 4.7.

It can be seen that all three metrics satisfy our requirements for the image

quality metric. We choose to use SSIM as the image quality metric in our simula-

tions because there is no significant disagreement among between the SSIM and the

1Their code is publicly available at https://github.com/richzhang/PerceptualSimilarity
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Figure 4.6: How the three image quality metrics change with increasing levels of

proximity effect on a single image. The results on two example images are shown

(left and right column). These results are representative of the entire image dataset.
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std: 0.063 std: 0.028

std: 2.163 std: 1.182

std: 0.050 std: 0.084

Figure 4.7: The image quality metrics over the entire dataset when the proximity

effect level is fixed. A small proximity effect (σ = 0.1 px, left) and a large one

(σ = 1.0 px, right) are shown. The standard deviations of the metrics over the

dataset are also shown under each image.
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perceptual similarity in this simulation and the SSIM value drops to around zero

when the proximity effect level is high and the result image is completely noise.

4.4.3.3 Correction Effectiveness

We first present the qualitative visual results in Figure 4.8. The original images

are shown on the left as references. We also include the method in Persson et

al. [121] and Gemayel et al. [119] in the second column. We refer to this method as

the Basic Iterative Proximity Effect Correction. The basic IPEC method skips the

deconvolution step when applying the source amplitude constraint, namely using

B = S · eiP (phs(A)) in Algorithm 1. The results of the IPEC method and the PPEC

method are presented in the remaining two columns, respectively. The proximity

effect level in the first two rows is σ = 0.66 (px) corresponding to our sample device.

To show the impact of a greater proximity effect level especially on text-rich images,

we use σ = 0.8 (px) in the third row with the image of a newspaper.

It can be seen from Figure 4.8, the IPEC method performs much better than

the basic IPEC method and is able to produce reasonable results. However, it is still

not able to effectively correct high levels of proximity effect. The PPEC method has

the best correction effectiveness of all methods compared and is the only method

that can recover text-rich images when the proximity effect level is high. At high

proximity effect levels such as σ = 0.80 px, a vignette effect (where the center of

the image is brighter than the border region) can be observed in the results of the

basic IPEC as well as IPEC. This is because the proximity effect is modeled as a
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Original Basic IPEC Iterative PEC Proximal PEC

Gemayel et

al. [119]

Figure 4.8: This figure compares the various Proximity Error Correction (PEC)

methods. The proximity effect level used in the first two rows is σ = 0.66 px. At

this level, the IPEC results are noisy but still reasonable. The proximity effect level

for the bottom row is σ = 0.8 px. At this level, the results from the IPEC methods

are incomprehensible but the Proximal PEC method provides readable results. The

images in the first two rows are from the LIVE dataset (Sheikh et al. [7, 8]) and

the newspaper image in the bottom row is from the CHRONIC dataset (Smits and

Faber [9]).
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Figure 4.9: Image quality degradation for various methods. This figure is plotted

with interpolated data from simulations where σ ranges from 0.10 to 1.00 px with

a 0.10 px interval.

Gaussian convolution. When the proximity effect is high, the Gaussian kernel gets

flatter and the near-field phase becomes more uniform. Since the Fourier transform

is used to approximate the propagation, more energy gets focused around the center

in the far field.

Figure 4.9 shows how the average image quality degrades with increasing

amounts of proximity effect for the methods. We observe that the image qual-

ity degrades with increasing proximity effect σ for the IPEC method. The PPEC
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method retains the best image quality at all proximity effect levels. At σ = 0.66 px,

the IPEC and PPEC methods improve the SSIM image quality metric by 121.26%

and 249.98% compared to the basic IPEC method, respectively.

4.4.3.4 Processing Time

We also look at the processing time of the proposed proximity effect correction

methods. Two factors may impact the processing time, the severity of the proximity

effect and the resolution of the image.

The processing time of the proposed methods with increasing thermal prox-

imity effect levels is presented in Fig 4.10. It is clear at first glance that the IPEC

method is very time-consuming. It is to be expected since IPEC is an iterative

method and at the same time, the deconvolution in each iteration is also imple-

mented in an iterative manner. The PPEC method is able to maintain a much

faster processing speed than the IPEC method. The processing time for the PPEC

method also increases with the proximity effect level. The basic iterative PEC

method is the fastest of the three methods tested. However, as shown in Figure 4.8

and 4.9, this method does not provide sufficient proximity effect correction.

The processing time of the methods with increasing image resolution is shown

in Figure 4.11. The processing time increases with image resolution for both the

IPEC and PPEC methods.
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384 × 256 768 × 512

Figure 4.10: The processing time of the proposed proximity effect correction meth-

ods with increasing levels of proximity effect at respective resolution.

4.4.3.5 Spatial Frequency of Images

Since the Gaussian filter used in the convolution modeling of the thermal

proximity effect is a low-pass filter, we want to investigate whether the spatial

frequency of the image affects the image quality of the proximity effect correction

methods.

To test this, we prepare images filtered by low-pass filters with several fre-

quency cutoff thresholds. We use the Butterworth low-pass filter to avoid the

ringing artifacts in the filtered images. The low-pass filter we use is expressed

in Equation 4.43. f(u, v) is the normalized distance from (u, v) to the center of the

spectrum. f(u, v) =
√

(2u
M
− 0.5)2 + (2v

N
− 0.5)2. fc is the frequency cutoff thresh-

old. We use frequency cutoff thresholds fc = 0.1, 0.2, 0.3, 0.4, 0.5. The results of the

PEC methods on the low-pass-filtered images are shown in Figure 4.12.
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σ = 0.5 px σ = 1.0 px

Figure 4.11: The processing time of the proposed proximity effect correction meth-

ods on images of increasing resolution. The image aspect ratio is kept at 3 : 2. The

resolution on the x-axis indicates the vertical resolution of the image.

BLPF(I) = F−1[F(I) ·H] (4.43)

H(u, v) =
1

1 + [f(u, v)/fc]4
(4.44)

As can be seen in Figure 4.12, there is no significant change of image quality

with different image spatial frequencies. This may be because the thermal proximity

effect mainly causes noise artifacts in the reconstructed images rather than blurring.

4.4.4 Discussion

Here we propose the iterative proximity effect correction which integrates de-

convolution into the iterative phase retrieval algorithm and the proximal proximity

effect correction which directly finds the phase that optimizes the formed image un-

der thermal proximity effect. Here we discuss some details of the proposed methods.
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Basic Iterative PEC Gemayel et al. [119]

Iterative PEC

Proximal PEC

Figure 4.12: The results of the basic iterative PEC method (top row) and the

iterative PEC method (middle row) and the proximal PEC method (bottom row)

on low-pass filtered images. The images (left column) are the results of the respective

PEC methods applied to a low-pass filtered image with frequency cutoff threshold

fc = 0.2 at proximity effect level σ = 0.7 px. The image qualities of each PEC

method at different proximity effect levels on images with different frequency cutoff

thresholds are shown in the right column.
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4.4.4.1 Improving IPEC

As can be seen in Figure 4.9, the PPEC method achieves better image quality

at all the thermal proximity effect levels tested. In fact, the PPEC method is able to

maintain the image quality with increasing thermal proximity effect levels, albeit at

the cost of slightly longer processing time (see Figure 4.10). IPEC methods perform

reasonably well at lower proximity effect levels. But at high proximity effect levels,

the IPEC method inevitably breaks down. An example with proximity effect level

σ = 0.8 px can be seen in Figure 4.8 bottom row. However, some techniques can be

applied to the IPEC method to further improve image quality.

The first technique is time-division multiplexing (TDM). We observe that the

artifacts in the IPEC results are noise artifacts. We can run the IPEC method

multiple times with different initial phase φ0 and display the different resulting phase

patterns in consecutive frames. This would increase the processing time of the IPEC

method. The TDM technique uniquely takes advantage of the fast refreshing nature

of the NPA. We can simulate the TDM by averaging the resulting far-field images,

which are shown in Figure 4.13(a). Obviously, if IPEC is run for n times, the TDM

technique would take n times the processing time of the IPEC method.

The other technique is to pad the desired image with a background region. In

the iterative phase retrieval algorithm, a signal region and a background region on

the wavefront can be specified. The two regions have no intersection. We want the

signal region to display the desired amplitude pattern therefore the target amplitude

constraint is only applied in the signal region. The background region offers more
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(a) Time-Division Multiplexing (b) Padding to 512× 512

(c) Initial padded image (d) Result padded image

Figure 4.13: (a) shows the result of TDM application to the IPEC method with

10 different initial phase. (b) shows the of result of the padding technique applied

to IPEC method. The center signal region is shown. The image is padded from

171 × 256 to 512 × 512. The initial and result padded images are shown in (c)

and (d), respectively. The thermal proximity effect level is σ = 0.66 px for both

techniques.
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Figure 4.14: IPEC with TDM and padding techniques compared to the original

IPEC method and the PPEC method.

freedom to phase manipulation. We have included more detail on the iterative phase

retrieval algorithm in the supplemental material. An example of this technique

is shown in Figure 4.13(b). The padding technique uses more pixels for a given

image than PPEC and wastes a portion of the display. Padding also increases the

processing time.

A comparison of the two techniques with the IPEC and PPEC methods is

shown in Figure 4.14. As can be seen, both techniques perform much better than

the original IPEC method without the techniques. The two techniques achieve

comparable image qualities to the PPEC method at lower proximity effect (σ < 0.7

113



px). This indicates that the IPEC method has the potential to achieve comparable

correction effectiveness as the PPEC method. However, it is necessary to find fast

deconvolution methods for the IPEC method to be efficient.

4.4.4.2 Pixel Pitch and Thermal Proximity Effect

Reducing the pixel pitch is one of the most effective ways of improving the

quality of a holographic display. Given the form factor of the display, reducing the

pixel pitch not only increases the number of pixels but also improves the field-of-

view of the display. The importance of pixel pitch has been discussed in a number

of studies on LCoS based holographic displays such as Shi et al. [1] and Jang et

al. [149]. The same principle also applies to NPA holographic displays. It is easy

to see that when the pixel pitch decreases, the pixels are more densely packed and

each pixel is affected more by the heat from neighboring pixels. This is highly likely

to lead to a more severe proximity effect. The PPEC method is the only effective

correction method at the moment to address this problem.

