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The finite-state vector quantizer (FSVQ), introduced by Foster, Dunham and
Gray, is a finite-state machine that can be viewed as a collection of mem-
oryless full-searched vector quantizers, where each input vector is encoded
using a vector quantizer associated with the current encoder state; the cur-
rent state and selected codeword determine the next encoder state. It is
generally assumed that the state codebooks are unstructured and have the
same cardinality leading to a fixed-rate scheme. In this thesis, we present
two variable-rate variations of the FSVQ scheme with the possibility of using
structured as well as unstructured state codebooks. In the first scheme, we
let the state codebook sizes be different for different states, implying different
rate distribution among the states. In the second scheme, in addition to this
flexibility, we use pruned tree-structured vector quantizers as the state quan-

tizers, i.e., we let each of the state quantizers be a variable-rate encoder. For



encoding sampled speech data, both of these schemes perform significantly
better than the fixed-rate FSVQ scheme with the second scheme giving the
best performance.

We also consider the 2-D extension of the above mentioned schemes and
describe two low bit rate image coding systems based on these schemes. A
compression ratio in excess of 26 is achieved for encoding the 512x 512 version
of “Lena” using the schemes employing variable-rate FSVQs.

An implicit assumption made in all the systems mentioned above is that
the channel is noiseless. Under noisy channel conditions, all of the above
systems suffer from severe performance degradations calling for the need to
reformulate the FSVQ design problem taking into account the channel noise.
Using some of the developments in joint source-channel trellis coding, we
describe two different methods leading to two types of noisy channel FSVQs.
We show by means of simulations on the Gauss-Markov source and speech
LSP parameters and for a binary symmetric channel that both schemes are
fairly robust to channel noise. In particular, for speech LSP parameters, the
proposed noisy channel FSVQs lead to a saving of 1.5-4 bits/frame over the .
channel-optimized vector quantizer depending on the level of noise in the

channel.
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Chapter 1

Introduction

Data compression can be described as the reduction in the rate to represent an in-
formation in comparison with an initial representation. Various data compression
techniques can be classified into two categories. The first type consists of all tech-
niques that are noiseless or information lossless, where it is possible to reconstruct
the original information perfectly from the compressed data. Examples of such
techniques are Huffman coding [1], arithmetic coding [2] and Ziv-Lempel coding
[3] among the more prominent ones. The techniques belonging to the second cat-
egory are referred to as noisy, information lossy or data compression systems with
a fidelity criterion and as opposed to the information lossless systems, the original
information cannot be perfectly reconstructed from the compressed information in
these systems. All of the quantization techniques fall in the second category. The
achievable data compression ratio is limited for the noiseless compression systems
to single digits, while for the lossy compression systems they can be as high as
80 for still images and several hundred for video compression. In the sequel, we
will limit ourselves to compression systems with a fidelity criterion and will focus
our attention on a particular type of lossy compression system called the vector
quantization (VQ) which is basically an extension of scalar quantization (SQ) to
the vector case.

In scalar quantization, a selected set of values of a signal, called the quantization



levels, are allowed to be stored or transmitted. SQ is very commonly used in analog
to digital conversion where the signal is possibly continuous-time (in which case, it
is first sampled at a fixed sampling period). The sampled signal has continuously
varying amplitude which is mapped to the closest quantization level. In scalar
quantization, only one value of the signal is quantized at a time while in the VQ, a
vector of samples is quantized together to one of the predetermined reproduction

vectors.

1.1 Vector Quantization

In the sequel we assume that the source to be encoded is a real-valued, stationary
and ergodic process X = {,}32,. An L-dimensional N-level VQ for a source X
is in general described by an encoder mapping a and a decoder mapping 3. The
encoder mapping a : R — N = {1,2,..., N} (VN is called the channel space) is
given by

a(x) =1, ifx€P;, i €N, (1.1)

where X = (Zn1, TnL+1,- -+, ZnL+L-1) i a block of L successive samples from X and
P& {P1,Pa,...,Pn} is a partition of RE. The decoder mapping 3 : N — RF is

described in terms of a reproduction codebook C = {y;,y3,...,yn} according to
BE)=yi,ieN. (1.2)
For a given input vector X, its reproduction vector ¢(x) is given by

q(x) = B(a(x)). (1.3)

The rate of the VQ is given by R = log, N, bits/vector and the performance of
VQ is measured in terms of a distortion measure d : RY x R¥ — [0,00). A VQ
is optimal w.r.t d if the average distortion D = $ E[d(X, ¢(X))] is minimized over

all encoder-decoder pairs (i.e. over all P and C). Two necessary conditions of

2



optimality [4] are

Pi={x:d(x,y;) <d(x,y;),YVie N},i e N, (1.4)
and
yi = arg min E[d(X,y)|X € P],Vi € V. (1.5)
yeR*®

The term arg miny E[d(X,y)|X € P;] is called the centroid of P;. For the squared
error, the centroid is just the average of all the vectors in P;. Based on (1.4) and
(1.5), an iterative design algorithm for VQ called LBG algorithm was developed
in [4]. The LBG algorithm yields a locally optimum VQ design for a given source
or a training sequence and is based on alternately optimizing the encoder (or
partition P) and the decoder (or codebook C); an initial decoder is designed first
and then the alternating optimization is done for several iterations till convergence
occurs. An initial decoder (consisting of N codevectors or reproduction vectors)
can be obtained by choosing N vectors from the source or the training sequence
randomly. Another way is to design an initial codebook by using the so-called
splitting method described in [4]; in fact [4] describes various methods to design
an initial C. Once the initial decoder is designed, the encoder is optimized by using
the minimum-distortion rule given by (1.4) to partition the training sequence. Next
for the new encoder, the decoder is optimized using (1.5). Since we are alternately
optimizing the encoder and decoder, the distortion at each step of iteration can
only decrease and since the distortion is lower bounded by zero (for squared-error
distortion measure), the algorithm has to converge, at least, to a local optimum.
The LBG algorithm takes a fair number of iterations to converge and since it
involves exhaustive search in (1.4), it is computationally intensive. In fact, the
complexity of computation is exponential in R (bits/vector). The VQ designed
using the LBG algorithm will be referred to as LBG-VQ in the sequel.

There are other design algorithms for VQ such as pairwise nearest neighbor



algorithm proposed by Equitz [5], which is much faster than LBG algorithm (5% of
the CPU time of the LBG algorithm) at an expense of slight increase in distortion.
In this algorithm, an initial codebook is chosen to be the training sequence and
then two codewords are merged at a time till the desired rate is achieved; the
two codewords selected for merging are those which give minimum increase in
distortion on merging. Vaishey and Gersho proposed a VQ design algorithm based
on simulated annealing [6], which under certain conditions achieves the global
optimum (as opposed to local optimum obtained with the LBG algorithm) at the
expense of much higher computation.

Since the advent of the VQ) and its design algorithms in 1980, the VQ has been
used extensively for data compression. The main motivation behind the use of VQ
was the result by Shannon [7] that VQ can attain performance close to the “best
possible” in the rate-distortion theoretic sense in the limit when the block length
goes to infinity. In a practical situation, however, we can only consider finite block
lengths, and practical VQ systems fall short of achieving the best, while still per-
forming much better than SQs. The main reason for the superior performance of
VQ over SQ is that VQ exploits the correlation between the components of the
vector, while SQ does not. Although the performance of VQ at a given rate can
be improved by increasing the vector dimension, the resulting complexity places a
practical limit on how large a block length can be used. The complexity can be re-
duced (and hence a larger block length can be used leading to a better performance
than the LBG-VQ) by using suboptimal search strategies as in tree-structured VQ
(TSVQ) and multi-stage VQ (MSVQ) and special structures as in lattice VQs.

In a TSVQ, a sequence of binary (or higher order depending on the type of
tree) comparisons is perfofmed instead of a large exhaustive search. As a conse-
quence, the search complexity increases as log N instead of N. As depicted in the

Figure 1.1, starting at the root node of the tree, if the input vector is closer in min-



Figure 1.1: A tree-structured vector quantizer.

imum distortion sense to the left child then a ‘0’ is transmitted and we descend to
the left child. On the other hand, if the input vector is closer to the right child then
a ‘1’ is transmitted and we descend to the right child. We repeat with the selected
child till the leaf is reached. Then the next input vector is obtained and the whole
process is repeated till the end of the training sequence. The design algorithm
for the TSVQ is provided in [8]. Since the TSVQ involves suboptimal search, it
suffers, in general, some degradation as compared to the LBG-VQ); in addition, the
memory requirements are almost doubled. However, the reduced complexity can
more than compensate for both these factors in some of the applications.

MSVQ is a VQ [9] with “successive approximation” characteristics. Instead of
using a full-rate (N-level) VQ, the source vector is first approximately quantized
using an Ny-level (N; < N) VQ and then the error of this stage is vector quantized
using another N,-level VQ. The number of stages can be arbitrary in MSVQ. The
resulting MSVQ has the advantage of both lower complexity and lower memory.
The penalty paid is a higher degradation in performance as compared to the LBG-
VQ and even TSVQ.

Lattice VQs [10], [11] are basically L-dimensional generalizations of uniform

scalar quantizers and are capable of efficient searches and memory usage. Because



of the special structure of these VQs, there exist algorithmic methods to perform
the encoding and decoding operations (without any need to store) for vectors of
very large dimensions and VQs of high rates. One problem associated with lattice
VQs is that they cannot be iteratively improved using a generalized LBG algorithm
without losing their lattice structure in the design process.

All the variations of the LBG-VQ described above are computationally less
expensive and hence can be designed for larger dimensions than the LBG-V(Q for
a given rate in bits/sample leading to a performance improvement over the LBG-
VQ. An alternative way to improve the performance of the VQ is to incorporate
memory in the VQ structure. Examples of VQs with memory are feedback VQs
such as vector predictive VQ (PVQ) and finite-state VQ (FSVQ). Trellis encoding
system [12]-[14] can also be classified as VQ with memory and they share the same
decoder as the feedback VQ but their encoder is “lookahead” in nature (i.e. they
look at several future vectors before encoding the present vector).

The predictive vector quantizer, proposed by Cuperman and Gersho [15] is
basically a vector generalization of DPCM. For fixed predictors, a generalized
LBG algorithm can be used to design VQ for the residual sequence. Extension of
this system is provided in [16] in which a stochastic gradient algorithm is used to
iteratively improve the vector linear predictor coeflicients.

An FSVQ is a finite-state machine and associated with each state of the finite-
state machine there is a VQ. The current input vector is quantized using the VQ
associated with the current state; the next state is decided based on the current
state and encoder output. Since the encoder determines its next state based on its
previous outputs which are also available at the receiver, the decoder can track the
encoder state sequence without any extra overhead information. While encoding
sampled speech waveform using the FSVQ and PVQ [17], it was observed that

the FSVQ performed better. Both these systems have a built-in memory and



therefore can exploit intervector correlation. In the rest of this thesis, we will only
concentrate on the FSVQs.

As mentioned earlier, FSVQ is a type of feedback VQ and can be thought of as
a time varying VQ. There is a super-codebook that contains a very large number
of codevectors and there is an internal state which accurately represents a small
region (with a small sized subset of the super-codebook covering this region) that
contains the source vector at any given time. Thus FSVQ achieves the efficiency
of a large rate codebook at a relatively small rate.

In [18], the FSVQ was introduced and used to encode two sources with memory,
namely the 1°*-order Gauss-Markov source and sampled speech waveform; perfor-
mance improvements were observed as compared to the memoryless LBG-VQ.
Then in [19], a technique based on adaptive stochastic automata theory was intro-
duced that led to an improved design algorithm for FSVQ and an application of
FSVQ was made to voice coding. In [13], Bei and Gray proposed a trellis encoding
system which used the decoder of FSVQ [18] and an encoder that was “lookahead”
in nature (i.e., their system was same as FSVQ with a “lookahead” encoder); the
proposed system was used to encode the Gauss-Markov source, sampled speech
waveform and LPC parameters of speech and a gain of up to 0.7-1.0 dB? was ob-
served over FSVQ. Several schemes based on FSVQ have also been reported in the
image coding literature. In [20] and [21], FSVQ was used to encode still images
where the state was used to exploit the correlation in the spatial domain; over 50%
saving in bit rate is achieved over LBG-VQ. In [22] and [23], FSVQ was used in
coding image sequences where the state is defined to exploit temporal correlation;

again a saving of over 50% is achieved over intraframe LBG-VQ.

!Distortion measure used for encoding the Gauss-Markov source and sampled speech was
squared-error, while the Itakura-Saito distortion measure was used for encoding the LPC
coefficients.



1.2 Contribution of the Thesis

In all the above cases involving FSVQs, an implicit assumption made is that the
channel over which data is to be transmitted is noiseless. Actually, it is only un-
der noiseless channel conditions that the decoder can perfectly track the encoder
state sequence. We will also maintain the assumption of a noiseless channel in the
first part of the dissertation. In the FSVQ systems mentioned above, the state
codebooks are all assumed to have the same cardinality and hence the same bit
rate. This, in a loose sense, implies that all the states are treated with approx-
imately equal degree of fidelity. Such a restriction limits the performance of the
FSVQ which has the potential of doing better. In this work, we have relaxed
this assumption and have considered an FSVQ scheme with different codebook
sizes for different states while constraining the average bit rate. This modification
has resulted in performance improvements (in some cases substantial) in terms of
signal-to-noise ratio. We have also considered the possibility of using structured
VQs such as the tree-searched VQ (TSVQ) [8] and optimally pruned unbalanced
TSVQ (UTSVQ) [24] as the state quantizers. In fact, the scheme using UTSVQ
as state quantizers and with the flexibility of having variable bit rate assignment
among the states performs the best amongst all the schemes considered in this
thesis under noiseless channel assumptions, as will be shown by the simulation
results. We will use the modified FSVQ systems to encode a composite Gauss-
Markov source and sampled speech waveform. Also the extension of various FSVQ
systems to 2 dimension (2-D) is considered and various schemes based on 2-D
FSVQs are described for encoding still images.

In the second part of the dissertation, the problem of designing FSVQ for
the noisy channel case is considered; the channel over which the FSVQ encoder

output is transmitted is no longer assumed to be noiseless. We limit ourselves to



fixed-rate FSVQ) systems and a discrete memoryless channel (DMC). Under these
conditions, the decoder may not be able to track the encoder state sequence leading
to a substantial degradation in the performance of FSVQ of [18]. Thus the noisy
channel case calls for redesigning the FSVQ structure.

For a continuous alphabet source, the minimum distortion that has to be tol-
erated if it is transmitted (after source encoding) over a noisy channel is given by
the distortion rate function evaluated at the channel capacity [7], where the dis-
tortion rate function determines the minimum distortion that must be tolerated
in order to represent the source by a sequence of bits having a given rate. There-
fore in order to design an optimal digital communication system, in the sense of
minimizing distortion between the source and its reproduction at the receiver, it
suffices to design an encoder-decoder pair that operate at rate below the channel
capacity and achieves distortion predicted by the distortion rate function at that
rate. In deriving such a result, it is assumed that encoder and decoder operate
on infinitely long sequences. Also it is implicitly assumed that the source coder
and the channel coder can be designed separately and then can be concatenated
without any loss in the performance. This result is only asymptotic and not quite
valid in practical situation where we deal only with finite lengths in which case the
system resulting after concatenation may not be optimal. Under these conditions,
the correct approach would be to design the source and channel coders jointly.

In the second part of the dissertation, we consider a joint source-channel cod-
ing problems for a continuous alphabet source and a noisy discrete memoryless
channel. In the past, combined source-channel coding has been studied in various
quantization contexts. Design algorithms for an optimum scalar quantizer operat-
ing over a noisy channel were developed in [25], [26]. These ideas were extended
to LBG-VQ in [27] and then to tree-structured VQ (TSVQ) and multi-stage VQ

(MSVQ) in [28]. Furthermore, necessary conditions of optimality for trellis encod-



ing systems have been developed in [29] and a design algorithm based on these
necessary conditions is described in [30]. An FSVQ can be looked upon as a trel-
lis encoding system with unit search depth and a general next-state function (as
opposed to the one imposed by the shift-register implementation). The problem
of combined source-channel coding for FSVQ can be developed along the lines of
the system in [29]. However, dué to the use of a general next-state function, the
solution of [29] for the trellis encoding system cannot be used as such. As a conse-
quence, we make simplifying assumptions about the FSV(Q structure and describe
two noisy channel FSVQ systems (NC-FSVQ1 and NC-FSVQ2). In NC-FSVQL,
we assume that the “protected” encoder state is transmitted periodically to the
decoder? while in NC-FSVQ2, we try to modify the FSVQ structure in ‘such a
manner that without loosing too much in terms of performance (as compared to
FSVQ of {18] in noiseless case), the theory of [29] can be used after some modifica-
tions. One important application that we will consider for noisy channel case will
be that of quantizing the speech LSP parameters. The speech LSP parameters
represent the short-time spectrum of speech and are mathematically equivalent
to other linear predictive coding representations. Currently, there is a growing
interest in encoding speech LSP parameters [31]-[33] used in vocoders [34] and
hybrid speech coders [35]-[38]. The LSP parameters exhibit high intraframe and
interframe correlations and therefore are good candidates for FSVQ type systems.

Next, we briefly describe the speech LSP parameters.

1.2.1 LSP Parameters

For a given order p, the linear predictive analysis of speech results in an all-pole

filter H(z) = 1/A,(z), where

Ap(z)=1+arz +az® + ... +a,z7". (1.6)
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The parameters {a;}i=1,2,.., are commomly referred to as LPC coefficients. It
can be easily verified that the polynomial A;(z), associated with a j*"-order LPC

analysis, satisfies the following recurrence relationship [39]
Ai(z) = Aj-a(z) — k‘jAj._l(Z_l),j =1,2,...,p. (1.7)

In (1.7), consider two extreme artificial boundary conditions: kp+; = 1 and kppq =
—1 corresponding, respectively, to the complete closure and a complete opening at
the glottis in the acoustic tube model [39]. Under these conditions, the polynomial

A,41(2) can be expressed as

P(z)=(1-2"" I (1-2:"cosw;+27%), (1.8)
1=2,4,...,p
for k41 =1 and
Qz)=01+2"") JI (1-2:"cosw;+z7%), (1.9)
i=1,3,...p—1 '
for ky41 = —1, where it is assumed that p is an even integer.

