

ABSTRACT

Title: ON THE USE OF FAULT INJECTION TO

DISCOVER SECURITY VULNERABILITIES

IN APPLICATIONS

 Hariharan Sivaramakrishnan

M.S., 2006

Directed By: Prof. Michel Cukier

Center for Risk and Reliability

Department of Mechanical Engineering

The advent of the Internet has enabled developers to write and share software

components with each other more easily. Developers have become increasingly

reliant on code other than their own for application development; code that is often

not well tested, and lacking any kind of security review, thus exposing its consumers

to security vulnerabilities. The goal of this thesis is to adapt existing techniques, and

discover new approaches that can be used to discover security vulnerabilities in

applications. We use fault injection in each of our techniques and define a set of

criteria to evaluate these approaches. The hierarchy of approaches, starting from a

black box and ending in a full white box approach, allows a security reviewer to

choose a technique depending on the amount of information available about the

application under review, time constraints, and extent of security analysis and

confidence desired in the program.

ON THE USE OF FAULT INJECTION TO DISCOVER SECURITY

VULNERABILITIES IN APPLICATIONS

By

Hariharan Sivaramakrishnan

Thesis submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Master of Science

2006

Advisory Committee:

Assistant Professor Michel Cukier, Chair

Assistant Professor Atif Memon

Dr. Ioana Rus

© Copyright by

Hariharan Sivaramakrishnan

2006

 ii

Dedication

 To my parents, Bhavani and Sivaramakrishnan, who, through their emotional

support, love and enthusiasm, have been the force constantly pushing me towards

scaling greater heights during my college career here at UMD. This thesis dedication

is my way of thanking them for their endless sacrifices and efforts to ensure that I

receive a fantastic education.

 iii

Acknowledgements

I would like to take this opportunity to express my heartfelt since thanks and

gratitude to Prof. Cukier for his encouragement, constant guidance and excellent

support through the thesis process. I shall forever be indebted to him for the insightful

conversations and discussions that we had over the last few months.

I would also like to extend my gratitude to the members of the thesis

committee, Profs. Memon and Cukier, and Dr. Rus for taking time off their busy

schedule and reviewing my research work.

Special thanks to my parents, and all the members of my family for their

eternal love and affection.

Last but not the least, I would like to express my appreciation of the academic

process. The last five years in university have been a fantastic learning opportunity

and a life-changing experience. Successfully completing projects, exams, courses,

research and papers gives encouragement and confidence unlike any other and makes

education that much more enriching and rewarding.

 iv

Table of Contents

Dedication ...ii

Acknowledgements ..iii

Table of Contents ... iv

List of Tables..vi

List of Figures ...vii

Chapter 1: Introduction ... 1

1.1 Motivation ... 1

1.2 Approach ... 2

1.3 Thesis Contributions ... 8

1.4 Thesis Organization... 10

Chapter 2: Environmental Perturbation and Fault Injection 12

2.1 Motivation ... 12

2.2 Environmental Interactions ... 16

2.3 Fault Injection ... 19

Chapter 3: EFIVA: A tool to discover program vulnerabilities............................ 22

3.1 Collector .. 22

3.2 Fault injector ... 25

3.3 Verifier .. 29

3.4 Case Studies .. 31

Chapter 4: Expanding on the Environmental Approach 36

4.1 Motivation ...Error! Bookmark not defined.

 v

4.2 The pros of an environmental approach.. 36

4.3 The cons of an environmental approach ... 37

4.4 Can we do better?.. 39

4.5 Why do we need a hierarchy of approaches?.. 39

4.6 Why do security vulnerabilities happen? .. 41

4.7 Fault Injection and a Hierarchy of Approaches .. 42

Chapter 5: The Hierarchy of Approaches in Detail .. 47

5.1 Black Box Approach with an Executable ... 47

5.2 Black Box Environmental Approach .. 50

5.3 Using Program Representations to find vulnerabilities............................... 52

5.4 Basic Flow Graph Approach ... 56

5.5 Flow Graph Approach with Parameter Metadata.. 60

5.6 White Box Approach with Full Application Source Code.......................... 68

5.7 Comparative Summary of the five different approaches 70

Chapter 6: Conclusions and Future Work... 73

6.1 Conclusions ... 73

6.2 Future Work .. 74

Bibliography.. 78

 vi

List of Tables

Table 1 Candidate faults to be used in the vulnerability discovery process 18

Table 2 Automatic fault injection decisions made by EFIVA 27

Table 3 Comparison between different fault injection approaches............................. 72

 vii

List of Figures

Figure 1 Conceptual model of our dynamic, black box approach 23

Figure 2 Fault selection algorithm .. 27

Figure 3 Algorithm to find application vulnerabilities.. 30

Figure 4 Null pointer de-reference crashes the application... 31

Figure 5 TOCTOU vulnerability in file accesses.. 33

Figure 6 Output comparisons for vulnerability detection ... 35

Figure 7 Black Box to White box - A hierarchy of fault injection based approaches

for finding vulnerabilities.. 44

Figure 8 Possible implementation of debit () function in financial applications 57

Figure 9 PDG representation for debit () function .. 57

Figure 10 Usefulness of metadata provided by programmers..................................... 64

Figure 11 Example to illustrate the use of variable ranges ... 65

Figure 12 Java code that uses a very simple SQL query... 66

 1

Chapter 1: Introduction

1.1 Motivation

Software today is incredibly complex, making software engineering one of the

most, if not the most challenging among all engineering disciplines. Programs will

almost always have bugs in them; however, the most worrisome of these bugs are

(security) vulnerabilities that could be exploited by an attacker to compromise an

application. With developers increasingly adopting a componentized model for

creating software, wherein they utilize code written by others in their applications, a

vulnerability in one critical component has the ability to compromise all applications

that depend on this module.

In programming today, security is often an after-thought; it is secondary to

other more important considerations such as performance and usability. However,

attackers are smarter, more energized, and more motivated than ever to compromise

applications. In a recent paper, Panjwani et al showed that in 48 days, 760 different

attackers attacked two computers that had 25 open vulnerabilities (each attacker was

assumed to be associated with a source IP address) [1]. The invention of the Internet

has made hacking all that much easier; a computer connected to the Internet is now

susceptible to attacks from hackers all over the world. Security is a significant

challenge, and it is bound to become more critical in the future, with applications

increasingly using the network for communication, and growing in size and

complexity.

 2

Software testing and security research has produced various static and

dynamic techniques to find application vulnerabilities. There are two approaches to

finding vulnerabilities in applications, static and dynamic. Static approaches look at

source code to identify potential security vulnerabilities, such as buffer overflows,

null pointer references, dynamic memory allocation and memory corruption [4, 5, 6].

In software testing, which is a dynamic approach, strategies such as penetration

testing are used, where a tester assumes the role of an attacker and tries to exploit an

application by finding vulnerabilities in its specification and architecture. Another

dynamic approach, fault injection, which has been used extensively in hardware

verification in the past, is slowly catching steam as a possible complement to static

analysis and testing methodologies. In this thesis, we consider different fault injection

based approaches to make software more secure.

1.2 Approach

Towards solving this problem, we start with an environmental perturbation

approach, where we analyze the interactions between an application and its execution

environment. An application runs on an Operating System (OS), and thus the

execution environment consists of all resources that are outside the program,

including OS services such as access to the file system, network interface, other

processes executing on the machine and environment variables on the system. Every

application receives and processes external input, be it from the user, or from a

remote source over a network, or by reading files. These external interactions allow a

fault injector to inject faults in environmental resources, and modify them at runtime.

 3

When exposed to these faults, a program may behave differently than how it would

under normal input, thus exposing a security vulnerability.

Environmental interactions are a significant source of program vulnerabilities,

and we would like to explore the usefulness of such a technique in the absence of

program source code. Often, software components are only available as compiled

libraries or executables, and do not include any source code listing. We are interested

in exploring the applicability and usefulness of environmental fault injection given

these constraints.

An application interacts with its environment though OS system calls, and

these system calls can be traced by monitoring the application at runtime. Through

these traces, one can decipher the names of system calls, the parameters to the call,

and even their return value. These three pieces of information provide a security

reviewer with knowledge about the kind of resource being accessed by the program

(name of the system call), the name of the resource (usually the first parameter), how

the resource are being used (other parameters in the function), and the success or

failure of the access attempt (return code). This information allows a fault injector to

inject faults in resources as and when they are used in the program, so that the next

time the program accesses the resource, the resource looks different or has properties

that the developer did not consider when writing the program.

Looking at an application’s behavior when a fault is injected sheds some light

on the possibility of there being a security vulnerability in the program. We consider

fault injection to be a hybrid of both fault and error injection. We use the term fault

injection a little loosely because some of the faults that we inject are indeed errors.

 4

Under an environmental approach, faults are injected in resources that are external to

the program, making the process relatively easy. The difficulty is in choosing the

number and type of faults to be injected. The fault injector maintains a list of

candidate faults that it can inject every time it encounters a certain system call. A

security reviewer usually develops such a list before-hand. The particular fault

injected is chosen based on the parameters to the system call.

In addition to environmental interactions, there are others sources of security

vulnerabilities in programs as well, such as the improper use of library functions,

broken programming logic or even a careless oversight on the part of the developer.

We clearly need a different approach to find such vulnerabilities, because while it is

possible that such implementation gaffs appear when environmental resources are

used, there is an equivalently large, if not bigger pool of problems that are

independent of a program’s interactions with the outside world.

A cursory look at the problem of finding general security vulnerabilities in

applications leads to a rather simple conclusion. The extent to which a security

reviewer will be able to analyze an application’s security characteristics and check for

vulnerabilities is entirely dependent on the kind of information he/she has about the

program. If a reviewer has full access to source code, then he/she can understand the

security properties and assumptions of the program in detail, while if he/she is only

provided with a compiled executable, then the reviewer is dependent on what

information can be inferred by running the program and tracking its behavior.

Clearly, not every person has access to source code, and similarly, there are occasions

when more then just a compiled executable is available. Such information may

 5

include application specifications, architectural designs, code comments, etc. We

therefore see the need to develop a hierarchy of approaches that a security reviewer

will be able to use as a reference when choosing a technique to discover security

vulnerabilities in programs. A hierarchy allows us to define a taxonomy of

techniques, with each technique relaxing the constraints imposed on that above it in

the hierarchy. The technique chosen depends on how much is known about the

program, the amount of time that can be invested in the analysis and the confidence

level desired in the security behavior of the program.

We start by assuming that the only information available about a program is a

compiled executable, and slowly relax constraints and ultimately end up in a full

white box approach where we assume that the reviewer has full access to source code.

The hierarchy that we propose has five levels, a basic black box approach, an

environmental approach, using a program’s flow graph information, using a flow

graph with parameter metadata, and ultimately using the program’s source code.

Each technique uses fault injection in its own unique way. While the black box

approach injects faults in program input, the environmental approach does so in

resources used by the program. The basic flow graph and flow graph with parameter

metadata techniques modify program variables, while the full source code approach

looks at modifying program input and source code to detect vulnerabilities.

 While the black box and environmental approaches use external

representation of a program (a compiled executable), the two flow graph based

approaches use internal program representations to find possible vulnerabilities. In

the latter case, an application is represented using a program dependence graph,

 6

which describes the control flow and data flow dependencies in an application. The

goal of such an approach is to force a program into states that the programmer did not

envision, either because of an improper understanding of the application

requirements, or implementation bugs. When such a state is discovered, the program

could be vulnerable, because there is a very good chance the programmer’s

implementation would be unable to handle the wrong state and be susceptible to

attack either as soon as the new state is discovered or somewhere else in the

execution path of the program.

