Subjective integration of probabilistic information obtained via description and experience underlies potentially consequential judgments and choices. However, little is known about the quality of the integration and the underlying processes.

I contribute to filling this gap by investigating judgments informed by integrating probabilistic information from the two sources. Building on existing information integration frameworks (e.g., N. Anderson, 1971), I develop and subsequently test computational models that represent the integration process.

Participants in three experiments estimated the percentage of red balls in a bag containing red and blue balls based on two samples drawn from the bag. They *experienced* one sample by observing a sequence of draws and received a *description* of the other sample in terms of summary statistics. Subjective integration was more sensitive to information obtained via experience than via description in a manner that depended on the extremity of the experienced sample relative to the described one.
Experiment 1 showed that experience preceding description leads to integration that is less biased towards experience than the reverse presentation sequence. Following this result, Experiment 2 examined the effect of memory-retrieval demands on the quality of the integration. Specifically, we manipulated the presence or absence of description- and experience-based decision aids that eliminate the need to retrieve source-specific information. The results show that the experience aid increased the bias, while the description aid had no interpretable effect.

Experiment 3 investigated the effect of the numerical format of the description (percentage vs. frequency). When description was provided in the frequency format, the judgments were unbiased and the leading model suggested that the two sources are psychologically equivalent. However, when the description was provided in the percentage format, the leading model implied a tradeoff between the two sources.

Finally, participants in Experiment 3 also rated how much they trusted the source of the description. The participants’ ratings were correlated with how they used the description and with the quality of their judgments.

The findings have implications for interpreting the description-experience gap in risky choice, for information integration models, and for understanding the role of format on the use of information from external sources. In addition, the methods developed here can be applied broadly to study how people integrate information from different sources or in different formats.
SUBJECTIVE INTEGRATION OF PROBABILISTIC INFORMATION FROM DESCRIPTION AND FROM EXPERIENCE

By

Yaron Shlomi

Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Doctor of Philosophy
2009

Advisory Committee:
Professor Thomas S. Wallsten, Chair
Dr. Thomas A. Carlson
Dr. Michael R. Dougherty
Dr. Rebecca W. Hamilton
Dr. Cheri Ostroff
© Copyright by
Yaron Shlomi
2009
Acknowledgements

I have been amazingly fortunate to have Dr. Tom Wallsten as my dissertation advisor. Tom has been extremely patient throughout all phases of the dissertation, starting with my search for a dissertation topic and up to the write-up and defense. His extensive knowledge contributed to the conceptual and methodological aspects of this research. I am grateful to him for holding me to a high standard of theory development, experimental design, and data analyses, and thus teaching me how to do research. I am also thankful for Tom’s careful reading and commenting on previous drafts of this manuscript. My appreciation for Tom’s warmth as expressed in our meetings, emails, and phone conversations is beyond words.

I thank my committee members, Drs. Tom Carlson, Michael Dougherty, Rebecca Hamilton, and Cheri Ostroff for agreeing to be on my committee, for their careful reading of the proposal and the dissertation, and for their thoughtful comments and feedback during our meetings.

Many thanks to the undergraduate students who served as participants in my dissertation experiments. I am grateful to Joshua Boker, Ezra Geis, Leda Kaveh, Marissa Lewis, Stephanie Odenheimer, Lauren Spicer, Herschel Lisette Sy, and Kimberly White for their administering the dissertation experiments.

My son, Yotam, my parents, siblings and in-laws, and friends have been patient and supportive throughout my graduate training. Thank you.

I cannot imagine being a graduate student in a foreign country without my wife, Efrat. Ever since my applying to graduate school, she has been the most loving partner during the difficulties and the peaks of my graduate experience. Her patience, faith in me, and dedication were crucial for my completing this dissertation.
Table of Contents

Acknowledgements ... ii
Table of Contents ... iii
List of Tables ... iv
List of Figures .. v
Chapter 1: Introduction ... 1
 Previous Research on Integrating Description and Experience 2
 A Theoretical Framework of Subjective Information Integration 5
 Questions of Interest, Predictions, and Hypotheses .. 13
Chapter 2: Experiment 1 .. 16
 Method ... 16
 Results ... 18
 Discussion .. 31
Chapter 3: Experiment 2 .. 33
 Method ... 34
 Results ... 36
 Discussion .. 43
Chapter 4: Experiment 3 .. 46
 Method ... 46
 Results ... 47
 Discussion .. 55
Chapter 5: General Discussion .. 57
 Broader contribution ... 61
Appendix A ... 63
Appendix B ... 64
Appendix C ... 65
Bibliography ... 66
List of Tables

Table 1. Hypotheses and corresponding constraints and predictions of the integration models. .. 11
Table 2. Description and Experience Coefficients (Experiment 1). 26
Table 3. Results of Nested Model Comparisons (Experiment 1) 29
Table 4. Description and Experience Coefficients (Experiment 2). 41
Table 5. Results of Nested Model Comparisons (Experiment 3) 51
List of Figures

Figure 1. Outline of the information integration model (based on Mellers & Birnbaum, 1982) ... 6
Figure 2. Observed judgments as a function of the prescribed judgments in Experiment 1. Filled squares – experience more extreme than description; empty squares – experience more moderate than description; asterisk – identical outcomes. ... 19
Figure 3. Signed bias. Extreme and moderate experience refer to the information assignment on each trial (e.g., experienced sample more extreme than described sample). .. 21
Figure 4. Predicted judgments as a function of observed judgments in Experiment 1. Filled squares = experienced outcome more extreme than described outcome; empty squares = experienced outcome more moderate than described outcome. 28
Figure 5. Signed bias in Experiment 2. The four panels correspond to the four levels obtained from the factorial manipulation of the description and experience aids. Rows correspond to levels of the experience aid; columns correspond to levels of the description aid. Triangles – experienced information more extreme than the described one. Circles – experienced information less extreme than described one. 37
Figure 6. Signed bias as a function of experience aid and experienced sample............ 38
Figure 7. Absolute bias in Experiment 2. The four panels correspond to the four levels obtained from the factorial manipulation of the description and experience aids. Rows correspond to levels of the experience aid; columns correspond to levels of the description aid. Triangles – experienced outcome more extreme than described one. Circles – experienced outcome less extreme than described one. 39
Figure 8. Signed bias in Experiment 3. Triangles – experienced outcome more extreme than described one. Circles – experienced outcome less extreme than described one. ... 39
Figure 9. Absolute bias in Experiment 3. Triangles – experienced outcome more extreme than described one. Circles – experienced outcome less extreme than described one. ... 48
Figure 10. Model estimates as a function of perceived trust 55
Chapter 1: Introduction

Human judgment and decision making can be guided by two distinct sources of information, personal experience or description. Experience refers to observing information directly whereas description refers to information that has been observed and abstracted by a source other than the judge/decision maker. To exemplify the distinction, consider the information guiding physicians: they obtain experience from exposure to patients whereas they obtain description by reading professional literature.

Intuition suggests that humans guide their judgments and decisions by integrating description and experience (e.g., physicians integrate the two types of information to choose a treatment plan). Although such integration informs potentially consequential decisions, we know very little about its quality and the psychological processes that underlie it. The purpose of the current research was to assess the quality of judgments informed by integrating probabilistic information obtained from description and experience and to elucidate the integration process. The research focus relates to the description-experience gap (Barron, Leider & Stack, 2008; Hertwig, Barron, Erev & Weber, 2004). The theoretical background relates to information integration in other contexts including subjective averaging (N. Anderson, 1968; Levin, 1975), belief updating (Wallsten, 1972) and using advice (Yaniv & Kleinberg, 2000).
The current investigation has theoretical, empirical, and practical significance. The theoretical significance is the use of a normative integration model to develop a family of computational models of subjective integration. The empirical significance consists of identifying factors that affect the quality of the integration and the model(s) that mimic the integration principles. The model development, data collection methodology, and empirical findings have practical significance: they can be adapted to address the quality of integration performed outside the lab and to inform efforts to improve the quality of such integration.

The paper is organized in the following way. After reviewing research pertinent to integrating description and experience, I develop a hierarchy of models of subjective information integration. The empirical component of the research consisting of three experiments, is reported next, each experiment in a separate chapter. Finally, the general discussion summarizes the findings, provides an interpretation and discusses their implications for related research on how information from description and experience is processed and integrated.

Previous Research on Integrating Description and Experience

The task of combining information obtained via description and experience can be construed in the following way. The task requires integrating two units of information, \(p_1 \) and \(p_2 \), one from description and the other from experience. This construal leads to three questions about subjective integration of description and experience: (1) What is the quality of subjective integration, given some normative standard? (2) Does the integration depend on how the information is distributed
between the two sources (e.g., p_1 from description and p_2 from experience)? (3) What are the processes that underlie subjective integration?

There is no research to answer Question 2, and only two studies that provide preliminary answers to Questions 1 and 3. In one study, Newell & Rakow (2007) provided people with a description, and then tested whether they were affected by experience containing the same information. Specifically, they provided participants a description of a die with four black faces and two white faces and then asked participants to predict the outcome of rolling the die (i.e., whether it would land on a black or a white face). Participants were told that the die was fair and unbiased. The crucial manipulation was whether or not participants observed the outcome after each prediction; i.e., whether or not they received experience.

Newell and Rakow (2007) found that participants who observed the outcomes made correct predictions (i.e., they predicted the black face of the die) more often than those who did not observe the outcomes. Clearly, participants relied on experienced information to revise their predictions.

In the second pertinent study, Barron, Leider, and Stack (2008; Experiments 1, 2, and 3) investigated whether subjective integration is sensitive to the timing of obtaining the information. Participants in their study made 100 risky choices between two outcome distributions, and received outcome information (experience) that was contingent on each choice. In addition to experiencing the outcome distributions, participants read a warning about a large but unlikely loss associated with one of the distributions (i.e., participants received a description). Crucially, one group of participants received description before making the first choice, and a second group
received it after making the 50th. Although the two groups had the same information after the 50th trial (i.e., choice), their choices in trials 51-100 were not comparable.

Barron and colleagues (2007; Experiment 4) eliminated the timing effect by modifying the aforementioned operational definition of experience. In Experiments 1, 2, and 3, participants made 100 choices between two outcome distributions. In contrast, in the first 50 trials of Experiment 4 participants merely observed a sequence of monetary gains sampled from each of the two distributions. One participant group obtained description (i.e., the warning) followed by experience; a second participant group obtained the information in the reverse sequence. Then, in trials 51-100, after they had obtained information from both sources, participants made a set of consequential choices. There was no evidence that choices were affected by the presentation sequence (timing) of information from the two sources.

