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The advent of the Internet has enabled developers to write and share software 

components with each other more easily. Developers have become increasingly 

reliant on code other than their own for application development; code that is often 

not well tested, and lacking any kind of security review, thus exposing its consumers 

to security vulnerabilities. The goal of this thesis is to adapt existing techniques, and 

discover new approaches that can be used to discover security vulnerabilities in 

applications. We use fault injection in each of our techniques and define a set of 



  

criteria to evaluate these approaches. The hierarchy of approaches, starting from a 

black box and ending in a full white box approach, allows a security reviewer to 

choose a technique depending on the amount of information available about the 

application under review, time constraints, and extent of security analysis and 

confidence desired in the program. 
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Chapter 1: Introduction 

 

 

1.1 Motivation 

Software today is incredibly complex, making software engineering one of the 

most, if not the most challenging among all engineering disciplines. Programs will 

almost always have bugs in them; however, the most worrisome of these bugs are 

(security) vulnerabilities that could be exploited by an attacker to compromise an 

application. With developers increasingly adopting a componentized model for 

creating software, wherein they utilize code written by others in their applications, a 

vulnerability in one critical component has the ability to compromise all applications 

that depend on this module.  

In programming today, security is often an after-thought; it is secondary to 

other more important considerations such as performance and usability. However, 

attackers are smarter, more energized, and more motivated than ever to compromise 

applications. In a recent paper, Panjwani et al showed that in 48 days, 760 different 

attackers attacked two computers that had 25 open vulnerabilities (each attacker was 

assumed to be associated with a source IP address) [1]. The invention of the Internet 

has made hacking all that much easier; a computer connected to the Internet is now 

susceptible to attacks from hackers all over the world. Security is a significant 

challenge, and it is bound to become more critical in the future, with applications 

increasingly using the network for communication, and growing in size and 

complexity. 
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Software testing and security research has produced various static and 

dynamic techniques to find application vulnerabilities. There are two approaches to 

finding vulnerabilities in applications, static and dynamic. Static approaches look at 

source code to identify potential security vulnerabilities, such as buffer overflows, 

null pointer references, dynamic memory allocation and memory corruption [4, 5, 6]. 

In software testing, which is a dynamic approach, strategies such as penetration 

testing are used, where a tester assumes the role of an attacker and tries to exploit an 

application by finding vulnerabilities in its specification and architecture. Another 

dynamic approach, fault injection, which has been used extensively in hardware 

verification in the past, is slowly catching steam as a possible complement to static 

analysis and testing methodologies. In this thesis, we consider different fault injection 

based approaches to make software more secure. 

 

 

1.2 Approach 

Towards solving this problem, we start with an environmental perturbation 

approach, where we analyze the interactions between an application and its execution 

environment. An application runs on an Operating System (OS), and thus the 

execution environment consists of all resources that are outside the program, 

including OS services such as access to the file system, network interface, other 

processes executing on the machine and environment variables on the system. Every 

application receives and processes external input, be it from the user, or from a 

remote source over a network, or by reading files. These external interactions allow a 

fault injector to inject faults in environmental resources, and modify them at runtime. 
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When exposed to these faults, a program may behave differently than how it would 

under normal input, thus exposing a security vulnerability. 

Environmental interactions are a significant source of program vulnerabilities, 

and we would like to explore the usefulness of such a technique in the absence of 

program source code. Often, software components are only available as compiled 

libraries or executables, and do not include any source code listing. We are interested 

in exploring the applicability and usefulness of environmental fault injection given 

these constraints. 

An application interacts with its environment though OS system calls, and 

these system calls can be traced by monitoring the application at runtime. Through 

these traces, one can decipher the names of system calls, the parameters to the call, 

and even their return value. These three pieces of information provide a security 

reviewer with knowledge about the kind of resource being accessed by the program 

(name of the system call), the name of the resource (usually the first parameter), how 

the resource are being used (other parameters in the function), and the success or 

failure of the access attempt (return code). This information allows a fault injector to 

inject faults in resources as and when they are used in the program, so that the next 

time the program accesses the resource, the resource looks different or has properties 

that the developer did not consider when writing the program. 

Looking at an application’s behavior when a fault is injected sheds some light 

on the possibility of there being a security vulnerability in the program. We consider 

fault injection to be a hybrid of both fault and error injection. We use the term fault 

injection a little loosely because some of the faults that we inject are indeed errors. 
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Under an environmental approach, faults are injected in resources that are external to 

the program, making the process relatively easy. The difficulty is in choosing the 

number and type of faults to be injected. The fault injector maintains a list of 

candidate faults that it can inject every time it encounters a certain system call. A 

security reviewer usually develops such a list before-hand. The particular fault 

injected is chosen based on the parameters to the system call.  

In addition to environmental interactions, there are others sources of security 

vulnerabilities in programs as well, such as the improper use of library functions, 

broken programming logic or even a careless oversight on the part of the developer. 

We clearly need a different approach to find such vulnerabilities, because while it is 

possible that such implementation gaffs appear when environmental resources are 

used, there is an equivalently large, if not bigger pool of problems that are 

independent of a program’s interactions with the outside world.  

A cursory look at the problem of finding general security vulnerabilities in 

applications leads to a rather simple conclusion. The extent to which a security 

reviewer will be able to analyze an application’s security characteristics and check for 

vulnerabilities is entirely dependent on the kind of information he/she has about the 

program. If a reviewer has full access to source code, then he/she can understand the 

security properties and assumptions of the program in detail, while if he/she is only 

provided with a compiled executable, then the reviewer is dependent on what 

information can be inferred by running the program and tracking its behavior. 

Clearly, not every person has access to source code, and similarly, there are occasions 

when more then just a compiled executable is available. Such information may 
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include application specifications, architectural designs, code comments, etc. We 

therefore see the need to develop a hierarchy of approaches that a security reviewer 

will be able to use as a reference when choosing a technique to discover security 

vulnerabilities in programs. A hierarchy allows us to define a taxonomy of 

techniques, with each technique relaxing the constraints imposed on that above it in 

the hierarchy. The technique chosen depends on how much is known about the 

program, the amount of time that can be invested in the analysis and the confidence 

level desired in the security behavior of the program. 

We start by assuming that the only information available about a program is a 

compiled executable, and slowly relax constraints and ultimately end up in a full 

white box approach where we assume that the reviewer has full access to source code. 

The hierarchy that we propose has five levels, a basic black box approach, an 

environmental approach, using a program’s flow graph information, using a flow 

graph with parameter metadata, and ultimately using the program’s source code. 

Each technique uses fault injection in its own unique way. While the black box 

approach injects faults in program input, the environmental approach does so in 

resources used by the program. The basic flow graph and flow graph with parameter 

metadata techniques modify program variables, while the full source code approach 

looks at modifying program input and source code to detect vulnerabilities.  

 While the black box and environmental approaches use external 

representation of a program (a compiled executable), the two flow graph based 

approaches use internal program representations to find possible vulnerabilities. In 

the latter case, an application is represented using a program dependence graph, 
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which describes the control flow and data flow dependencies in an application. The 

goal of such an approach is to force a program into states that the programmer did not 

envision, either because of an improper understanding of the application 

requirements, or implementation bugs. When such a state is discovered, the program 

could be vulnerable, because there is a very good chance the programmer’s 

implementation would be unable to handle the wrong state and be susceptible to 

attack either as soon as the new state is discovered or somewhere else in the 

execution path of the program. 

While some of this information can be inferred by just looking at a program’s 

flow graph, there is a lot of insight that can be gained by having metadata that 

describes the programmer’s view of his implementation. Such metadata may include 

the programmer’s understanding of constraints on the values of input parameters to a 

function, and the function’s return value. The fault injector then attempts to find 

possible variable values, and control flow paths that would violate these programmer 

provided constraints. If such variable values and an execution path is discovered, 

there is a clear disconnect between the programmer’s view of his implementation and 

the actual implementation in source code. We consider this to be a vulnerability. 

Finally, with all of the program’s source code available, a security reviewer 

can use any of the static analysis techniques that is suggested in the literature, and use 

some of the dynamic techniques discussed earlier in this thesis, such as the black box 

and environmental approaches to find vulnerabilities in programs. In addition, the 

reviewer can modify source code to short circuit certain portions of the application, 

thus breaking up the entire program into smaller segments, either one function or a 
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collection of functions at a time. Doing so will allow for small components of the 

bigger program to be reviewed one at a time. Each component can be analyzed more 

easily, and its security characteristics better understood.  

Each of the five approaches that make up the hierarchy sounds like a viable 

option for use by a security reviewer. However, in order to provide a meaningful 

comparison of the techniques, we propose four criteria to determine the usefulness, 

effectiveness and viability of each of our approaches. These four criteria are: 

i. The ability to choose a fault injection point 

ii. Ease of injecting a fault, i.e. the fault injection mechanism 

iii. The ability to determine if an injected fault is actually viable, i.e. is a bug 

exploitable thus making it a vulnerability 

iv. The ability to verify that the application’s behavior with the fault injected 

indicates that it has been compromised and a vulnerability has been 

discovered 

 

The hierarchy of approaches when coupled with the relative merits and 

demerits of each as obtained by using the four criteria defined above gives a security 

professional enough hints to make a judicious decision on the approach(es) that 

would be best suited for his/her purposes. The choice of technique would be 

determined by the amount of time available for the review, the kind of knowledge and 

understanding that the reviewer has about the application, the level of confidence 

desired in the security characteristics of the program. 
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 In all of our techniques, we consider application crashes are indicative of 

vulnerable behavior by the application. This could also be viewed as a testing 

problem, wherein one looks at the availability perspective of execution. However, in 

our opinion, the ability to crash an application by injecting a fault (as our approaches 

do) provides a means for an attacker to exploit this vulnerability and unleash a DoS 

attack. The effects of such an attack are exacerbated if the application is unable to 

perform its most basic functionalities. For example, if a web server can be crashed by 

having garbage data in a protocol string, then the server can be rendered useless very 

soon. 

 Similarly, application crashes also introduce a discussion about the distinction 

between finding vulnerabilities and correctness. Our black box approaches use 

crashes to find discover vulnerable behavior; the absence of source code or any other 

information about a program’s security policies makes analysis using other criteria 

rather difficult. Towards improving this, we propose output comparisons as another 

possible approach, the success of which greatly depends on the kind of information 

made available to the security reviewer.  

 

 

1.3 Thesis Contributions 

 This thesis greatly innovates around some of the work previously done by 

Melody Djam (under the guidance of Prof. Cukier) in the realm of environmental 

perturbation and proposes new techniques and a hierarchy that uses these techniques 

in conjunction with fault injection to discover application vulnerabilities. 
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 The author inherited Pulad, a precursor to EFIVA, which is a tool described in 

this thesis. Significant amount of time was spent in understanding Pulad, fixing the 

source code to make it more robust and expand its functionalities. In particular, Pulad 

was a simple program that could track another application’s system calls, and modify 

file properties, i.e. it could cause environmental perturbations relating to the file 

system. The author invested time in actually determining how Pulad and the 

information that it gathered could be used in finding application security 

vulnerabilities. Pulad’s fault injection capabilities were enhanced so that it now had 

some intelligence. Instead of depending exclusively on human input to determine 

which faults it should inject at each interaction point, Pulad could now look at system 

calls, their parameters, and automatically determine the type and number of faults that 

can be injected.  

