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 One enduring problem in the field of mathematics education is preparing 

teachers to present mathematics in sufficiently deep and meaningful ways to their 

students.  A focus of this preparation is developing in practitioners sufficient 

knowledge of mathematics for teaching.  Mathematical knowledge for teaching has 

been theorized widely and is currently the focus of many empirical investigations in 

the field.  This study positions itself within this literature and seeks to connect the 

research to undergraduate, pre-service elementary school teachers (PSTs), and the 

content courses which comprise the bulk of their mathematical preparation within a 

typical university teacher education program. 

 Little is known about the impact that these courses have on teacher knowledge 

and still less has been studied about the efficacy of different pedagogicalðor 

mathematicalðapproaches in these courses among PSTs.  In order to test claims 



  

made in situated learning theory and respond to prevalent political rhetoric about 

mathematics teacher education, this project compared mathematics courses designed 

for PSTs in two different universities along three dimensions: (1) Differences in 

pedagogical and mathematical approaches to developing content knowledge for 

teaching in PSTs; (2) Resulting differences in PST performance on mathematical 

knowledge for teaching instruments (3) Resulting differences among PSTsô attitudes 

about mathematics, teaching, and their perception of the courseôs relevance to their 

anticipated work as elementary school teachers.  Data from multiple data sources 

reveals that, though differences were small, PSTsô mathematical knowledge for 

teaching was substantively different between the two campuses. In addition, the data 

indicate that PSTs developed different attitudes about mathematics and teaching.  

Finally, PSTsô evaluated their courseôs relevance for teaching practice differently.   

 This study suggests that when designing content courses for pre-service 

teachers, teacher educators should pay close attention to the interaction between 

mathematical approaches and pedagogical perspectives.   
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Chapter 1: The Problem of Teaching Mathematics to Teachers 

 

Introduction 

How do we ensure that all teachers of mathematics know the mathematics and pedagogy 

essential for teaching the subject? 

 
Skip Fennell, National Council of Teachers of Mathematics President, NCTM News Bulletin (July 2007) 

 

 The question by Fennell (2007) above implicitly represents a twofold problem, 

both pieces of which pose persistent challenges in mathematics education: what should 

teachers know and how do they come to know it in such a way that it fosters effective 

teaching practice?  This is an issue I have encountered as a community college 

mathematics instructor.  One of my responsibilities is to teach mathematics courses for 

pre-service elementary school teachers (PSTs).  In the early versions of the courses I 

taught, I concentrated on giving undergraduates a behind-the-scenes look at mathematics 

that they took for granted, or worse, never learned.  In order to help them connect our 

discussions in class to classroom teaching, I required the PSTs to complete a service 

learning project which focused on helping children to learn mathematics in school 

settings.  These projects often took the form of after-school tutoring programs or working 

with a teacher at a local elementary school. 

 From my perspective, the results of the project were mixed at best.  In more than a 

few cases, students had to navigate confusing bureaucracy just to set foot in a classroom.  

When they had accomplished this, they were often sent to do menial tasks for their 

cooperating teachers such as making copies or running school errands.  Even when the 
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PSTs did not encounter these difficulties, I found that their reflections about the 

experience had little or no mathematical component.  I had hoped that their encounters 

with students and classroom mathematics would present them with mathematical issues 

that intersected richly with the topics we discussed in class.  I expected that childrenôs 

questions, difficulties, and intuitions would bring the PSTs closer to understanding why 

they were enrolled in a mathematics course focused on elementary school topics.  In their 

reflections, I had hoped to read for example, that they would use a studentôs difficulty to 

understand multi-digit multiplication as an opportunity to discuss the importance of place 

value, single-digit multiplication, and multiplicationôs links with other operations.  As 

they took notes, wrote in their journals, and finally worked to summarize their 

experiences, I exhorted PSTs to pay attention to the mathematics that they saw and did 

with students and seek to draw connections between their experiences, but these requests 

generally went unfulfilled.    

 Meanwhile, the PSTs saw the assignment in a completely different light.    

Sometimes, the PSTs discussed the fact that they saw students working on similar 

mathematical ideas that we had during class, and that in the course of helping children, 

they discovered confidence in their knowledge they hadnôt known before.  The PSTs 

tended focus on classroom issues that were not specific to mathematics.  They tended to 

write in general terms about ñdifferentiated instructionò and choosing ñfunò activities that 

would naturally and easily keep all children ñon taskò and (miraculously) foster 

understanding.  I was deeply skeptical that the PSTs understood the challenges implicit in 

their writing about these things; their writing often suggested that the simple introduction 

of manipulatives or games would create understanding, set up a constructive learning 
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environment, and make mathematics fun for students all at once.  Despite this skepticism, 

I realized that I had underestimated the PSTsô desire to use the language and ideas of 

their other courses, those likely often used by their undergraduate professors, and 

probably by cooperating teachers in these experiences.  They were discovering a new role 

for themselves as teachers and sought to apply the language, roles, and norms of that 

community, even though they were not yet a part of it.     

 Ultimately, I dropped the assignment from my courses, feeling that it had not 

accomplished my primary goal of pushing PSTs to confront childrenôs thinking about 

mathematics, and recognize the experience as a key component of understanding how to 

teach but also of understanding mathematics.  Despite the assignmentôs positive outcome 

by some measures, I felt that PSTsô time and energy could be better spent on activities 

that could focus their attention on that which they so often needed the most assistance: 

mathematics.  It is important to note that nearly all of my students related the experience 

as being a positive one.  In their reflective papers and later in course evaluations, they 

consistently commented that it was one of the best components of the course; they felt 

that they had learned much from participating in it.  Although I felt that the assignment 

had failed to help them think carefully about the relevant mathematical ideas, it had 

overwhelmingly succeeded in giving PSTs an opportunity to participate in classroom (or 

classroom-like) activities with an unfamiliar if not altogether new perspective: a 

teacherôs. 

 I sought to offer the PSTs other positive experiences like the one they had with 

the service learning assignment while challenging them to deepen their understanding of 

mathematics.  But how could they come to know it in such a way that it would be 
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available to them in the classroom environment, in which numerous split-second 

decisions must be made on a regular basis?   The service learning assignment appealed to 

PSTsô desire to play the role of teacher even at this early stage in their preparation, but 

they clearly needed a less volatile environment in which to work, and which would allow 

them to concentrate on the mathematical ideas that they had yet to learn.  What would 

such an environment look like, and could it be incorporated into a mathematics course in 

order to deepen PSTsô mathematical knowledge? 

The Problem 

Though working with service learning was an important learning experience for 

me as a teacher educator, the questions posed by Fennel remained: what should teachers 

know and how do they come to know it in such a way that it fosters effective teaching 

practice?  What teachers should know is rightly tied to what children should know, but 

that is a judgment that continues to be debated fiercely throughout the country.  The 

question of should is relentlessly elusive, due in large part to the high stakes attached to 

mathematics education in the United States, and the influence wielded by many 

interestedðand often conflictingðgroups.  On the other hand, the answer to the latter 

question about how teachers come to know what they should feels different: it has an 

empirical quality to it that suggests that it is a testable question.   

Until recently, there was little evidence about whether teacher knowledge had an 

impact on student achievement mathematics classrooms (Hill, Rowan, and Ball, 2005).  

This positive correlation is unnerving given the evidence presented over the last 25 years 

have demonstrated a startling lack of mathematical knowledge among teachers (e.g., 

Cooney, 1985; Tirosh & Graeber, 1989; Stein, Baxter, & Leinhardt, 1990; Zazkis & 
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Campbell, 1996; Ma, 1999).  Whatôs more, we know that teachers continue to use 

decades-old methods while students continue to perform at disappointing levels (Fey, 

1979; Stigler & Hiebert, 1999).  This attention to teacher knowledge of mathematics has 

occurred contemporaneously with a widespread push for reform in school mathematics, 

the rhetoric of which places new responsibilities on the part of teachers (Lampert & Ball, 

1999).  For example, Principles and Standards for School Mathematics (NCTM, 2000) 

suggests a vision of mathematics teaching that increases and deepens the knowledge 

demands on teachers.  In this document, teachers are called upon to make connections 

among diverse branches of mathematics, incorporate ways of working that imitate those 

of mathematiciansðsuch as encouraging the process of exploration, conjecture, and 

proofðand use intuitive and often idiosyncratic ideas generated by some students to 

foster the mathematical competence of all.  In another influential policy document, The 

Conference Board of Mathematical Sciences (CBMS, 2001) writes: 

éto make intelligent curricular decisions for their students and to 

teach current school curricula, future teachers need to know more 

and somewhat different mathematics than mathematics departments 

have previously provided to teachers.  Because they are being urged 

to teach in different ways, prospective teachers also need to 

experience learning mathematics in those ways themselves (p. 122).  

 

These documents are grounded in traditional understandings of teacher knowledge and 

yet broaden it to include deeper knowledge of mathematics as a discipline and as students 

experience it. 

 The result of such rhetoric in Maryland has been to create new course 

requirements that include more subject-matter preparation for teachers in mathematics.  

Because there is very little research about undergraduate content courses in teacher 
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education (Ambrose & Vincent, 2003; Wilson, Floden, Ferrini-Mundi, 2001), these 

changes have been implemented at institutions across the state without explicit reference 

to empirical results that may help inform their design or facilitate greater coherence 

within teacher education programs.  Whatôs more, courses and programs across the nation 

are operating with a great lack of understanding how content courses can contribute 

positively to teacher education programs and ultimately, to better teaching. 

 This call for a deepening of teachersô mathematical knowledge necessarily 

implicates teacher learning, an area of scholarship that has received increasing attention 

in recent decades.  Situated and sociocultural learning theories have influenced much of 

this work (Putnam & Borko, 2000).  These perspectives privilege the activities of 

teaching practice as central components of knowledge and claim that learning is a 

fundamental consequence of participating in these activities (e.g. Lave & Wenger, 1991; 

Greeno, 1997).  Communities of practiceðpeople working together in a shared enterprise 

such that every participant makes important contributionsðhave become central 

components of many teacher education efforts (Garet, Porter, Desimone, Birman, Suk 

Yoon, 2001) and form a foundation for framing the problem of teacher development over 

time (Cochran-Smith & Lytle, 1999; Hammerness, Darling-Hammond, Bransford, 

Berliner, Cochran-Smith, McDonald, & Zeichner, 2005).  Teachersô ongoing 

identification of themselves with teaching and its associated tasks are a central 

component of this perspective.  In addition, there is a growing body of research that 

focuses on specialized knowledge that teachers must have in order to be effective.  In the 

two decades since Shulman (1986) proposed the existence of pedagogical content 

knowledge (PCK), others (notably Ma, 1999 and Hill, Rowan, & Ball, 2005) have 
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demonstrated and described a corollary to Shulmanôs construct: mathematical knowledge 

for teaching (MKT).  The notion of knowledge held by teachers as part of and in service 

to their roles and responsibilities in classrooms has made the use of situated theories of 

learning and knowing all the more compelling. 

 Undergraduate teacher education is a natural choice for putting these theories into 

practice for the purpose of improving teacher knowledge.  However, teacher education is 

often considered inadequate to the task of preparing teachers for a variety of reasons.  

First, some argue that the field lacks a common knowledge base (e.g., Shulman, 1998) 

that is employed consistently across preparation programs.   Second, teaching and teacher 

education has long suffered a lack of intellectual and scholarly respect (Clifford & 

Guthrie, 1988; Herbst, 1989; Labaree, 2004).  In addition, there is a widely documented 

tension between pre-service teachersô expectations and teacher educatorsô academic 

agendas (Ducharme, 1993).  At least as far back as Dewey (1904), teacher education has 

struggled with balancing theory and practice.  These tensions often translate into a 

perception that both pre-service and practicing teachers maintain: their academic 

preparation is inadequate for confronting the realities of teaching (Britzman, 1986; 

Eisenhart, Behm, & Romagnano, 1991; Zeichner and Tabachnik, 1981; Borko, Eisenhart, 

Brown, Underhill, Jones, & Agard, 1992).   The resulting ethos is that teaching is a 

practice best learned ñon the job,ò as opposed to the traditional, undergraduate education 

program.  It seems likely that if teachers dismiss out of hand their academic preparation 

as irrelevant, there is little that teacher educators can do to improve PSTsô knowledge.   

 Several teacher development environments have taken advantage of situated and 

sociocultural learning theories in an effort to address this problem and provide 
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opportunities to think deeply about mathematics, teaching, and their connections (Cohen, 

2004; Harrington, 1995; Lampert & Ball, 1998).  These approaches rely on the use of 

artifacts of teaching in order to engage PSTs and teachers in mathematical and 

pedagogical ideas.  These artifacts include items such as student work, teacher notes, 

classroom video, curricular materials, and written cases.  Where these opportunities have 

been available, they typically have been offered for practicing teachers or with PSTs in 

methods courses, late in their academic preparation.  There is evidence that these 

experiences boost teachersô confidence in mathematics they teach (Cohen, 2004) and 

provide an early opportunity to think carefully about the complex relationships between 

mathematical ideas and the pedagogical choices teachers make (Lampert & Ball, 1998).  

They offer as well the opportunity to achieve what may of the PSTs appreciated about my 

service learning assignmentðthe chance to interact with children and teaching 

practicesðwithout all the intricacies and pressure of a real-time classroom environment. 

 Despite positive results from this work, there has been little application of this 

perspective to content courses that PSTs take early in their undergraduate programs, and 

not much is known about how well these approaches foster the development of greater 

mathematical understanding that population.  Many questions thus remain about teacher 

preparation in mathematics.  How can it address the lack of mathematical knowledge that 

teachers often demonstrate?  What approaches foster strong mathematical understanding 

while promoting a perspective on teaching that accounts for its complexities?  Can using 

activities and artifacts of teaching really bridge the gap between theory and practice while 

further developing mathematical knowledge in PSTs?  In order to address these issues, I 

designed and carried out a research project that focuses on the following questions:  
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(1) What mathematics do prospective teachers learn by engaging in activities 

of teaching practice such as examining curriculum, student work, and 

classroom video? 

a. Do PSTs who regularly engage in such activities display 

evidence of different mathematical proficiency than PSTs who 

participate in more traditional course work? 

b. Do PSTs engaging in such activities display different 

mathematical knowledge for teaching (MKT) than PSTs 

participating in more traditional course work? 

c. Do PSTs engaging in such activities develop different attitudes 

about mathematics and teaching than PSTs participating in more 

traditional coursework? 

 

(2) To what extent do prospective teachers see their mathematics course work 

as relevant to their future work? 

a. Do different course approaches set up differing perspectives 

among PSTs on the contribution of the course to their future 

work? 

b. Do different course approaches set up differing views among 

PSTs about their confidence and abilities in mathematics? 

 

These questions represent an opportunity to challenge empirically the notion that 

teachersô knowledge is embedded in activities of practice and that learning mathematical 

content for teaching is inherent to participation in these activities.  More broadly, these 

questions also address the question offered by Fennel above.  Potential answers to the 

first set of research questions are that there is no difference between the knowledge in the 

two groups of teachers, or that concentrating on teaching issues inhibits the development 

of strong mathematical knowledge.  However, I anticipated at the outset of this project 

that instead, evidence would suggest a third alternative: that PSTs who engage in tasks 

that make explicit the role of teaching will develop more sophisticated understanding that 

coincides with the vision of mathematics teaching espoused by the NCTM (2000).  The 

questions also address the persistent lack of fit between prospective teachersô 

expectations of teacher education and the importance of theory to teacher educators as 

they seek to disrupt teachersô apprenticeship of observation.  If the use of teaching 
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artifacts in content courses does in fact address this gap, then this suggests important 

implications for the continuing debate about how to integrate theory and practice in 

undergraduate teacher education. 
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Chapter 2: Theoretical Lenses 
 

 

How do Teachers Learn to Teach Mathematics? 

Decision-Making in Content Courses 

As a teacher educator at a community college, many of my choices are constrained by 

articulation agreements with state universities.  Yet, there is still much latitude in seeking 

experiences for students to learn the mathematics which I responsible for teaching to 

them.  These choices have often been dictated by some tacit assumptions about how 

teachers come to know and develop their craft.  Though my courses were located within a 

mathematics department, and my task was to teach them mathematics, they were 

designed and intended for PSTs.  As such, their future in teaching was never far from 

their mindsðor from mine.  I introduced the service learning assignment because I felt 

that encouraging PSTs to experience a classroom or tutoring situation from a teacherôs 

perspective was a unique opportunity to integrate issues of mathematics and teaching.  I 

hoped that it would bring important ideas about content and pedagogy to the fore, ideas 

that I otherwise would have had difficulty highlighting. 

 Empirical outcomes did not drive this decision-making process.  I did not access 

the literature, synthesize the results and plan a course of action accordingly. Yet, even 

had I sought such literature and results to apply directly to my situation, I would have 

found little on which to draw.  The fact is that most of what we know about how teachers 

learn to teach mathematics comes from research on practicing teachers, and to a lesser 
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extent, from student teachers and interns.  In turn, this work depends for its foundations 

upon a long tradition of generalized theories of learning, and related results from teacher 

development.  In recent years, teacher education research has focused in large part on a 

situated perspective on learning to understand more about how teachers develop their 

practice (Putnam and Borko, 2000).  In this chapter, I outline the foundations of situated 

learning theory, its application to teacher education in general, and in mathematics 

teacher education in particular.      

Situated Learning Theory 

Theories of learning have occupied the attention of psychologists and educators 

for at least the last century.  Broadly speaking, this work can be broken into three 

categories: behaviorism, cognitivism, and situated learning theory.  While behaviorism 

addresses learning as a system of psuedo-mechanistic responses to external stimuli that 

can be strengthened with repetition, cognitive learning theory approaches it as the 

acquisition and development of representations that order and structure ideas in the mind 

of the knower.  Like behaviorism, cognitive learning theory objectifies knowledge: it can 

be acquired, stored, and retrieved by individuals.  Situated learning theory on the other 

hand asserts that knowledge is located within and among communities of people, 

focusing on the activity and interactions they share.  There is no consensus about the 

relationship between situated and cognitive learning theories: while situated learning 

theory is sometimes contrasted with the cognitive perspective (Anderson, Reder, & 

Simon, 1996; Greeno, 1997; Anderson, Reder & Simon, 1997; Cobb & Bowers, 1999; 

Moore, 1999; Anderson, Greeno, Reder, & Simon, 2000), others suggest that the situated 

perspective developed as a reaction to limitations of cognitive learning theory and 
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represents a ñsecond wave of the cognitive revolutionò (Decorte, Greer, & Vershaffel 

1996).  Greeno (1997) and Cobb and Bowers (1999) argue that the two theories operate 

under fundamentally different assumptions, though Moore (1999) asserts that rather than 

operating at some deeper level, the differences between the two are merely a shift in 

vocabulary.
1
  Simon (2009) claims that the variety of theories is useful because they 

serve to address different kinds of questions.  The debate regarding the distinctions 

between cognitive and situated learning theories has created a need for theorists in the 

younger perspectiveðsituated learning theoryðto refine and clarify the arguments and 

assumptions that give it explanatory power.  Because salient aspects of the situated 

perspective are brought to light in this conversation, I note in some detail the critiques of 

situated learning by theorists in the cognitive tradition. 

For some situated theorists, its power lies in its ability to explain the uniqueness 

of school learning (and knowledge) from other types of knowing generated in other 

circumstances.   Brown, Collins, and Duguid (1989) use such an approach in calling for 

ñcognitive apprenticeshipò in school.  They describe a divide between the tools of 

disciplines and the culture that created them which interferes with a deep understanding 

of these tools and thus accounts for the difficulties that students have learning in school.  

For example: 

Old-fashioned pocket knivesé have a device for removing stones 

from horses' hooves. People with this device may know its use and be 

able to talk wisely about horses, hooves, and stones. But they may 

never betray or even recognize that they would not begin to know 

how to use this implement on a horse. Similarly, students can often 

manipulate algorithms, routines, and definitions they have acquired 

with apparent competence and yet not reveal, to their teachers or 

                                                 
1
 Moore argues that situated learning theorists have co-opted tenets of cognitive learning and applied them 

exclusively to groups instead of individuals. 



 

 14 

 

themselves, that they would have no idea what to do if they came 

upon the domain equivalent of a limping horse.   (p. 33) 

 

 

Bridging this divide involves creating a ñcognitive apprenticeshipò for students in which 

tasks and activities are ñauthentic.ò  Many school-based activities are considered 

inauthentic in this view because they insufficiently match school work with activities that 

occur outside of school, which are not simple and discrete, but often complicated and 

multidisciplinary.
2
  Brown, Collins, and Duguid argue that schooling as currently 

conceived inherently stifles interactions inherent to authentic activity; consequently, ñwe 

have ended up with wholly inappropriate methods of teachingò (p. 41). 

A weakness of this approach to the theory is that it implies that some activity is 

situated (or properly situated) and other activity is not.  A primary criticism on this point 

is made by referencing research in which learners used knowledge in contexts that differ 

substantially from that in which they were learned.  Anderson, Reder, and Simon (1996) 

review claims such as those made by Brown, Duguid, and Collins as misguided and 

overstated.  They argue that the notion of authenticity fails to acknowledge that learning 

occurs in discrete stages: ñwhat is important is what cognitive processes a problem 

evokes, and not what real-world trappings it might have.  Often, real-world problems 

involve a great deal of busy work and offer little opportunity to learn the target 

competenciesò (p. 9).  The process of focusing on the ñtarget competenciesò involves 

isolating the relevant skills and learning each in turn before applying them together in a 

more complex problem situation.  Anderson, et. al. assert that it is unreasonable to learn 

                                                 
2
 Scholars such as Saxe (1985) and Carraher (1985) are often linked with situated learning because they 

generate similar conclusions in their research.  I do not include them here because within these particular 

pieces, they do not associate themselves explicitly with this theoretical perspective. 
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all skills of a complex practice simultaneously and that research in cognitive psychology 

shows that ñpart training is often more effective when the part component is independent, 

or nearly so, of the larger taskò (p. 9).  Anderson, Reder, and Simon further argue that 

while transferðthe ability of an individual to employ knowledge acquired in one context 

in another, different contextðis often tenuous, it can be strengthened by encouraging 

learners to reflect on potential avenues for transfer during their initial encounter of 

concepts.  One could imagine an example of an algebra teacher pointing out that solving 

simultaneous linear equations can be applied to linear programming problems, which the 

class may address when the other component parts of the problem have been learned.
3
   

Situated learning theory seeks to address the problems of complex problem 

situations and transfer through the concept of participation.  This is perhaps best 

described by Lave and Wengerôs seminal text, Situated Learning: Legitimate Peripheral 

Participation (1991); it is routinely associated with the foundations of situated learning 

theory (Greeno, 1998).  Yet the authors make explicit their dissatisfaction with the 

perspective as it was then theorized, and offer instead the construct of ñlegitimate 

peripheral participationò as a transformation of situated learning theory (p.122).  In the 

years since its publication, situated theoristsô writing reflects Lave and Wengerôs 

understanding, which builds on work like Brown, Collins, and Duguid (1989), but 

clarifies and refines the position. 