Barron and colleagues (2007) and Newell and Rakow (2007) are mute regarding the relationship (if any) between the subjective processes that operate on the two sources, and how that relationship contributes to the observed behavior. Absent these assumptions, our answer to Question 3 (process) is very limited.

Participants in both investigations were presented with only one pattern of assignment of the information units to the two sources. Thus, the data from these two reports cannot be used to answer Question 2, which concerns how integration depends on the distribution of information between the two sources. We do not know whether the observed behavior should be attributed to processing description versus experience, or to processing particular values of p_1 and p_2. Without controlling for
these possibilities, we cannot assess the quality of the integration and answer
Question 1.

A Theoretical Framework of Subjective Information Integration

The experimental paradigms employed to test how people integrate
description and experience [i.e., the paradigms used by Barron and colleagues (2007)
and by Newell and Rakow (2007)] are similar in important ways to those employed to
test people’s performance in other integration tasks (e.g., Bayesian inference,
Wallsten, 1972; risky choice, Anderson & Shanteau, 1970; person perception, Fiske,
1980; perceptual judgments; Mellers & Birnbaum, 1982). All of these paradigms
consist of providing participants with some information and subsequently testing
whether and how participants use that information to perform the task specified by
the experimenter.

Performance in the various integration tasks probably relies on a shared set of
processes. Assuming a common process, we can rely on existing frameworks of
integration (e.g., Goldstein & Einhorn, 1987; Massaro & Friedman, 1990; Mellers &
Birnbaum, 1982; N. Anderson, 1971; Wallsten, 1972) to theorize about the processes
that underlie the integration of description and experience.

Many information integration frameworks relate the observed behavior to
experimental stimuli by assuming three underlying processes: scaling, integration and
response (e.g., Goldstein & Einhorn, 1987; Massaro & Friedman, 1990; Mellers &
Birnbaum, 1982; N. Anderson, 1971). The observed behavior can be expressed as a
composition of three functions corresponding to the three processing assumptions
(Mellers & Birnbaum, 1982).

Figure 1 provides a visual representation of integration models that follow this
scheme. Scaling transforms a physical stimulus P into a subjective stimulus p
(Mellers & Birnbaum, 1982) by the psychophysical function, Φ, i.e., $p = \Phi(P)$.
Integration refers to the process that actually combines the subjective stimuli (e.g.,
Massaro & Friedman, 1990). Limiting the exposition to the integration of two stimuli,
the aggregation assumption is expressed as function Ω that takes stimuli p_i and p_j as
input and yields a new datum, $r_{i,j}$, as output. [i.e., $r_{i,j} = \Omega(p_i, p_j)$]. The response
assumption specifies the transformation of the subjectively integrated information to
overt and therefore measurable behavior. Specifically, the transformation
function, Ψ, translates the new datum to an observed response, $\hat{R}_{i,j} = \Psi(r_{i,j})$.

Figure 1. Outline of the information integration model (based on Mellers &
Birnbaum, 1982)
We rely on this approach to develop a set of models for the current integration task. The intuition for the models follows the formal development. For ease of presentation, we specify the response, aggregation and scaling assumptions in this order.

Response. The response function formalizes assumptions about the transformation of covert information into an overt (measurable) response (e.g., Erev, Wallsten, & Budescu, 1994). Here, we assume that the observed response is identical to the covertly integrated stimulus (for a similar approach, see Anderson & Shanteau, 1970). Formally,

\[R_{i,j} = r_{i,j}. \]

(1)

Aggregation. The current integration task involves estimating a population mean based on two sample outcomes. In all that follows, we assume independent samples of equal size \(n \). Thus, the normatively prescribed integration procedure for this task is to average the two sample means.

Our assumption about the subjective integrator generalizes the prescribed averaging rule in two respects. One is that the judge does not necessarily treat the two
samples equally. The other is that the subjective integration mechanism operates on subjectively scaled inputs, i.e., inputs that differ in systematic ways from those used by the normative rule.

We refer to the subjectively scaled inputs from description and experience as \(p_d \) and \(p_e \), respectively. The corresponding integration weights are \(w_d \) and \(w_e \).

Using this notation, we express our integration assumption,

\[
\hat{R} = r_{D,E} = \Omega(p_d, p_e) = \frac{w_dp_d + w_ep_e}{w_d + w_e}.
\]

(2)

To facilitate subsequent development we assume that the weights are normalized (i.e., \(w_d + w_e = 1 \)) and rewrite the integration assumption,

\[
\hat{R} = r_{D,E} = \Omega(p_d, p_e) = w_dp_d + w_ep_e.
\]

(2a)

Scaling. The final, but crucial component of our subjective integration model is the scaling assumption,

\[
p_i = \Phi_i(p_i) = \kappa_i(p_i - 50) + 50 = \kappa_i p_i + 50(1 - \kappa_i).
\]

(3)

The value of \(\kappa \) governs the relationship between the actual and the subjective sample percentages. We subscript \(\kappa \) to allow the two sources to be modeled by distinct parameter values (i.e., yielding a source-dependent scaling of the objective stimulus). The restrictions on \(\kappa \) (e.g., \(\kappa > 0 \)) and the justification of these restrictions are detailed more meaningfully below.

Unlike a standard linear model with a separate parameter for the intercept and the slope, here the intercept and slope are governed by the single parameter, \(\kappa \). This structure is required to maintain the assumption that the transformations are
symmetric about $p = 50\%$ (for related claims, see Anderson & Shanteau, 1970; Rosenbaum & Levin, 1968). The objective and subjective sample percentages are identical when $\kappa_j = 1$. The subjective percentage is less extreme (i.e., closer to 50%) than the objective percentage when $\kappa_j < 1$; the converse is true if $\kappa_j > 1$.

The synthesis of the aforementioned assumptions yields a formal representation of the function that relates the human’s overt integration behavior to the information presented to her. We derive this representation by composing the functions (Mellers & Birnbaum, 1982) associated with the encoding, integration, and response assumptions to yield the following expression,

$$\hat{R} = r_{D,E} = \Omega(p_D, p_E) = w_D p_D + w_E p_E = w_D [\kappa_D p_D + 50(1 - \kappa_D)] + w_E [\kappa_E p_E + 50(1 - \kappa_E)].$$

The model with 4 parameters, $\omega_D, \omega_E, \kappa_D, \kappa_E$, is not identifiable. To see this, we rearrange the algebra,

$$\hat{R} = \omega_D \kappa_D (p_D - 50) + \omega_E \kappa_E (p_E - 50) + 50. \quad (4a)$$

Thus, the model has two estimable parameters, $\alpha_D = \omega_D \kappa_D$ and $\alpha_E = \omega_E \kappa_E$,

$$\hat{R} = \alpha_D (p_D - 50) + \alpha_E (p_E - 50) + 50 \quad (5)$$

$$= \alpha_D p_D + \alpha_E p_E + 50[1 - (\alpha_D + \alpha_E)].$$

The algebraic rearrangement in Equation 5 highlights the fact that it is impossible to unambiguously interpret the model fits as due to stimulus scaling or stimulus weighting.
The primary vehicle for interpreting the data in the subsequent experiments is the model specified in Equation 5 (i.e., Equation 5 is the full model). Technical details about fitting the model to the data, including the model’s error theory, are provided in the results section of Experiment 1.

Model interpretation. The full model does not incorporate any assumption about the expected relationship between α_D and α_E. One possibility is that the two values are statistically independent of each other. An intuitive interpretation is that the processes that scale the two sources are unrelated to each other. Other possibilities include specific relations between α_D and α_E.

We consider three alternative assumptions about the relationship between the two coefficients. Each assumption corresponds to a specific hypothesis about the subjective integration processes. In turn, each hypothesis implies a unique constraint on the parameter space of the full model (i.e., the values of α_D and α_E in Equation 5). The hypotheses, the corresponding model constraints, and the predicted judgments are summarized in Table 1.

The *tradeoff* model is related to the integration assumption. The model coefficients correspond to the weights that the integrator attaches to the scaled stimuli (e.g., N. Anderson, 1971). The hypothesis is that the scaled stimuli compete for the integrator’s limited processing resources (attention; e.g., Goldstein & Einhorn, 1987). Thus, the weights correspond to stimulus characteristics such as the fluency of parsing stimuli in different formats (Johnson, Payne, & Bettman, 1988); retrieving
them from memory (Weiss & N. Anderson, 1969); their credibility/diagnostic value
(Yaniv, Kleinberger, 2000); and concreteness (Hamilton & Thompson, 2007).

The second and third models reflect the hypothesis that the integrator is
equally sensitive to inputs from the two sources. Equivalently, both models are
motivated by the idea that information processing is source-invariant. The difference
between the two models is in whether they assume optimal weighting of the inputs.
The assumption expressed in the *equal-non-normative* model is that the scaling of the
objective stimuli is independent of its source. The *equal-normative* model requires the
subjective stimuli to be identical to their objective counterparts.

Table 1. Hypotheses and corresponding constraints and predictions of the integration
models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Hypothesis</th>
<th>Constraint</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>None</td>
<td>(\hat{R} = \alpha_D P_D + \alpha_E P_E + 50[1-(\alpha_D + \alpha_E)])</td>
<td></td>
</tr>
<tr>
<td>Tradeoff</td>
<td>(\alpha_D + \alpha_E = 1)</td>
<td>(\hat{R} = \alpha_D P_D + (1-\alpha_D)P_E)</td>
<td></td>
</tr>
<tr>
<td>Equal – non-normative</td>
<td>(\alpha_D = \alpha_E \neq .5)</td>
<td>(\hat{R} = \alpha_D (P_D + P_E) + 50(1-2\alpha_D))</td>
<td></td>
</tr>
<tr>
<td>Equal - normative</td>
<td>(\alpha_D = \alpha_E = .5)</td>
<td>(\hat{R} = .5 (P_D + P_E))</td>
<td></td>
</tr>
</tbody>
</table>

Information distribution. Are judgments based on description and experience
affected by the distribution of the information? Specifically, let \(T \) and \(T' \) refer to two
distributions of information between the two sources. In \(T \), description provides
information about \(P_1 \) (and experience provides information about \(P_2 \)), and in
distribution T', the assignment is reversed. Will judgments based on distributions T and T' be related to each other in a systematic way?