While some of this information can be inferred by just looking at a program’s

flow graph, there is a lot of insight that can be gained by having metadata that

describes the programmer’s view of his implementation. Such metadata may include

the programmer’s understanding of constraints on the values of input parameters to a

function, and the function’s return value. The fault injector then attempts to find

possible variable values, and control flow paths that would violate these programmer

provided constraints. If such variable values and an execution path is discovered,

there is a clear disconnect between the programmer’s view of his implementation and

the actual implementation in source code. We consider this to be a vulnerability.

Finally, with all of the program’s source code available, a security reviewer

can use any of the static analysis techniques that is suggested in the literature, and use

some of the dynamic techniques discussed earlier in this thesis, such as the black box

and environmental approaches to find vulnerabilities in programs. In addition, the

reviewer can modify source code to short circuit certain portions of the application,

thus breaking up the entire program into smaller segments, either one function or a

 7

collection of functions at a time. Doing so will allow for small components of the

bigger program to be reviewed one at a time. Each component can be analyzed more

easily, and its security characteristics better understood.

Each of the five approaches that make up the hierarchy sounds like a viable

option for use by a security reviewer. However, in order to provide a meaningful

comparison of the techniques, we propose four criteria to determine the usefulness,

effectiveness and viability of each of our approaches. These four criteria are:

i. The ability to choose a fault injection point

ii. Ease of injecting a fault, i.e. the fault injection mechanism

iii. The ability to determine if an injected fault is actually viable, i.e. is a bug

exploitable thus making it a vulnerability

iv. The ability to verify that the application’s behavior with the fault injected

indicates that it has been compromised and a vulnerability has been

discovered

The hierarchy of approaches when coupled with the relative merits and

demerits of each as obtained by using the four criteria defined above gives a security

professional enough hints to make a judicious decision on the approach(es) that

would be best suited for his/her purposes. The choice of technique would be

determined by the amount of time available for the review, the kind of knowledge and

understanding that the reviewer has about the application, the level of confidence

desired in the security characteristics of the program.

 8

 In all of our techniques, we consider application crashes are indicative of

vulnerable behavior by the application. This could also be viewed as a testing

problem, wherein one looks at the availability perspective of execution. However, in

our opinion, the ability to crash an application by injecting a fault (as our approaches

do) provides a means for an attacker to exploit this vulnerability and unleash a DoS

attack. The effects of such an attack are exacerbated if the application is unable to

perform its most basic functionalities. For example, if a web server can be crashed by

having garbage data in a protocol string, then the server can be rendered useless very

soon.

 Similarly, application crashes also introduce a discussion about the distinction

between finding vulnerabilities and correctness. Our black box approaches use

crashes to find discover vulnerable behavior; the absence of source code or any other

information about a program’s security policies makes analysis using other criteria

rather difficult. Towards improving this, we propose output comparisons as another

possible approach, the success of which greatly depends on the kind of information

made available to the security reviewer.

1.3 Thesis Contributions

 This thesis greatly innovates around some of the work previously done by

Melody Djam (under the guidance of Prof. Cukier) in the realm of environmental

perturbation and proposes new techniques and a hierarchy that uses these techniques

in conjunction with fault injection to discover application vulnerabilities.

 9

 The author inherited Pulad, a precursor to EFIVA, which is a tool described in

this thesis. Significant amount of time was spent in understanding Pulad, fixing the

source code to make it more robust and expand its functionalities. In particular, Pulad

was a simple program that could track another application’s system calls, and modify

file properties, i.e. it could cause environmental perturbations relating to the file

system. The author invested time in actually determining how Pulad and the

information that it gathered could be used in finding application security

vulnerabilities. Pulad’s fault injection capabilities were enhanced so that it now had

some intelligence. Instead of depending exclusively on human input to determine

which faults it should inject at each interaction point, Pulad could now look at system

calls, their parameters, and automatically determine the type and number of faults that

can be injected.

Further, Pulad was given the capability of comparing an application’s

behavior before and after fault injection and determine if any security vulnerabilities

were potentially exposed. Therefore, Pulad’s scope broadened from being a tool that

could track system calls and modify file attributes to one that could also choose faults

intelligently, track application behavior and output, and analyze the behavior to

determine if a vulnerability was discovered. These enhanced functionalities were put

to test by running the application on real world test scenarios. Hence, the author’s

work transformed Pulad into an Environmental Fault Injector and Vulnerability

Analyzer (EFIVA).

The author has submitted two conference papers:

 10

• H. Sivaramakrishnan, M. Cukier and M. Djam. Using Fault Injection and

Environmental Petrurbation for Vulnerability Discovery. Submitted to the

Sixth European Dependable Computing Conference (EDCC-6). Coimbra,

Portugal, Oct. 2006

• H. Sivaramakrishnan and M. Cukier. A Hierarchy of Approaches to Find

Security Vulnerabilities in Applications Using Fault Injection. Submitted to

The 17th IEEE International Symposium on Software Reliability Engineering

(ISSRE 2006). 6-10 November 2006 - Raleigh, North Carolina, USA

1.4 Thesis Organization

 The rest of this thesis is organized as follows: Chapter 2: Environmental

Perturbation and Fault Injection describes environmental interactions, and the fault

injection process, and how when used together, these two techniques can be an

effective mechanism for finding vulnerabilities in applications. Chapter 3: EFIVA: A

tool to discover program vulnerabilities describes the architecture and

implementation details of the tool that we developed to test some of the ideas and

hypotheses proposed in Chapter 2. It also describes some of our case studies that

helped validate that EFIVA can be used effectively in a real-world environment.

Chapter 4: Expanding on the Environmental Approach considers some of the pros

and cons of the environmental approach proposed in Chapters 2 and 3, and describes

a more expansive approach to finding vulnerabilities in applications. It introduces the

 11

hierarchy of approaches and the criteria that help evaluate each technique. Chapter 5:

The Hierarchy of Approaches in Detail describes each of the approaches laid out in

Chapter 4 in detail, and compares and contrasts of all these techniques in a tabular

format. Chapter 6: Conclusions and Future Work discusses the conclusions of our

research, and possible future directions that it might take.

 12

Chapter 2: Environmental Perturbation and Fault Injection

2.1 Motivation

With the ever-increasing complexity of software, there has been an explosion

in the number of faults (bugs) present in software. While one would hope that most of

these faults are benign, malicious users and attackers are always on the lookout for

(security) vulnerabilities that can be exploited, thus compromising applications.

Vulnerabilities are classified into three types [2,3], network, host and

application. As with all software faults, there are two verification approaches to

finding vulnerabilities in applications, static and dynamic. Static verification methods

and tools (FlawFinder [4], RATS [5] and ITS4[6]) have been explored extensively

and with good success to find certain classes of vulnerabilities such as buffer

overflows, integer overflows, and race conditions. However, information gathered

from the execution profile of an application may be very different from that inferred

through static analysis, thus making dynamic techniques a worthy complement to

static techniques. Several factors such as the environment, operating system

scheduling and concurrent execution are often left unexplored by static approaches;

these open up a completely new class of problems that may cause an application to

fail. Even if static analysis tools were to look at these external factors, they would

identify potential bugs without being able to prove conclusively that a bug is indeed a

vulnerability.

 13

The other approach, dynamic verification involves software testing and fault

injection. Among the various software testing strategies, penetration testing is most

suitable to find security vulnerabilities. Penetration testing is a methodology whereby

a tester intentionally tries to breach the security properties of an application by

understanding its features and design. In [7], McGraw explains that penetration

testing often occurs very late in the software development cycle, thus compromising

the extent to which an application can be modified to fix any vulnerability that this

approach may discover. Not only are there scheduling concerns with fixing

vulnerabilities late in the cycle, but one also runs the risk of introducing a new

vulnerability while fixing another. Software testing can be a useful tool to review the

security characteristics of an application and with the right criteria, is successful in

finding vulnerabilities. Our work focuses on the use of fault injection, which is the

other form of dynamic verification.

Fault injection, which has historically been used extensively in hardware

manufacturing processes, can also be used as a method to review the security

characteristics of an application. More recently, fault injection has been used to verify

that applications behave as expected for different input combinations and to find

security vulnerabilities, the latter to very limited extents. Fault injection as a

technique can be used in three different ways; either before the application starts

executing (pre-execution Fault Injection), or when it is actually run (execution Fault

Injection), or a combination of the two. When an application is analyzed, either by

looking at source code, or its design documents and description, or in our case

looking at its interactions with the execution environment, one can think of conditions

 14

that possibly violate some of the application’s assumptions. These conditions are

immediately potential candidates for faults that can be injected either before the

program starts executing, or during its execution phase. For example, if a program

assumes the presence of an environmental variable, then deleting the variable before

it is executed is an example of a pre-execution injected fault.

While pre-execution fault injection has the potential to expose vulnerabilities,

execution fault injection has a greater potential to expose vulnerabilities that may not

be readily obvious from a static review of an application’s characteristics and

behavior. In the previous example, let us assume that the environmental variable is

deleted at runtime and not before the application starts execution. In such a situation,

it is possible that in its first attempt, the application is able to read this variable, but

fails when it tries to do so for a second time. If it fails on the second read, does the

application use what it read before, or does it use some garbage value? Does the

program crash or does it continue executing, albeit incorrectly? These interesting

questions may be difficult to answer by looking at an application’s source code (for

example, in a multi-threaded environment), yet become readily apparent at runtime.

Further, execution fault injection allows the fault injector to automatically adapt to

actions of the program under test. The faults injected can be modified depending on

the application’s runtime behavior. On the other hand, pre-execution fault injection

forces a re-run of the program every time a test parameter needs to be changed. This

is because the fault injection system cannot automatically adapt itself to information

that it collects by tracking the application’s runtime behavior. This adaptation can

 15

manifest itself in terms of perturbations to the internal state (variables) of an

application [8], or the execution environment, or a combination of both.

While the jury is still out on the relative effectiveness of static vs. dynamic

techniques, there are certain scenarios where one technique is naturally more

applicable and effective than the other. As an example, static techniques could be

extremely useful if an application’s source code is available, but would be unable to

make a good security review with the availability of only a compiled EXE. However,

in such a situation, a black box approach would be the best first step to finding faults

and security vulnerabilities.

2.1.1 Software Components without source code

Software today is highly componentized and often makes extensive use of

libraries and Dynamic Link Libraries (DLLs) written by different vendors. Such

Commercial Off The Shelf (COTS) components may have been exposed to very

simple security reviews or sometimes none at all, making them potential targets for

attackers, and a source of vulnerabilities for consuming applications. The majority of

such components ship without source code, making the security analysis process

more complicated for application developers and testers. Developers use libraries to

ensure that the software development process is easier, but it is certainly not

comforting when one’s application is compromised by code that is acquired outside

the organization. This problem is even more pronounced for libraries that are freely

available on the internet and are the product of a developer’s pet project.

Thus, there is the need to develop a security-testing framework that will allow

for an intelligent black-box approach for finding security vulnerabilities. The

 16

increasing number of security vulnerabilities due to environmental interactions, and

the conduciveness of environmental perturbation to a black-box approach make

interactions with the execution environment an ideal foundation on which to build our

security platform. Further, the need to change environmental characteristics as an

application executes makes fault injection the obvious choice for our research.