In an implicit criticism of Brown, et., al., Lave and Wenger disassociate 

themselves with conventional notions of apprenticeship that privilege informal, 

experience-based learning; such perspectives label only particular activities as situated.  

                                                 
3
 Other component skills for solving linear programming problems might be: solving systems of linear 

inequalities, constructing objective functions and constraints, etc. 
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For them, situated cognition offered explicit recognition that all activity is situated.  The 

authors discount the assertion that learning is situated in practice, ñas if it were some 

independently reifiable process that just happened to be located somewhereò (p. 35).  

Instead, they assert that learning is a critical, contemporaneous component of practice.  

That is, ñlearning is an integral part of generative social practice in the lived-in worldò (p. 

35).  As people engage with one another in communities to which they belong, learning 

is an inextricable element of that interaction.  The community of practice is the medium 

in which legitimate peripheral participation operates.  Within these communities are new-

comers and old-timersðsometimes novices and experts, respectivelyðwho are active in 

continuously reproducing the community as new-comers contribute more fully and old-

timers end their participation.  New-comersô ñlegitimacyò refers to the fact that their 

membership in the community has purpose and substantially contributes to the 

community, even when that contribution may be labeled small.  Hence, Lave and Wenger 

contrast operating on the ñperipheryò with irrelevance.  As a result, though peripheral 

participation means that new-comers play a strictly supporting role in the community, it 

is nonetheless one that serves to maintain the existence of the community. 

 Lave and Wenger describe five studies in which the theory of legitimate 

peripheral participation is readily illustrated.  Through these examples, they outline 

features of communities of practice that foster effective learning among new-comers.  

First, they note that the relationships between apprentices and masters (or new-comers 

and old-timers) are neither fixed nor consistent across practices.  In some cases, the 

relationship is quite hierarchical while others are egalitarian.  This means that there is no 

single defining feature of the relationship between novices and experts, and that the 
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relationship may be structured differently within communities of teachers than within 

communities of welders or lawyers.  More important is the way resources are structured 

to enable novices to participate in ways that foster their learning and increase their 

participation.  For example, they highlight the fact that in many cases, ñapprentices learn 

mostly in relation with other apprenticesò (p. 93).  In addition, newcomers must have 

access to the practices, language, and structure of full practitioners.  Though their status 

as peripheral participants means that they are not responsible for the entire range of 

relevant activities, the ones with which they do work nonetheless simulate the central 

practices of the community.  The tasks are low-stakes and typically highlight specific 

aspects of practice.  This may be analogous to Anderson et. al.ôs conception of learning 

ñcomponent skills,ò but it is most certainly distinct from it, since novices do not engage 

in skill-building apart from their practice.  Rather, new-comers focus only on particular 

aspects of the practice, which at once acknowledges the complexity of full participation 

and yet attempts to reduce that complexity for novices.    

 Acquiring a practical language is part of this, and represents an especially 

important component of novicesô participation in the community.  This language 

acquisition occurs largely through narrative discourse about particularly difficult and ill-

defined problems within the practice.  Newcomers learn most effectively as participants 

in discourse centered on issues of practice rather than strictly as passive observers of 

others who talk about practice.   

 Participation in the community is neither exclusive of observation nor limited to 

working in groups.  For example, observation of tasks performed by others in the 

community can be an integral part of participation.  However, it is not a substitute for 
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more active contribution: ñfor newcomerséthe purpose is not to learn from talk as a 

substitute for peripheral participation; it is to learn to talk as a key to legitimate peripheral 

participationò (p. 109).  This means that not only are novices watching practice or hearing 

about it, they contribute meaningfully to the production (and reproduction) of the 

community in such a way that their talk is about their practiceðhowever peripheralð

rather than othersô.  Likewise, engaging in solitary work requires the practitioner (novice 

or otherwise) to think and act as a member of the community, even if she is not 

physically surrounded by colleagues.  The particular physical and social settings in which 

the learner finds herself are indeed important in the situated perspective, but through this 

lens, transfer applies not to the knowerôs ability to transport knowledge from one location 

or set of circumstances to another.  In the situated perspective, transfer refers to the 

consistency of activity patterns across situations, so that it is not necessarily the knower 

that takes knowledge from one place to the next, but salient features of the situation itself 

that are transferred (Greeno, 1997).  The knower is able to attune properly to the features 

of activity that are germane to both settings depending on the learnerôs level of 

participation in the activities and her contribution to the resulting interaction (Greeno, 

1998). 

 Thus, participation in the community is co-creative with the participantôs identity: 

as members participate, they create an identity as contributors to the community.  

Similarly, as their identities develop, participants are able to contribute ever more fully to 

the community.  This component of the theory addresses the problem of complexity: 

situated learning theory does not interpret all participation as equally complicated, but 

emphasizes the increasing participation of learners within communities.  Though the 
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larger context of their participation may be multifaceted and complex, learning is 

portrayed in the situated perspective as the process of making ever larger contributions to 

the community, meaning that they do not take on the fullness of responsibility or 

complexity in their earliest encounters, but their practice nonetheless builds in complexity 

as they increase their participation. 

 The identity formation of learners is critical.  In school settings, the ñdidactic 

caretakerò makes changing the identity of the learners the central aspect of teaching.  

Lave and Wenger contrast this with successful apprenticeships, where the tasks of 

practice are the central and explicit objects of change: ñAs opportunities for 

understanding how well or how poorly onesô efforts to contribute are evident in practice, 

legitimate participation of a peripheral kind provides an immediate ground for self-

evaluation,ò and therefore, re-formation.  Thus, identity re-formation occurs through 

participation rather than by fiat.  Though the goal of learning is to change the learnerôs 

identity on some level, the means by which this change occurs most effectively is 

fundamentally different than currently found in situations where didactic practices are 

dominant (pp. 111-112).
4
  In such situations, the result is the commoditization of 

learning, in which knowledge has an exchange value established by testing; learning to 

display knowledge takes priority over learning for understanding. 

The latter type of learning is a disposition that one would expect 

to find a practitioner adopting, for his ability to participate in 

the community is inextricably linked to his learning and 

development of knowledge.  Situated learning theoryðin its 

incarnation as legitimate peripheral participationðmakes this 

link between activity, communities of practice, and knowledge 

the focus of analysis.  Instead of conceptual emphasis on the 

exercise of conceptual skill, situated learning theory ñprovides 

activity structures in which those aspects oféknowing are 

meaningful and functionalò (Greeno, 1998, p. 19). 

                                                 
4 Brown, Collins, and Duguid (1989) state that schools are examples of this type of situation. 
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Brown, Collins, and Duguidôs notion of ñcognitive apprenticeshipò is echoed here: 

learning takes place as a part of participating with and among practitioners.  One does not 

learn in order to demonstrate knowledge in some artificial way, but in order to participate 

more fully in the community. 

 How does this perspective apply to teacher education and the process of learning 

how to teach?  What are the implications of situated learning theory in teacher education? 

Learning to Teach 

If one approaches learning (and by extension, knowledge) as being an intrinsic 

feature of participation with others in a community of practice, then teachersô knowledge 

should be located in and acquired through activities in which they engage: planning 

lessons, working with students, assessing student work, and collaborating with 

colleagues, among other things.  Legitimate peripheral participation requires that new-

comers be inducted over a period of time and that they be givenðby old-timersð

opportunities to develop the language and work of the practice by working through 

various sub-domains of practice in low-stakes environments.  This means that PSTs must 

begin to develop their practice long before the time where they are given sole 

responsibility of a class full of students, such as an internship experience.   

There were elements of this perspective embedded in my service learning 

assignments, which resulted as situated learning predicts they would: PSTs made clear 

efforts to adopt the language of practitioners and project their observation experiences 

forward into their own future classrooms.  They used terms like ñdifferentiated 

instructionò and ñmaking mathematics meaningful,ò even when their articulation of these 
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ideas did not include any evidence that they understood the complexities and challenges 

involved with carrying them out.  Moreover, the PSTs in that experience usually were not 

paying attention to all salient features of the classrooms they observed.  In particular, in 

most cases ignored the most important mathematical features of their situations.  This 

ignorance may be attributed to the incongruence between the two contexts: our college 

classroom was too different from the elementary school settings in which they were 

working. 

If one accepts the cognitive learning perspective in the area of teacher knowledge, 

then one must address the problem of transfer between necessarily very different 

environments: the university classroom and the elementary school classroom.  Teacher 

educators must find ways to help teachers bridge the divide between these environments.  

The situated learning theoretical stance places a difference spin on the problem.  It claims 

that the knower is not the one responsible for making this transition, but the environment: 

the university classroom should more closely emulate the experience of the elementary 

school classroom.
5
   

The situated learning perspective has developed contemporaneously with terms 

such as pedagogical content knowledge (PCK) and mathematical knowledge for teaching 

(MKT) (Shulman, 1986; Ball, 2002).  Both constructs highlight that there is knowledge 

that special to the work of teaching, knowledge that is maintained within the context of 

teaching practice and employed inherently and exclusively in service of important tasks 

of teaching practice.   

                                                 
5
 Many argue that the converse is also true: elementary school classrooms should look more like university 

classroomsðor at least they should more resemble the parent disciplines in academia.  Lampert (1993) and 

Cuoco (2001) are among those who take this perspective in mathematics.  In the work I propose here, I am 

playing out one possible way to bridge the two experiences.  I am not arguing against the value of bringing 

the disciplines into elementary or secondary classrooms with more integrity.   
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Emerging conceptual frameworks for teaching and learning complement this 

scholarship.  Cochran-Smith and Lytle (1999) describe the importance of ñknowledge of 

practiceò
6
 which privileges the systematic inquiry of real issues that emerge from 

teaching, rather than perpetuating the divide between theory and practice.  This approach 

unites the work of practicing and prospective teachers as they engage in focused case 

study that requires teachers to develop skills for attending to contextual details while also 

drawing more general inferences about teaching from them.  Teacher knowledge which is 

conceptualized as being integrally related to practice reflects the same perspective on 

knowledge taken by situated learning theory. 

In addition, research and rhetoric on teacher development has adopted the novice-

expert (new-comer/old-timer) model of interaction within communities.   Hammerness, 

Darling-Hammond, Bransford, Berliner, Cochran-Smith, McDonald, and Zeichner (2005) 

concentrate on the idea of adaptive experts described by Bransford, Derry, Berliner, 

Hammerness, and Beckett (2005) and the process by which teachers develop it.  

Hammerness, et., al. assert the importance of expertise, which for the authors consists of 

strong capabilities along dimensions of efficiency and innovation: expert teachers notice 

and address subtleties of typical classroom activity in ways that novices cannot.  

Moreover, experts can assess non-routine situations with skill and use them to help 

students make progress.  The authors turn to research on learning to observe three 

guiding principles for teacher development.  Teacher education should: (1) make 

teachersô ñapprenticeship of observationò explicit and offer alternative perspectives that 

build uponðand in some cases challengeðthis experience; (2) enable teachers to acquire 

                                                 
6
 The authors contrast this with knowledge ñforò and ñinò practice.  Each of these is made distinct by the 

relationships formed between (prospective or practicing) teachers and researchers, but all of them are 

conceived as being located within a context of teaching practice. 



 

 23 

 

a deep foundation of knowledge and techniques for giving this knowledge a conscious 

structure; (3) provide access to meta-cognitive tools for teachers to continue to develop 

their knowledge in and through their practice. 

Teaching is a very ñcomplex and demanding taskò (Hammerness, et. al., 2005, p. 

37).  In order to manage this complexity, teachers must be skilled on-the-job-learners.  

Here again, learning on the job requires more than casual observation but systematic 

inquiry and carefully reasoned interventions that can be applied to a (unique) situation.  

This is not necessarily something that arises naturally among teachers.  Thus, teacher 

education is responsible for developing teachersô meta-cognitive skills that help them 

monitor their thinking as they work with students and design their instruction.  The 

authors suggest that this can be accomplished through a collaborative approach which 

seeks to develop a strong, active knowledge of teaching rather than ñbookò learning 

which is often inert.  Hammerness, et. al. further outline a framework that relies on 

teachers developing within a community of colleagues.  Within the community, teachers 

should develop (1) a vision for teaching; (2) a repertoire of teaching practices; (3) a set of 

conceptual and practical tools for classroom use; (4) habits of thinking and acting as a 

teacher; and (5) deep conceptual understanding of content.  There are strong echoes in 

this framework of Lave and Wengerôs notion of legitimate peripheral participation; 

novices learn to become experts by engaging with experts in solving problems that arise 

in work of teaching.  The distinction between the two groups implies that they work 

through problems differently and contribute different things to the community, but the 

success and continuation of the community requires that everyone participate.  
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Members of this community are practicing teachers, of course, but also included 

are PSTs and university faculty: they participate in the community in different ways, but 

are no less central to the perpetuation of the practice.  In Hammerness, et. al.ôs 

description, university faculty mediate the interactions between them. 

Theory and Practice 

The distinction and separation between novices and experts, teachers and 

university faculty, is an important and valuable one.  But this distinction underscores a 

larger issue of teacher education.  Integrating education theory with education practice 

has been an ongoing debate and tension in American teacher education throughout U.S. 

history (Clifford & Guthrie, 1988; Borrowman, 1965).  Practicing and prospective 

teachers alike report that their undergraduate preparation is too theoretical and 

disconnected from their teaching practice (e.g., Ducharme, 1993; Britzman, 1991).  

Whether or not it is well-founded, this attitude could potentially impede PSTsô ability to 

develop important teaching skills.  This ethos also perpetuates the belief that learning to 

teach only occurs by teaching, though some have argued (e.g. Cochran-Smith & Lytle, 

2005; Dewey, 1965) that the full responsibility of practice is fraught with complexity and 

is too challenging an environment in which to learn.   

 Rosenthal (2003) calls it ñfield-based teacher educationôs dirty little secret,ò a 

secret which teachers know all too well: being a practicing teacher is very different from 

the preparation one receives in schools of education.  Britzman (1986) outlines a few 

causes of this gap between teacher education and teaching.  First, prospective teachers 

bring with them preconceived notions of the role of teacher.  The so called 

ñapprenticeship of observationò (Lortie, 1975) is a powerful influence for these students 
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who view teaching as a series of methods used to maintain control, authority, and 

expertise in the classroom.  Moreover, there is a lingering perspective of teaching as 

relatively unskilled labor that reinforces these views.  Labaree (2000) points to an 

expectation of the general publicðand likely PSTsðthat anyone can teach 

because the kinds of skills and knowledge that it transmits 

to students become generic in the population at large.  

Therefore, unlike college professors who are expected to be 

experts at a level well beyond the understanding of 

ordinary citizens, schoolteachers are seen as masters of 

what most adults already know. (pg. 232) 
 

Teachersô special domain of expertise therefore is often seen as focused on behavior 

management and is childcare-centric.  Therefore, ñeducation course work which does not 

immediately address óknow-howô or how to ómake doô with the way things are, appears 

impractical and idealisticò (Britzman, 1986, pg. 446). 

 This gap also becomes apparent to teachers during their student teaching 

experience.  Theory often appears to play a small role in school settings; teachers 

(especially student teachers) are in a position of survival rather than reflection, and they 

are often evaluated not on their pedagogy or content knowledge, but on their skill in 

managing the classroom effectively.  Britzman refers to interviews she conducted with 

student teachers: ñéeducation courses were not considered as real experience.  Instead, 

in the minds of these student teachers, their education courses failed to demonstrate the 

value of theory, or even to shed light on their pragmatic fieldsò (pg. 447).   

 Thus, the theoretical focus of teacher education fits neither with common views of 

teachersô role in the classroom, nor with the encounters PSTs have with the reality of 

schools as they complete their student teaching and begin their practice.   Situated 

learning, as conceived through legitimate peripheral participation, calls for rehearsal of 
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teaching tasks in a low-stakes, low-pressure environment (such as content and methods 

courses).  This kind of induction process may strengthen teachersô ability to use what 

they learn as undergraduates in the classroom.  This means that PSTs should be engaging 

in practices of teaching even before they have responsibility to children, parents, and 

administrators.  It calls for a kind of transformation of the university classroom into a 

more authentic analog of the school classroom.  An ñartifacts approachò
 7
 to teaching 

PSTs may connect them more closely to their professional goals, instead of being another 

hoop through which teachers must jump on their long journey toward certification.  

Connecting undergraduate preparation and professional development to teaching in this 

way challenges the popular misconception that one only learns to teach when ñon the 

job,ò while yet acknowledging the kernel of truth at its heart.  PSTs can be ñon the jobò 

even when they are not planning for or implementing a lesson with real children for 

whom they are responsible. 

Learning to Teach Mathematics 

By and large, little of the work described above specifies what mathematics that 

teachers are supposed to be learning.  Though there is not a consensus about what 

characterizes effective teaching generally, research has produced some accepted results.  

Early studies of teaching conducted in the process-product framework generally 

neglected teacher knowledge in favor of the effect of teacher behaviors on student 

achievement, such as timed studies of content instruction versus classroom management 

(Hill, Rowan, & Ball, 2005).   Other work has also shown the limitations of coursework 

                                                 
7 Recall that artifacts of teaching includeðbut are not limited toðstudent work, video of classroom interaction, 

teachersô notes, curricular materials, and written cases. 
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as a proxy for teacher knowledge and effectiveness (National Mathematics Advisory 

Panel, 2008).   

In response to much of this work, Shulman (1987) suggested categories of 

knowledge that effective teachers require.  In addition to knowledge that transcends 

subject matter (e.g., general pedagogical knowledge, knowledge of students) and 

knowledge of the subject itself, Shulman argued that there is a specialized content 

knowledge: ñcurriculum knowledgeò and ñpedagogical content knowledgeò (p. 8).  In the 

decades that followed the introduction of this compelling idea, educational researchers 

have embraced the notion of PCK as a critical feature of teacher education and 

development (Ball, Thames, & Phelps, 2008).   

In an effort to refine and clarify Shulmanôs compelling idea of PCK, researchers 

in mathematics education have turned to mathematical knowledge for teaching (MKT) in 

an effort to explain at least some of the impact that teacher knowledge has in classrooms.  

It is closely related to the roots of situated cognition theory in that it describes a 

knowledge that teachers can build as part of their practice and that it exists inseparably 

from it.  MKT involves an understanding of typical mathematics that may be common to 

many educated people, but it also involves flexible and robust knowledge of 

mathematical representations and how to select and interpret examples.  It also involves 

knowledge of common student misconceptions, how to identify them and remediate 

them, and the ability to notice connections to more sophisticated mathematical ideas.      

Some components attributed to MKT are common to other groups and practices, 

while others are particular to the work and activities of teaching.  This idea that 

knowledge can be situated within a practice is directly linked to situated cognition theory.  
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The literature reveals that teachers who engage in development activities designed with 

this perspective report deeper understandings of mathematical content among teachers 

who also demonstrate greater skill for and commitments to attending to learning 

opportunities in their practice (Cohen, 2004; Steinberg, Empson, Carpenter, 2004; 

Kazemi & Franke, 2004; Chamberlin, 2005; Manouchehri, 2002).  These development 

activities not only involved creating, fostering, and sustaining a community of teachers 

but engaging them in activities that focus on real issues of practice.   They immersed 

participants in artifacts of classrooms: video from class interactions, copies of written 

student responses to teacher prompts, and teacher notes and reflections (Featherstone, 

Smith, Beasely, Corbin, & Shank, 1995; Hammer and Schifter 2001). A similar approach, 

called lesson study, engages teachers in the planning, teaching, and revision of a lesson; it 

is a collaborative, iterative process which requires close attention to issues of both 

content and pedagogy (Lewis and Tsuchida, 1998; Hiebert, Morris, & Glass, 2003).  

Whether or not these approaches, when applied to undergraduate content course 

work, will have similar influence on pre-service teachers remains an open-question 

(Putnam & Borko, 2000; Wilson, Floden, Ferrini-Mundi, 2001).  However, some 

researchers have investigated the use of artifacts of teaching in methods courses (e.g., 

Lampert & Ball, 1998; Harrington, 1995).  The evidence supports the conclusions 

generated by work among practicing teachers: that undergraduates demonstrate more 

sophisticated and nuanced thinking about teaching and have experience with new, 

important tools for further development and learning as they enter the profession.   

 These results are not without caveat, however.  First, the focus of much of this 

research has been on the increased confidence of teachers and their greater facility in 
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extracting and making use of student ideas.  Little as yet is known about whether or not 

teachers demonstrate stronger mathematical knowledge, though recent studies with in-

service teachers show promising results (e.g. Hill & Ball, 2004; Hill, Rowan, & Ball, 

2005).  Also, in many cases, the researchers report an important preliminary hurdle: 

teachers and undergraduate teacher candidates alike lack experience in using these 

artifacts to make actionable judgments in the classroom.  Learning to do this takes time 

and significant mentorship; teacher education would therefore be well-served by 

incorporating these approaches throughout its programmatic requirements, from year one 

courses through internship experiences.  

 Finally, the introduction of classroom practices in undergraduate courses is not a 

panacea; teachers are not necessarily more fully-formed as they complete their 

preparation and certification under these conditions.  Yet, as Hiebert, Morris, and Glass 

(2003) argue, the goal of teacher education can shift from producing fully-fledged 

teachers to providing ñprospective teachers with the tools they need to become 

increasingly effective mathematics teachers as they enter the classroomò (p. 202). 

Studying Undergraduate Mathematics Courses 

There are principally four formal opportunities for prospective teachers to learn 

mathematics: (1) their own primary and secondary mathematical course work; (2) 

undergraduate content courses; (3) methods courses; (4) and student teaching and field 

experiences.  Thus, mathematics educators have four contexts in which to study and 

potentially influence prospective teachersô mathematical development.  The first option is 

already widely studied but is not informative about teachers because of the relatively 

small (and unpredictable) proportion of young students who choose to become teachers 
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and the wide variety of primary and secondary school environments in which they learn.   