4.4.4.3 Choice of Proximal Algorithm

There are multiple variations of the proximal algorithm. Two examples are

the proximal gradient algorithm and the ADMM (alternating direction method of

multipliers). Both algorithms can be used to minimize the function f(X) = g(X) +

c(X) in Equation 4.12. In the proximal gradient algorithm, let Xk be the solution

in iteration k. The update in iteration k + 1 is the following.
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Xk+1 = proxλc(Xk) (4.45)

In the ADMM algorithm, the updates in each iteration are the following. Xk

and Zk converge to each other and are in the domains of f and g respectively.

Xk+1 = proxλf (Z
k − Uk) (4.46)

Zk+1 = proxλg(X
k+1 + Uk) (4.47)

Uk+1 = Uk +Xk+1 − Zk+1 (4.48)

The main difference between the two algorithms is the evaluation of the prox-

imal operator of the function g(X). g(X) is a non-linear function, and minimizing

it is the core of the proximal proximity effect correction problem. Since it is diffi-

cult to evaluate proxλg, we use the proximal gradient algorithm which only involves

calculating the gradient of g(X). In practice, we use the accelerated version of

the proximal gradient algorithm. Its update steps are described in Section 4.4.2.

The accelerated proximal gradient algorithm has an extrapolation step that can be

interpreted as moving the solution a step faster towards the optimal.

In the implementation of the quadratic programming deconvolution in the

IPEC method, we also use the proximal algorithm. Even though there exists closed-

form evaluation of the function g(x) in Equation 4.33 (see Parikh and Boyd [172]),

it still involves solving a linear system with tens of thousands of variables. We

have found that the accelerated proximal gradient implementation is faster than the

ADMM implementation.
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4.4.4.4 Iterations of PPEC

Here we show how the image quality improves over the iterations in the PPEC

method. An example with proximity effect level σ = 0.66 px is shown in Figure 4.15.

Figure 4.15: Image quality improves over the iterations. The orange dashed line

indicates the change in the residual compare to the previous iteration. σ = 0.66 px

in this case.

The image quality improves over the iterations. We use the residual change

rk in Equation 4.36 to determine when to terminate the algorithm. We terminate

the algorithm when rk drops below 0.001 for 10 consecutive frames at which point

the image quality changes very little.
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4.4.5 Limitations

Our simulations have shown that the proposed PPEC method achieves very

good correction effectiveness across different proximity effect levels. However, there

are still limitations to this approach. The NPA’s properties can help addresses some

of the limitations. Some of the properties may pose problems as well. Here we list

some of the limitations and propose potential solutions.

4.4.5.1 Amplitude Modulation and Diminished Reality

NPAs have the advantage of fast refresh rate and integrated light source. How-

ever, NPAs also have limitations. The integrated light source makes it difficult for

NPAs to modify the light from the real scene in augmented reality. Reflective or

transmissive SLMs can modify the wavefront from the real scene that reaches them,

achieving diminished reality or occlusion of real objects in AR, such as in Rathinavel

et al. [177]. Combining LCoS SLMs can expand the capabilities of NPA holographic

displays.

4.4.5.2 Choice of Initial Phase

The initial phase value of X in the PPEC method has an effect on the result.

We find that a constant value often leads to poor image quality or an excessively

long time to convergence. We use random values in our implementation and about

1% of the PPEC results suffer from slight speckle noise. We currently deal with

this by detecting the noise and rerun PPEC with a different initial value. Heide et
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al. [173] propose to use the result from the iterative phase retrieval algorithm as the

initial value for the phase retrieval using the proximal algorithm. We do not think

it is a viable choice for us because the iterative phase retrieval would add to the

processing time of the method. Still, the intermediate result of the iterative method

after only a few iterations may offer better robustness for our method.

4.4.5.3 Larger Proximity Effect for PPEC

We have shown that the PPEC method effectively corrects the proximity effect

within the tested range (from σ = 0.10 px to 1.00 px). While this is a realistic range

in which our NPA design lies, the PPEC method may not suffice at higher proximity

effect levels. For example, at σ = 1.50 px, the average SSIM of the PPEC method

is 0.48, and at σ = 2.00 px, the average SSIM drops to 0.30.

4.4.5.4 3D Holograms

In this section, we have explored proximity effect correction on NPAs to form

2D images. Holographic displays truly shine at displaying realistic 3D scenes at

the correct depth. The most naive approach would be to generate the phase-only

hologram of a 3D scene either with double-phase encoding (such as in Maimone et

al. [62]) or multi-plane phase retrieval (such as Makowski et al. [178]) and apply

deconvolution to the phase-only hologram. Or we can integrate deconvolution into

the multi-plane phase retrieval just like the proposed IPEC method. Noise and

discontinuity in the depth can be expected from these approaches. Another approach
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that takes advantage of the fast refresh rate of the NPA is time-division multiplexing.

Similar to what is suggested in Chakravarthula et al. [164], we can divide the 3D

scene into a stack of images at different depth and apply PPEC to each image. The

results are displayed in consecutive frames. The PEC methods need to adapt to

a different wave propagation model that specifies the propagation distance such as

the Fresnel propagation or Fraunhofer propagation. We also plan to look at direct

optimization methods that optimize the 3D scene as a whole. I try to address 3D

holograms in Section 4.5.

4.5 Proximity Effect Correction for Fresnel Holograms

Here, we present a novel proximity effect correction method for Fresnel holo-

grams on the NPAs. We refer to this method as the Fresnel Proximity Effect Cor-

rection (FPEC). This method uses the proximal algorithm to directly find the phase

of a phase-only hologram that minimizes the difference between the desired image

and the image formed at a specific distance under the proximity effect.

Since our method focuses on Fresnel holograms and reconstructing 2D images

or 3D scenes, we consider the case of Fresnel diffraction approximation. Assuming

a wavefront U1 formed on the NPA, the wavefront U2 formed by propagating U1 by

a distance z can be calculated as in Equation 4.49. The two wavefronts U1 and U2

are parallel to each other. F and F−1 are the Fourier transform and its inverse.

Hzλ(fX , fY ) = eikz · e−iπλz(f2X+f2Y ) is the transfer function in the frequency domain

where k = 2π
λ

is the wave number for wavelength λ. We refer interested readers to
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Goodman [123] for the detailed derivation of the Fresnel diffraction.

U2(x, y) = F−1{F [U1(x, y)]Hzλ(fX , fY )} (4.49)

The rest of the FPEC method is very similar to the PPEC method. Given the

desired image I ∈ R+M×N , we wish to find the non-negative phase X ∈ R+M×N that

minimizes the difference between the desired image I and the formed image under

the proximity effect, expressed as g(X) in Equation 4.9. Let U(X) be the intensity

of the wavefront which the NPA with input phase X forms at a specific distance z

from the NPA. Let P (X) be the function that applies the proximity effect to the

phase pattern, i.e. P (X) = X∗K where K is the convolution kernel in Equation 4.4.

g(X) = ‖U(X)− I‖2F (4.50)

U(X) = |F−1[F(eiP (X)Hzλ]|2 (4.51)

To enforce the non-negative constraint, we add an indicator function c(X).

The FPEC method minimizes the function f(X) in Equation 4.12 using the proximal

algorithm.

f(X) = g(X) + c(X) (4.52)

c(X) = I[0,+ inf)(X) (4.53)

The same pseudocode in Algorithm 2 can be used for the FPEC method. We

document the derivation of the gradient for the FPEC method in Section 4.5.0.1.
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4.5.0.1 Derivation of FPEC Gradient

Here we present the derivation of the gradient ∇g of the function g(X). Like

before, we use the notation Mij to indicate the element at index [i, j] in a matrix

M . For simplicity, we use U or P to represent U(X) or P (X), respectively.

∂g(X)

∂Xij

= Tr[(
∂g

∂U
)T

∂U

∂Xij

] (4.54)

= Tr[2(U − I)T
∂U

∂Xij

] (4.55)

Let Q = U − I, and we can represent ∂g(X)
∂Xij

as follows:

∂g(X)

∂Xij

= 2
M−1∑
m=0

N−1∑
n=0

Qmn[
∂Umn
∂Xij

] (4.56)

Next, we consider the derivation of Umn. Let F be the complex wavefront in the

observation plane. For simplicity, we omit mentioning the subscripts z and λ with

the transfer function Hzλ in Equation 4.49. To closely relate to the implementation,

F and F−1 are written as the discrete Fourier transform and its inverse. X is the

complex conjugate of X.

F (X) = F−1[F(eiP (X)H]
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Fmn =
M−1∑
p=0

N−1∑
q=0

Hpq(
M−1∑
k=0

N−1∑
l=0

eiPkle−i2πp
k
M e−i2πq

l
N )ei2πm

p
M ei2πn

q
N

Fmn =
M−1∑
p=0

N−1∑
q=0

Hpq(
M−1∑
k=0

N−1∑
l=0

e−iPklei2πp
k
M ei2πq

l
N )e−i2πm

p
M e−i2πn

q
N

Umn = Fmn · Fmn

∂Umn
∂Xij

=
M−1∑
k=0

N−1∑
l=0

∂Umn
∂Pkl

∂Pkl
∂Xij

(4.57)

∂Umn
∂Pkl

=
M−1∑
p=0

N−1∑
q=0

Hpqie
iPkle−i2πp

k
M e−i2πq

l
N ei2πm

p
M ei2πn

q
N · Fmn

+
M−1∑
p=0

N−1∑
q=0

Hpq(−ie−iPkl)ei2πp
k
M ei2πq

l
N e−i2πm

p
M e−i2πn

q
N · Fmn (4.58)

Since the two summation terms in Equation 4.58 are complex conjugates, it

easy to see that ∂Umn
∂Pkl

is real and can be simplified as shown next. The function

“Re” takes the real components of a complex value.