One of the most recent works by Neves et al [9] uses fault injection to

discover vulnerabilities in implementations of the IMAP protocol. Their tool, AJECT,

checks for buffer overflow and other vulnerabilities by detecting email server crashes

on various input combinations. They adopt black box approach and inject faults in the

information packets that are sent to the email server, i.e. its input. While we also

adopt a black box approach, in addition to injecting faults in application input, we

perturb the execution environment by injecting faults in resources that a program

uses, notably the file system. Further, we implement output matching to determine if

a vulnerability has been discovered in the application.

2.2 Environmental Interactions

Environmental interaction [10] refers to an application’s use of resources or

information from the environment where it is executed. These include files,

communication over the network, communication with other processes, and

requesting information (such as environment variables) from the operating system.

When writing software, most programmers work with the implicit assumption that

their application is the only one running on the system, and overlook the fact that

their execution environment is constantly changing. This often manifests itself in how

 17

file permissions and locations are handled, or how the program sends and receives

messages over the network. Programmers make mistaken assumptions about the

environment and do not account for the possibility that between its two uses in an

application, a resource may have been used or modified by someone else, possibly

with malicious intent. We consider environmental interaction to be a significant

source of security problems in applications written today.

In [10], Du and Mathur propose a white-box approach to identifying software

vulnerabilities that result from environmental interaction. They enumerate potential

faults that can be used to discover different types of bugs, such as those pertaining to

IPC (Inter-Process Communication) or file system calls; the latter being responsible

for 87% of faults injected directly through the environment. A direct environmental

fault refers to a fault that stays within the environmental entity where it was injected.

On the other hand, an indirect environmental fault is a fault that was injected in an

environmental entity but propagates in a program though an internal program entity.

Our efforts are thus focused on finding vulnerabilities related to improper use of the

file system, as opposed to the network and IPC, which comprise the other 13% of all

vulnerabilities.

We use those faults that Du and Mathur recommend in their paper and are

summarized in Table 1 below.

Entity Attribute Fault Injection

 file name Change length, use relative path, use absolute path,

insert special characters such as “..”, “/” in the name

 18

Directory Change length, use relative path, use absolute path,

insert special characters such as “..”, “/” in the name

User Input

Command Change length, use relative path, use absolute path,

insert special characters such as “|”, “&”, “>” or new

line in the command

file name Change length, use relative path, use absolute path,

use special characters such as “|”, “&”, “>” in the

name

Directory Change length, use relative path, use absolute path,

use special characters such as “|”, “&”, “>” in the

name

execution path Change length, rearrange order of path, insert a non

trusted path, use incorrect path, use recursive path

Library path Change length, rearrange order of path, insert a non

trusted path, use incorrect path, use recursive path

Environmen
t Variable

permission
mask

Change mask to 0 so it will not mask any permission

bit

file name Change length, use relative path, use absolute path,

use special characters such as “|”, “&”, “>” in the

name

Directory Change length, use relative path, use absolute path,

use special characters such as “|”, “&”, “>” in the

name

File
System
Input

file extension Change to other file extensions like “.exe” in

Windows system; change length of file extension

file existence Delete an existing file or make a non-existing file exist

file ownership Change ownership to the owner of the process, other

normal users, or root

file
permission

Flip the permission bit

Symbolic link If the file is a symbolic link, change the target it links

to; if the file is not a symbolic link, change it to a

symbolic link

file content
invariance

Modify contents of the file

file name
invariance

Change file name

File
System

Working
directory

Start application in different directory

Table 1 Candidate faults to be used in the vulnerability discovery process

 19

2.3 Fault Injection

As with most fault injection methods, we use a three-step approach to find

application vulnerabilities. The three steps are, discovering the fault injection point,

injecting the fault, and determining if a vulnerability has been exposed.

2.3.1 Discovering the fault injection point

The OS system call layer is the abstraction that programs use to communicate

with environmental resources, and other processes running on the machine. During

execution, an application can be traced to determine the system calls that it executes,

thus providing information about the parameters passed to a function, and the point in

the application where the call is made.

The parameters passed to a system call can be used to find information about

the resources being used by the application, for example, the name a file, the kind of

access permissions requested (read, write, both), and the number of times it is used.

2.3.2 Injecting the fault

The process of injecting a fault in an application involves two steps:

i. Identifying candidate faults

Table 1 above shows the different kinds of faults that we consider for use

in our approach. The particular faults to be injected are determined from

the trapped system call information. The name of the system call allows a

filtering of the kind of faults to be injected based on category, while the

function parameters help determine the particular file that is being worked

on.

 20

ii. Injecting the fault into the application, or in our case the environment.

As described in Table 1 above, the faults to be injected involve basic

operations on files such as modifying their locations or attributes. These

changes are easily implemented by using operating system Application

Programming Interfaces (APIs).

2.3.3 Identifying a vulnerability

We define two very simple criteria for discovering vulnerabilities in an

application. The first is checking for application crashes. If an attacker knows how to

crash an application, he can use the same technique repeatedly to create a DoS attack.

The second technique that we propose is output comparison. If a security

reviewer has some knowledge of the output to be expected from the application for a

given input and environmental state, then this output can be compared against that

actually produced by the application at runtime. If there a mismatch between the

expected and actual program output, we assume that a potential vulnerability has been

discovered in the program.

While these two criteria are extremely useful, the vulnerability identification

step of our approach still needs human help and intervention. Quite clearly, faults

injected during program execution may open up several vulnerabilities that go

undetected by just looking at the output produced, or expecting the application to

crash. Similarly, output produced by a program when faults are injected may be

correct, but since it differs from the template provided by the tester, a program

execution trace may be flagged as one that exposed a vulnerability. Human

 21

intervention is necessary to reduce false positives, and in some cases detect missed

cases.

At the core of the problem is the lack of adequate knowledge about the

operations performed by an application by just looking at its execution profile. This is

a trade off that one encounters between black box and white box approaches. While

the environmental fault injection approach that we propose is not as exhaustive as a

brute-force testing technique or full state exploration using static methods, it has the

potential to discover a significant number of vulnerabilities and report fewer false

positives than the other two techniques.

 22

Chapter 3: EFIVA: A tool to discover program vulnerabilities

Chapter 2 introduced the usefulness of an environmental approach, and

provided the list of candidate faults that a fault injector can use to perturb the

environment and discover security vulnerabilities. It also briefly mentioned EFIVA,

the fault injector that we developed to test our ideas and hypotheses. In this Chapter,

we discuss the architecture of EFIVA, and provide some insight into the

implementation of this tool.

EFIVA consists of three components, the collector, fault injector, and verifier.

The collector is the component that runs the test application and records its

interactions with the environment. EFIVA, as implemented now tracks interactions

with the file system.

The tool runs the application under test twice; in the first execution, it collects

information about all system calls including the time of their occurrence. In the

second run, faults are injected and the application output verified.

3.1 Collector

The collector in turn has three primary components; they are the Application

Executor, the Environmental Interaction Scanner (EIS), and the Persistor. The

collector module as a whole is responsible for running the application and collecting

information about all its interactions with the environment.

 23

 Figure 1 Conceptual model of our dynamic, black box approach

3.1.1 Application Executor

The application executor is the simplest of the three collector components; it

executes the application under test by calling the environmental interaction scanner,

and providing it appropriate command line arguments. This is the tool’s interface to

the outside world by accepting input about the application to be tested.

3.1.2 Environmental Interaction Scanner

The EIS module captures all file related application-environment interactions.

It is built on Strace [11], which is a system call trace and debugging tool. Strace

intercepts system calls made by an application without requiring its source code, or a

recompile with a special compiler switch.

 24

Strace executes a user specified command, which is the name of the

application under test and its corresponding command line arguments. All system

calls made by the application and signals that it receives from the operating system

are recorded in an output file. In particular, for each system call, Strace records the

function name, its arguments and return value.

Files being the focus of our work in the environmental interaction approach,

we use Strace to track file system calls. Information gathered by Strace allows us to

be intelligent about the faults injected. For example, one of the arguments in file

system calls is the file I/O mode requested (Read, Write, etc). Modifying the

corresponding file permissions enables us to inject faults that may have otherwise

been difficult to discern by having a black-box representation of the application.

While Strace as implemented provides us with a lot of useful information, we

have included two enhancements that will open up a new class of faults that can be

used for vulnerability detection. Two features we added were the ability to determine

the owner of files used in the application, and its access time. The access time is

measured relative to when the program started execution.

In addition to collecting useful tracking statistics, Strace records unnecessary

system calls and signals. For example, EFIVA is written in Java, and the Java process

APIs are used to invoke Strace. This adds extraneous JVM environmental interactions

to the output; EFIVA prunes out such information when Strace exits. Thus, at the end

of one run, the tester now has a full trace of all file system interactions between the

application and the environment.

 25

At this point, the EIS module, having completed its functionality transfers

control to the persistor module.

3.1.3 Persistor

The persistor module takes all the information recorded by the EIS module

and stores it in a database. EFIVA uses this information in its second run to inject

faults. This database is a useful information store where the tester can try to analyze

the interactions to effectively design test scenarios outside of vulnerability detection.

For example, the tester may be able to create a functional test case based on the

sequence of system calls executed, and their corresponding parameters. This may be

useful for testing application functionality, and not just vulnerability discovery.

3.2 Fault injector

The fault injection process consists of two steps: first is identifying the type of

faults to inject and the second is actually modifying resources or input, i.e. making

the fault visible.

3.2.1 Identifying the fault type

EFIVA has the capability to inject more than one fault at an injection point.

The user of the tool has full control to decide what faults should be injected, and

where. In the absence of any specific input from the user, EFIVA tries to be as

intelligent as possible with choosing how many and what kind of faults should be

injected at each step. For example, when the tool detects a file open system call with

the read only parameter (O_RDONLY), it modifies the file ownership, making it

 26

inaccessible to the user. The file open system call would thus fail, but if such an error

condition is not checked for in the application, there is the possibility of a null pointer

dereference, which would ultimately end in a program crash. Table 2 below provides

a sampling of some of the heuristics that the fault injector uses to choose faults based

on the application’s runtime behavior.

System Call Name System Call

Parameters

Faults injected Why these faults?

Open ()

Opens a file

O_RDONLY

O_WRONLY

O_RDWR

Name of file

being opened

- File existence

- File ownership

- File permission

- File content

invariance

- Directory

permission

O_RDONLY, and

O_WRONLY assume

that the file being

opened exists, and do

not create one if it

doesn’t.

Use File content

invariance when the

O_RDWR or

O_RDONLY is

observed.

Change permissions of

the directory where the

file is created or read or

written

Read ()

Reads file contents

Buffer size

Name of file

being read

- File content

invariance

The application may

crash if the kind of data

included in the file is

different from what it

expects.

Access ()

Checks if the

executing program

has appropriate

privileges

R_OK

W_OK

X_OK

Name of file or

path being

accessed

- File existence

- File ownership

- File permissions

- File content

invariance

The various security

properties may be

checked by the

application, but the

application may be

vulnerable if these

properties change

between when they

were checked, and

when the file is

 27

- Change

executing target to

a symbolic link

actually opened.

For X_OK, having a

symbolic link point to

any arbitrary location

may have the program

execute malicious

code.
Table 2 Automatic fault injection decisions made by EFIVA

Similarly, environment variables and user inputs are modified using

techniques illustrated earlier in Table 1.