As mentioned earlier, the normative principle that is applicable for the current research is to average the information in P_1 and P_2. Furthermore, averaging obeys commutativity. Let R^*, R_T, and $R_{T'}$ correspond to the normative judgment and the judgment based on distributions T and T', respectively. We obtain, $R^* = R_A = R_B = .5(P_1 + P_2) = .5(P_2 + P_1)$. Thus, from a normative perspective, judgments based on distributions T and T' should be identical to each other.

Previous research on subjective integration suggests that normative principles cannot account for subjective integration (e.g., Anderson & Shanteau, 1970). However, there are no hints regarding the effect of information distribution.

One possibility is that the information distribution has no effect. As shown in Appendix A, this requires the assumption that the two sources are treated equally (i.e., $\alpha_D = \alpha_E$). Note that this is precisely the prediction of the equal-non-normative model.

Alternatively, the information distribution will produce deviations from the prescribed judgment that are equal in magnitude but opposite in sign (i.e., the deviations are symmetric with respect to the prescribed response). Again, as shown in Appendix A, this requires a tradeoff between processing the two sources, (i.e., $\alpha_D + \alpha_E = 1$). This is precisely the prediction of the tradeoff model.

The final possibility is that the deviations given the two information assignments are not equal to each other. Continuing the previous developments, this
implies that $\alpha_D \neq \alpha_E$ and $\alpha_D + \alpha_E \neq 1$. Note that within our model hierarchy, only the full model is consistent with this hypothesis.

Questions of Interest, Predictions, and Hypotheses

The research poses three interrelated questions about the subjective integration of information from description and experience. 1) Does a normative model of integration provide a reasonable approximation of subjective integration? 2) If not, does the integration depend on information assignment? (3) How does the integration occur?

As in previous research on description and experience (Barron et al., 2008; Hau, Pleskac, Kiefer, & Hertwig, 2008), we operationally define the two modes as different methods of obtaining information about a population of outcomes. Experience refers to information obtained from sampling individual outcomes from the population. Description refers to information obtained from a numerical summary of a sample (i.e., 80% of the chips are red).

We investigated subjective integration in a task that normatively requires averaging information from two samples to yield an estimate of the corresponding population average. The two samples provided information about the composition of a bag of red and blue chips (c.f., Phillips & Edwards, 1966; Pitz, Dowling, & Reinhold, 1967). In any one trial, participants experienced a sample by observing a sequence of sampled chips and received a description of another sample in the form of a summary its composition. After receiving the information in both samples,
participants estimated the percentage of red chips in the bag (i.e., the population parameter). Participants were told that the description was reliable, and received information indicating that the two samples associated with each bag consisted of the same number of chips.

The task was designed such that each pair of samples from a particular bag appeared in two experimental conditions over the course of a session. In one condition, sample A was experienced and sample B was described and in the second condition, sample A was described and sample B was experienced.

This judgment task was implemented in three experiments. Experiments 1 and 2 manipulated the presentation order of the two sources, while Experiment 3 manipulated the format of the description.

Normatively, integration is unaffected by format, by presentation sequence, or by how information is distributed to the two sources (the sample assignment). This view implies that participants recognize the formal structure of the task and use the prescribed averaging rule to integrate the information (c.f., the script in Hertwig & Hortmann, 2001). Stated differently, the normative viewpoint predicts that the source of the information (and other features associated with it; e.g., presentation sequence) will not affect subjective integration.

A large body of empirical evidence yields the opposite expectation. Human judges are affected by the context (i.e., source, format, presentation sequence) associated with the information. The expectation is supported by research on tasks that examine information integration in belief updating (Philips & Edwards, 1966), impression formation (N. Anderson, 1967), and perceptual judgments (Mellers &
Birnbaum, 1982). Additional evidence related to the distinction between description and experience (e.g., using advice, Yaniv & Kleinberg, 2000; frequency versus probability formats; Gigerenzer & Hoffrage, 1995; product preference given exposure to trial versus ads; Hamilton & Thompson, 2007) motivates a more specific expectation that experience will be more prominent than description in the integrated output.

We interpret how participants produced their judgments (i.e., their estimates of the percentage of red chips) by fitting a hierarchy of integration models, as shown in Table 1, to the participants’ judgments. The fit of any given model yields estimates of the weights allotted to each information source. Comparing levels of fit across models allows us to identify the most likely description (among those considered) of the subjective integration process.
Chapter 2: Experiment 1

The purpose of the experiment was to assess the quality of the integration of probabilistic information obtained from description and from experience. The experiment was designed to assess whether the integrator’s use of the information depended on the source that provided it, and whether the integration was sensitive to the presentation order of the two sources.

Method

Participants. One hundred sixty-two University of Maryland, College Park undergraduate students participated for course credit. In addition, they received a reward contingent on the accuracy of their judgment (see below).

Stimuli. Two sets of bags were used in the experiment. Bags in the “identical-percentage” set were associated with pairs of samples that contained an identical percentage of red chips. Bags in the “different-percentage” set were associated with pairs of samples that differed in the percentage of red chips. The two samples were either categorically congruent (i.e., both $P_D > 50\%$ and $P_E > 50\%$ or both $P_D < 50\%$ and $P_E < 50\%$) or categorically incongruent (i.e., one of P_D and P_E less than 50% and one greater than 50%). There were 10 and 18 bags in the identical- and different-percentage sets, respectively. All of the identical-percentage bags and 14 different-percentage bags were used in the main experiment. The remaining four different-percentage bags were used for practice. The sample size (i.e., the number of chips in the samples) ranged over trials from 8 to 13 and was always the same for a pair of
samples in a given trial. The sample and population percentages of red chips ranged from 14% to 86% (see Appendix B).

Procedure. Participants were presented with instruction screens, followed by one trial with each of the practice bags. Participants typed their responses, and were then prompted to ask the experimenter for clarifications about the task. The responses obtained on the practice trials were excluded from the data analyses. After this, participants completed two trials with each of the experimental bags for a total of 52 trials (i.e., 4+2x24).

The practice trials and experimental trials were identical in design. Participants initiated each trial by clicking a button. Each trial consisted of three parts. One, participants clicked a button to draw one chip from one sample, and continued clicking the button until they had viewed each of the chips in that sample. The chip appeared on the display 500ms after each click, and remained visible until the next button click. Two, participants clicked a button to receive the description of the second sample. The description consisted of a picture of “Mr. Rick” (i.e., the source of the description), the number of chips that he sampled, and the percentage of red chips he observed. This information remained visible until the participant’s next click. Three, participants typed their estimate of the percentage of red chips in the bag. The experiment was programmed so that only integers in the [1, 99] interval were accepted.

Participants were randomly allocated to two experimental conditions. One group of participants \((n = 82)\) obtained information from experience and then from description (i.e., Experience-1st). A second group \((n = 80)\) obtained information on
each trial from description and then experience (i.e., Experience-2nd). Two bag
presentation sequences were counterbalanced across participants. The sequences were
arranged so that the first and second presentation of each bag occurred in the first and
second block of 24 consecutive experimental trials, respectively. The presentation of
bags in the identical- and different-percentage sets was intermixed within each block.

The two blocks differed from each other in the information assignment of each of
the different-percentage bags. In one block, the extreme sample associated with each
bag was experienced and the moderate sample associated with each bag was
described (e.g., $P_E = 80\%$ and $P_D = 60\%$). In the second block, this assignment was
reversed. The order of the two blocks was counterbalanced across participants.

The computer scored the accuracy of the participant’s response on each trial using
the following rule, $s = 100\{1 - (R - \hat{R})^2\}$, where R and \hat{R} correspond to the observed
and the prescribed response, respectively. At the end of the participant’s session, the
computer computed the participant’s average score from the scores associated with
the 48 experimental trials. The average score is bounded in $[0, 100]$; the value of
s determined the probability that the participant earned a reward (i.e., a commuter’s
mug). Since participants did not receive any feedback in the course of the experiment,
the reward could not affect the data analyses and is not considered further.

\textit{Results}

Figure 2 provides some orientation to the analyses. The two panels plot the
across-participant average response as a function of the prescribed response
associated with each bag. The left and right panels correspond to responses obtained
in the Experience-1st and Experience-2nd conditions, respectively. Within each panel,
the filled squares correspond to trials in which the experienced sample contained a more extreme percentage than the described one contained, the empty diamonds correspond to trials with the reverse assignment (i.e., the experienced sample was less extreme than the describe one), and the asterisks correspond to trials in which the experienced and described samples contained identical percentages.

The data in Figure 2 suggest that there was less bias when experience was first rather than second. Furthermore, when experience and description were identical, judgments were too moderate. Finally, there is also some indication of the effect of the information assignment. The responses were too extreme when the experienced sample was more extreme than the described one. Conversely, the responses were too moderate when the experienced sample was more moderate than the described one.

Figure 2. Observed judgments as a function of the prescribed judgments in Experiment 1. Filled squares – experience more extreme than description; empty squares – experience more moderate than description; asterisk – identical outcomes.
The analyses evaluate the quality of the observed judgments by testing for a systematic bias relative to the prescribed judgments. Thus, the analyses rely on the difference (δ) between observed judgment, R, relative to the prescribed judgment, R*. Two bias measures based on δ are used. One, the signed bias, defined as \(\delta = R - R^* \) if \(R^* > 50 \), and \(\delta = R^* - R \) if \(R^* < 50 \). Two, the unsigned (absolute) bias, \(|R - R^*| \).

Both bias scores measure the location of the observed judgments relative to the diagonal. The signed bias indicates whether the responses tend to be too moderate or too extreme, whereas the unsigned bias indexes the consistency of the integration.

The data from one participant in the Experience-1st and two participants in the Experience-2nd conditions were excluded from all analyses because their signed bias scores were lower than -18. These scores deviated from the mean of the entire sample by more than 4.5 standard deviation units (the next highest score was -12.2).

Signed deviations. Judgments, averaged for each participant across all of the trials, were too moderate (\(M = -1.48, SEM = .20 \)); the bias was reliable \(t(158) = 7.49, p < .001 \). The conservative response pattern converges with that obtained by most research on Bayesian updating (e.g., Philips & Edwards, 1966).

We turn to the question of whether the bias was contingent on the sample assignment and the presentation sequence. By design, the normative judgments associated with the different-percentage bags were less extreme than those of the identical-percentage bags. The reliability of the findings is assessed in separate analyses for each set of bags to avoid a potential confound of this factor.
In the same-percentage trials there was a reliable effect of the presentation sequence, $t(157) = 2.78, p < .01$. The Experience-1st sequence ($M = -1.91$) was associated with less bias than the Experience-2nd sequence ($M = -3.79$).