The last alternativeðfield experienceðis a volatile context for studying the 

mathematical education of teachers because so many more immediate and pragmatic 

factors overshadow the potential for developing mathematical knowledge (Dewey, 1965; 

Britzman, 1991; Lampert and Ball, 1998).  Because methods courses are generally the 

particular domain of mathematics educators, researchers often concentrate on making use 

of these courses to influence and study prospective teachersô content knowledge.  Indeed, 

these contexts have been shown to impact the mathematical choices made by novice 

teachers (Borko, H., Peressini, D., Romagnano, L., Knuth, E., Yorker, C., Wooley, C., 

Hovermill, J., & Masarik, K., 2000).  They have also been used as sites for investigating 

the use of case studies and other artifacts of practice (Harrington, 1995; Lampert & Ball, 

1998).  The temporal proximity of methods courses to teachersô first work experience 

makes them well-suited to engaging prospective teachers in problems of practice.  

Despite this convenience, learning to work effectively with these records is not an easy 

task; researchers report that teaching teachers to make systematic and evidence-based 

inquiries takes a significant amount of time and energy (Featherstone, Smith, Beasely, 

Corbin, & Shank, 1995; Lampert & Ball, 1998; Cohen, 2004).  Thus, content courses 

already designated for prospective teachers and taken early in education programs may be 

an avenue for introducing a stance of inquiry.  Moreover, situated learning theory 

suggests that it may positively impact teachersô mathematical knowledge for use in their 

future practice. 

However, it is notable once again that research about teacher learning in these 

content courses is under-represented in the field (Wilson, Floden, Ferrini-Mundi, 2001).  
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Philip, Ambrose, Lamb, Sowder, Schappelle, Sowder, Thanheiser, and Chauvot (2007) 

have arguably conducted the most comprehensive look at the effects of different 

treatments on how PSTs learn in their mathematics courses.  They describe a comparison 

study in which PSTs enrolled in a first semester mathematics course for PSTs were 

assigned different lab experiences connected with their content course.
8
 The PSTs were 

assigned to one of five different groups: the first group was placed into elementary school 

classrooms to observe teachers and their work.  This group of teachers was labeled 

ñreform-oriented,ò which meant that they had participated ñenthusiasticallyò in ñreform-

based professional development efforts.ò  A second group observed teachers who 

conveniently located near the PSTs, and were not necessarily ñreform-oriented.ò  The 

third group of PSTs was assigned to meet regularly to watch and discuss video of 

children working on mathematics problems.  A fourth group was assigned to watch the 

same videos but also conducted live interviews of children in which they tried to draw 

out and understand childrenôs thinking.  Finally, the last group was considered a control 

group and did not participate in any extra-curricular work associated with the project.  All 

PST participants completed instruments designed to test PSTs knowledge and measure 

their beliefs about mathematics.  PSTs completed these instruments at the beginning and 

at the end of the semester course in which they were enrolled.    The authors situate this 

research against the spectrum of  laboratory vs. apprenticeship experiences. 

Philip, Ambrose, et., al. report on the knowledge of PSTs in a first-semester content 

course for teachers who were placed in elementary school classrooms as a component of 

their courses, and others who were not.  The authors state that PSTs who visited 

classrooms noticed similarities between the mathematical ideas in the elementary 

                                                 
8
 This assignment was not random, but depended on PSTs availability and class schedules. 
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classroom and their undergraduate course, and that PSTs reported feeling a strong 

connection with the role of teaching and this classroom experience.  This echoes my 

anecdotal experience with service learning and further supports the use of a situated 

learning perspective: PSTs value the ability to ñpictureò themselves as teachers and 

practice filling that role.  Ambrose and Vincent (2003) call this an example of 

ñcurriculum authentication,ò which recalls the notion of authenticity envisioned by 

Brown, Collins, and Duguid (1989).  That is, PSTs see these kinds of activities as 

authentic because they associate the classroom activities with those they expect to 

encounter as teachers.  Generally, the PSTs who visited elementary school classrooms 

reported a stronger identification with teachers and teaching and an authentication of 

what they discussed in their content courses. 

However, the data suggest that making this emotional connection was the strongest 

result of visiting classrooms: 

PSTs wrote about the importance of teaching mathematics in a 

variety of ways to meet the needs of all students but had little 

appreciation for what doing so would entail.  We posit that [PSTs 

who visited classrooms], lacking an occasion to discuss their 

observations, failed to appreciate any phenomena that entailed 

childrenôs mathematical thinking.  We concluded that a structured 

laboratory environment was more likely to support the beliefs 

change we hoped to cultivate than a loosely organized 

apprenticeship structure.  (p. 467 ï 468) 
 

Whatôs more, the PSTs that visited classrooms that focused on drill and practice 

developed beliefs about mathematics teaching that were antithetical to the goals of the 

university faculty.  Ambrose and Vincent conclude that: 

for bridging the university classroom and the elementary school 

classroom to enhance the mathematical learning of the PSTs, 

alternatives to unsupervised visits to elementary school mathematics 

classes should be consideredéThe elementary school classroom is a 

complex environment, and it is not designed to optimize the learning 
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of PSTs.  It is perhaps not the best place in which to situate PSTôs 

learning about mathematics.      (p. 30) 

 

The data suggest that the PSTs who concentrated solely on childrenôs mathematical 

thinking (those watched video alone and those who also interviewed children) scored ¼ 

of a standard deviation better on the knowledge instrument than their peers who did not 

engage in those experiences.  This is a much smaller effect size than the authors 

anticipated, but it is a significant finding nonetheless.     

 Thus, there is empirical evidence that such activities can span the gap between 

theory and practice, and at least do not negatively impact PSTsô mathematical 

proficiency.  Yet, accomplishing this goal by means of classroom visitation has its 

drawbacks, and the authors suggest that other environments might be better suited for 

helping PSTs learn mathematics.  The results, while encouraging, are not sufficient for 

developing a complete picture of PSTsô growth in content courses.  Most importantly, the 

study did not account for the structure of the course in which all participating PSTs were 

enrolled.  It was considered was a constant factor which enabled the researchers to isolate 

the variable which they intended to study: the extent to which PSTs engaged with 

children and their thinking.  However, the course itself plays a role in the PSTsô 

development, and this influence is not addressed in the research. 

 Even if one were able to replicate these PST experiences outside of their 

traditional coursework, there is no evidence that suggests one could achieve similar 

results because of the hidden interaction between the course and the extracurricular 

activity.  Moreover, even if the effect sizes were significantly larger in magnitude, what 

would the implications of such a result be?  Should teacher education programs design 

extracurricular lab experiences for PSTs throughout their mathematics content sequence?  
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This may be hard to justify in the context of programmatic requirements that seem to 

increase regularly.  If such results were robust across disciplines, PSTs might be placed 

into such activities for all disciplinary domains, and the problem of simplifying practice 

by reducing the complexity for PSTs re-emerges: how could they focus on salient aspects 

of content with so many things going on at once in real-time?  Whatôs more, this research 

does not shed any light on theory vs. practice issues: did PSTs find certain extra-

curricular activities particularly motivating or relevant?  The idea that we can 

simultaneously motivate students to explore while teaching them important content-based 

ideas is a fundamental principle of much of the reform efforts in education over the last 

decades, but it does not necessarily represent an explicit goal of teacher education.  

Teacher educators should look for ways to teach important content-based ideas, while 

motivating and equipping PSTs to learn more independently.  One result of Philip, et., 

al.ôs work is that there is much more to explore about teaching PSTs mathematics in 

content courses.  In particular, the field should be looking for ways that help to bridge the 

theory vs. practice divide, particularly from PSTsô perspective.  In addition, an important 

question that remains unanswered is: which aspects of the courses themselves are 

influential for PSTsô mathematical knowledge for teaching?     

Curricular Materials & Epistemological Issues 

 One way to learn about what is being taught in these courses is to analyze the 

textbooks and curriculum materials that are used.  McCrory (2006) argues that many 

recently published mathematics textbooks that are used for PST content courses attempt 

to cast mathematics as a discipline that is not arbitrary and that is connected in rich and 

sensible ways.  The texts emphasize rigor, definition, and understanding, but ñthese very 
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characteristics create problems that may be inherent in trying to teach a complex, 

sophisticated subject to naµve learnersò (p. 28).  Though texts may provide clear and 

mathematically correct explanations, ñthere is no single ócorrectô version of this 

mathematics, and we do not know what confusion is generated over time by the small but 

significant differences in what teachers are taughtò (p. 28). 

 This tension is also visibly present in the differences between disciplinary 

mathematics and school mathematics.   Moreira and Davis (2008) assert that teaching 

mathematics in schools can be in direct conflict with mathematics as viewed from a set of 

definitions and axioms: ñTo create the real number system from nothing, that is, by 

postulating its existence as óanythingô satisfying the complete ordered field axioms, ends 

up in an inversion of what is done in schooléacademic mathematical knowledge may 

not be ónaturallyô a helpful instrument for the teacher in school practiceò (pp. 37-38).   

Here again, situated learning theory suggests an explanation: school mathematics and 

mathematics in the academy are fundamentally different things because they take place 

within fundamentally different communities of practice, which employ different 

relationships, different structures, different organizations, and ultimately, different 

epistemologies.  This is another component of the argument given by many mathematics 

educators in making a case for MKT, the specialized knowledge to which teachersðand 

not most othersðhave access, by virtue of their direct participation in school teaching. 

 That school mathematics and academic mathematics are occasionally in conflict 

echoes some of the tensions seen between the two disciplines in universities across the 

country: mathematics is a founding discipline of post-secondary education and represents 

some of the deepest-seated research traditions in academia.  Education, on the other hand 
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is a relative newcomer to universities and for many reasons, it still exists on the margins 

of the academic community (Labaree, 2004).  The nature of these relationships makes the 

study of school mathematics in universities inherently problematic.  How is one to 

reconcile the gap between mathematics as practiced in the discipline and as practiced in 

schools?  How do schools of education acknowledge the importance of maintaining 

integrity between school subjects and academic disciplines while acknowledging the 

fundamental differences between them? 

 Content courses for PSTs are a microcosm of all these tensions: they exist in the 

intersection of education programs and the disciplinary departments that rightfully feel 

responsible for the content embedded in them.  Content courses must walk a fine line: 

they are often designed exclusively for PSTs, and yet often they are not designated as 

education courses; they often serve as PSTsô final experienceðafter 12+ years of math in 

schoolsðof mathematics content course work, but in many respects they recapitulate the 

earliest of those experiences from elementary school; these courses represent and serve 

different content constituencies in mathematicians and mathematics educators; they are 

gatekeepers of mathematical knowledge and mathematical knowledge for teaching. 

 All of these things make mathematics content courses for PSTs fertile ground for 

study.  The tensions that put the courses in a peculiar position between school 

mathematics and mathematics in the discipline is one good reason for focusing on them.  

Another is the growing need to understand whether or not the teacher education strategies 

that show such promise among practicing and student teachers can be applied to earlier 

experiences in undergraduate teacher education such as these.  Philip, et., al. demonstrate 

evidence that these approaches do indeed have an impact, and yet the field needs to know 



 

 37 

 

more about the courses themselves, and how incorporating teaching practice into the 

courses might play out and what impact it could have on PSTsô knowledge of 

mathematics for teaching. 
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Chapter 3: A New Investigation of the Problem 

 

An Overview of the Project 

 A review of the literature produces questions that remain unanswered.  In 

particular, not enough is known about what PSTs learn in their content courses and 

whether and how activities that privilege teaching practices have an influence on the 

PSTsô development of MKT.  In addition, undergraduate teacher education is plagued by 

the persistent notion that it is irrelevant to the tasks of teaching.  Again, content courses 

are implicated: Ball, Thames, and Phelps (2008) argue that 

ésubject matter courses in teacher preparation programs tend 

to be academic in the best and worst sense of the word, scholarly 

and irrelevant, either way remote from classroom teaching.  

Disciplinary knowledge has the tendency to be oriented in 

directions other than teaching, toward the disciplineé (p. 404) 

 

Situated learning theory offers a means by which this can be explained and suggests that 

the mathematical knowledge that PSTs develop in their content courses is intertwined 

with the nature of the activities in which they participate.  With this perspective in mind, I 

have asked the following questions:  

(1) What mathematics do prospective teachers learn by engaging in activities of 

teaching practice such as examining curriculum, student work, and classroom 

video? 

a. Do PSTs who regularly engage in such activities display 

evidence of different mathematical proficiency than PSTs who 

participate in more traditional course work? 

b. Do PSTs engaging in such activities display different 

mathematical knowledge for teaching (MKT) than PSTs 

participating in more traditional course work? 

c. Do PSTs engaging in such activities develop different attitudes 

about mathematics and teaching than PSTs participating in more 

traditional coursework? 
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(2) To what extent do prospective teachers see their mathematics course work as 

relevant to their future work? 

a. Do different course approaches set up differing perspectives 

among PSTs on the contribution of the course to their future 

work? 

b. Do different course approaches set up differing views among 

PSTs about their confidence and abilities in mathematics? 

 

These are empirical questions that require suitable circumstances for data collection and 

analysis in order to answer.  My own teaching is a potential site for investigating these 

questions.  I could set up sections of content courses for PSTs incorporating these varied 

artifacts of teaching practice and compare these with other sections that do not 

incorporate them at all.  This is unfortunately not ideal, as I do not teach more than two or 

three sections of these courses in any given not to mention the attending challenges of 

studying oneôs own teaching.  Similarly, I could design and implement such courses 

campus-wide at my college, but the resources necessary for designing the courses 

appropriately and supervising instructors for faithful execution of the design is 

prohibitive for a project of this scale.  It is therefore necessary to seek courses in 

existence that might present a contrast along the lines I have described.  Though at best, 

this option would offer a quasi-experimental design, it has the advantage of involving 

courses in existence instead of conjured out of thin air.  They would be courses whose 

reality demonstrates a measure of viability and pragmatism.  That is to say, whatever 

conclusions generated by the project under this scenario are not the antiseptic results of a 

laboratory, but rather something of a field test.    

 Finding the context in which collect the data is only the beginning, however.  

What data is necessary in order to answer the questions Iôve asked?  I believe that a 
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variety of data collection techniques is necessary given the difficulty of measuring 

knowledge and attitudes.  For obvious reasons, knowledge is often measured using 

multiple choice instruments, though mathematics education has often relied on more 

qualitative data collection techniques when seeking to understand teachersô knowledge 

(e.g, Cooney, 1985; Tirosh & Graeber, 1989; Stein, Baxter, & Leinhardt, 1990; Zazkis & 

Campbell, 1996; Ma, 1999).  In addition, the questions assume the existence of 

differences between two courses, necessitating sources of data that would enable me to 

compare the courses in question. 

The Importance of Setting 

The Universities 

 This study was conducted across two universities in the Mid-Atlantic United 

States in the spring semester of 2008.  Both Hilada University and Rio University
9
 are 

former ñland-grantò colleges:
10

 large and research-oriented with large proportions of 

graduate students.
11

  Both draw largely from native student populations in their respective 

states, but also boast of enrollment and retention from all over the globe.  Each university 

houses a school of education in which teachers are prepared for teaching from 

kindergarten through eighth grade,
12

 and both support mathematics educators and their 

research, offering courses in mathematics education for PSTs, local school teachers, and 

graduate students. 

                                                 
9
 Both are pseudonyms. 

10
 This terms refers to the Morrill Acts in 1862 and 1890 in which states designated colleges and 

universities to receive federal funding.  Both universities in this study were designated land grant 

universities following the 1862 Act. 
11

 Both universities have enrollments of over 20,000 total students, of which 20% are graduate students at 

one institution and nearly 1/3 are graduate students at the other. 
12

 At Hildada, the College of Education prepares PSTs for certification through 12
th
 grade 
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The Courses 

Both universities offer a sequence of three courses to PSTs in order to fulfill the 

bulk of their undergraduate mathematics requirements.  The first course in this sequence 

at both institutions considers closely issues of number: ways of representing numbers, 

relationships between numbers, numeration (number systems), the four fundamental 

arithmetic operations, and related topics that foster computational fluency.
13

  Hilada 

offers this sequence through the mathematics department, and the courses are often 

taught by graduate students in mathematics.  Here, I call it MATH 281: Fundamentals of 

Number and Operation.
14

   The stated purpose of MATH 281 is to explore and explain 

why typical algorithms applied in school mathematics ñwork.ò  Preliminary observations 

suggested that this course as implemented at the time of study made relatively little use of 

teaching artifacts.  PSTs interacted only occasionally with student work, video of 

classroom interaction, teachersô notes, curricular materials, or other windows into 

legitimate teaching practice.   At Rio University an analogous course to MATH 281 is 

offered as a mathematics course, but it is taught in the Universityôs school of education 

(MATH 291).  Graduate students and tenured faculty in mathematics education teach the 

course.  The mathematics education unit at Rio has organized research projects around 

the use of classroom artifacts in MATH 291 and its partners in the sequence. Though the 

subject matter is decidedly mathematical, mathematics educators in charge of the course 

are using the tool of lesson study
15

 throughout the teacher education program to examine 

teacher learning and the changes in PSTsô analysis of teaching situations.  Each 

                                                 
13

 There are clear differences at the two institutions, but the bulk of each course is devoted to these topics, 

broadly described by the NCTM Principles and Standards for School Mathematics (2000) in the content 

standard of ñNumber and Operation.ò 
14

 The course numbers and names given here are pseudonyms. 
15

 In the spirit of Lewis and Tsuchida (1998). 
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university typically offers three to six sections of the course each semester.  PSTs who 

enroll in the courses, by virtue of the typical trajectory though their undergraduate 

coursework, take the first course in the sequence in greater numbers in the fall.  Spring 

enrollments are often lower, and often include students who have not successfully 

completed the course in the previous semester. 

Though the location of these courses at the different universities (one in a 

mathematics department, one in the school of education) is important, the fact that they 

appear to take different approaches to similar course material is the primary focus in this 

study.  Within these two existing courses is an opportunity to test situated learning theory 

and its implications for mathematics teacher education.  Both are large universities, 

drawing students primarily from the Mid-Atlantic region, but these courses are housed in 

different university units and are typically taught by graduate students in related, but 

distinct fields of study. 

The Instructors and Students 

 In the semester in which this study was conducted, there were four sections of 

MATH 281 at Hilada University enrolling nearly 100 students.  MATH 291, at Rio 

University, enrolled about 75 students in three sections.  My observations in these 

courses for pre-service elementary school teachers supports the conventional wisdom and 

prevailing demographic research: PSTs enrolled in these sections were overwhelmingly 

white and female
16

.  The instructors at Hilada University were graduate students in 

mathematics who fulfilled their responsibilities to their graduate assistantships with these 

instructional positions.  They met occasionally throughout the semester to discuss 

                                                 
16

 For example, please see http://nces.ed.gov/programs/coe/2007/section4/indicator33.asp for recent 

national data on teacher characteristics. 

http://nces.ed.gov/programs/coe/2007/section4/indicator33.asp
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relevant issues and were coordinated directly by a full-time lecturer at the university with 

a PhD in mathematics education.  This faculty member wrote course notes for the MATH 

281 instructors, and otherwise advised the instructors about the material as it approached 

during the course.  Each instructor taught two sections of MATH 281.  At Rio University, 

there were two instructors responsible for three sections, an adjunct instructor who was 

recently a teacher in local elementary and middle schools who was supported by the other 

instructor, a full-time tenure-stream faculty member with a PhD in mathematics 

education and who has a research interest in the courses.  The full-time faculty member 

taught two of the three sections of MATH 291 offered at Rio. 

Strand One: Are the Courses Different? 

 I have hypothesized that different course approaches will result in differing 

outcomes for students.  In order to make such an assertion, I have to demonstrate that the 

courses were indeed different.  In order to show this, I designed data collection to enable 

such differences to emerge.  Using different methods, I gathered information that would 

characterize each course: I conducted 34 class observations over 21 different class days 

and collected syllabi, assignments, exams, and other handouts throughout the semester.  

Together, I believe that these data give some insight into each course, their goals, and the 

techniques used by the instructors to achieve these goals.   

Observation 

 At Hilada University, I took notes during 19 observations across 12 different days 

spread throughout the spring semester and among all four sections of MATH 281.  This 

yielded 55 pages of field notes, which included lists of assigned problems from the 
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textbook.  At Rio University, I observed MATH 291 15 times over nine different class 

days throughout the semester and across all three sections.  These observations yielded 45 

pages of field notes regarding class discussions, homework assignments, and other 

related information.  

Document Analysis 

 During my observations, I collected all major course documents such as syllabi, 

course projects, papers, and exams, in addition to a sample of quizzes and homework 

assignments given during the class meetings for which I was present.  Finally, the notes 

used by instructors show intentions for the course by instructors and course designers.  

Since the project was limited in the number of observations that could be carried out 

during the semester, the extent to which the observations match the course notes will 

indicate whether or not one can reasonably interpolate classroom trends and activities 

without direct observation.  Together with my observations, these documents offer a set 

of data that allows me to describe differences between the courses as they pertain to the 

use of artifacts of teaching practice.  I hypothesize that the differences in the courses will 

result in measurably different outcomes on other instruments that form the basis of the 

data collection. 

Strand Two: Do the PSTs Develop Different Mathematical Knowledge for Teaching? 

 Teacher knowledge is hypothesized to be a critical component of student learning.  

The focus of this study is to learn more about what influences teacher knowledge of 

mathematics for teaching.  In order to determine differences in student knowledge of 

mathematics for teaching between the two institutions, I administered two rounds of 
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instruments at each university, once at the beginning of the semester, and once at the end.  

The purpose for this was to discriminate between differences that existed between PSTs 

that were attributable to the courses themselves, and any relevant pre-existing differences 

between the cohorts.   

 Each round involved a set of identical multiple-choice items developed by the 

Learning Mathematics for Teaching (LMT) project at the University of Michigan.  This 

project has created a large group of items designed to measure mathematical knowledge 

for teaching in elementary grades (Hill & Ball, 2004). Because elementary mathematics 

encompasses a wide variety of topics, and the courses in this study concentrated on 

number and operation in particular, I chose a narrow subset of items from the LMT 

collection.  These items were chosen using three important criteria: (1) each item had to 

connect to the curriculum at both universities; (2) a collection of items that had a wide 

range of difficulty, as determined in pilot testing at the LMT project; and (3) a collection 

of items with a strong reliability score, based on statistical analysis offered by that 

project.  With those criteria, 31 items were chosen to form an instrument that I am calling 

the Mathematical Knowledge for Teaching Instrument (MKTI).
17

   

 These items do not include mathematics related to rational numbers represented 

as fractions, for this was not explicitly discussed in MATH 291.  Items involving finite 

decimal representations of rational numbers were included as this was territory covered 

by both courses.  In addition, questions about arithmetic operations, appropriate 

representations for quantities and arithmetic sentences, alternative algorithms, and viable 

explanations for mathematical conventions figure prominently in the MKTI , as they were 

                                                 
17

 The instrument cannot be reproduced here as a result of restrictions placed on my use of the items.  