Further, Pulad was given the capability of comparing an application’s 

behavior before and after fault injection and determine if any security vulnerabilities 

were potentially exposed. Therefore, Pulad’s scope broadened from being a tool that 

could track system calls and modify file attributes to one that could also choose faults 

intelligently, track application behavior and output, and analyze the behavior to 

determine if a vulnerability was discovered. These enhanced functionalities were put 

to test by running the application on real world test scenarios. Hence, the author’s 

work transformed Pulad into an Environmental Fault Injector and Vulnerability 

Analyzer (EFIVA). 

The author has submitted two conference papers: 
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• H. Sivaramakrishnan, M. Cukier and M. Djam. Using Fault Injection and 

Environmental Petrurbation for Vulnerability Discovery. Submitted to the 

Sixth European Dependable Computing Conference (EDCC-6). Coimbra, 

Portugal, Oct. 2006 

 

• H. Sivaramakrishnan and M. Cukier. A Hierarchy of Approaches to Find 

Security Vulnerabilities in Applications Using Fault Injection. Submitted to 

The 17th IEEE International Symposium on Software Reliability Engineering 

(ISSRE 2006). 6-10 November 2006 - Raleigh, North Carolina, USA 

 

  

 

1.4 Thesis Organization 

 The rest of this thesis is organized as follows: Chapter 2: Environmental 

Perturbation and Fault Injection describes environmental interactions, and the fault 

injection process, and how when used together, these two techniques can be an 

effective mechanism for finding vulnerabilities in applications. Chapter 3: EFIVA: A 

tool to discover program vulnerabilities describes the architecture and 

implementation details of the tool that we developed to test some of the ideas and 

hypotheses proposed in Chapter 2. It also describes some of our case studies that 

helped validate that EFIVA can be used effectively in a real-world environment. 

Chapter 4: Expanding on the Environmental Approach considers some of the pros 

and cons of the environmental approach proposed in Chapters 2 and 3, and describes 

a more expansive approach to finding vulnerabilities in applications. It introduces the 
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hierarchy of approaches and the criteria that help evaluate each technique. Chapter 5: 

The Hierarchy of Approaches in Detail describes each of the approaches laid out in 

Chapter 4 in detail, and compares and contrasts of all these techniques in a tabular 

format. Chapter 6: Conclusions and Future Work discusses the conclusions of our 

research, and possible future directions that it might take. 
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Chapter 2: Environmental Perturbation and Fault Injection 

 

 

2.1 Motivation 

With the ever-increasing complexity of software, there has been an explosion 

in the number of faults (bugs) present in software. While one would hope that most of 

these faults are benign, malicious users and attackers are always on the lookout for 

(security) vulnerabilities that can be exploited, thus compromising applications. 

Vulnerabilities are classified into three types [2,3], network, host and 

application. As with all software faults, there are two verification approaches to 

finding vulnerabilities in applications, static and dynamic. Static verification methods 

and tools (FlawFinder [4], RATS [5] and ITS4[6]) have been explored extensively 

and with good success to find certain classes of vulnerabilities such as buffer 

overflows, integer overflows, and race conditions. However, information gathered 

from the execution profile of an application may be very different from that inferred 

through static analysis, thus making dynamic techniques a worthy complement to 

static techniques. Several factors such as the environment, operating system 

scheduling and concurrent execution are often left unexplored by static approaches; 

these open up a completely new class of problems that may cause an application to 

fail. Even if static analysis tools were to look at these external factors, they would 

identify potential bugs without being able to prove conclusively that a bug is indeed a 

vulnerability.  
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The other approach, dynamic verification involves software testing and fault 

injection. Among the various software testing strategies, penetration testing is most 

suitable to find security vulnerabilities. Penetration testing is a methodology whereby 

a tester intentionally tries to breach the security properties of an application by 

understanding its features and design. In [7], McGraw explains that penetration 

testing often occurs very late in the software development cycle, thus compromising 

the extent to which an application can be modified to fix any vulnerability that this 

approach may discover. Not only are there scheduling concerns with fixing 

vulnerabilities late in the cycle, but one also runs the risk of introducing a new 

vulnerability while fixing another. Software testing can be a useful tool to review the 

security characteristics of an application and with the right criteria, is successful in 

finding vulnerabilities. Our work focuses on the use of fault injection, which is the 

other form of dynamic verification.  

Fault injection, which has historically been used extensively in hardware 

manufacturing processes, can also be used as a method to review the security 

characteristics of an application. More recently, fault injection has been used to verify 

that applications behave as expected for different input combinations and to find 

security vulnerabilities, the latter to very limited extents. Fault injection as a 

technique can be used in three different ways; either before the application starts 

executing (pre-execution Fault Injection), or when it is actually run (execution Fault 

Injection), or a combination of the two. When an application is analyzed, either by 

looking at source code, or its design documents and description, or in our case 

looking at its interactions with the execution environment, one can think of conditions 
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that possibly violate some of the application’s assumptions. These conditions are 

immediately potential candidates for faults that can be injected either before the 

program starts executing, or during its execution phase. For example, if a program 

assumes the presence of an environmental variable, then deleting the variable before 

it is executed is an example of a pre-execution injected fault. 

While pre-execution fault injection has the potential to expose vulnerabilities, 

execution fault injection has a greater potential to expose vulnerabilities that may not 

be readily obvious from a static review of an application’s characteristics and 

behavior. In the previous example, let us assume that the environmental variable is 

deleted at runtime and not before the application starts execution. In such a situation, 

it is possible that in its first attempt, the application is able to read this variable, but 

fails when it tries to do so for a second time. If it fails on the second read, does the 

application use what it read before, or does it use some garbage value? Does the 

program crash or does it continue executing, albeit incorrectly? These interesting 

questions may be difficult to answer by looking at an application’s source code (for 

example, in a multi-threaded environment), yet become readily apparent at runtime. 

Further, execution fault injection allows the fault injector to automatically adapt to 

actions of the program under test. The faults injected can be modified depending on 

the application’s runtime behavior. On the other hand, pre-execution fault injection 

forces a re-run of the program every time a test parameter needs to be changed. This 

is because the fault injection system cannot automatically adapt itself to information 

that it collects by tracking the application’s runtime behavior. This adaptation can 
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manifest itself in terms of perturbations to the internal state (variables) of an 

application [8], or the execution environment, or a combination of both. 

While the jury is still out on the relative effectiveness of static vs. dynamic 

techniques, there are certain scenarios where one technique is naturally more 

applicable and effective than the other. As an example, static techniques could be 

extremely useful if an application’s source code is available, but would be unable to 

make a good security review with the availability of only a compiled EXE. However, 

in such a situation, a black box approach would be the best first step to finding faults 

and security vulnerabilities. 

2.1.1 Software Components without source code 

Software today is highly componentized and often makes extensive use of 

libraries and Dynamic Link Libraries (DLLs) written by different vendors. Such 

Commercial Off The Shelf (COTS) components may have been exposed to very 

simple security reviews or sometimes none at all, making them potential targets for 

attackers, and a source of vulnerabilities for consuming applications. The majority of 

such components ship without source code, making the security analysis process 

more complicated for application developers and testers. Developers use libraries to 

ensure that the software development process is easier, but it is certainly not 

comforting when one’s application is compromised by code that is acquired outside 

the organization. This problem is even more pronounced for libraries that are freely 

available on the internet and are the product of a developer’s pet project.  

Thus, there is the need to develop a security-testing framework that will allow 

for an intelligent black-box approach for finding security vulnerabilities. The 
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increasing number of security vulnerabilities due to environmental interactions, and 

the conduciveness of environmental perturbation to a black-box approach make 

interactions with the execution environment an ideal foundation on which to build our 

security platform. Further, the need to change environmental characteristics as an 

application executes makes fault injection the obvious choice for our research. 

One of the most recent works by Neves et al [9] uses fault injection to 

discover vulnerabilities in implementations of the IMAP protocol. Their tool, AJECT, 

checks for buffer overflow and other vulnerabilities by detecting email server crashes 

on various input combinations. They adopt black box approach and inject faults in the 

information packets that are sent to the email server, i.e. its input. While we also 

adopt a black box approach, in addition to injecting faults in application input, we 

perturb the execution environment by injecting faults in resources that a program 

uses, notably the file system. Further, we implement output matching to determine if 

a vulnerability has been discovered in the application. 

 

 

2.2 Environmental Interactions 

Environmental interaction [10] refers to an application’s use of resources or 

information from the environment where it is executed. These include files, 

communication over the network, communication with other processes, and 

requesting information (such as environment variables) from the operating system. 

When writing software, most programmers work with the implicit assumption that 

their application is the only one running on the system, and overlook the fact that 

their execution environment is constantly changing. This often manifests itself in how 
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file permissions and locations are handled, or how the program sends and receives 

messages over the network. Programmers make mistaken assumptions about the 

environment and do not account for the possibility that between its two uses in an 

application, a resource may have been used or modified by someone else, possibly 

with malicious intent. We consider environmental interaction to be a significant 

source of security problems in applications written today. 

In [10], Du and Mathur propose a white-box approach to identifying software 

vulnerabilities that result from environmental interaction. They enumerate potential 

faults that can be used to discover different types of bugs, such as those pertaining to 

IPC (Inter-Process Communication) or file system calls; the latter being responsible 

for 87% of faults injected directly through the environment. A direct environmental 

fault refers to a fault that stays within the environmental entity where it was injected. 

On the other hand, an indirect environmental fault is a fault that was injected in an 

environmental entity but propagates in a program though an internal program entity. 

Our efforts are thus focused on finding vulnerabilities related to improper use of the 

file system, as opposed to the network and IPC, which comprise the other 13% of all 

vulnerabilities. 

We use those faults that Du and Mathur recommend in their paper and are 

summarized in Table 1 below. 