 Figure 2 below provides a graphical representation of the algorithm used by

the fault injector to choose the faults to be injected in the environment.

System call

recognized

Find

Parameters

List of candidate

faults defined by

user

Randomly pick

n number of

faults

System

Call

Parser

Inject faults in

environment

Table lookup
Ignore this

system call

NO

System call name

Resource being used

Parameters to system call

YES

Figure 2 Fault selection algorithm

 28

The application is executed for a second time, and in this iteration, faults are

injected according to the user’s input or automatically.

3.2.2 Making the fault visible in resources

Once EFIVA has chosen the type and number of faults to inject, these faults

need to be made visible in the environment at appropriate times in the program’s

execution, i.e. when that particular resource is used by the application. EFIVA uses a

time-based approach to inject faults.

During its first run with Strace, the fault injector stores the time of access of

each of the system calls, along with the call parameters. This time is relative to the

start of program execution. During the second run, when faults are injected into the

environment, EFIVA starts two threads of execution. The first thread injects the

faults, while the second runs the program under evaluation. When the fault injecting

thread hits time instances that match with those recorded in the first run, it modifies

the corresponding environmental resources, i.e. injects the faults. We assume that the

two threads of execution are given roughly equal time slices, keeping the timing

distortion to a minimum.

EFIVA stores the program output produced during this second execution to a

file, and uses it in the verifier module.

 29

3.3 Verifier

The verifier module performs checks to determine if the application execution

trace has opened any doors that can be used by an attacker to launch a security

violation. As mentioned before, these checks come in two categories, crashes and

output matching.

In the former case, EFIVA automatically flags a crashed execution trace as a

security problem, especially if the non-fault injected run exited without reporting any

problems. While this may not truly be a security policy violation, it is certainly a

vulnerability that needs to be fixed, or classified as one that the application writer

never expects to encounter.

In the latter case, output matching is used to report a possible vulnerability.

EFIVA accepts a simple regular expression term that contains the expected output,

and this is matched with the output actually produced by the application.

Figure 3 below illustrates the algorithm used by the verifier to determine if the

application’s behavior with faults injected is indicative of any vulnerabilities being

exploited.

 30

Output generated

by application

during execution

Search for

Segmentation

Fault

Was crash

string found?

Report

vulnerability

Regular

Expression

Matcher

Expected output as

provided by reviewer

Can be in the form of a

regular expression

Did match

succeed?

Report no

vulnerability

YES

NO
NO

YES

Figure 3 Algorithm to find application vulnerabilities

EFIVA writes the test application output back into a file, allowing users to

apply their own conditions to discover additional vulnerabilities. The above-

mentioned criteria can be very useful in characterizing application behavior when

tested under a changing environment. However, the job of discovering the more

contrived and complicated faults continues to remain in the realm of manual testing.

 31

3.4 Case Studies

In order to verify that EFIVA is helpful in finding application vulnerabilities,

we ran it on several input programs. This test code was scraped from code written by

the first author for undergraduate projects; often at the freshman and sophomore

levels.

We picked tests that try to best illustrate the various capabilities that are

programmed into the tool. In this section, we outline some of our code samples, the

bugs that they hide, and EFIVA’s attempts at finding them based on environmental

interactions.

All programs and EFIVA were run on Linux. EFIVA itself is written in Java,

and calls into our modified version of Strace, which was downloaded off

SourceForge.net.

3.4.1 Application crash due to null pointer reference

A DoS (Denial of Service) attack is one of the most common methods of

exploiting vulnerabilities. In the case of a console application, this attack is akin to

crashing the program repeatedly, thus making it impossible to use. Consider the

following code snippet:

Figure 4 Null pointer de-reference crashes the application

1 void ReadFromFile ()
2 {
3 FILE * f = fopen ("foo.txt", "r");
4 char buf[100];
5 fgets (buf, 10, f);
6 fclose (f);
7 }

 32

This example is simple, yet hides an extremely common source of

vulnerabilities. The program does not process fopen’s return code making it

susceptible to file open failures. If foo.txt does not exist, the code as written in

Figure 4 will not create the file; the call to fgets on line 5 will cause a segmentation

fault. Similarly, if the user running the above program does not have the permissions

to read foo.txt, fopen will return null crashing the application at line 5.

EFIVA detects this application’s susceptibility to DoS attacks by modifying

foo.txt’s permissions (setting it to be readable only by root) and its existence

(deleting it before the call to fopen) properties when the application is being

executed.

3.4.2 Race condition in file access

Race conditions that originate from file accesses are probably the most

significant among those that result in vulnerabilities [12]. The problem stems from

the existence of a time delta between the two instances when a file’s property (e.g.,

access right) is checked, to when that property is actually used in the application.

Such flaws are referred to as Time of Check to Time of Use (TOCTOU) flaws.

The textbook example of a TOCTOU fault is a setuid
1
 program executing

under root privileges [13].

1
 Unix has a setuid bit that allows for certain programs to grant users temporary privileges. When an

executable file with its setuid bit turned on is executed, it assumes the privileges of its owner, as

opposed to its executor (the default).

 33

Figure 5 TOCTOU vulnerability in file accesses

In this example, a race condition exists between the time when access() is

called on file, and when file is actually opened. The programmer makes an

implicit assumption that file remains unchanged between the two calls, which is

incorrect! A clever attacker would have the file denote a symbolic link as opposed to

a physical file name, and modify the target of the link between lines 1 and 3.

EFIVA’s design and implementation makes it ideal to track such issues that

arise from an application’s environmental interactions. When the tool detects a call to

access(), it has immediately found a potential injection point. In the fault injection

pass, the parameter to the access() is set to a symbolic link, and is modified as

soon as the function returns. Any future use of the file thus points to the malicious

location pointed to by EFIVA.

Vulnerabilities that are born from race conditions in file accesses can be very

difficult to detect without source code. At the core of the issue is the extremely small

attack window (between lines 1 and 3) when file needs to be changed to

successfully record an exploit. Our fault injection framework traces application

execution making this process a lot more efficient, and easily reproducible.

1 if (!access (file, W_OK))
2 {
3 f = fopen (file, "w+");
4 // Perform write operations here
5 }
6 else
7 {
8 printf ("Could not open file %s.\n", file);
9 }

 34

3.4.3 Output comparisons for vulnerability detection

 EFIVA provides users the ability to compare the expected output from an

application to that actually produced when it is executed. The mechanism is

inherently simple, and has the ability to produce false positives, especially if the

expected output is not very well known. However, this is a better first step to finding

vulnerabilities than using only a simple metric like checking for an application crash

or a segmentation fault.

 As an example, consider code snippet in Figure 6 below. The

ListDirectoryContents() function does not allow a user to view the contents

of the root directory. If the user provides a directory name that starts with ‘/’ as is the

case for the root directory, the function exits. Assume that the program is being

executed in the /home/foo directory, and the user’s input is ../../. This input

combination corresponds to the root directory, but the code as written above will still

list the contents of root!

 35

Figure 6 Output comparisons for vulnerability detection

The output should have been Cannot list contents of the root directory, which

was provided in the input to EFIVA. However, the actual output obtained from the

above code snippet was much different (the list of files and directories in the root

directory). A comparison between the two outputs failed, thus indicating the

possibility of a security vulnerability.

These three examples illustrate how EFIVA can be used in a real-world

setting to discover potential security vulnerabilities in application. In the future, the

tool can be expanded upon to track more system calls, and provide enhanced

verifying capabilities.

1 void ListDirectoryContents ()
2 {
3 char dirname [100];
4 gets (dirname);
5
6 if (dirname [0] == '/')
7 {
8 printf ("Cannot list contents of the root

directory");
9 }
10 else
11 {
12 DIR * dir;
13 struct dirent *entry;
14
15 if ((dir = opendir (dirname))!= NULL)
16 {
17 while (entry = readdir (dir))
18 {
19 printf ("Entry : %s\n", entry=>d_name);
20 }
21 }
22 }
23 }

 36

Chapter 4: Expanding on the Environmental Approach

Chapter 3 addressed the implementation of our EFIVA tool, and described

some of the case studies that we used to validate that our approach is indeed workable

and has potential to discover security vulnerabilities. With the confidence that

dynamic, black box environmental perturbation and fault injection is an approach that

can be used effectively to review the security characteristics of an application, we

now address another important question. Is an Environmental Approach sufficient? Is

there a mechanism to broaden this approach and discover new techniques, which

when used independently or in conjunction with environmental perturbation have the

potential to do an even better job of discovering vulnerabilities in applications?

Through the rest of this chapter, we address these very questions, and propose a

scheme that forms the basis for the rest of our work in this thesis.

4.1 The pros of an environmental approach

 One of the significant challenges of a black box approach is that a reviewer

does not know exactly what resources or actions a program performs at each step.

Every program under execution can be traced dynamically for the system calls that it

executes. These system calls provide information about the resources that the

program accesses, the actions performed on the resource and the parameters that

further refine the specific action. For example, consider the open system call:

open (filename, arguments)

 37

This system call clearly indicates that the program is opening a file with name

filename, and in the mode as specified by arguments, which could be “rw”

which indicates that the file is opened for read and write, or “r” which means it is

opened for read only, or any other valid combination. Gathering such information

using a black box approach is impossible, or a very arduous process.

 However, a smart fault injector can choose with ease, and automatically, the

type and number of faults to inject when it encounters certain system calls and their

corresponding parameters. Tracing the system calls executed by a process provides

good insight into how an application has been programmed. Further, environmental

fault injection is fully extensible; one can easily add new system calls and their

corresponding candidate faults to the fault injector, thus broadening the scope of

problems that can be discovered and exploited with this approach.

4.2 The cons of an environmental approach

 As discussed earlier, the most significant problem associated with a black box

approach to finding vulnerabilities is detecting when a vulnerability has been exposed

in the program. The challenge is determining the behavior and output of a program

that has been compromised.

 In the environmental approach, we used two criteria to detect a vulnerability,

an application crash, and difference in the expected and actual program outputs. The

application crash is easy to see; no program should crash because of faults injected

either in it or in its environment. However, comparing expected and actual outputs is

not so straightforward; verifying that a vulnerability has indeed been exposed

 38

involves more than just the comparison between two character streams. Such a

technique depends on a human security reviewer to provide the fault injector with

expected output from the application for a certain set of injected faults, and is

therefore dependent on the reviewer’s understanding of the program behavior. The

reviewer provided output might be correct or incorrect. If correct, then a mismatch

between expected and actual output indicates a vulnerability. On the other hand, if the

reviewer is wrong, then a mismatch in the two outputs could mean either the program

does not have a vulnerability (program output was correct, reviewer’s was wrong), or

it indeed has one (both program and reviewer outputs were wrong).

 Therefore, output comparisons could show both false positives and false

negatives, making the role of the human verification all that more critical. In an

environmental approach, until a better, automated solution is found, human

verification will remain the primary mode of determining if a program has

vulnerabilities. The fault injector can provide hints that at best could ease this

process.

 Another issue to consider, although obvious, is that environmental fault

injection only traces those functions and resources that have system calls associated

with them. There are numerous APIs, such as the string library in C, where the

functions do not have corresponding system calls, yet are important sources of

vulnerabilities. A most basic example would be the strcpy()function, which when

used without proper bounds checking could lead to a buffer overflow.