Released items from the Learning Mathematics for Teaching project are available at the following site: 

http://sitemaker.umich.edu/lmt/files/LMT_sample_items.pdf 

http://sitemaker.umich.edu/lmt/files/LMT_sample_items.pdf
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important aspects of both courses.  The mathematics identified by most items was 

directly connected to each course, although a few were peripherally so.  Some of these 

items were included to test the boundaries of PSTsô knowledge, and others were included 

with an assumption that they would be discussed, when in some cases, it appears that 

they were not.  An example of the latter is the first set of items, which focus on order of 

operations; I have no evidence that this was a topic of consideration in MATH 291, and I 

did not witness the lesson in which it was a topic in MATH 281.  Finally, some items 

were included because they were part of a collection whose statistical integrity demanded 

that they remain together.  A few items were chosen indirectly for this reason.    

 Each PSTôs response to the instrument was recorded at the beginning of the 

semester and again at the end of the semester.  The collection of responses at each point 

was given a raw score based on how many of the 31 items were correctly answered.  The 

family of items from which the MKTI items were drawn were designed to be very 

difficul t, and the LMT project reports that their collections of items (which include a 

broader selection of topics than I incorporated into the MKTI ) are designed so that mean 

scores will hover near 50% correct.  Raw scores are not reflections of any standard of 

knowledge and are helpful primarily in comparisons between and among people.  For this 

reason, I do not report the raw scores here, as theyðin themselvesðmay be misleading 

about PST knowledge for teaching.  This project is concerned with differential 

achievement between the courses and thus, my focus is on the growth that can be 

measured among PSTs in these courses.  The raw scores themselves are thus 

unimportant.  Rather, the changes in these scores across time and institutions are the 

measures I will be using. 
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 Despite their utility on many levels, multiple-choice instruments do not give a 

complete view of anyoneôs knowledge in any field.  In order to augment the picture given 

by the MKTI , I used interviews with selected students in each course near the conclusion 

of their work that semester.  These interviews involved asking PSTs open-ended 

questions about mathematics teaching situations: questions designed to elicit explanations 

from PSTs about how they would employ their knowledge in a teaching scenario.  These 

interviews were conducted with two purposes in mind, only one of which was to learn 

more about PSTsô mathematical knowledge for teaching.  I chose three interview prompts 

designed to elicit PSTsô thinking about mathematical ideas contained in the courses.  One 

item is very similar to items found on that multiple-choice instrument.  Its inclusion was 

intended to gather more information about PSTsô thinking about such items.  The middle 

item was chosen to learn about the extent to which PSTs attended to childrenôs thinking, 

while the final item in the interview protocol was generated in response to observations 

during the course of the semester. 

 Interviewees were chosen by compartmentalizing scores on the MKTI at the 

beginning of the semester.  One PST was recruited from each of the following segments: 

scores within one standard deviation of the mean raw score, scores more than one 

standard deviation below the raw score, and scores more than one standard deviation 

above the raw score.  This approach was designed to gather data on PSTs that could 

represent the spectrum of MKT as measured by the multiple-choice instrument. 
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Strand Three: Do the PSTs Develop Different Attitudes about Mathematics and 

Teaching? 

 Situated learning theory suggests that becoming a part of a community requires 

that one begin to identify with the community into which she is to be initiated.  Teacher 

education literature is replete with evidence that undergraduate courses are not effective 

in helping teachers connect to the teaching community of which they seek to become a 

part.  This means that in addition to the challenge of helping PSTs develop mathematical 

knowledge, undergraduate teacher education must confront the problem of presenting 

PSTs with experiences that they recognize as authentic; a form of legitimate peripheral 

participation in the teaching practice.   

 In order to determine the efficacy of each course in its effort to connect PSTs to 

teaching, I administered two rounds of a survey which asked PSTs about their attitudes 

related to mathematics, teaching mathematics, and how well their course helped them to 

prepare for their teaching practice.  The survey responses were formatted on a Likert 

scale from one to five.  The items were drawn from a variety of sources, but primarily 

from Zamboôs beliefs instrument (1994), which focuses in large part on problem-solving 

and elementary mathematics.  These items were helpful in contrast to many other beliefs 

and attitudes surveys because they focused on ideas about practice rather than referring to 

the respondentôs actions in practice, to which the PSTs as yet would not be able to 

respond.  These items are described in more detail in Chapter Five, and are located in 

their entirety in Appendix A.  In pilot surveys, the instrument was found to have a 

Cronbach alpha reliability coefficient of .8, which was a threshold met during each 
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administration of the survey in this study.  Changes in these attitudes could be tracked by 

finding differences in mean response scores from the entire instrument. 

 The survey also sought to identify the extent to which PSTs recognized their 

courses as authentic activity in their developing teaching practice.  There were four items 

written for this purpose, and were separated from the rest of the items in the survey to 

signal a change in the focus of the questions.  These four Likert-type items were 

augmented by open-ended items designed to elicit ideas from PSTs about how they 

would summarize and describe the course, and what aspects of the course were most 

memorable (See Table 11 on page 174).  I expected to learn more about what particular 

assignments and activities impacted PSTs most during these experiences. The clinical 

interviews also were designed to shed light on this question, as prompts designed for the 

interviews were aimed toward an evaluation of the course in terms of how PSTs felt they 

were prepared for the tasks of teaching.   

Analysis 

 Because I propose a wide range of data collection methods, the methods of 

analysis will necessarily be diverse.  Statistical investigations of the mathematics content 

assessment data and Likert-based survey responses are supplemented by a qualitative 

analysis of MKTI item responses, the open-ended survey items, classroom observations, 

and interviews with PSTs. 

 Recall that the classroom observation data is intended to provide a description of 

the typical interactions, discussions, and activities during class.  The observation 

instrument is not intended to provide a ñthick descriptionò of each class in the sense of an 

ethnographic approach.  Rather, its purpose is to establish differences between the two 
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classes in terms of activity and interaction.
18

  Field notes and course documents were 

collected and synthesized to provide a description of the course that, while not complete, 

captured the essence and typical ways of working in each course.  Descriptions of the 

courses that follow were sent to coordinators of each course for comments, which were 

subsequently incorporated into the description.   

 The MKTI scores were the basis for a statistical comparison of class means which 

enable me to determine what difference(s) between and within institutions existed at the 

beginning and end of the semester respectively.  These comparisons have been 

accomplished using ANOVAs. Before doing ANOVA, several assumptions were 

addressed: the cases must be independent, the scores in the population must normally 

distributed, and variances in the populations must homogeneous.  The first assumption is 

addressed by design ï PSTs complete the assessments independently.  The condition of 

normality can be justified by calculating skewness and kurtosis statistics.  The 

homogeneity of variance can be tested using Leveneôs statistic.  For the Likert-scale 

survey data, ANOVAs are similarly appropriate, if the same conditions are met.   Reports 

on these conditions will follow, with the accounts of the data.  In either case, when 

conditions are not satisfied for ANOVA, the Mann-Whitney test is often used as a non-

parametric substitute (Wackerly, Mendenhall, & Scheaffer, 1996). 

 In analyzing the responses to open-ended survey items and interview prompts, a 

qualitative approach is necessary.  One analytical stance I take with these data is adapted 

from Fennema, Carpenter, Franke, Levi, Jacobs, and Empson (1996).  There, the authors 

describe a four-tiered scheme in which they analyze teachersô ability to acknowledge and 
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 Should the results of this study demonstrate a dramatic need for such a description, other methodologies 

could be employed in future projects.  
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incorporate childrenôs thinking into their teaching.  This is a major component of 

mathematical knowledge for teaching, and as such plays a role in the items I used in the 

data collection.  The categorization of these responses was viewed in part using the 

following categories, adapted from Fennema, et., al. (1996): 

(1) Does not believe children can solve problems without instruction 

(2) Struggling with the belief that children can solve problems without 

instruction 

(3) Believes that children can solve problems without instruction, in a 

limited way that studentsô thinking can be used to make instructional 

decisions. 

(4) Believes that children can solve problems without instruction across 

mathematical content domains. 

However, a more robust scheme for analyzing this qualitative data may be given 

by Ball, Thames, and Phelps (2008), who offer a map of the landscape of MKT.  They 

argue that PCKðas originally described by Shulman, and as it relates to mathematicsðis 

a sub-domain of MKT.  In the figure below, the three domains on the left-side (Common 

Content Knowledge, Horizon Content Knowledge, and Specialized Content Knowledge) 

represent subject matter knowledge, while the three right domains (Knowledge of 

Content and Students, Knowledge of Content and Teaching, and Knowledge of Content 

and Curriculum) represent PCK as Shulman described it. 
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Common content knowledge (CCK) is described as mathematical knowledge to 

which any educated person would have access, and is not specific to teaching: we would 

certainly expect that teachers could reliably and efficiently perform arithmetic 

computations, but we would expect many other people to be able to do this.  For 

example, the ability to compute the product of 14 x 37 would be considered CCK.  

Moreover, if someone were to make a mistake in this computation, the ability to identify 

that a mistake had occurred would also be part of this category of knowledge, even if (or 

maybe especially when) the evaluation process is relatively unsophisticated: ñIf my 

answer differs from someone elseôs, and I am confident in my answer, then the other 

person has probably made a mistake.ò  Computation is only one facet of elementary 

mathematics, and so CCK also extends to knowledge of basic mathematical facts like 

ñeven numbers are divisible by two;ò or ñthe integers are composed of whole numbers 

and their opposites.ò   

Common Content 

Knowledge (CCK) 

 

Horizon Content 

Knowledge 

Specialized 

Content 

Knowledge (SCK) 

 

Knowledge of 

Content & 

Students (KCS) 

Knowledge of 

Content & 

Teaching (KCT) 

Knowledge of 

Content & 

Curriculum 

Figure 1: A Descriptive Map of MKT 
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 Specialized content knowledge (SCK) might be described in this example as one 

knowing that the standard algorithm (shown below) involves a decomposition of the 

numerals into tens and ones and corresponds to an application of the distributive property 

which can be represented as (10 + 4)  x  (30 + 7).   
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These ideas are important and relevant for understanding the standard multiplication 

algorithm, ideas that are not necessary for computing the product accurately.  In this way, 

SCK represents something of a departure from CCK.  Morris, Hiebert, and Spitzer (2009) 

write that SCK is 

content knowledge of a particular kind.  It is implicated in 

common teaching tasks such as choosing representations of 

mathematical ideas that reveal key subconcepts of the ideas, 

evaluating whether student responses show an understanding of 

key subconcepts, and justifying why arithmetic algorithms work.  

It involves unpacking or decompressing mathematical knowledge 

in order to make particular aspects of it visible for students or to 

identify the source of studentsô difficulties. (p. 494) 

 

Ma (1999) has referred to an ability to ñunpackò knowledge, which is the kind of ability 

that SCK is intended to capture.  Specialized content knowledge does not require any 

particular knowledge of students or teaching, and this property makes it a useful target of 

content courses for PSTs (Morris, Hiebert, & Spitzer, 2009). 

Horizon knowledge refers to knowledge of how a topic or procedure relates to 

other, more sophisticated (or more general) applications, which are likely to occur on a 
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studentôs ñhorizon.ò  In this example, it might refer to knowledge of the fact that this 

problem has a correspondence with the procedures for operating with polynomials in 

algebra, such as (2x ï 6)(3x + 7).   Knowledge of content and students (KCS) refers to the 

ability of teachers to determine how children are likely to think about a particular topic, 

including common misconceptions and which of these her students are most likely to 

develop.  For example, a teacher may need to be able to determine what logic is behind 

the following mistake: 
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Continuing with this example, knowledge of content and teaching (KCT) might enable 

the teacher to determine what examples, representations, or scaffolding procedures (and 

in what order to present them) might help the student understand the difference between 

his fallacious method and the standard algorithm.  Ball and her colleagues (2008) have 

shown empirically that these divisions in peopleôs knowledge exist.  One prominent 

example of their results is that they have found that mathematiciansô knowledge about 

elementary mathematics is largely confined to CCK.  Thus, the researchers conclude that 

these other sub-domains are primarily the territory of teachers. 

 This map of MKT will be the basis for much of the analysis of the data that 

follows: what kinds of knowledge are being developed in the courses?  What kinds of 

knowledge do the PSTs demonstrate in the interviews?  Are there differential responses 

on the MKTI depending on the type of knowledge (CCK, SCK, KCS, KCT, etc.) targeted 

by particular items? 
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Limitations 

The Effects of Teaching 

 First and foremost, though the study emulates an experimental design, it is not.  

Though this study is not conceived in the tradition of Gage (1963, as reported in Floden, 

2001; and Hamilton & McWilliam, 2001), I believe that the question and associated 

methodology can be associated with an ñeffects of teachingò tradition (Floden, 2001).  

The history of such research in education has long been criticized for its lack of scientific 

rigor.  This study is unlikely to speak to those seeking the conclusions generated by large-

scale, experimental research.  The PST participants were not randomly assigned to 

ñcontrolò or ñtreatmentò groups; in fact, there is no ñtreatmentò in this classic sense.  The 

comparison in this study is not whether or not a particular intervention is better than 

doing nothing, but a comparison between two differing perspectives on how PSTs learn 

mathematics for teaching.  The study cannot and does not seek to reveal how the PSTs in 

one course would have done or what they would have learned in the other course.  

However, given the similarities between the universities, the general homogeneity in the 

demographics of the population of PSTs, and the differences manifest between the 

courses, there is nonetheless an opportunity to learn about potential effects.  I believe that 

these features together with the breadth of data collected enable me to draw at least 

tentative conclusions about the efficacy of these courses.   

 Thus, generalizability of any results in this project are rightfully questionable; 

these courses are not necessarily representative of other courses offered at other 

institutions around the country.  The lack of coherence among teacher education 

programs generally is widely criticized, and among content courses early in those 
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programs, there may be greater cause for concern regarding consistency.  This project 

only tests claims implied by situated learning theory in the context of these courses at 

these universities during this given semester, and does not claim to offer best practices in 

mathematics teacher education.  On the other hand, to the extent that the courses are 

successful in their stated missions, they may be viewed as exemplars for other institutions 

to emulate.  In cases where there is evidence that one course produces differing results 

than the other, I leave to others judgments about which is a ñbetterò outcome.      

The ñTest-Retestò Effect 

 A potential weakness of the project is the fact that PSTs completed identical 

instruments at the beginning and end of the semester.  The same MKTI items were used 

at the beginning of the semester and at the end, and the vast majority of items on the 

attitudes survey were identical at both endpoints of the semester.  There is arguably a 

test-retest effect present in the scores on the MKTI instrument, though the LMT project 

reports that over a span of months, this effect is minimal (G. Phelps, personal 

communication November 21, 2007).  In addition, this test-retest effect would 

presumably apply equally to both groups of PSTs, and therefore should not bear upon the 

relative results from each course. 

The Use of Likert-type Surveys to Measure Attitudes 

Philip, Clement, Thanheiser, Schappelle, and Sowder (2003) claim that Likert-scale 

surveys are fundamentally flawed because they lack context and deny participants an 

opportunity to explain or justify their choices.  In addition, ñLikert items do not carry 

with them good ways for assessing the depth with which one holds a belief.  One may 

respond in a way that indicates the existence of a belief that is not central to the 
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respondentò (p. 5).  However, no one instrument can fully address all of these criticisms.  

Still, the use of a Likert scale survey does provide some advantages in this study: first, it 

enables an efficient collection of data about PSTsô perceptions about the course and its 

ability to help them in their preparation.  Undergraduates can be difficult to recruit for 

participation in extracurricular research, so a simple method of collecting this data is 

important.
19

  In addition, the Likert format lends itself to analyses that are not possible in 

a more qualitative context.  I have designed a study that investigates two primary things: 

(1) PSTsô mathematical knowledge for teaching and (2) PSTsô perceptions about the 

relevance of certain approaches to teacher educationðduring content courses in 

particular.  I believe that my research design incorporates numerous data sources for 

answering each question, which provides a sort of triangulation and strength to the 

conclusions that I can draw from it. 

Determining the Impact of Content Courses on PSTsô Teaching 

Finally, one might critique the use of interviews as a measure of PSTsô ability to 

use their knowledge in teaching situations.  The adage ñonly time will tellò applies here; 

we cannot know how well these undergraduates will perform in their own classrooms 

until they actually set foot in one as the teacher of record, with all attendant authority and 

responsibility.  Hill and Ball (2004) have called measuring mathematical knowledge for 

teaching in this way a ñsecondary measure,ò and assert that other tools to bridge the gap 

between knowledge and classroom action are not only useful, but necessary.  However, 

the research questions which I have made the focus of this project are not meant to 

address this issue, and thus such concerns are beyond the scope of the project.  Still, one 
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 Philip, et. al.ôs project worked with much greater funding with which to draw participants than did the 

project reported here. 
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might respond to them by noting that the study does test questions raised by the rhetoric 

surrounding ñbest practicesò research, and thus might indirectly bring into question the 

suggestions made by this literature. 

 

Hypotheses from a Situated Learning Perspective 

 At this point, looking back at the project through the theoretical lens I have 

employed is appropriate.  I have designed it as a test of situated learning theory in the 

context of teacher education and it is reasonable to consider what kinds of things one 

might expect from the circumstances given. 

  Situated learning theory argues that all learning is situated in some context, and 

the context in which that learning takes place is an integral part of what is learned.  I have 

argued that this perspective has informed much of research and reform in teacher 

education, particularly among in-service teachers.  This research shows that teachers 

learn important mathematics and gain valuable confidence in their knowledge when they 

learn mathematics that is placed in the context of their work as teachers.  This enables 

them to connect with mathematics in ways that are intimately related to their day-to-day 

work, but also provides an avenue for becoming students of their own work, and that they 

will find new opportunities to learn within the contexts of their classroom, as opposed to 

approximations of it.  Though PSTs are unlikely to be able to attend to all of the 

important details in a real classroom, they can begin to take salient features of classroom 

situations and work that highlights subsets of the knowledge they need to develop as they 

enter teaching.  In other words, asking PSTs (especially early in their undergraduate 

programs) to competently observe a real classroom may be unrealistic, but giving them 
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access to artifacts of classrooms, stripped of many of the classroom management 

concerns, whole-school responsibilities, student dynamics, and others of the most 

complex interactions, PSTs can begin to tackle important mathematical ideas that arise in 

classrooms.  Research has demonstrated that PSTs and practicing teachers alike favor 

practical, on-the-job experience to their undergraduate course work, citing the former as 

more influential experiences than the latter on their teaching.   

 Given two undergraduate mathematics courses that are in stark contrast to one 

another along these dimensions, with a situated learning theoretic perspective, one could 

reasonably make the following hypotheses: 

1. PSTs in a course that more closely identifies with practices of 

teaching will perform better on measures of Mathematics 

Knowledge for Teaching, than PSTs in a course that does not. 

2. PSTs in a course that more closely identifies with practices of 

teaching will develop different attitudes about mathematics and 

teaching than PSTs in a course that does not. 

3. PSTs in a course that more closely identifies with teaching will be 

more likely to reflect on the experience as a valuable one than 

PSTs in a course that does not. 

 

These hypotheses correspond roughly to the research questions I outlined in Chapter One: 

(1) What mathematics do prospective teachers learn by engaging in activities of 

teaching practice such as examining curriculum, student work, and classroom 

video? 

a. Do PSTs who regularly engage in such activities display 

evidence of different mathematical proficiency than PSTs who 

participate in more traditional course work? 

b. Do PSTs engaging in such activities display different 

mathematical knowledge for teaching (MKT) than PSTs 

participating in more traditional course work? 

c. Do PSTs engaging in such activities develop different attitudes 

about mathematics and teaching than PSTs participating in more 

traditional coursework? 

 

(2) To what extent do prospective teachers see their mathematics course work as 

relevant to their future work? 
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a. Do different course approaches set up differing perspectives 

among PSTs on the contribution of the course to their future 

work? 

b. Do different course approaches set up differing views among 

PSTs about their confidence and abilities in mathematics? 

 

As the data will show, the differences between the two coursesðespecially with respect 

to their relative immersion in the practices and artifacts of teachingðare nuanced and not 

as clear cut as the hypotheses (and research questions) above assume.  As I will describe 

below, the courses, though different, were certainly not unrecognizable to one another: 

they discussed much the same mathematics, employed many of the same tools, and 

suggested a coherent approach to mathematics for PSTs to experience.  However, those 

differences might yet explain differences in the data, even if the courses are not different 

along the dimensions I have described in the extreme. 

 However, the hypotheses generated by an extreme example may point in the same 

direction as the context reported here, though the magnitude of the differences is 

substantially smaller.  And yet, another possibility is that the data shows that the 

hypotheses are not borne out, and potentially that they are misdirected altogether: maybe 

PSTs who concentrate exclusively on mathematical issues devoid of their teaching 

context would demonstrate measurably better scores on MKT measures than their 

counterparts, etc.  This would require a re-examination of situated learning theory as a 

tool for understanding teacher learning of mathematics.  Still, even in this scenario, the 

data collected as I described above should provide evidence of such an outcome, even if 

it is manifest in relatively small differences.   If the courses are indeed different, the 

learning theory predicts that the PSTs would have learned measurably different things 

about both mathematics and teaching.  In addition, we might expect that a course that 
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ñfeelsò closer to the experience of teaching will be embraced more closely by PSTs than 

one that does not.  Yet again, the methodology has not pre-determined such an outcome: 

the data collected as I described above can help determine whether or not such an 

expectation is borne out empirically. 

 Moreover, the theory shines a bright light on the contexts in which these courses 

are set: context is critical to understanding learning from the situated perspective.  MATH 

281 is located in a mathematics department at a large, research-oriented university, 

designed by working mathematicians, and taught by graduate students in mathematics; 

MATH 291 in the school of education at a large, research oriented university, designed 

by mathematics educators and taught by mathematics educators, and mathematics 

education graduate students.  These different settings put those in charge of the courses 

(departments, faculty, instructors) in different places, and may give them different 

perspectives on not only what elementary school mathematics looks like, but what 

mathematics is about.   

 Elementary school mathematics can be viewed with all the coherence, beauty, and 

power that is contained in the forms and representations invented for rigorous 

mathematical reasoning.  Fundamental arithmetic can be understood by investigating the 

properties of numbers and the operations associated with them, as in abstract algebra.  