It is clear from (1.8) and (1.9) that e/ i = 1,2,...,p, are the roots of polyno-
mial P(z) and Q(z). The parameters {w;}i=1,2,..., are defined as the line spectrum
pair (LSP) parameters. Note that wy = 0 and wyyy = 7 are the fixed roots of P(z)
and Q(z), respectively. The LSP parameters can be interpreted as the resonant
frequencies of the vocal tract under two extreme artificial boundary conditions at
the glottis [34]. It has been demonstrated in [34] that LSP parameters have cer-
tain distinct properties that make them a.,ttra,ctive for quantization in comparison
with other equivalent LPC representations. In all the experiments involving LSP
parameters, the final performance measure is considered to be the average spectral

distortion (SD) given by

SD = 31 (1010g 5,() ~ 101og &) Xk 4. (1.10)

i
n=1 YT ™
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Here S,(w) and S’n(w) are the original and quantized spectra, respectively, asso-
ciated with the n'® frame and T is the number of frames. The average spectral
distortion is established as a standard for measuring the performance of quantiza-
tion schemes for LSP parameters [34]. In fact, the quantization of LSP parameters
is considered to be transparent if the SD is below 1.0 dB and the percentage of
frames with spectral distortion greater than 2.0 dB (called outliers) is less than

2% with no frames having spectral distortion greater than 4.0 dB.

1.3 Outline of the Thesis

The thesis consists of 5 chapters. In chapter 2, FSVQ of [18] is generalized to cases
where the state quantizers can be any kind of VQ (as opposed to just LBG-VQ
in [18]) and then variable-rate versions of various FSVQs are described, designed
and evaluated for two typés of sources namely a composite Gauss-Markov source
and sampled speech waveform. In Chapter 3, FSVQs described in Chapter 2
are extended to 2-dimensional case (2-D) and then two systems based on 2-D
FSVQs are described and used to encode still images. We assume a noiseless
channel throughout Chapters 2 and 3. However, in Chapter 4 we consider noisy
channels and provide descriptions and design algorithms for noisy channel FSVQs;
we first justify the need to redesign FSVQ under noisy channel conditions and
then attempt to provide necessary conditions of optimality for such systems. Only
fixed rate FSVQ systems are considered and simulation results are provided for
the Gauss-Markov source and speech LSP parameters. Finally Chapter 5 contains

conclusions and suggestions for future research.
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Chapter 2

Variable-Rate Finite-State
Vector Quantizer

2.1 Introduction

In [18], the FSVQ was introduced and used to encode two sources with memory,
namely the 1%*-order Gauss-Markov source and sampled speech waveform; perfor-
mance improvements were observed as compared to the ordinary memoryless VQ
(LBG-VQ). Then in [19], a technique based on adaptive stochastic automata the-
‘ory was introduced that led to an improved design algorithm for FSVQ and an
application of FSV(Q was made to voice coding. Several schemes based on FSVQ
have also been reported in the image coding literature. In [20] and [21], FSVQ was
used to encode still images where the state was used to exploit the correlation in
the spatial domain; over 50% saving in bit rate is achieved over LBG-VQ. In [22]
and [23], FSVQ was used in coding image sequences where the state is defined to
exploit temporal correlation; again a saving of over 50% is achieved over intraframe
LBG-VQ.

As mentioned in Chapter 1, in all the FSVQ systems considered in literature
so far, the state codebooks are all assumed to have the same cardinality and hence
the same bit rate. This, in a loose sense, implies that all the states are treated with

approximately equal degree of fidelity. Such a restriction limits the performance of
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the FSVQ which has the potential of doing better. In this chapter, we have relaxed
this assumption and have considered an FSVQ scheme with different codebook
sizes for different states while constraining the average bit rate. This modification
has resulted in performance improvements (in some cases substantial) in terms of
signal-to-noise ratio. We have also considered the possibility of using structured
VQs such as the tree-searched VQ (TSVQ) [8] and optimally pruned unbalanced
TSVQ (UTSVQ) [24] as the state quantizers. In fact, the scheme using UTSVQ
as state quantizers and with the flexibility of having variable bit rate assignment
among the states performs the best amoﬁgst all the schemes considered in this
thesis (under noiseless channel conditions), as will be shown by the simulation
results.

In order to facilitate the presentation and avoid using long names for differ-
ent kinds of systems described in this chapter, we will use appropriately defined
acronyms. Furthermore, as an aid to remember the correspondence between differ-
ent acronyms and their respective systems, we provide the notation tree of Fig. 2.1.
In this figure, FSVQ refers jointly to fixed-rate as well as variable-rate finite-state
vector quantization. Furthermore, fixed-rate FSVQ with LBG-VQ as state quan-
tizers is called FS-LBGVQ and when TSVQs are used as state quantizers then the
fixed-rate FSVQ system is referred to as FS-TSVQ. Similarly, variable-rate FSVQ
with LBG-VQ is called VFS-LBGVQ and the one with TSVQ) as state quantizers
is named VFS-TSVQ; finally, we use VFS-UTSVQ to denote variable-rate FSVQ
with UTSVQs as state quantizers.

In this chapter, we describe the 1-dimensional (1-D) versions of various fixed-
rate and variable-rate FSVQs mentioned above and use them to encode sampled
speech and a synthetic source described in Section 2.4.

The rest of the chapter is organized as follows. In Section 2.2, we provide

the definition and design algorithm for fixed-rate FSVQ with both structured and
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unstructured codebooks. The description and design algorithm for variable-rate
FSVQ is provided in Section 2.3, while the simulation results of the various FSVQ
based systems on 1-D sources like sampled speech waveform and a switched Gauss-
Markov source are given in Section 2.4. Finally, a summary and conclusions are

given in Section 2.5

2.2 Fixed-Rate Finite-State Vector Quantiza-
- tion

In this section, we briefly provide the description and design algorithm of fixed-rate
FSVQ with both structured and unstructured state codebooks. We first provide the
definition and design algorithm for fixed-rate FSVQ with unstructured codebooks
(denoted by FS-LBGVQ). Following that, we will consider fixed-rate FSVQ with
tree-structured codebooks (denoted by FS-TSVQ).

2.2.1 Definition of FS-LBGVQ

An L-dimensional K-state FS-LBGVQ [18] is specified by a state space & =
{1,2,..., K}, an initial state so and three mappings:

(1) a: RY x § — N: finite-state encoder,

(2) B: N x 8 — A: finite-state decoder,

(3) f: N xS — S: next state function.
Here, N/ 2 {1,2,...,N} is the finite channel alphabet of size N and A is the
reproduction space. |

Let {x,}%, denote the input vector sequence, where x,, € RL. Similarly let
{un}20, {8n}320 and {X,}52, denote the channel symbol sequence, state sequence
and reproduction vector sequence, respectively. With initial state so, the input

process determines the sequence of channel symbols, reproduction vectors and
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states according to:

Up = &(Xp,Sn), n=0,1,..., (2.1.a)
Xn = B(tUn,8n), n=0,1,..., (2.1.b)
Spnt1 = f(Un,8,), n=0,1,.... (2.1.c)

Note that the next state depends only on the present state and the output channel
symbol, and therefore, given the initial state and correct channel symbol sequence,
the decoder can track the state sequence. The collection Cj 2 {B(u,k),u € N'}is
the codebook associated with state k; obviously, A = UK, C;. For a given state
space S and a channel alphabet A/, the mapping 8 can be stored as a look-up
table for a given FS-LBGVQ. The rate of an FS-LBGVQ is given by R = log, N,
bits/vector.

The encoder mapping is specified in terms of a distortion function that is used to
measure the performance of the FS-LBGVQ. The distortion measure d : RY x 4 —
[0, 00) assigns a non-negative cost d(x,X) to reproducing the input vector x as X.

Then the encoder is specified by the minimum distortion rule [18]
a(x, k) = arg rrg\r/x d(x, B(u, k), Vk € S. (2.2)

An FS-LBGVQ can be interpreted as a set of K LBG-VQs (one LBG-VQ
associated with each state), each of codebook size N [4], [17]. The current input
vector is vector-quantized using the LBG-V(Q associated with the current state of

the system; the current state and channel symbol determine the next state.

2.2.2 Design Algorithm of FS-LBGVQ

Given a training sequence {X,, n = 0,1,...} and a distortion measure, the de-
sign algorithm for an L-dimensional, K-state FS-LBGVQ of rate R = log, V,
bits/vector consists of designing: (a) the state codebooks C; for FS-LBGVQ, each
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of size N, and (b) the next-state function f(u,k), u € N, k € S. Following [1§],

the design algorithm can be described in four steps as described below.

1. Desién an LBG-VQ [4] with K codevectors for the given training sequence.
We refer to this VQ as the state-label VQ, C = {c(k), k € S}.

2. For each state k of the FS-LBGVQ), design an initial reproduction code-
book C; = {B(u,k),u € N} using the LBG algorithm [4] on the sub-
training sequence corhposed of all successors to vectors which are rep-
resented by k if quantized by the state-label VQ, i.e.; the subsequence
{x, : k = argminses d(Xn-1,¢(s))}. Thus each codebook Cj is designed
to be good for vectors which will occur next if the FS-LBGVQ is currently

in the ideal state k.

3.  The ideal state k in step (2) depends on the input vector and therefore the
decoder at the receiver side will not be able to track the ideal state sequence.
In order to enable the decoder to track the state sequence (without transmit-
ting any overhead information), we choose the next state as the label which
best matches the reproduction of the current input vector rather than the
current input vector itself. Thus given the state labels ¢(k) and the decoder

B designed in step (2), we define a next-state function f by

flu, k) = argxgéiéld(ﬂ(u,k),c(s)), keS,ueN. (2.3)

4.  Attempt to improve the state codebooks {Cy, k € S} of the FS-LBGVQ by
encoding the training sequence using the next-state function obtained in step
(3) and updating each codevector by replacing it by the centroid of the cell
associated with that codevector. Also update the state-label VQ C similarly
[18].
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In most cases further improvements are possible by iterating steps (3) and (4).
The algorithm described above does not necessarily converge and in fact it does
not even guarantee improved performance at each step of iteration. However, the

FS-LBGVQs designed with this algorithm exhibit substantial gain over LBG-VQs

in both waveform coding and vocoding applications [18], [19].

2.2.3 Fixed-Rate FSVQ Based on Tree-Structured Vector
Quantizer

A finite-state tree-structured vector quantizer (FS-TSVQ) is specified in a manner
very similar to FS-LBGVQ. Associated with each state, we now have a TSVQ
rather than an LBG-VQ. The encoding is accordingly done in a tree-structured
manner. In particular, the encoder mapping o : RX x & — N for FS-TSVQ differs
from that of the FS-LBGVQ; rather than computing the index of the minimum-
distortion codevector in the state codebook, we now encode the input vector using
the state TSVQ and the output channel symbol is the index of the codeword
resulting from the TSVQ encoding. The main advantage of this scheme is the
complexity reduction in the encoding obtained due to the structured nature of
the state codebooks without much loss in performance. The design algorithm for
FS-TSVQ is very similar to that of FS-LBGVQ given in Subsection 2.2.2. The
only difference lies in the encoding procedure as mentioned above and in step (2)
of the algorithm, where we now design a TSVQ for each state instead of an LBG-
VQ. As in the case of FS-LBGVQ, the design algorithm for FS-TSVQ does not
necessarily converge and there is no guaranteed performance improvement at each
step of iteration.

In the FS-LBGVQ design algorithm presented by Foster et al [18], all the state
codebooks are assumed to have the same cardinality and in order to design a rate R

bits/vector FS-LBGVQ), the cardinality of each state codebook is assumed to be 2%.
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In the next section, we drop this assumption and present a modified FS-LBGVQ
system (and also a modified FS-TSVQ system), in which the state codebook sizes
are allowed to vary from state to state; this leads to performance gains (in some
cases substantial). We also consider a second variation of the FS-LBGVQ system
in which UTSVQs obtained by optimal pruning of complete TSVQs [24] are used

as state VQs and state rates are not constrained to be the same for all the states.

2.3 Variable-Rate Finite-State Vector Quanti-
zation

So far, the state VQs were assumed to have the same cardinality (and hence the
same bit rate). Roughly speaking, this assumption implies that the source vectors
are encoded with more-or-less the same degree of fidelity regardless of the state.
This assumption may be unnecessarily restrictive in certain applications where
some types of source vectors should be quantized more finely than some others
(e.g., in speech coding silence periods can be quantized quite coarsely). In what
follows we relax this assumption and let the rates of state VQs vary from state to

state subject to a constraint on the average encoding rate.

2.3.1 Definition of Variable-Rate FSVQ

A variable-rate FSVQ is specified by a state space § = {1,2,..., K}, an initial
state' so and three mappings as follows:

(1) a: RE x & — N(S): finite-state encoder,

(2) B:NM(S) x § — A: finite-state decoder,

(3) f: N(S) xS — S: next state function.
Here the channel alphabet depends on the state (AV(k) for state k) and, in general,

is different for each state. Hence the system becomes a variable-rate system. Ac-

cordingly, the rate of the system is defined by R = YK | Pyby, bits/vector, where
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by, is the average rate of the quantizer associated with state k£ and P; is the proba-
bility of occurrence of state k. The operation of variable-rate FSVQ is the same as
that of fixed-rate FSVQ. It can again be interpreted as a set of K state quantizers,
one associated with each state and the bit rate of the quantizer associated with
state k is by. The current input vector is encoded using the quantizer associated
with the current state of the system; the current state and the channel symbol

determine the next state. In the sequel, we will refer to the variable-rate versions

of FS-LBGVQ and FS-TSVQ by VFS-LBGVQ and VFS-TSVQ, respectively.

2.3.2 Design of VFS-LBGVQ

A VFS-LBGVAQ differs from an FS-LBGVQ due to the fact that now the bit rates
associated with different state codebooks are not constrained to be the same. As
a consequence, state codebook sizes become an additional set of variables in the
design stage of VFS-LBGVQ. Once the codebook sizes associated with states are
determined, the design algorithm for VFS-LBGVQ can be described along the
lines of the design algorithm for FS-LBGVQ. The bit-rate assignment (codebook
size determination) is done using the concept of optimal pruning of TSVQ [24]
described next. Following that, we describe the Bit assignment algorithm and the

complete design algorithm for VFS-LBGVQ.

Optimal Pruning of a TSVQ

Consider a complete binary TSVQ of rate ! bits/vector. Corpesponding to this
TSVQ, there is a complete binary tree of depth I with 2/ leaves. Associated with
each interior node (not including the root node) and leaf of the tree, there is a
codevector (reproduction level), a probability and a conditional expected distor-

tion. By pruning off various branches of the tree, a variable-rate TSVQ or an

unbalanced TSVQ (UTSVQ) is obtained. The codebook of the UTSVQ is the set
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of the codevectors associated with the leaves of the pruned tree. The quantizer’s
average rate is the sum, over all the leaves, of the leaf probability times the length
from the root to the leaf. The quantizer’s average distortion is the sum, over all the
leaves, of the leaf probability times the conditional expected distortion associated
with the leaf.

Now suppose T is a large tree corresponding to a complete (completeness is not
mandatory) TSVQ, then every pruned subtree P of T (P < T) defines a UTSVQ
with average rate £(P) and average distortion 6(P). The operational distortion-

rate performance defined by
D(R) = pig(5(P)Ie(P) < B) 24

specifies the optimal trade-off between rate and distortion over all pruned subtrees
of 7. A reinterpreted version of an algorithm developed in the context of classifi-
cation and regression trees [40] is presented in [24] which traces out the convex-hull
of the operational distortion-rate performance. The algorithm given in [24] is quite
general and if é is any monotone decreasing real-valued function defined on trees
(i.e.,if Py X P, X T, then §(P;) > 6(P.)) and £ is any monotone increasing real-
valued function defined on trees, then the algorithm gives the optimal trade-off

between ¢ and 4 over all pruned subtrees of 7.

Bit Rate Assignment Algorithm

Suppose we are given K sets of codebooks {Ci,i = 1,2,...,M;}, k € S, one
set associated with each state. Let the rate (in bits/vector) and average distortion
associated with C}; be given by Ry ; and DkrRk,H respectively. Alsolet Ry < Ri2 <
-+ < R, Ve € S. Then, Dip,, 2 Dip,, = ... = Dip, s Yk € S. Given the
set of codebooks {C}, i = 1,2,..., M}, k € S, we want to choose a codebook of

bit rate by from each set as the state codebook of the VFS-LBGVQ), i.e., determine
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the bit rate assignment map (55,85, ...,b%) that minimizes the average distortion

given by
K
D= Z Pka,bk, (25&)
k=1
subject to
K
3" Peb < g, (2.5.b)
k=1
and
b, € {Rk,l, ng, ey Rk,Mk}, (2.5.C)

where by, is the desired average rate in bits/vector.

The above bit assignment problem can be solved using the idea of optimal
pruning of a TSVQ as follows: We first construct a tree 7 (see Fig. 2.2) the root
node of which has K children, one per state, and the subtree rooted at each child
k is a unary tree of length My . Thus we have K branches, each associated with
a state, coming out of the root node of the tree. Let each node of the branch
associated with state k correspond to a codebook from {Cj, 7 =1,2,..., M} and
hence to a rate-distortion pair; the node closest to the root of the tree has rate 1
bit/vector (and distortion D ;) and in increasing order the node farthest from the
root node has rate Ry a, (and distortion Dyg, . )-

Let P be a pruned subtree of 7 with the branch associated with state k of length
lx. Corresponding to this pruned tree P, we construct a VFS-LBGVQ) system with
Cl* as the state codebook associated with state k, V& € S. We assume for the
moment that the next-state function is given to us; the problem of determining

the next-state function is considered in the next subsection. Then the rate of the

VFS-LBGVQ associated with P is given by

K
UP) =3 PiRyy, (2.6)

k=1
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and the average distortion is given by

K
6(P) = ) PiDiR,,, - (2.7)

k=1

The optimal pruning algorithm of [24], when applied to the tree 7 constructed
above gives the optimal pruned subtree P* and hence the bit rate assignment map

(83,03, ...,b%) that minimizes §(P) subject to £(P) < b,yg over all P < 7.