 39

4.3 Can we do better?

 Environmental interactions are a large source of program vulnerabilities, and

we can address them with our fault injection scheme as discussed above. Yet, there

are other sources of vulnerabilities as well that need to be addressed if one desires a

complete and thorough analysis of a program’s security characteristics. Over the past

several years, numerous techniques, both static and dynamic have been proposed to

find general program bugs, and those that are exploitable, i.e. vulnerabilities. If we

look at the security review process through the eyes of a reviewer, the kind of

approach that he/she can choose depends entirely on how much the reviewer knows

about the program, and how detailed of an analysis is desired.

To aid in this effort, we define a hierarchy of five approaches that extends

from all black box where a compiled executable is analyzed, to all white box where

the complete source code listing for the application is available. We use a set of four

criteria to evaluate their relative effectiveness and usefulness. The next few sections

motivate the use of this hierarchical approach with fault injection to find

vulnerabilities.

4.4 Why do we need a hierarchy of approaches?

Static techniques, software testing and fault injection can each form a

significant component of the software vulnerability finding process. The kind of

approach used in this process depends on the available program abstractions and their

relative effectiveness in achieving the goals of the reviewer. A program’s abstraction

 40

may range all the way from being just a compiled program (EXE), to having some

amount of programmer-supplied metadata, to the program’s full source code listing.

Our research focuses on constructing a hierarchy of approaches that can be

used for finding vulnerabilities in applications given different amounts of program

information. In particular, we start by assuming that the only data available about a

program is the fully compiled executable, and relax our constraints to create a new

level in the hierarchy, enabling better vulnerability analysis. Said differently, we start

with a complete black-box approach, enter the grey-box mode, and ultimately end in

a full white-box approach, each time reviewing the usefulness and effectiveness of

the technique used in that particular level in finding vulnerabilities. At each level, we

use fault injection as the tool to perform a security review, and use a set of four

defined criteria to compare and contrast each level with its predecessors in the

hierarchy. Having separate levels provides a platform for security reviewers to build

upon depending on their requirements. These requirements may include, but are not

restricted to the amount of time they are willing to spend on the process, the level of

confidence that they desire in the software and the amount of information that they

have available to perform a review. Even in the presence of an application’s full

source listing, one may not desire a full static analysis of code, and may be quite

happy with just running the program on certain select input combinations. On the

other hand, one may want to perform extensive security analysis because of the

critical nature of the application under review. Having a multi-tiered approach to

finding vulnerabilities in programs allows for different degrees of review based on

one’s unique requirements.

 41

4.5 Why do security vulnerabilities happen?

A bird’s eye view of software development reveals three primary sources of

security vulnerabilities in software. First is incorrect program specification and

architectural design, the second is poor implementation by the programmer, and the

third is environmental interactions. A common example of poor architectural design

is parameter tampering in web URLs. An attacker may be able to modify the

parameters that are sent to the web server from the client, and view information that

he/she is not authorized to access.

The second source of vulnerabilities are programming bugs, and are caused by

programmer oversight, carelessness, or sometimes an incomplete understanding of

the nuances of programming language features. In the C world, an example of the

latter would be the assumption that strcpy (src, dest) only copies the

portion of src that fits in dest, when in fact the function performs a blind copy,

potentially leading to a buffer overflow. While static analysis tools would easily catch

this buffer overflow if provided with source code, finding this vulnerability in a

compiled executable may not be as trivial. An example of programmer carelessness

would be, not freeing all the memory that a program allocates dynamically, or trying

to free a pointer twice. Finally, an example of programmer oversight would be not

encrypting passwords, instead storing them as plain text in a file or a database.

 42

The third source of vulnerabilities, Environmental interactions refers to

vulnerabilities introduced in an application by the use of resources or information

from the environment where it is executed [14].

When a programmer writes code, he/she has a view of the program and an

understanding of how control and data flows through it. Quite often, the

programmer’s view is very different from how the written code actually behaves. It is

in this gap between expected and actual application behavior that a program is most

susceptible to functional bugs and vulnerabilities [15]. A smart hacker will either

modify a program’s input, or change its execution environment or apply some other

mutation to have the application move in a direction that is different from what the

programmer ever expected it to take. This may involve exploring various execution

paths, corrupting program data or even modifying sensitive information that an

application depends on for its proper functioning.

A security professional can use the very same techniques to identify and fix

security vulnerabilities in a program before a hacker compromises it. He/she can use

various techniques, such as static analysis, testing and fault injection. We use fault

injection as the technique of choice for the various approaches that we discuss in this

thesis.

4.6 Fault Injection and a Hierarchy of Approaches

Fault injection provides a framework that allows an external tool or person to

inject faults in information that is important to the application, such as in its inputs, or

internal program state or even its execution environment. Fault injection is a dynamic

 43

approach, and is extremely flexible, making it an ideal foundation on which to build

the techniques that are discussed in this thesis. Faults can be injected anywhere inside

an application, i.e. program variables or in external information sources such as

program input, or even in the environment where the program is executed. This

versatility of fault injection techniques allows us to use it effectively in the whole

spectrum of vulnerability finding approaches.

Every application or program can be thought of as a graph, where each node is

a state and the edges are transitions between the states. For every state that a program

is in, a fault injector can modify parameters and force the application into new states;

states that potentially expose exploitable security holes, i.e. security vulnerabilities.

While the ability to modify internal program execution paths sounds very

encouraging, it makes a very fundamental assumption; information such as the

internal state of an application, its parameters and control flow are available for use

by the fault injector. The basic premise of our approach is that we start with an

executable, i.e. compiled binary code, making deciphering such information

extremely challenging, or in some cases impossible. We thus define levels of

abstraction to perform a program’s security analysis, with each level using different

amounts of information. This information includes the view of the program (full

source code, partial source code, etc), and extent of documentation available to the

security reviewer. The fault injector may infer some of this information

automatically, and will depend on the user to provide the rest. Notably, we define five

different abstraction levels, Black Box Approach with an Executable, Black Box

Environmental Approach, Basic Flow Graph Approach, Flow Graph Approach with

 44

parameter metadata and finally White box approach with Full Application Source

Code.

White Box Approach with Full

Application Source

Flow Graph Approach with Parameter

Metadata

Basic Flow Graph Approach

Black Box

Environmental

Approach

Black Box

Approach with an

Executable

C
o
n
s
tr
a
in
ts
 r
e
la
x
e
d
 –
 b
la
c
k
 b
o
x
 t
o
 w
h
it
e
 b
o
x

Figure 7 Black Box to White box - A hierarchy of fault injection based approaches for finding

vulnerabilities

In each of the levels as mentioned in Figure 7, fault injection can be used with

varying levels of usefulness and effectiveness. We evaluate each level based on four

fault injection criteria, as follows:

i. The ability to choose a fault injection point

Given an application, how does one know where a fault should be injected

so that it affects the execution of the program in a meaningful way?

ii. Ease of injecting a fault, i.e. the fault injection mechanism

 45

This is the technique that is used to have the fault injected either in the

application or its environment or its input or any other location.

iii. The ability to determine if an injected fault is actually viable, i.e. is a bug

exploitable thus making it a vulnerability

A fault injector can inject faults in arbitrary locations, but analyzing the

application’s behavior with the fault injected would not be very useful if

the fault can never happen under normal usage of the application.

iv. The ability to verify that the application’s behavior with the fault injected

indicates that it has been compromised and a vulnerability has been

discovered.

How does one determine with a high level of confidence that a

vulnerability has been discovered in the application by analyzing its

behavior under fault injection?

Our set of four criteria was constructed by taking two different views of fault

injection; the first being the fault injector’s perspective, and the second being that of a

security reviewer. The first three criteria are critical for any fault injector; it needs to

know where, when and what faults need to be injected, and has to have a means to

make the fault appear in the application or its surroundings. The fourth criterion is

constructed from the most basic requirement for all vulnerability finding approaches:

how does one know if the injected faults have exploited a vulnerability in the

application.

 46

In the next chapter, we describe each of the levels in Figure 7 in detail,

explore their use of fault injection, and characterize their usefulness in the

vulnerability finding process using the four criteria of fault injection defined above.

 47

Chapter 5: The Hierarchy of Approaches in Detail

Chapter 4 explored the relative effectiveness of an environmental fault

injection approach, motivated some of the reasons why applications have security

vulnerabilities, and came to the conclusion that we could expand upon the

environmental approach to develop new fault injection based techniques that can also

be used to find security vulnerabilities. It also contained a discussion on the hierarchy

of approaches, starting from the complete black box executable view of the program,

to the full white box approach where the application source code is available for the

reviewer to analyze. Interspersed between these two extremes were environmental

fault injection and two techniques that used an internal program representation with

some metadata as provided by the application’s programmer.

 In this chapter, we discuss each of these techniques in detail and evaluate

them using the set of four criteria that was also laid out in Chapter 4.

5.1 Black Box Approach with an Executable

At the most basic level, we assume that the only information available to a

security evaluator is the compiled EXE. The executable does not have to be on the

same machine as the security evaluator; it may be elsewhere on a network, or could

even just be a website. The most obvious choice of techniques in the absence of any

other useful guidelines is a black box approach where the security evaluator presents

an application with several input permutations. These include valid and invalid

 48

inputs, and those with malicious intent. With each injected fault, the program’s

execution is traced and output is analyzed to determine if a vulnerability was found.

As is quite obvious from a cursory examination of this approach, the state

space to be explored is enormous. Using a fault injection approach, the large number

of unique faults that can be injected, when coupled with the multiple inputs that

programs typically take from the user, leads to a combinatorial explosion and makes

for an extremely time consuming and exhausting evaluation process. Automation

clearly has the ability to speed up such an approach, and it can be used effectively to

ensure some basic security properties. For example, one can easily verify that an

application does not crash when subjected to fault injected input. Similarly, if the

application prints password information to the console in plain text, then there is a

security vulnerability.

This black box approach can be evaluated based on the four criteria stated

earlier in Chapter 4.

i. The ability to choose a fault injection point

In a black box approach, there is a single fault injection point, the input to

the application. However, the number of input permutations to be

considered is enormous, and working with each one of them could be a

very laborious process.

ii. Ease of injecting a fault, i.e. the fault injection mechanism

Faults are injected in the application input, which is done rather easily.

The fault injector can generate any number of permutations based on

criteria laid out by the security reviewer.

 49

iii. The ability to determine if an injected fault is actually viable, i.e. is a bug

exploitable thus making it a vulnerability

Every fault injected in this scheme is totally acceptable because an

application should be willing to accept any and all input. A well-written

program should not crash because of invalid input, but rather print an error

message or exit gracefully. However, given a fault, determining its

viability is extremely difficult because of the lack of program knowledge.

Most of the faults are educated guesses, but ultimately, in a brute-force

approach, they are just guesses. Most of the faults may not turn up any

vulnerability in the program.

iv. The ability to verify that the application’s behavior with the fault injected

indicates that it has been compromised and a vulnerability has been

discovered.

This is the most complicated step in an all black-box approach. Without

any additional knowledge about a program’s features, classifying its

behavior as one that indicates the existence or absence of a security

vulnerability, is extremely difficult. For example, consider all the metadata

that a program writes to a file for its future use. Such metadata may

include user preferences, passwords and other important information. If

the security reviewer is not aware of the significance of each piece of file

content, he/she may miss what is security critical. This may however be

caught by a smart hacker and used to compromise the applications.

 50

The vulnerability verification step can be significantly improved if the

security reviewer is provided with a detailed specification of the program,

such as, the implementation spec created by the application developers.