This was arguably the motivation of important mathematics education movements set in 

motion by Bourbaki and the new math in the mid-twentieth century.  However, that is not 

the only perspective on school mathematics.  One might also view these elementary ideas 

from a very different starting point: how children build and develop ideas about 

arithmetic through working with broader sets of numbers.  At the time of the ñnew math,ò 



 

 62 

 

there was little to no research or understanding about how children built these ideas from 

imprecise, but ultimately useful intuition.  However, in the last 20-30 years, a great deal 

of progress has been made within mathematics education, which has looked closely at the 

learning processes of children in mathematics.  Both perspectives can be marshaled to 

present clear, coherent, andðmost of allðmeaningful ways to think about fundamental 

mathematical ideas that attempt to maintain the integrity of mathematics as it is practiced 

in the discipline.  Yet, they are also fundamentally different perspectives and thus, using 

a situated learning stance, one would expect that PSTs would learn different things as 

part of these different environments.  Again, these descriptions are unlikely to describe 

MATH 281 and MATH 291 with precision, but their different contexts may demonstrate 

elements of these different perspectives, and again, the data collected should provide 

evidence that helps to illuminate the consequences.  Next, I will turn to an examination of 

the data, and what it reveals about the courses and the PSTs who completed them. 
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Chapter 4: A Tale of Two Courses 

 

Two sections of the same course at the same university are never precisely the 

same, and are often quite different.  It is no surprise then that two different courses 

offered at two universitiesðwhile they play similar roles in the certification of 

elementary school teachersðare substantially and meaningfully different.  A glance of 

the syllabi for each course makes it clear that they diverge even in terms of mathematical 

topics that form the scope of each course.   With these underlying variations, the usual 

distinguishing features of instructors, student personalities, setting, and other related class 

characteristics will by necessity create very distinct environments for learning 

mathematics. On the other hand, the two courses in this study were designed for identical 

purposes and focused in particular on number and operation in elementary school 

mathematics.  They enrolled similar populations of students who were learning to 

become elementary school teachers and who were beginning to take on the mantle of the 

profession, even if they were on the wide periphery of this community.  When comparing 

students in these courses along the strands I have identified (mathematical proficiency for 

teaching and attitudes about mathematics and teaching), it may be possible to connect 

these distinctions with the different courses they took.  The purpose of this research is to 

determine whether or not any of these connections exist empirically.    

Course Notes 

 At both Hilada and Rio Universities, instructors of MATH 281 and 291 

respectively had extensive notes as a resource for each class meeting.  The notes outlined 
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what the class was supposed to do during each class meeting, including salient examples, 

illustrative activities, and homework assignments.  At Rio, the notes were written by a 

committee that both designs MATH 291 and uses it as a site of ongoing research through 

lesson study.  At Hilada, the notes were primarily a product of the course coordinator, 

who also met regularly with instructors of the course in a given semester to receive and 

give feedback on using them.  The value of these notes at each university was quite high: 

despite the occasional departure, and accounting for typical set-backs and differences in 

teaching style among instructors, there was a consistent correlation between the 

trajectories of activities suggested by the notes what happened during each class I 

observed.   

 There are numerous examples of this at each university, but I will highlight two 

here.  In MATH 281 at Hilada University, the notes for Chapter Five cover 

approximately five days of activity.  On the fifth day, the class is supposed to turn its 

attention to alternative algorithms for multiplying 16 and 24.  The notes begin,  

[Go to the student] Packet, Page 37: Begin by having students 

work in groups to analyze the student-invented algorithms 

pictured.  Ask them to identify the properties usedéStudent #3 is 

probably the most difficult to understand.  Apparently they began 

by writing the column of 4 24's in the center of the work.  Can 

you work it out from there? 

 

One day in early April, the instructor began class by asking students to open their packets 

to page 37, and asked the class to discuss in groups how each student solved the problems 

shown there.  As the students begin to work, the instructor, apparently prompted by the 

course notes said the following: ñIn #3, they did the middle 24s first.ò  In the section 

immediately preceding this class (which this same instructor also taught), the instructor 

began a discussion of #3 by asking, ñWhat about #3?  What if I said they worked from 
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the middle outward?ò The instructor had not only introduced precisely the activity 

suggested by the notes, but had provided the hint described by them.  Much of the rest of 

the class that day was devoted to writing coherent number sentences that made explicit 

each arithmetic property implicitly used by the students in these alternative algorithms, 

which is also highlighted in the notes: 

In particular, it is common for students to abuse the "equals" 

sign, treating it as they do the equals key on the calculator:  as a 

signal to calculate what they've got so far.  It is important for 

students to learn early, however, that the equals sign signifies 

both sides are truly equal:  this is an essential concept in 

algebra.  With this in mind, consider how to notate the student 

work on the following pages. 

 

Similarly, at Rio University, instructors in MATH 291 closely adhered to their 

course notes.  Lesson 11 describes the two- to three-class arc related to exploring the 

meanings of and connections between multiplication and division.  There, toward the end 

of the lesson, the instructor should give the students three sets of division number 

sentences, asking them to construct three word problems for each, for a total of nine word 

problems.  Each number sentence should be given a context in which the students think 

children will solve the problem using a repeated subtraction model of division, a 

partitioning model of division, and finally a problem in which children will solve the 

problem using multiplication.  In addition to constructing the word problems, students are 

supposed to draw diagrams that represent the part-whole relationship expressed by the 

problem.  This lesson took place at Rio within a week of the lesson I described at Hilada 

above.  That day in class, the instructor introduced to the students the terms ñrepeated 

subtractionò and ñpartitioningò and their associated part-whole representations, just as 

notes suggest.  The instructor then asked students to work in groups to complete the 

activity precisely as described above. 
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 These are but examples in a catalog of ways in which the classes unfolded largely 

according to the notes written for each course.  The general arc of each observation can 

be traced to the instructorôs course notes, and in many cases the specific examples given 

in those notes were used in class.  While it was rarely, if ever, the case that instructors 

were reading directly from notes in their presentations to students, the instructors 

generally had sets of notes to which they occasionally referred during class meetings, and 

they were otherwise familiar with the trajectory of the course, presumably through the 

use of the course notes.  This adherence to the course notes was consistent throughout the 

semester, across sections and universities.  For this reason, I have confidence inferring 

the occurrence of events in each course that I did not directly witness by way of these 

notes.  Certainly, the presence of an activity in these documents does not guarantee that it 

took place in any given class.  Likewise, the absence of something in the notes does not 

ensure that it did not occur.  However, the collection of notes together says many things 

about the material as it is presented to students, and the mathematical and pedagogical 

values that are brought to the fore in a semester-long experience. 

 When comparing the courses at the different universities, I make claims along 

differing data dimensions: course notes are an important source of this data as well as 

syllabi and exams, class observations, and comments from students regarding messages 

they received about what topics and techniques were important in the course. 

Similarities  

 In broad terms, the courses are very similar, which is an important feature that 

makes them valuable for comparison.  Both MATH 281 and 291 focus on elementary 

number and operation: both devote substantial effort to understanding the meanings of 
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addition, subtraction, multiplication, and division on whole numbers, integers, and 

decimal representations of rational numbers.  In MATH 281, more than half
20

 of the 

course schedule was devoted to addition, subtraction, multiplication and division on the 

syllabus.  The MATH 291 course calendar also set aside most of the semester for these 

topics. Both courses made explicit their goals for developing important mathematical 

knowledge for teaching in PSTs.  The first page of the class activities supplement used in 

MATH 281 states:  

In Math [281] and [282] you will be expected to be able to explain 

and explain why a problem is done a certain way, in addition to 

being expected to do the problem.  As you work on problems in class 

and on homework, don't be satisfied with getting the correct answer; 

ask yourself why that method is logical, and how you could explain 

that logic to someone else. 

 

A similar statement is found on the MATH 281 syllabus:  

Throughout this courseéyou will be asked to óexplain why or 

why notô or to ójustify your answer.ô  In other words, you will be 

expected to understand why the procedure you are using works 

or why the answer you give is correctéSeeking connections and 

meaning can be a very rewarding way to learnðand someday 

teachðthese math ideas.  (emphasis in the original)  

  

The latter statement is offered as the ñphilosophyò of MATH 281.  Statements such as 

these made explicit the need for PSTs to begin developing skills for becoming expositors 

of mathematics.  It is not enough simply to know the answerðthe suggestion is that this 

course is a departure from typical mathematics coursesðbut PSTs must learn to explain 

why the answer is what it is, and why the method used to arrive at that answer works.  

The message is that these skills are especially important in a course for PSTs; their jobs 

as teachers will depend on them.  The syllabus of MATH 291 at Rio University also 

points PSTs in the direction of teaching: 
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 The course began on January 28 and the final exam date was May 15. These four operations account for 

class meetings spanning more than two months of this time.  
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MATH [291] may be different than any course youôve had 

beforeénot the kind of mathematics youôve studied before.  In 

this course, you will learn the mathematics needed to become an 

effective teacheréIt is mathematics that helps teachers 

understand how their students are thinkingéhelps teachers see 

how the different topics in elementary and middle school 

mathematics fit togetheréhelps teachers to re-examine what 

they have learned before so they can understand the underlying 

concepts, and so they can effectively support their studentô 

learning. 

 

MATH 291 was also a course in which explanation and justification are highly valued:  

You willéexamine patterns and structure; formulate 

generalizations and conjectureséand construct and evaluate 

mathematical argumentsébe asked to explain your reasoningð

how you were thinking while you were solving a probleméand 

why you think some methods for solving problems work better 

than others. 
 

Such statements are not surprising; these courses were designed specifically for this 

group of undergraduates, and as such, should feature learning goals that highlight skills 

and knowledge that teachers must build.  Moreover, the goal of developing mathematical 

understandings that enable them to investigate, explain, and justify is neither unusual nor 

improper for such a course.  They are the academic standards set out by mathematics 

departments across the country and form the basis for much of the NCTM Standards.  But 

these courses are not necessarily intended to build PSTsô common content knowledge.  

Recall that the knowing that an answer is correct might be considered as part of this sub-

domain of MKT; these courses set out to push PSTs beyond such understanding into 

other sub-domains.  Both syllabi refer to understanding that is required for teaching 

children mathematics, and in this way, seek to orient PSTs to a different kind of 

knowledge.    

 In order to achieve the goals set out for PSTs, the courses were structured in 

similar ways: they met multiple times each week for lectures and small group activities, 
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PSTs were expected to complete homework assignments, in-class quizzes, and common 

exams among sections.  Exams were overwhelmingly large components of the course 

grade at both universities.  In MATH 281, exam scores counted for nearly 75% of the 

final course grade; in MATH 291 this figure was 85%.  The sections at each university 

were organized into similar sizes (20-30 PSTs), and PSTs were often divided up into 

groups for class activities.  At Rio (MATH 291), the classrooms in which class was held 

were arranged into hexagonal tables, forcing PSTs into small-groups, even during whole-

class discussions.  At Hilada (MATH 281), the classrooms were set up with individual 

desks that were often moved around and reorganized during small group activities.  

Finally, both courses emphasized attendance and participation as keys to success in the 

course.  This is notable not because it is particular to these courses, but in the manner in 

which this message was conveyed, at least in syllabus documents.  Both syllabi highlight 

the importance of students collaborating in groups and that attendance and active 

participation are critical components of learning the material.  This may be one of the 

important ways in which the syllabi intend to signal that these courses are not typical. 

 During the class activities, both courses employed the use of elementary 

classroom manipulatives to illustrate important concepts and to give PSTs experience in 

working with them, as they are likely to do as teachers.  According to student survey, 

responses 33% of MATH 281 PSTs at Hilada recalled working with base-ten blocks as 

the most memorable activities of the semester.  41% of MATH 291 PSTs at Rio cited 

manipulatives such as base-ten blocks, and straws
21

 as the most memorable activity in the 

course.  With one exception, no other activity elicited as much feedback on the survey.  

                                                 
21

 In MATH 291, straws were often used in bundling activities that highlighted the key ideas of place value 

in base-ten, and other bases. 
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46% of MATH 291 PSTs recalled watching video of children doing mathematics as the 

most memorable activity or assignment they did during the course.  This result is one to 

which I will return later, because it, as well as the use of classroom manipulatives, gets to 

the heart of the purposes for the research described here.   

 Finally, according to instructorsô notes, both courses explored student solutions to 

typical, multi-digit arithmetic problems in order to investigate alternative algorithms, 

discussed number systems in bases other than ten, and watched video of children doing 

mathematics, though the data demonstrates that this last kind of activity was 

overwhelmingly more common in MATH 291 than in MATH 281. 

Differences 

 The similarities I described above demonstrate that the two courses were alike 

enough so as to make a comparison reasonable.  Of course, there was a limit to extent of 

the similarity between MATH 281 and MATH 291.  There were substantial and 

substantive differences between them that might account for differential performances on 

MKT measures, and distinctions between their responses to items related to attitudes the 

PSTs expressed about mathematics and teaching.  An important difference was one of 

mathematical approach: MATH 281 was based upon Beckmannôs (2005) focus on 

operations (personal communication with the course coordinator), while MATH 291 was 

predicated upon the concept of place value.  This difference in organizing concept sent 

the courses onto different paths in their day-to-day work, and impacted how the courses 

communicated with students about what was mathematically important.  In turn, this 

variation may have influenced the manner and extent to which the practices and artifacts 
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of teaching infiltrated each course.   In order to clarify these differences in approach, I 

turn again to the data, and offer several vignettes as illustrative examples. 

Organizing Concept 

 In MATH 291, place value was a central, unifying concept.  It took nearly of 

month of class meetings before the course turned its attention explicitly to base-ten 

numbers and arithmetic operations.  Up until this point, the course focused on 

establishing defining features of number systems, in which PSTs explored ancient 

number systems, constructed their own base-six system in an activity called Alphabetia 

(Bassarear, 2007), and were introduced to the concept of the Basic Measuring Unit 

(BMU), which featured prominently throughout the course.  The BMU establishes the 

size of ñoneò so that all subsequent groupings or divisions of that unit depend upon its 

definition.  These activities were aimed at setting up the features of Hindu-Arabic 

numeration and arithmetic that would form the bulk of the course.  One of the instructors 

in MATH 291 introduced the Alphabetia assignment this way:  

Treat it as an awareness exercise.  You get to re-experience what 

children go through when they are trying to acquire an 

understanding of the Hindu-Arabic system...This will help you to 

learn to make ideas explicit for you something you know, but 

which is hard to explain. Place value is key to understanding 

decimals in 4
th
 through 6

th
 gradeséThis lays the groundwork for 

younger kids, and you might decide to teach older kidsé This is 

not easy, but donôt give up too soonédescribe how things are 

different if you canôt get a system with all of our properties. 

 

 In a different section of the course at Rio, taught by a different instructor a couple 

of weeks later, there was a continuing discussion of counting in different bases.  This 
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discussion took place within the context of two entire lessons
22

 spelled out in the course 

notes labeled ñPlace Value.ò  Here, the notion of the BMU (as well as the idea of 

ñMeasuring Unitsò (MUs) more generally, which are the units or quantities that are 

associated with each place value) features prominently: 

I : For homework last time I asked you to think about 1245 and 

how to represent the area of that numeral if the BMU  is equal to 

a small square like     . 

S: There is one group of 25. 

I : What we call 25? 

S: Yes. 

I : What is that in base five? 

S: One hundred? 

I: Be careful, in base five, we donôt say one hundred. 

S: One, zero, zero? 

 

 The instructor continued throughout the lesson to highlight this linguistic 

distinction, but asked the PSTs to focus on the importance of area in interpreting the 

diagrams.
23

  The class discussed how to represent larger and smaller measuring units in 

different bases noting that for each place one moves left within a numeral (or in other 

cases, the associated picture, or bundle of straws) the measuring unit associated with a 

particular place value increases by a factor of the base.  In other words, in a given base b, 

b copies of the measuring unit are associated with the next larger measuring unit, or place 

value.  Likewise, one can determine the size of a place value to the right by partitioning a 

measuring unit into b equal parts.  This class meeting featured nearly thirty minutes work 

on finite ñdecimalsò in other bases, and different representations that would result by 

choice of the representation for the BMU, as above. The homework assignment 

                                                 
22

 In the MATH 291 course notes, there are 20 Lessons, which correlates to an average of just more than 

one week per lesson.  Thus, two lessons in MATH 291 are likely to encompass as much as two weeks of 

class meetings. 
23

 One might use a unit of length as a BMU, and then subsequent ñmeasuring unitsò would also then be 

referenced in terms of length.   
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associated with this lesson and activities in subsequent lessons asked students to interpret 

given MUs and generate measuring units of their in numeral systems with different bases. 

 Choosing and using measuring units was a consistent theme throughout MATH 

291.  Later in the semester, while discussing models for addition and subtraction, PSTs 

were asked to speculate how children would solve additions and subtraction problems 

using finite decimal representations such as 3.4 and 1.8 using tools such as snap cubes or 

graph paper.  One of the lesson goals given in the course notes states: ñStudents will 

flexibly and appropriately select basic measuring units.ò  PSTs worked in groups 

discussing potential informal strategies that children might use with these manipulatives, 

and then were asked to present their ideas and solutions to the rest of the class.  Indeed, 

during these presentations, much of the discussion focused on the choice of the BMU.  

PSTs made clear at the beginning of their explanations what their choice of the BMU 

was, and how this choice affected how they grouped cubes, or sticks, or blocks 

(depending on the representation of the numeral they chose).  The instructor asked groups 

to repeat their explanations and often pointed out ways that the group showed the 

meaning of ñone.ò  Such interactions occurred across sections and these issues continued 

to be explicit and in focus through lessons on multiplication and division.   

 One quiz featured a single multiplication problem (1.2 x 0.9 = ?) which featured 

five questions:  ñWhat are your measuring units?  How did you interpret the meaning of 

the number sentence?  How did you represent the different quantities?  How exactly did 

you use your diagram to determine the final answer?  What is the final answer?ò  The 

first question asks explicitly what measuring units the PST choseðpresumably beginning 

with the BMUðand half of the remaining questions relate to the implications of 
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choosing those measuring units on the process of solving the problem.  On a final exam 

review sheet given out to the PSTs at the end of the semester, four of ten suggested 

problems are direct questions about place value.  An example of one of the questions is 

the following: ñA child correctly uses the standard subtraction algorithm to solve the 

problem below.  Which of the following statements justifies the 8 being written where it 

is the solution? (a) 5 ï 7 = 8; (b) 15 ï 7 = 8; (c) 50 ï 70 = 80; (d) 150 ï 70 = 80; (e) None 

of the above.ò 

 In contrast, in MATH 281, place value was a more peripheral concept, 

highlighted for a brief time early in the semester and then referred to occasionally as a 

way to convince children about the viability of algorithms.  Instead, the organizing 

concept of MATH 281 at Hilada University was that of arithmetic operation.  Like at Rio, 

the first month of MATH 281 was designed to lay a foundation for the key ideas of the 

latter portion of the semester.  During this time, PSTs discussed the fundamental theorem 

of arithmetic and divisibility rules (listed in the syllabus as ñnumber theoryò), and 

explored ways of representing, comparing, and simplifying decimals and fractions.  In the 

course notes, there were class meetings devoted to discussing ancient number systems, 

and representing numbers in different bases.  Later, these last few concepts, as well as 

place value did not command much attention either in the course notes or during class 

meetings.  Place value receives explicit attention only on a single day as outlined in the 

notes, and it shares that time with a discussion of divisibility rules.  During class, when 

introducing a base-eight system, one MATH 281 instructor attempted to justify the utility 

of learning to use numbers in bases other than ten: ñ[This is] a little weird, and not 

standard kid fare, but this is good for an advanced kid to work on.  You may not like 
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math, but you will have kids who do and youôll need something in your pocket for them.ò  

After showing examples of how to count in various bases and convert from one base into 

another, the following exchange took place: 

 

S: What grade would kids be in to think like this? 

I : This is an advanced thingéyou donôt want to do this 

until they are very confident with base-ten.  I donôt 

know specifically, but itôs appropriate for ages 

18,19,20,21,é 

 

Such exchangesðpossibly prompted by small attention devoted specifically to it in the 

course notesðmarginalized the purpose of working in other bases, which is to develop a 

deeper understanding of, and appreciation for, place value. 

 In MATH 281, all of these interactions laid the groundwork for the later material, 

which took each arithmetic operation in turn, investigating it carefully within typical 

number sets found in elementary school: whole numbers, integers, and rational numbers 

(as represented by fractions and decimals).  Addressed first was addition, then 

subtraction, multiplication, and finally division.  The reasons for exploring number theory 

and working with fractions and decimals early in the semester is not explicitly 

documented in the syllabus, the supplementary Class Activities Manual, or the course 

notes.  Presumably, the number theory topics were important for discussing fractions: in 

order to simplify and operate on fractions, understanding the value of greatest common 

factor and least common multiple are often pre-requisite knowledge.  Having a shared 

experience in working with fractions was important as the course transitioned into 

understanding arithmetic operations on different sets of numbers, including rational 

numbers.   
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 One element of this focus on operation was to elucidate the importance and power 

of some properties of operating in the real number system. Understanding and using the 

commutative properties of addition and multiplication, associative properties of addition 

and multiplication, and the distributive property of multiplication over addition and 

subtraction were high priorities in MATH 281.  On Exam #3 given in MATH 281, three 

of nine questions require PSTs to reference the properties in order to draw an illustrative 

diagram, or justify a calculation.  The course notes outline three days of class meetings to 

discuss the commutative and distributive properties of multiplication alone.  These 

properties received explicit, if  less intense attention during the chapter on addition.  The 

course notes state, ñPractically speaking, [the commutative property of addition] is often 

taught as a way to make the ócounting onô method of addition more efficient: if students 

need to add 2 + 7, itôs easier to start with the seven and count on two more.ò  Indeed, 

these properties are critical components of understanding elementary school 

mathematics: many intuitive strategies, standard algorithms, mental calculations, and 

common misconceptions stem from these important properties.   

  

 Putting the Organizing Concept to Use 

 I argue that the different organizing concepts in MATH 281 and MATH 291 

resulted in an expansion of differences between the courses.  In MATH 281, the focus on 

arithmetic operation was coincident with valuing rigor, justification, and mathematical 

correctness.  There was a feeling of top-down progression: it is possible to justify 

elementary arithmetic operations by using the tools of upper-level mathematics.  On the 

other hand, MATH 291ôs concern for place value attempted to accomplish similar goals 

from the opposite direction: the elementary school studentôs perspective.   
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 One day, early in the semester, one MATH 281 instructor was reviewing an 

assignment that the PSTs had just received back with comments.  On the board, the 

instructor wrote ñPatterns ̧  Reasons,ò and said, ñA pattern is never an explanation for 

something.  It may help you see something but it is not a reason.ò  Later that same class, 

the instructor reiterated this point: ñWhy does 
3

7

3

1
2 = ?  Because 2 x 3 + 1 = 7 is not a 

ówhy.ô  We want to stick with something that is actually math.  Donôt rely on rules or 

patterns.ò   

 These comments echo the perspective taken by the textbook used in MATH 281 

at Hilada University, written by Beckmann, and analyzed by McCrory (2006).  McCrory 

argues that, though its mathematical rigor is not the same as in mathematical journals, in 

Beckmannôs text, and others like it,  

they pay attention to definitions, logical development of topics, 

making connections across topics, and mathematical 

reasoningéin ways that some other books, written by 

nonmathematicians, are notéthey are often (though not always) 

explicit in trying to teach the prospective teachers about the 

importance of rigor and clarity in mathematics, portraying 

mathematics as an endeavor in which care and accuracy are 

both important.     (p. 23)    

 

The central construct of MATH 281 was the idea of operation and one of the 

overwhelming messages given to students about this idea focused on clarity and 

mathematical rigor.  PSTs appeared to have received this message.  Consider the 

following typical responses to an item on the end-of-semester survey asking PSTs to 

describe the course as if to a friend: 

This class helps you to understand how to solve patterns but 

more importantly, the reasons why the problems are correct and 

misconceptions.  If anything, you should be ready to explain 

yourself and your answer.  You will learn how to explain to 

students the reason why you do certain things in math and also 

you will learn how to draw correct visual aids. 
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This class covers basic mathematics and the ideas behind them 

so they can be easily taught and understood by young students.  