∂Umn
∂Pkl

= 2Re{
M−1∑
p=0

N−1∑
q=0

Hpqie
iPkle−i2πp

k
M e−i2πq

l
N ei2πm

p
M ei2πn

q
N · Fmn} (4.59)

Using Equation 4.59 and 4.57 with Equation 4.56, we get the following:

∂g(X)

∂Xij

= 4Re(Sij)
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Sij =
M−1∑
m=0

N−1∑
n=0

Qmn

M−1∑
k=0

N−1∑
l=0

M−1∑
p=0

N−1∑
q=0

Hpq · ieiPkl

· e−i2πp
k
M e−i2πq

l
N ei2πm

p
M ei2πn

q
N · Fmn ·

∂Pkl
∂Xij

=
M−1∑
k=0

N−1∑
l=0

M−1∑
p=0

N−1∑
q=0

∂Pkl
∂Xij

Hpqie
iPkle−i2πp

k
M e−i2πq

l
N

·
M−1∑
m=0

N−1∑
n=0

QmnFmne
i2πpm

M ei2πq
n
N

=
M−1∑
k=0

N−1∑
l=0

M−1∑
p=0

N−1∑
q=0

∂Pkl
∂Xij

ieiPklHpqe
−i2πp k

M e−i2πq
l
N [F−1(Q · F )]pq

=
M−1∑
k=0

N−1∑
l=0

∂Pkl
∂Xij

· ieiPkl · F{H · [F−1(Q · F )]}kl

Finally, we can calculate the gradient of g(X) as follows:

∇g = 4Re(S)

S = P (ieiP · F{H · [F−1(Q · F )]})

4.5.1 Simulations

We present computational simulations of our novel Fresnel PEC method and

compare it with the case without proximity effect correction where the proximity

effect is applied to the phase of the phase-only hologram. We conduct the simulations

on Matlab on a PC with an Intel 9900K CPU. We present the simulation results in

color as our FPEC method is applicable to all wavelengths. Multi-color displays can

be easily implemented by coupling three lasers with the NPA. In our simulations,

we use wavelengths 630 nm, 530 nm, and 445 nm for the red, green, and the blue
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channels. The NPA is of size 2 mm× 2 mm and the images are placed 100 mm away

from NPA.

We use the same termination condition as in the PPEC method: when the

residual change r in Equation 4.36 remains below 0.001 for 10 iterations.

We compare the proposed Fresnel PEC method with two baselines. The first

is the case without proximity effect correction where the proximity effect is ap-

plied to the phase of the phase-only hologram. The second is the IPEC method

in Chapter 4.4.1 adapted to the Fresnel holograms. Here we replace the wavefront

propagation with the Fresnel propagation approximation. We refer to this method

as the Iterative Fresnel Proximity Effect Correction (IFPEC) method.

4.5.1.1 2D Fresnel Holograms

The qualitative results of the Fresnel PEC on 2D images are shown in Fig. 4.16.

As can be seen, the proximity effect results in appreciable noise in the simulated

images. The proximity effect levels in Fig. 4.16 are σ = 0.70 px, 0.80 px, 0.90

px, and 1.00 px in the four rows from top to bottom, respectively. For the two

baseline methods, the higher the proximity effect, the noisier the images become.

Our proposed Fresnel PEC method is able to effectively reduce the noise caused by

the proximity effect even at very high proximity effect levels. Compared with the

iterative Fresnel PEC method, our method is able to better correct the proximity

effect and restore the images.

In addition to qualitative reconstructions of the images, we also quantify our
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Original No PEC Iterative FPEC Fresnel PEC

Figure 4.16: Qualitative comparison of the Fresnel PEC method with the case with-

out proximity effect correction and the iterative Fresnel PEC method. The original

image is presented in the left column for reference. The thermal proximity effect

levels for the images from top to bottom are σ = 0.70 px, 0.80 px, 0.90 px and

1.00 px, respectively. At σ = 0.70 px, the proximity effect causes noise but the

images are still recognizable. However, for more severe proximity effect, the noise

overwhelms the images. Our Fresnel PEC method is able to correct the proximity

effect and restore the images close to the original even at such high proximity effect

levels. The images in the first and second rows are from the Common Objects in

Context dataset [5] and the CHRONIC dataset (Smits and Faber [9]), respectively.

The remaining images are from the LIVE dataset (Sheikh et al. [7, 8]).
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SSIM Perceptual Similarity

Figure 4.17: The SSIM and perceptual similarity of the Fresnel PEC results com-

pared to the case without proximity effect correction and the iterative Fresnel PEC

(IFPEC) method. When there is no PEC, the image quality degrades quickly with

the proximity effect level beyond σ = 0.30 px. The image quality of the IFPEC

method starts to degrade starting from σ = 0.40 px. The Fresnel PEC method can

effectively correct the proximity effect at almost all proximity effect levels tested,

only to see image quality degrade slightly at extreme proximity effect level σ = 1.00

px.

results with image quality metrics. We present both the structural similarity index

(SSIM) from Wang et al. [175] and the perceptual similarity from Zhang et al. [176].

More details on these metric can be seen in Section 4.4.3.2.

We present the average image metrics of the images from the LIVE dataset

from Sheikh et al. [7, 8] at each proximity effect level from σ = 0.10 px to σ = 1.00

px. As can be seen, the proposed Fresnel PEC method can effectively correct the

proximity effect at proximity effect levels from σ = 0.10 px to 0.90 px, with only a
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slight dip in the image quality at σ = 1.00 px. As a comparison, the case without

PEC starts to see rapid image quality degradation starting from σ = 0.30 px, and

the iterative Fresnel PEC method suffers from noise starting from σ = 0.40 px. The

two image metrics are largely consistent with each other with the exception of the

iterative Fresnel PEC method at proximity effect levels at σ = 0.90 px and 1.00 px.

In this case, we think that the perceptual similarity represents the image quality

better. Some examples of such mismatch between the two image metrics can be

seen in the discussion in Section 4.5.2.1.

4.5.1.2 3D Holograms

The Fresnel PEC method can effectively correct 2D Fresnel holograms formed

at desired depths. This can be used in combination with the fast refresh rate of the

NPA to display 3D holograms. A 3D scene can be divided into a stack of 2D images

at different depths. The 2D Fresnel hologram of each image can be calculated and

the proximity effect corrected with the Fresnel PEC method at the desired depth.

The stack of holograms can be displayed on the NPA in consecutive frames so that

the 3D scene can be observed.

We present the simulations of such 3D holograms2 in Fig. 4.18. A 3D volume

is divided into a stack of images whose 2D Fresnel holograms are calculated at their

respective depths with the Fresnel PEC method. Those holograms are reconstructed

by propagating the wavefronts formed at the holograms to a certain distance from

2Volumes are from https://klacansky.com/open-scivis-datasets and http://www.sci.

utah.edu/download/IV3DData.html
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the NPA that corresponds to the user’s focal plane. The average of those recon-

structions is taken as the observation. Holograms of 3D meshes and point clouds

can be computed and displayed in a similar way. The user can focus on different

parts of the 3D scene. We simulate this by adjusting the focal plane accordingly.

4.5.2 Discussions

Here we discuss some limitations of our proposed FPEC method and propose

several directions for future research.

4.5.2.1 Disagreement in Image Metrics

We observe in Figure 4.17 that there is some disagreement between the SSIM

and the perceptual similarity (PS) at σ = 0.9 px and 1.0 px. Here we show in

Figure 4.19 some examples where we think that the perceptual similarity is a more

accurate representation of image quality than SSIM. These are the results of the

Iterative Fresnel PEC method. We believe the images formed with the proximity

effect σ = 0.9 px are better than those formed with more severe proximity effect σ =

1.0 px. Even though a substantial amount of noise is present with both proximity

effect levels, the noise in images with σ = 0.9 px is more granular, making those

images relatively more desirable in our opinion. The PS metrics are in agreement

with the our observation while the SSIM metrics are not.
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Figure 4.18: The 3D volume is divided into a stack of images at different depths.

The Fresnel holograms of all the images are calculated with the Fresnel PEC method

at their respective depths and displayed on the NPA in consecutive frames so the 3D

scene can be observed. We simulate the observation by reconstructing the holograms

at a certain distance that corresponds to the user’s focal plane. By adjusting the

focal plane (for example, a closer focal plane in the left images and a farther focal

plane in the right images), different parts of the scene (red or blue squares) are in

focus. The top and bottom volumes are divided into 232 and 253 equidistant slices,

respectively. The proximity effect level used is σ = 0.66 px.
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σ = 0.9 px σ = 1.0 px

SSIM: 0.64 SSIM: 0.69

PS: 0.79 PS: 0.76

σ = 0.9 px σ = 1.0 px

SSIM: 0.60 SSIM: 0.62

PS: 0.52 PS: 0.47

Figure 4.19: Two examples where perceptual similarity disagrees with SSIM. We

observe that the results of the Iterative Fresnel PEC method at proximity effect

σ = 0.9 px are of better quality than the results of the same method at proximity

effect σ = 1.0 px. The perceptual similarity metric agrees with this observation

while the SSIM disagrees.
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4.5.2.2 Larger Proximity Effect

We have shown in our simulations that the proposed FPEC method is effective

within the tested proximity effect level range (σ = 0.10 px to 1.00 px). While this

is a large range within which our NPA design lies, it is not difficult to imagine

cases where a more severe proximity effect may arise. For example, as the pixels

on the NPA are more densely packed, it can be expected that each pixel is affected

more by nearby pixels. In Figure 4.17, we see that the image quality of the FPEC

results start to decrease at σ = 1.00 px. At higher proximity effect levels, the image

quality would drop more. At proximity effect levels σ = 1.50 px and 2.00 px, the

average SSIMs of the results of FPEC are 0.57 and 0.34 while the average perceptual

similarities are 0.69 and 0.48. Examples of the FPEC method at higher proximity

effect levels can be seen in Figure 4.20.

σ = 1.50 px σ = 2.00 px

Figure 4.20: The FPEC method at higher proximity effect levels where much noise

is observed.
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4.6 Conclusion

Nanophotonic phased arrays have several advantages in its use as a holographic

display. The integrated light source enables small-factor integration and the fast re-

fresh rate is ideal for dynamic content. The use of NPA in a near-eye display has

been demonstrated in Notaros et al. [116] and other works. However, the use of

a large scale dynamically modulated NPA as a holographic display has not been

achieved. We propose two proximity effect correction methods to address the ther-

mal proximity effect issue of Fourier holograms in NPAs. The PPEC method is

the obvious choice as it is faster and more effective in correcting proximity effect

at all proximity effect levels. The iterative proximity effect correction is effective

at low proximity effect levels and the correction effectiveness can be improved with

TDM or padding techniques. The IPEC method is also readily applicable to multi-

plane scenes. However, more efficient deconvolution methods with non-negative

constraints are required for the IPEC method to be practical. We also propose the

Fresnel proximity effect correction method that can effectively correct the thermal

proximity effect for 2D Fresnel holograms on the NPAs when realistic levels of prox-

imity effect are present. We show that we can use the FPEC method to display 3D

holograms so that different parts of the 3D scene can be focused on. We believe

that our approaches make a meaningful contribution to the emerging field of NPAs.