Turning to different-percentage trials, the data in Figure 3 show that the direction of the bias followed the extremity of the experienced sample. That is, responses tended to be too extreme when the experienced sample was more extreme than the described one and too moderate in the reverse case. The bias is attenuated in the Experience-1st condition relative to the Experience-2nd condition.

Figure 3. Signed bias. Extreme and moderate experience refer to the information assignment on each trial (e.g., experienced sample more extreme than described sample).

The information assignment, source sequence, and assignment by sequence interaction yielded significant effects, $F(1, 157) = 44.55, p < .001$, $F(1, 157) = 6.33, p < .05$, and $F(1, 157) = 4.35, p < .05$, respectively. The effect of information
assignment was reliable in both the Experience-1st and the Experience-2nd sequences,
\[t(80) = 3.23, \ p < .005, \] and \[t(77) = 6.22, \ p < .001, \] respectively. The effect of the presentation sequence was reliable when experience was moderate, \[t(157) = 2.96, \ p < .005, \] but not when it was extreme, \[t < 1. \]

\textit{Absolute deviations.} The analysis of the signed deviations showed that the judgments were biased in the direction of the experienced outcome. We turn to testing whether the consistency of the integration depended on whether experience was first or second and whether the extreme (vs. moderate) outcome was experienced or described. Only different-percentage trials are included in this analysis.

The presentation sequence by information assignment did not achieve significance, \[F(1,157) = 3.43, \ p = .07. \] Consistency was greater when experience was first \((M = 9.12, \ SEM = .50) \) rather than second \((M = 10.21, \ SEM = .51) \), and this effect was significant, \[F(1, 157) = 11.73, \ p < .001. \]

The bias scores, given that the extreme outcome was experienced versus described were \((M = 8.83, \ 95\% \ CI = 8.06-9.61, \ Median = 7.93) \) and \((M = 9.09, \ 95\% \ CI = 8.32-9.86, \ Median = 8.79) \), respectively. Noting the skew in the distribution of bias scores given an extreme experience, I performed both parametric and nonparametric analyses. The effect of assignment was not significant when tested with either a standard ANOVA, \[F(1, 157) = 1.14, \ p > .2, \] or by a sign test, \[p = .81. \]

\textit{Bracketing violations.} The normative judgment lies in the interval bracketed by the described and experienced samples. However, we did not implement any procedure that would constrain the participants’ judgments to lie within this bracket.
The participant’s judgment violates the bracket whenever it falls outside the interval bounded by \(P_D \) and \(P_E \) (c.f., Soll & Larrick, 2009). We assess the occurrences of bracketing violations, because as we see in the next section, these violations must be considered in applying the subjective integration models.

The analysis of the bracketing violations is based on judgments associated with the different-proportion trials. The mean, median and modal number of bracket violations per participant was 5.8, 5.0, and 1.0 (out of 28 trials), respectively. The minimum and maximum number of violations (per participant) were 0 \((n = 18)\) and 21 \((n = 1)\).

Modeling Subjective Integration of Description and Experience

The purpose of fitting the integration models (Equation 5 and Table 2) to the observed judgments is twofold. One, the fits yield maximum likelihood parameter estimates for each participant that allow interpretation of the observed judgments in terms of the participant’s sensitivity to information provided by the two sources (i.e., corresponding to the values of \(\alpha_D \) and \(\alpha_E \)). Two, the model comparisons allow tests of hypotheses about the integration process (more precisely, the relationship between the two \(\alpha \)s).

Maximum likelihood estimation procedure
This section details the application of the maximum likelihood procedure to the full model (Equation 5). The modifications of this procedure for the nested models are detailed at the end of the section.

The full model yields an expression for the predicted judgment, \hat{R}, in terms of the information from the two sources and the associated weights. Allowing for trial-by-trial variability, ε, the observed judgment\(^1\), R, can be expressed as $R = \hat{R} + \varepsilon$. We assume a normal distribution of εs with mean θ and standard deviation ζ.

The four parameters of the full model (i.e., α_D, α_E, θ, ζ) were selected separately for each participant to maximize the log likelihood of the distribution of $\varepsilon = R - \hat{R}$ for that participant. The expression for the log likelihood of ε given the model predicted judgment is,

$$L = \sum_{i=1}^{28} \ln[f(\varepsilon_i)],$$

(6)

where $f(\varepsilon_i)$ refers to the likelihood of the residual ε under $N(\theta, \zeta)$ associated with the participant’s response on trial t. To reiterate, this procedure identifies four parameters that maximize the value of L in Equation 6.

The selection of the four parameters was subject to the following constraints. The starting values of α_D, α_E, θ, and ζ were $.5, .5, 0,$ and 12, respectively. The starting value for ζ was informed by some pilot runs with the model. The permissible range of values of θ and ζ was $|\theta| < 90$ and $.01 < \zeta < 40$.

\(^1\) All of the integration models yield a prediction for each participant on each trial. The use of subscripts for the participant, trial, and model is minimized for ease of presentation.
The permissible range of values of α_D and α_E was guided by a methodological and an empirical consideration. By design, participants were required to make judgments in the [1, 99] interval. This implies that the model should not be permitted to make predictions outside this interval. Empirically, we observed bracketing violations. These violations can be interpreted as a subjective stretching or shrinking of the response scale. I constrained the α s to the [-1, 1] interval. This range is necessary to allow the model to predict the bracketing violations. At the same time, this range also allows the model to predict judgments outside the [1, 99] interval.

The only difference between this procedure and the procedures for the nested models was the constraint that was imposed on the model parameters (e.g., in the procedure for the tradeoff model, $\alpha_E = 1 - \alpha_D$). Values of θ and ζ were selected separately for each participant and each model.

Maximum likelihood parameter estimates

The maximum-likelihood parameter estimates of α_D and α_E from the full model, as well as $\Delta \alpha = \alpha_E - \alpha_D$, are summarized in Table 2. The summary for each parameter and their difference includes the across-participant mean and the 95% confidence interval.

Note that α_E is consistently greater than .50 and α_D is consistently less than .50, suggesting that the experienced sample is accorded an excessively extreme subjective value and the described value is accorded an excessively moderate subjective value. The deviations were larger for description than for experience.
Table 2. Description and Experience Coefficients (Experiment 1).

<table>
<thead>
<tr>
<th>Presentation sequence</th>
<th>α_D</th>
<th>CI</th>
<th>α_E</th>
<th>CI</th>
<th>$\Delta\alpha$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experience-1st ($n = 81$)</td>
<td>.40</td>
<td>.36-.45</td>
<td>.56</td>
<td>.51-.61</td>
<td>.16 .06-.25</td>
</tr>
<tr>
<td>Experience-2nd ($n = 78$)</td>
<td>.29</td>
<td>.24-.34</td>
<td>.58</td>
<td>.54-.63</td>
<td>.29 .20-.38</td>
</tr>
</tbody>
</table>

Note. CI refers to the 95% confidence interval. α_D and α_E correspond to the sensitivity to description and experience, respectively. $\Delta\alpha = \alpha_E - \alpha_D$.

The difference between the two coefficients, $\Delta\alpha = \alpha_E - \alpha_D$, provides a more concise indication of the differences in processing experienced versus described probabilistic information. The mean values are positive and the confidence intervals do not bracket zero, indicating that the sensitivity to experience was reliably larger than that of description (see Table 2).

A multivariate analysis of variance (MANOVA) with the two coefficients as the dependent variables and the presentation sequence as its factor yielded a significant effect, $F(2, 156) = 6.76, p < .005$. Univariate analyses yielded a reliable effect on α_D, $F(1, 157) = 9.44, p < .005$, but not on α_E, $F < 1$.

The across-participant distribution of the coefficients provides some evidence that the processes that operate on the two sources were related to each other. Specifically, the Pearson correlation (r) between α_D and α_E was $-.69, p < .001$. Thus, across participants, the sensitivity to description is inversely related to the sensitivity to experience.
As noted earlier, the two αs were estimated subject to the restriction that they ranged in the [-1, 1] interval. This restriction reduces, but does not eliminate the chances that the model would yield predictions outside the [1, 99] interval.

The effectiveness of the restriction was assessed by computing the actual range of the model predictions for each participant. The restriction was effective, as indicated by the finding that the range of the model predictions for all of the participants was below 100^2. However, for one participant, $\alpha_D = 1$, and for seven subjects, $\alpha_E = 1$; there were no other cases in which the coefficients were on the boundaries of the permissible range (i.e., [-1, 1]).

We present the correspondence between the model-predicted judgments and the observed judgments in Figure 4. Each point is a model prediction for a given pair of samples in a particular assignment to description and experience. The predicted values are based on the coefficients in Table 2 (i.e., the across-participant mean values). Overall, the correspondence between observed and predicted judgments appears adequate, with the exception of more scatter in the Experience-2nd sequence.

Analyses of the error parameters of the full model yielded an unexpected pattern. The residuals (i.e., the εs associated with the model predictions), averaged over participants, were biased, $\theta = .70 \ (SEM = .22)$. This bias was reliably different from zero, $t(158) = 3.15, p = .002$. The bias in the two presentation sequences was comparable, $t < 1$. Second, the scatter of the residuals (i.e., ς) in the Experience-1st condition ($Median = 6.40$) was lower than in the Experience-2nd condition ($Median = 9.07$). The difference was reliable, per a Mann-Whitney U test ($p < .001$).

The three participants that were excluded from the analyses had the smallest range of predicted responses.
Figure 4. Predicted judgments as a function of observed judgments in Experiment 1. Filled squares = experienced outcome more extreme than described outcome; empty squares = experienced outcome more moderate than described outcome.

Model comparisons

The tradeoff, equal-normative, and equal-non-normative models shown in Table 1 are nested under the full model. Thus, the full model was compared to each of the nested models by computing the difference in log likelihood as follows, \(G^2 = 2 (L_{\text{full}} - L_m) \), with \(m \) indexing the nested model (e.g., the tradeoff model). The \(G^2 \) statistic is chi-square distributed with degrees of freedom equal to the difference in the number of parameters (Riefer & Batchelder, 1988). For example, the comparison of the full and the tradeoff models involves \(df = 4 - 3 = 1 \). We fit the models to the data of each participant separately and, in addition, summed the \(G^2 \) values and degrees of freedom over participants to yield a single more powerful test at the group level. All model comparisons rely on \(\alpha = .05 \).
By-subject analysis. The results of the by-subject comparisons are summarized in Table 3. The values in each row correspond to the proportion of participants for whom the model on the given row was not significantly different from the full model (per the G^2 test). Table 3 reveals that the tradeoff model is the only viable candidate for most participants. This finding is expected considering the inverse relationship between the coefficients estimated from the full model. Support for the tradeoff model was comparable across the two presentation sequences (a χ^2 test performed on the proportions in the top row of Table 3 yielded $p > .2$).