She should be ready for learning the actual meaning behind 

simple operations rather than just processes. 
 

In an interview, one PST in MATH 281, Carla,
24

 expressed similar sentiments, if not in 

exactly the way envisioned by course documents.  She felt that the course was too 

narrow-minded in its view of what constituted a correct answer: 

éanother criticism I had of the class is that they wanted, like, 

the answers in a very, very, very specific way.  Like the 

diagrams, and the pictures had to be drawn very specific ways.  

And I donôt know if that was for ease of grading, or if it wasðI 

donôt know, I donôt what that was for, but I know in the real 

world, youôre going to see things in a bunch of different ways, 

you know?  And a kid isnôt going toðsome kids are going to 

make big bubbles, and some kids are going toðand while I think 

itôs good to try to, try to teach in a way that their drawings or 

their diagrams are clear, I donôt think itôs practical, or even 

good to try to make it all so uniform. 
 

Another interviewee, Eliot, reacted similarly:  

I thought it was, óShe doesnôt have this word, so thatôs minus two 

pointséAnd I was told that that was the rubric for our exams.  

And that really bothered me, because if I understand it, and Iôm 

just not saying it the way you want me to say it, our class, the 

whole class is supposed to be about teaching it to different 

learning styles.  If Iôm not learning it the way youôre teaching it, 

but Iôm learning it, what does it matter? 
 

In these two quotes, as in the survey responses above, Hildada PSTs expressed the fact 

that in MATH 281, rigor, clarity, and specific formats were important in class.  A 

classroom example of this stance or rigor and clarity took place about a month into the 

semester.  The class was working on topics in Chapter Four of Beckmannôs book, which 

focuses on addition and subtraction concepts.  After discussing a page containing two-

digit subtraction problems solved by children using invented and unconventional 

                                                 
24

 This, and all other names given here are pseudonyms. 
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strategies, the instructor showed the students another piece of student work on an addition 

problem: 

136 + 50 = 186 + 7 = 193 

 

ñHow could we write this correctly?ò the instructor asked.  Many PSTs did not seem to 

understand what the instructor meant by this: indeed, may PSTs had been writing number 

statements much like this.  One PST suggested that the child should subtract seven from 

all sides of the equation, as though solving for an unknown in algebra.  After one PST 

volunteered that the statement 136 + 50 is not actually equivalent to 186 + 7, the 

instructor led the class in a discussion of how to notate these calculations properly, while 

highlighting their use of various properties.  For example, in order to solve the problem 

123 ï 58, the instructor suggested the following work: 

123 ï 58 = (120 + 3) ï (60 ï 2) 

 = (120 + 3) ï 60 + 2 

 = (120 ï 60) + 3 + 2 

 = 60 + 3 + 2 

 = 63 + 2 

 = 65 

 

In order to explain the transition from ï (60 ï 2) to ï 60 + 2 (from the second to third 

steps), the instructor said, ñIf they understand subtracting a negative, you can write it just 

like this, but if not, just go straight to ï 60 + 2.ò  The implication here is that this is how 

teachers would (or should) notate such calculations with children.  After working a few 

of these examples, the instructor told the class, referring to the use of equals signs, ñIf 

you canôt write it clearly, you should not write it.ò  Moreover, this lesson was not atypical 

of interactions over the course of the semester.  A month later, when discussing 

alternative algorithms for multiplication, the primary avenue for justifying non-standard 

calculations was to write out carefully and correctly the steps and properties used by the 
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child.  One child calculated 16 x 24 by describing verbally that he found 12 x 10 (120), 

found 12 x 6 (72), and added them together, and then doubled the result.  On the board, 

the instructor wrote and matched the following notation to the childôs description: 16 x 12 

= (10 + 6) x 12 = (10 x 12) + (6 x 12) = 120 + 72 = 192.  The instructor asked why the 

doubling part was important and a PST responded that the doubling transformed the 

problem 16 x 12 into 16 x 24, at which point the instructor put the following equalities on 

the board: 16 x 24 = 16 x (12 x 2) = (16 x 12) x 2 = 16 x 12 + 16 x 12.  This emphasis on 

correct notation was not a special project of this particular instructor: the course notes 

state when outlining these daysô activities that a ñchallenge to address when encouraging 

students to use their own invented methods is notating their thinking in a way that is 

faithful to both their insight and the conventions of mathematics.ò   

 MATH 291 at Rio University also valued mathematical justifications over 

inductive reasoning when exploring elementary mathematics topics, but its central 

constructðplace valueðled it in a different direction in addressing these same topics.    

In MATH 291, the importance of place value went hand-in-hand with a concern for 

student thinking, less emphasis on mathematical conventions, and a more idiosyncratic 

development of mathematical ideas. 

 On day one, the first thing one instructor of MATH 291 said to the class after 

finishing the business of going over the syllabus, structure of the course, and office hours 

information was to appeal to their status as future teachers: ñTo teach math well, you 

must develop knowledge of kids and how they think, knowledge of pedagogyðthatôs in 

the methods courseðand knowledge of mathematics.ò  Understanding how children 

think and acknowledging the sense-making in it, even when flawed, was a common 
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theme throughout MATH 291.  When responding to an item on the survey about how to 

describe the course to a friend, several MATH 291 PSTs explicitly mentioned that the 

course was about learning how children think about mathematics.    

In this class you will learn how to teach kids mathematics.  You 

will learn and understand how they think and why they solve 

problems the way they do.  You will learn multiple strategies for 

each problem.  
  

This was a typical sentiment expressed on many of the surveys.  The first and last 

statements, that the course was about learning ñhow to teachò mathematics and that PSTs 

were supposed to learn multiple strategies, were quite common responses (occurring in 

33% of all surveys).  However, the second statement, that PSTs are supposed to learn 

how children think about mathematics (or ones like it) is found on 8 out of 41 completed 

surveys from MATH 291 (~20%).
25

 

 In one episode in the middle of the semester, PSTs were writing story problems to 

match addition number sentences.  One group of students asked the instructor about the 

wording of their problem, which concluded with ñhow many ounces were consumed 

altogether?ò 

S: Should I use words that are too big for kids if these problems 

are for kids? (referring to óconsumedô)   

I:  Whatôs wrong with this wording? 

S: Kids have trouble reading words not related to math. 

I:  Thatôs very thoughtful of you. 
 

This may seem like an expression of the character of the PST who suggested this; that she 

was somehow going above and beyond what would have been required of her as a 

teacher, but it was thoughtfulness in this very sense that was an explicit goal of the 

course.  In another exchange in a different section, PSTs watched video of students 
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 By way of comparison, only 2 out of 61 (~3%) of respondents at Hilada cited this feature of the course. 
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solving addition and subtraction word problems.  The fourth video in a sequence of five 

featured a child who solved a problem that children in previous video clips had failed to 

solve: Sarah had some trucks. She gave 6 to Jeff. Now she has 9 trucks left. How many 

trucks did she have to start with?  The instructor asked PSTs to suggest differences in this 

video from the others they had watched so far, eventually turning their attention to this 

problem in particular, referred to as the ñmissing wholeò problem. 

I:   Any differences here? 

S:  She used her fingers. 

I :  Did she use the same approach as the others? 

S:  No, she counted up instead of guessing and recounting. 

I :  This is a big move: from counting all to counting on.  What 

other differences were there?  How did she solve the missing 

whole problem? 

S:  She counted separate piles and counted all. 

I :  This is the opposite of the action in the probleméThereôs no 

action in this one, nothing to model. 
 

The main goals of this lesson, as stated in the course notes, are that PSTs should: 

érecognize that children can use features of the problem 

situation to guide their choice of solution strategiesé 

understand that the multiple strategies children use to solve 

addition and subtraction problems can be reconciled through the 

part-whole structureérecognize why certain types of word 

problems can be difficult for children. 

 

Here again, the instructor was highlighting an issue of language and the need to pay 

attention to small details that may not seem strictly mathematical, yet they impact how 

children might think of mathematics nonetheless.  Understanding why certain things are 

difficult for childrenðdeveloping a sense of (mathematical) empathyðis an explicit 

purpose of the lesson. 

 Finally, whereas in MATH 281, the course maintained relatively strict adherence 

to conventional mathematics/arithmetic notations, in MATH 291, instructors and PSTs 

generally confined their work to representations used in elementary school.  Consider the 
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following exchange that took place in a similar context as that I described above in 

MATH 281.  The problem was 36 x 17: 

 

I :  This is an invented algorithm.  What did he do? 

S:  I saw it differently than the worksheet, but he breaks 36 into 

30 and 6 so 30 is ten and ten and ten.  He does 10 x 17 three 

times, but he waits until the end to put together. 

(I  restates the PSTôs explanation) 

I : Then? 

S:  He decides to decompose 17 into ten and seven and does ten 

times six and seven times six, then he adds quantities 

together and gets six hundred twelve. 

I :  What types of strategies are here? 

S:  Distribution? 

I :  Before that, heé 

S:  éDecomposes. 

I :  This is an invented strategy.  You should tap into their prior 

knowledge and lead them toward the standard algorithm, 

using the intermediate algorithm. 

 

(I  writes on the board): Intermediate Algorithm: 

216

003

06

012

24

71

63

³

 

1030

610

307

67

³

³

³

³

 

 

It is important to say here that such conversations also occurred in MATH 281, though 

they were shorter, less frequent, and these alternative notations did not drive 

conversations in the same way as they did in MATH 291.  Another episode demonstrates 

how different the emphasis was on notation and representations.  During a discussion on 

decimal multiplication, the class worked for fifteen minutes on how to represent the 

problem 3.2 x 1.4, and how this representation helped show the appropriate solution to 

the problem: 
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I:  Letôs figure out the number sentence that goes with the 

diagram.  This is an important skill to have when looking at 

student work. (See the drawing below)éNow look at #1.  

____ will walk us through it. 

 

S:  For 3.4 x 2.7: 

 

 

            

 

 

 

   

   

 

I :  Why show the two-point-seven? 

S:  Because itôs the second number. 

I : This shouldnôt be a procedureéwhy do we start with two-

point-seven?  Not because itôs the second number.  This 

should have meaning. 

S:  Because it means ñgroups of.ò 

 

 

 

 

               

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 9 groups of 1 

 1 group of .1  =  9.18  

 8 groups of .01 

 

 

= 2.7 

= BMU = .1 MU = .01 MU 

Figure 2: This shows the PSTôs drawing, representing three groups of 

2.7 and four groups of one-tenth of 2.7 

Figure 3:  To find the numerical value of the product, the PST 

regrouped by labeling the BMUs 1,2,3,é,6 and circled collections of 

ten  .1 MUs, etc., writing the final product as 9.18 

=.1 of 2.7 
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I :  Is there anything you would add to make this diagram more 

clear?  Pretend that this is student work. 

S: Show the 2.7 cut into ten pieces to show one tenth of 2.7. 

I  : Good suggestion.  Also, your diagram doesnôt show the 7, 8,  

and 9 groups of the BMU, though you explained it nicely in 

wordséif you showed that in the picture, it would be more 

clear. 
 

 

Use of pictorial representations for multiplying decimals also appeared in MATH 281, 

but again, the fidelity to it as a reason and meaning for the procedures to follow was 

unique to MATH 291.  In MATH 281, the course notes describe using diagrams to 

explain decimal multiplication, but after using multiplicative inverses of powers of ten to 

justify a connection with fraction multiplication.  In other words, in MATH 281, the use 

of the diagram is a way of illustrating a concept which is justified with a set of symbolic 

manipulations, rather than motivating the concept itself.  The primary difference here is 

not which symbols and pictures were used in which course: many of the same pictures 

and symbols were used in both settings.  The fundamental difference is how they were 

used: in one course, the algebraic symbols were used to justify mathematical choices, 

while pictures were a representation of the logic inherent in the symbols.  In the other 

course, it was precisely the opposite: pictures and concrete representations formed the 

basis for mathematical reasoning, and formal symbols were used to represent the ideas 

developed in the pictures, rather than to justify them.   

 In the map of MKT suggested by Ball, Thames, and Phelps (2008), a facility with 

formal mathematical procedures probably falls in the gray area between common content 

knowledge and specialized content knowledge.  Many people among different practices 

must be familiar with the manipulation of formal mathematical symbols, but it may be 

that teachers have access to and use for certain kinds of manipulation which does not 
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overlap with other groups.  The pictorial representations and special understanding of 

children fall under specialized content knowledge in that these representation are those 

used in elementary school exclusively, and teachers must have access to it because those 

representations are designed to provide children insight into the primary concept of place 

value.  This data demonstrates that the two courses were operating in different, if 

intersecting, areas within the MKT sphere. 

Artifacts and Practices of Teaching 

 I have argued that content courses for PSTs may be more successful in preparing 

teachers if they construct courses as a way to begin participating in the practices of 

teaching.  This can happen in many different ways, some of which were evident at Rio 

and Hilada Universities, though not to the same extent in each location.  In this research, 

the degree to which these courses used artifacts and practices of teaching is the variable 

of greatest interest: the research questions for the study hypothesize implicitly that 

courses which differed along this dimension would result in measurably different 

outcomes among PSTs.  Thus, documenting the ways in which MATH 281 and MATH 

291 differed along this dimension is central to the study.   

Video 

In MATH 291, watching video of children was a frequent class activity and once, 

near the end of the semester, became a homework assignment.
26

 At Rio, on the first day 

of classes, course notes state that PSTs should watch two videos of children doing 

arithmetic.  One video shows a child misusing the standard subtraction algorithm, and 

                                                 
26

 Watching video at home was a marked change from the course notes, which suggested using the video as 

an in-class activity.  Instructors commented that doing this at the end of the semester saved time and gave 

PSTs multiple opportunities to attend the complexities of the student thinking in each episode. 
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another who misuses the standard addition algorithm.  The course notes suggest that these 

videos should be a motivation for the doing the work PSTs are about to undertake: ñPre-

service teachers will begin the process of treating lessons as experiments by developing 

and improving their ability to generate hypotheses about childrenôs conceptual 

understanding and procedural skills.ò   Seven of the twenty lessons involved watching 

video as a primary activity.   

 As I described above, one of the key goals for using such materials was to 

develop an understanding of childrenôs thinking, and the issues that arise in learning 

elementary mathematics.  In one class meeting, PSTs watched video of children solving 

addition and subtraction word problems (e.g., ñSally had 13 marbles.  If she gave four 

marbles to Tony, how many does she have now?ò).  The instructor, introducing the 

activity, said, ñéWeôre going to watch kidsé.kids use a lot of strategies, though 

eventually earlier strategies tend to die out.  Notice how the kids stick close to the story in 

their modeling of the problem, even though we might see them as addition and 

subtraction problems.ò  The purpose of this video in MATH 291 was to connect the types 

of story problems they had been discussing to the strategies that children use to solve 

typical problems. 

 Implicit in these activities was that the problems that teachers pose for children 

matter: the way that children construct mathematical knowledge depends on how they 

model problems put before them, and their modeling is closely related to the format in 

which the problem is offered.  Thus, teachers affect the mathematics that children learn 

simply by the problems they choose!  This is a profound statement to make about 

teaching, but it is typical of those that are implicit in much of the research in mathematics 
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learning, and in learning mathematics for teaching.  Ball, Thames, and Phelps (2008) 

argue one of the characteristics that distinguish knowledge of content and teaching from 

other kinds of knowledge is precisely this: understanding how to choose appropriate 

examples for a given learning situation.  Here, different children used different strategies 

to solve the same problem, and PSTs had an opportunity to see how these strategies 

change as children get older, and develop more sophisticated understanding of 

mathematics.  In addition, such activity targeted specialized content knowledge because 

the various strategies made visible for PSTs many of the skills children need for 

understanding these operations. 

 Watching video in MATH 291 had deeper goals than simply observing that 

children use different strategies.  Facility in identifying and naming those strategies was 

an important objective of watching these videos of classroom interactions.  Late in the 

semester, this became an explicit focus of the course, as lessons turned entirely on 

understanding childrenôs invented algorithms in solving two- and three-digit arithmetic 

problems. The course notes for Lesson 15 include a handout given to PSTs as they watch 

a video of children adding and subtracting multi-digit numerals.  As the children on the 

screen solve the problems, PSTs were asked to identify and label the strategy that each 

child was using: 
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Problem 

 

   87 

+ 24 

Jaycee 

 

80 and 20 is 100. 

6 and 4 is 10, so 7 

and 4 is 11. So the 

answer is 111. 

   

Strategy 

Type? 

    

Problem 

 

  26 

-17 

 

Gary 

 

20 ï 10 = 10 

10 ï 7 = 3 

3 + 6 = 9 

Elizabeth 

 

20 ï 10 = 10 

6 ï 6 = 0 

10 ï 1 = 9 

Stephen 

 

20 ï 10 = 10 

6 ï 7 = 1 

10 + 1 = 11 

Chris 

 

20 ï 10 =10 

10 + 6 = 16 

16 ï 7 = 9 

Strategy 

Type? 

    

Problem 

 

  9 

+6 

Chris 

 

Make the 9 a 10 

and the 6 a 5. Then 

10 + 5 = 15. 

Marie 

 

Take 1 away 

from the 6 

and add it to 

the 9, and that 

would make 

10 and 5 

which is 15. 

Chihol 

 

9 + 7 = 16 

16 ï 1 = 15 

Brent 

 

Take 3 off the 9 and 

that makes the 9 a 6. 6 

and 6 is 12 and then add 

on the 3 which would 

be 15. 

Strategy 

Type? 

 

 

 

 

 

 

 

  

Table 1: This is an excerpt of the handout given to PSTs in this lesson.  In the 

handout, there are a total of eight problems, worked out by 18 

children 

 

These invented strategies were then connected to the standard algorithm in explicit ways 

for PSTs.  In a later lesson on childrenôs invented division strategies, the instructor 

showed how invented strategies could lead to an understanding of the standard long 

division algorithm: 

A lot of teachers use invented strategies to develop an intermediate 

algorithm and then go to the standard algorithm.  This is also called 

the scaffold algorithm.  Iôve even seen teachers in high school use this 

because kids never got the standard algorithm.  The way it works is 

that I make guesses and we hope we get better at guessingé 

 

This is how videos were used throughout MATH 291: PSTs watched how children solved 

problems, attempted to identify underlying mathematics for each strategy exemplified in 
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the video, and then connected these ideas to standard algorithms and techniques 

traditionally found in elementary school.   

 This is a key component of what Ma (1999) referred to in describing ñprofound 

understanding of fundamental mathematics.ò  When PSTs become teachers, they will 

need to ñdiagnoseò childrenôs thinking and act upon that thinking appropriately by 

introducing appropriate examples.  Specialized content knowledge is required for this 

diagnosis, while knowledge of content and curriculum that enables teachers to choose 

remediating examples.  Neither course gave careful attention to what decisions teachers 

should make under particular circumstances, or even what research claims can be made 

about what choices teachers have.  These issues are typically reserved for methods 

courses, later in PSTs undergraduate preparation, and often in conjunction with intensive 

observation experiences or during student-teaching.  However, before a teacher can make 

choices about what to do in a particular situation, one must first be able to identify the 

mathematical ideas that are germane to the given situation.  MATH 291 made this 

diagnostic skill an explicit and important part of learning mathematics for teaching.   

 MATH 281 also made use of video to consider student thinking, though the 

evidence suggests that it was not a central resource for the course. Consider the testimony 

of Carla: 

C: éthis one video we saw was great, I mean, and I think itðI 

donôt know if-- 

M:  It was just one, right?  The whole semester? 

C: It was just one, yeahé 

 

 

In survey responses, among MATH 281 PSTs, only Carlaôs classmates (in her section) 

mentioned watching video in class, and apparently it only happened once during the 
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semester.
27

  MATH 281 course notes suggest once that video may be a part of class 

activities, but it is offered as an optional activity, and given time constraints of a 15-week 

semester, it is not surprising that instructors chose not to incorporate discretionary 

activities in favor of those that seemed more central to the goals of the course.   

Other Artifacts 

 This is not to say that practices and artifacts of elementary school mathematics 

teaching were absent in MATH 281; video is not the only medium through which PSTs 

can begin to relate to, understand, and participate in practices of teachers.  Exploring 

student work, using classroom manipulatives, and invoking educational research are 

others.  In particular, typical elementary mathematics classroom manipulatives were a 

prevalent component of both courses.  Examples of these manipulatives are base-ten 

blocks, straws, or rulers.  In many cases in class, these manipulatives were used as 

models for explanation or justification rather than physically being present in the room.  

It is hard to determine how often these manipulatives were actually present.  I did not 

witness PSTs in MATH 281 use base-ten blocks or rulers, though they were cited often 

during my observations, and mentioned frequently in end-of-course surveys.  As I 

mentioned above, nearly one-third of PSTs in MATH 281 recalled using manipulatives as 

the most memorable classroom activity.  A similar proportion of PSTs in MATH 291 

cited the use of manipulatives as the most memorable activity.  In one section of MATH 

291, I observed an activity involving the use of straws, used to illustrate a base-three 

numeration system.  Three PSTs were asked to go to the front of the room and line up.  

The right-most PST acted as a ones-place, the center PST served as a place for groups of 

                                                 
27

 Four of the fourteen participants from this section mentioned watching video as the most memorable 

class activity of the semester.  No one else at Hilada mentioned watching video. 
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three, while the left-most PST was there when the straws spilled over into groups of nine.  

The instructor continued to give straws to the right-most PST in the ones-place, while she 

(and the rest of the class) kept track of how many straws she was ñallowedò to hold 

before giving them to her neighbor, who bundled groups of three to represent her place.  