 

Entity Attribute Fault Injection 

 file name Change length, use relative path, use absolute path, 

insert special characters such as “..”, “/” in the name 
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Directory Change length, use relative path, use absolute path, 

insert special characters such as “..”, “/” in the name 

User Input 

Command Change length, use relative path, use absolute path, 

insert special characters such as “|”, “&”, “>” or new 

line in the command 

file name Change length, use relative path, use absolute path, 

use special characters such as “|”, “&”, “>” in the 

name 

Directory Change length, use relative path, use absolute path, 

use special characters such as “|”, “&”, “>” in the 

name 

execution path Change length, rearrange order of path, insert a non 

trusted path, use incorrect path, use recursive path 

Library path Change length, rearrange order of path, insert a non 

trusted path, use incorrect path, use recursive path 

 
 
Environmen
t Variable 

permission 
mask 

Change mask to 0 so it will not mask any permission 

bit 

file name Change length, use relative path, use absolute path, 

use special characters such as “|”, “&”, “>” in the 

name 

Directory Change length, use relative path, use absolute path, 

use special characters such as “|”, “&”, “>” in the 

name 

 
 
File 
System 
Input 

file extension Change to other file extensions like “.exe” in 

Windows system; change length of file extension 

file existence Delete an existing file or make a non-existing file exist 

file ownership Change ownership to the owner of the process, other 

normal users, or root 

file 
permission 

Flip the permission bit 

Symbolic link If the file is a symbolic link, change the target it links 

to; if the file is not a symbolic link, change it to a 

symbolic link 

file content 
invariance 

Modify contents of the file 

file name 
invariance 

Change file name 

 
 
 
File 
System 

Working 
directory 

Start application in different directory 

 

Table 1 Candidate faults to be used in the vulnerability discovery process 
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2.3 Fault Injection 

As with most fault injection methods, we use a three-step approach to find 

application vulnerabilities. The three steps are, discovering the fault injection point, 

injecting the fault, and determining if a vulnerability has been exposed. 

2.3.1 Discovering the fault injection point 

The OS system call layer is the abstraction that programs use to communicate 

with environmental resources, and other processes running on the machine. During 

execution, an application can be traced to determine the system calls that it executes, 

thus providing information about the parameters passed to a function, and the point in 

the application where the call is made. 

The parameters passed to a system call can be used to find information about 

the resources being used by the application, for example, the name a file, the kind of 

access permissions requested (read, write, both), and the number of times it is used. 

2.3.2 Injecting the fault 

The process of injecting a fault in an application involves two steps: 

i. Identifying candidate faults 

Table 1 above shows the different kinds of faults that we consider for use 

in our approach. The particular faults to be injected are determined from 

the trapped system call information. The name of the system call allows a 

filtering of the kind of faults to be injected based on category, while the 

function parameters help determine the particular file that is being worked 

on. 
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ii. Injecting the fault into the application, or in our case the environment. 

As described in Table 1 above, the faults to be injected involve basic 

operations on files such as modifying their locations or attributes. These 

changes are easily implemented by using operating system Application 

Programming Interfaces (APIs). 

2.3.3 Identifying a vulnerability 

We define two very simple criteria for discovering vulnerabilities in an 

application. The first is checking for application crashes. If an attacker knows how to 

crash an application, he can use the same technique repeatedly to create a DoS attack. 

The second technique that we propose is output comparison. If a security 

reviewer has some knowledge of the output to be expected from the application for a 

given input and environmental state, then this output can be compared against that 

actually produced by the application at runtime. If there a mismatch between the 

expected and actual program output, we assume that a potential vulnerability has been 

discovered in the program. 

While these two criteria are extremely useful, the vulnerability identification 

step of our approach still needs human help and intervention. Quite clearly, faults 

injected during program execution may open up several vulnerabilities that go 

undetected by just looking at the output produced, or expecting the application to 

crash. Similarly, output produced by a program when faults are injected may be 

correct, but since it differs from the template provided by the tester, a program 

execution trace may be flagged as one that exposed a vulnerability. Human 
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intervention is necessary to reduce false positives, and in some cases detect missed 

cases. 

At the core of the problem is the lack of adequate knowledge about the 

operations performed by an application by just looking at its execution profile. This is 

a trade off that one encounters between black box and white box approaches. While 

the environmental fault injection approach that we propose is not as exhaustive as a 

brute-force testing technique or full state exploration using static methods, it has the 

potential to discover a significant number of vulnerabilities and report fewer false 

positives than the other two techniques. 
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Chapter 3: EFIVA: A tool to discover program vulnerabilities 

 

Chapter 2 introduced the usefulness of an environmental approach, and 

provided the list of candidate faults that a fault injector can use to perturb the 

environment and discover security vulnerabilities. It also briefly mentioned EFIVA, 

the fault injector that we developed to test our ideas and hypotheses. In this Chapter, 

we discuss the architecture of EFIVA, and provide some insight into the 

implementation of this tool. 

EFIVA consists of three components, the collector, fault injector, and verifier. 

The collector is the component that runs the test application and records its 

interactions with the environment. EFIVA, as implemented now tracks interactions 

with the file system.  

The tool runs the application under test twice; in the first execution, it collects 

information about all system calls including the time of their occurrence. In the 

second run, faults are injected and the application output verified. 

 

 

3.1 Collector 

The collector in turn has three primary components; they are the Application 

Executor, the Environmental Interaction Scanner (EIS), and the Persistor. The 

collector module as a whole is responsible for running the application and collecting 

information about all its interactions with the environment. 
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 Figure 1 Conceptual model of our dynamic, black box approach 

 

3.1.1 Application Executor 

The application executor is the simplest of the three collector components; it 

executes the application under test by calling the environmental interaction scanner, 

and providing it appropriate command line arguments. This is the tool’s interface to 

the outside world by accepting input about the application to be tested. 

3.1.2 Environmental Interaction Scanner 

The EIS module captures all file related application-environment interactions. 

It is built on Strace [11], which is a system call trace and debugging tool. Strace 

intercepts system calls made by an application without requiring its source code, or a 

recompile with a special compiler switch.  
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Strace executes a user specified command, which is the name of the 

application under test and its corresponding command line arguments. All system 

calls made by the application and signals that it receives from the operating system 

are recorded in an output file. In particular, for each system call, Strace records the 

function name, its arguments and return value.  

Files being the focus of our work in the environmental interaction approach, 

we use Strace to track file system calls. Information gathered by Strace allows us to 

be intelligent about the faults injected. For example, one of the arguments in file 

system calls is the file I/O mode requested (Read, Write, etc). Modifying the 

corresponding file permissions enables us to inject faults that may have otherwise 

been difficult to discern by having a black-box representation of the application.  

While Strace as implemented provides us with a lot of useful information, we 

have included two enhancements that will open up a new class of faults that can be 

used for vulnerability detection. Two features we added were the ability to determine 

the owner of files used in the application, and its access time. The access time is 

measured relative to when the program started execution.  

In addition to collecting useful tracking statistics, Strace records unnecessary 

system calls and signals. For example, EFIVA is written in Java, and the Java process 

APIs are used to invoke Strace. This adds extraneous JVM environmental interactions 

to the output; EFIVA prunes out such information when Strace exits. Thus, at the end 

of one run, the tester now has a full trace of all file system interactions between the 

application and the environment.  
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At this point, the EIS module, having completed its functionality transfers 

control to the persistor module. 

3.1.3 Persistor 

The persistor module takes all the information recorded by the EIS module 

and stores it in a database. EFIVA uses this information in its second run to inject 

faults. This database is a useful information store where the tester can try to analyze 

the interactions to effectively design test scenarios outside of vulnerability detection. 

For example, the tester may be able to create a functional test case based on the 

sequence of system calls executed, and their corresponding parameters. This may be 

useful for testing application functionality, and not just vulnerability discovery.  

 

 

3.2 Fault injector 

The fault injection process consists of two steps: first is identifying the type of 

faults to inject and the second is actually modifying resources or input, i.e. making 

the fault visible. 

3.2.1 Identifying the fault type 

EFIVA has the capability to inject more than one fault at an injection point. 

The user of the tool has full control to decide what faults should be injected, and 

where. In the absence of any specific input from the user, EFIVA tries to be as 

intelligent as possible with choosing how many and what kind of faults should be 

injected at each step. For example, when the tool detects a file open system call with 

the read only parameter (O_RDONLY), it modifies the file ownership, making it 



 

 26 

 

inaccessible to the user. The file open system call would thus fail, but if such an error 

condition is not checked for in the application, there is the possibility of a null pointer 

dereference, which would ultimately end in a program crash. Table 2 below provides 

a sampling of some of the heuristics that the fault injector uses to choose faults based 

on the application’s runtime behavior. 

System Call Name System Call 

Parameters 

Faults injected Why these faults? 

Open () 

 

Opens a file 

O_RDONLY 

 

O_WRONLY 

 

O_RDWR 

 

Name of file 

being opened 

- File existence 

 

- File ownership 

 

- File permission 

 

- File content  

invariance 

 

- Directory 

permission 

O_RDONLY, and 

O_WRONLY assume 

that the file being 

opened exists, and do 

not create one if it 

doesn’t. 

 

Use File content 

invariance when the 

O_RDWR or 

O_RDONLY is 

observed. 

 

Change permissions of 

the directory where the 

file is created or read or 

written 

 

Read () 

 

Reads file contents 

Buffer size 

 

Name of file 

being read 

- File content 

invariance 

The application may 

crash if the kind of data 

included in the file is 

different from what it 

expects. 

 

Access () 

 

Checks if the 

executing program 

has appropriate 

privileges 

R_OK 

 

W_OK 

 

X_OK 

 

Name of file or 

path being 

accessed 

- File existence 

 

- File ownership 

 

- File permissions 

 

- File content 

invariance 

 

 

The various security 

properties may be 

checked by the 

application, but the 

application may be 

vulnerable if these 

properties change 

between when they 

were checked, and 

when the file is 
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- Change 

executing target to 

a symbolic link 

actually opened.  

 

For X_OK, having a 

symbolic link point to 

any arbitrary location 

may have the program 

execute malicious 

code. 
Table 2 Automatic fault injection decisions made by EFIVA 

 

Similarly, environment variables and user inputs are modified using 

techniques illustrated earlier in Table 1. 

 Figure 2 below provides a graphical representation of the algorithm used by 

the fault injector to choose the faults to be injected in the environment.  

System call 

recognized

Find 

Parameters

List of candidate 

faults defined by 

user

Randomly pick 

n number of 

faults

System 

Call 

Parser

Inject faults in 

environment

Table lookup
Ignore this 

system call

NO

System call name

Resource being used

Parameters to system call

YES

 

Figure 2 Fault selection algorithm 
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The application is executed for a second time, and in this iteration, faults are 

injected according to the user’s input or automatically.  

3.2.2 Making the fault visible in resources 

Once EFIVA has chosen the type and number of faults to inject, these faults 

need to be made visible in the environment at appropriate times in the program’s 

execution, i.e. when that particular resource is used by the application. EFIVA uses a 

time-based approach to inject faults.  

During its first run with Strace, the fault injector stores the time of access of 

each of the system calls, along with the call parameters. This time is relative to the 

start of program execution. During the second run, when faults are injected into the 

environment, EFIVA starts two threads of execution. The first thread injects the 

faults, while the second runs the program under evaluation. When the fault injecting 

thread hits time instances that match with those recorded in the first run, it modifies 

the corresponding environmental resources, i.e. injects the faults. We assume that the 

two threads of execution are given roughly equal time slices, keeping the timing 

distortion to a minimum.  