We hope that it brings this highly interesting avenue for holographic displays closer

to practical use.
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Chapter 5: Fast Holographic Volume Rendering

5.1 Overview

Holographic displays and computer-generated holography (CGH) have been an

active area of research in recent years. Holographic displays recreate the optical wave

of the light coming from a scene, naturally addressing the vergence-accommodation

conflict faced by the conventional stereoscopic displays with a single or a limited

number of focal planes. Varifocal and light-field displays also offer a wider range

of focal distances. However, the former usually involves moving components while

the spatial and angular resolutions of the latter are limited by optical diffraction

as the pixel density increases. On the contrary, the quality of CGH improves as

the pixel density increases. Recent advancement has also proposed solutions to

problems faced by holographic displays such as limited field of view (FOV) and

miniaturization.

CGH has largely focused on 2D images or 3D scenes in the form of meshes or

point clouds. The Fourier transform is a common and efficient method to calculate

the hologram of a 2D image. Calculating the hologram of a 3D scene is computation-

ally intensive and usually involves converting the scene into a collection of point light

sources directly visible from the hologram and calculating the hologram following
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Figure 5.1: We propose an efficient way to compute the hologram of a 3D volume.

We use the raycasting direct volume rendering method to sample a collection of point

light sources and use the convolution theorem to accelerate hologram computation.

The digital reconstructions of several such holograms are shown. Holographic vol-

ume rendering is ideal for visualizing volumetric data such as 3D medical imaging

data or physics simulations on a holographic display.

the Huygens-Fresnel principle. Modern computational hardware and acceleration

methods have enabled real-time calculation of holograms from 3D meshes.

Volumetric data is another type of data suitable for visualization. Volumetric

data from medical imaging such as computed tomography (CT) and magnetic reso-

nance imaging (MRI) can be rendered to reveal critical information about the organs

and tissues. Volumes from physics simulations are also used in the realistic render-

ing of fog, smoke and, so on. Volume visualization can benefit from the advantages

of holographic displays. For simplicity, we shall refer to the holograms of volumetric

data as volumetric holograms and the practice of generating volumetric holograms

and displaying them on holographic displays as holographic volume rendering. A few

challenges have prevented CGH from being applied to volumetric data. First, cal-

culating the volumetric hologram is an order-of-magnitude more complicated than
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calculating that of a 3D mesh, as every voxel contributes to the perception of the

volume instead of only those closest to the hologram. In the latest work on this

topic, Lu and Sakamoto [179] find the color of each voxel and calculate the holo-

gram using the positions and colors of those voxels. Every voxel contributes to each

hologram pixel and the computation takes more than three hours for a 1280× 768

hologram. Second, the small FOV is a problem suffered by all digital holographic

displays. This is caused by the limited diffraction angle of the currently existing

light modulators. Various methods to increase the FOV have been proposed for

different holographic displays such as in Maimone et al. [62], Shi et al. [1] and Jang

et al. [149]. But the methods to increase the FOV need to be considered in accor-

dance with the hologram computation, as is with the case of volumetric holograms.

Finally, the choice of the illuminating light source is also critical to the observed

image of a holographic display. A light source with a narrow spectrum such as a

laser can produce images of high resolution but also leads to heavy speckles while a

light source with a wider spectrum such as an LED reduces speckles at the cost of

lower resolution.

In this chapter, we address each of the three challenges faced by holographic

volume rendering mentioned above. To address the first challenge, we propose an

accelerated method to compute volumetric holograms. This is primarily achieved

by treating the summation in the Huygens-Fresnel principle as a convolution and

accelerate it with the convolution theorem. Maimone et al. [62] recently noted that

convolution can be used to calculate the hologram of a 2D image. We take this idea

one step further and combine it with an elegant way to sample the volume based
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on raycasting direct volume rendering (DVR) to achieve significant acceleration

compared to the brute-force method. To address the second challenge, we propose a

holographic display configuration that increases the FOV. Special attention is paid

to making sure the display is compatible with the accelerated volumetric hologram

computation method. And finally, we investigate what kind of light source strikes

the balance between speckles and image resolution for holographic volume rendering.

To validate the holograms computed using our method, we present the digi-

tal reconstruction of the volumetric holograms. We also realistically simulate the

observed image on our display configuration with different light sources to identify

the light source that best balances the speckles and resolution. The light source

customization is implemented on the optics bench and validated experimentally.

In summary, we improve the holographic volume rendering in following ways:

• We develop an accelerated hologram computation method for volumetric data.

Our method samples the volume based on raycasting direct volume rendering

and uses the convolution theorem to significantly improve the computation

speed.

• We propose a configuration that increases the FOV of the holographic display

while maintaining the compatibility with the accelerated hologram computa-

tion method.

• We identify the appropriate light source for holographic volume rendering with

realistic simulation.
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5.2 Related Work

In this section, we give an overview of the existing literature on several topics

related to this work. These include volume visualization and computer-generated

holography based on 2D images, 3D meshes, and volumetric data.

5.2.1 Volume Visualization

Traditional volume rendering methods can be classified into two groups: sur-

face fitting and direct volume rendering. We briefly cover some of the basics and

the advantages and disadvantages of both groups. For a more thorough review, we

refer readers to a survey by Elvins [180].

Surface fitting methods find a surface or some other geometric element that

is representative of a meaningful object in the volume and visualize it. One such

method is contour-connecting [181,182] where a contour matching a specified thresh-

old value is selected on each slice of the volume and the contours from neighboring

slices are connected to form a mesh. This mesh is then rendered. The marching

cubes algorithm [183] is another famous method in the surface fitting group. In this

method, the voxels whose values straddle a specified threshold are converted into

a mesh to be rendered. Improvements have been made to reduce the ambiguity in

how the corners of the voxels are connected to form triangles [184,185].

While the surface fitting methods are fast and able to provide good visualiza-

tion for medical data, one major disadvantage is that they depend on a pre-specified

threshold value and only the voxels matching that value are visualized. Direct vol-
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ume rendering, on the other hand, can make use of all the information in the volume.

Raycasting [186–188] is the most widely-used direct volume rendering technique. In

raycasting, rays are shot from each image pixel into the volume. The color and

opacity associated with the ray are composited at each sampling point along the

ray. The point light source sampling process in our proposed hologram calculation

methods is also based on raycasting. A detailed description and our modification

are presented in Section 5.3.1. Another direct volume rendering method is splatting,

where all the voxels in the volume are traversed with the voxels closer to the image

plane being processed before those farther away. When processing a voxel, a region

around the projection of the voxel onto the image plane is determined where the

contribution of this voxel to the image is defined. Different ways for voxels to con-

tribute to the image (aka footprints) have been proposed [189,190]. The colors and

opacities of the voxels are blended into the image in their respective contribution

regions.

Recently, a generative model for volume rendering has been proposed by Berger

et al. [191] where a generative adversarial network (GAN) can interactively help

the user craft the transfer function. With the advancement of graphics processors

and raytracing techniques, photorealism can be achieved with physics-based volume

rendering [192].
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5.2.2 Computer-Generated Holography

Various methods have been proposed to calculate the hologram in CGH. For

2D images, Lohmann et al. [151] show that a binary representation of the Fourier

hologram can achieve good reconstruction quality. Iterative multi-plane methods

(Makowski et al. [193]) have been proposed to allow images to be reconstructed at

different depth locations.

To generate holograms based on 3D objects, the object is often converted to

a collection of point light sources and the complex wavefronts from all the light

sources are summed up. Directly computing the summation from every point is

computationally intensive. Lucente [153] uses a look-up table corresponding to

the interference contribution from points in each location in the image space and

achieves a 43× speedup. Masuda et al. [194] build graphics hardware specifically for

calculating holograms. Matsushima et al. [195] calculate the approximated hologram

by reusing the distance between a light source and a hologram pixel for nearby

hologram pixels. The 3D scene can be seen as a collection of planar light sources

as well. Matsushima et al. [196] create high-definition holograms of complicated 3D

objects using a polygon-based CGH method to simplify the calculation.

Stereograms are small regions of a hologram. They each record the diffrac-

tion pattern of a portion of the scene instead of the entire scene and are used in

Lucente and Galyean [155], Xu et al. [156], and Shi et al. [1] to reduce the amount

of computation.

In addition, Ziegler et al. [159] develop a conversion technique between the
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light-field representation and the holographic representation of a scene. Padmana-

ban et al. [146] use this conversion to develop the overlap-add stereogram (OLAS)

algorithm to overcome the trade-off between spatial and angular resolution in tra-

ditional light-field displays. Ways to add occlusion or change lighting in a hologram

have also been explored in Ziegler et al. [160].

CGH based on volumetric data is a less-studied area. Sakamoto et al. [197]

calculate the hologram of a volume by propagating the slices one by one to the

hologram plane using Fresnel propagation. Lu and Sakamoto [198] use two methods

to calculate holograms from a volume. In the first, maximum intensity projection

is used to find a surface of point light sources from which a Fresnel hologram is

calculated. In the second, the volume is converted into a polygonal model using the

marching cubes algorithm and the hologram is calculated based on the polygonal

model. Both of these methods have the same disadvantage as the surface-fitting

method, that they only visualize a surface in the volume instead of its entirety. In

their later work, Lu and Sakamoto [179] find the color of each voxel considering the

intensity decay as light travels through other voxels. While this method does not

require the hologram to be parallel to one of the volume’s faces like in [197], it is

based on brute-force summation and may take hours to compute. Our proposed

method significantly accelerates the calculation, offering over 2000× speedup.
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Figure 5.2: The general placement of the volume, the hologram, the illuminating

light (planar wave), and the observer. The hologram is calculated as the summation

of the wavefronts from the collection of spherical point light sources in the volume.