Design Algorithm for VFS-LBGVQ

Let Dy, denote the average distortion incurred in state k£ when the rate of the
quantizer associated with state k is by bits/vector. Then we wish to minimize the

average distortion given by
K

D =Y PDyy,, (2.8)
k=1

subject to a constraint on the average rate described by

K
Z Pkbk S bavga (29)

k=1

by appropriately designing the bit assignment map (43, 85, . . ., b ), the state code-
books {Cr,k € S} for VFS-LBGVQ and the next state function. An additional
constraint implicitly assumed is that the rate in bits/vector associated with each
state quantizer is constrained to be an integer. The design algorithm consists of

the following steps:

1. For the given training sequence, design the state-label VQ, C = {c(k),k €
S}, using the LBG algorithm [4].

2.  For each state k, construct the subtraining sequence consisting of the subse-
quence {X, : k = argminses d(Xn-1,¢(8))}. Then, for each state &, design

LBG-VQs of rates 1,2,...,bnazk * bits/vector. We denote the set of LBG-

1bmaz. & is determined based on the size of the subtraining sequence associated with the state
k. It is determined such that each quantizer bin is richly populated so that the codevector

associated with that bin is a meaningful representative of the training vectors assigned to that
bin.
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VQs by {Ci, k€ S,i=1,2,..., M}, where M; = bimas k-

3. Find the optimum bit assignment map (b}, 83,...,b%) using the algorithm
described in in the previous subsection. The state codebook used for state
k will be CZ’: = {B%(u,k),u € {1,2,...,2%}} for VFS-LBGVQ, where 8%
is the finite state decoder, associated with state k, with channel alphabet

{1,2,...,2%}.
4. As in the case of FS-LBGVQ, the next-state function f is defined as

f(u, k) = argmin,es d(8%(u, k), c(s)), k € S,u € {1,2,...,2%}.(2.10)

5. Encode the entire training sequence using the next-state function f and
the state codebooks {CZ’:, k € S8} for VFS-LBGVQ. After encoding, update
the state-label VQ by replacing each ¢(k) by the conditional centroid of
the cell associated with it. As a result of encoding, each state k& has a
subtraining sequence associated with it given by the subsequence {x, : k =
fla(%n-1,8n-1),8n-1)}. It differs from the subsequences of step (2) due to

the introduction of the next-state function in the encoding process.

6. For all k €S, update the codgbooks {Ci,i€{1,2,...,bmnesr}} by encoding
the training sequence associated with state k and replacing each reproduc-
tion level of C} by the conditional centroid of the cell associated with the
codevector. Also update state-label VQ C similarly [18]. Then repeat steps
(3), (4), (5) and (6) for some predetermined number of iterations or until
convergence. Then among all quantizers obtained select the one with the

best rate-distortion performance.

As in the case of FS-LBGVQ, the design algorithm does not necessarily converge

and it does not even guarantee improvement at each step of iteration. However,
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the system obtained using this algorithm performs better than FS-LBGVQ as will

be shown by the results in Section 2.4.

2.3.3 Variable-Rate FSVQ Based on TSVQ

As in the fixed-rate case, we can describe a variable-rate FSV(Q based on TSVQ
(VFS-TSVQ) as a VFS-LBGVQ in which each state LBG-VQ is replaced by a
TSVQ. Again the advantage of VFS-TSVQ over VFS-LBGV() is the computational
complexity reduction without much performance loss. The design algorithm for
VFS-TSVQ is the same as described in Subsection 2.3.2 except that step (6) in

the algorithm is replaced by the following step (6'):

6. For all k € S, redesign the TSVQ codebooks {Ci,i € {1,2,...,bmazk}}
by using the training sequence associated with state k. Also update the
state-label VQ C. Then repeat steps (3), (4), (5) and (6') for some predeter-
mined number of iterations or until convergence. Then among all quantizers

obtained select the one with the best rate-distortion performance.

In the step 6 of the design algorithm of VFS-LBGVQ), the state codebooks are
not redesigned; they are just updated (each codevector is replaced by the centroid
of its respective encoding cell) once. In case of designing VFS-TSVQ, however,
state codebooks are redesigned in step 6’, which is practical due to the lower
computational complexity of designing TSVQ as compared to designing LBG-VQ

of the same rate.

Variable-Rate FSVQ Based on UTSVQs

In another variation of the FS-LBGVQ scheme, we consider a system in which the

state quantizers are optimally pruned UTSVQs obtained using the algorithm in
[24]. We also have the flexibility of having different rates for different states. The

main motivation behind using such a scheme was the superior performance of the
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optimally pruned UTSVQ over LBG-VQ along with the additional advantage of
fast encoding due to the tree-searched method. In this scheme, even for a given
state, the quantizer is a variable-rate encoder; for VFS-LBGVQ (VFS-TSVQ) the
rate varies between states but is fixed within each state. We refer to the new
scheme as VFS-UTSVQ. The system is formally described in the same way as
VFS-TSVQ. The design algorithm is also similar to that of VF'S-TSVQ with step

(2) modified in the following way:

2/ For each state k, we design a complete TSVQ) of rate i)max,k, where ?)mw,k
is determined in the same way as bpq. x is determined in the design of VFS-
TSVQ. Then, using the optimal pruning algorithm of [24] on each of the
complete state TSVQs, we obtain K sets of collection of optimally pruned
UTSVQs. The rate of the optimally pruned UTSVQs associated with state &
varies from 1 bit/vector to i)mam,k bits/vector and takes finitely many values
which are not necessarily integers; the fact that rates are not constrained to
be integers as in VFS-LBGVQ (VFS-TSVQ) leads to an additional improve-
ment factor. Then we apply the bit assignment algorithm on the collection
of K sets of optimally pruned UTSVQs to obtain the optimal bit rate as-

signment map (b7,83,...,b%).

The remaining steps of the algorithm are identical to the design algorithm of VFS-
TSVQ. Again, the algorithm is suboptimal but the final system obtained using
this algorithm gives performance gains over all other schemes considered in this

chapter.

2.4 Simulation Results for 1-D Sources

We performed extensive simulations to compare the variable-rate FSVQ systems

described in this chapter with the FS-LBGVQ scheme described in [18]. The
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performance comparisons were made for two kinds of 1-D sources: (i) a synthetic
switched Gauss-Markov (G-M) source and (ii) sampled speech waveform. The
algorithms described in the previous sections were used to design FS-LBGVQ, FS-
TSVQ, VFS-LBGVQ, VFS-TSVQ and VFS-UTSVAQ. Since the algorithms did not
necessarily converge, we carried out 20 iterations for each scheme and chose the
best case. The performance measure used is the signal-to-quantization-noise ratio
(SQNR) in dB. All results are obtained for vector dimension L = 8 and number
of states K = 8, 16 and 32. In the sequel, we denote by b the aVerage bit rate per

sample.

2.4.1 Results on the Synthetic Source

For a simple stationary source such as the 1%-order G-M source with correlation
coefficient 0.9, we found experimentally that fixed-rate FSV(Q) achieved a gain of
about 1 dB over LBG-VQ in terms of SQNR. However, the performance of all
variable-rate FSVQ schemes were found to be quite close to that of fixed-rate
FSVQ. For this simple source, it is observed that the performance of FS-LBGVQ
is within 1.0-1.6 dB of the rate-distortion function for the rates considered in this
chapter and therefore, we do not expect the variable-rate versions of FSVQ to
achieve any significant gain over FS-LBGVQ. Similar observations were made in a
slightly different context by [24] for this G-M source. Therefore, for benchmarking
purposes, we have considered a synthetic, more complex switched source in which
at the beginning of each switching period a hidden mechanism chooses, according
to a Markovian transition, between two 1%¢-order G-M sources with different vari-
ances; in [24], a similar switched source (however, with memoryless subsources) was

considered. For the example given here, the switch transition probability matrix

poo poa \ _ { 0.98 0.02
po pia )\ 0.02 098
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where p;; is the probability of switching from subsource ¢ to j, V i,j = 0,1.
For both G-M subsources, the correlation coeflicients were taken to be 0.9; the
variances of the two sources were chosen to be different by a factor of 1000. The
training sequence consisted of 150,000 vectors. For testing, a different sequence of
150,000 vectors was used. |

Table 2.1 shows the performance of FS-LBGVQ. The LBG-VQ performance
results are also included in the table for comparison. For K = 8, FS-LBGVQ
performs better than LBG-VQ by about 0.6-0.9 dB and the gain increases with K.
Table 2.2 summarizes the performance of FS-TSVQ and TSVQ. As compared to
FS-LBGVQ, FS-TSVQ performs slightly worse due to the use of TSV(Q in place
of LBG-VQ.

Tables 2.3 and 2.4 summarize the performance of VFS-LBGV(Q and VFS-
TSVQ, respectively. In these and subsequent tables, the numbers in parentheses
indicate the achieved bit rate while b is the design bit rate. The performance
improvements of the VFS-LBGVQ (VFS-TSVQ) over the FS-LBGVQ (FS-TSVQ)
schemes are evident. Finally, Table 2.5 contains the performapce results for VFS-
UTSVQ, which performs the best among the five schemes. As compared to the
second best scheme VFS-LBGVQ), it achieves about 0.15-0.5 dB gain in terms of
SQNR. Also, for comparison purposes, we have included the results of UTSvVQ
[24]. As a result of using finite-state vector quantization, a gain of over 1.5 dB in

terms of SQNR is achieved over UTSVQ.

2.4.2 Results on Sampled Speech

The training sequence used consisted of five minutes of speech sampled at 8 KHz
and uttered by five male and three female speakers.
The performance of FS-LBGV(Q is summarized in Table 2.6. Also for com-

parison, we include the performance results of LBG-VQ. As observed in [18], the
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FS-LBGVQ scheme outperforms the LBG-VQ by over 2 dB and the gain increases
with the number of states. Table 2.7 summarizes the performance of FS-TSVQ.
In this case, as compared to FS-LBGVQ), a slight degradation of pefformance can
be observed. In general, however, the trend is similar to that of FS-LBGVQ. In
most cases, FS-TSVQ yields a SQNR within 1.0 dB of F'S-LBGVQ. ‘

Table 2.8 summarizes the performance of VFS-LBGVQ for different values of
b and K. Comparison of Tables 2.6 and 2.8 indicates that at the same bit rate,
VFS-LBGVQ outperforms FS-LBGVQ), in general, by about 2.5 dB.

The performance of VFS-TSVQ is illustrated in Table 2.9. It should be noted
that the difference between the performance of VFS-TSVQ and VFS-LBGVQ) is
smaller than the difference between FS-TSVQ and FS-LBGVQ. The reason resides
in the limitation on the size of the largest LBG-VQ (2048 codevectors in codebook)
needed for VFS-LBGVQs; this limitation is less severe for TSVQs.

Finally, we include the performance results of VFS-UTSVQ in Table 2.10. This
system gives the best performance results among all the schemes considered in
this chapter. For all values of K considered here, VFS-UTSV(Q outperforms FS-
LBGVQ by at least 3 dB and by as much as 4.25 dB for b = 0.5 bits/sample and
higher. In order to visually compare the performance of the different systems, their
rate-distortion performance on the training sequence are illustrated in Fig. 2.3,
clearly demonstrating the superior performance of the variable-rate based schemes.

The performance of various FSV(Q) schemes on an out-of-training test sequence
is summarized in Tables 2.11-2.15. The test sequence was 67 seconds of speech
uttered by a male speaker and sampled at 8 KHz. These results are also depicted
in Fig. 2.4. Study of these tables shows that even for-out-of-training data, variable-
rate FSVQs outperform their fixed-rate counterparts. It is important to note that

in the variable-rate schemes, while the SQNR degrades for the out-of-training
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sequence, the actual bit rate is also lower than the design rate b 2. Comparison
at the same bit rate (see Fig. 2.4) shows a gain of as much as 3 dB for VFS-
UTSVQ and 2.4 dB for VFS-LBGVQ and VFS-TSVQ over the fixed-rate FSVQs.
For th;e variable-rate schemes, a simple feedback mechanism can be used to sense
the instantaneous output rate and adjust the bit rate accordingly by adjusting the
encoder structure slightly; a feature that does not exist in a fixed-rate system. More
interestingly, for the VFS-UTSVQ system, the bit rate adjustment can be achieved
simply by adding/pruning branches of state codebooks. This is an additional
important advantage over other variable-rate FSVQ systems (besides giving better

performance at the same rate).

2.5 Summary and Conclusions

In this chapter, we have considered several variable-rate variations of the 1-D
FS-LBGVQ scheme described in [18]. Design algorithm for various schemes are
obtained by appropriately modifying the algorithm given in [18]. 1-D versions
of FSVQ systems are used for encoding a composite Gauss-Markov source and
sampled speech. It can be concluded from our results that, in general, the variable-
rate versions of FSV(Q) lead to performance improvements which in certain cases
are quite substantial. The best performance was achieved by the systems based
on variable-rate FSVQ using UTSVQs as the state quantizers for both sources
Although the extension of fixed-rate FSVQ to variable-rate FSVQ leads to
performance improvements, the potential problems associated with any variable-
rate coding system like buffer overflow/underflow and channel error propagation
will come into play. One possible method to deal with these problems is to use

the idea of the recently developed structured vector quantizer [41], [42] to convert

2The actual rate achieved by the variable-rate FSVQ systems varies with the test sequence
chosen. The use of a larger training sequence can reduce the variation in the actual rate.
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the variable-rate FSVQ systems into a fixed-rate system without introducing a
significant performance loss. By incorporating some delay into the system, the
codebook search and encoding algorithm of [41] can be used to encode several
vectors (say n) at a time such that the total number of bits used for the n vectors
is fixed, but the number of bits used for each vector can be allowed to be variable.
This modification will render the system a fixed-rate encoder while at the same
time offers (to some extent) the advantages of the variable-rate systems. As a
consequence, the effect of any channel error will remain confined to only n vectors;
similarly the buffer overflow /underflow problem is eliminated since the encoder is

a fixed-rate system now.
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Figure 2.1: Notation tree.
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Figure 2.2: Tree used for bit assignment for VFS-LBGVQ; M} = 6 for all states.
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Figure 2.3: Performance of fixed-rate and variable-rate FSVQs on training se-
quence; K = 32.
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Figure 2.4: Performance of fixed-rate and variable-rate FSVQs on out-of-
training sequence; K = 32.
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FS-LBGVQ
b= 375 | b=5 | b= .625
K SQNR [ SQNR | SQNR
8 736 | 847 | 9.43
16 741 | 857 | 9.55
32 745 | 8.62 | 9.62
[LBG-VQ[ 650 | 7.74 | 883 |

Table 2.1: Performance of FS-LBGVQ and
LBG-VQ at b = 0.375, 0.5 and 0.625
bits/sample on the Synthetic Source.

FS5-TSVQ
b=.3751b=.5|b=.625
K SQNR [ SQNR | SQNR
8 7.00 8.11 9.06
16 7.15 8.23 9.19
32 7.23 8.29 9.23
LTSVQ [ 587 ] 698 | 838 |
Table 2.2: Performance of FS-TSVQ

and TSVQ at b = 0.375, 0.5 and 0.625
bits/sample on the Synthetic Source.

VFS-LBGVQ
b= 375 b=.5 | b= .625
K | SQNR | SQNR | SQNR
8| 802 | 9.06 | 10.46
(0.38) | (0.49) | (0.63)
16| 828 | 9.60 | 10.59
(0.38) | (0.50) | (0.63)
32| 838 | 983 | 10.76
(0.39) | (0.50) | (0.63)

Table 2.3: Performance of VFS-
LBGVQ at & = 0.375, 0.5 and
0.625 bits/sample on the Synthetic
Numbers in parentheses
denote actual bit rate.

Source.
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VFS-TSVQ
b=375|b=.5 | b=.625
K | SQNR | SQNR | SQNR
8§ 7.9 | 879 | 9.42
(0.375) | (0.48) | (0.59)
16| 7.88 | 930 | 9.82
(0.37) | (0.50) | (0.56)
32| 808 | 943 | 9.96
(0.375) | (0.50) | (0.58)

Table 2.4: Performance of VFS-
TSVQ at b
0.625 bits/sample on the Synthetic

Source.

0.375,

denote actual bit rate.

0.5 and

Numbers in parentheses

VFS-UTSVQ

b=375]b=25 b= .62

K SQNR | SQNR | SQNR

g 821 | 9.71 | 10.62

(0.375) | (0.50) | (0.620)

16 836 | 9.86 | 10.78

(0.375) | (0.50) | (0.625)

32 838 | 10.00 | 10.95

(0.375) | (0.50) | (0.625)

UTSVQ | 6.96 | 8.62 | 9.06
(0.375) | (0.55) | (0.605)

Table 2.5: Performance of VFS-UTSVQ
at b = 0.375, 0.5 and 0.625 bits/sample

on the Synthetic Source.

Numbers in

parentheses denote actual bit rate.
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FS-LBGVQ
b=.25 b=375| b=.5 | b=.625
K SQNR | SQNR | SQNR | SQNR
8 3.64 5.55 729 | 8.90
16 3.75 5.86 768 | 9.57
32 3.89 6.16 | 8.70 | 10.06
|LBG-VQ| 245 | 432 | 584 | 731 |

Table 2.6: Performance of FS-LBGVQ and LBG-
VQ at b = 0.25, 0.375, 0.5 and 0.625 bits/sample
on the Training Sequence.

FS-TSVQ
b=.25]b=375] b=5 [ b= 625
K [ SQNR | SQNR [SQNR | SQNR
8 319 | 515 | 681 | 829
16 | 346 | 542 | 7.12 | 873
32 | 359 | 553 | 7.33 | 9.06
[TSVQ] 218 | 359 | 524 | 6.62 |

Table 2.7: Performance of FS-TSVQ and TSVQ
at b=0.25, 0.375, 0.5 and 0.625 bits/sample on
the Training Sequence.