EFIVA stores the program output produced during this second execution to a 

file, and uses it in the verifier module. 
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3.3 Verifier 

The verifier module performs checks to determine if the application execution 

trace has opened any doors that can be used by an attacker to launch a security 

violation. As mentioned before, these checks come in two categories, crashes and 

output matching.  

In the former case, EFIVA automatically flags a crashed execution trace as a 

security problem, especially if the non-fault injected run exited without reporting any 

problems. While this may not truly be a security policy violation, it is certainly a 

vulnerability that needs to be fixed, or classified as one that the application writer 

never expects to encounter. 

In the latter case, output matching is used to report a possible vulnerability. 

EFIVA accepts a simple regular expression term that contains the expected output, 

and this is matched with the output actually produced by the application.  

Figure 3 below illustrates the algorithm used by the verifier to determine if the 

application’s behavior with faults injected is indicative of any vulnerabilities being 

exploited. 
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Output generated 

by application 

during execution

Search for 

Segmentation 

Fault

Was crash 

string found?

Report 

vulnerability

Regular 

Expression 

Matcher

Expected output as 

provided by reviewer

Can be in the form of a 

regular expression

Did match 

succeed?

Report no 

vulnerability

YES

NO
NO

YES

 

Figure 3 Algorithm to find application vulnerabilities 

 

EFIVA writes the test application output back into a file, allowing users to 

apply their own conditions to discover additional vulnerabilities. The above-

mentioned criteria can be very useful in characterizing application behavior when 

tested under a changing environment. However, the job of discovering the more 

contrived and complicated faults continues to remain in the realm of manual testing.  
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3.4 Case Studies 

In order to verify that EFIVA is helpful in finding application vulnerabilities, 

we ran it on several input programs. This test code was scraped from code written by 

the first author for undergraduate projects; often at the freshman and sophomore 

levels. 

We picked tests that try to best illustrate the various capabilities that are 

programmed into the tool. In this section, we outline some of our code samples, the 

bugs that they hide, and EFIVA’s attempts at finding them based on environmental 

interactions. 

All programs and EFIVA were run on Linux. EFIVA itself is written in Java, 

and calls into our modified version of Strace, which was downloaded off 

SourceForge.net. 

3.4.1 Application crash due to null pointer reference 

A DoS (Denial of Service) attack is one of the most common methods of 

exploiting vulnerabilities. In the case of a console application, this attack is akin to 

crashing the program repeatedly, thus making it impossible to use. Consider the 

following code snippet: 

 
Figure 4 Null pointer de-reference crashes the application 

 

1 void ReadFromFile () 
2 { 
3  FILE * f = fopen ("foo.txt", "r"); 
4  char buf[100]; 
5  fgets (buf, 10, f); 
6  fclose (f); 
7 } 
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This example is simple, yet hides an extremely common source of 

vulnerabilities. The program does not process fopen’s return code making it 

susceptible to file open failures. If foo.txt does not exist, the code as written in 

Figure 4 will not create the file; the call to fgets on line 5 will cause a segmentation 

fault. Similarly, if the user running the above program does not have the permissions 

to read foo.txt, fopen will return null crashing the application at line 5. 

EFIVA detects this application’s susceptibility to DoS attacks by modifying 

foo.txt’s permissions (setting it to be readable only by root) and its existence 

(deleting it before the call to fopen) properties when the application is being 

executed. 

 

3.4.2 Race condition in file access 

Race conditions that originate from file accesses are probably the most 

significant among those that result in vulnerabilities [12]. The problem stems from 

the existence of a time delta between the two instances when a file’s property (e.g., 

access right) is checked, to when that property is actually used in the application. 

Such flaws are referred to as Time of Check to Time of Use (TOCTOU) flaws. 

The textbook example of a TOCTOU fault is a setuid
1
 program executing 

under root privileges [13].  

                                                 
1
 Unix has a setuid bit that allows for certain programs to grant users temporary privileges. When an 

executable file with its setuid bit turned on is executed, it assumes the privileges of its owner, as 

opposed to its executor (the default). 
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Figure 5 TOCTOU vulnerability in file accesses 

 

In this example, a race condition exists between the time when access() is 

called on file, and when file is actually opened. The programmer makes an 

implicit assumption that file remains unchanged between the two calls, which is 

incorrect! A clever attacker would have the file denote a symbolic link as opposed to 

a physical file name, and modify the target of the link between lines 1 and 3. 

EFIVA’s design and implementation makes it ideal to track such issues that 

arise from an application’s environmental interactions. When the tool detects a call to 

access(), it has immediately found a potential injection point. In the fault injection 

pass, the parameter to the access() is set to a symbolic link, and is modified as 

soon as the function returns. Any future use of the file thus points to the malicious 

location pointed to by EFIVA.  

Vulnerabilities that are born from race conditions in file accesses can be very 

difficult to detect without source code. At the core of the issue is the extremely small 

attack window (between lines 1 and 3) when file needs to be changed to 

successfully record an exploit. Our fault injection framework traces application 

execution making this process a lot more efficient, and easily reproducible.  

1 if (!access (file, W_OK)) 
2 { 
3  f = fopen (file, "w+"); 
4  // Perform write operations here 
5 } 
6 else 
7 { 
8  printf ("Could not open file %s.\n", file); 
9 } 
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3.4.3 Output comparisons for vulnerability detection 

 EFIVA provides users the ability to compare the expected output from an 

application to that actually produced when it is executed. The mechanism is 

inherently simple, and has the ability to produce false positives, especially if the 

expected output is not very well known. However, this is a better first step to finding 

vulnerabilities than using only a simple metric like checking for an application crash 

or a segmentation fault.  

 As an example, consider code snippet in Figure 6 below. The 

ListDirectoryContents() function does not allow a user to view the contents 

of the root directory. If the user provides a directory name that starts with ‘/’ as is the 

case for the root directory, the function exits. Assume that the program is being 

executed in the /home/foo directory, and the user’s input is ../../. This input 

combination corresponds to the root directory, but the code as written above will still 

list the contents of root! 
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Figure 6 Output comparisons for vulnerability detection 

 

The output should have been Cannot list contents of the root directory, which 

was provided in the input to EFIVA. However, the actual output obtained from the 

above code snippet was much different (the list of files and directories in the root 

directory).  A comparison between the two outputs failed, thus indicating the 

possibility of a security vulnerability. 

These three examples illustrate how EFIVA can be used in a real-world 

setting to discover potential security vulnerabilities in application. In the future, the 

tool can be expanded upon to track more system calls, and provide enhanced 

verifying capabilities. 

1 void ListDirectoryContents () 
2 { 
3  char dirname [100]; 
4  gets (dirname); 
5 
6  if (dirname [0] == '/') 
7  { 
8 printf ("Cannot list contents of the root 

directory"); 
9  } 
10  else 
11  { 
12   DIR * dir; 
13   struct dirent *entry; 
14 
15   if ((dir = opendir (dirname))!= NULL) 
16   { 
17    while (entry = readdir (dir)) 
18    { 
19     printf ("Entry : %s\n", entry=>d_name); 
20    } 
21   } 
22  } 
23 } 
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Chapter 4: Expanding on the Environmental Approach 

  

Chapter 3 addressed the implementation of our EFIVA tool, and described 

some of the case studies that we used to validate that our approach is indeed workable 

and has potential to discover security vulnerabilities. With the confidence that 

dynamic, black box environmental perturbation and fault injection is an approach that 

can be used effectively to review the security characteristics of an application, we 

now address another important question. Is an Environmental Approach sufficient? Is 

there a mechanism to broaden this approach and discover new techniques, which 

when used independently or in conjunction with environmental perturbation have the 

potential to do an even better job of discovering vulnerabilities in applications? 

Through the rest of this chapter, we address these very questions, and propose a 

scheme that forms the basis for the rest of our work in this thesis. 

 

 

4.1 The pros of an environmental approach  

 One of the significant challenges of a black box approach is that a reviewer 

does not know exactly what resources or actions a program performs at each step. 

Every program under execution can be traced dynamically for the system calls that it 

executes. These system calls provide information about the resources that the 

program accesses, the actions performed on the resource and the parameters that 

further refine the specific action. For example, consider the open system call: 

open (filename, arguments) 
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This system call clearly indicates that the program is opening a file with name 

filename, and in the mode as specified by arguments, which could be “rw” 

which indicates that the file is opened for read and write, or “r” which means it is 

opened for read only, or any other valid combination. Gathering such information 

using a black box approach is impossible, or a very arduous process.  

 However, a smart fault injector can choose with ease, and automatically, the 

type and number of faults to inject when it encounters certain system calls and their 

corresponding parameters. Tracing the system calls executed by a process provides 

good insight into how an application has been programmed. Further, environmental 

fault injection is fully extensible; one can easily add new system calls and their 

corresponding candidate faults to the fault injector, thus broadening the scope of 

problems that can be discovered and exploited with this approach. 

 

 

4.2 The cons of an environmental approach 

 As discussed earlier, the most significant problem associated with a black box 

approach to finding vulnerabilities is detecting when a vulnerability has been exposed 

in the program. The challenge is determining the behavior and output of a program 

that has been compromised.  

 In the environmental approach, we used two criteria to detect a vulnerability, 

an application crash, and difference in the expected and actual program outputs. The 

application crash is easy to see; no program should crash because of faults injected 

either in it or in its environment. However, comparing expected and actual outputs is 

not so straightforward; verifying that a vulnerability has indeed been exposed 
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involves more than just the comparison between two character streams. Such a 

technique depends on a human security reviewer to provide the fault injector with 

expected output from the application for a certain set of injected faults, and is 

therefore dependent on the reviewer’s understanding of the program behavior. The 

reviewer provided output might be correct or incorrect. If correct, then a mismatch 

between expected and actual output indicates a vulnerability. On the other hand, if the 

reviewer is wrong, then a mismatch in the two outputs could mean either the program 

does not have a vulnerability (program output was correct, reviewer’s was wrong), or 

it indeed has one (both program and reviewer outputs were wrong).  

 Therefore, output comparisons could show both false positives and false 

negatives, making the role of the human verification all that more critical. In an 

environmental approach, until a better, automated solution is found, human 

verification will remain the primary mode of determining if a program has 

vulnerabilities. The fault injector can provide hints that at best could ease this 

process. 

 Another issue to consider, although obvious, is that environmental fault 

injection only traces those functions and resources that have system calls associated 

with them. There are numerous APIs, such as the string library in C, where the 

functions do not have corresponding system calls, yet are important sources of 

vulnerabilities. A most basic example would be the strcpy()function, which when 

used without proper bounds checking could lead to a buffer overflow. 
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4.3 Can we do better? 

 Environmental interactions are a large source of program vulnerabilities, and 

we can address them with our fault injection scheme as discussed above. Yet, there 

are other sources of vulnerabilities as well that need to be addressed if one desires a 

complete and thorough analysis of a program’s security characteristics. Over the past 

several years, numerous techniques, both static and dynamic have been proposed to 

find general program bugs, and those that are exploitable, i.e. vulnerabilities. If we 

look at the security review process through the eyes of a reviewer, the kind of 

approach that he/she can choose depends entirely on how much the reviewer knows 

about the program, and how detailed of an analysis is desired.   