5.3 Algorithm and Display

We base our holographic volume rendering on the heuristics of the Huygens-

Fresnel principle, which treats the object (the volume in our case) as a collection of

spherical point light sources. Let x be a pixel on the hologram, v be a point light

source and r(x,v) be the distance between them. A(v) and φ(v) are the amplitude

and initial phase of the light emitted from v, λ is the wavelength, and k = 2π
λ

is the

wave number.

With the placement of the volume, the hologram, the illuminating light, and
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the observer arranged in Figure 5.2, the electric field1 E(x) at pixel x can be ex-

pressed in Equation 5.1.

E(x) =
∑
v

A(v)

r(x,v)
ei(kr(x,v)+φ(v)) (5.1)

The sign of the phase term kr(x,v) in Equation 5.1 is irrelevant as long as a

consistent coordinate system is used throughout the calculation.

Given the Huygen-Fresnel principle-based hologram computation, steps must

be taken to generate the point light sources and find out their amplitude and initial

phase values before the hologram computation can proceed. We cover below in

Section 5.3.1 how we use the direct volume rendering to sample those point light

sources. In Section 5.3.2, we describe how to convert the summation in Equation 5.1

to a convolution to significantly accelerate the hologram calculation.

5.3.1 Direct Volume Rendering Sampling

We use the raycasting direct volume rendering and front-to-back compositing

to generate the position as well as the color of the point light sources. An illustration

can be seen in Figure 5.3(a).

Rays are cast from the observer’s eye position into the volume. Compositing is

performed inside the volume along the rays’ directions (front to back). At composit-

ing step i (illustrated as p0 to p3 in Figure 5.3(b)), a pre-specified transfer function

1The magnetic part of the electromagnetic wave is usually ignored in computer-generated holog-

raphy. Detail can be seen in [123].
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(a) (b)

Figure 5.3: (a) illustrates the direct volume rendering method used for sampling the

point light sources. Front-to-back compositing is used in our proposed method (b).

The position and color at each compositing step in the direct volume rendering are

used for the hologram calculation.

is used to derive a color ci and opacity value αi associated with the volume scalar

value at location pi. Assuming the composited color and opacity before compositing

step i are cini and αin
i , the composited color and opacity after the compositing step

i are couti and αout
i . Their relations are as follows.

couti = cini + (1− αin
i )αici (5.2)

αout
i = αin

i + (1− αin
i )αi (5.3)

cini+1 = couti (5.4)

αin
i+1 = αout

i (5.5)

The compositing usually stops as the ray exits the volume, or when the termi-

nation condition is satisfied (such as the composited opacity is larger than a certain

value). In traditional volume rendering, we are interested in the final composited

color coutn−1, assuming n compositing steps. As shown in Equation 5.6, the final
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composited color is a linear combination of the color at each compositing step.

coutn−1 =
n−1∑
i=0

Tiαici (5.6)

Ti = Ti−1(1− αi−1) =
i∏

j=1

(1− αj−1) (5.7)

The pseudocode for the raycasting direct volume rendering is presented in

Algorithm 3. The pseudocode shows the compositing steps for the ray r with its

origin at or, direction dr and step size sr. tr0 indicates the distance from the ray’s

origin at which the compositing starts. D is the maximum number of compositing

steps. C and A are the color and opacity textures derived from the volume and its

transfer function. We use “Sampler3D” to sample C and A and find the color and

opacity at each compositing step. The outputs are the color contribution Cr
j and

the position prj at each compositing step.

For our holographic volume rendering, the position pi and the composited color

Tiαici of each composition step of each ray are used to calculate the hologram in

Equation 5.1. Each ray is associated with a random initial phase and it is used for

all the point light sources generated on this ray. We refer to the brute-force way of

calculating the hologram according to Equation 5.1 as the direct method.

5.3.2 Acceleration using Convolution Theorem

Assuming a total of Rx ×Ry rays are cast and each ray has a maximum of D

compositing steps, direct volume rendering generates O(DRxRy) point light sources.

Given the hologram dimension of Hx ×Hy, the complexity of the direct calculation

method is O(DRxRyHxHy). The pseudocode of the direct calculation method is
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Algorithm 3: Raycasting Direct Volume Rendering Sampling

input : or, dr, sr, tr0, D, C, A

output: Cr
j , p

r
j , j = 0, 1, ...D − 1

p = or + tr0 · dr;

αr = 0;

for j ← 0 to D − 1 do

prj = p;

cp = Sampler3D(C, p);

αp = Sampler3D(A, p);

Cr
j = (1− αr)αpcp;

αr = max(αr + (1− αr)αp, 1);

p=p + sr · dr;

end
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shown in Algorithm 4. φr0 is the random initial phase assigned to each ray r.

The three color channels of the hologram are calculated separately with differ-

ent wavelengths λ. The function HgPos(x, y) finds the 3D position of the hologram

pixel (x, y) and the function dist(p, q) finds the distance between the two points p

and q. The output is the complex hologram E(x, y). As we will show in Section 5.5,

this complexity leads to hologram calculation times that span hours with holograms

that match the resolution of state-of-the-art SLMs. We next present a method to

significantly accelerate this calculation.

Algorithm 4: Direct Holographic Volume Rendering

input : Cr
j , p

r
j , φ

r
0, Rx, Ry, D, λ, Hx, Hy

output: E(x, y)

for x← 0 to Hx − 1 do

for y ← 0 to Hy − 1 do

E(x, y) = 0;

px,y = HgPos(x, y);

for r ← 0 to Rx ×Ry − 1 do

for j ← 0 to D do

E(x, y) = E(x, y) +
√
Cr
j

1
dist(px,y ,prj )

ei(
2π
λ
dist(px,y ,prj )+φ

r
0)

end

end

end

end
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Equation 5.1 can be written as the following.

E(x) =
∑
v

A(v)eiφ(v)
eikr(x,v)

r(x,v)
(5.8)

If the point light sources are sampled on a plane parallel to the hologram,

E(x) can be seen as the summation of a series of integrals across the collection of

sampling distances z.

E(x, y) =
∑
z

Ez(x, y) (5.9)

Ez(x, y) =

∫∫
ξ,η

Az(ξ, η)eiφz(ξ,η)
eikrz(x−ξ,y−η)

rz(x− ξ, y − η)
dξdη (5.10)

x = (x, y) refers to the hologram pixel position. Az(ξ, η) and φz(ξ, η) are the

amplitude and initial phase of the sampled point light source at position (ξ, η) at

sampling distance z. rz(m,n) =
√
z2 +m2 + n2. The integral in Equation 5.10 can

be seen as a convolution shown below and this convolution can be calculated using

the convolution theorem for a significant speedup. ∗ is the convolution operator.

Ez = Cz ∗Kz (5.11)

Cz(ξ, η) = Az(ξ, η)eiφz(ξ,η) (5.12)

Kz(m,n) =
eikrz(m,n)

rz(m,n)
(5.13)

To take advantage of this speedup, two changes need to be made to the direct

volume rendering sampling process. First, the compositing step sizes along each

ray must be adjusted so that the jth compositing steps for all the rays are on
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the same plane (referred to as compositing plane) parallel to the hologram and of

distance z = dj away from the hologram. As a result, the compositing step sizes are

non-uniform for the rays, and opacity correction is needed. Second, a resampling

step is needed to make sure that the amplitude Az(ξ, η) and phase φz(ξ, η) at each

compositing plane have the same sampling pitch as the hologram.

We can use the convolution theorem and fast Fourier transform to calculate the

convolution in Equation 5.11 efficiently. F in Equation 5.14 is the Fourier transform.

We refer to this way of calculation the convolution theorem (CT) method.

F(Ez) = F(Cz) · F(Kz) (5.14)

The pseudocode for calculating the hologram using the CT method is presented

in Algorithm 5. The function Resample(Cr
j , φ

r
0, ρ,Hx, Hy) resamples the Cr

j and φr0 of

all rays at compositing step j into complex Cdj that has the same spacing (ρ) as the

hologram. The function ConvolutionKernel calculates the convolution kernel Kdj

based on the distance dj between the jth compositing plane, the wavelength and the

hologram. Both these functions have complexity O(HxHy). The total complexity

is O(DHxHylog(HxHy)) assuming that the fast Fourier transform is used and that

both Cdj and Kdj have dimensions in the order of Hx ×Hy.

5.4 Increase the FOV

If we are to illuminate the SLM with a planar wave as illustrated in Figure 5.2,

the FOV the observer can expect is dependent on the maximum diffraction angle
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Algorithm 5: Convolution Theorem Holographic Volume Rendering

input : Cr
j , φ

r
0, D, λ, ρ, Hx, Hy

output: E

E = 0;

for j ← 0 to D − 1 do

Cdj = Resample(Cr
j , φ

r
0, ρ,Hx, Hy);

Kdj = ConvolutionKernel(dj, λ, ρ,Hx, Hy);

E = E + F−1(F(Cdj) · F(Kdj);

end

θ assuming that the illumination’s incident angle is 0◦. In this case, θ = asin( λ
2ρ

),

where ρ is the SLM’s pixel pitch and λ is the wavelength. The FOV is therefore 2θ,

as illustrated in Figure 5.4. Assuming one of the state-of-the-art SLMs’ pixel pitch

of 3.74 µm and a red laser wavelength of 636 nm, the FOV is 9.76◦.

A common method to increase the FOV is to use the spherical wave illumina-

tion. Sakamoto et al. [198, 199] and Shi et al. [1] place a lens behind the hologram

to form the spherical wave illumination. The hologram is within the focal length

fel of the external lens, as illustrated in Figure 5.4 bottom. When the planar wave

illuminates the hologram and converges around the focal point of the external lens,

it can be seen as a spherical wave centered at the focal point of the external lens il-

luminating a magnified virtual hologram. In this configuration, the FOV is enlarged

to 2atan( w
2f

) with the viewer’s eye placed at the focal point of the external lens. We

refer to this configuration as spherical wave illumination.
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planar wave illumination

spherical wave illumination

Figure 5.4: The FOV under planar wave is 2asin( λ
2ρ

). Spherical wave illumination

can be used to increase the FOV by placing a lens closely behind the hologram.