VFS-LBGVQ
b=25 b= 35| b=.5 | b=.625
K | SQNR | SQNR | SQNR | SQNR
8 600 | 696 | 1045 | 11.73
(0.24) | (0.31) | (0.47) | (0.58)
16| 6.46 | 864 | 10.85 | 12.02
(0.25) | (0.38) | (0.52) | (0.64)
32| 734 | 876 | 11.52 | 12.04
(0.25) | (0.34) | (0.50) | (0.58)

Table 2.8: Performance of VFS-LBGVQ at
b = 0.25, 0.375, 0.5 and 0.625 bits/sample
on the Training Sequence. Numbers in paren-
theses denote actual bit rate.
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VFS-TSVQ
b=25b=315] b=5 | b= .625
K | SQNR | SQNR | SQNR | SQNR
8| 5.8 | 656 | 9.49 | 10.54
(0.25) | (0.32) | (0.46) | (0.58)
16| 623 | 7.98 | 10.83 | 12.09
(0.25) | (0.37) | (0.49) | (0.61)
32| 633 | 912 | 11.63 | 12.69
(0.25) | (0.37) | (0.53) | (0.64)

Table 2.9: Performance of VFS-TSVQ at b =
0.25, 0.375, 0.5 and 0.625 bits/sample on the
Training Sequence. Numbers in parentheses
denote actual bit rate.

VFS-UTSVQ

b=25]b=.375] b=.5 | b= 625

K | SQNR | SQNR |SQNR | SQNR
8 695 | 934 | 11.93 | 13.12
(0.25) | (0.375) | (0.49) | (0.625)

16 727 | 10.06 | 12.82 | 13.59
(0.25) | (0.385) | (0.49) | (0.625)

32 841 | 1050 | 12.94 | 13.71
(0.25) | (0.342) | (0.49) | (0.591)
UTSVQ | 458 | 550 | 7.32 | 9.9
(0.29) | (0.335) | (0.47) | (0.625)

Table 2.10: Performance of VFS-UTSVQ at b =
0.25, 0.375, 0.5 and 0.625 bits/sample on the
Training Sequence. Numbers in parentheses de-
note actual bit rate.
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FSILBGVQ
b=25]b6=375b=25b=.625

K SQNR | SQNR | SQNR | SQNR
8 213 | 3.50 | 4.90 | 5.98
16 2.06 | 3.62 | 503 | 5.97
32 219 | 3.76 | 567 | 6.22

[LBG-VQ] 1.90 | 3.23 | 437 | 555 |

Table 2.11: Performance of FS-LBGVQ and LBG-
VQ at b = 0.25, 0.375, 0.5 and 0.625 bits/sample
on Out-of-Training Test Sequence.

FS-TSVQ

b=125]b=375b=25 |b=.625
K | SQNR | SQNR | SQNR | SQNR
8 1.86 | 3.20 | 442 | 5.31
16 174 | 323 | 442 | 557
32 183 | 3.22 | 430 | 552

|TSVQ | 1.50 | 250 [ 359 | 4714 |

Table 2.12: Performance of FS-TSV(Q and
TSVQ at b = 0.25, 0.375, 0.5 and 0.625

bits/sample on Out-of-Training Test Sequence.

VFS-LBGVQ

b=.25b=.375] b=.5 | b= .625
K | SQNR | SQNR | SQNR | SQNR
8 | 2.08 | 250 | 7.27 | 7.88
0.17) | (0.21) | (0.39) | (0.51)
16| 239 | 6.06 | 7.65 | 838
(0.18) | (0.33) | (0.47) | (0.52)
33| 321 | 395 | 766 | 8.14
(0.19) | (0.25) | (0.42) | (0.51)

Table 2.13: Performance of VFS-LBGV(Q at
b = 0.25, 0.375, 0.5 and 0.625 bits/sample on
Out-of-Training Test Sequence. Numbers in
parentheses denote actual bit rate.
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VFS-TSVQ
b=.25]b=375] b=.5 | b=.625
K | SQNR | SQNR [ SQNR | SQNR
8| 212 | 233 | 660 | 7.35
(0.18) | (0.22) | (0.39) | (0.51)
16| 229 | 324 | 692 | 804
(0.18) | (0.26) | (0.40) | (0.53)
32| 243 | 4.16 | 7.56 | 8.00
(0.19) | (0.26) | (0.43) | (0.55)

Table 2.14: Performance of VFS-TSVQ at
b = 0.25, 0.375, 0.5 and 0.625 bits/sample
on Out-of-Training Test Sequence. Numbers
in parentheses denote actual bit rate.

VFS-UTSVQ
b=.25[b=.375]b=.5 | b=.625
K SQNR | SQNR [SQNR | SQNR
8 2.79 5.43 7.44 7.95
| (0.18) | (0.32) | (0.40) | (0.52)
16 3.02 6.82 7.89 8.44
(0.18) | (0.35) | (0.41) | (0.54)
32 3.97 6.34 7.96 8.49
(0.19) | (0.26) | (0.41) | (0.49)
UTSVQ | 2.29 3.03 4.41 5.82
(0.27) | (0.29) | (0.42) | (0.56)

Table 2.15: Performance of VFS-UTSVQ at b =
0.25, 0.375, 0.5 and 0.625 bits/sample on Out-of-
Training Test Sequence. Numbers in parentheses
denote actual bit rate. :
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Chapter 3

2-D FSVQ and Image Coding
Applications

Several schemes based on FSVQ have also been reported in the image coding
literature. In [20] and [21], FSVQ was used to encode still images where the state
was used to exploit the correlation in the spatial domain; over 50% saving in bit
rate is achieved over LBG-VQ. In [22] and [23], FSVQ was used in coding image
sequences where the state is defined to exploit temporal correlation; again a saving
of over 50% is achieved over intraframe LBG-VQ.

In this chapter, we consider 2-dimensional (2-D) extensions of various FSVQ
systems described in Chapter 2 and their application to low bit rate image coding.
In particular, we describe two low bit rate image coding systems based of FSVQ.
In‘one of the systems, we first subtract the mean of each input block and then
encode the mean-subtracted block using 2-D extensions of fixed-rate and variable-
rate FSVQ described in [18], [46]; the block mean is encoded separately. In the
second system, a predictor is used to make a prediction of each block based on
the previously encoded blocks [47]; the prediction residual (error) is again encoded
using the 2-D versions of the fixed-rate and variable-rate FSVQ. It is shown by

means of simulations that the image coding systems using variable-rate FSVQ give

good performance results at low bit rates of 0.25-0.30 bits/pixel.

The rest of the chapter is organized as follows. In Section 3.1, we consider

40



2-D extensions of fixed-rate and variable-rate FSVQ and describe two low bit rate
image coding systems based on 2-D FSVQ systems in Section 3.2. Section 3.3
provides the simulation results on images and finally a summary and conclusions

are given in Section 3.4.

3.1 2-D FSVQ

In this section, we consider the 2-D extensions of the FSVQ schemes. We first
describe the 2-D versions of fixed-rate FSVQ and their design algorithm and then

proceed to discuss the 2-D extensions of variable-rate FSVQ.

3.1.1 Extension of Fixed-Rate FSVQ to 2-D

In the case of a 2-D source such as an image, each input vector is typically a
2-D block (matrix of size [ x I) and unlike the 1-D case, it has more than one
adjacent preceding neighbor. For efficient encoding of an input vector x,, it is
essential to exploit the correlation with the adjacent vectors in the north (x,_r)
and west (x,-1) directions, where L is the number of blocks in an image row (see
Fig. 3.1). In an FSVQ system, this is done by appropriately defining the state
variable. To define the state variable, we associate with each input vector x, an
index v, € {1,2,...,K} ! and say that x, is in “substate” v, iff v, is the index
associated with x,. We then define the state s, associated with x, as a two-
component vector * s, = (Vn_1,vn-1,), Where v,_; and v,_y are, respectively, the
substates associated with the west (x,-1) and north (x,-z,) neighbors of x,. Note
that s, can be equivalently described by an index £ = K(vn,—1 — 1) + v,_ with
ke{l,2,...,K?}.

!For instance, v, can be the index of the the codevector in a size K codebook {c(w),w €
{1,2,...,K}} such that x, is closest to ¢(v,) in Euclidean distance. The precise definition of
the substate is given in the next subsection.

2Since the vectors in the first row and first column do not have either a west or a north
neighbor, we do not associate any state with these vectors and only define a substate for all such
vectors.
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With the state variable defined as above, an (I x !)-dimensional (K x K)-
state FS-LBGVQ (FS-TSVQ) is specified by a state space & = {1,2,...,K} x
{1,2,..., K} and three mappings:

(1) a: R x & — N : finite-state encoder,

(2) B: N xS — A: finite-state decoder,

3)f 2 (fi, f2); fir N x 8 —{1,2,...,K}, i = 1,2: next state function.
Here, N = {1,2,..., N} is the channel alphabet of size N and A is the reproduc-
tion space. This definition is a 2-D extension of the 1-D FS-LBGVQ (FS-TSVQ)
given in [18], [46]. Note that the next-state map f has two components f; and f,
determining the substates associated with the west and north neighbors, respec-
tively. The collection = {B(u,k),u € N'} is the codebook associated with state
k; obviously, A = UkK—_fl Ck.

Let {x,}2, denote the input vector éequence, where x, € R is obtained
from sampled image data. Similarly, let {u,}%,, {80}, and {%X,}>, denote
the channel symbol sequence, state sequence and reproduction vector sequence,
respectively. With the substate sequence of the first row vector and the first

column vector of the image given, the input process determines the sequence of

channel symbols, reproduction vectors and states according to:

Un = o(Xn,Sn), | (3.1)

%0 = Bltin,sn), (3.2)

Snt1 = (fi(tn,Sn), f2(Unt1-1,Snt1-1)),
n=m(L+1),mL+2),...,m=12,.... (3.3)

The rate of an FS-LBGVQ (FS-TSVQ) is given by R = log, N, bits/vector.
The FS-LBGVQ encoder is specified by the minimum distortion rule

a(x, k) = arg mig d(x, B(u, %)), Vk € {1,2,..., K}, (3.4)
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where d is the distortion measure, while for FS-TSVQ the encoding is done in a

tree-structured manner.

3.1.2 Design Algorithm for 2-D Fixed-Rate FSVQ

Given a training sequence {X,, n = 0,1,...} and a distortion measure, the design
algorithm for an (I x [)-dimensional, (K x K)-state FS-LBGVQ (FS-TSVQ) of rate
R =log, N, bits/vector consists of designing:
(a) the state codebooks Ci for FS-LBGVQ (FS-TSVQ), each of size N, and
(b) the next-state function f(u,k),u € N, k € {1,2,..., K?}.
The design algorithm is an extension of the 1-D algorithm given in Chapter 2 and

can be described in the following four steps.

1. Design an LBG-VQ with K codevectors for the given training sequence. We
refer to this VQ as the substate-label VQ, C = {c(v),v € {1,2,...,K}}. We

say that an input vector x,, is associated with an ideal substate k; if

ky = arg el d(Xn, c(v)). (3.5)

2. For each state index k¥ € {1,2,...,K?} of the FS-LBGVQ (FS-TSVQ),
design an initial reproduction codebook Cp = {B(u,k),u VE N} us-
ing the LBG algorithm [4] on the subtraining sequence {x, : %k =
arg minye(1,2,...k} d(Xn-1,¢(v)) and k; = argmingeg o k3 d(Xn-1,c(v))},
where (kq, k2) is the pair associated with k (i.e., k = K(k; — 1) + k). Thus
each codebook Cj, is designed to be good for vectors whose west and north

neighbors are associated with substates k; and k,, respectively.

3. In order to enable the decoder to track the state sequence, we let the state
sequence depend on the reproduction vector of the input vector rather than

on the input vector itself. Thus given the substate-labels ¢(v) and the decoder
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B designed in step (2), we define the mappings f; and f, and hence the next-
state function f = (fi, f2) by 3

fi(u, k) = fo(u, k) = arg ve{rlr,;igK}d(,B(u,k),c(v)), ke{1,2,....K*},ue N.
(3.6)

4.  Attempt to improve the state codebooks {Cx,k € {1,2,..., K%}} of the FS-
LBGVQ (FS-TSVQ) by encoding the training sequence using the next-state
function obtained in step (3) and updating each codevector by replacing it
by the centroid of the cell associated with that codevector. Also update the
substate-label VQ C similarly.

3.1.3 Description of 2-D Variable-Rate FSVQ

The 2-D FS-LBGVQ (FS-TSVQ) system discussed so far is a fixed-rate sys-
tem. The 2-D version of variable-rate FSVQ is specified by a state space
§={1,2,...,K} x{1,2,...,K} and three mappings as follows:

(1) @ : R™ x S — N(S) : finite-state encoder,

(2) B: N(S) x S = A: finite-state decoder,

3)f £ (fi, f2); fis N(8) xS — {1,2,...,K}, i =1,2: next state function.
Here the channel alphabet depends on the state (AV'(k) for state k) and, in general,
is different for each state. The rate of the system is given by R = Ef:l Py,
bits/vector, where by is the average bit rate of the vector quantizer associated with
state k and Py is the probability of occurrence of state k. As in the 1-D case, the
state vector quantizers can be LBG-VQ, TSVQ or UTSVQ.

Let Dyp, denote the average distortion incurred in state k when the rate of the

quantizer associated with state k is b; bits/vector. Then we wish to minimize the

3for FS-TSVQ, the encoding is done in a tree-structured manner.
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average distortion given by
K2

D =Y P.Dyy,, (3.7)

k=1

subject to a constraint on the average rate described by
K2
> Pebie < bayg, (3.8)
k=1
by appropriately designing the the bit assignment map (b3, 83, ...,b%-), the state
codebooks {Ci,k € {1,2,...,K?}} and the next-state function. The design algo-
rithms given for variable-rate FSVQ for the 1-D case can be easily extended to 2-D
in a manner similar to the case of fixed-rate FSVQ. The details are omitted here.
While the 1-D versions of FSV(Q have been successfully applied to encoding
of sampled speech [18], [46], direct application of 2-D versions of FSVQ on image

data presents certain design problems. In what follows, we describe these problems

and propose two methods to tackle them.

3.2 System Description

When the LBG algorithm [4] is used to design a small-sized LBG-VQ using a
training sequence of images, the majority of the codevectors in the LBG-VQ corre-
spond to the constant background vectors of different grey-levels and other feature
vectors such as the edge vectors are either averaged out or masked by the back-
ground vectors [48]. Therefore in step (1) of the design algorithm for 2-D fixed-rate
FSVQ, the majority of the substate-labels (i.e., the codevectors in the substate-
label VQ) will correspond to the constant background vectors and the states will
then correspond to the 'various combinations of constant background.

To account for the various grey-levels of background requires a very large num-
ber of states. To alleviate this problem and more importantly to avoid the masking
of edge vectors by background vectors, we have considered two methods. In the

first method we subtract off the block-mean from each input vector and encode
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the block-mean and the residual separately [48]. Since the block-means of adja-
cent vectors are highly correlated, they can be encoded with a small number of
bits; the residual is encoded using 2-D FS-LBGVQ and VFS-UTSVQ. We will
use ME-FS-LBGVQ and ME-VFS-UTSVQ to denote, respectively, the systems in
which FS-LBGVQ and VFS-UTSVQ) are used to encode the residual signal. In the
second method we use a predictor [47] to make a prediction of each pixel of the
input vector based on the knowledge of the already encoded neighboring vectors
and then encode the residual using the above mentioned FSVQs. We will refer to
the system using FS-LBGVQ by PR-FS-LBGVQ, while PR-VFS-UTSVQ will be
used for the system with VFS-UTSVQ.

As a result of block-mean subtraction or prediction, all constant background
vectors will result in residual vectors close to the zero grey-level and they can be
classified by using fewer number of states. The rest of the states can be devoted
to other feature vectors. As compared to other vectors, the residual vectors cor-
responding to the near zero grey-level background can be encoded using relatively
smaller number of bits while achieving comparable distortion making the resid-
ual vector sequence more amenable to variable-length coding. Details of the two.

systems are provided in the following subsections.

3.2.1 Encoding of Block-Mean

Typical real-world images exhibit high pixel-to-pixel correlation. For a vector
of size 4 x 4 (the vector size considered throughout this thesis for imagés), the
block-mean of an input vector is also highly correlated with the block-mean of the
adjacent vectors. As a consequence, the block-mean can, in turn, be efficiently
encoded by a VQ. However, due to the complexity associated with the VQs, we
cannot design a very large size codebook. For instance, in order to achieve a

rate of 1 bit/sample (for blocks of size 4 x 4 of block-means), the number of
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codewords needed is 2!, which is prohibitively large. To alleviate this problem,
the block-mean is encoded in two steps: First, 4 x4 blocks of block-mean are vector
quantized using an LBG-VQ of small size and then the difference is encoded using
an entropy-constrained block transform coding system. The entropy-constrained
block transform coding system is similar to the system described in [49]. The only
difference lies in the computation of the variances associated with the transform
coeflicients. In the present system depending on the codevector used to encode the
block-mean vector we have a set of variances of the transform coefficients estimated

by using a training sequence different from the test sequence.

3.2.2 Description of the Predictor

We used the 5*-order predictor proposed in [47] to make the block prediction.
Each pixel Y in an input vector (Fig. 3.2) is predicted using only five other pixels.
The predicted value of Y is given by Y = aX, where X = [ X1, X3, X3, X4, X5]. Xy
and X3 are the two closest pixels in the same row of’ the vector in the west, X3 is
the lower right pixel of the upper left diagonal subblock and X4 and X5 are the two
closest pixels in the same column of the north neighbor vector. The vector of linear
prediction coefficients a is chosen to minimize the mean squared-error between Y
and Y according to a = R~1d [50]. Here R = E(XTX) and d = E(XY'). Spatial
stationarity is assumed for computing the correlation matrix. We use the actual

values of X to compute a but once a is computed Y is always estimated based on

the reconstructed version of X as in any DPCM system.

3.2.3 Encoding of the Residual Signal

We have used FS-LBGVQ and VFS-UTSVQ for encoding the residual signal {X,}
obtained after block-mean subtraction or using 5™-order prediction. When an

input vector is encoded by means of an FSVQ), both linear and nonlinear depen-
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dence of the input vector on its neighbors can be exploited by the FSVQ. The use
of block-mean subtraction or a linear predictor removes linear dependence of the
input vector on its neighbors to a certain extent; however the residual vector still
retains the nonlinear dependence and even some linear dependence (due to the use
‘of a coarse predictor to keep overhead information low) on its neighbors that can
be efficiently exploited by the use of FSVQ on the residual sequence.