To aid in this effort, we define a hierarchy of five approaches that extends 

from all black box where a compiled executable is analyzed, to all white box where 

the complete source code listing for the application is available. We use a set of four 

criteria to evaluate their relative effectiveness and usefulness. The next few sections 

motivate the use of this hierarchical approach with fault injection to find 

vulnerabilities. 

 

 

4.4 Why do we need a hierarchy of approaches? 

Static techniques, software testing and fault injection can each form a 

significant component of the software vulnerability finding process. The kind of 

approach used in this process depends on the available program abstractions and their 

relative effectiveness in achieving the goals of the reviewer. A program’s abstraction 
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may range all the way from being just a compiled program (EXE), to having some 

amount of programmer-supplied metadata, to the program’s full source code listing.  

Our research focuses on constructing a hierarchy of approaches that can be 

used for finding vulnerabilities in applications given different amounts of program 

information. In particular, we start by assuming that the only data available about a 

program is the fully compiled executable, and relax our constraints to create a new 

level in the hierarchy, enabling better vulnerability analysis. Said differently, we start 

with a complete black-box approach, enter the grey-box mode, and ultimately end in 

a full white-box approach, each time reviewing the usefulness and effectiveness of 

the technique used in that particular level in finding vulnerabilities. At each level, we 

use fault injection as the tool to perform a security review, and use a set of four 

defined criteria to compare and contrast each level with its predecessors in the 

hierarchy. Having separate levels provides a platform for security reviewers to build 

upon depending on their requirements. These requirements may include, but are not 

restricted to the amount of time they are willing to spend on the process, the level of 

confidence that they desire in the software and the amount of information that they 

have available to perform a review. Even in the presence of an application’s full 

source listing, one may not desire a full static analysis of code, and may be quite 

happy with just running the program on certain select input combinations. On the 

other hand, one may want to perform extensive security analysis because of the 

critical nature of the application under review. Having a multi-tiered approach to 

finding vulnerabilities in programs allows for different degrees of review based on 

one’s unique requirements. 
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4.5 Why do security vulnerabilities happen? 

A bird’s eye view of software development reveals three primary sources of 

security vulnerabilities in software. First is incorrect program specification and 

architectural design, the second is poor implementation by the programmer, and the 

third is environmental interactions. A common example of poor architectural design 

is parameter tampering in web URLs. An attacker may be able to modify the 

parameters that are sent to the web server from the client, and view information that 

he/she is not authorized to access.  

The second source of vulnerabilities are programming bugs, and are caused by 

programmer oversight, carelessness, or sometimes an incomplete understanding of 

the nuances of programming language features. In the C world, an example of the 

latter would be the assumption that strcpy (src, dest) only copies the 

portion of src that fits in dest, when in fact the function performs a blind copy, 

potentially leading to a buffer overflow. While static analysis tools would easily catch 

this buffer overflow if provided with source code, finding this vulnerability in a 

compiled executable may not be as trivial. An example of programmer carelessness 

would be, not freeing all the memory that a program allocates dynamically, or trying 

to free a pointer twice. Finally, an example of programmer oversight would be not 

encrypting passwords, instead storing them as plain text in a file or a database. 
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The third source of vulnerabilities, Environmental interactions refers to 

vulnerabilities introduced in an application by the use of resources or information 

from the environment where it is executed [14]. 

When a programmer writes code, he/she has a view of the program and an 

understanding of how control and data flows through it. Quite often, the 

programmer’s view is very different from how the written code actually behaves. It is 

in this gap between expected and actual application behavior that a program is most 

susceptible to functional bugs and vulnerabilities [15]. A smart hacker will either 

modify a program’s input, or change its execution environment or apply some other 

mutation to have the application move in a direction that is different from what the 

programmer ever expected it to take. This may involve exploring various execution 

paths, corrupting program data or even modifying sensitive information that an 

application depends on for its proper functioning. 

A security professional can use the very same techniques to identify and fix 

security vulnerabilities in a program before a hacker compromises it. He/she can use 

various techniques, such as static analysis, testing and fault injection. We use fault 

injection as the technique of choice for the various approaches that we discuss in this 

thesis. 

 

 

4.6 Fault Injection and a Hierarchy of Approaches 

Fault injection provides a framework that allows an external tool or person to 

inject faults in information that is important to the application, such as in its inputs, or 

internal program state or even its execution environment. Fault injection is a dynamic 
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approach, and is extremely flexible, making it an ideal foundation on which to build 

the techniques that are discussed in this thesis. Faults can be injected anywhere inside 

an application, i.e. program variables or in external information sources such as 

program input, or even in the environment where the program is executed. This 

versatility of fault injection techniques allows us to use it effectively in the whole 

spectrum of vulnerability finding approaches. 

Every application or program can be thought of as a graph, where each node is 

a state and the edges are transitions between the states. For every state that a program 

is in, a fault injector can modify parameters and force the application into new states; 

states that potentially expose exploitable security holes, i.e. security vulnerabilities. 

While the ability to modify internal program execution paths sounds very 

encouraging, it makes a very fundamental assumption; information such as the 

internal state of an application, its parameters and control flow are available for use 

by the fault injector. The basic premise of our approach is that we start with an 

executable, i.e. compiled binary code, making deciphering such information 

extremely challenging, or in some cases impossible. We thus define levels of 

abstraction to perform a program’s security analysis, with each level using different 

amounts of information. This information includes the view of the program (full 

source code, partial source code, etc), and extent of documentation available to the 

security reviewer. The fault injector may infer some of this information 

automatically, and will depend on the user to provide the rest. Notably, we define five 

different abstraction levels, Black Box Approach with an Executable, Black Box 

Environmental Approach, Basic Flow Graph Approach, Flow Graph Approach with 
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parameter metadata and finally White box approach with Full Application Source 

Code.  
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Figure 7  Black Box to White box - A hierarchy of fault injection based approaches for finding 

vulnerabilities 

 

In each of the levels as mentioned in Figure 7, fault injection can be used with 

varying levels of usefulness and effectiveness. We evaluate each level based on four 

fault injection criteria, as follows: 

i. The ability to choose a fault injection point 

Given an application, how does one know where a fault should be injected 

so that it affects the execution of the program in a meaningful way? 

ii. Ease of injecting a fault, i.e. the fault injection mechanism 
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This is the technique that is used to have the fault injected either in the 

application or its environment or its input or any other location. 

iii. The ability to determine if an injected fault is actually viable, i.e. is a bug 

exploitable thus making it a vulnerability 

A fault injector can inject faults in arbitrary locations, but analyzing the 

application’s behavior with the fault injected would not be very useful if 

the fault can never happen under normal usage of the application. 

iv. The ability to verify that the application’s behavior with the fault injected 

indicates that it has been compromised and a vulnerability has been 

discovered. 

How does one determine with a high level of confidence that a 

vulnerability has been discovered in the application by analyzing its 

behavior under fault injection? 

 

Our set of four criteria was constructed by taking two different views of fault 

injection; the first being the fault injector’s perspective, and the second being that of a 

security reviewer. The first three criteria are critical for any fault injector; it needs to 

know where, when and what faults need to be injected, and has to have a means to 

make the fault appear in the application or its surroundings. The fourth criterion is 

constructed from the most basic requirement for all vulnerability finding approaches: 

how does one know if the injected faults have exploited a vulnerability in the 

application.  
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In the next chapter, we describe each of the levels in Figure 7 in detail, 

explore their use of fault injection, and characterize their usefulness in the 

vulnerability finding process using the four criteria of fault injection defined above. 
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Chapter 5: The Hierarchy of Approaches in Detail 

  

Chapter 4 explored the relative effectiveness of an environmental fault 

injection approach, motivated some of the reasons why applications have security 

vulnerabilities, and came to the conclusion that we could expand upon the 

environmental approach to develop new fault injection based techniques that can also 

be used to find security vulnerabilities. It also contained a discussion on the hierarchy 

of approaches, starting from the complete black box executable view of the program, 

to the full white box approach where the application source code is available for the 

reviewer to analyze. Interspersed between these two extremes were environmental 

fault injection and two techniques that used an internal program representation with 

some metadata as provided by the application’s programmer. 

 In this chapter, we discuss each of these techniques in detail and evaluate 

them using the set of four criteria that was also laid out in Chapter 4. 

 

 

5.1 Black Box Approach with an Executable 

At the most basic level, we assume that the only information available to a 

security evaluator is the compiled EXE. The executable does not have to be on the 

same machine as the security evaluator; it may be elsewhere on a network, or could 

even just be a website. The most obvious choice of techniques in the absence of any 

other useful guidelines is a black box approach where the security evaluator presents 

an application with several input permutations. These include valid and invalid 
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inputs, and those with malicious intent. With each injected fault, the program’s 

execution is traced and output is analyzed to determine if a vulnerability was found. 

As is quite obvious from a cursory examination of this approach, the state 

space to be explored is enormous. Using a fault injection approach, the large number 

of unique faults that can be injected, when coupled with the multiple inputs that 

programs typically take from the user, leads to a combinatorial explosion and makes 

for an extremely time consuming and exhausting evaluation process. Automation 

clearly has the ability to speed up such an approach, and it can be used effectively to 

ensure some basic security properties. For example, one can easily verify that an 

application does not crash when subjected to fault injected input. Similarly, if the 

application prints password information to the console in plain text, then there is a 

security vulnerability.  

This black box approach can be evaluated based on the four criteria stated 

earlier in Chapter 4. 

i. The ability to choose a fault injection point 

In a black box approach, there is a single fault injection point, the input to 

the application. However, the number of input permutations to be 

considered is enormous, and working with each one of them could be a 

very laborious process.  

ii. Ease of injecting a fault, i.e. the fault injection mechanism 

Faults are injected in the application input, which is done rather easily. 

The fault injector can generate any number of permutations based on 

criteria laid out by the security reviewer.  
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iii. The ability to determine if an injected fault is actually viable, i.e. is a bug 

exploitable thus making it a vulnerability 

Every fault injected in this scheme is totally acceptable because an 

application should be willing to accept any and all input. A well-written 

program should not crash because of invalid input, but rather print an error 

message or exit gracefully. However, given a fault, determining its 

viability is extremely difficult because of the lack of program knowledge. 

Most of the faults are educated guesses, but ultimately, in a brute-force 

approach, they are just guesses. Most of the faults may not turn up any 

vulnerability in the program. 

iv. The ability to verify that the application’s behavior with the fault injected 

indicates that it has been compromised and a vulnerability has been 

discovered. 