While the FOV can be increased to 2atan( w
2fel

) where w is the side length of the

hologram and fel is the focal length of the external lens. This configuration is

not compatible with our proposed method of hologram computation because the

diffractions are oriented in different directions.
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However, the spherical wave illumination is not compatible with our proposed

convolution theorem method of calculating the hologram. This is because when

calculating the hologram using the Huygens-Fresnel principle, the point light sources

v that contribute to the hologram position x must lie within the diffraction cone of

the hologram at x under the specific illumination, or it would lead to aliasing noise.

This is true for both the real image light sources to the right of the hologram and

the virtual image light sources to the left of the hologram in Figure 5.4. The aliasing

artifacts of sampling outside the diffraction cones have been discussed in [1]. Under

planar illumination, the diffraction cones are the same everywhere on the hologram,

therefore allowing the integral in Equation 5.10 to be treated as the convolution in

Equation 5.11. However, under spherical wave illumination, the diffraction cones are

different at different positions on the hologram. An example can be seen in Figure 5.4

bottom where the diffraction cones of the top and bottom pixels on the virtual SLM

are oriented in different directions. Diverging spherical wave illumination is also used

in Maimone et al. [62] to increase the FOV and is incompatible with our proposed

method for similar reasons.

Alternatively, we use a different display configuration to improve the FOV. As

illustrated in Figure 5.5, the hologram is farther away from the external lens than

its focal length fel. The viewer’s eye is placed at or to the right of the focal point

on the other side of the external lens. Similar to the spherical wave illumination,

the FOV is 2atan( w
2fel

). The diffraction cones are the same across the hologram,

allowing us to use the convolution theorem method. The volume is placed within

the focal length from the external lens on the same side as the hologram. Therefore,
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Figure 5.5: We increase the FOV while also making sure the configuration is com-

patible with our accelerated hologram computation method by placing the external

lens farther away from the hologram than its focal length. The volume is placed

within the focal length from the external lens. The magnified virtual image of the

volume (bound in dashed lines) is observed.

a magnified virtual image of the volume is observed by the viewer.

In addition to the compatibility with our proposed calculation method, another

reason that makes the volume magnification method work better in practice is that

there is a limit on how close the external lens can be to the hologram. Due to the

reflective nature of most of the commercially available high-resolution SLMs in use,

a beam splitter (often cube-shaped) is usually inserted between the SLM and the

external lens. The external lens itself also has a thickness that cannot be ignored.
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As a result, the focal length of the external lens in the spherical wave illumination

method is larger than that can be used in our configuration.

We have used the spherical lens to represent the external lens in our illus-

trations. It is usually difficult to manufacture spherical lenses with a focal length

smaller than 10 mm and the smaller the focal length, the thicker the lens will be.

A growing trend in optical displays is to use holographic optical elements (HOEs).

A holographic plate can be created which mimics the function of a regular lens for

the wavelengths of light used in the display. This way, smaller focal lengths can be

achieved.

Finally, it is important to note that the FOV discussed in this section refers

to the theoretical maximum FOV in which light diffracted from the hologram enters

the eye. The FOV spanned by the scene also depends on the size of the scene and

the distance between the viewer and the image of the scene. We discuss this in

detail in Section 5.6.2.

5.5 Results

In this section, we present both the simulated results of our proposed holo-

graphic volume rendering and the realistic simulation of the observed image with

different types of light sources. First, the digital reconstruction of the holograms is

carried out in Section 5.5.1 to validate our proposed convolution theorem method.

Realistic simulations based on our proposed display configuration with different light

sources are shown in Section 5.5.2. Finally, we report and analyze the speedup of
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our proposed hologram calculation method in Section 5.5.3.

5.5.1 Digital Reconstruction

First, we show some of the volumes2 used in our tests and the digital recon-

structions from their holograms in Figure 5.6. These datasets are visualized with

raycasting direct volume rendering and front-to-back compositing. 1024 × 1024

rays are cast (Rx = Ry = 1024). The holograms’ dimensions are 2048 × 2048

(Hx = Hy = 2048). The pixel pitch used is ρ = 3.74 µm. The digital reconstruction

is done by propagating the complex wavefront from the position of the hologram

back to the position of the volume. The propagation distance determines what depth

in the volume is in focus. The propagation of the hologram is performed with the

wavelengths the hologram is computed with. The speckles are reduced by taking the

average of the digital reconstructions of holograms calculated with different initial

phase. Realistic simulations of the observed images are presented in Section 5.5.2.

It can be seen that the holograms calculated using the convolution theorem

method can successfully be digitally reconstructed to visualize the volume, indicating

that the convolution theorem method correctly encodes the volume into a hologram.

5.5.2 Realistic Simulation

While the digital reconstruction is useful in showing that the generated holo-

gram correctly encodes the spatial and color information of the volume, it does not

2We tested on six volumetric datasets selected from https://klacansky.com/open-scivis-datasets

and http://www.sci.utah.edu/download/IV3DData.html
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Direct volume rendering

Convolution theorem hologram reconstruction

Figure 5.6: Direct volume rendering results of two volumetric datasets and the

digital reconstruction of the holograms calculated with the convolution theorem

methods. We use orthogonal raycasting in the direct volume rendering because it

most resembles the digital reconstruction by wavefront propagation.
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represent what the viewer actually sees. The configuration of the display and the

light source used to illuminate the hologram both affect the viewer’s observation.

We take these factors into consideration in a realistic simulation of the viewer’s ob-

servation. We also show simulations of what the viewer would see when he or she

focuses at different depths of the volume or changes the perspective.

5.5.2.1 Configuration of the Display

The configuration of the display is shown in Figure 5.5. The volume is placed

dV to the right of the SLM. Without specification, we refer to the position of the

volume as the position of the center of the volume. The external lens is placed del

to the right of the SLM, which makes it s0 = del − dV to the right of the volume.

As mentioned before, s0 < fel so a magnified virtual image of the volume can be

observed. The observer’s eye is placed to the right of the external lens. The lens of

the eye which we will refer to as the eye lens is deye away from the external lens. The

retina is dr away from the eye lens. Depending on the depth in the virtual volume

the observer is focusing at, the focal length feye of the lens in the eye is chosen so

that 1
feye

= 1
s1+deye

+ 1
dr

where seye = s1 + deye is the focus distance of the eye lens.

We can adjust deye so seye is a comfortable distance for the user to focus at.

The realistic simulation is performed following the display configuration in

Figure 5.5. The wavefront E at the hologram is propagated by a distance of del to

the external lens. The wavefront then goes through the external lens and propagates

by a distance of deye to the eye lens. Finally, the wavefront goes through the eye
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lens and propagates to the retina. The intensity of the wavefront at the retina

is taken as the result. The pseudocode is shown in Algorithm 6. Prop(E, λ, ρ, d)

propagates the wavefront E with wavelength λ and sampling pitch ρ by a distance

of d. Lens(E, λ, ρ, f, r) applies the transfer function of a lens with focal length f and

radius r to the wavefront E with wavelength λ and sampling pitch ρ. In practice, λ is

the wavelength of the illuminating light source. ρ is the pixel pitch of the hologram.

rel and reye are the radius of the external lens and the iris of the eye, respectively.

The implementations of Prop and Lens follow the Rayleigh-Sommerfeld diffraction

solution and the lens function described in Voelz [6].

Algorithm 6: Realistic Simulation

input : E, λ, ρ, del, fel, rel deye, feye, reye, dr

output: I

E1 = Prop(E, λ, ρ, del);

E2 = Lens(E1, λ, ρ, fel, rel);

E3 = Prop(E2, λ, ρ, deye);

E4 = Lens(E3, λ, ρ, feye, reye);

E5 = Prop(E4, λ, ρ, dr);

I = abs(E5)
2;

5.5.2.2 Light Source

The spectrum of the light source is commonly expressed as a Cauchy distribu-

tion in Equation 5.15. I(λ;λ0, γ, I0) is the intensity of the light source at wavelength
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laser SLED

Figure 5.7: The spectra of the laser and SLED light sources.

λ given the parameters of the distribution. λ0 is the center wavelength of the spec-

trum at which the intensity is at the maximum I0. The intensity is half the maximum

intensity at a wavelength of γ away from the center wavelength. γ is the full-width

half-max (FWHM) which represents the spectral width of the light source.

I(λ;λ0, γ, I0) =
I0

[1 + (λ−λ0
γ

)2]
(5.15)

Different light sources have different spectra. A diode laser typically has an

FWHM near 1.4 nm when it is functioning as the light source for a holographic

display. Commercially available SLEDs have FWHM ranging from 3 nm to 15 nm.

LEDs have even larger FWHM. An example of the RGB laser and SLED light

sources can be seen in Figure 5.7.

To find out what kind of light source works well for holographic volume ren-

dering, we perform realistic simulation using 4 different kinds of light sources that

correspond to a laser, a narrow-spectrum SLED, a SLED, and a LED. The FWHM
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of these light sources can be seen in Table 5.1.

Light Source FWHM nm Light Source FWHM nm

Laser 1.4 Narrow SLED 5

SLED 10 LED 20

Table 5.1: Spectra of light sources used in the realistic simulation.

We take the range of the wavelengths with intensity greater than 10% of the

peak intensity as the wavelengths used in the realistic simulation for each color. The

ranges are marked in respective colors in the examples in Figure 5.7. We sample

the spectrum at a regular interval ∆λ = 1.0 nm within each range.

In the realistic simulation, the wave propagation from the hologram to the

retina described in Algorithm 6 is performed with each sampled wavelength. The

weighted average of the intensity is taken as the result of the realistic simulation

with the weights being the intensities for each wavelength.

5.5.2.3 Simulations

The realistic simulations of three holograms are shown in Figure 5.8. The

holograms are calculated with Rx = Ry = 1024, Hx = Hy = 2048 and the pixel pitch

ρ = 3.74 µm. In the realistic simulation, del = 45.56 mm, fel = 20 mm, deye = 50 mm.

This way, the focus distance seye = 120 mm. The iris radius reye = 1.5 mm is typical

of an eye in an area with normal illumination. The retina distance dr = 24 mm is

typical of an adult.

We can see that with increasing spectral width, the speckle noise becomes less
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Laser Narrow SLED SLED LED

Figure 5.8: The realistic simulations of three holograms with different light sources.
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severe. However, the images also become less sharp. Judging from direct observation

of Figure 5.8, we conclude that the spectral width of a narrow SLED (FWHM of

5 nm) offers the best balance between speckle noise and image sharpness.