Such a document would provide a lot more insight into the design of each

program component, and the interactions between them. Such program

details would allow for a more intelligent choice of faults, and potentially

reduce the number of faults that need to be injected in the system.

 In summary, while a complete black box approach may not prove to be very

reliable in finding a vast majority of application vulnerabilities, the level of

confidence that one gains by using such an approach may be sufficient in certain

scenarios.

5.2 Black Box Environmental Approach

 Chapters 2 and 3 described the environmental perturbation approach

extensively. Therefore, we only summarize the evaluation of this technique using the

four criteria laid out in Chapter 4.

i. The ability to choose a fault injection point

In this approach, the fault injector injects a fault when it encounters a

system call that it recognizes, making the process of choosing the injection

point easy.

ii. Ease of injecting a fault, i.e. the fault injection mechanism

 51

Environmental perturbation involves changing the external factors that

impact an application, such as modifying file ownership, their contents or

their existence properties (delete a file, create one when the application

does not expect it). These changes are applied to the execution

environment, and are thus easily implemented.

iii. The ability to determine if an injected fault is actually viable, i.e. is a bug

exploitable thus making it a vulnerability

The viability of an injected fault is also trivial because changes to the

environment are independent of the execution of a program. This is the

primary reason why this technique is so useful; changes can happen when

an application least expects it.

iv. The ability to verify that the application’s behavior with the fault injected

indicates that it has been compromised and a vulnerability has been

discovered.

This is the most challenging component of a truly dynamic, automated

fault discovery mechanism. There is no easy way to determine if a

vulnerability has been discovered without a detailed knowledge of the

workings of the application, and its error states. However, two useful

checks that can be used are, checking for application crashes, and output

comparison. If for a given action, the output as expected from an

application does not match the actual output observed, then there is the

potential for a vulnerability. The ultimate check is still one that is

performed by a human security evaluator. The absence of source code in

 52

this black-box approach leads us to assume that the security reviewer is

very familiar with the application through its constant use, or is provided

with a specification document from the application developers to better

understand the program’s assumptions and workings.

5.3 Using Program Representations to find vulnerabilities

The previous two techniques, complete black box approach, and the

environmental approach, try to find vulnerabilities in applications by looking at their

external characteristics and behavior, i.e. from the perspective of an application user.

However, a lot of useful information can also be gathered by looking at a program’s

internal representation, its states and control flow. These internal structures provide a

great opportunity for a tool such as a fault injector to modify, with relative ease, the

flow of data and control in a program. These changes can be made dynamically at

runtime, allowing the fault injector to discover new paths and conditions as variables

assume different values inside a program. A program exposes a deviation from its

correct behavior by taking different control flow paths than what is expected for

certain input. We view such deviations as a manifestation of an exploited

vulnerability.

5.3.1 Choosing an internal program state representation

A program’s internal representation can be described using various concepts,

such as a Control Flow Graph, Data Flow Graph or a Program Dependence Graph.

The Control Flow Graph (CFG) is a graphical representation of a program’s control

 53

flow and structure [15, 16]. The CFG is a directed graph where each node is a basic

block and the edges represent control flow. A basic block in turn is a linear sequence

of instructions with exactly one exit. When the processor starts executing a basic

block, it continues execution in a single sequence until the end of the basic block;

there are no branches or halts. A CFG therefore presents two distinct possibilities to

affect change through fault injection. Not only can faults be injected to change the

direction of execution that a program chooses, but also to modify program data.

A Data Flow Graph (DFG) is a graphical representation of a program’s data

flow and structure. It represents the possible changes in the state of data objects, i.e.

their creation, use and destruction [15]. This graph does not have any control flow

information associated with it, making its applicability in finding vulnerabilities

rather limited. In tracking security vulnerabilities, we desire an understanding of a

program’s actions, for it is usually here that a program is susceptible to attack. The

third representation, Program Dependence Graph (PDG) is a hybrid of dataflow and

control flow graphs [17]. It is a directed graph where vertices are program statements

and control predicates, while the edges correspond to data and control dependencies

[18]. A fault injector can determine fault values using the combined data and control

flow information so that it not only affects the direction that a program takes, but also

the value of its variables, thus potentially creating states that were not previously

considered by the programmer.

All three program representations have the potential to be used for finding

vulnerabilities, but one may be more effective than the other in helping us achieve our

goals. The most basic assumption in our approach is that we start with an application,

 54

a compiled executable, when trying to analyze its security characteristics. Typically,

structures such as the CFG, DFG and PDG are constructed from full program source

code, forcing us to find a workaround when working with compiled binary code.

Tools such as EEL [19] construct a CFG from an executable, but in the absence of

source code, the graph is represented using the most basic assembly language

instructions. A graph with only assembly instructions makes it very difficult to

decipher deep program characteristics, such as data types of variables used in the

program, the use of pointers, arrays, etc. Such information can be used effectively in

fault injection; for example, integers can be tested for overflow problems, buffers can

be tested for buffer overflows and characters can be tested for non-ASCII input.

Further, while registers and variables can be modified at the assembly level to

discover bugs, proving that such bugs are exploitable vulnerabilities can be quite

challenging. Along the same difficulty level is the task of confirming that a suspected

vulnerability is indeed a vulnerability. This confirmation step, except for the most

basic cases such as an application crash or hang depends on user provided

information. It may be less than reasonable to expect a security evaluator to provide

any program hints at the assembly level, especially if the data returned from a

function is not a simple character or integer, but a more complicated data type such as

a class object.

 This inability to make a connection between program structures and assembly

code in the absence of full source code listing makes using CFGs, DFGs and PDGs as

representations of binary/machine code for internal fault injection rather difficult and

ineffective. We need an intermediate program representation or additional metadata

 55

to get more information about the behavior and characteristics of compiled code.

PDGs that are constructed using this intermediate representation or metadata will be

an extremely useful tool in security analysis.

This kind of intermediate representation is provided today by Java (in

bytecode), and C# (in Microsoft Intermediate Language, MSIL). The ease of

programming offered by these languages and their corresponding managed execution

frameworks (Java Virtual Machine, Common Language Runtime), and the increased

tendency of software developers to use componentized code means that more and

more applications in the future will be written using these new technologies. The

intermediate formats contain information about the data types of variables, the names

of API functions being invoked and their parameters, string values, and an excellent

metadata store from which control and data flow information can be extracted with

relative ease. These are exactly the tenets that we desire in a program representation

to effectively choose the faults that are injected to find vulnerabilities. Through the

rest of this thesis, we use Java bytecode as the foundation on which our techniques

are built and analyzed. It is important to note here that our approach is in no way

restricted to bytecode. Intermediate information and metadata provided by compilers

or even externally by the application programmer could be used effectively in our

fault injection scheme. The ideas presented henceforth are general in nature and fully

extensible.

The increased availability of metadata and knowledge about program internals

though the use of bytecode now allows us to choose between the various

representations of application code.

 56

5.3.2 Program Dependence Graph as Internal Representation

 The Program Dependence Graph is a hybrid of a data flow and control flow,

making this most suitable for fault injection, when compared to the other two

representations, i.e. the CFG and DFG. The data flow component of the graph will

enable the fault injector to track the use of variables in a program, and thus values,

thus allowing for better, more intelligent choices when injecting faults. Similarly, the

control flow component allows the injector to force different execution paths on the

program by modifying internal variables. The interdependence of control and data

flow can be very helpful in finding security vulnerabilities, as we shall discuss in later

sections. A PDG can be constructed automatically using one of the several algorithms

that have been proposed, including those for object-oriented languages such as Java

[20].

5.4 Basic Flow Graph Approach

 Having chosen the PDG as the representation of program structure, we now

describe our first approach that uses this graph to find security vulnerabilities.

The figure below shows the PDG for one of the possible implementations of a

debit () function in a financial system.

 57

Figure 8 Possible implementation of debit () function in financial applications

debit, debitAmount, balance

tempBal = balance -

debitAmount

tempBal > 0 balance -= debitAmountYes

return balance

No

Data dependence for

debitAmount

Data dependence for

balance

Control

dependence

Figure 9 PDG representation for debit () function

 As shown in the graph above, the function branches into two different

directions based on the value of the variable tempBal. The fault injector could thus

1 int debit (int balance, int debitAmount)
2 {
3 int tempBal = balance - debitAmount;
4
5 if (tempBal > 0)
6 {
7 balance -= debitAmount;
8 }
9
10 return balance;
11 }

 58

modify the values of balance and debitAmount to have the branch take two

different directions in different executions. If the function were to have further

conditional statements, then several more paths could be constructed. The return

value from this function will be used in other functions, and thus inserting a fault in

the return code will automatically propagate itself through the rest of the program.

From the source listing (Figure 8) and PDG (Figure 9) above, it is clear that the return

value from the function could be any integer value. How does one determine whether

a given return value constitutes a vulnerability in the application? In the absence of

any other information, the most obvious approach is to let execution continue and

wait for a violating condition, such as an application crash, or an error message

printed by the program, and then flag the fault(s) injected during that execution run as

ones that led to the discovery of an application vulnerability.

 However, this approach could lead to a state explosion. It would be impossible

for the fault injector to choose a correct subset of faults to be injected that could

violate the assumptions of the programmer. What this approach does provide is the

ability to change a program’s execution profile, and modify its variables and

parameters dynamically, and adapt any changes to the path followed by the program

until that point in the execution. It also allows for a very modular approach to

vulnerability discovery. Each function can be considered individually, and by

modifying the parameters passed to it, a subroutine can be isolated as an execution

unit. This allows for fault injection on both the local level (a function), and a global

level (combination of functions).

 59

This technique, i.e. using a flow graph to find vulnerabilities in an application

when measured against the four criteria we defined earlier provides the following

results:

i. Ability to choose a fault injection point

Under this approach, every variable is a potential fault injection point; in

particular those that can affect the outcome of conditional branches. That

is certainly a lot of choices, and could lead to state explosion.

ii. Ease of injecting a fault, i.e. fault injection mechanism

The program would be executed using a debugger service, making the

modification of variable values extremely simple.

iii. The ability to determine if an injected fault is actually viable, i.e. is a bug

exploitable thus making it a vulnerability

The modified variable values can be traced back in the PDG to discover

their dependence on external input. While it may be time consuming to

compute this for every variable, a potential fault injected can be verified as

one that can indeed happen in a program during its course of execution.

iv. The ability to verify that the application’s behavior with the fault injected

indicates that it has been compromised and a vulnerability has been

discovered.

As discussed earlier, this is the most complicated step of an automated

fault injection process. In the absence of any information about the state of

variables inside the program that indicate its normal functioning, one

would have to depend on criteria such as an application crash or incorrect

 60

output to verify that a vulnerability has been exposed. This step therefore

requires human help and intelligence.

 The two most significant issues associated with this approach are the inability

to be very intelligent about the faults that are injected into the program, and the

relative difficulty in verifying that an application’s behavior indicates that it has a

vulnerability. Both of these deficiencies can be overcome if the user provides more

information about the program’s behavior.

5.5 Flow Graph Approach with Parameter Metadata

 As mentioned above, the two main deficiencies of using a basic flow graph

approach exclusively with no additional data can be abated by having the user

provide a little more information about the program. A program is a collection of

functions that are executed in some sequence. When a programmer uses an API or

components written by someone else, he/she does so by invoking functions that are

part of the API. We thus consider a function to be a useful abstraction, around which

we can build metadata and criteria to help the fault injection process.