This is the most complicated step in an all black-box approach. Without 

any additional knowledge about a program’s features, classifying its 

behavior as one that indicates the existence or absence of a security 

vulnerability, is extremely difficult. For example, consider all the metadata 

that a program writes to a file for its future use. Such metadata may 

include user preferences, passwords and other important information. If 

the security reviewer is not aware of the significance of each piece of file 

content, he/she may miss what is security critical. This may however be 

caught by a smart hacker and used to compromise the applications.  



 

 50 

 

The vulnerability verification step can be significantly improved if the 

security reviewer is provided with a detailed specification of the program, 

such as, the implementation spec created by the application developers. 

Such a document would provide a lot more insight into the design of each 

program component, and the interactions between them. Such program 

details would allow for a more intelligent choice of faults, and potentially 

reduce the number of faults that need to be injected in the system. 

 

 In summary, while a complete black box approach may not prove to be very 

reliable in finding a vast majority of application vulnerabilities, the level of 

confidence that one gains by using such an approach may be sufficient in certain 

scenarios. 

 

 

5.2 Black Box Environmental Approach 

 Chapters 2 and 3 described the environmental perturbation approach 

extensively. Therefore, we only summarize the evaluation of this technique using the 

four criteria laid out in Chapter 4. 

i. The ability to choose a fault injection point 

In this approach, the fault injector injects a fault when it encounters a 

system call that it recognizes, making the process of choosing the injection 

point easy. 

ii. Ease of injecting a fault, i.e. the fault injection mechanism 
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Environmental perturbation involves changing the external factors that 

impact an application, such as modifying file ownership, their contents or 

their existence properties (delete a file, create one when the application 

does not expect it). These changes are applied to the execution 

environment, and are thus easily implemented.  

iii. The ability to determine if an injected fault is actually viable, i.e. is a bug 

exploitable thus making it a vulnerability 

The viability of an injected fault is also trivial because changes to the 

environment are independent of the execution of a program. This is the 

primary reason why this technique is so useful; changes can happen when 

an application least expects it. 

iv. The ability to verify that the application’s behavior with the fault injected 

indicates that it has been compromised and a vulnerability has been 

discovered. 

This is the most challenging component of a truly dynamic, automated 

fault discovery mechanism. There is no easy way to determine if a 

vulnerability has been discovered without a detailed knowledge of the 

workings of the application, and its error states. However, two useful 

checks that can be used are, checking for application crashes, and output 

comparison. If for a given action, the output as expected from an 

application does not match the actual output observed, then there is the 

potential for a vulnerability. The ultimate check is still one that is 

performed by a human security evaluator. The absence of source code in 
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this black-box approach leads us to assume that the security reviewer is 

very familiar with the application through its constant use, or is provided 

with a specification document from the application developers to better 

understand the program’s assumptions and workings. 

  

5.3 Using Program Representations to find vulnerabilities 

The previous two techniques, complete black box approach, and the 

environmental approach, try to find vulnerabilities in applications by looking at their 

external characteristics and behavior, i.e. from the perspective of an application user. 

However, a lot of useful information can also be gathered by looking at a program’s 

internal representation, its states and control flow. These internal structures provide a 

great opportunity for a tool such as a fault injector to modify, with relative ease, the 

flow of data and control in a program. These changes can be made dynamically at 

runtime, allowing the fault injector to discover new paths and conditions as variables 

assume different values inside a program. A program exposes a deviation from its 

correct behavior by taking different control flow paths than what is expected for 

certain input. We view such deviations as a manifestation of an exploited 

vulnerability. 

5.3.1 Choosing an internal program state representation 

 

A program’s internal representation can be described using various concepts, 

such as a Control Flow Graph, Data Flow Graph or a Program Dependence Graph. 

The Control Flow Graph (CFG) is a graphical representation of a program’s control 
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flow and structure [15, 16]. The CFG is a directed graph where each node is a basic 

block and the edges represent control flow. A basic block in turn is a linear sequence 

of instructions with exactly one exit. When the processor starts executing a basic 

block, it continues execution in a single sequence until the end of the basic block; 

there are no branches or halts. A CFG therefore presents two distinct possibilities to 

affect change through fault injection. Not only can faults be injected to change the 

direction of execution that a program chooses, but also to modify program data.  

A Data Flow Graph (DFG) is a graphical representation of a program’s data 

flow and structure. It represents the possible changes in the state of data objects, i.e. 

their creation, use and destruction [15]. This graph does not have any control flow 

information associated with it, making its applicability in finding vulnerabilities 

rather limited. In tracking security vulnerabilities, we desire an understanding of a 

program’s actions, for it is usually here that a program is susceptible to attack. The 

third representation, Program Dependence Graph (PDG) is a hybrid of dataflow and 

control flow graphs [17]. It is a directed graph where vertices are program statements 

and control predicates, while the edges correspond to data and control dependencies 

[18]. A fault injector can determine fault values using the combined data and control 

flow information so that it not only affects the direction that a program takes, but also 

the value of its variables, thus potentially creating states that were not previously 

considered by the programmer. 

All three program representations have the potential to be used for finding 

vulnerabilities, but one may be more effective than the other in helping us achieve our 

goals. The most basic assumption in our approach is that we start with an application, 
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a compiled executable, when trying to analyze its security characteristics. Typically, 

structures such as the CFG, DFG and PDG are constructed from full program source 

code, forcing us to find a workaround when working with compiled binary code. 

Tools such as EEL [19] construct a CFG from an executable, but in the absence of 

source code, the graph is represented using the most basic assembly language 

instructions. A graph with only assembly instructions makes it very difficult to 

decipher deep program characteristics, such as data types of variables used in the 

program, the use of pointers, arrays, etc. Such information can be used effectively in 

fault injection; for example, integers can be tested for overflow problems, buffers can 

be tested for buffer overflows and characters can be tested for non-ASCII input. 

Further, while registers and variables can be modified at the assembly level to 

discover bugs, proving that such bugs are exploitable vulnerabilities can be quite 

challenging. Along the same difficulty level is the task of confirming that a suspected 

vulnerability is indeed a vulnerability. This confirmation step, except for the most 

basic cases such as an application crash or hang depends on user provided 

information. It may be less than reasonable to expect a security evaluator to provide 

any program hints at the assembly level, especially if the data returned from a 

function is not a simple character or integer, but a more complicated data type such as 

a class object.  

 This inability to make a connection between program structures and assembly 

code in the absence of full source code listing makes using CFGs, DFGs and PDGs as 

representations of binary/machine code for internal fault injection rather difficult and 

ineffective. We need an intermediate program representation or additional metadata 
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to get more information about the behavior and characteristics of compiled code. 

PDGs that are constructed using this intermediate representation or metadata will be 

an extremely useful tool in security analysis.  

This kind of intermediate representation is provided today by Java (in 

bytecode), and C# (in Microsoft Intermediate Language, MSIL). The ease of 

programming offered by these languages and their corresponding managed execution 

frameworks (Java Virtual Machine, Common Language Runtime), and the increased 

tendency of software developers to use componentized code means that more and 

more applications in the future will be written using these new technologies. The 

intermediate formats contain information about the data types of variables, the names 

of API functions being invoked and their parameters, string values, and an excellent 

metadata store from which control and data flow information can be extracted with 

relative ease. These are exactly the tenets that we desire in a program representation 

to effectively choose the faults that are injected to find vulnerabilities. Through the 

rest of this thesis, we use Java bytecode as the foundation on which our techniques 

are built and analyzed. It is important to note here that our approach is in no way 

restricted to bytecode. Intermediate information and metadata provided by compilers 

or even externally by the application programmer could be used effectively in our 

fault injection scheme. The ideas presented henceforth are general in nature and fully 

extensible.  

The increased availability of metadata and knowledge about program internals 

though the use of bytecode now allows us to choose between the various 

representations of application code. 
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5.3.2 Program Dependence Graph as Internal Representation 

 

 The Program Dependence Graph is a hybrid of a data flow and control flow, 

making this most suitable for fault injection, when compared to the other two 

representations, i.e. the CFG and DFG. The data flow component of the graph will 

enable the fault injector to track the use of variables in a program, and thus values, 

thus allowing for better, more intelligent choices when injecting faults. Similarly, the 

control flow component allows the injector to force different execution paths on the 

program by modifying internal variables. The interdependence of control and data 

flow can be very helpful in finding security vulnerabilities, as we shall discuss in later 

sections. A PDG can be constructed automatically using one of the several algorithms 

that have been proposed, including those for object-oriented languages such as Java 

[20]. 

 

 

5.4 Basic Flow Graph Approach 

 Having chosen the PDG as the representation of program structure, we now 

describe our first approach that uses this graph to find security vulnerabilities.  

The figure below shows the PDG for one of the possible implementations of a 

debit () function in a financial system.  
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Figure 8 Possible implementation of debit () function in financial applications 
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Figure 9 PDG representation for debit () function 

 

 As shown in the graph above, the function branches into two different 

directions based on the value of the variable tempBal. The fault injector could thus 

1 int debit (int balance, int debitAmount) 
2 { 
3  int tempBal = balance - debitAmount; 
4 
5  if (tempBal > 0) 
6  { 
7   balance -= debitAmount; 
8  } 
9 
10  return balance; 
11 } 
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modify the values of balance and debitAmount to have the branch take two 

different directions in different executions. If the function were to have further 

conditional statements, then several more paths could be constructed. The return 

value from this function will be used in other functions, and thus inserting a fault in 

the return code will automatically propagate itself through the rest of the program. 

From the source listing (Figure 8) and PDG (Figure 9) above, it is clear that the return 

value from the function could be any integer value. How does one determine whether 

a given return value constitutes a vulnerability in the application? In the absence of 

any other information, the most obvious approach is to let execution continue and 

wait for a violating condition, such as an application crash, or an error message 

printed by the program, and then flag the fault(s) injected during that execution run as 

ones that led to the discovery of an application vulnerability.  

 However, this approach could lead to a state explosion. It would be impossible 

for the fault injector to choose a correct subset of faults to be injected that could 

violate the assumptions of the programmer. What this approach does provide is the 

ability to change a program’s execution profile, and modify its variables and 

parameters dynamically, and adapt any changes to the path followed by the program 

until that point in the execution. It also allows for a very modular approach to 

vulnerability discovery. Each function can be considered individually, and by 

modifying the parameters passed to it, a subroutine can be isolated as an execution 

unit. This allows for fault injection on both the local level (a function), and a global 

level (combination of functions).  
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This technique, i.e. using a flow graph to find vulnerabilities in an application 

when measured against the four criteria we defined earlier provides the following 

results: 

i. Ability to choose a fault injection point 

Under this approach, every variable is a potential fault injection point; in 

particular those that can affect the outcome of conditional branches. That 

is certainly a lot of choices, and could lead to state explosion. 

ii. Ease of injecting a fault, i.e. fault injection mechanism 

The program would be executed using a debugger service, making the 

modification of variable values extremely simple. 

iii. The ability to determine if an injected fault is actually viable, i.e. is a bug 

exploitable thus making it a vulnerability 

The modified variable values can be traced back in the PDG to discover 

their dependence on external input. While it may be time consuming to 

compute this for every variable, a potential fault injected can be verified as 

one that can indeed happen in a program during its course of execution. 

iv. The ability to verify that the application’s behavior with the fault injected 

indicates that it has been compromised and a vulnerability has been 

discovered. 