The FS-LBGVQ is designed for {X,} by using the algorithm described in Sub-
section 3.1.2 and the encoding is done according to Equations (3.1), (3.2) and (3.3).
The simulation results are presented in the next section.

As for the VFS-UTSVQ, we have considered two kinds of UTSVQs. In the first
case, we design a complete TSVQ and then use the optimal pruning algorithm of
[24] to obtain the UTSVQ of the desired rate. In the second case, we use the greedy
algorithm of [51] to grow an unbalanced tree (instead of a complete TSVQ of the
same rate) and then use the pruning algorithm of [24] to design the UTSVQ. For
the reasons described in [51], the second type of UTSVQ, in general, gives better
performance. We will refer to the ME-VFS-UTSVQ system based on the first
and the second kind of UTSVQs by ME-VFS-UTSVQ1 and ME-VFS-UTSVQ2,
respectively. Corresponding names for the prediction based systems are PR-VF'S-
UTSVQ1 and PR-VFS-UTSVQ2, respectively. The simulation results for various

systems are given in the next section.

3.3 Simulation Results on Images

The performance results are reported in terms of the peak signal-to-noise ratio
(PSNR) in dB and the overall average bit rate per pixel (including the overhead)
denoted by b. The design values selected were [ = 4 and K = 4. This corresponds
to a vector dimension of 16 and the number of states is 16. The database used

for training various kinds of FSVQ systems consisted of 19 monochrome images of
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size 480 x 512 and the test image chosen was the 512 x 512 version of “Lena” not

included in the training sequence.

3.3.1 Performance Results of ME-FS-LBGVQ and ME-
VFS-UTSVQ

The VQs designed using the residual training sequence obtained by subtracting
off the block-mean from each input vector will have zero-mean codevectors. As
a consequence, for the squared-error distortion measure, it is easy to check that
the overall distortion of ME-FS-LBGVQ and ME-VFS-UTSVQ systems is equal to
the sum of distortions that result from encoding the block-mean and the residual
signal. Therefore, the problem of encoding the block-mean and that of encoding
the residual can be treated separately.

The block-mean was encoded using the system that consisted of an LBG-VQ fol-
lowed by entropy-constrained block transform coding described briefly in the Sub-
section 3.2.1. The block-mean corresponding to the adjacent vectors are grouped
together in block sizes of 4 X 4 and vector quantized with an LBG-VQ consisting
of 8 codevectors. The remaining bits were allocated to entropy-constrained block
L0 ¢, 20

=2 bits/pixel to encode the block-mean.

transform coding. We allocated 3 >

For smaller values of b, the bit rate allocated for block-mean encoding was kept

Lo

i bits/pixel since any further increase in the bit rate for block-mean

close to
encoder resulted in a relatively small decrease in the overall distortion as the ma-
jor contribution to the overall distortion came from the encoding of the residual.
On the other hand, for higher values of b, distortion arising out of the encoding
of the residual signalAis reduced substantially and the distortion resulting from
block-mean encoding starts playing an equally important role in contributing to

the overall distortion. As a consequence, the bit rate associated with the block-

mean encoder is increased to as much as %Q for b = 0.38 bits/pixel; any further
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increase in the bit rate for block-mean encoding results in a very small decrease in
overall distortion.

The residual sequence was encoded using FS-LBGVQ and VFS-UTSVQ. Ta-
ble 3.1 illustrates the results for various systems at different bit rates. The term
in the parentheses is the value of the bit rate per pixel actually achieved by the
system, while the desired value is given by b. We have also provided the results
for the case when the residual sequence is encoded using an LBG-VQ (ME-VQ)
for comparison purposes. Table 3.1 shows that on the average, ME-FS-LBGVQ
performs better than ME-VQ by about 0.8 dB at all bit rates shown in the table
and ME-VFS-UTSVQ1 improves the performance by about 1 (iB over ME-FS-
LBGVQ. The best performance is attained by ME-VFS-UTSVQ2; it outperforms
ME-VQ by about 3 dB at b = 0.31 bits/pixel achieving a PSNR of 31.66 dB. The
reconstructed image at b = 0.31 bits/pixel using ME-VFS-UTSVQ2 is shown in

Fig. 3.3.b; Fig. 3.3.a shows the original image.

3.3.2 Performance Results of PR-FS-LBGVQ and PR-
VFS-UTSVQ

The PR-VFS-UTSVQ1 system is basically a more general version of the scheme
described in [47]). In both these systems, an error sequence is formed by using
a 5%-order predictor. In [47], the error (residual) sequence is encoded using a
UTSVQ obtained by optimally pruning a complete TSVQ [24]; this system can be
looked upon as PR-VFS-UTSVQ1 with just one state.

We have considered the encoding of the residual using LBG-VQ, FS-LBGVQ
and the two types of VFS-UTSVQ. The results are summarized in Table 3.2.
We have also simulated and included the results of the system described in [47]
(denoted by RDG) for comparison. The bit rate b here also includes the overhead

information which consists of transmitting the actual value of each input sample in
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the first row vector and the first column vector of the image (about %122 bits/pixel).

Table 3.2 shows that use of PR-FS-LBGVQ as opposed to PR-V() leads to an
increase of 0.6 dB in PSNR. For b = 0.20 and 0.26 bits/pixel, PR-VFS-UTSVQ1
outperforms PR-FS-LBGVQ by over 1.5 dB. However, this gain is reduced at higher
rates. This reduction in gain can be attributed to the limitation posed by the size
of the training sequeﬁce used. As opposed to the ME-VFS-UTSVQ systems, PR-
VFS-UTSVQ2 shows an insignificant improvement over PR-VFS-UTSVQ1 system.
Both PR-VFS-UTSVQ1 and PR-VFS-UTSVQ2 systems perform better than the
system described in [47] at the rates shown in the table and the improvement is
most noticeable at & = 0.20 and 0.26 bits/pixel, both visually and in terms of
PSNR. Fig. 3.3.c shows the reconstructed image for PR-VFS-UTSVQ2 at b = 0.32
bits/pixel. The performance of PR-VFS-UTSVQ systems saturates above b = 0.32
bits/pixel due to the training sequence size constraint and therefore we have not

included the results for higher rates in the table.

3.4 Summary and Conclusions

In this chapter, we have considered several variations of two low bit rate image
coding systems based on fixed-rate and variable-rate FSVQs. Design algorithm
for various schemes are obtained by appropriately modifying the algorithms given
in chapter 2. None of these algorithms converge and there is no guaranteed im-
provement at each step of iteration. As a consequence, we performed some fixed
number of iterations and chose the best case result. It can be concluded from our
results that, in general, the variable-rate versions of FSV(Q lead to performance
improvements which in certain cases are quite substantial. The best performance
was achieved by the systems based on variable-rate FSVQ using UTSVQs as the
state quantizers for image coding just as in the case of speech coding.

For both systems, we restricted ourselves to 16 states corresponding to the
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choice of K = 4. In order to estimate the gain obtained by increasing the number
of states, we considered K = 6 and 7 and observed that the performance gain was
relatively small (of the order of 0.2 to 0.3 dB in PSNR value) over the case of 16
states.

For image coding, out of all the schemes considered, PR-VFS-UTSVQs have
the potential of doing the best. For example, at 0.25 bits/pixel, a PSNR of 30.74
dB is achieved for encoding the 512 x 512 version of “Lena” and the quality of
reconstructed image is good. Although, the PSNR value achieved at & = 0.31
bits/pixel was 31.2 dB, they have the potential to do better; we believe that the
gain in the PSNR value at b = 0.31 bits/pixel over that at b = 0.25 bits/pixel can

be higher if we use a larger training sequence.
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Figure 3.2: The predictor structure.
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Figure 3.3: (a) Orignal, (b) ME-VFS-UTSVQ2 (b = 0.31), (c) PR-VFS-UTSVQ2
(b=0.32)
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ME-VQ | ME-FS-LBGVQ | ME-VFS-UTSVQI | ME-VES-UTSVQ2
b | PSNR PSNR PSNR PSNR
0.19 | 27.35 27.99 28.64 28.73
(0.19) (0.19) (0.20) (0.20)
0.25 | 28.02 28.83 29.75 30.31
(0.25) (0.25) (0.26) (0.27)
0.31 | 2858 29.56 30.75 31.66
(0.31) (0.31) (0.32) (0.32)
0.38 | 20.13 30.16 31.67 32.00
(0.38) (0.38) (0.38) (0.39)

Table 3.1: Performance of ME-VQ, ME-FS-LBGVQ, ME-VFS-UTSVQ1 and
ME-VFS-UTSVQ2 at b = 0.19, 0.25, 0.31 and 0.38 bits/pixel on the 512 x 512
version of Lena. Numbers in parentheses denote actual bit rate.

PR-VQ[PR-FS-LBGVQ|PR-VFS-UTSVQI|PR-VFS-UTSVQ2| RDG

b | PSNR PSNR PSNR PSNR PSNR
0.20 | 27.22 27.89 29.70 29.86 29.16
1 (0.20) (0.20) (0.20) (0.20) (0.20)
0.26 | 28.62 99.11 30.64 30.74 29.80
(0.26) (0.26) (0.25) (0.25) (0.25)

0.32 | 29.50 30.16 31.22 31.19 31.00
(0.32) (0.32) (0.32) (0.32) (0.32)

Table 3.2: Performance of PR-VQ, PR-FS-LBGVQ, PR-VFS-UTSVQ1, PR-
VFS-UTSVQ2 and RDG at b = 0.20, 0.26, and 0.32 bits/pixel on the 512 x 512

version of Lena. Numbers in parentheses denote actual bit rate.
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Chapter 4

Finite-State Vector Quantization
for Noisy Channels

The main reason for the superior performance of FSVQ as compared to the ordinary
VQ@Q is that FSVQ effectively performs a two stage quantization as opposed to the
single stage operation of VQ; the first stage of FSVQ does a rough quantization
based on the state index (at no extra overhead since the state index is determined
based on the previous output and state) and the second stage of FSVQ performs a
finer quantization while operating at the same rate as VQ. However, it is only under
noiseless channel conditions that the decoder can track the encoder state sequence.
In the case when the channel is noisy, even a single error in the transmitted encoder
output can lead to an erroneous decoder state sequence for several time indices
leading to a rapid degradation in the performance of FSVQ. In this chapter we
study the performance of FSVQ in the presence of channel noise and devise new
FSVQ designs for operation over a noisy channel.

In the past, combined source-channel coding has been studied in various quan-
tization contexts. Design algorithms for an optimum scalar quantizer operating
over a noisy channel were developed in [25], [26]. These ideas were extended to
full-searched VQ (LBG-VQ) in [27] and then to tree-structured VQ (TSVQ) and
multi-stage VQ (MSVQ) in [28]. Furthermore, necessary conditions of optimality

for trellis encoding systems have been developed in [29] and a design algorithm
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based on these necessary conditions is described in [30]. An FSVQ can be looked
upon as a trellis encoding system with unit search depth and a general next-state
function (as opposed to the one imposed by the shift-register implementation).
The problem of combined source-channel coding for FSVQ can be formulated along
the lines of the system in [29]. However, due to the use of a general next-state
function, the approach of [29] for the trellis encoding system cannot be used as
such. We shall elaborate on this in Section 4.1.3. As a consequence, we make
simplifying assumptions about the FSVQ structure and describe two noisy chan-
nel FSVQ systems (NC-FSVQ1 and NC-FSVQ2). In NC-FSVQI, we assume that
the “protected” encoder state is transmitted periodically to the decoder, while in
NC-FSVQ2, we try to modify the FSVQ structure in such a manner that without
losing too much in terms of performance (as compared to FSVQ of [18] in noiseless
case), the theory of [29] can be used after some modifications; in particular we
design the FSVQ such that the next state information is completely contained in
the first few most significant bits of the codeword.

One important application of NC-FSVQI1 and NC-FSVQ2 that we will consider
in this chapter is that of quantizing speech LSP parameters [34]. Currently, there
is a growing interest in encoding speech LSP parameters [31]-[33] used in vocoders
[34] and hybrid speech coders [35]-[38]. In several applications, it is necessary that
the speech coder be robust against transmission errors. An important application
is digital cellular networks where large channel error rates may arise from various
sources such as multipath fading and interference from other channels [52]. We
will show that the noisy channel FSVQ systems proposed here present an inter-
esting alternative for such situations. They efficiently utilize the interframe and
intraframe correlation of LSP parameters while providing a fairly robust perfor-

mance in the presence of channel noise. We will see that if the channel is noisy and

a delay of 4-8 frames can be tolerated then NC-FSVQ1 is the right candidate; on

37



the other hand NC-FSVQ2 will be the right choice for a low delay system (delay
of 1 frame). |

The rest of the chapter is organized as follows. In Section 4.1, we briefly
describe the FSVQ of [18], state the problems associated with it in the presence
of channel noise and formulate the problem of designing FSVQ for noisy channels.
In Sections 4.2 and 4.3, the description and design algorithms of NC-FSVQ1 and
NC-FSVQ2, respectively, are provided. In Section 4.4 simulation results for the
Gauss-Markov source and speech LSP parameters are presented followed by a

summary and conclusions in Section 4.5.

4.1 Preliminaries

4.1.1 Definition of FSVQ

In this section, we recapitulate the definition of FSVQ. An L-dimensional K-state
FSVQ [18] is specified by a state space S = {1,2,..., K}, an initial state sq and
the mappings:

(1) @ : R x & — N : finite-state encoder,

(2) B: N x S — A: finite-state decoder,

(3) f: N xS — S: next state function.

Here, N = {1,2,...,N} is the finite channel alphabet of size N and A is the
reproduction space.

Let {x,}2, denote the input vector sequence, where x, € RY. Similarly, let
{un}oZos {8n}nzo and {X.}72, denote the channel symbol sequence, state sequénce
and reproduction vector sequence, respectively. With initial state so, the input
sequence determines the sequence of channel symbols, reproduction vectors and .

states according to:

Un = a(Xn,Sn), (4.1)
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Xn = B(tn,sn), (4.2)

Snt1 = f(un,84), n=0,1,.... (4.3)

The next state depends only on the present state and the output channel symbol;
therefore, given the initial state and correct channel symbol sequence, the decoder
can track the state sequence. Here, C; £ {B(u, s),u € N'} is the codebook associ-

ated with state s and A = UK., C,. The rate of the FSVQ is given by R = log, N,
bits/vector. The encoder mapping is specified in terms of a distortion function
that is used to measure the performance of the FSVQ. The distortion measure

d:RF x A — [0,00) assigns a non-negative cost d(x,y) to reproducing the input

vector X as y. The encoder is specified by the minimum distortion rule [18]
a(x,s) = arg IIélAI/I d(x,B(u,s)), Vs € S. (4.4)

The average distortion incurred in an FSVQ system is given by + E[d(X,Y)], where
the expectation is taken w.r.t. the source distribution.

An FSVQ can be looked upon as a time varying VQ. Depending on the past
quantization characteristics, an FSVQ makes a prediction about the region in R”
where the current input vector may belong to and then performs a fine quantization
over that region (using a VQ designed for that region). In this manner, the FSVQ
is able achieve the efficiency of a high rate VQ at a relatively lower actual rate.
Due to its built-in memory as opposed to the LBG-VQ which is memoryless, FSVQ

is capable of exploiting inter-vector correlation leading to improved performance

over the LBG-VQ.

4.1.2 Performance of the FSVQ in a Noisy Channel

Although an FSVQ system offers performance improvement over memoryless VQ
by exploiting inter-vector correlation, it becomes prone to channel error propa-

gation due to the presence of a feedback structure in the FSVQ encoder. In the
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absence of channel noise, the feedback eliminates the need to transmit the encoder
state to the receiver side. However, the ability of the decoder to track the encoder
state sequence critically depends on the error free transmission of the codewords
over the channel. Even a single error occurring in the transmitted codeword can
lead to an incorrect decoder state. Once the decoder state becomes different from
the encoder state, the decoder state sequence can remain derailed for a long time.
In practice, since there is only a finite, and usually small number of states, the
encoder and the decoder states become the same after some time. Despite the fact
that the decoder is able to eventually track the encoder state, the performance
degradation is severe because once the decoder loses track of the encoder state,
its state sequence essentially becomes random and the input vectors get mapped
to random reproduction vectors. This statement will be confirmed by the results
illustrated in the simulation results section. In order to control the performance
of FSVQ under noisy channel conditions, it is essential to avoid or minimize the
“derailing” of the decoder. This can be achieved by either (i) transmitting some
“protected version” of the encoder state sequence periodically or (ii) modifying
the FSVQ system so that it becomes self-tracking (i.e., decoder can start tracking
soon after derailing). We elaborate on these issues in Sections 4.2 and 4.3. In what

follows, we formulate the FSVQ design problem under noisy channel conditions.

4.1.3 Formulation of the Problem

Consider the FSVQ block diagram in Fig. 41 The encoder « can be de-
scribed in terms of the partition {Psu, s € S,u€ N} such that a(x,s) = u, if
X € Psu, $ € S,u € N. The output u of the encoder « is transmitted over a dis-
crete memoryless channel (DMC) v described by a random mapping 7 : N — A

and the transition matrix

Q(v|w) = Pr(y(w) = v), Yu,v € N, (4.5)
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where v is the output of the DMC. The decoder 8 maps the received codeword
v into a reproduction vector y depending on its state §. The average distortion

incurred in the system of Fig. 4.1 is given by
1
.D(O!, B, f) = ZE[d(XaY)L ‘ (46)

where the expectation is taken w.r.t the source and channel distributions. The
problem is to minimize D by appropriate designs of «, 8 and f.
Next, we attempt to develop necessary conditions for the optimality of the

system. First, note that the average distortion can be expressed as

D(a,B,f) = —;;E[d (X,Y)]s, 8, u,v]Pr(s, 3,u,v) (4.7)
= —z L, (0l Prsls)dex, Bv, ))p(x)dx.  (45)
We denote the term in the braces ms 24.8) by a cost function
Culou) = S QI Pr(slo)d(x, A(2,)) (4.9)
= B ld0x, AV, )yl (4.10)

where § and V denote the decoder state and the channel output random variables,

respectively. Then

D(e, B, f) = Z/ (x)dx. (4.11)

We first assume that f and § are fixed and try to find the optimal o or equiv-
alently the optimal partition. Clearly, from Equation (4.11), the optimal partition

must satisfy [29]
Pr.={x:Cs(x,u) < Cyu(x,u'), Vs' € §,u’' € N}, (4.12)

with an additional constraint that the state sequence should lie on the trellis cor-

responding to the FSVQ. Similarly, for fixed o and f, the optimum £ must satisfy

B*(v,8) = arg min, ZQ(vlu)Pr(§|s)/P d(x,y)p(x)dx, $§ € S,v e N. (4.13)

Y€ 8,u su
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However, for fixed o and 8, the optimum f is not easy to compute and we use ad
hoc schemes to update f. This step leads to an overall suboptimal system just as
in the case of FSVQ under noiseless channel assumptions in [18].