When the threes-place PST had amassed three groups of bundled straws, she in turn gave 

those bundles to her neighbor on the other side who again bundled them into groups of 

nine.  Straws continued to be tools for doing calculations, particularly in other bases.  

Here again, this subtle difference has meaning. The use of straws is a robust 

representation of counting in any base because straws can be bundled and taken apart as 

numbers are in arithmetic operations.  Though the use of money is often cited as a 

resource for teaching children, with it come difficulties that do not carry over into Hindu-

Arabic arithmetic (Ball, Thames, & Phelps, 2008; ).   

 However, the vast majority of instances in which I observed the ñuse of 

manipulatives,ò those objects were not physically present but served as a construct on 

which ideas could be built.  Consider the following exchange in MATH 281 in which the 

class was discussing a homework assignment in preparation for an exam.  The instructor 

showed how to use base-ten blocks to illustrate the calculation 305 ï 88.  
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I:   This is like on the quiz.  It shows up on every exam.  305 ï 

88.  I like to start with the top number and do a take-away: 

 

 

(1) 

 

 

 

 

 

(2)  

 

 

S:  You have to show 305 but not 88? 

I :  Right.  You could show both, but Iôm just taking away from 

305. 

 

Figure 4: Illustrating the calculation of 305 ï 88 in MATH 281 at Hilada 

 

 

This figure represents what was drawn on the board, not objects that were physically 

present in the room.  Similarly, though I did observe PSTsô use of straws on a handful of 

occasions in MATH 291, generally, the activities dealt with drawing pictures, of straws 

or, more often, pictorial representations of BMUs and their relative measuring unit 

counterparts.  

 Another avenue for working with teaching practices is investigating student work.  

This is also something that was present in both courses, though again to different degrees.  

Consider the comment made by one instructor of MATH 281 as PSTs filtered into the 

room before class began: ñThis is the most fun lesson of the yearéitôs an exciting day.ò  

The primary activity for the class meetingðand the lesson to which the instructor 

referredðwas to investigate student-invented algorithms for subtraction, and justify them 

using properties of whole numbers (commutative, associative, distributive).  The 

algorithms were printed in the supplemental class activities manual; PSTs looked at the 

written work done by each child and discussed what the child was doing in order to solve 
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the problem.  Though this was not the only time PSTs in MATH 281 worked with 

student-generated algorithms,
28

 the comment by the instructor signaled it as unusual.  In 

MATH 291, PSTS engaged in similar work, though they did so generally through the 

medium of video, rather than written examples.  In one class, PSTs watched video of 

children solving 13159· .  As with the addition and subtraction algorithms activity I 

described above, the PSTs were asked to identify the strategies used by each child in the 

video, named and defined by the instructor in a previous class meeting.  These activities 

are designed to help PSTs develop a sense of how children think and make sense of 

elementary mathematics.  Idiosyncratic algorithms for addition, subtraction, 

multiplication, and division are among the most widely studied area of childrenôs 

learning and mathematical development.  It is an obvious place to begin encouraging 

PSTs to work on learning to understand childrenôs thinking.  In MATH 281, alternative 

algorithms were the most visible and explicit place for PSTs to examine childrenôs 

thinking up close.  In MATH 291, in addition to video and written examples of studentôs 

work, there were further opportunities for this, offered in different contexts.  In MATH 

281 children were peripheral objects, frequently mentioned, but rarely actually 

incorporated into the course.  In MATH 291 however, children were often the focus of 

study, exploring how they reason and what mathematics they are likely to encounter.   

Addressing Addition and Subtraction: A Portrait of the Two Courses 

 Together, the differences between the courses in treatment of the primary topics, 

their differing use of artifacts of teaching, and disparate emphasis on mathematical issues 

related to teaching provide a picture of courses that look very similar in a course 

                                                 
28

 Later in the semester, PSTs also explored student-invented algorithms for multiplication. 
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catalogue description or on a syllabus, but in fact were very different in practice.  I 

suggest that these differences led the courses in different mathematical directions: these 

differences were subtle but important to the mathematics that PSTs had opportunities to 

develop through their participation.  In order to illustrate this in a more focused manner, I 

offer here a picture of how MATH 281 and MATH 291 treated the central topics of 

addition and subtraction.  The trajectory of these topics in each course provides insight 

into the different mathematics that PSTs encountered in their courses. 

 As they did throughout the semester, there was much content in one course that 

was mirrored by the other.  Both courses introduced PSTs to various models for addition 

and subtraction, highlighting the part-whole relationship between quantities.  Both 

courses made explicit the fact that the nature of this relationship could be illustrated with 

different actions.  For example, the problem ñPablo had three trucks; how many more 

does he need to have seven trucks?ò is modeled as an addition problem.  On the other 

hand, ñTasha has eight jelly beans.  Three of them are cherry flavored, and the rest are 

grape flavored; how many jelly beans are grape flavored?ò is modeled as a subtraction 

problem.
29

   Both courses also addressed the ways in which students compute using these 

operations on multi-digit numerals (see the discussion above), and both sets of PSTs 

operated on whole numbers, integers, and rational numbers with finite decimal 

representations.  MATH 291 and MATH 281 similarly asked PSTs to model addition and 

                                                 
29

 The addition problem is often described as modeling a ñjoiningò action of two parts to form a whole, 

though the second part is missing, or unknown.  The subtraction problem similarly involves two parts and a 

whole, although in this case, the action modeled is often take-away, implying subtraction.  The distinction 

is not whether or not addition or subtraction is the ñrightò operation to use, but simply what operation is 

implied by the situation as presented.  Such distinctions have been made explicit primarily in the research 

associated with Cognitively Guided Instruction (CGI), which originated at the University of Wisconsin.  

See, for example, Carpenter, Hiebert, & Moser 1983 or Carpenter, Fennema, Peterson, & Carey, 1988. 
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subtraction problems using base-ten blocks
30

 and to write their own word problems 

involving these operations.   

However, there were substantial differences among and between these similarities 

which distinguished the two courses and show the different mathematical concepts that 

PSTs encountered and the knowledge they had opportunities to develop.  There were two 

primary differences between the treatment of these operations between the two cohorts: 

(1) in MATH 281, addition and subtraction were applied to all integers and rational 

numbers (represented as finite decimals and fractions), while MATH 291 worked only 

with finite decimal representations;
31

 (2) MATH 281 spent less than half the instructional 

time on these operations over the course of the semester than did MATH 291.
32

  The first 

difference meant that MATH 281 was challenged to unify the algorithms for addition and 

subtraction across different representations of rational numbers, whereas MATH 291ôs 

limitation to rational numbers in decimal representation afforded more coherence to the 

treatment of algorithms for addition and subtraction (as well as multiplication and 

division).  The second difference meant that PSTs in MATH 291 had more opportunity to 

explore childrenôs mathematical thinking, while MATH 281 PSTs were more focused on 

working with and understanding algorithms for these operations. 

                                                 
30

 As described above, in many cases the blocks themselves were not present in class, but PSTs were 

expected to draw the blocks that would be necessary for a computation. 
31

 MATH 291 PSTs did encounter rational numbers with infinite decimal expansions, but only did so in the 

context of other bases.  For example, 1/3 has an infinite decimal expansion, but it can be represented as .1 

in base three.  For rational numbers such as these, only these finite representations were usedðthe data 

imply that fraction representations were never explicitly part of MATH 291 at Rio University.  It is notable 

that the term ñdecimalò only properly applies in the context of base-ten numerals, though for simplicity, I 

refer to all numerals using the symbol ó.ô as decimals. 
32

 This large gap in instructional time is true of multiplication and division as well, though to a lesser 

extent.  A primary cause of this was the extent to which MATH 281 addressed working with fractions 

generally and number theory concepts like divisibility. 
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 Consider first the fact that MATH 281 treated the addition and subtraction of 

rational numbers using fraction representations, while MATH 291 did not.  Addition and 

subtraction of fractions was introduced in MATH 281 by highlighting for PSTs some 

typical misconceptions that arise when trying to generalize addition and subtraction 

across number sets.  For example, children often add numerators and denominators as if 

they were separate entities.  The instructors of the course emphasized that in such 

problems, the size of one whole must be the same.  On one visit I made to that class, the 

instructor began by asking PSTs how to add ½ and 1/3: 

I : How do we do ½ + 1/3?  What do we need to do? 

  S: Change the denominator. 

  I  (writes):  
2

2

3

1

3

3

2

1
Ö+Ö  

    
6

5

6

2

6

3
=+  

 I : This is a hard thing for students, maybe itôs a hard thing for you.  If you 

have a good concept of what this means, it can be obvious.  What does 3/6 

mean? 

 S: Three equal pieces out of six.  

I : The denominator tells you how big the pieces are as it relates to one 

whole.  This is why you need to change them to sixes and why you donôt 

add the sixes togetheré.Why do we change them to sixths? 

 S: To get same size pieces. 

 

 

This exchange between the instructor and the PST illustrates a potential difficulty of 

treating fractions before discussing multiplication and division concepts: nothing has 

been explicitly stated about why the three pieces must be of equal size and how this 

relates to concepts of division.  Moreover, the act of multiplying fractions which is 

necessary for properly changing the denominators so that they agree had not been 

supported by the same fundamental concepts of multiplication that the PSTs were then 

encountering with addition and subtraction.  This happened principally because these 
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ideas about multiplication and division were part of discussions that were set to take 

place a few weeks after this conversation.  Itôs not that MATH 281 neglected to address 

these issues, but instead that it hadnôt done so yet.  Such considerations may not be 

necessary if one is aiming specifically to develop common content knowledge and the 

requisite ability to compute fluently, but these connections are part of a specialized 

content knowledge that was not addressed in MATH 281: how does understanding about 

operating on different numbers develop and what sub-concepts are necessary in 

developing this understanding? 

As a result, the concepts, strategies, representations, and algorithms PSTs 

discussed related to whole number arithmetic lacked strong connection to those used for 

operating on fractions.  Recall that one advantage of addressing each operation in turn is 

the ability to show the coherence with which these operations can be viewed.  This lack 

of connection inhibited the development of this coherence, because the same operations 

on different kinds of numerals appeared in fact to be distinct from one another.  One 

indication of this is that later in that same class meeting, PSTs were asked to write word 

problems that could be solved by modeling operations on fractions.  Nearly every group 

working on the task generated a situation that could be modeled with a take-away 

strategy (subtraction) and as the instructor roamed the classroom talking to groups, no 

mention was made of the previous models that were named for whole number problems 

(e.g. take-away, comparison, etc.), despite the fact that this was a highlighted aspect of 

subtraction with whole numbers.  
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In contrast, the fact that MATH 291 did not address fraction arithmetic
33

 afforded 

instructors to highlight the consistency with which representations, strategies, and 

algorithms can be used for whole numbers, negative integers, and finitely-represented 

decimal numbers alike.  At the beginning of one class meeting, PSTs began by presenting 

word problems they had written in an earlier meeting that involved decimal 

computations, and for which they were expected to illustrate different types of models 

(take-away, comparison, join, etc.).  In that same class meeting, the instructor asked PSTs 

to consider how children might model these kinds of calculations using blocks and line 

segment lengths: the same representational tools (these were used in MATH 291 to 

represent the choice of the BMU) were used to show how one can compute with whole 

numbers and decimals alike.  This juxtaposition of whole number arithmetic, the PSTsô 

work with childrenôs modeling strategies, and decimal numbers highlighted the 

coherence of the ideas involved: the same approaches and the same tools apply to all sets 

of numbers.  This is precisely the sort of connection that was not evident in MATH 281, 

and an illustration of where PSTs had different opportunities to learn specialized content 

knowledge.   

 The second major difference manifest within these treatments of addition and 

subtraction was the fact that one course devoted substantially more instructional time to it 

than the other.  This fact does not mean that MATH 291 PSTs spent an extra amount of 

time discussing one particular mathematical topic instead of another when compared to 

MATH 281 PSTs.  Instead, this extra time was occupied principally with PSTs working 

closely with video of children working on addition and subtraction problems, discussing 

                                                 
33

 Understanding operations on rational numbers as represented with fractions is a primary focus of MATH 

292, the second course in the sequence of three content courses at Rio University.  MATH 291 however 

made no explicit mention of fractions and focused entirely on numbers with finite decimal representations. 
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written documents of student-invented algorithms for multi-digit computations, and 

investigating how some of these algorithms can be used as bridges between common 

intuitive approaches and ñtheò standard addition and subtraction algorithms.  In contrast, 

in MATH 281, the extent of treatment of these kinds of activities comprised less than a 

single class meeting.  Recall the Hilada instructor who claimed that ñtoday is a special 

dayò when describing how they were going to discuss student-generated algorithms for 

subtraction.  That same class meeting also included extensive discussion of how to 

properly use equals signs to signify a string of computations as well as properly 

representing symbolic justifications for combining numbers in particular ways using 

commutative, associative, and distributive properties of the arithmetic operations. 

 This provided PSTs in MATH 291 opportunities to develop specialized content 

knowledge related to these topics that PSTs in MATH 281 did not have.  In MATH 291, 

PSTs were referred explicitly to childrenôs thinking in three different ways over the 

course of numerous days as it related to addition and subtraction.  The first time was 

early on in the discussion of the meaning of the two operations.  The purpose of this 

encounter was to familiarize PSTs with the intuitive approaches children use to solve 

addition and subtraction problems without using algorithms.  Three of the five learning 

goals associated with this activityðas stated in the teaching notesðare: 

3. [PSTs] will recognize that children have a rich variety of informal 

material counting strategies (based on the use of concrete 

manipulatives) and verbal counting strategies (based on forward or 

backward counting) for successfully solving addition and 

subtraction problems. 

4. [PSTs] will understand that the different strategies children use to 

solve addition and subtraction problems can be reconciled through 

the part-whole structure of the problems (i.e., that there exists a 

mathematical consistency among the different solution strategies 

and that it is possible to establish that consistency). 

5. [PSTs] will recognize why certain types of story problems can be 

difficult for children. 
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Note how these goals stress the importance of the structure of the problem and how this 

informs how children are likely to think about it.  Such encounters are likely to facilitate 

PSTsô SCK, because it forces them to confront a wide variety of thinking strategies and 

they are thus presented with the dilemma of evaluating them and determining their 

mathematical value. 

The second main encounter PSTs had with children adding and subtracting was 

similar, but as they watched video of children computing, they were asked to predict how 

children would solve various word problems, given its structure.  For example, ñJill has 

three toys.  Her mother gave her five more.  How many does she have altogether?ò is a 

joining problem for which the two parts are known and the value of the whole is 

unknown.  In this activity, PSTs are asked to observe that children typically will solve 

such problems by physically modeling the action described in the problem.  For the 

example above, children often will gather three blocks together, then five, and then count 

the two groups together in a single group.  One value of this activity is to recognize that, 

as described in the teaching notes, ñ[t]his is an important ability in teaching. You should 

be able to predict childrenôs strategies, childrenôs thinking on different kinds of problems, 

and childrenôs difficulties. Then you can use this information when you plan lessons and 

when you teach them.ò  This quote describes an important component of specialized 

content knowledge. 

The third encounter MATH 291 students had with childrenôs thinking about 

addition and subtraction came significantly later in the semester than the first two, and 

after PSTs had done similar activities as described above for multiplication and division.  
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This encounter involved becoming familiar with alternative algorithms for computing 

with multi-digit whole numbers, and using this familiarity to develop ideas about which 

algorithms could be thought of as ñintermediateò algorithms, processes that make certain 

aspects of the computation explicit which are hidden in more conventional algorithms.  

Again, this is a component of specialized content knowledge: an understanding of the 

constituent skills and knowledge related to a fundamental goal of elementary 

mathematics instruction such as multi-digit addition and subtraction. 

On the other hand, in MATH 281, PSTs spent much more time adding and 

subtracting fractions, as if this were the primary skill set on which they needed to work.  

This may in fact be the case generallyðit is widely believed that PSTs are weakest 

arithmetically when it comes to operating with fractions.  On the other hand, the practical 

implications of this difference was a shift of focus away from strictly elementary school 

topic of operating on integers and decimals and the specialized knowledge that teachers 

need to in order to unpack the sub-skills that are part of learning these things.  The 

attention on fractional representations of rational numbers obscured the inherent 

connections between the various techniques for computing with the different number sets 

and instead focused attention on the fundamental rules and properties of the operations 

and how they applied to different number sets.  The advantage of working only with 

finite-decimal representations was that there was a consistency with which PSTs could 

apply the ideas they were discussing, while in MATH 281, there seemed to be different 

sets of rules for rational numbers, depending on how they were represented. One big 

reason for this disparity was the fact that Hilada PSTs were encountering operations with 

fractions before they had discussed multiplication and division in depth. 
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  These same course similarities andðjust as importantlyðthe course differences 

were mirrored throughout the semester under study.  MATH 281 was a course that, by 

design and by consequence of the choice to study operations across many number 

representations, focused PSTsô attention more on procedures and algorithms than on the 

underlying concepts and fundamental ideas that are often hidden in such algorithms and 

that can be made visible in the work of children.  On the other hand, MATH 291 was 

designed to highlight such skills for PSTs, and by virtue of the fact that the course 

concentrated on fewer kinds of representations, had the ability to introduce childrenôs 

thinking through the use of video and written work.  In this way the two cohorts, despite 

covering very similar ideas at one level, were actually addressing different components of 

MKT: Hilada PSTs had more opportunities to attend to computational fluency associated 

with common content knowledge (CCK) and Rio PSTs had more opportunities to 

develop understanding related to evaluating strategies based on stronger ability to 

recognize the structures and fundamental sub-skills that support a strong understanding of 

the operations. 

Attending to Impacts of These Differences: A Return to the Research Questions  

Recapitulating the Comparison 

 In this chapter, I have argued that MATH 281 at Hilada University and MATH 

291 at Rio University addressed primarily the same mathematical topics, and that there 

are many aspects of their structure which are similar.  Both courses concentrate on the 

fundamental concepts of number and operation: numeration, addition, subtraction, 

multiplication and division.  A look at the respective syllabi for each course reveals that 

they discussed many of the same topics.  Moreover, Rio and Hilada organized sections of 
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these courses into similar sizes, expected PSTs to complete assignments, quizzes, and 

exams, and met multiple times each week to engage in lecture and small group activities.   

 On the other hand, there were substantive differences between the courses that 

may have implications for what PSTs learned as part of their course experience.  MATH 

291 at Rio did not explicitly address the notion of rational numbers as represented by 

fractions.  Instead, PSTs in that class operated on rational numbers represented as finite 

decimals.  MATH 281 at Hilada wove fraction operations throughout the course, often 

using them as a way to justify actions taken with decimal representations.  The courses 

differed as well in the approach they took to teaching common content: MATH 281 

organized the course around operations and justifying algorithms used for those 

operations using formal mathematical arguments.  MATH 291, by contrast built primarily 

upon the idea of place value, using the concept of the Basic Measuring Unit and its 

associated measuring units.  Algorithms were justified in MATH 291 using different 

representations of these BMUs and MUs.  Interpreted with a situated learning theoretic 

perspective, this difference in organizing conceptðoperation and formal mathematical 

argument versus place value and representationðshould result in PSTs learning different 

mathematics, despite the fact that all are learning about addition, subtraction, 

multiplication, and division.  Still other differences between the courses may also have 

led to different learning among PSTs between the two institutions: while both courses 

employed the use of artifacts of teaching in order to motivate PSTs and examine 

important mathematical ideas, this was evident in MATH 291 more frequently than in 

MATH 281.  Videos of children solving problems, analyzing word problems and how 

children solve them, and a closer fidelity to the development of mathematics in 
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elementary school appeared to embed PSTs at Rio University more deeply into the 

practice of teaching, the practice into which PSTs are being inducted, and for which these 

courses are designed to prepare them. 

Reviewing the Purpose of the Comparison 

 I have argued in this chapter that the differences between these courses create a 

useful context for testing situated learning theory.  The aim of the project is to determine 

whether or not the theory can answer the following questions: 

(1) What mathematics do prospective teachers learn by engaging in 

activities of teaching practice such as examining curriculum, 

student work, and classroom video? 

a. Do PSTs who regularly engage in such activities 

display evidence of different mathematical 

proficiency than PSTs who participate in more 

traditional course work? 

b. Do PSTs engaging in such activities display 

different mathematical knowledge for teaching 

(MKT) than PSTs participating in more traditional 

course work? 

c. Do PSTs engaging in such activities develop 

different attitudes about mathematics and teaching 

than PSTs participating in more traditional 

coursework? 

 

(2) To what extent do prospective teachers see their mathematics 

course work as relevant to their future work? 

a. Do different course approaches set up differing 

perspectives among PSTs on the contribution of the 

course to their future work? 

b. Do different course approaches set up differing 

views among PSTs about their confidence and 

abilities in mathematics? 

 

The theory may help explain how PSTs learn mathematics for teaching, which may have 

broad implications for undergraduate teacher education across disciplines.  Did PSTs at 

the different universities learn mathematics differently?  Did they develop different 
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attitudes about mathematics and teaching?  Did they view their courses as having 

different relevance to their preparation and future practice as teachers?  These are the 

essential questions I have endeavored to answer, and for which I have collected data.  

While the evidence suggests that the courses met the initial criteria that they be different, 

it remains to be seen whether these differences can explain any gaps in outcomes 

measures between the PSTs at the different universities.  It is to this data that I will turn 

in the next chapter. 
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Chapter 5:  Results 
 

 

 MATH 281 and MATH 291 corresponded with one another in many respects: 

they each discussed nearly identical mathematical topics, enrolled similar numbers of 

PSTs, structured PSTsô time alike, and made similar claims on the goals they had for 

PSTsô knowledge and skills.  On the other hand, the two courses organized their 

respective mathematical work differently, and these different approaches meant that PSTs 

did different things.  The central question of this study is to learn what effects these 

differences had on PSTsô MKT, their attitudes about mathematics and teaching, and 

whether or not they felt that MATH 281 and MATH 291 were similarly relevant for their 

future careers.  In order to discern the answers to these questions, I collected data about 

PSTsô MKT via a 31-item multiple choice instrument (the MKTI) and interviews with six 

selected PSTs.  I also gathered responses to survey instruments designed to give insight 

about PSTsô attitudes about mathematics and teaching, and through the survey instrument 

and interview prompts sought information about PSTsô perceptions about their courses 

relevance. 

 Recall the hypotheses I described at the end of Chapter Three, which correspond 

to three primary research questions of this project: 

 

1. PSTs in a course that more closely identifies with practices of 

teaching will perform better on measures of Mathematics 

Knowledge for Teaching, than PSTs in a course that does not. 