Table 3. Results of Nested Model Comparisons (Experiment 1)

<table>
<thead>
<tr>
<th>Presentation sequence</th>
<th>Model</th>
<th>Experience -1$^{\text{st}}$</th>
<th>Experience-2$^{\text{nd}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tradeoff</td>
<td>.80</td>
<td>.73</td>
</tr>
<tr>
<td></td>
<td>Equal-non-normative</td>
<td>.44</td>
<td>.40</td>
</tr>
<tr>
<td></td>
<td>Equal-normative</td>
<td>.43</td>
<td>.33</td>
</tr>
</tbody>
</table>

Note. The value in each cell corresponds to the proportion of participants for whom the model in the given row provides a comparable fit to the full model per the G^2 test. Thus, higher values indicate better fitting models.

The G^2 statistic is limited to comparisons between nested models and so cannot be used to compare the tradeoff and equal-non-normative models, which are not nested. An alternative way to compare these two models is to compute, for each participant, the log of the likelihood ratio, $\lambda = \ln(T / E)$, where T and E correspond to the likelihoods of the data under the tradeoff and equal-non-normative models,
respectively (c.f., Glover & Dixon, 2004). Positive values of λ lend support for the tradeoff model.

For most participants, the tradeoff model was preferred to the equal non-normative model. The values of λ were positive ($\lambda \geq .03$) for 73.3% of the participants and negative for the others ($\lambda \leq -.01$). The proportion of positive λ is reliably different from chance (i.e., equally probable positive and negative λ), $p < .001$, per a binomial test. The λ's in the two presentation sequences were comparable, ($p > .62$, per Mann-Whitney U test).

In principle, the tradeoff model could fit better than the equal-non-normative because it is more flexible, not because it provides a better description. To test this possibility, I used each participant’s parameter estimates under each model to generate new data under that model and then fit this generated data with each model. If one model is more flexible than the other, it should provide the better fit to data generated by both models. If neither model is more flexible than the other, each one should be superior at recovering its own data.

The tradeoff model fits its data better than the equal-non-normative model for 81% of the participants. The equal-non-normative model fits its data better than the tradeoff model for 67% of the participants. These patterns indicate that the superior fit of the tradeoff model relative to the equal non-normative is not due to differential flexibility.

Group analyses. The results of the group-level analyses are consistent with those of the individual-participant analyses. The three restricted models were significantly worse than the full model. The dfs involved in comparing the tradeoff,
equal-non-normative, equal-normative models to the full model were 159, 159, and 318, respectively. The G^2 and p values associated with comparing the three models were 375.5, 2140.0, and 2429.0; for all comparisons, $p < .001$.

The λ obtained from comparing the tradeoff model to the equal-non-normative model was 882.3, indicating that the tradeoff model was preferred to the equal-non-normative model. A similar pattern of results was obtained when each presentation sequence was examined in isolation.

Discussion

Experiment 1 assessed how decision makers integrate description- and experience- based probabilistic outcomes. The data showed that (1) overall, the judgments were too moderate; (2) the participants’ judgments were biased towards the experienced over the described sample; (3) the judgments were affected by the sample assignment, particularly when experience followed description.

The model coefficients and model comparisons suggest that the experienced outcomes were perceived or weighted as too extreme and described outcomes were perceived or weighted as too moderate. There was also a tradeoff relationship between processing the two sources.

The model coefficients suggested further that the weight accorded the experienced sample was insensitive to whether it came first or second. However, the weight accorded the described sample showed a recency effect in that it was greater when the described sample was second than when it was first.
The absolute deviations and the scatter of the model predictions were sensitive to the presentation sequence, such that there was less bias and less scatter in the Experience-2nd sequence. The absolute deviations were comparable in both outcome assignments.

The interpretation of the poorer integration in the Experience-2nd sequence is not clear. The model coefficients (i.e., α s) suggest the possibility of retrieval failures of the description when it appears first (i.e., in the Experience-2nd sequence).
Chapter 3: Experiment 2

The findings of Experiment 1 indicated that participants were less sensitive to described than to experienced samples of information, particularly when the description was provided first. Pursuing the possibility that the effect is due to retrieval failure, Experiment 2 was conducted to clarify the role of memory retrieval in the integration task. The critical manipulation involved the information that was available during the response phase of each trial, framed in terms of the presence (versus absence) of description-based and experience-based memory aids. In aid-absent conditions, information from one source was displayed and then removed before the display of the information from the second source. Conversely, in the aid-present conditions, information was displayed and remained visible throughout the end of the trial.

We orthogonally manipulated the experience- and description- aids in a factorial design to produce four conditions referred to as D'E', D'E', D'E', and D'E'. In this notation, the letter corresponds to the source (e.g., D representing description), and the + and − indicating the presence and absence of the aid, respectively. In the D'E' conditions, information from one source was displayed and then removed, information from the second source was displayed and then removed, and then participants entered their responses (this cell of the design replicates the conditions of Experiment 1). In the D'E' and D'E' conditions, the response was entered while the description (experience) was visible, eliminating the need to retrieve the description...
(experience). Finally, both sources were visible while the response was entered in the D*E* condition; in this condition there was no need to retrieve either source.

Method

Participants. One hundred sixty undergraduate students participated in return for course credit.

Stimuli. There were eight training and sixteen experimental bags. The bags differed from those of Experiment 1 in three ways. (1) The two samples associated with each bag always consisted of unequal but categorically similar proportions (i.e., both samples had the same majority color). (2) The samples always consisted of 13 chips. (3) The sample and population percentages ranged from 0 to 100 and from 4% to 96%, respectively (see Appendix C).

Design. Three variables were manipulated in a full factorial design: the source presentation sequence (as in Experiment 1), and the presence (vs. absence) of the description and the experience aids. Participants were randomly assigned to each of the 8 conditions (i.e., \(n = 20 \) in each condition).

Participants received four trials with each experimental bag (as opposed to two in Experiment 1). As in Experiment 1, the presentations were blocked so that in each block the extreme and moderate samples were assigned to the description and experience formats, respectively, or in the opposite arrangement. Half of the participants received descriptions and experiences of the extreme sample in blocks 1 and 3 and in blocks 2 and 4, respectively. This arrangement was reversed for the other half. The bag presentation sequence was counterbalanced as in Experiment 1.
Procedure. The procedure started with a brief overview of the task. Participants were presented with instruction screens and then completed 72 trials. For ease of exposition, details are provided for the procedure in the Experience-1st sequence. The Experience-2nd sequence is identical, except that experience follows description.

Participants clicked a button to start drawing the chips in one sample (i.e., to obtain experience). Each chip was displayed for 1000 ms, and the inter-chip-interval was 2000 ms. As the chip was removed, a circle was displayed in a rectangular region next to the picture of the bag. The color of the circle was determined by the experience aid condition: in the E+ condition the color of a circle matched the color of the chip that was just drawn from the bag, and in the E− condition the circle was always gray. The circle remained visible throughout the end the trial. Thus, the number of circles in the rectangle corresponded to the number of chips observed in that trial.

After obtaining experience, participants clicked a button to receive the description of the second sample. The description remained on the screen till the end of the trial in the D+E− and D+E+ conditions, but was removed after 2500ms in the D− E− and D+E+ conditions.

Participants provided their estimates with a slider anchored “0% Red” on the left end, “50% Red” in the middle, and “100% Red” on the right end. Thus, unlike Experiment 1, participants were not restricted to the [1, 99] interval and they were not required to type a numerical response.
The first eight trials served as familiarization trials; the responses obtained on these trials were excluded from the data analyses and will not be mentioned further. After the eighth trial, participants were prompted to ask the experimenter for clarifications about the task. The familiarization and experimental trials were identical in design.

Results

The judgments associated with the two replications (trials) of each bag and sample assignment were averaged prior to conducting the analyses. Thus, the analyses were based on 32 judgments per participant.

The data from two participants in the D'E+ condition were excluded from all analyses because their signed bias scores were lower than -45. These scores deviate from the mean of the entire sample by more than five standard deviations (the next highest score was -23.7).

The signed bias across all conditions (\(M = -.19, SEM = .50\)) was not reliably different from zero, \(t < 1\). However, the average judgment of 67% of the participants was too extreme; this percentage is reliably different from chance (\(p < .001\), per binomial test).

The signed bias scores are presented as a function of the information assignment, the source presentation sequence and the two aids in Figure 5. Visual inspection of the data indicates that as in Experiment 1, the direction of the bias is related to the experienced information (extreme vs. moderate). However, the effect of presentation sequence is less clear.
The bias scores were submitted to ANOVA with assignment as the within-participant factor and presentation sequence, experience aid, and description aid as the between-participant factors.

The interaction yielded two reliable effects ($p > .15$ for all the other effects). Outcome assignment yielded a reliable effect, $F(1, 150) = 59.63, p < .001$. Judgments were too extreme when the experienced sample was extreme ($M = 2.63, SEM = .7$) and too moderate when the experience sample was moderate ($M = -2.98, SEM = .55$).

The bias was qualified by the assignment by experience aid interaction, $F(1, 150) = 4.2, p < .05$. To facilitate exposition, the signed bias scores (i.e., Figure 5) are re-
arranged and re-presented in Figure 6. The experience aid affected the judgments when the experienced information was more extreme than the described one, but not when the reverse was true, respectively, $t(156) = 2.12, p < .05$, and $t(156) < 1$. The difference between the two information assignments was reliable when the aid was absent, $t(79) = 3.71, p < .001$, and when it was present, $t(77) = 7.87, p = .001$. The bias ($M = 1.19, SEM = .94$) in the aid-absent extreme-experience condition was not significantly different from zero, $t(79) = 1.27, p = .21$. Conversely, the bias in the three other conditions was reliable (all $ts>3.7$).

![Figure 6. Signed bias as a function of experience aid and experienced sample.](image)

Figure 6. Signed bias as a function of experience aid and experienced sample.
Absolute bias. The unsigned bias scores are presented as a function of the two aids, the source presentation sequence and the information assignment in Figure 7. The panels are arranged as in Figure 5.

![Figure 7](Image)

Figure 7. Absolute bias in Experiment 2. The four panels correspond to the four levels obtained from the factorial manipulation of the description and experience aids. Rows correspond to levels of the experience aid; columns correspond to levels of the description aid. Triangles – experienced outcome more extreme than described one. Circles – experienced outcome less extreme than described one.