The computation of Cy(x,u), s € S,u € N involves the estimation of a prob-
al.)ility term Pr(3|s). For a general next-state function, it is not clear how the
decoder state § and the encoder state s are related to each other at any given time
and this makes the estimation of Pr(§|s) difficult. Next, we present two special
cases where we make certain assumptions about the system that help in estimating

the transition probability between the states and hence the cost function Cj.

4.2 Description and Design of NC-FSVQ1

In this section we consider the first special case in which we assume that the
encoder state sequence is known to the decoder (by transmitting the protected
state indices). As mentioned earlier, the FSVQ can be looked upon as a trellis
encoding system [30] with unit search depth and a general next-state function
(as opposed to one imposed by shift-register implementation). While for trellis
encoding systems utilizing a shift-register implementation, it is straightforward to
compute Pr(3|s), for the FSVQ with a general next-state function, this probability
cannot be easily computed. So, we make a simplifying assumption that the encoder
state sequence is protected and transmitted separately to the decoder. Assuming

that § = s at all times, we have

Cu(x,u) = Evld(x,B(V,s))ls,u]
> Qvfu)d(x, B(v, ). (4.14)

The cost function in (4.14) for each state s € S corresponds to the modified
distortion defined to design a channel-optimized VQ (CO-VQ) in [27].

In an attempt to find the necessary conditions for the optimality of the FSVQ
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system under noisy charnel conditions (with the assumption that the encoder state
sequence is available at the decoder), we proceed as follows. For fixed 8 and f,
the optimum « is defined by the partition given by (4.12) with C; given by (4.14).
This exactly corresponds to determining the optimum partition for CO-VQ in [27]
within each state s € §. Similarly for fixed a and f, the optimum f is obtained
using (4.13) with Pr(8|s) = 1, if § = s and Pr(8|s) = 0, otherwise. Again this
corresponds to determining the optimum reproduction vectors in [27] (for a fixed
partition) within each state s € S§. Finally, for fixed a and 3, f is determined
in an ad hoc fashion as described in the following design algorithm. The design

algorithm for the noisy channel FSVQ can now be described by the following steps.

Algorithm:

1. Design an LBG-VQ [4] with K codevectors for the given training sequence.
This is referred to as the state-label VQ, C = {c(s),s € S}.

2. For each state s, use the algorithm of [27] to design an initial reproduction
codebook (CO-VQ) C, = {B(u,s),u € N} on the subsequence composed
of all successors to vectors for which the state-label VQ chooses s, i.e., the

subsequence {X,, : 8 = arg minges d(Xn-1,¢(k))}.
3. Asin [18], we define a next-state function f by!

f(u,s) = arg r{leigd(ﬁ(u,s),c(k)), seS,ueN. (4.15)

4.  Attempt to improve the state codebooks {C,,s € S} by encoding (as in [27])

the training sequence using the next-state function obtained in step (3) and

1Tt might appear that since we are explicitly transmitting the encoder state to the decoder
(i.e., the system is omniscient in the sense of [18]), it is unnecessary to define the next-state
function based on the reproduction vectors. But as we will see later, this definition of next-state
function helps in reducing overhead information.
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updating each codevector by the generalized centroid of its corresponding

cell [27]. Also update the state-label VQ C.

The difference between the above algorithm and the one in [18] is that here
the state codebooks are CO-VQs and the encoding is done as described in [27]
within each state. Also, it is implicitly assumed that the decoder has perfect
knowledge of the encoder state sequence. This implies that a “protected” encoder
state sequence needs to be transmitted to the receiver. Since transmission of the
protected encoder state for each vector can lead to a very large amount of overhead,
the encoder state index is transmitted only periodically, say, every p frames; given
the state indices at times k and k+p (sk and sg4,) and the received codewords {v;}
at times ¢ = k,..., k4 p— 1, a maximum likelihood (ML) estimate of the encoder
state at times¢ = k+1,...,k+p—1, is obtained at the decoder. Specifically, using
the Viterbi algorithm [53], we find the most likely transmitted sequence {u*}* 71

satisfying
Pr({us} 2 o207, sk shap) =
max, yespes Pr({u} 27 {0 227, st ). (4.16)

The argument of the right hand side expression in (4.16) can be expressed as a

product term given by
k+p— k+p—
Pr({u ;207 {vi i ks s04p) =
k+p— .
[T128 Pr(uilvi, )] Pr(wesp-110k4p-1, 3k4p-15 Sk4) Loy (ks pon g {4-17)

where I, »+ is an indicator function satisfying

] 1 ifs=4 ,
Is,s'—{ 0 ifsyésl VS,S ES. (418)

To derive the product form above, we used the fact that the channel is memoryless

and that the decoder state at time n + 1, 5,4, is uniquely determined by &, and
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vn. Once the most likely transmitted sequence is identified, the estimated state
sequence is obtained from s} = f(u}_,,s7_;), i =k+1,...,k+p—1, with s} = s;.
As can be seen from (4.17), the next-state function defined in step (3) of the design
algorithm helps in estimating the transmitted codeword. Note that this procedure
introduces a decoding delay of p frames.

In the above ML state estimation, there is a nonzero probability that some
states are estimated incorrectly. However, the noisy channel FSVQ described so
far assumes that the encoder and decoder are in the same state and only the
codeword index can be corrupted by the channel noise. If the decoder state differs
from the encoder state at a certain time instant, then the resulting error can be very
large even if the codeword is received correctly. To reduce the resulting distortion
in such situations, we perform a judicious indexing of the codevectors among the
states. The basic idea is the following. The codevectors among the states that are
close in the Euclidean sense are assigned binary codewords that are close in the
Hamming sense; the highest priority is given to those states which are most likely
to be confused with each other. The details of this algorithm can be found in the
Appendix A. This algorithm leads to a robust performance especially when the
period p is large in which case the probability of erroneous estimation of states is -
higher. In the sequel, we refer to this modified FSVQ system (with “protected”
encoder state transmission, state estimation and codeword reassignment) as the
noisy channel FSVQ (NC-FSVQ1). Note that under noiseless channel conditions,
NC-FSVQ1 is identical to the noiseless channel FSVQ of [18] and it will be referred
to as FSVQL.

4.3 Description and Design of NC-FSVQ2

Although the NC-FSVQ1 described in the previous section offers robustness against,

channel noise especially for encoding speech LSP parameters as will be seen in Sec-
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tion 4.4, there are two problems associated with such a scheme. First, it suffers
from a delay at the receiver side. The decoder receives the protected encoder state
say at times k£ and k+ p and then based on the received information, estimates the
most likely encoder states at intermediate times k+ 1,k +2,...,k +p— 1. Thus
the decoder has to wait till time k + p to estimate the encoder state at time k£ + 1,
leading to a maximum delay of p vectors. Such delays may be unacceptable in
certain low delay systems. The second problem relates to the overhead involved in
explicitly transmitting the protected encoder state information; the next encoder
state information is implicitly contained, at least partially, in the current trans-
mitted codeword and it seems that protecting the codeword (or part of it) instead
of the state (as is done in NC-FSVQ1) might lead to a similar performance (in
terms of distortion) at a lower overhead rate.

Let us now focus on the second issue. In a given FSVQ, the state informa-
tion is embedded in the codeword in an unstraightforward way. In other words,
we do not know which bits in the codeword should be protected in an effort to
effectively protect the state information. Also, as the rate of the system increases,
the codeword length increases and in an effort to protect the state information
(by protecting bits in the codeword), we may need to protect a larger number of
bits at higher rates. Clearly, it would be desirable if the state information could
be placed in some fixed positions of the transmitted codeword (e.g., in the first
few most significant bits of the codeword assuming R > log, K). Now suppose
the first | = log, K bits of the codeword contain all the state information, i.e., if
Un = (Un1,Un2,y--->Unly--.,UpN) is the binary codeword and s, is the state at

time n, the state at time n 4+ 1, sp41, is given by

Sn41 = f(Uny8n) = f(Un1sUn2ye- s Unty. s UnNySn)

= f(un,hun,?’” <y Unl, Sn)- (419)
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Furthermore, if, in addition, we have

f(u,s) = f(u), Vs € S, (4.20)

then it would mean that in the presence of noise in the channel, the FSVQ will not
derail indefinitely because as soon as the first [ bits of the transmitted codeword are
received correctly, the decoder will retrack the encoder state (since at that instant
the decoder state becomes the same as the encoder staté). Another advantage of
such a system is that if the state information is to be protected, as in NC-FSVQ1,
it will also help in receiving the codewords more reliably.

In what follows, we will show that it is possible to design an FSVQ system
satisfying (4.19) and (4.20) by modifying the design algorithm of [18]. The modified

design algorithm, leading to a scheme called FSVQ2, is provided next.

4.3.1 Design of FSVQ2 under Noiseless Conditions

Suppose for a given training sequence {x,}, we want to design a K-state FSVQ
of rate R bits/vector (2f > K) with a next-state function satisfying (4.19) and

(4.20). Then the design algorithm proceeds as follows.
Algorithm:

1. Design an LBG-VQ [4] with K codevectors for the given training sequence.
We refer to this VQ as the state-label VQ, C = {c(s),s € S§}.

2. For each state s, design an initial reproduction codebook Cs = {f;(u', s),u’ €
M} using the LBG algorithm [4] on the subtraining sequence composed of
all successors to vectors for which the state-label VQ chooses s, i.e., the sub-
sequence {X, : 8 = arg minges d(X,_1,¢(k))}. Here we assume that N7 = S
and therefore each state codebook consists of K (as opposed to 2 codevec-

tors in FSVQ of [18]) codevectors.
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3.  The ideal state s in step (2) depends on the input vector and therefore the
decoder will not be able to track the ideal state sequence. In order to enable
the decoder to track the state sequence, we choose the next state as the label
which best matches the reproduction of the current input vector rather than
the current input vector itself. Thus, given the state labels c¢(s) and the

decoder f; designed in step (2), we define a next-state function f by
flul,s) = arg rlgleigd(ﬂl(ul,s),c(k)), s€S,u' € M. (4.21)

4.  For each state s € S, we perform the following reindexing of all the codevec-
tors in C,. First, we group all the codevectors in C; that have the same value
of f(.,s) (i.e., they lead to the same next state, say, §). Then in each such
group, the codevector with highest probability of occurrence is reassigned
the common index 3. The remaining codevectors from each group are finally
reassigned, in an arbitrary fashion, a “unique” index in N; which has not
yet been assigned to any codevector. Note that after reassignment?, if state

s can transit to state s’ then the next-state function will satisfy f(s',s) = s'.

5. In each state codebook C;, we retain only those codevectors whose indices
satisfy I gut,s) = 1, Vu' € Ny, where L (., is defined in (4.18). We de-
note the reduced version of C, by C; which consists of K, = ¥ y1cp;, Lut sut )
codevectors and use f’ to denote the modified next-state function. The code-
words of C! are binary tuples of length | = log, K with some of the [-tuples
possibly not allowed (corresponding to the codevectors that are not retained
and thereafter discarded). Now consider a K-state FSV(Q with state code-
books C! and the next-state function f’. The rate of the system is log, K

bits/vector and if the codeword transmitted at time n is ul, then the state

at time n + 1, spyq1, is f'(ul,s,) = ul, irrespective of the state s,,.

%It should also be noted that under noiseless channel conditions, the reindexing of the code-
vectors will not affect the performance of the FSVQ designed using steps (1)-(3).
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6.  Attempt to improve the state codebooks {C., s € §} of the FSVQ by encoding
the training sequence using the next-state function obtained in step (5) and
updating each codevector by replacing it by the centroid of the cell associated
with that codevector. Also update the state-label VQ C similarly. Repeat
steps (3)-(6) for some fixed number of iterations and choose the best case.
The designed FSVQ clearly has a next-state function satisfying (4.19) and

(4.20).

7. The FSVQ system designed so far has a rate log, K bits/vector. To operate
at the desired rate of R bits /vector, we encode the whole training sequence
using the FSVQ system {{C’}scs, f'} and then design® an LBG-VQ of rate
(R — log, K) bits/vector for the subtraining sequence associated with each

pair (s,u'), where s € § and u' is the codeword associated with codevectors

M !
in C;.

The overall modified FSV(Q system obtained using the above algorithm can be
described by a block diagram given in Fig. 4.2. In the block diagram, the K-state
FSVQ encoder is completely spéciﬁed by the next-state function f’ and a mapping
oy which is des‘cribed in terms of the partition {P,,1,s € S,u' € N;} according
to

ai(x,8) = ul, if x € P, . (4.22)

We will refer to oy as the primary encoder. Recall that for the primary encoder
the channel alphabet (output of the encoder) is the same as the state space S.

The LBG-VQ encoder in Fig. 4.2 is specified completely by a mapping o, which

3Note that we are designing one LBG-VQ for each pair (s, u') in FSVQ2 (and its noisy version
to be discussed in a later section) of rate (R—log, K) bits/vector as opposed to just one LBG-VQ
of rate R bits/vector for each state in FSVQ1 (and its noisy version NC-FSVQ1); this is done to
ensure that the memory requirements for FSVQ1 and FSVQ2 (and their noisy versions) are the
same.
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is described in terms of the partition {’P;fil,

s € S,u' € My, u? € Ny} according to
az(x, s,ut) = u?, if x € P, (4.23)

Here the channel space N; is related to A and N} by N = N; x A, and therefore
the number of symbols N; in A; is given by N, = 2R/K. We also have

Upr,jﬂ = Psur, VSE S, u' € M. (4.24)

The FSVQ decoder and the LBG-VQ decoder can be jointly specified by f’
and a mapping (3, described by 33 : M1 X My x § — A. The decoder B2 looks at
the received codewords from the primary and secondary encoders and depending
on its current state maps them into a reconstruction vector.

The modified FSVQ system described above will be referred to as FSV(Q2 and
it is the special case of what we will call NC-FSVQ2 for the noisy channel. Since
the FSVQ2 system is a restricted version of the original FSVQ [18], we expect some
performance degradation under noiseless channel conditions. However, as will be
seen in the simulation results section, this degradation decreases as the encoding
rate increases. On the other hand, when the channel is noisy, the structure of the
FSVQ2 allows for a design of a joint source/channel code (NC-FSVQ2) and hence
eliminates the need to transmit the “protected” state information as overhead and
design a separate channel code. As a consequence, the resulting NC-FSVQ2 system
does not have any additional inherent delay like NC-FSVQ1. Next we pose the
problem of designing FSVQ2 in the presence of channel noise, develop necessary

conditions for optimality and provide a design algorithm for NC-FSVQ2.

4.3.2 Noisy Channel FSVQ2 Problem Statement

Consider the block diagram in Fig. 4.3. The output of the primary encoder, u?, is

transmitted over a DMC described by a random mapping 7; : N7 — A and the
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transition matrix
Q1(v'u') = Pr(m(u) = v?), Vu',v' € M, (4.25)

where v! is the output of the DMC 7,. Similarly, the output of the secondary
encoder, u?, is transmitted over another DMC (assumed to be independent of ;)

described by the random mapping v, : Nz — AN, and the transition matrix
Qu(v?[u?) = Pr(ya(u?) = v?), Vi, o? € N, (4.26)

where v? is the output of the DMC «,. For the sake of simplicity of analysis, we
are considering two different DMC’s. In most practical situations, only one DMC
is available; the outputs of the primary and secondary encoders are multiplexed
and transmitted over this single DMC.

The decoder 3; depends on the outputs of both channels v! and v? and is
described by at most K? different codebooks C, 1 = {B2(ul, u?,s),u® € N>}, Vs €
S,u! € N1. We will use CP = {C, .1 }sesuten; to denote the collection of all the
codebooks.

Our problem is to minimize the average distortion D(a, as, 82) = $ E[d(X,Y)]
by appropriate design of a;, @z and S, for given values of K and N, (which in turn
determine the rate, R, of the system). Next, we develop necessary conditions for

the optimality of the system.

4.3.3 Necessary Conditions

The average distortion is given by

Diar,az,82) = TEI(X,Y) |

# jl: z Z E[d(an)|'§av17v2a57u1>u2]

s,ul u? 8,01 02

X Pr(ASAY =5,V =0 V=02 S =5,U' =u',U? = u?), (4.27)
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where each uppercase letter denotes the random variable corresponding to the
lowercase letter; s is the primary encoder state and § is the decoder state which,
in general, can be different from each other due to the channel noise. Since

S, d(x, (0%, 0%, 8))p(x)dx

B, YIS, 0% 0% 5,0 u] = B = ar 07 =)

(4.28)

we have
1 272 _ 2 & 2
D(ay,02,B) = L > /7;“2 [Z Pr(V? =0?|U? = u*)Pr(S = 3|5 = s)
xPr(V1 = v1|U1 = u)d(x, B2(v", v?, 5))]p(x)dx. (4.29)

In obtaining (4.29), we have assumed that the DMC’s y; and +, are independent
of each other and that the encoder state at any time is just the codeword at
output of the primary encoder transmitted at the previous time index and the
decoder state is the corresponding received codeword. We denote the term in
square brackets in (4.29) as a modified distortion measure

dm (X, Bo(ut,u?,5)) = 21:2 Q1 (v [ut)Q1(8]5)Q2(v?|u?)d(x, Ba(vt, v?, 8)).  (4.30)

ERER
Here, we have used the fact that u' (and therefore effectively s) is transmitted
over DMC 7; and u? over 4;. The modified distortion can be interpreted as the
expected distortion in encoding x given that the primary encoder is in state s, and
u! and u? are transmitted over DMC’s 41 and 7,; the average is taken with respect
to the transition probabilities of the DMC’s.