The weighted intensity from the realistic simulation is a 2D real matrix with

arbitrarily large maximum values. To show the realistic simulations as images in

Figure 5.8, we normalize the weighted intensity to [0, 1] and then perform gamma

correction. Let the weighted intensity be Iw, the image S is effectively the following.

S = (
Iw

max(Iw)
)0.5 (5.16)

Due to speckle noise, there are a small number of bright spots in the results

of realistic simulations. As the speckle noise becomes less severe with increasing

spectral width, the max value in Iw decreases. As a result, the images obtained

from Equation 5.16 become increasingly brighter with increasing spectral width.

In reality, the power of the light source determines the brightness of the observed

image, and the power of the light source is usually limited by the integrated intensity

which can safely enter the observer’s eyes. Therefore, assuming the same light source

power, the brightness of the observation should be similar to each other. We scale

the intensities of the images in Figure 5.8 so they have the same total intensity as

the narrow SLED for each channel. As a result, the images for SLED and LED are

undersaturated while the images for laser are oversaturated by no more than 25%.
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Figure 5.9: By controlling the focal length of the eye lens the viewer is able to focus

at different depths of the volume.

5.5.2.4 Focus at different depths

Next, we show the realistic simulation of focusing at different depths in the

volume in Figure 5.9. As can be seen, by adjusting the focal length of the eye lens,

parts of the volume at different depths appear to be in focus.

5.5.3 Speedup

As mentioned in Section 5.3.2, our proposed hologram calculation method

using the convolution theorem reduces the complexity from O(RxRyDHxHY ) of the

direct method to a more manageable O(DHxHylog(HxHy)). All calculations are

performed on a PC with an Intel 9900K CPU and an Nvidia RTX 2080Ti GPU.

The implementation is in C++ and CUDA. Here we show the speedup of using

the convolution theorem to accelerate the hologram of several volumes in Table 5.2.
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The hologram computation time mentioned in this work includes both the point

light source sampling using raycasting direct volume rendering and the calculation

of Equation 5.1 using the sampled light sources either with the direct method or the

convolution theorem method.

volume dV D direct CT speedup

Tooth 20 mm 90 2.89 h 5.09 s 2049×

C60 30 mm 58 1.80 h 11.56 s 561×

Teapot 40 mm 253 7.87 h 64.20 s 441×

Engine 50 mm 116 3.64 h 27.73 s 472×

Hand 60 mm 290 9.30 h 82.95 s 403×

Bonsai 70 mm 232 7.14 h 129.93 s 198×

Table 5.2: Hologram computation time and speedup for several volumetric datasets.

These holograms are calculated with Hx = Hy = 2048 and Rx = Ry = 1024.

As can be seen, our proposed method achieves from hundreds to thousands

times speedup compared to the brute-force direct calculation method when calcu-

lated on the same hardware. In a simulated comparison with the previous work,

it takes our proposed method 5.04 s, compared to 3.6 h in [179], to calculate the

hologram of the same dimension with the same number of point light sources. This

is roughly a 2500× speedup including the hardware difference.

It can also be seen that the speedup is not uniform in all six test cases. Gen-

erally speaking, the closer the volume is to the hologram, the larger the speedup.

We will explain the factors of the processing time in Section 5.6.1.
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Figure 5.10: The left shows that the computation time increases linearly with the

number of compositing stepsD with a fixed hologram dimensions (Hx = Hy = 2048).

The middle row shows the computation time increases with increasing hologram di-

mensions with D = 232. dV =30 mm for both tests. The right shows how the

computation time changes with the convolution size. The convolution size is in-

creased by placing the volume farther away from the hologram thus increasing the

sizes of the Kz and Cz.

5.6 Discussion

Here we discuss several details about our holographic volume rendering method

including the hologram computation time, observed scene FOV, the use of elemental

holograms, and the wavelength-specific interference artifacts.

5.6.1 Factors of Hologram Computation Time

Here, we closely examine the different factors that affect the computation

time of our proposed method. The complexity to calculate the hologram using the

CT method is O(DHxHylog(HxHy)) assuming the fast Fourier transform (FFT)

implementation and that the arrays in the convolution are both of dimensions Hx×
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Hy. We use the cuFFT library3 in CUDA, which is based on the Cooley-Tukey

and Bluestein algorithms. We show how the computation time changes with the

increasing number of compositing steps D and hologram dimensions (Hx and Hy)

in Figure 5.10 top and middle row. As can be seen, when all the other parameters

are kept the same, the computation time increases linearly with the number of

compositing steps. Even though the computation time does not scale exactly as

the complexity suggests with the increasing hologram dimensions, the computation

time does increase with the hologram dimensions.

Another factor that affects the computation time of our method, as can be

seen in Table 5.2, is the distance between the hologram and the volume dV. In our

implementation, the 2D signal undergoing the FFT has the combined dimensions of

Kz and Cz for the compositing plane z away from the hologram. In Section 5.3.2,

we assume that both Cz and Kz have dimensions of the same order of magnitude

as the hologram. This is generally true for the area where we place the volume.

In practice, the sizes of Cz and Kz both increase with z illustrated in Figure 5.11.

We sample the point light sources in the space the wavefront from the SLM can

diffract to. This space is the union of all the diffraction cones of the SLM pixels.

The computation time with increasing convolution size (the number of elements

undergoing FFT) can be seen in Figure 5.10 bottom row. A large convolution size

would also lead to heavy usage of the VRAM in this implementation. There are

several outliers where the computation time does not scale with the convolution size.

This may be because we did not pad the arrays undergoing FFT to the size of a

3https://developer.nvidia.com/cufft
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Figure 5.11: The sizes of Cz and Kz of compositing planes z1 and z2 away from

the hologram are shown. Given the hologram size and the diffraction angle θ, the

reconstruction of point light sources in region I has the finest resolution (smallest

spot size). The resolution of the reconstruction in region II drops off (the spot

size increases) from the middle towards top and bottom. The resolution of the

reconstruction in region III drops off horizontally as it gets farther away from the

hologram.

power of two. The different convolution sizes and underlying VRAM organization

may have caused different variations of the FFT implementation to be used by the

cuFFT library, leading to the outliers.

However, we can find an upper bound for the hologram computation time.

If the size of the volume is known, the dimension of Kz does not need to increase

endlessly with z. Given that the size of the volume is fixed and the center of the

volume is placed on the optical axis of the hologram, Kz does not need to be larger
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than what covers the entirety of the hologram, as illustrated in Figure 5.12 with

red dashed lines. In this case, the upper bound of the size of Kz is the combined

size of the hologram and the size of the volume at distance z. Let the maximum

size of the volume at all compositing planes be Vmax and the distance between

the hologram and the farthest compositing plane be zmax. The dimension of Cz is

bound by Vmax

ρ
× Vmax

ρ
. The dimension of Kz is 2ztan(θ)

ρ
× 2ztan(θ)

ρ
and is bound by

(Hx+ Vmax

ρ
)×(Hy+ Vmax

ρ
). Therefore, the signal undergoing the FFT has dimensions

Vmax+2zmax·tan(θ)
ρ

× Vmax+2zmax·tan(θ)
ρ

and is bound by (Hx + 2Vmax

ρ
) × (Hy + 2Vmax

ρ
).

Another potential bound is that zmax cannot be larger than the form factor of the

display. This is usually within 200 mm for a head-mounted near-eye display.

5.6.2 Scene FOV and Volume Placement

The FOV described in Section 5.4 refers to the theoretical maximum FOV

where the light diffracted from the hologram enters the observer’s eye. The FOV

spanned by the scene, which we refer to as the scene FOV, is also dependent on the

size of the scene and the distance between the scene image and the eye.

Without loss of generality, we assume that the intersections of the volume and

the compositing planes are at their largest Vmax at the center of the volume. This

plane is at a distance of s0 away from the external lens in Fig 5.5. The magnified

virtual image of this plane is at a distance of s1 = fels0
fel−s0

away from the external lens.

The magnified size of the volume is L1 = Vmax
fel

fel−s0
. The scene FOV is therefore

2atan( Vmaxfel
2(fel−s0)·(s1+deye)

).
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Figure 5.12: Given the volume size, the size of Kz does not need to increase endlessly

with distance from the hologram.

The focal distance s1 + deye needs to be large enough for the observer to

comfortably focus on the image. Therefore, to achieve a large scene FOV, a large

volume is required, leading to longer computation time according to the discussion

in Section 5.6.1. For example, if we want the observer to focus on a volume at a

distance of 120 mm that spans 40◦ through an external lens of focal length 10 mm,

the volume needs to be of size Vmax = 10.91 mm.

The placement of the volume relative to the hologram also affects the quality

of the hologram. According to the Rayleigh criterion [200], the size of the smallest

spot that the hologram can create as part of its image is proportional to the distance
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to that spot divided by the size of the area of the hologram devoted to making that

spot. Therefore, the larger the section of the hologram devoted to any particular

spot in the image, the finer resolution that spot can have. On the other hand, only

those pixels on the hologram for which the diffraction cone contains the image spot

can be devoted to making any spot in the image without increasing noise in the

image [1]. The area on the hologram plane that provides the full bandwidth to

ensure the finest spot size for a given image point source v can be thought of as

the base of a cone whose vertex is at v, the base is on the hologram plane, and the

vertex angle is the same as the diffraction cone. An example is in Figure 5.11 where

the areas that provide the full bandwidth for point sources v1 and v2 are the areas

labeled as Kz1 and Kz2 . If the hologram cannot cover the area that provides the full

bandwidth for some point sources, the reconstructions of those point sources have

larger spot sizes and poorer resolution.

We can divide the space to the right of the hologram into three types of

regions to place the volume, as illustrated in Figure 5.11. The hologram is able to

provide all the bandwidth needed to resolve point light sources in region I. Therefore,

reconstruction of these point light sources is of the finest resolution. The bandwidths

required to resolve point light sources in regions II and III are both partially provided

by a portion of the hologram. Specifically, the resolution of the reconstruction in

region II drops off from its border with region I vertically towards the top and

bottom. The resolution of reconstruction in region III drops off horizontally as it

gets farther away from the hologram.