The bias scores were submitted to ANOVA with information assignment as the within-participant factor and presentation sequence, experience aid, and description aid as the between-participant factors. The effect of information assignment was reliable, \(F(1, 150) = 46.26, p < .001 \). More bias was observed when the experienced
outcome was more extreme ($M = 9.59, \textit{SEM} = .38$) relative to more moderate ($M = 7.65, \textit{SEM} = .35$). Inspection of the data at the individual-participant level reveals that this pattern was true for 73% of the participants; i.e., most participants had more bias when experience was extreme rather than moderate.

The assignment by presentation sequence and assignment by presentation sequence by description aid interactions were marginally significant, $F(1, 150) = 3.13, p < .08$ and $F(1, 150) = 3.12, p < .08$. The assignment by experience aid interaction was reliable, $F(1, 150) = 5.96, p < .05$. Experience aid did not yield reliable effects regardless of whether experience was more extreme or more moderate than description ($p > .2$, per paired-sample t-tests). The interpretation of these interactions is unclear.

\textit{Bracketing violations.} The mean, median and modal number of bracket violations per participant was 4.0, 3.0, and 2 (out of 32), respectively. The minimum and maximum number of violations (per participant) were 0 ($n = 22$) to 24 ($n = 1$).

\textit{Maximum likelihood parameter estimates}

The model derivation and analyses were conducted in the same manner as in Experiment 1. The description and experience coefficients (i.e., α_D and α_E) estimated from the full model indicated that participants were over-sensitive to experience and under-sensitive to description (see Table 4). The two coefficients were inversely related to each other, $r = -.52 (p < .001)$.
Table 4. Description and Experience Coefficients (Experiment 2).

<table>
<thead>
<tr>
<th>Aid</th>
<th>α_D</th>
<th>α_E</th>
<th>$\Delta\alpha$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>CI</td>
<td>M</td>
</tr>
<tr>
<td>D^-E^-</td>
<td>.35</td>
<td>.29-.40</td>
<td>.58</td>
</tr>
<tr>
<td>D^+E^-</td>
<td>.42</td>
<td>.34-.50</td>
<td>.54</td>
</tr>
<tr>
<td>D^-E^+</td>
<td>.35</td>
<td>.29-.41</td>
<td>.64</td>
</tr>
<tr>
<td>$D^+E^+\times$</td>
<td>.34</td>
<td>.28-.40</td>
<td>.66</td>
</tr>
</tbody>
</table>

Note. CI refers to the 95% confidence interval. α_D and α_E correspond to the estimated coefficients of description and experience. $\Delta\alpha = \alpha_E - \alpha_D$.

The data in Table 4 suggest that α_E was affected by the experience aid. A MANOVA with the two coefficients as the dependent variables and the presentation sequence and aids as its factors yielded no significant effect for these factors or their interactions ($p > .1$ for all tests). Univariate analyses yielded a reliable effect of the experience aid on α_E, $F(1,150) = 4.57, p < .05$.

The restriction imposed on the model coefficients was more problematic relative to Experiment 1. Specifically, the model predicted responses outside the [0, 100] range for 24 (15%) participants. For 14 participants (9%), $\alpha_E = 1$.

Analyses of the error parameters of the full model yielded an unexpected pattern. The residuals (i.e., the ϵ’s associated with the model predictions), averaged over participants, were biased, $\theta = -1.15$ ($SEM = .17$). This bias was reliably different from zero, $t(157) = 6.76, p < .001$. There were no reliable differences as a function of

3 The description- and experience- coefficients for the two participants excluded from this condition were negative. All other participants had at least one positive coefficient.
presentation sequence, description aid, or experience aid ($p > .08$, for each comparison). Likewise, the scatter of the residuals (i.e., ζ, Median = 6.0) was unaffected by the presentation sequences or aids ($p > .1$, Mann-Whitney U test for each comparison).

By-subject analysis: The full model is reliably better than the three restricted models in describing the data of most participants (see Table 3). The G^2 comparisons between the fit of the full model and that of the tradeoff, equal-non-normative and equal-normative models were not significant for 41%, 40% and 19% of the participants. There were no reliable differences in the support for the full model as a function of presentation sequence, description aid, and experience aid (i.e., the χ^2 tests on the proportions were not reliable, $p > .31$).

The comparison between the tradeoff and equal-non-normative models showed that they were comparable. The values of λ were positive ($\geq .01$) for 45.1% of the participants and negative for the others ($< -.04$). The proportion of λ s with positive and negative values were comparable ($p > .1$ per a binomial test). Presentation sequence, experience aid and description aid had no reliable effect on λ ($p > .8$ by Mann-Whitney U test).

The test for differential model flexibility revealed that the tradeoff and equal non-normative models recovered their own data for 84% and 78% of the participants, respectively. These patterns indicate that the fits of the models to the observed data are not due to differential flexibility.
Group analysis: The dfs involved in comparing the tradeoff, equal-non-normative, and equal-normative models to the full model were 158, 158, and 316. The G^2 and p values associated with comparing the three models were 1898.2, 2660.2, and 4166.0; for all comparisons, $p < .001$. Thus, the full model was significantly better than each of the three restricted models.

The λ obtained from comparing the tradeoff model to the equal-non-normative model was 381.0, lending support for the tradeoff model over the equal-non-normative model.

Discussion

Participants’ judgments were biased in the direction of their experience. More importantly, the magnitude of the bias depended on the information assignment. Judgments based on extreme experience and moderate description were more biased than those based on the reverse assignment. This finding shows that the quality of the integration judgment depends not only on the differential subjective sensitivity to the two sources, but also on the information that they convey.

The effect of presentation sequence found in Experiment 1 was not replicated. The interaction of description aid, assignment, and presentation sequence on the absolute bias measure was marginally significant and its interpretation unclear. Experience aid yielded a reliable effect on α_e and a reliable interaction with the information assignment as indexed by both bias measures.
Why was the effect of the presentation sequence in Experiment 1 not replicated? The designs of the two experiments differed from each other in a number of ways precluding a definite interpretation. However, a likely contributor to the findings is the use of a different response mode in each experiment. In Experiment 1 participants typed their response while in Experiment 2 they adjusted a slider. The response format in Experiment 2 appears to be equally compatible with the format of the two information sources. In contrast, the response format in Experiment 1 appears to be more compatible with the format of described information relative to that of experienced information. Importantly, this compatibility is psychologically more salient in the Experience-1st condition (i.e., because the description immediately precedes the response) relative to the Experience-2nd condition (i.e., because the description does not immediately precede the response).

The effect of the response format provides an alternative interpretation to the findings of Experiment 1 and a context for interpreting some findings of the current experiment. In Experiment 1, the sensitivity to description in the Experience-1st condition was superior to that in the Experience-2nd condition because of the temporal proximity to the compatible response format. According to the response-format account, there were no effects of presentation sequence in Experiment 2 because the response scale is equally compatible with both sources.

The response-format and retrieval-failure accounts rival each other. The possibility that retrieval failures are not a factor in the integration task could explain why the description aid (which was designed to eliminate the retrieval failures) yielded no reliable effects.
Experience aid increased the signed bias when the experienced outcome was more extreme than the described one. Stated differently, given an extreme experience and moderate description, the presence of the experience aid shifts the judgments closer to the experienced outcome. Experience aid also had a reliable effect on α_E but no main effect per the signed bias measure. How could the experience aid affect the signed bias and model coefficients while not affecting the unsigned bias? The proffered interpretation is that the presence of the aid eliminates confusion involved in trial-by-trial counting of red chips. Having removed the effect of counting confusions allows systematic experience-related biases to be more discernible.
Chapter 4: Experiment 3

Research on Bayesian inference shows that information presented in a percentage or probability format leads to judgments that are inconsistent with the Bayesian prescription (c.f., Gigerenzer & Hoffrage, 1995). Other research on the use of advice shows that people perceive information from an external source as less reliable than their own (internal) information (e.g., Yaniv & Kleinberger, 2000). In the first two experiments, description provided information from an external source in a percentage format. Consistent with the previous findings, the judgments in the first two experiments were biased away from description.

Experiment 3 served two purposes. One was to examine whether the bias observed in the first two experiments was the consequence of using the percentage format to convey the description. Thus, I tested whether the bias persists when the description is provided in a relative frequency format rather than a percentage format. The prediction from research on the role of format in Bayesian inference [e.g., Cosmides & Tooby (1996); Gigerenzer & Hoffrage (1995)] is that the frequency format would lead to superior integration than the percentage format. The second purpose was to relate the bias to the perceived trustworthiness of the source of the description.

Method

Participants, Stimuli, and Design. Fifty-eight undergraduate students participated in return for course credit. The bags in this experiment were the same as
those of Experiment 2. The presentation sequence was not manipulated; only the Experience-2nd sequence was used. Participants received two trials with each of the experimental bags (as in Experiment 1). The description format, percentage or frequency, was manipulated between-participants. Other details of the design were similar to those of condition D'E in Experiment 2.

Procedure. The procedure was identical to that in the D'E condition of Experiment 2, except for the following differences. (1) There were 32 experimental trials, consisting of two replications of each bag (in Experiment 2, there were four replications of each bag totaling 64 trials). (2) The gray circles and the surrounding rectangular region displayed in Experiment 2 were removed. (3) After completing the last trial, participants judged the following statement, “I trusted Mr. Rick to provide reliable information about the bag of chips.” Participants responded by marking a 5-point scale labeled with “Completely disagree”, “Somewhat disagree”, “Neutral”, “Somewhat agree” and “Completely agree”.

Results

The analyses are based on 32 responses per participant. The presentation of the data is comparable to that used in Experiment 1 and 2. All of the participants had signed bias scores within 4SDs of the sample mean and were included in the analyses.

Signed bias score. The judgments were moderate or regressive relative to the normative values, although the bias (M = -.55, SEM = .93) was not reliable (t < 1). As in the first two experiments, the direction of the bias was related to the experienced
outcome. However, Figure 8 shows that the contingency between the bias and the experienced outcome was pronounced when the description was presented in the percentage format but not in the frequency format. The assignment by format interaction was significant, $F(1, 56) = 4.42, p < .05$. Assignment produced a reliable effect, $F(1, 56) = 9.47, p < .005$, while the format did not, $F(1, 56) = 1.65, p = .21$. Assignment yielded a reliable effect when the description was formatted as a percentage, $t(29) = 3.09, p < .005$, but not when it was formatted as a relative frequency, $p > .2$.