As discussed earlier, this is the most complicated step of an automated 

fault injection process. In the absence of any information about the state of 

variables inside the program that indicate its normal functioning, one 

would have to depend on criteria such as an application crash or incorrect 
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output to verify that a vulnerability has been exposed. This step therefore 

requires human help and intelligence. 

 The two most significant issues associated with this approach are the inability 

to be very intelligent about the faults that are injected into the program, and the 

relative difficulty in verifying that an application’s behavior indicates that it has a 

vulnerability. Both of these deficiencies can be overcome if the user provides more 

information about the program’s behavior. 

 

 

5.5 Flow Graph Approach with Parameter Metadata 

 As mentioned above, the two main deficiencies of using a basic flow graph 

approach exclusively with no additional data can be abated by having the user 

provide a little more information about the program. A program is a collection of 

functions that are executed in some sequence. When a programmer uses an API or 

components written by someone else, he/she does so by invoking functions that are 

part of the API. We thus consider a function to be a useful abstraction, around which 

we can build metadata and criteria to help the fault injection process. 

5.5.1 Functions and their abstraction 

 A function can be thought of as a unit comprising three primary components, 

the input parameters, body of the function, and its return value. In an API, the code 

comments for each function as provided by the author describes the input parameters, 

return value, and provides a brief, high-level description of the purpose of the 

function. These comments sometimes include assumptions made by the function 
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about program input, and constraints that describe possible return values from the 

subroutine. 

 We see program comments as a source of very useful information that can be 

used to improve fault injection process. If for legal inputs to a function, an injected 

fault causes the return value to be something other than that specified by the author of 

the function, we have discovered a vulnerability. Similarly, a programmer’s 

assumptions about inputs to a function may be invalid, or unexpected input not 

handled correctly, giving another source of program vulnerabilities. The goal of fault 

injection is to produce output that does not match the constraints as laid out by the 

programmer. The metadata that is available in a function’s comments provides the 

fault injector hints about faults to inject so that the function produces certain (wrong!) 

output, while the subroutine’s PDG representation provides the fault injector hints on 

how to go about achieving the same. 

5.5.2 Using parameter information in fault injection 

 Consider the debit() function example from Figure 8 and the following 

constraints provided by the programmer: 

a. Return value >= 0 

Suppose balance < 0 and debitAmount is greater than 

balance, then tempBal is always < 0 and the function returns the original 

negative valued balance variable. This is not in agreement with the 

constraint provided by the programmer, and will therefore be flagged under 

our scheme as a vulnerability. The negative balance has the potential to 
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propagate elsewhere in the code under the programmer’s assumption that the 

balance value as returned by the debit() function is always correct.  

Consider a slightly different set of function inputs. When 

debitAmount < 0, and balance > 0. Then, tempBal would be > 0, 

and the function would return a value that is larger than the original balance in 

the account. This is a problem!  

  Similarly, assume that the balance variable is negative. If 

debitAmount were a negative quantity less than balance, then the 

variable tempBal would become greater than zero, and this would be 

returned as the new balance.  

  In the last two examples, the function returns positive (although 

incorrect!) quantities for the balance, and therefore satisfies the programmer 

provided constraint, which only requires the return value to be greater than or 

equal to zero. Our approach would not detect the input combinations as that 

potentially exploit vulnerabilities! Therefore, the success of using a metadata-

based approach for finding vulnerabilities is dependent in no small part on the 

hints provided to the fault injector by the programmer. 

One could claim that a programmer knows his code best and only 

makes calls to the function debit()with correct input, i.e. by validating 

parameters before it is sent to the function, and by validating output after it is 

returned from it. No matter what these assumptions are, based on the criteria 

provided for the input and output, this function when considered as a separate 

entity exhibits vulnerable behavior. There is always the possibility that the 
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code’s ownership changes in the future, or it is opened up as an API or web 

service, at which point the damage that could be done by malicious code as 

listed above is enormous. The fault injector would be better off flagging such 

cases as potential vulnerabilities, and the effect of the incorrect return values 

from the function can be studied in the program’s flow graph at points were 

debit() is called. 

 

b. Input balance > return value 

This is another possible user specified constraint, and it shows similar 

vulnerabilities to the ones discussed in part a. For example, consider that 

balance were negative, and debitAmount is a negative value less than 

balance. The difference, tempBal would become positive, and the 

function would thus return a positive value. However, this is clearly in 

violation of the user provided criterion, which specifies that the input balance 

(which is negative) should be greater than the balance value returned by the 

value (which in fact postitive). By our formulation, such behavior corresponds 

to the program having a security vulnerability. The same input combinations 

was used in a. and it was unsuccessful in finding the vulnerability, yet, under 

the constraints laid out here would the set of function inputs would help 

discover the vulnerability. The only difference between a. and b. is the 

constraint provided by the programmer. 
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 As can be seen from the examples above, the kind of faults to be injected 

depends on the output that needs to be generated to show that the function’s execution 

is in violation of the assumptions made by the programmer. This makes user provided 

criteria about return values from functions an absolute requirement. Input criteria, i.e. 

information on parameters on the other hand are not required, but their use would 

make finding vulnerabilities a lot easier. Consider the following code execution 

sequence: 

 

Figure 10 Usefulness of metadata provided by programmers 

 

 If the user provides input criteria for FooFunc, i.e. defines some constraints 

on A, and B, the logic until line 2 could have faults injected in it, so that these 

constraints would be violated. If such a code execution path is found, then the 

programmer’s assumptions are invalid, and thus there is a potential vulnerability in 

the program. 

 Therefore, constraints defined on the input parameters and return values of a 

function are not only useful when that function is checked independently for security 

vulnerabilities, but also when calls are made to this function elsewhere in the code.  

5.5.3 How are fault values chosen? 

 The discussion around the debit()function above considered possible input 

combinations for variables balance and debitAmount that violate some of the 

programmer provided criteria and assumptions. However, if this process is to be 

1 // Application code 
2 // A and B are variables computed 

//before this line 
3 retval = FooFunc (A, B) 
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automated, the fault injector needs to determine what fault values can be legitimately 

inserted at each step when the application is executed. We use a range-based 

approach, where at each step, the range of values that a variable may take is tracked. 

Each time an instruction is executed, the possible values for a variable are updated. 

Consider the following example: 

 

Figure 11 Example to illustrate the use of variable ranges 

 

In this example, variable x can assume any legal integer value at line 2. This 

stays the same in lines 3 and 4. However, after line 5 executes, x is restricted to the 

set of even integers. Tracking these range of values for integer variables allows for a 

final comparison of the constraints as provided by the user to the range of values as 

deciphered by the fault injector by looking at the program’s dependence graph. Any 

mismatch between the two signals a potential vulnerability. A fault can then be 

injected anywhere in the execution sequence to trigger an exploit. 

5.5.4 Usefulness of bytecode  

 Consider the code snippet below, which is a simple function that accesses a 

database, and retrieves results by executing a query. 

When the fault injector locates the executeQuery() method, it can 

automatically modify the connection string to include a SQL injection attack. 

Similarly, since the value returned from the function is a ResultSet object, the 

1 int function (int x) 
2 {  
3   x = x + 2; 
4   x = x * 2; 
5   return x; 
6 } 
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programmer could define some rules and constraints about the expected output from 

any queries that the function executes. For example, the programmer could list the 

relationship between certain columns in the output with the inputs to the function 

(and thus the SQL query). Alternatively, one could define a constraint on the number 

of results returned by the query. Specifying and using criteria as exhaustive and 

informative as those listed above would be impossible, or extremely hard using just 

assembly code and without any additional hints or metadata.  

 

 

  

 

 

 

Figure 12 Java code that uses a very simple SQL query 

 

The above methodology could in general be extended to any function, be it an 

API function in the Java class libraries, or one written by the application programmer 

himself. The abstraction of a program at a higher level, with more information about 

the functions invoked, and the input parameters allows for the fault injection scheme 

to be more advanced, and also allow for a better vulnerability verification process.  

 This overall technique, which utilizes a PDG along with programmer provided 

metadata and constraints on function input and return values, can be summarized by 

looking at our four evaluation criteria. 

i. The ability to choose a fault injection point 

1 public ResultSet accessData (String name, String username, 
String password) throws SQLException 

2 { 
3 String query = "Select * from FooTable where name="+name; 
4 Connection conn = DriverManager.getConnection(query, 

username, password); 
5   
6  ResultSet r = conn.createStatement().executeQuery(query); 
7   
8  return r; 
9 } 
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Faults can be injected arbitrarily at any point in the source code because it 

is done though a debugger. Injecting a fault is the same as modifying a 

variable’s value. 

ii. Ease of injecting a fault, i.e. the fault injection mechanism 

As mentioned in i., it is just a simple use of the debugger to modify 

variable values. 

iii. The ability to determine if an injected fault is actually viable, i.e. is a bug 

exploitable thus making it a vulnerability 

The PDG allows each variable to be traced back to the sources on which it 

is dependent, such as external input, or their un-initialized use in a 

function. Once such a source has been found, the injected fault becomes 

entirely viable. 

iv. The ability to verify that the application’s behavior with the fault injected 

indicates that it has been compromised and a vulnerability has been 

discovered. 

This ability is one of the biggest gains of this method. The moment the 

fault injector discovers that one of the criteria provided by the user about 

input parameters to a function, or a function’s return value do not match 

up with the information inferred through analysis of the PDG, the program 

suffers from a potential vulnerability. This is because a programmer’s 

assumptions and understanding of the behavior of a program manifest 

themselves on the constraints that he/she defines, and when these are 

violated, a gulf appears in the programmer’s view of the program and the 
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actual behavior based on source code. This is a source of program 

vulnerabilities.  

 

 

5.6 White Box Approach with Full Application Source Code  

 The final level in our hierarchy is when an application’s entire source code 

listing is available for the consuming application. In this case, one could use both 

static and dynamic techniques to discover program vulnerabilities. Having metadata 

as described in the previous section could still be useful because it would enable a 

tool to find the differences between the programmer’s assumed and actual 

implementations. Dynamic techniques such as environmental perturbation would be a 

good complement to static verification methods, as they deal with the effect of 

changing external factors on an application. Such conditions may be difficult to infer 

by just looking at the source code.  

The availability of source code also allows for a unique form of fault 

injection. Application code can be modified so that when the program starts 

execution, control is short-circuited to a part of the program where a preliminary 

analysis by the user identified a potential vulnerability. This portion of code could 

then be subject to faults injected through the program input. Modifying source code to 

implement such short cuts has the potential to reduce the amount of time spent 

evaluating the application because unnecessary code is ignored; such an optimization 

would be impossible if the application were only available as a compiled executable. 