A small volume can be placed within region I. For larger volumes, it is preferred
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to place them in region III for better quality. Using the example above, the volume

needs to be placed at a distance of 157.81 mm away from the hologram.

5.6.3 Elemental Hologram

Another popular method to accelerate holographic calculation is to use ele-

mental holograms such as in [1] and [179]. However, it does not help much with

our hologram computation method with the convolution theorem . If we are to

divide the hologram into M ×N elemental holograms each with Hx
M
× Hy

N
pixels, the

complexity to calculate elemental hologram is O(HxHy
MN

logHxHy
MN

). The complexity

to calculate the entire hologram is O(DMN HxHy
MN

logHxHy
MN

) = O(DHxHylogHxHy).

It is not much different from the original complexity of our proposed method, but

will potentially add more CUDA kernel calls and increase the computation time.

Therefore, we do not use the approach of elemental holograms.

5.7 Conclusion

In this Chapter, we improve the holographic volume rendering by addressing

three challenges it faces. First, we develop a new hologram computation method

that uses direct volume rendering to generate the collection of point light sources

and uses the convolution theorem to significantly accelerate the computation. Com-

pared with the brute-force methods, this accelerated hologram computation method

achieves over 2000 speedup. Second, we explore several holographic display configu-

rations and find one that increases the FOV while also maintaining the compatibility
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with the accelerated hologram computation method. Third, we realistically simulate

the observed images under different kinds of light sources and identify the appro-

priate light source that strikes the balance between speckles and image resolution

for holographic volume rendering. These improvements pave the way for bringing

volume visualization to holographic displays.
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Chapter 6: Conclusions and Future Work

6.1 Perception in the Far Periphery

First, in Chapter 2, we investigate the perception in the far peripheral vision in

VR and AR experiences. We conduct a user study in which we record the perception

time of 40 participants reacting to patterns of varying sizes appearing at different

eccentricities in their peripheral vision. Based on the data collected, we find that

patterns can be scaled linearly with the eccentricity it is shown at to reach a constant

perception time. Based on these equal-efficiency scales, we can optimally scale the

content displayed at higher eccentricities so that it can be perceived efficiently. Our

finding is useful for designing VR and AR experiences that are able to leverage

the entire human visual system’s field of view for the emerging displays capable

of supporting a wide FOV. Future work on this topic could explore if the scaling

function applies to even higher eccentricities. With a larger field of view display (for

example StarVR 1), we can examine the visual properties up to 105◦ eccentricity,

based on the findings in Chapter 2. In addition to visual acuity, peripheral vision

also differs from central vision in several other attributes such as contrast sensitivity

in color, intensity, orientation, motion, and texture detail. It will be important

1https://www.starvr.com/
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to investigate how these attributes affect the perception of information in the far

periphery. Finally, future work could use the findings of Chapter 2 to design an

actual experience and show how far peripheral vision can enhance the user experience

in an immersive VR or AR scenario. Some examples include the VR exploration

and surveillance applications by Duet al. [201–205] and the virtual memory palace

created by Krokos et al. [206].

6.2 AR Displays for Surgery

Second, in Chapter 3, we implement an AR application and show through a

study how AR could help improve the safety of a dangerous and invasive medical

procedure. We present an AR surgical visualization and tracking system that can

assist surgeons catheter placement in external ventricular drain procedure. Com-

pared to existing similarly-purposed systems, our system does not require changing

the shape or weight of the medical instruments. The catheter tracking in our system

has high accuracy and low latency. Tests show that our system achieves a 0.58 mm

accuracy on a 2D plane and an accuracy of 0.85 mm in 3D space. Processing for

each frame takes 22.60 ms on a moderately powerful computer. Both the accuracy

and speed can be further improved with higher-quality cameras and parallel imple-

mentation. In the study that took place in a realistic surgical environment with

a cadaveric head, the displayed virtual catheter projection aligned well with the

visible portion of the real catheter and the pace at which the real and the virtual

catheter moved matched. The surgeon participants also reported that the handling
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of our slightly modified catheter feels identical to a traditional catheter. In the fu-

ture, we expect to adapt our system to comply with surgical safety standards and

improve the accuracy and speed of our system with better hardware and software

implementation. We could also make the system more robust to occlusion of the

color markers by using more redundant markers.

6.3 Correcting Proximity Effect in Nanophotnoic Phased Arrays

Third, in Chapter 4, we look at the infrastructure of VR and AR displays.

Holographic displays recreate the optical wave field of 2D images or 3D scenes,

addressing the vergence-accommodation conflicts present in the current VR and

AR headsets that rely on stereoscopic vision for depth perception. Nanophotonic

phased arrays (NPAs) is a new type of holographic display that has the advantage

of high refresh rate and small form-factor compared the LCoS SLM holographic

displays. However, the thermally-modulated NPAs suffer from thermal proximity

effect as they depend on the thermo-optic effects for phase modulation. We propose

novel proximity effect correction methods for both the Fourier holograms and the

Fresnel holograms for the NPAs. Computational simulations show that our proposed

methods are more effective and efficient in correcting the proximity effect than

existing methods. Future work on this topic includes acceleration of the methods

and correcting the proximity effect of 3D Fresnel holograms.
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6.3.1 Acceleration

Both the Proximal PEC and the Fresnel PEC method are iterative algorithms.

For example, it currently takes our implementation of the Fresnel PEC method 4.28 s

to process a 256 × 256 image at proximity effect level σ = 0.66 px. However, the

Fresnel PEC method is on average 36.18 times faster than the Iterative Fresnel PEC

method while also offering a superior correction effectiveness. Since the Fresnel PEC

method heavily uses the Fourier transform, we believe that hardware implementation

and massive parallelization can significantly accelerate it. Special hardware for the

Fourier transform such as the on-chip integrated all-optical FFT with a 26 Tbps

data throughput by Nejadriahi and Sorger [207] may also significantly increase the

speed of this method. Alternatively, it is desirable to investigate how to properly

adjust the convergence condition and the step size for maximum efficiency.

6.3.2 3D Fresnel Holograms

We have demonstrated displaying 3D holograms by using time-division multi-

plexing to display multiple 2D Fresnel holograms processed with the FPEC method

at different depths in consecutive frames. Proximity effect correction on 3D Fresnel

holograms where one hologram encodes the entire 3D scene will be an interesting

direction for future work. A naive solution would be to calculate the fully complex

or phase-only 3D Fresnel hologram similar to Shi et al. [1] and Maimoneet al. [62]

and perform deconvolution on the phase signal. The non-negative constraint needs

to be enforced in the deconvolution. An alternative is to optimize the observed 3D

175



scene similar to the proposed FPEC method. It remains to be seen how to define

the cost function similar to Equation 4.50 for a 3D scene.

6.4 Fast Holographic Volume Rendering

Last,in Chapter 5, we propose a way to significantly accelerate the calcula-

tion of the holograms based on volumetric data. Our proposed method achieves a

2500× speedup compared to the previous state-of-the-art method and reduces the

computation time from hours previously to mere seconds. We propose a display

configuration that improves the field-of-view of the display while maintaining the

compatibility to the speedup. We also show through simulations how to choose the

light source for the holographic display to strike a balance between the speckle noise

and image sharpness for the observation.

Going forward, there are several directions to be taken.

6.4.1 Phase Shift on the SLM

In our realistic simulation, we simulated the image as the weighted average

of the wavefront propagated from the hologram to the retina when the hologram

is illuminated with light of different wavelengths sampled from a spectrum. In this

simulation, the same electric field parameters (amplitude and phase) are assumed

to be present at each wavelength. In reality, when the SLM is illuminated by light

of a wavelength other than the one it is calibrated with, the dispersion of the liq-

uid crystal in the SLM alters the phase delay of the light as it is traveling through
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the liquid crystal. For phase modulation, that means that the phase of the electric

field will be slightly different for wavelengths different than the calibration wave-

length. Similarly, one would expect slight differences in the amplitude for amplitude

modulation. It is worthwhile to investigate how to simulate this effect in order to

perform more realistic simulations. Manufacturers may not be forthcoming with

information about the dispersion of their liquid crystals; but this is also measurable

as a function of wavelength by doing interferometric measurements similar to those

commonly used to calibrate SLMs.

6.4.2 Quantifying the Speckles

We investigate the choice of light sources in the realistic simulations. With

direct observation, we have found that a light source with an FWHM of 5 nm strikes

the balance between the speckles and resolution among the four sample light sources

tested. Altering the initial phase of the point light sources in the volume should

allow one to generate statistically independent speckle patterns in the observation

simulations. By averaging over successive runs, one could, in principle, get an image

without speckles. This would allow one to characterize the speckle and find a metric

that could be used to optimize the trade-off between speckle and resolution.

To quantify the speckles in a simulated observation image, it is necessary to

first identify the speckles. This can be done by subtracting the image without any

speckles from the speckled image. The severity, granularity, and anisotropy of the

speckles can be quantified with methods such as the power spectral density in Ong
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et al. [208]. Given the speckleless image, it can also be used as the reference image

in image quality metrics such as the structural similarity index in Wany et al. [175]

or the neural network-based perceptual metric in Zhang et al. [176]. The image

quality metric can be used in combination with the quantified speckle to find the

optimum observed image.

6.4.3 Improving Volume Rendering Sampling

In Chapter 5, we use raycasting direct volume rendering to generate the

point light sources for hologram computation and do not consider more complicated

lighting. The complexity of generating the point light sources using raycasting is

O(DRxRy). In practice, processing each compositing plane (with Rx = Ry = 1024)

takes on average 0.63 ms. The raycasting process takes no more than 1.12% of

the total computation time depending on the hologram dimension and the distance

between the hologram and the volume. Therefore, lighting models such as diffuse

lighting and specular lighting can be easily integrated into our method with very

little overhead to the computation time. Other volume visualization and exploration

techniques such as in Cheng et al. [209, 210]. Also, in the current implementation,

the rays are uniformly sampled in both dimensions. This can be improved by sam-

pling the rays more densely in areas where the gradient of the volume is large. In

order to cope with more complicated illuminations in the scenes, methods such as

the Monte Carlo technique in Veach and Guibas [211], Shirley et al. [212], and Meng

et al. [213] can be used. Instead of computing the light integrals on the image plane,
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one can compute them at various sampling positions in the volume.
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