The average distortion can be expressed in terms of the modified distortion

measure as

D(ar,0n,8s) = -}j Z [ dnl ol o). (431)

sul

Clearly, from the above expression, for a given C*'P, the optimum partition 73;‘;1
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(hence optimum ¢y, ay) must satisfy

sul = {x : dn (X, Bo(ul, 1’ 5)) < dn(X, Bo(u™,u?,8")),Vs' € S,u™ € Ny, u? € Ny}
(4.32)
This suggests that in order to find the optimum partition, we should encode the
training sequence {X,} using the Viterbi algorithm [53] (with an appropriate de-
lay constraint) and the trellis associated with the FSVQ; the modified distortion
measure is used as the branch metric [19]. The Viterbi algorithm will only be
used in the design process, while in the encoding algorithm, the decision is made
at each time index as we traverse along the trellis to avoid delay. Obviously, by
introducing delay in encoding, improved performance can be expected [13].
For a given pair of encoders a; and a5 (i.e., for a given partition {’P;‘;; }), the

optimum decoder 3, should satisfy V §, vl, v?

B(v%,0,5) = arg min Y Quv'|u)Qu(8ls)Qa(v*lu) [, dlx,¥)p(x)dx.
ye€ s,ul,u2 s,ul
(4.33)

For the squared-error distortion measure, d(x,y) = ||x — y||?>, we have

A (%, Ba(u' 6%, 8)) = Y Qi(v'u')Q1(3]s)Qa(v?[u?)]x — Bo(v', v?, 8)[%. (4.34)

5,01 02

Let Vs € S,u! € M, u? € N,

Ysul w2 = Z Ql( llu )Ql(sls)Q2( 2Iu )ﬂ2( y U 7 )7 (435)

§,01 02

and

Sz 2 Y Qi(0'[u)@Qi(3ls)Qa(v?u?)]|Ba(0", 0, S (4.36)

§,01,02

Then the modified distortion measure can be expressed as [28]

A (X, Ba(ul, 4%, 8)) = ||X|2 — 2(X, Yot 2) + 8501 2. (4.37)

For given C*'P, the terms y, 1,2 and 6,,1,2 can be precomputed and stored Vs €
S,ul € Ni,u? € N,. Then to determine the optimum partition for a given C*°P,

the modified distortion can be computed using Equation (4.37).
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For the squared-error distortion measure, it can be easily seen that the optimum
decoder S, for a given partition {'P;‘;] }s,ut 2 satisfies

Bi(w',v%,8) = E[X|S=3V'=0v!, V=07 | (4.38)

Z:s,ul,u2 Q1(§ S)Ql(vllul)Qz(v2|u2) f'P"21 Xp(X)dX

T vt Q1 GG (0 ) Qa(07[02) POV

(4.39)

The necessary conditions derived above assume that the source distribution is
known. In practice, we use the training sequence approach and replace integrals
by appropriate sums. Next we provide an algorithm based on these necessary
conditions for designing a K-state NC-FSVQ2 of rate R bits/vector for a given

training sequence {x,}.

4.3.4 Design Algorithm for NC-FSVQ2

0. Using the design algorithm described in Section 4.3.1 design an FSVQ2 with
o1 and a; as the primary and secondary encoders respectively, 8, as the
decodér and f’ as the next-state function. Also denote the partition induced
by a; and a; as {,P:;]}s,ul’uZ. Let this FSVQ2 be an initial estimate of
the NC-FSVQ2 to be designed by an iterative algorithm. In the subsequent
steps, the next-state function is kept unchanged. The NC-FSVQ2 designed
thus far works well only if the channel is noiseless. For the case when the
channel cross-over probability is non-zero, the design algorithm proceeds as

follows.

1. Given a small ¢, > 0 (stopping threshold), set m = 0 (m is the iteration

index), D = co. Choose initial C***©®) and {P:i(lm}s,ulyuz.
2. Setm=m+1.

3.  Compute y, 142 and 8, 1,2 as given by (4.35) and (4.36) using ("1,
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4.  Use the modified distortion measure given by (4.37) as the branch metric
of the trellis corresponding to the current NC-FSVQ2; encode the train-
ing sequence using the Viterbi algorithm to obtain the optimal partition

2
{,P;Lu,; }s,u3l Ju? and define
’

of(x,s) = ul,ifx€ Pl (4.40)
* 1 _ 2 u? %
a5(x,s,u’) = u’, if x € P, (4.41)
where P; 1 = U2 ;‘i‘{
5. Compute the average distortion D™ using C**P(™~1), the optimum partition"

{’P;‘;"{ }s.ut w2 Obtained in step (4) and Equations (4.31) and (4.37). Compute
the optimum codebook C*"P* using {’P;‘L’; }out w2 and (4.39). Set CswP(™) =

2 2
supx pui(m) _ pulx (M) _  « (m) _ *
CoPr, Py =Pgji, =0 and o’ = af.

6. If 2m=p(m

B > €9, go to step (2).

7.  Stop with {P::Z(lm)}s,ul 2 and C*"P(™) as the final partition and codebook re-

spectively of the NC-FSVQ2. The final primary and secondary encoders of
the NC-FSVQ2 are agm) and agm), respectively.

Note that at each step of iteration the average distortion D(™) can only decrease
and since it is lower bounded by zero, the sequence { D™} has to converge at least

to a local minimum.

4.4 Simulation Results

In all the experiments, we have considered a binary symmetric channel (BSC) with
bit error rates (BERs) € = 0.0,0.005,0.01,0.05,0.1. Performances of NC-FSVQ1
(FSVQ1 when € = 0.0) and NC-FSVQ2 (FSVQ2 when ¢ = 0.0) are presented in

this section for the Gauss-Markov (G-M) source and the speech LSP parameters.
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First, we provide the results for the G-M source under noiseless as well as noisy

channel conditions and then consider the LSP parameters.

4.4.1 Gauss-Markov Source

We used 200,000 vectors of dimension 4 from the G-M source with p = 0.9 as the
training sequence. The test sequence consisted of 100,000 4-dimensional vectors
from the same source not included in the training sequence. The distortion measure

used was squared-error; the performance results are reported in signal-to-noise ratio

(SNR) in dB.

Performance of FSVQ1

8-state FSVQ1 was designed for various bit rates (denoted by b) in bits/vector.
The results are tabulated in Table 4.1. For comparison, the results obtained using
LBG-VQ are also included. Table 4.1 indicates that FSVQ1 outperforms LBG-VQ

at all rates by at least 1 dB. These results are in agreement with those of [18].

Noisy Channel Performance of NC-FSVQ1

FSVQ1 was simulated in the presence of channel noise and the results are presented
in Table 4.2. Severe degradation in the performance of FSVQ1 is observed and the
SNR actually often decreases with increase in b.

The performance of NC-FSVQ1 along with the results for CO-VQ are displayed
in Fig. 4.4 in order to make comparisons. Additional results on NC-FSVQ2 are also
included in Fig. 4.4 and will be discussed later. When 0.005 < € < 0.01 (0.05 < ¢ <
0.1), a rate 1/2 (1/3) convolutional code was used for protecting the state index
and p = 6 (p = 3). The bit rates in Fig. 4.4 include the overhead information
associated with the transmission of protected encoder state information. When an

8-state NC-FSVQL is used, the overhead is given by 3/(pr.), bits/vector, where
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1. is the rate of the channel code. Close study of Fig. 4.4 shows that NC-FSVQ1
and CO-VQ perform very close for all values of b when € < 0.05. At ¢ = 0.1, NC-
FSVQL1 outperforms CO-VQ by 0.4-0.9 dB. However, as compared to the FSVQ
of [18], NC-FSVQ1 performs significantly better for all € > 0.0.

Performance of FSVQ2

8-state FSVQ2 (NC-FSVQ2 for ¢ = 0.0) was designed using the algorithm de-
scribed in Section 4.3.1. Table 4.3 includes the results for FSVQ2 and LBG-VQ
for different values of . FSVQ2 outperforms LBG-VQ by 0.56-0.85 dB for different
values of b. As compared to the original FSVQ [18], the performance of FSVQ2 is
inferior by about 0.5 dB due the imposed structure in the system. FSVQ2 was also

designed with 16 states but it gave very marginal improvement over the 8-state

FSVQ2.

Noisy Channel Performance of NC-FSVQ2

NC-FSVQ2 was designed for different values of b and € using the algorithm de-
scribed in Section 4.3.4. The performance of the 8-state NC-FSVQ2 is included in
Fig. 4.4 which shows that NC-FSVQ2 outperforms the CO-VQ for all values of b
and e. At e = 0.005, the SNR gain over CO-VQ at the same bit rate is about 0.4-
0.8 dB. As € increases, the gain increases; at € = 0.1, the gain is about 0.7-1.0 dB.
NC-FSVQ2 outperforms NC-FSVQ1 for ¢ < 0.05, however when ¢ = 0.1, the two
schemes are comparable in terms of SNR. In terms of computational complexity,
NC-FSVQ2 has the complexity of a two-stage VQ, while NC-FSVQL! (operating at
the same rate) has the much higher complexity of a full-searched VQ; in addition,
there is a delay involved in the NC-FSVQI at the decoder.
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4.4.2 Speech LSP Parameters

The speech database used for training consisted of 120 minutes of speech (from the
TIMIT database) sampled at 8 KHz and uttered by several male and female speak-
ers. A 10th-order LPC analysis based on the standard autocorrelation method was
performed every 22.5 msec with a 30 msec analysis window. Thus we had 320,000
LSP vectors in the training sequence. The test sequence consisted of 2,261 vectors
not in the training sequence (also used in [54]).

The speech LSP parameters exhibit relatively high correlation within a frames
well as between adjacent frames and are therefore good candidates for FSVQ type
systems that can efficiently exploit these correlations. The final performance of the

LSP quantization systems is expressed in terms of the average spectral distortion

(SD) given by

Q.

sD =3[ "(1010g 5,(w) ~ 101og u(w)*5-)E, (dB).  (4.42)

n=1"" &
Here, S, (w) and S’n(w) are the original and quantized spectra, respectively, as-
sociated with the n® frame and 7' is the number of frames. The average spec-
tral distortion is a useful measure of performance in LSP quantization schemes
[34]. Earlier work on memoryless VQ of LSP parameters [33] suggests that for
transparent* quantization of LSP parameters, an encoder rate in the neighborhood
of 24 bits/frame is required. To achieve this kind of rate, FSVQ state codebooks
will need to have 22 codevectors which is prohibitively large. Thus, to reduce the
complexity, we split each 10-dimensional LSP vector into 3 subvectors (dimensions
3, 3 and 4) and design an FSVQ of rate R/3 for each subvector (R is the overall
rate in bits/frame); the three subvectors are encoded separately using different

FSVQsS.

4The quantization is said to be transparent if the resulting average spectral distortion [34]
is less than 1.0 dB and the fraction of frames with spectral distortion over 2.0 dB (called the
outliers) is less than 2% with no frame having spectral distortion greater than 4.0 dB.

5In [33], the LSP vectors are split into 2 subvectors and a 1 dB average spectral distortion is
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Performance results of such a system are provided next and it is shown that
noticeable gains are obtained over the case where a memoryless LBG-VQ is used

to encode each subvector (such a system will be called a split-VQ system).

Performance of FSVQ1

The FSV‘Ql was designed for each subvector resulting in a split-FSVQ1 system.
The squared-error distortion measure was used for the design while encoding was
done using the THM distortion measure introduced in [54]. Table 4.4 shows the
results of split-FSVQ1 (8 states for each subvector) and split-VQ (using the same
3 subvectors) at various bit rates (again denoted by 8). These results indicate
that split-FSVQ1 yields a saving of approximately 3 bits/frame over the split-VQ
system and achieves the 1 dB average spectral distortion (SD) at 24 bits/frame;
at this rate the outlier rate (OL) is 0.75%. Performance of split-FSVQ1 can be
improved by increasing the number of states; we found that a 16-state FSVQ1 (for

each subvecfor) achieves transparent quantization at 23 bits/frame.

Noisy channel performance of NC-FSVQ1

The split-FSVQ1 system was simulated in the presence of channel noise and the
results are tabulated in Table 4.5. Clearly, the performance degradation is severe.
With 24 bits/frame, under noiseless conditions, the split-FSVQ1 achieves 1 dB
average SD but when e = 0.01, the average SD rises up to 2.97 dB.

The performance results of NC-FSVQ1¢ (designed for ¢ > 0.0) are given in

Fig. 4.5 for p = 4 and p = 8. To protect the encoder state information, we found

reported with a 12-bit VQ for each subvector. We could not, however, repeat this result with 2
subvectors. We suspect that one of the reasons for this is the use of the modified covariance LPC
analysis (as opposed to the standard autocorrelation method used here) in [33]. An additional
reason may be that [33] considers the telephone band (200-3300 Hz) frequancies for computing
SD as opposed to the full-band (0-4000 Hz) used in this thesis.

6As in the noiseless case, we are using a different NC-FSVQI for each subvector, but for
brevity we use the terminology NC-FSVQI instead of split-NC-FSVQ1.
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that a rate 1/2 (1/3) convolutional code with constraint length 4 is sufficient when
0.005 < € < 0.01 (0.05 < € £0.1). The decoder is implemented using the Viterbi
algorithm and the estimated codeword is released at the end of each frame. The
bit rates in Fig. 4.5 also include the overhead (for NC-FSVQ1) associated with
the transmission of the protected encoder state sequence. When 3 subvectors and
8-state FSVQs are used, the overhead is easily computed to be (3 x 3)/(pre),
bits/frame, where 7, is the rate of the channel code used.

For comparisons, the results for the split CO-VQ system (each subvector is
quantized using a CO-VQ) are also included in Fig. 4.5. Study of Fig. 4.5 shows
that, with a delay of 4 frames, when ¢ = 0.005, NC-FSVQ1 performs close to split
CO-VQ but as € increases, NC-FSVQL1 starts performing better than CO-VQ with
a saving of about 1.5 bits/frame at ¢ = 0.01; when ¢ = 0.1, the saving is more
than 4.25 bits. If we can tolerate a delay of 8 frames, the gains are even higher;
at € = 0.005, the gain is about 1.75 bits/frame, while at ¢ = 0.1, the gain is over
5 bits/frame. Also comparison with the MSVQ-based scheme of [28], [54] (see
Fig. 4.5) shows significant gains at larger values of ¢ (> 0.01) and comparable or
better performance at ¢ = 0.005. When ¢ = 0.005, NC-FSVQ1 achieves a 1 dB
average SD with 31.5 bits/frame (p = 4) and 29.25 bits/frame (p = 8). We believe
(from [33]) that the 1 dB average SD can be obtained at lower rates if we use the
modified covariance method of analysis [35] and weighted distortion measure of

[33] and compute the SD in the 200-3300 Hz fréquency band.

Performance of FSVQ2

The FSVQ2 described in Section 4.3, was designed using the algorithm described in
Section 4.3.1 for each subvector resulting in split—FSVQQ system. Again, squared-
error distortion was used for the design, while encoding was done using the IHM

distortion measure. Table 4.6 shows the results of the 8-state split-FSVQ2 and
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split-VQ for various values of b. The results show that as compared to the split-VQ
system, split-FSVQ2 achieves a saving of approximately 2 bits/frame (1 bit/frame
less than split-FSVQL1 for higher values of b). Split-FSVQ2 achieves close to 1 dB
average SD at 25 bits/frame; the value of OL at this rate is 1.1%. The performance
of split-FSVQ2 improves as the number of states increases and a 16-state split-

FSVQ2 achieves transparent quantization at 24 bits/frame.

Noisy channel performance of NC-FSVQ2

The performance results of NC-FSVQ27 (for € > 0.0) are given in Fig. 4.6 for the
8- and 16-state case. NC-FSVQ2 is designed for each of the three subvectors using
the design algorithm of Section 4.3.4. For comparison purposes, the results of split
CO-VQ are also plotted in Fig. 4.6. A close study of the figure shows that 8-state
NC-FSVQ2 outperforms split CO-VQ by over 1 bit/frame when ¢ = 0.005; this
gain increases to over 3 bits/frame at ¢ = 0.1. Coﬁlparison of the 8-state and
16-state NC-FSVQ2 shows that unlike in the case of G-M source, the performance
improvement with the increase in the number of states is noticeable for higher
values of ¢ for speech LSP parameters. When € = 0.05, the improvement in going
from 8 to 16 states is about 0.5 bits/frame, while for ¢ = 0.1, the gain can be as

high as 1.5 bits/frame. The gain is insignificant for € < 0.01.

NC-FSVQ1 versus NC-FSVQ2

Comparison of Figs. 4.5 and 4.6 shows that at low values of € (< 0.01), NC-FSVQ2
performs better than NC-FSVQ1 and vice versa for high values of € (> 0.05), with
comparable results for 0.01 < e < 0.05. However, NC-FSVQ2 does not suffer from
any delay. In addition, the decoder for NC-FSVQ2 is simpler and there is no need

for a separate channel code in NC-FSVQ2. The memory requirements are the same

"Again, as in the noiseless case, we are using a different NC-FSVQ2 for each subvector, but
for brevity we use the terminology NC-FSVQ2 instead of split-NC-FSVQ2.
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for NC-FSVQ1 and NC-FSVQ2 operating at the same bit-rate and with the same

number of states.

4.5 Summary and Conclusions

In this chapter, we have considered the quantization of sources with memory us-
ing FSVQ type and LBG-VQ systems under noiseless as well as noisy channel
conditions. Two sources, namely the G-M source with p = 0.9 and speech LSP pa-
rameters were considered. Under noiseless channel conditions, comparisons were
made between FSVQI1, FSVQ2 and LBG-VQ systems for both sources. It was
concluded that in all cases both FSVQ systems outperform LBG-VQ with FSVQ1
performing slightly better than FSVQ2.