When measured in terms of the four fault criteria introduced earlier, we make the 

following observations: 
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i. The ability to choose a fault injection point 

With the full source code available, a reviewer will be able to analyze the 

program in detail and determine exactly the fault injection point desired. 

Source code can then be modified to have control jump directly to location 

with suspected vulnerabilities and this can be tested using faults injected 

either in one of the program variables or external input. 

ii. Ease of injecting a fault, i.e. the fault injection mechanism 

A fault can be injected anywhere inside the program by modifying source 

code or outside it by changing inputs or environmental resources.  

iii. The ability to determine if an injected fault is actually viable, i.e. is a bug 

exploitable thus making it a vulnerability 

An analysis of the source code would reveal if there is a control flow path 

to the vulnerable segments, and an input combination that forces the 

program down this path. Once such a path is discovered, it can be verified 

by injecting a fault and tracing program execution. 

iv. The ability to verify that the application’s behavior with the fault injected 

indicates that it has been compromised and a vulnerability has been 

discovered. 

With access to the full source code, one should be able to determine the 

security policy assumptions of the application. When the program behaves 

differently from the assumptions, then a vulnerability has been found. 

 



 

 70 

 

In summary, when full source code is available, any number of static 

techniques and tools [4, 5, 6] can be used, and dynamic approaches are a worthy 

complement to static approaches. They can expose certain sources of vulnerabilities 

(for example race conditions) that could be missed by a purely static analysis of the 

source code. It is up to the security reviewer to choose the balance between the 

dynamic and static approaches that can be used when one has full access to the 

program’s source listing. 

 

 

5.7 Comparative Summary of the five different approaches 

 The table below summarizes the advantages and shortcomings of each of the 

five approaches that were described above. The columns represent the approaches, 

while the rows represent the four criteria that we defined earlier to aid us in 

evaluating each technique. 

 Complete Black 

Box Approach 

with an 

executable 

Black box 

Environmental 

Approach 

Basic Flow 

Graph 

Approach 

Flow Graph 

Approach with 

Parameter 

Metadata 

White Box 

Approach with 

Full 

Application 

Source Code 

i Application Input. 

 

There are 

numerous 

possible input 

combinations 

potentially 

leading to state 

explosion. 

Environmental 

resources 

depending on 

system call 

executed. 

 

Fewer insertion 

points, but every 

fault is important 

because the 

environmental 

resource in 

which the fault is 

injected is 

Every 

variable, 

especially 

those that 

affect control 

flow. 

 

For variables, 

try different 

possible 

values based 

on branch 

conditions, 

thus forcing 

Every variable 

in program. 

 

The metadata on 

return values 

and parameters 

can be used to 

pick intelligent 

fault values, 

such that the 

conditions as 

provided by the 

programmer are 

violated. 

Source code 

when analyzed 

would reveal 

possible 

vulnerable 

sections in the 

program.  

 

The entry points 

to these code 

sections, for 

example, the 

enclosing 

function would 
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definitely 

accessed. 

 

The faults to be 

injected are 

chosen based on 

the system call 

made, and the 

parameters to the 

function. 

 

new execution 

paths. 

 

This could 

lead to state 

explosion, as 

amount of 

intelligence 

used in 

injecting 

faults is 

minimal. 

 

Choosing such a 

value requires 

more analysis, 

but it also 

provides better 

results. 

then become a 

fault injection 

point.  

ii Very easy 

because 

application input 

can be easily 

modified 

This is 

complicated 

because system 

calls need to be 

hooked and fault 

injected at the 

appropriate 

times. The initial 

fault injection 

framework is a 

little 

complicated, but 

once 

implemented, 

actually 

modifying the 

environmental 

resources is 

simple. 

This approach 

would be 

executed 

under a 

debugger, 

thus making 

modifying 

variable 

values 

extremely 

simple. 

This is also 

executed under a 

debugger, and 

modifying 

variables is easy. 

Faults can be 

injected 

anywhere 

external to the 

program, such as 

input or the 

environment 

using techniques 

explored in 

previous 

sections.  

 

Source code can 

also be modified 

to inject faults 

inside the 

program. 

iii The viability of a 

fault is poor 

because most of 

the faults are 

injected in a 

brute-force 

manner without 

using a lot of 

knowledge about 

the application. 

In this approach, 

faults injected 

are more viable 

because we 

know exactly 

which resources 

a program 

accesses, and 

how it uses them. 

The PDG 

allows any 

injected fault 

to be traced 

back to 

external input 

or to an un-

initialized 

variable. Once 

such a source 

has been 

identified, the 

fault is 

entirely 

viable. 

The viability 

measure is the 

same as the 

previous 

technique (Basic 

Flow Graph). 

An analysis of 

source code 

would reveal if 

the vulnerable 

sections of code 

are accessible, 

and would be 

able to find the 

corresponding 

input 

combinations to 

make this 

happen. 

 

A fault injected 
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to execute this 

portion of code 

then becomes 

viable. 

iv Verifying that 

certain behavior 

indicates a 

vulnerability is 

extremely 

difficult without 

completely 

understanding the 

program’s 

characteristics. 

Simple cases such 

as application 

crashes can be 

tracked easily, but 

not more 

complicated ones 

such as 

information sent 

out over the 

network. 

Just like the 

black box 

approach, 

without any help 

from a human 

reviewer, 

classifying the 

non-trivial cases 

as vulnerabilities 

is difficult.  

 

If the security 

reviewer actually 

provides the 

expected output, 

then it can be 

compared against 

actual output, 

and any 

difference 

flagged as a 

potential 

vulnerability. 

For the same 

reasons as the 

previous two 

approaches, 

the lack of 

information 

about a 

program can 

make the 

vulnerability 

classification 

process 

difficult. 

This approach is 

unique from the 

others in that 

one has almost 

all the 

information 

necessary to 

determine if a 

vulnerability has 

been discovered. 

The moment the 

fault injector is 

able to find a 

viable fault that 

violates the 

conditions laid 

out by the 

programmer, a 

potential 

vulnerability has 

been discovered. 

With the entire 

source code 

available, a 

reviewer has a 

full 

understanding of 

the program’s 

security 

assumptions and 

framework.  

 

Any discovered 

violations of this 

framework 

would then 

make the 

program 

vulnerable to 

attack. 

 

Table 3 Comparison between different fault injection approaches 
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Chapter 6: Conclusions and Future Work 

 

 

6.1 Conclusions 

 With the ever increasing complexity of software, and developers’ reliance on 

code not written by them (but which is not always well tested and security analyzed 

either), the need for a security analysis framework that can be used to analyze and 

evaluate the security characteristics of an application or library is urgent. This 

problem can be approached from any number of different directions, either static 

analysis or dynamic schemes such as software testing and fault injection. The use of 

fault injection in finding security vulnerabilities is a nascent field and provides a lot 

of opportunity for innovation and improvisation of existing approaches. 

  Every program executes in an environment, and uses information and data 

that it collects by interacting with its surroundings. This presents a significant 

opportunity to find program vulnerabilities by injecting faults in resources as they are 

used by programs during runtime. Towards achieving this goal and testing our 

hypotheses, we developed EFIVA, Environmental Fault Injector and Vulnerability 

Analyzer, which perturbs the environment and uses all three steps of a fault injection 

process: identifying a fault injection point, injecting the fault, and ultimately verifying 

that a vulnerability has been exposed in the program. 

 While environmental perturbations are certainly a significant source of 

vulnerabilities, other factors, such as an application’s use of API functions that do not 

necessarily interact with the environment play an important role in determining the 
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application’s resilience to attack. We therefore propose a more extended hierarchy of 

approaches that a security reviewer can choose from depending on the application’s 

available abstractions. Clearly, the more a person knows about a program and its 

behavior, the better ability he has to analyze the program’s security policies to find 

potential vulnerabilities and attack points. In realization of this fact, the different 

levels of our hierarchy each assume different program abstractions and amount of 

information available about the application. 

 Such a hierarchy would not be useful unless one is able to compare and 

contrast each approach. We therefore use a set of four criteria to analyze each 

technique’s strengths and weaknesses. Such a comparison will allow any person to 

choose a technique that is right for their situation depending on how much is known 

about the application, the time available to perform the security review, and 

ultimately the level of confidence that is desired in the robustness and security 

properties of the application. 

 

 

6.2 Future Work  

 The work presented in this thesis can be expanded in the future, and we 

describe some of the possibilities below. 

i. Expanded environmental interactions 

Du and Mathur’s results in [10] suggested that the number of security 

vulnerabilities associated with network and inter-process communication 

were significantly lesser than those that were attributed to file system 

interactions. This conclusion led us to implement only file system 



 

 75 

 

interactions in our fault injector. With attackers inflicting damage of 

increasing magnitude and applications become increasingly connected 

over the network, network communication will be a critical source of 

vulnerabilities in the future, and should be modeled in our fault injector. 

  Similarly, there are other sources of vulnerabilities in programs such 

as multiple threads of execution and resources such as the system clock 

that can be modeled as well. 

ii. An improved vulnerability verification scheme 

A critical limitation of the black box environmental scheme, and the black 

box approach with an executable is the inability to claim with a high level 

of confidence that a program’s behavior with a fault injected does indicate 

the presence of a security vulnerability. 

While output matching is a start, tests that are more conclusive need to 

be developed so that one can claim with confidence that an application has 

been compromised. A possible approach could be the use of application 

specifications to infer expected behavior, but a standard format needs to be 

constructed that all program specifications should adhere to. This enters 

the realm of formal verification methods, where a lot of work has already 

been done to address similar problems. 

iii. Objected Oriented concerns and a specification scheme for parameter 

metadata 

In our flow graph with metadata approach, we assumed that the 

programmer provides constraints that he/she believes to exist on the input 
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parameters, and return values from a function. For return values and 

parameters that are objects, a programmer might be reluctant to expose 

hidden fields in the corresponding class. This is a valid concern, because 

providing information about private variables violates the encapsulation 

properties of Object Oriented Programming.  However, providing such a 

capability could improve the vulnerability finding process. 

 In addition, a scheme needs to be developed for representing all of this 

metadata information provided by the programmer. One possibility is the 

use of XML which has been gaining increased momentum and is now the 

standard format for several web technologies such as WSDL, XML-RPC 

and RSS. 

iv. More approaches in the hierarchy, and domain specific techniques 

We currently have five approaches in our hierarchy, but there is always 

room for more. With greater refinement of the constraints and abstractions 

of programs, one may be able to include more levels so that a reviewer has 

an increased set of options to make the right choice. 

 Further, our approaches are good for generic, executable applications, 

but with an explosion in the number of websites and online commerce, 

web applications are a significant class of programs that need analysis. 

The kind of security problems that they face may be very different from 

what console applications experience, especially with issues such as 

authentication, session and state. Therefore, our generic approach 
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proposed here can grow to include more domain specific applications, and 

address their requirements in detail.  
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