The signed deviations were reliably different from zero when the description was presented in the percentage format and the experience outcome was moderate and, $t(29) = 4.19, p < .001$. In the three other conditions, the signed deviations were not reliably different from zero, $p > .2$.

![Figure 8](image)

Figure 8. Signed bias in Experiment 3. Triangles – experienced outcome more extreme than described one. Circles – experienced outcome less extreme than described one.

Absolute bias. Figure 9 summarizes the bias as a function of format and outcome assignment. The outcome assignment by presentation format interaction was
significant, $F(1, 56) = 6.34, p < .05$. The difference between the two formats was marginally significant, $F(1, 56) = 3.11, p = .08$. The effect of the assignment was reliable, $F(1, 56) = 4.17, p < .05$. Outcome assignment yielded a reliable effect in the percentage format, $t(29) = 2.99, p < .01$, but not in the frequency format, $t < 1$.

![Figure 9. Absolute bias in Experiment 3. Triangles – experienced outcome more extreme than described one. Circles – experienced outcome less extreme than described one.](image)

Bracketing violations. The mean, median and modal number of bracket violations per participant was 12.0, 11.5, and 10 (out of 32), respectively. The minimum and maximum number of violations (per participant) were 0 ($n = 2$) and 24 ($n = 1$).
Maximum likelihood parameter estimates

The model derivation and analysis follows those of Experiment 1 and 2. The values of α_D and α_E (estimated from the full model) indicate that the processing of description and experience can be characterized as too moderate and too extreme, respectively (Table 6). Pearson’s correlation between α_D and α_E was -.44, $p < .001$.

The confidence intervals indicate that the deviations from .5 were reliable only when the description was in the percentage format. Consistent with the observed judgments, the values of $\Delta \alpha$ indicate that the description-experience difference persisted in the percentage format but was eliminated in the frequency format.

The MANOVA with α_D and α_E as the dependent variables and the description format as its factor yielded a reliable effect of description format, $F(2, 55) = 4.0, p < .05$. The format affected α_D, $F(1, 56) = 7.8, p < .01$, but not α_E, $F(1, 56) < 1$.

Table 6. Description and Experience Coefficients (Experiment 3)

<table>
<thead>
<tr>
<th>Format</th>
<th>α_D</th>
<th>M</th>
<th>CI</th>
<th>α_E</th>
<th>M</th>
<th>CI</th>
<th>$\Delta \alpha$</th>
<th>M</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage (n = 30)</td>
<td>.33</td>
<td>.26-.41</td>
<td>.59</td>
<td>.46-.71</td>
<td>.25</td>
<td>.08-.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency (n = 28)</td>
<td>.47</td>
<td>.40-.54</td>
<td>.54</td>
<td>.48-.60</td>
<td>.07</td>
<td>-.04-.17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. CI refers to the 95% confidence interval. α_D and α_E correspond to the sensitivities to description and experience, respectively. $\Delta \alpha = \alpha_E - \alpha_D$.

The model-predicted responses were outside the [0,100] range in seven cases (12%). In five (9%) cases, $\alpha_E = 1$.

The residuals (ε s), averaged over participants, were biased, $\theta = 1.63 (SEM = .40)$. This bias was reliably different from zero, $t(57) = 4.06, p < .001$. There were no
reliable differences between the description formats, $t < 1$. The scatter of the residuals (i.e., ζ, Median = 10.4) was comparable in the two description formats (Mann Whitney U test, $p > .7$).

By-subject analysis. The procedure for conducting the model comparisons followed that of the first two experiments. The G^2 comparisons between the full model and each of the restricted models are summarized in Table 5.

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Percentage</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tradeoff</td>
<td>.53</td>
<td>.46</td>
</tr>
<tr>
<td>Equal-non-normative</td>
<td>.50</td>
<td>.71</td>
</tr>
<tr>
<td>Equal-normative</td>
<td>.30</td>
<td>.43</td>
</tr>
</tbody>
</table>

Note. The value in each cell corresponds to the proportion of participants for whom the model in the given row provides a comparable fit to the full model per the G^2 test. Thus, higher values indicate better fitting models.

In the percentage format, the tradeoff model and equal non-normative models accounted for approximately half of the participants. In contrast, in the frequency format, the equal non-normative model was favored over the tradeoff model; only the equal non-normative model accounted for a substantial majority of the participants. Finally, the equal normative model could not fit the judgments of most participants in either format. The fits of the restricted models relative to the full model do not differ
as a function of formats (i.e., a χ^2 test performed on the proportions in each row of Table 5 yielded $p > .09$).

The comparison of the tradeoff and equal-non-normative model yielded an important finding. Across both formats, half of the participants had λ s that were positive ($> .07$) and the rest had values that were negative ($< -.08$). Examination of each format in isolation showed that the median values of λ were .85 and -.47 in the percentage and frequency conditions, respectively. The difference was reliable, per a Mann-Whitney U test, $p < .05$. This pattern suggests that tradeoff model was superior to the equal-non-normative model in the percentage format, but the reverse was true in the frequency format. The model flexibility check revealed that the tradeoff and equal non-normative models recovered their own data for 71% and 78% of the participants, respectively.

Given the support for the equal-non-normative model, it is of interest to compare it to the normative-equal model. The normative-equal model is nested under the equal-non-normative-model permitting a G^2 test with one df. The test indicates that the two models yield a comparable fit (i.e., the G^2 test yield a non-significant result) for 60% of the participants in the percentage format and 50% of the participants in the frequency format. These two proportions are comparable per a χ^2 test ($p > .4$).

Group analysis. The dfs involved in comparing the tradeoff, equal-non-normative, and equal-normative models to the full model across both conditions were 58, 58, and 116. The G^2 were 474.0, 453.5 and 860.2; for all comparisons, $p < .001$.

52
Thus, the full model cannot be rejected. A similar pattern was obtained when the percentage and frequency formats were analyzed separately.

Pooling across the two formats, the tradeoff model was favored over the equal-non-normative model. Specifically, the λ obtained from comparing the tradeoff model to the equal-non-normative model was -10.3. However, when the formats were examined separately, the λs in the percentage and frequency formats were 56.5 and -66.8, respectively. Thus, the tradeoff model was preferred to the equal-non-normative model in the percentage format, whereas the opposite was true in frequency format.

The equal-non-normative model was superior to the equal-normative model in both formats. The dfs involved in the comparing the models in the percentage and frequency formats are 30 and 28, respectively. The G^2 were 204.7 and 202.0; $p < .001$ for both comparisons.

Perceived reliability of the description

After completing the integration task, participants judged the assertion that Mr. Rick provided reliable information about the bag of chips. By design, participants rated whether they completely disagreed, somewhat disagreed, were neutral, somewhat agreed, or completely agreed with the statement. For analyses purpose, the participants’ ratings were coded on a scale from -2 (complete disagreement) through 0 (neutral) to +2 (complete agreement).

Mr. Rick was perceived as more trustworthy when he presented the sample outcome as a frequency rather than a percentage. The median trust ratings in the percentage and fraction formats were 1.0 and 2.0, respectively. The difference
between the ratings in the two formats was reliable per a Kolmogorov-Smirnov test ($z = 1.40, p < .05$).

Across both description formats, the numbers of participants who completely disagreed, somewhat disagreed, were neutral, somewhat agreed, and completely agreed with the statement were 5, 5, 5, 20, and 23 respectively. The ratings from the completely disagree, somewhat disagree and neutral were combined to the not agree category to provide some stability for the following analyses.

The trust ratings were related to the observed judgments. More trust in Mr. Rick was related to more consistency. The absolute bias scores of participants giving not agree, partially agree and completely agree ratings were ($M = 14.87, SEM = 1.16$), ($M = 11.13, SEM = 1.17$), and ($M = 7.28, SEM = .79$), respectively. The difference among these bias scores is reliable, $F(2, 55) = 11.26, p < .001$.

The trust ratings were also related to the participants’ differential sensitivity to information from the two sources. The data in Figure 10 indicate that participants who trusted Mr. Rick were equally sensitive to his information (description) as they were to their experience. Conversely, participants that expressed limited or no trust were much less sensitive to his information than to their experience.
Discussion

The judgments deviated in the direction of the experience, and the absolute magnitude of the deviations was contingent on the outcome assignment. However, these effects were reliable only when the description was presented as a percentage.

The coefficients estimated from the full model show that the description format affected the participants’ sensitivity to description. Furthermore, the tradeoff model outperformed the equal-non-normative model in the percentage format, but the converse pattern was true in the frequency format. The implication is that description and experience differ when description is presented as a percentage but not as frequency.

Ratings of Mr. Rick’s trustworthiness were affected by the description format. Mr. Rick’s descriptions in the frequency format were perceived as more reliable than
the same descriptions in the percentage format. Ratings of Mr. Rick as more trustworthy were related to less bias (in absolute value) and to reduced sensitivity to the outcome assignment than ratings of him as less trustworthy. Similarly, participants who expressed limited or no trust in Mr. Rick were less sensitive to description (per the model coefficient) relative to their experience, whereas participants who expressed trust in Mr. Rick were equally sensitive to description and experience.

The format effect on the bias, the model coefficients and comparisons, and the trust ratings suggests that there was an advantage to using a frequency format rather than description format for conveying description (for similar findings, see Cosmides & Tooby 1996; Gigerenzer & Hoffrage, 1995). Processing frequencies may be more similar, or perhaps identical, with processing experienced information compared to processing percentages (c.f., Gottlieb et al., 2007). Thus, the advantage of the frequency format is attributed to the similarity (compatibility) of the processes that operate on description and on experience. Processing compatibility, in turn, might be tied to processing fluency; if so, participants may judge the trustworthiness of Mr. Rick by assessing how fluently they process information that he provides (Werth & Strack, 2003).
Chapter 5: General Discussion

This research assessed the quality of the integration of probabilistic information obtained via description and experience and specified some of the underlying processes. The influences of the two information modes on the judgments were measured by estimating the coefficients of a model that mimics the subjective integration processes that produce the judgment.

Quality of integration. Judgments were biased in the direction of the experienced outcome (as indicated by the signed bias). The signed bias varied as a function of the source presentation sequence (Experiment 1), the presence (vs. absence) of a judgment aid (Experiment 2), and the numerical format of the description (Experiment 3). Judgments were also affected by the information assignment; i.e., whether they were informed by an extreme experience and moderate description or the opposite assignment.