Under noisy channel conditions, FSVQ1 collapsed for all values of ¢ > 0.0, while
FSVQ2 collapsed for € > 0.01 making it necessary to redesign these FSVQ systems
by taking into account the channel noise. Two systems namely NC-FSVQ1 (noisy
version of FSVQ1) and NC-FSVQ2 (noisy version of FSVQ2) were described based
on developments in joint source-channel trellis coding systems and again used to
quantize the G-M source and speech LSP parameters. For both sources, the noisy
channel FSVQ systems offered significantly higher robustnesé compared to their
noiseless channel counterparts. In particular, when LSP parameters were quantized
using NC-FSVQ1, the saving over split CO-VQ was 5 bits/frame for very noisy
channels with a decoding delay of 8 frames; NC-FSVQ2 achieved a saving of up to
3 bits/frame (for the 8-state case) over split CO-VQ with no delay.

Based on the results summarized above, it appears that noisy channel FSVQs
are good candidates for speech encoding systems such as in mobile communication
where channel noise is an important factor. If a delay can be tolerated, then
NC-FS5VQ1 is a better choice especially for the highly noisy case (¢ close to 0.1)

and when delay is an issue then NC-FSVQ2 is a better candidate for all levels of
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channel noise.

Also if delay is not an issue, then introducing encoding delay in NC-FSVQ1
and NC-FSVQ2 will lead to better performance (the system will become a trellis
encoding system with a general next-state map); FSVQ with a delay in the en-
coder was considered in [13] and performance improvements were observed over
the ordinary FSVQ for the noiseless channel case.

In the NC-FSVQ1 and NC-F SVQZ schemes, each of the three subvectors of
each frame are treated independently; we can expect performance improvements
if we exploit the memory present Between the three subvectors. Also, if we split
the LSP vectors into just two subvectors, then the overhead needed in the case of
NC-FSVQL1 will be reduced; in addition, the intraframe correlation will be better
utilized than in the 3 split case. It is also expected that all our results will be
further improved by about 2 bits/vector if we use the modified covariance method
for analysis and the weighted squared-error for the design and encoding [33] and

compute the average SD over the band 200-3300 Hz.
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[6] IBG-VQ [ FSVQl |

1 3.57 5.26
2 6.53 8.14
3 8.24 9.97
4 10.15 11.31
5 11.60 12.68
6 12.98 14.04
7 14.31 15.34

Table 4.1: Performance of LBG-VQ
and FSVQI1 under noiseless chan-
nel conditions at various bits rates
(bits/vector); Gauss-Markov source

with p=0.9; L =4; K =8.

[ [« =0.000 [ ¢ =0.005 | €= 0.010 | €= 0.050 | €= 0.100 |

1 5.26 4.21 3.30 0.40 -0.87
2 8.14 4.65 2.99 -0.79 -1.84 .
3 9.97 5.40 3.38 -0.93 -2.07
4 11.31 4.30 1.98 -1.67 -2.53
5 12.68 4.99 2.66 -1.50 -2.48
6 14.04 4.78 2.36 -1.74 -2.62
7 15.34 3.74 1.54 -2.27 -2.94

Table 4.2: Performance of FSVQ1, for various levels of chan-
nel noise and different bit rates; Gauss-Markov source with

p=09; L=4; K=8.
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(3] IBGVQ | FsvQ2 |

3 8.24 9.07
4 10.15 10.84
5 11.60 12.36
6 12.98 13.63
7 14.31 14.92
8 15.69 16.25

Table 4.3: Performance of LBG-VQ
and FSVQ2 under noiseless chan-
nel conditions at various bits rates

(bits/vector); Gauss-Markov source
with p=0.9; L =4; K =8.

Split-VQ || Split-FSVQ1
b | SD |OL% || SD | OL%
21 1151 ] 9.69 |[1.27 | 3.80
2211.43) 659 || 1.17| 2.60
231133 3.80 |(1.09| 1.60
24 11.25) 1.95 || 1.02| 0.75
25 [ 1.18 | 1.37 | 0.97 | 0.53
26 | 1.11 | 0.57 || 0.91 | 0.44
27 11.03 | 0.18 | 0.86 | 0.35

Table 4.4: Performance of split-
VQ and -FSVQ1 under noiseless
channel conditions at various bit
rates (bits/frame); speech LSP
parameters; K = 8.
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€e=0.005€¢=0.01]|e=0.05]e=0.1
b SD SD SD SD
21 2.36 3.23 6.50 7.66
22 2.24 3.08 6.38 7.81
23 2.19 3.13 6.46 7.85
24 1.90 2.97 6.40 7.66
25 1.77 2.86 6.26 7.60
26 1.80 2.87 6.11 7.52
27 1.79 2.70 | 6.03 7.41

Table 4.5: Performance of split-FSVQL1 for var-
ious levels of channel noise and bit rates; speech
LSP parameters; K = 8.

Sphit-VQ || Sphit-FSvQ2
b | SD |[OL% || SD | OL%
21 | 1.51 | 9.60 || 1.39 | 6.28
22 [ 1.43 | 6.59 || 1.30 | 4.80
23 | 1.33 | 3.80 || 1.20 | 2.73
94 [ 1.25 | 1.95 || 1.10 | 1.78
25 | 1.18 | 1.37 || 1.02 | 1.10
26 | 1.11 | 0.57 || 0.95] 0.70
27 | 1.03 | 0.18 || 0.89 | 0.51

Table 4.6: Performance of split-
VQ and -FSVQ2 under noiseless

channel conditions at various bit
rates (bits/frame); speech LSP
parameters; K = 8.
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Figure 4.4: Performance of NC-FSVQ1l, NC-FSVQ2 and CO-VQ for various
levels of channel noise and bit rates; p = 6, when ¢ = 0.005 and 0.010, while

p = 3, when ¢ = 0.050 and 0.100; Gauss-Markov source with p = 0.9; L = 4;
K =38 ‘
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Figure 4.5: Performance of NC-FSVQ1 and split CO-VQ for various levels of
channel noise and bit rates; speech LSP parameters; K = 8; p = 4 and p = §;
MSVQ results are taken from [54].
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Chapter 5

Conclusions and Suggestions for

Future Work

In Chapter 2, we have considered two variable-rate variations of the FSVQ system
described in [18]. In addition, we have considered the possibility of using structured
VQs as possible candidates for the state quantizers of the FSVQ of [18]. The design
algorithms for the variable-rate and other versions of FSVQs are obtained by simple
modification of the FSVQ design algorithm. None of these algorithms (including
the one described in [18]) converge and there is no guaranteed improvement at
each step of iteration. The variable-rate FSVQ systems considered in Chapter 2
perform substantially better than the system in [18] and SQNR gains of up to
4.25 dB on in-training sequence and 3 dB on out-of-training test sequences are
obtained for encoding a 1-D source like the sampled speech waveform. We believe
that higher gains can be achieved even on the test sequence outside the training
sequence if a sufficiently long sequence is used to train the variable-rate FSVQ
systems. Similar results were obtained for the composite Gauss-Markov source.
One shortcoming of the variable-rate FSVQ systems is that if it is designed to
achieve a certain encoding rate for a training sequence, it may give a different
rate if used to encode another sequence. To circumvent this difficulty, some type
of algorithm which adaptively modifies the encoding system based on some local

(instantaneous) measurement of the encoding rate is needed.
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In chapter 3, we considered several variations of two low bit rate image coding
systems based on 2-D fixed-rate and variable-rate FSVQs. The design algorithms
for various 2-D FSVQs were obtained by extensions of the algorithms given for the
1-D case. Out of all the image coding schemes considered in Chdpter 3, PR-VFS-
UTSVQs have the potential of doing the best. They achieve a PSNR of 30.74 at
0.25 bits/pixel and the reconstructed image quality is good. Although, the PSNR
value achieved at b = 0.31 bits/pixel was 31.2 dB for encoding the 512 x 512 version
of “Lena”, PR-VFS-UTSVQs have the potential to do better; we believe that the
gain in the PSNR value at b = 0.31 bits/pixel over that at b = 0.25 bits/pixel can
be higher if we use a larger training sequence.

While the performance of various FSVQs was observed to be consistently better
than the memoryless LBG-V(Q under noiseless channel conditions (such conditions
were assumed throughout Chapters 2 and 3), their performance degraded signif-
icantly in the presence of channel noise and it became necessary to redesign the
FSVQ systems taking into account the channel noise. Under noisy channel con-
ditions, we restricted to the fixed-rate FSVQ system with LBG-VQ as the state
quantizers. Two systems namely NC-FSVQ1 and NC-FSVQ2 were described in
Chapter 4 based on developments in joint source-channel trellis coding systems and
used to quantize the G-M source and speech LSP parameters. For both sources,
the noisy channel FSVQ systems offer significantly higher robustness compared
to their noiseless channel counterparts. In particular, when LSP parameters were
quantized using NC-FSVQL, the saving over split CO-VQ was 5 bits/frame for very
noisy channels with a decoding delay of 8 frames; NC-FSVQ2 achieved a saving of

up to 3 bits/frame (for the 8-state case) over split CO-VQ with no delay.
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5.1 Suggestions for Future Research

There are several directions in which this work can proceed. As a first step, a
delay can be introduced in the encoder of various FSVQs described in Chapters 2
and 3. Incorporation of delay enables the encoder to make a decision that will be
good in the long term sense leading to a better overall performance. For encoding
still images, delay of up to one complete frame is tolerable in some applications
and therefore we can further improve the performances of ME-VFS-UTSVQs and
PR-VFS-UTSVQs by using a “lookahead” kind of encoder for encoding images.
We also expect the FSVQ of [18] with delay to perform better than vector trellis
encoding system [12] because of the use of a more general next-state function as
opposed to a shift-register based implementation of the next-state map.

Another avenue is to apply variable-rate FSVQ systems for video compression.
We can extend the 2-D FSVQs described in Chapter 3 to three dimensions. The
state variable for the 3-D case has an additional component that essentially exploits
the time correlation. In addition, we can use motion compensation. The resulting
3-D variable-rate FSVQs will exploit intra-frame and inter-frame correlation very
efficiently leading to a 4high compression ratio.

It has been demonstrated in Chapter 2 of this thesis that in an FSVQ, the
state quantizer can be any type of VQ. The choices of state VQs considered in
this dissertation are limited to LBG-VQ, TSVQ and UTSVQ. The other choices
are MSVQ and an LBG-VQ followed by a scalar quantizer; with these two choices
very high rate FSVQs can be designed. For encoding LSP parameters in Chapter
4, FSVQs had to be designed with rates as high as 27 bits/frame. In order to
achieve such high rates, each LSP vector was split into 3 subvectors which were
. treated independently of each other and as a consequence of this, the intra-frame

correlation was not fully exploited. An alternative that can exploit intra-frame
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correlation better (and perhaps lead to better performance than split-FSVQ1)
would be to use MSVQ or ‘an LBG-VQ followed by scalar quantizers’, with a
first-stage VQ of large rate in order to exploit most of the intra-frame correlation;
inter-frame correlation will of course be exploited by the finite-state structure of
FSVQ.

The FSVQ proposed by Foster has a feedback structure; the current output and
the current state determine the next encoder/decoder state. It is also possible to
consider a system in which the encoder state is decided based on the current input
(as opposed to the previous output). Such a system is called forward adaptive
system [17] and since the encoder state is derived from the input, the decoder
in forward adaptive system cannot determine the encoder state without receiving
extra information from the encoder. However, for correlated sources like speech and
image, the state sequence tends to be highly correlated and also have a very skewed
distribution. Assuming that the state sequence can be modeled by a Markov source
and that the state sequence is entropy-coded, forward adaptive versions of variable-
rate FSVQs can be designed. Some simulations were performed on sampled speech
source under the above assumptions and an improvement of over 1 dB was observed
over the best case results of VFS-UTSVQ using a forward adaptive version of VF'S-
UTSVQ.

An interesting and a nontrivial problem arises as a result of letting the cardinali-
ties of the codebooks associated with different states to be different. A variable-rate
FSVQ system designed to achieve a certain average rate for a training sequence,
when used to encode another sequence may result in an average rate off by a
substantial amount from the designed average rate, which is undesirable. To cir-
cumvent this difficulty, the method that we propose is to use the idea of recently
developed finite-state structured vector quantizer [41], [42] to convert the variable-

rate FSVQ systems into a fixed-rate system. By incorporating some delay into
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the system, the codebook search algorithm df [41] can be used to encode several
vectors (say n) at a time to give a fixed-rate system performing very close to the
original variable-rate system.

Another interesting problem would be to design variable-rate forward adap-
tive systems whose codewords would be transmitted over a noisy channel. Un-
equal channel error protection would be a natural requirement here (especially for
UTSVQ based system where higher protection is needed for nodes with higher
goodness of split). A good candidate for the error control code would be the
rate-compatible punctured convolutional (RCPC) codes [55]. In fact Tanabe and
Farvardin have successfully used the RCPC codes in a system that uses entropy
coding of image subbands [56].

In Chapter 4, two noisy channel FSVQ systems were proposed that resulted out
of an attempt to simplify the FSVQ structure so that a certain probability func-
tion could be evaluated easily. In NC-FSVQ1, it was assumed that the “protected”
encoder state is transmitted to the receiver at all times, while in NC-FSVQ2 some
conditions were imposed on the next-state function of the FSVQ. NC-FSVQ2 was
found to be more attractive since unlike NC-FSVQ1, it did not have any decoding
delay. However, due to the imposition of structure on NC-FSVQ2, its performance
suffered degradation as compared to FSVQ of [18] under noiseless channel condi-
tions. It appears that performance better than NC-FSVQ2 should be achievable
if the structure of FSVQ is kept unchanged and the desired probability function
is somehow computed directly (In [57], the required probability is computed for a

balanced trellis and probably the method used therein can be used as guideline).
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Appendix A

Codeword Reassignment
Algorithm for NC-FSVQ1

Assume that the encoder and decoder are in the same state at time n, say, s,.
Let s,41 and $,4; denote the encoder and the decoder state, respectively, at time
n + 1. Then, Pr(s,+1 = ¢,8p41 = Jj|8n) is the probability that the state at time
n + 1 is incorrectly decoded as j instead of z given that both encoder and decoder

were in state s, at time n. This probability can be expressed as

P'I"(Sn+1 = 7:, §n+1 = j|8n) = PT($n+1 = ilSn)PT(§n+1 = jl8n+1 = ’l:, Sn), (Al)

where
Pr(sp41 =t|s,) = > Pr(uy|s,), (A.2)
’“'n:f(unysn):sn-i—l
and
Pr(8p41 = j|sn41 = z.’S‘N) = E Z Q(vnlun). (A.3)
Un:f(Un,8n )= unif(un,sn)=i ’
Also

Pr(sp41 =4, 8n41 = J) = Y_ Pr(s2)Pr(snt1 = 1, 8n41 = j|8n)- (A.4)

The above expression gives the probability of confusing state ¢ with state j at any
time given that the encoder and decoder states were the same at the previous time;

we say that state ¢ is confused as state ;7 and denote the probability of this event
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by P;;, Vi,j € § which can be computed using Equations (A.1)-(A.4).

Once we compute the probabilities P; ;, we find the pair I, J (I # J) such that
Pr;> P, Vi,57€8 and then we rearrange the codevectors (reassign codeword
indices) in state I or J such that the codevectors! in these two states with the
same binary codeword are close in the Euclidean sense. In an effort to do so, we

define the distortion D' given by

D' =3 PosPr(uls)d(B(u, s), A(u, 5)). (A.5)

Note that D’ measures the average Euclidean distance between codevectors with

the same binary codeword of every possible pair of states that can be confused
with each other.

Next we describe a heuristic algorithm for reindexing codevectors. In the fol-
lowing algorithm Vj € S, F[j] = 0 means that codeword reassignment is not
yet done in state j while F[j] = 1 means that codeword reassignment has been

completed in state j.
Algorithm:

1. Compute P;;, Vi,7 € S. Set m = 0 (iteration index); F[:] =0, Vi € S.
Compute D' using (A.5) and set D© = [, PZ(S) =P,;, pO =3,

2. Identify the pair (I,J),I # J, such that P;y > P,;, Vi,j € S.

'In the algorithm that is described next, the codevectors are rearranged in one state (one of
I or J) at a time; the state in which reassignment is done is denoted by s., while the one that is
kept unchanged at that step is called sp.
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3. If (F[I] =0 and F[J] =0)
then sp, = I and s. = J;

else if (F[I] =1 and F[J] = 0)
then sp = I and s, = J;

else if (F[I]=0and F[J]=1)
then s, = J and s, = I;

else
m=m+1; B = gen-1), P = plp-Y, pim) = plm-y),
Pr™(u|s) = Prim=Y(uls); go to step (6).

4. Determine u* € N such that

S Prim(ul1)d(8™ (u, 51), B (u @ u”, s)) =

min > Pri™ (ulD)d(8™ (u, 51), B (u @ ua, 5c)),  (A-6)

where @ denotes the binary exclusive-OR (exor) operation.
Set:
B(u,s;) = ﬂ(m)(u ® u*, s.), Vu,
B(u,1) = B™)(u,1),Vi # s, Vu,
Pr(u|s.) = Pri™(u @ u*|s,), Vu,
Pr(uli) = Pri™(uli),Vi # s., Vu.
5. Compute D’ (and hence P, ;) using the 8 and Pr(ul|s) obtained in step
(4);

if (D' < D)
then D™t = D' 'm = m+ 1, g™ = g, Pri™(u|s) =
Pr(uls) and P,(;n) =P
else -
m=m+1, D = Din=D)_ gm) = gn=1) pp(m)(y[s) =
Pr(m=1)(y|s) and H(T) = Pi(,;n—l).

6. If m < K, go to step (2), else stop.
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In step (4) of the algorithm, all the codevectors in a state codebook are changed
by exoring with the same index? to ensure that the relative binary assignment (done
using CO-VQ design algorithm of [27]) within each state codebook is not changed.
The above algorithm increases robustness in the case when at any time the decoder

state differs from the encoder state but the codeword is received correctly.

2u* is estimated such that after the reindexing of the codevectors in s, the average Euclidean
distance between the codevectors of I and J with the same codeword is minimized with the

constraint that the relative binary assignment of the codevectors within each state is not changed.
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