5.5.1 Functions and their abstraction

 A function can be thought of as a unit comprising three primary components,

the input parameters, body of the function, and its return value. In an API, the code

comments for each function as provided by the author describes the input parameters,

return value, and provides a brief, high-level description of the purpose of the

function. These comments sometimes include assumptions made by the function

 61

about program input, and constraints that describe possible return values from the

subroutine.

 We see program comments as a source of very useful information that can be

used to improve fault injection process. If for legal inputs to a function, an injected

fault causes the return value to be something other than that specified by the author of

the function, we have discovered a vulnerability. Similarly, a programmer’s

assumptions about inputs to a function may be invalid, or unexpected input not

handled correctly, giving another source of program vulnerabilities. The goal of fault

injection is to produce output that does not match the constraints as laid out by the

programmer. The metadata that is available in a function’s comments provides the

fault injector hints about faults to inject so that the function produces certain (wrong!)

output, while the subroutine’s PDG representation provides the fault injector hints on

how to go about achieving the same.

5.5.2 Using parameter information in fault injection

 Consider the debit() function example from Figure 8 and the following

constraints provided by the programmer:

a. Return value >= 0

Suppose balance < 0 and debitAmount is greater than

balance, then tempBal is always < 0 and the function returns the original

negative valued balance variable. This is not in agreement with the

constraint provided by the programmer, and will therefore be flagged under

our scheme as a vulnerability. The negative balance has the potential to

 62

propagate elsewhere in the code under the programmer’s assumption that the

balance value as returned by the debit() function is always correct.

Consider a slightly different set of function inputs. When

debitAmount < 0, and balance > 0. Then, tempBal would be > 0,

and the function would return a value that is larger than the original balance in

the account. This is a problem!

 Similarly, assume that the balance variable is negative. If

debitAmount were a negative quantity less than balance, then the

variable tempBal would become greater than zero, and this would be

returned as the new balance.

 In the last two examples, the function returns positive (although

incorrect!) quantities for the balance, and therefore satisfies the programmer

provided constraint, which only requires the return value to be greater than or

equal to zero. Our approach would not detect the input combinations as that

potentially exploit vulnerabilities! Therefore, the success of using a metadata-

based approach for finding vulnerabilities is dependent in no small part on the

hints provided to the fault injector by the programmer.

One could claim that a programmer knows his code best and only

makes calls to the function debit()with correct input, i.e. by validating

parameters before it is sent to the function, and by validating output after it is

returned from it. No matter what these assumptions are, based on the criteria

provided for the input and output, this function when considered as a separate

entity exhibits vulnerable behavior. There is always the possibility that the

 63

code’s ownership changes in the future, or it is opened up as an API or web

service, at which point the damage that could be done by malicious code as

listed above is enormous. The fault injector would be better off flagging such

cases as potential vulnerabilities, and the effect of the incorrect return values

from the function can be studied in the program’s flow graph at points were

debit() is called.

b. Input balance > return value

This is another possible user specified constraint, and it shows similar

vulnerabilities to the ones discussed in part a. For example, consider that

balance were negative, and debitAmount is a negative value less than

balance. The difference, tempBal would become positive, and the

function would thus return a positive value. However, this is clearly in

violation of the user provided criterion, which specifies that the input balance

(which is negative) should be greater than the balance value returned by the

value (which in fact postitive). By our formulation, such behavior corresponds

to the program having a security vulnerability. The same input combinations

was used in a. and it was unsuccessful in finding the vulnerability, yet, under

the constraints laid out here would the set of function inputs would help

discover the vulnerability. The only difference between a. and b. is the

constraint provided by the programmer.

 64

 As can be seen from the examples above, the kind of faults to be injected

depends on the output that needs to be generated to show that the function’s execution

is in violation of the assumptions made by the programmer. This makes user provided

criteria about return values from functions an absolute requirement. Input criteria, i.e.

information on parameters on the other hand are not required, but their use would

make finding vulnerabilities a lot easier. Consider the following code execution

sequence:

Figure 10 Usefulness of metadata provided by programmers

 If the user provides input criteria for FooFunc, i.e. defines some constraints

on A, and B, the logic until line 2 could have faults injected in it, so that these

constraints would be violated. If such a code execution path is found, then the

programmer’s assumptions are invalid, and thus there is a potential vulnerability in

the program.

 Therefore, constraints defined on the input parameters and return values of a

function are not only useful when that function is checked independently for security

vulnerabilities, but also when calls are made to this function elsewhere in the code.

5.5.3 How are fault values chosen?

 The discussion around the debit()function above considered possible input

combinations for variables balance and debitAmount that violate some of the

programmer provided criteria and assumptions. However, if this process is to be

1 // Application code
2 // A and B are variables computed

//before this line
3 retval = FooFunc (A, B)

 65

automated, the fault injector needs to determine what fault values can be legitimately

inserted at each step when the application is executed. We use a range-based

approach, where at each step, the range of values that a variable may take is tracked.

Each time an instruction is executed, the possible values for a variable are updated.

Consider the following example:

Figure 11 Example to illustrate the use of variable ranges

In this example, variable x can assume any legal integer value at line 2. This

stays the same in lines 3 and 4. However, after line 5 executes, x is restricted to the

set of even integers. Tracking these range of values for integer variables allows for a

final comparison of the constraints as provided by the user to the range of values as

deciphered by the fault injector by looking at the program’s dependence graph. Any

mismatch between the two signals a potential vulnerability. A fault can then be

injected anywhere in the execution sequence to trigger an exploit.

5.5.4 Usefulness of bytecode

 Consider the code snippet below, which is a simple function that accesses a

database, and retrieves results by executing a query.

When the fault injector locates the executeQuery() method, it can

automatically modify the connection string to include a SQL injection attack.

Similarly, since the value returned from the function is a ResultSet object, the

1 int function (int x)
2 {
3 x = x + 2;
4 x = x * 2;
5 return x;
6 }

 66

programmer could define some rules and constraints about the expected output from

any queries that the function executes. For example, the programmer could list the

relationship between certain columns in the output with the inputs to the function

(and thus the SQL query). Alternatively, one could define a constraint on the number

of results returned by the query. Specifying and using criteria as exhaustive and

informative as those listed above would be impossible, or extremely hard using just

assembly code and without any additional hints or metadata.

Figure 12 Java code that uses a very simple SQL query

The above methodology could in general be extended to any function, be it an

API function in the Java class libraries, or one written by the application programmer

himself. The abstraction of a program at a higher level, with more information about

the functions invoked, and the input parameters allows for the fault injection scheme

to be more advanced, and also allow for a better vulnerability verification process.

 This overall technique, which utilizes a PDG along with programmer provided

metadata and constraints on function input and return values, can be summarized by

looking at our four evaluation criteria.

i. The ability to choose a fault injection point

1 public ResultSet accessData (String name, String username,
String password) throws SQLException

2 {
3 String query = "Select * from FooTable where name="+name;
4 Connection conn = DriverManager.getConnection(query,

username, password);
5
6 ResultSet r = conn.createStatement().executeQuery(query);
7
8 return r;
9 }

 67

Faults can be injected arbitrarily at any point in the source code because it

is done though a debugger. Injecting a fault is the same as modifying a

variable’s value.

ii. Ease of injecting a fault, i.e. the fault injection mechanism

As mentioned in i., it is just a simple use of the debugger to modify

variable values.

iii. The ability to determine if an injected fault is actually viable, i.e. is a bug

exploitable thus making it a vulnerability

The PDG allows each variable to be traced back to the sources on which it

is dependent, such as external input, or their un-initialized use in a

function. Once such a source has been found, the injected fault becomes

entirely viable.

iv. The ability to verify that the application’s behavior with the fault injected

indicates that it has been compromised and a vulnerability has been

discovered.

This ability is one of the biggest gains of this method. The moment the

fault injector discovers that one of the criteria provided by the user about

input parameters to a function, or a function’s return value do not match

up with the information inferred through analysis of the PDG, the program

suffers from a potential vulnerability. This is because a programmer’s

assumptions and understanding of the behavior of a program manifest

themselves on the constraints that he/she defines, and when these are

violated, a gulf appears in the programmer’s view of the program and the

 68

actual behavior based on source code. This is a source of program

vulnerabilities.

5.6 White Box Approach with Full Application Source Code

 The final level in our hierarchy is when an application’s entire source code

listing is available for the consuming application. In this case, one could use both

static and dynamic techniques to discover program vulnerabilities. Having metadata

as described in the previous section could still be useful because it would enable a

tool to find the differences between the programmer’s assumed and actual

implementations. Dynamic techniques such as environmental perturbation would be a

good complement to static verification methods, as they deal with the effect of

changing external factors on an application. Such conditions may be difficult to infer

by just looking at the source code.

The availability of source code also allows for a unique form of fault

injection. Application code can be modified so that when the program starts

execution, control is short-circuited to a part of the program where a preliminary

analysis by the user identified a potential vulnerability. This portion of code could

then be subject to faults injected through the program input. Modifying source code to

implement such short cuts has the potential to reduce the amount of time spent

evaluating the application because unnecessary code is ignored; such an optimization

would be impossible if the application were only available as a compiled executable.

When measured in terms of the four fault criteria introduced earlier, we make the

following observations:

 69

i. The ability to choose a fault injection point

With the full source code available, a reviewer will be able to analyze the

program in detail and determine exactly the fault injection point desired.

Source code can then be modified to have control jump directly to location

with suspected vulnerabilities and this can be tested using faults injected

either in one of the program variables or external input.

ii. Ease of injecting a fault, i.e. the fault injection mechanism

A fault can be injected anywhere inside the program by modifying source

code or outside it by changing inputs or environmental resources.

iii. The ability to determine if an injected fault is actually viable, i.e. is a bug

exploitable thus making it a vulnerability

An analysis of the source code would reveal if there is a control flow path

to the vulnerable segments, and an input combination that forces the

program down this path. Once such a path is discovered, it can be verified

by injecting a fault and tracing program execution.

iv. The ability to verify that the application’s behavior with the fault injected

indicates that it has been compromised and a vulnerability has been

discovered.

With access to the full source code, one should be able to determine the

security policy assumptions of the application. When the program behaves

differently from the assumptions, then a vulnerability has been found.

 70

In summary, when full source code is available, any number of static

techniques and tools [4, 5, 6] can be used, and dynamic approaches are a worthy

complement to static approaches. They can expose certain sources of vulnerabilities

(for example race conditions) that could be missed by a purely static analysis of the

source code. It is up to the security reviewer to choose the balance between the

dynamic and static approaches that can be used when one has full access to the

program’s source listing.

5.7 Comparative Summary of the five different approaches

 The table below summarizes the advantages and shortcomings of each of the

five approaches that were described above. The columns represent the approaches,

while the rows represent the four criteria that we defined earlier to aid us in

evaluating each technique.

 Complete Black

Box Approach

with an

executable

Black box

Environmental

Approach

Basic Flow

Graph

Approach

Flow Graph

Approach with

Parameter

Metadata

White Box

Approach with

Full

Application

Source Code

i Application Input.

There are

numerous

possible input

combinations

potentially

leading to state

explosion.

Environmental

resources

depending on

system call

executed.

Fewer insertion

points, but every

fault is important

because the

environmental

resource in

which the fault is

injected is

Every

variable,

especially

those that

affect control

flow.

For variables,

try different

possible

values based

on branch

conditions,

thus forcing

Every variable

in program.