Process. We assumed that three processes mediate the effect of description and experience on the observed integration behavior. The labels for these processes, scaling, aggregation, and response provide a convenient framework for summarizing and discussing the findings. The framework is a tentative statement about the underlying processes because as stated in the introduction, the algebra of the integration model does not allow isolation of the most plausible process for any given finding. Following the format in the introduction, we present evidence consistent with the response, aggregation and scaling assumptions in this order.
Response. Our response assumption was concerned with translating a covert judgment to the response scale. We used the identify function to formalize the assumption that the covert and overt judgments are identical to each other.

The results of our modeling indicate that the identity function might be inadequate. Our model predicted responses that were outside the permissible range, yet those responses never occurred (were not allowed). A response transformation function easily can shrink the predicted judgments to fall within the legal range. These predictions might reflect a bias analogous to shrinking or stretching the response scale (c.f., Philips & Edwards, 1966).

Another pertinent finding is the reliable bias of the predicted judgments relative to the observed judgments. The predictions underestimated the observed judgments in Experiment 1 and 3, but overestimated them in Experiment 2. An interpretation in terms of tendency to over- or under-estimate the percentage of red chips would suffice if the direction of the bias were consistent across experiments. The inconsistency across experiments is unclear.

Aggregation. The covert response receives its input from the aggregation mechanism. We formalized our assumption about the aggregation mechanism using a weighted average operation. The weights could be determined by several subjective differentiations between description and experience. Such dimensions include precision (e.g., Du & Budescu, 2005), concreteness (Hamilton & Thompson, 2007), the effort/fidelity involved in coding information from different formats (e.g., Johnson, Payne, & Bettman, 1988), and credibility (Yaniv, & Kleinberger, 2000). Building on the differences along dimensions, the integration process allots more
weight to the source associated with higher values on these dimensions and less weight to the source associated with lower values.

The notion of a tradeoff between the weights allotted to information from the two sources was supported in two ways. One was the finding of the inverse association between the two coefficients of the full model. More direct support was the finding that the preferred model (for most participants) in Experiment 1 and the percentage condition of Experiment 3 was a model that requires a tradeoff between the processes that operate on the two sources.

Intuitively, the weight allotted to information from a particular source should range from 0 to 1. The bracket violations we observed suggest that this intuition might be incorrect. They could also lead to the impossible model predictions we observed. These possibilities suggest that it might be unnecessary to revise our response assumption (i.e., the identity function).

Scaling. We assumed that the inputs to the aggregation mechanism are subjective representations of description- and experience- based information. Crucially, the full model allows the characteristics (i.e., parameterization) of the scaling transformation to be contingent on whether the information is obtained via description or experience.

Two of the restricted models, the equal-normative and equal-non-normative, require identical scaling of description and experience. The equal-normative model was treated above, in conjunction with the response assumption. Here the focus is on the equal-non-normative model.
The equal-non-normative model did not fit the data, with one important exception. The finding of a poor fit is consistent with the hypothesis that information from the two sources is not scaled in a similar way (Gottlieb et al., 2007; Hau et al., 2008). The exception was the model fit given the relative frequency format in Experiment 3. This pattern of differential support for the equal-non-normative model is related to the claim that experience is more similar to descriptions formatted as relative frequencies than to descriptions formatted as percentages (Gigerenzer & Hoffrage, 1995).

The model estimates showed that the presentation sequence (Experiment 1), the experience aid (Experiment 2), and the description format (Experiment 3) affected processes related to only one source. These patterns appear to be more consistent with the scaling assumption compared to the weighting and response assumptions.

Information assignment (e.g., experience outcome more extreme than described one) yielded a reliable influence on the judgments in Experiment 2 and in the percentage format of Experiment 3. As we have shown in the introduction, and assuming the validity of our model, the assignment effects is expected when the sources differ in scaling and the tradeoff between them is imperfect.

The information assignment did not yield a reliable effect in Experiment 1 and in the frequency format of Experiment 3. The interpretation of the null effect in Experiment 1 is unclear. Conversely, and as mentioned above, the null effect in the frequency condition of Experiment 3 is consistent with the claim that experience and descriptions presented as relative frequencies are psychologically similar to each other.
This research examined the subjective integration of two units of information that differed from each other in their source and presentation format. The processes involved in integrating information that differs in format might be similar to those involved when processing information in different units of measurements (e.g., centimeters vs. inches or monetary currencies). The reliance on information from different sources is at the core of using advice (e.g., Budescu & Yu, 2006, Yaniv & Kleinberger, 2000).

The results of Experiment 3 are consistent with the hypothesis that the quality of human judgment depends on the format compatibility of the inputs to the judgment (for similar results, see Cosmides & Tooby, 1996). If generalizable, these results raise concerns about the quality of people’s processing of incompatible formats in consequential tasks performed outside the lab.

We suggest that the current methodology can be adapted to improve our understanding of subjective processing of information obtained in potentially incompatible formats. For example, future research might identify characteristics of the integration task that moderate the effect of incompatible formats on the quality of judgment (e.g., instructions, prompts, presentation sequence, and incentives).

People might differ from each other in their ability to process information in incompatible formats. The current methodology could be expanded to test whether the quality of the judgments is related to individual differences in dimensions such as
numeracy (i.e., Peters, Västfjäll, Slovic, Metrz, Mazzocco, & Dickert, 2006), and tendency to engage in effortful cognitive activities (i.e., need for cognition, Cacioppo & Petty, 1982).

Human decision makers might perceive information from internal and external sources as differentially reliable. The effect of these perceptions on the quality of the judgments could interact with the format compatibility effects. Thus, the current methodology could be adapted to investigate the interplay between the perceived reliability of the information source and the source presentation format.
Appendix A

Let \hat{R}_T and $\hat{R}_{T'}$ represent the model predictions given distributions A and B.

Formally,

$$\hat{R}_T = \alpha_D P_1 + \alpha_E P_2 + 50\{1 - (\alpha_D + \alpha_E)\}, \text{ and,}$$

$$\hat{R}_{T'} = \alpha_D P_2 + \alpha_E P_1 + 50\{1 - (\alpha_D + \alpha_E)\}.\text{ }$$

Let $\delta_i = \hat{R}_i - R^*$ correspond to the deviation between the predicted and the normative judgment, where $i = T, T'$ refers to the information distribution. The hypothesis that the judgments are unaffected by the information distribution implies that $|\delta_T| = |\delta_{T'}|$. This condition implies that either I) $\hat{R}_T - R^* = \hat{R}_{T'} - R^*$ or II) $\hat{R}_T - R^* = R^* - \hat{R}_{T'}$.

We can rewrite case (I) as follows, $\hat{R}_T = \hat{R}_{T'}$. Further algebraic development shows that $\delta_T = \delta_{T'}$ if $(P_1 - P_2)(\alpha_D - \alpha_E) = 0$. In other words, given two different stimuli (i.e., $P_1 \neq P_2$), the judgments will be unaffected by information distribution if $\alpha_D = \alpha_E$. The subjective processing of description and experience is similar, and information distribution has no effect on the judgment.

We rearrange case II as $\hat{R}_T + \hat{R}_{T'} = 2R^*$. Algebra leads to $(\alpha_D + \alpha_E - 1)(P_1 + P_2 - 100) = 0$. Thus, setting $P_1 + P_2 \neq 100$, the model predictions will be equally distant from the prescribed response if $\alpha_D + \alpha_E = 1$. Psychologically, the outcome assignment has a symmetric effect on the judgments only if there is a perfect tradeoff between the processes that operate on the two sources.
Appendix B

Stimuli in Experiment 1

<table>
<thead>
<tr>
<th>Bag type</th>
<th>Bag</th>
<th>Sample n</th>
<th>Sample % of Red Chips</th>
<th>Prescribed(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sample 1</td>
<td>Sample 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identical(^b)</td>
<td>1</td>
<td>7</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>9</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9</td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>11</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>11</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>13</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>13</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>Different(^c)</td>
<td>11</td>
<td>7</td>
<td>14</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>7</td>
<td>86</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>9</td>
<td>22</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>9</td>
<td>78</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>9</td>
<td>33</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>9</td>
<td>67</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>11</td>
<td>18</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>11</td>
<td>82</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>11</td>
<td>27</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>11</td>
<td>73</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>13</td>
<td>15</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>13</td>
<td>85</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>13</td>
<td>31</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>13</td>
<td>69</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Different(^c)</td>
<td>P1</td>
<td>6</td>
<td>17</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>6</td>
<td>83</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>14</td>
<td>21</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>14</td>
<td>79</td>
<td>43</td>
</tr>
</tbody>
</table>

\(^a\) Prescribed estimate of red chips in the bag (%). \(^b\) Identical-percentage bags. \(^c\) Different-percentage bags.
Appendix C

Stimuli in Experiments 2 and 3

<table>
<thead>
<tr>
<th>Bag</th>
<th>Sample % of Red Chips</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Prescribed estimate (%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Experimental trials</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practice trials</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample 1</td>
<td>Sample 2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>77</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>92</td>
<td>85</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>38</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>62</td>
<td>81</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>31</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>92</td>
<td>69</td>
<td>81</td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td>38</td>
<td>27</td>
</tr>
<tr>
<td>10</td>
<td>85</td>
<td>62</td>
<td>73</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>46</td>
<td>27</td>
</tr>
<tr>
<td>12</td>
<td>92</td>
<td>54</td>
<td>73</td>
</tr>
<tr>
<td>13</td>
<td>23</td>
<td>46</td>
<td>35</td>
</tr>
<tr>
<td>14</td>
<td>77</td>
<td>54</td>
<td>65</td>
</tr>
<tr>
<td>15</td>
<td>31</td>
<td>38</td>
<td>35</td>
</tr>
<tr>
<td>16</td>
<td>69</td>
<td>62</td>
<td>65</td>
</tr>
<tr>
<td>P1</td>
<td>0</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>P2</td>
<td>100</td>
<td>92</td>
<td>96</td>
</tr>
<tr>
<td>P3</td>
<td>23</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>P4</td>
<td>77</td>
<td>85</td>
<td>81</td>
</tr>
<tr>
<td>P5</td>
<td>23</td>
<td>31</td>
<td>27</td>
</tr>
<tr>
<td>P6</td>
<td>77</td>
<td>69</td>
<td>73</td>
</tr>
<tr>
<td>P7</td>
<td>38</td>
<td>46</td>
<td>42</td>
</tr>
<tr>
<td>P8</td>
<td>62</td>
<td>54</td>
<td>58</td>
</tr>
</tbody>
</table>

Note. Only different-percentage bags were used in these experiments. For all of the bags, *n*=13.
Bibliography