The metadata on

return values

and parameters

can be used to

pick intelligent

fault values,

such that the

conditions as

provided by the

programmer are

violated.

Source code

when analyzed

would reveal

possible

vulnerable

sections in the

program.

The entry points

to these code

sections, for

example, the

enclosing

function would

 71

definitely

accessed.

The faults to be

injected are

chosen based on

the system call

made, and the

parameters to the

function.

new execution

paths.

This could

lead to state

explosion, as

amount of

intelligence

used in

injecting

faults is

minimal.

Choosing such a

value requires

more analysis,

but it also

provides better

results.

then become a

fault injection

point.

ii Very easy

because

application input

can be easily

modified

This is

complicated

because system

calls need to be

hooked and fault

injected at the

appropriate

times. The initial

fault injection

framework is a

little

complicated, but

once

implemented,

actually

modifying the

environmental

resources is

simple.

This approach

would be

executed

under a

debugger,

thus making

modifying

variable

values

extremely

simple.

This is also

executed under a

debugger, and

modifying

variables is easy.

Faults can be

injected

anywhere

external to the

program, such as

input or the

environment

using techniques

explored in

previous

sections.

Source code can

also be modified

to inject faults

inside the

program.

iii The viability of a

fault is poor

because most of

the faults are

injected in a

brute-force

manner without

using a lot of

knowledge about

the application.

In this approach,

faults injected

are more viable

because we

know exactly

which resources

a program

accesses, and

how it uses them.

The PDG

allows any

injected fault

to be traced

back to

external input

or to an un-

initialized

variable. Once

such a source

has been

identified, the

fault is

entirely

viable.

The viability

measure is the

same as the

previous

technique (Basic

Flow Graph).

An analysis of

source code

would reveal if

the vulnerable

sections of code

are accessible,

and would be

able to find the

corresponding

input

combinations to

make this

happen.

A fault injected

 72

to execute this

portion of code

then becomes

viable.

iv Verifying that

certain behavior

indicates a

vulnerability is

extremely

difficult without

completely

understanding the

program’s

characteristics.

Simple cases such

as application

crashes can be

tracked easily, but

not more

complicated ones

such as

information sent

out over the

network.

Just like the

black box

approach,

without any help

from a human

reviewer,

classifying the

non-trivial cases

as vulnerabilities

is difficult.

If the security

reviewer actually

provides the

expected output,

then it can be

compared against

actual output,

and any

difference

flagged as a

potential

vulnerability.

For the same

reasons as the

previous two

approaches,

the lack of

information

about a

program can

make the

vulnerability

classification

process

difficult.

This approach is

unique from the

others in that

one has almost

all the

information

necessary to

determine if a

vulnerability has

been discovered.

The moment the

fault injector is

able to find a

viable fault that

violates the

conditions laid

out by the

programmer, a

potential

vulnerability has

been discovered.

With the entire

source code

available, a

reviewer has a

full

understanding of

the program’s

security

assumptions and

framework.

Any discovered

violations of this

framework

would then

make the

program

vulnerable to

attack.

Table 3 Comparison between different fault injection approaches

 73

Chapter 6: Conclusions and Future Work

6.1 Conclusions

 With the ever increasing complexity of software, and developers’ reliance on

code not written by them (but which is not always well tested and security analyzed

either), the need for a security analysis framework that can be used to analyze and

evaluate the security characteristics of an application or library is urgent. This

problem can be approached from any number of different directions, either static

analysis or dynamic schemes such as software testing and fault injection. The use of

fault injection in finding security vulnerabilities is a nascent field and provides a lot

of opportunity for innovation and improvisation of existing approaches.

 Every program executes in an environment, and uses information and data

that it collects by interacting with its surroundings. This presents a significant

opportunity to find program vulnerabilities by injecting faults in resources as they are

used by programs during runtime. Towards achieving this goal and testing our

hypotheses, we developed EFIVA, Environmental Fault Injector and Vulnerability

Analyzer, which perturbs the environment and uses all three steps of a fault injection

process: identifying a fault injection point, injecting the fault, and ultimately verifying

that a vulnerability has been exposed in the program.

 While environmental perturbations are certainly a significant source of

vulnerabilities, other factors, such as an application’s use of API functions that do not

necessarily interact with the environment play an important role in determining the

 74

application’s resilience to attack. We therefore propose a more extended hierarchy of

approaches that a security reviewer can choose from depending on the application’s

available abstractions. Clearly, the more a person knows about a program and its

behavior, the better ability he has to analyze the program’s security policies to find

potential vulnerabilities and attack points. In realization of this fact, the different

levels of our hierarchy each assume different program abstractions and amount of

information available about the application.

 Such a hierarchy would not be useful unless one is able to compare and

contrast each approach. We therefore use a set of four criteria to analyze each

technique’s strengths and weaknesses. Such a comparison will allow any person to

choose a technique that is right for their situation depending on how much is known

about the application, the time available to perform the security review, and

ultimately the level of confidence that is desired in the robustness and security

properties of the application.

6.2 Future Work

 The work presented in this thesis can be expanded in the future, and we

describe some of the possibilities below.

i. Expanded environmental interactions

Du and Mathur’s results in [10] suggested that the number of security

vulnerabilities associated with network and inter-process communication

were significantly lesser than those that were attributed to file system

interactions. This conclusion led us to implement only file system

 75

interactions in our fault injector. With attackers inflicting damage of

increasing magnitude and applications become increasingly connected

over the network, network communication will be a critical source of

vulnerabilities in the future, and should be modeled in our fault injector.

 Similarly, there are other sources of vulnerabilities in programs such

as multiple threads of execution and resources such as the system clock

that can be modeled as well.

ii. An improved vulnerability verification scheme

A critical limitation of the black box environmental scheme, and the black

box approach with an executable is the inability to claim with a high level

of confidence that a program’s behavior with a fault injected does indicate

the presence of a security vulnerability.

While output matching is a start, tests that are more conclusive need to

be developed so that one can claim with confidence that an application has

been compromised. A possible approach could be the use of application

specifications to infer expected behavior, but a standard format needs to be

constructed that all program specifications should adhere to. This enters

the realm of formal verification methods, where a lot of work has already

been done to address similar problems.

iii. Objected Oriented concerns and a specification scheme for parameter

metadata

In our flow graph with metadata approach, we assumed that the

programmer provides constraints that he/she believes to exist on the input

 76

parameters, and return values from a function. For return values and

parameters that are objects, a programmer might be reluctant to expose

hidden fields in the corresponding class. This is a valid concern, because

providing information about private variables violates the encapsulation

properties of Object Oriented Programming. However, providing such a

capability could improve the vulnerability finding process.

 In addition, a scheme needs to be developed for representing all of this

metadata information provided by the programmer. One possibility is the

use of XML which has been gaining increased momentum and is now the

standard format for several web technologies such as WSDL, XML-RPC

and RSS.

iv. More approaches in the hierarchy, and domain specific techniques

We currently have five approaches in our hierarchy, but there is always

room for more. With greater refinement of the constraints and abstractions

of programs, one may be able to include more levels so that a reviewer has

an increased set of options to make the right choice.

 Further, our approaches are good for generic, executable applications,

but with an explosion in the number of websites and online commerce,

web applications are a significant class of programs that need analysis.

The kind of security problems that they face may be very different from

what console applications experience, especially with issues such as

authentication, session and state. Therefore, our generic approach

 77

proposed here can grow to include more domain specific applications, and

address their requirements in detail.

 78

 Bibliography

[1] S. Panjwani, S. Tan, K. Jarrin, and M. Cukier, An Experimental Evaluation

to Determine if Port Scans are Precursors to an Attack, in Proc.

International Conference on Dependable Systems and Networks (DSN-2005),

Yokohama, Japan, June 28-July 1, 2005, pp. 602-611.

[2] A. Adelsbach, D. Alessandri, C. Cachin, S. Cresse, Y. Deswarte, K. Kursawe, J.C.

Laprie, D. Powell, B. Randell, J. Riordan, W. Simmonds, R. Stroud, P. Verissimo,

M. Waidner and A. Wespi. Conceptual Model and Architecture of MAFTIA.

Project MAFTIA deliverable D1. 2000.

[3] A. Adelsbach, D. Alessandri, C. Cachin, S. Cresse, Y. Deswarte, K. Kursawe, J.C.

Laprie, D. Powell, B. Randell, J. Riordan, W. Simmonds, R. Stroud, P. Verissimo,

M. Waidner and A. Wespi. Conceptual Model and Architecture of MAFTIA.

Project MAFTIA deliverable D2. November 2001.

[4] D. A. Wheeler. FlawFinder http://www.dwheeler.com/flawfinder

[5] Secure Software Solutions. RATS - rough auditing tool for security.

http://www.securesw.com/rats/ 2001

[6] J. Viega, J.T. Bloch, Y. Kohno, G. McGraw. ITS4: A static vulnerability scanner

for C and C++ code, acsac, p. 257, 16th Annual Computer Security Applications

Conference (ACSAC'00), 2000.

[7] G. McGraw. Testing for Security During Development: Why We Should Scrap

Penetrate-and-Patch, in IEEE AES Systems Magazine. April 1998.

[8] A. K. Ghosh, T. O'Connor, and G. McGraw. An automated approach for

identifying potential vulnerabilities in software. in Proc. 1998 IEEE Symposium

on Security and Privacy, Los Alamitos, CA, USA, pp. 104-14, 1998.

[9] N. Neves, J. Antunes, M. Correia, P. Veríssimo, R. Neves. Using Attack Injection

to Discover New Vulnerabilities, submitted to International Conference on

Dependable Systems and Networks (DSN06), Philadelphia, PA, June 25-28,

2006, to appear.

[10] W. Du and A. P. Mathur. Testing for Software Vulnerability Using Environment

Perturbation. In Proceedings of the International Conference on Dependable

Systems and Networks (DSN 2000)

 79

[11] W. Akkerman et al. Strace, http://www.liacs.nl/~wichert/strace/. March 2006.

[12] G. McGraw and J. Viega. Building Secure Software : Race Conditions. Addison

Wesley, 2001

[13] M. Bishop and M. Dilger. Checking for Race Conditions in File Accesses,

Computing Systems 9 (2) pp. 131-152, Spring 1996.

[14] W. Du and A. P. Mathur. Testing for Software Vulnerability Using Environment

Perturbation. In Proceedings of the International Conference on Dependable

Systems and Networks (DSN 2000)

[15] B. Beizer. Software Testing Techniques. 2
nd
 edition. Van Nostrand Reinhold,

1990

[16] F. E Allen. Control flow analysis. In Proceedings of a Symposium on Compiler

Optimization. SZGPLAN Not. 5, 7 (July 1970), 1-19

[17] F. Tip. A Survey of Program Slicing Techniques. Technical Report: CS-R9438.

1994. CWI (Centre for Mathematics and Computer Science) Amsterdam, The

Netherlands, The Netherlands

[18] J. Ferrante, KJ Ottenstein, J.Warren. The Program Dependence Graph and Its

Use in Optimization. ACM Transactions on Programming Languages and

Systems, 1987

[19] J. Larus, E. Schnarr. EEL:Machine-Independent executable editing. ACM

SIGPLAN Notices. Volume 20, Issue 6. p291-300. June 1995

[20] F. Umemori, K. Konda, R. Yokomori, K. Inoue. Design and implementation of

bytecode-based Java slicing system. Proceedings of the Third IEEE International

Workshop on Source Code Analysis and Manipulation, 2003.