2. PSTs in a course that more closely identifies with practices of 

teaching will develop different attitudes about mathematics and 

teaching than PSTs in a course that does not. 
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3. PSTs in a course that more closely identifies with teaching will be 

more likely to reflect on the experience as a valuable one than 

PSTs in a course that does not. 

 

What does it mean to ñmore closely identify with teaching?ò  Although common content 

knowledge is an integral component of MKT, a mathematics course that ñclosely 

identifies with teachingò is one which concentrates on sub-domains of MKT that are 

particular to teaching rather than those which overlap with other practices and disciplines.  

In particular, the analysis in the last chapter indicates that MATH 291 concentrated on 

PSTsô SCK in ways that MATH 281 did not.  MATH 281 focused greater attention on 

issues of CCK such as computational fluency and understanding of standard algorithms..   

 However, the differences between the two courses are nuanced; these courses 

were not at polar ends of a spectrum, but rather both could be located somewhere in the 

middle.  Neither course claimed to be a kind of immersion experience in teaching and 

neither aspired to be a course which is isolated from the teaching profession.  Still the 

evidence demonstrates that MATH 291 incorporated more explicit attention to a sub-

domain of MKT that is not shared with other practices and disciplines.  As such, situated 

learning theory predicts different outcomes along the dimensions I have outlined.  

 From the perspective of the theory, one might predict that the differences I have 

described between MATH 281 and MATH 291 would result in PSTs at Rio scoring 

higher on the MKTI, demonstrating different attitudes about mathematics and teaching, 

and claiming stronger affinity for what they learned in their math course than did Hilada 

PSTs.   The data I report on in this chapter support these hypotheses, but the full range of 

data is necessary to reveal it, as a single data stream inadequately describes the outcomes.  

I therefore address the focus of each research question in turn, using all relevant sources 
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to discern what the data reveal.  First, I analyze the data with respect to the question 

about PSTsô relative MKT, turning to the results of the MKTI and the interviews.  Next, I 

undertake the question of PSTsô attitudes about mathematics and teaching, using the data 

from the survey instrument.  Finally, the survey instrument and the interviews form the 

basis of an analysis of PSTsô perception of their courseôs relevance for their teaching 

practice.  Throughout these descriptions, I will explicate methods particular to the 

analysis as they arise in the data.  These methods were described in Chapter Three, 

though new details are revealed here as they became necessary during the analysis itself. 

 

PSTsô Relative MKT: Did the PSTs in MATH 281 Develop Different  MKT than PSTs in 

MATH 291? 

 One might assume that if most of the PSTs did not fail their course, then their 

instructors certified that they had in fact learned mathematics over the duration of the 

semester.  There is nothing revelatory about this statement.  However, while course 

grades can be effective measures for assessing individual progress, they are ineffective 

ways to describe a group of students and are undesirable measures for comparing 

different groups of students in different courses, as this study intends to do. Moreover, 

given the descriptions above, it may be hard to decide the extent to which the course 

grades reflect PSTsô mathematical knowledge for teaching, as the assessments within and 

among the two courses were differentially geared toward this goal.
34

  Thus, this research 

has employed the use of interviews and a multiple-choice instrument for measuring 

mathematical knowledge for teaching (MKTI).   

                                                 
34

 This is true both between and within courses, and understandably, the variety of assessments during a 

semester lend themselves to different foci among the regions of these different kinds of knowledge. 
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 The data generated by these tools suggests that PSTs in both courses learned 

important mathematics from the beginning of the semester to the end, though teasing 

apart the differences between the PSTs at Hilada and Rio on this dimension is not trivial.  

Below I outline results from statistical analyses of the MKTI data that compare mean 

scores on the MKTI and what these results say about the knowledge PSTs developed at 

each institution.  Subsequent analysis of differential achievement on individual items and 

of the interview data paints a slightly different picture, giving insight into PSTsô 

mathematical knowledge that might not be visible through the quantitative lens. 

Results of the MKTI 

Recall that PSTs completed a 31-item instrument designed to assess their 

mathematical knowledge for teaching, what I am calling the Mathematical Knowledge 

for Teaching Instrument (MKTI).  From a pool of hundreds of items written by the 

Learning Mathematics for Teaching (LMT) project at the University of Michigan, the 

items were narrowed first to reflect the content that was common to both courses, 

focusing in particular on number and operation concepts.  Next, the items were chosen to 

reflect a variety of difficulty levels and to maximize reliability.
35

  PSTs completed the 

instrument at the beginning of the semester and then again, approximately three months 

later, as they neared the end of the semester.  At each campus, there were a handful of 

PSTs who completed the first round of the MKTI that did not participate in the second 

administration.  These were eliminated from the analysis described below; only PSTs 

who completed both the pre- and post-assessments were included.   

 

                                                 
35

 Analyses of items resulting from pilot studies in the LMT project provided baseline reliability statistics. 
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 MATH 

281 

MATH 

291 

Total # of Students 

Enrolled 
93 76 

# of PSTs completing 

Round One 
65 47 

Response Rate 70% 62% 

#of PSTs Completing 

Round Two 
60 41 

Retention Rate 92% 87% 

Total Response Rate 65% 54% 
 

Table 2: A summary of PST participants 

 

Analyses of Variance 

 Within the set of PSTs who completed both rounds of instruments, descriptive 

statistics were computed for each campus, including mean and median raw scores 

(number of correct responses), standard deviation, variance, skewness, and kurtosis.  

These descriptive characteristics of the data indicate that the assumption of normality 

necessary for the ANOVA is a reasonable one.  Mean and median values
36

 for each 

administration of the MKTI at each campus were similar
37

 and histograms of the 

aggregate data and for each administration of MKTI at each university reveal symmetric 

shapes not unlike a normally distributed data set.  Below are some examples of these 

histograms.    Related Kolmogorov-Smirnov and Shapiro-Wilk tests also suggest that the 

data can be approximated using a normal distribution.
38

  Tests for homogeneity of 

                                                 
36

 A condition of my use of the items from the LMT Project at Michigan was that reports of the data would 

not include raw scores on the instrument.  Scores that result from responses on the items should not be 

interpreted as identifying some benchmark or level of knowledge.  Rather, the scores are useful for 

comparative purposes, which is one of primary the reasons I employed these items in this project. 
37

 The difference between mean and median at each campus was less than ¼ of a standard deviation, which 

means that these two measures of center were never further apart than the value of a single correct answer 

on the 31-item instrument. 
38

 The test statistics for both the K-S and Shapiro-Wilk tests for all administrations of the MKTI have p-

values larger than .10, which means that one cannot reject the null hypothesis, which is that a normal 
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variance also supported the assumption necessary to maintain integrity in the analysis of 

variance computations. 

 

 

 

 

 

 

 

 

 

Figure 5: Aggregate Beginning-of-Semester MKTI Scores  

 

 

 

 

 

 

  

 

 

 

 

 

Figure 6: Aggregate End-of-Semester MKTI Scores 

 

                                                                                                                                                 
distribution can be fit to the data.  The Shapiro-Wilk test is the more appropriate procedure of the two for 

samples of the size I gathered. 
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The analysis of variance performed on the mean MKTI scores at each location shows that 

there was no statistical distinction between PSTs at the two campuses at the beginning of 

their respective courses.
39

  This is important, because it indicates the early 

homogeneityðalong this dimensionðof the two groups of PSTs in the independent 

locations.  Had the two campuses demonstrated significant differences at the outset, this 

fact may have complicated the subsequent analysis of the influence the courses had on 

PSTs.  This result indicates that, at least by this metric, the PSTs began their respective 

courses with similar mathematical knowledge for teaching.   

 

  
Sum of 

Squares df Mean Square F Sig. 

PreMathScore Between Groups 4.488 1 4.488 .280 .598 

Within Groups 1586.205 99 16.022   

Total 1590.693 100    

PostMathScore Between Groups 2.430 1 2.430 .177 .675 

Within Groups 1362.362 99 13.761   

Total 1364.792 100    

Table 3: ANOVA Results Comparing Mean MKTI Scores between Hilada and Rio Universities at the 

beginning of the semester and then again at the end. 

 

An ANOVA performed on end-of-the-semester MKTI scores again shows no statistical 

distinction between MATH 281 and MATH 291.
40

  In other words, these data do not 

indicate that PSTs at either institution developed any more (or less) mathematical 

knowledge for teaching relative to PSTs at the other. 

 However, whether partitioned by campus or aggregated across campuses, the 

mean MKTI scores at both Hilada and Rio Universities rose by approximately one 

                                                 
39

 p < .6 
40

 p < .68 
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standard deviation from the beginning- to end-of-course administrations of the MKTI 

instrument.  This result is comparable to answering four additional items (~13% of 31 

total items) correctly at the May administration of the MKTI than at the February MKTI 

administration.  This increase was statistically significant in all cases.
41

  Broadly 

speaking, this indicates that both courses had a similarly positive effect on PSTsô 

mathematical knowledge for teaching. 

Multiple Regression Analysis: Which Variable(s) Influenced MKT Scores Most? 

 While the ANOVAs indicate that the campus from which the PSTs came had no 

effect on their end-of-semester MKTI scores, there may have been other relevant 

variables that affectðand can thus predictðthese scores.  In order to discern which 

variables might be able to accomplish this, I constructed a multiple regression model by 

entering following data: institution,
42

 attitudes survey score change, average response to 

items related to course relevance, and the MKTI pre-test scores.  Using a stepwise 

regression analysis,
43

 the model excluded the institutional variable, citing it as not 

significant.  In fact, the only one of those variables I listed above which made it into the 

final regression model was the early semester score on the MKTI.  This pre-test score 

explained 52% of the variance in post-test scores.  In another model that forced all of 

                                                 
41

 p < .001 
42

 PSTs in MATH 281 were coded with a ñ1ò while those in MATH 291 were coded with a ñ2.ò   Thus, any 

positive correlation between this variable and other(s) shows that a higher institution score (MATH 291) is 

associated with a higher dependent variable score, which in this case in the MKTI score.  Conversely, a 

negative correlation would suggest that a lower institutional affiliation (MATH 281) is associated with a 

higher score on the dependent variable. 
43

 The stepwise regression method begins with the variable with the highest correlation to the dependent 

variable, and adds variables into the model only as long as they independently contribute significantly to 

the sum-of-squares calculation.   
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these variables to be included,
44

 these other variables together accounted for only an extra 

3% of the variance. 

 

 Variables Included Variables Excluded 

Variance in 

MKTI Scores  

explained by 

the model 

Model 

One 
MKTI Pre-Test Scores 

Institution, attitudes 

survey score change, 

average response to 

items related to 

course relevance, 

whether or not 

students were 

repeating the course 

52% 

Model 

Two 

Institution, attitudes survey score 

change, average response to items 

related to course relevance, MKTI 

pre-test scores,  whether or not 

students were repeating the course 

none 55% 

 

Table 4: A summary of the two regression models used to predict end-of-semester MKTI scores 

 

 

This means that of the data collected in this study, the only variable that is likely to shed 

much light on how PSTs will perform at the end of the semester is how well they 

performed at the beginning of the semester.  PSTs who earned higher scores at the 

beginning of the semester were likely to produce the higher scores at the end of the 

semester, and the PSTs with lower scores early in the semester were likely to remain 

relatively low-scoring at the end.  More specifically, this model predicts that a change of 

one standard deviation on the beginning-of-semester MKTI score results in a nearly ¾ 

standard deviation change in the end-of-semester MKTI.  In other words, two PSTs 

separated by a single standard deviation at the beginning of the semester are still likely to 

                                                 
44

 This is known as the ñenterò method. 
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be separated by nearly that much at the endðthough both scores are likely to be 

significantly higher. 

This result is revealing, because it suggests that neither of the two interventions 

represented by these different courses are better than the other in overcoming the effects 

of the knowledge with which the PSTs entered their courses.   Neither course was able to 

trump the influence of PSTsô prior knowledge and understanding so that all or most PSTs 

demonstrated similar achievement.   This is not a surprising result, insofar as it would 

seem unlikely for a semester course to nullify 12 or more years of formal education in 

mathematics.  On the other hand, it also suggests and reinforces the fact that both courses 

improved the MKT of all PSTs by similar amounts; the courses thus conform to the 

standard of ñraising all boatsò similarly.  The ñtypicalò PST answered 13% more items 

correctly at the end of the semester than at the beginning: the PSTs appear to have made 

measureable progress in developing MKT. 

 Among the handful of other variables in the second model described above, one 

variable in particular appears to have a disproportionate influence on the variance in 

MKTI scores.   The amount of change exhibited in PSTsô attitudes about mathematics 

and teaching between beginning and end of the semester is weakly, but positively 

correlated with the end-of-semester MKTI score.  This indicates that succeeding in 

changing (increasing) PSTsô scores on the attitudes survey instrument leads to increased 

scores on the MKTI.  There are many reasons why it is hard to be conclusive about this 

last result, because it may well be that those who scored higher were more prepared to 

undergo such attitudinal changes.  I will return to this topic later when discussing the data 

on PSTsô attitudes. 
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Differences in PSTsô Common Content Knowledge and Specialized Content Knowledge: 

Sub-scale Analysis 

The broad result of the MKTI analysis reveals that PSTsô at both institutions 

improved their MKT, but it does not address whether or not PSTs learned different 

mathematics as the theory predicts they would.  In order to determine this, I turn to a 

different analysis of the MKTI data, in which items are pooled together in subscales 

according to their assessment of common content knowledge (CCK) or specialized 

content knowledge (SCK).  With the assistance of a mathematics educator with expertise 

in teacher education and MKT in particular, I partitioned the 31 items into two subsets.  

Recall that common content knowledge addresses knowledge that any well-educated 

person would be expected to know.  This includes basic fluency with computation, ability 

to identify errors in calculations, and recollection of basic mathematical facts.  

Specialized content knowledge is knowledge that is particular to the work of teaching.  It 

includes being able to evaluate non-standard approaches to calculations and to determine 

the validity of such approaches in other contexts.  In addition, SCK is characterized by an 

ability to identify appropriate representations for key ideas and recognizing that particular 

skills can be decomposed into constituent sub-skills.  

Using this scheme, 15 of 31 items were categorized as CCK while the remaining 

16 items were labeled SCK.  ANOVA run on each set of data (beginning- and end-of 

semester common content knowledge scores and beginning- and end-of-semester 

specialized content knowledge scores) demonstrates that PSTs were not statistically 

different from one another on either measure at the beginning
45

 of the semester.  Both 

                                                 
45

 For CCK, p < .62 and for SCK, p < .68  
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cohorts of PSTs scored similarly on both types of items on the February administration of 

the MKTI. 

 

 

  Sum of 

Squares df Mean Square F Sig. 

PreTestCCK Between Groups 1.303 1 1.303 .254 .615 

Within Groups 506.935 99 5.121   

Total 508.238 100    

PreTestSCK Between Groups 1.088 1 1.088 .182 .671 

Within Groups 591.724 99 5.977   

Total 592.812 100    

Table 5: ANOVA Results Comparing Mean CCK and SCK sub-scale scores between Hilada and Rio 

Universities at the beginning of the semester. 

 

 

However, at the end of the semester, there is evidence that the PSTs at Hilada had 

developed more CCK than their counterparts.
46

  At the same time, Rio PSTs opened a 

similarly sized gap between themselves and Hilada PSTs in terms of SCK.
47

 

 

  Sum of 

Squares df Mean Square F Sig. 

PostTestCCK Between Groups 12.116 1 12.116 3.216 .076 

Within Groups 372.974 99 3.767   

Total 385.089 100    

PostTestSCK Between Groups 19.163 1 19.163 3.481 .065 

Within Groups 545.055 99 5.506   

Total 564.218 100    

Table 6: ANOVA Results Comparing Mean CCK and SCK sub-scale scores between Hilada and Rio 

Universities at the end of the semester. 

                                                 
46

 p < .08 
47

 p < .07 
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This means that while all PSTs increased their measured MKT, PSTs at Hilada developed 

different aspects of their MKT than did their counterparts at Rio.  Furthermore, these 

differences manifest themselves along the same dimensions which were foremost the 

focus in each course, namely common content knowledge (at Hilada University) and 

specialized content knowledge (at Rio University).  It is notable that while the differences 

are statistically significant, they were not large in magnitude: in the May administration 

of the MKTI, Hilada PSTs outscored Rio PSTs on common content knowledge items by 

a single item.  This means that on average, Hilada PSTs answered one more CCK item 

correctly than did their Rio counterparts.  The magnitude of the differences between the 

two cohorts in terms of SCK items was also approximately one item.   

This result points in the direction predicted by the learning theory and occurred 

over a relatively short span of instruction.  Though the size of differences was relatively 

small, there are other data that support the conclusion that the two courses learned 

different mathematics for teaching. 

Differences in PSTsô Common Content Knowledge and Specialized Content Knowledge: 

MKTI Item Analysis 

 

 On the scale of the entire MKTI, the PSTs at the different universities did not 

demonstrate different MKT.  However, partitioning the instrument into the two categories 

on which it assesses reveals that there were differences between the two institutions.  A 

closer look at individual items reveals a similar avenue of interpretation.  One of the 

conditions of my use of the items generated by the LMT project at the University of 

Michigan was to report only relative results as opposed to raw scores.  Therefore, I have 

chosen to compare responses on these items in terms of the magnitude of the difference 

between the percentages of PSTs at each school who answered the item correctly.  For 
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example, on a particular item, if 47% of Rio PSTs answered correctly, while 52% of 

Hilada PSTs answered correctly, I report the difference between them as 5%.   For 

purposes of the analysis, I chose a relatively arbitrary difference to consider significant 

enough to warrant further attention: 10%.  I chose this value because on many items, the 

difference in achievement was less than five percent so that a double-digit magnitude 

stood out among the 31 items on the instrument.  Nearly half (15 of the 31) of the items 

were answered by PSTs at both universities within five percentage points.  Seven items 

had differences of between five and ten percent.  The nine remaining items which 

differed by greater than ten percent are prominent, and are thus reported here. 

 With these criteria in place, I explored the results of each item at each campus for 

each administration of the MKTI.  As I argued in Chapter Four, the differences between 

the courses stemmed primarily from emphasizing different sub-domains of MKT.  One 

would expect that at the end of the semester, Hilada PSTs would perform better on items 

focusing on CCK while Rio PSTs should perform better on SCK items.     

 Looking at the results of performance on individual items, there were clear 

differences between the two cohorts.  Consider item #2: from the beginning- to the end-

of-semester MKTI, Hilada PSTs increased their percentage correct by 22 points, while 

Rio PSTs increased by 14 percentage points.  On item #4, Rio students increased their 

percentage correct by nearly 50 points, while Hilada PSTs increased by only 11 points.  

On item #8a, Hilada PSTs increased the 8% gap that existed at the beginning of the 

semester to 22%.
48

  On #9a, the same thing happened, but roles were reversed.  On item 

#10, Hilada PSTs increased their percentage of correct responses 34% from beginning to 

                                                 
48

 Rio students actually answered this item correctly in smaller numbers than at the beginning of the 

semester.   
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end, and Rio PSTs improved only 14%.  On item #12, Rio PSTs gained nearly 60 points 

while Hilada PSTs gained only 12 points.  On item #14, Rio PSTs gained 28 points while 

Hilada PSTs gained only 16%. 

Item 

Increase of 

Correct 

Responses at 

Hilada 

Increase Of 

Correct 

Responses at 

Rio 

2 22% 14% 

4 11% 49% 

6(d) 12% 40% 

8(a) 9% -6% 

9(a) 3% 20% 

9(b) -8% -1% 

10 35% 14% 

12 12% 60% 

13(e) 32% 0% 

14 17% 28% 
Table 7: Changes in percentages of correct responses on selected items by PSTs at each university 

 

 

 All of these examples were considered noteworthy because they were unusual in 

the following sense: the proportion of correct answers on the end-of-course 

administration of the MKTI was at least ten percentage points higher on one campus than 

the other.  In many of these cases, one campus dramatically improved the percentage of 

PSTs answering correctly, while the other campus gains were more modest.  While the 

analysis of the differences between the two courses I offered in Chapter Four can explain 

many of these results, it does not account for all. 

 Consider first the item with the largest gap between the two campuses: at the end 

of the semester, item #4 was answered correctly by a proportion of Rio PSTs 43 

percentage points higher than at Hilada.
49

  Yet, at the beginning of the semester, the two 

                                                 
49

 Note that in Table 7, the difference between the gains on item #4 at the two campuses is 38%.  Since the 

proportion of Rio PSTs answering this item correctly was 5% higher at the beginning of the semester, and 

the corresponding improvement was 38%, this is how I arrive at the 43% figure. 
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groups of PSTs were similar: MATH 281 PSTs answered correctly within about 5% of 

MATH 291 PSTs.  Item #4 involves an analysis of a childôs use of an alternative 

algorithm for a two digit subtraction, which features a non-standard regrouping process.  

The regrouping process in the item is illustrated in the example 364 ï 79 below:
50

  

 

582

97

81

463

1416

-

 

 

 

Why would Rio PSTs perform so much better?  One explanation might be that only 

MATH 291 PSTs worked on such an algorithm in class, and therefore, the MATH 281 

PSTs were at a disadvantage in trying to solve it.  This is not the case: both courses 

addressed precisely this algorithm.  MATH 281 discussed it during the alternative 

algorithms activity that PSTs worked on in groups out of the supplemental activities 

manual.  The course notes suggest that instructors highlight this very algorithm for the 

problem 364 ï 79: 

The most challenging student to figure out is #4.  His method is 

actually a standard algorithm in some countries; very possibly 

the student was taught this approach rather than inventing it 

him- or herself.  It uses the same concept as #7.  For example, 

when the student changes the 4 in the ones column of the top 

number to 14, that has what affect on the value of 364?  (adds 

ten).  In order to preserve the difference between these two 

numbers, he then needs to add ten to the 79.  Instead of doing 

that in the ones column, however, he added a ten in the tens 

column, making the 7 into an 8.  Similarly, when he changes the 

6 in the tens column of the top number to a 16, that changes the 

valueðhow much? (pause hereðsome students will says only 

ten is being added, not recognizing that ten tens or one hundred 

has been added; it is critical that this misconception be 

                                                 
50

 This example is not meant to illustrate the item itself, but simply is an example of the regrouping process 

in that item.  Item #4 does not involve two regrouping steps as this example does, but this is the problem 

used in MATH 281ôs course notes, described below. 
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addressed)  Since 100 has been added to the top number, 100 

needs to be added to the bottom number.  See the little diagonal 

mark below the 3?  That is a 1 in the hundreds column of the 

bottom number.   Now the subtraction can be carried out, 

knowing that the difference between 3 hundreds + 16 tens + 14 

ones and 1 hundred + 8 tens + 9 ones is the same as the 

difference between 364 and 79.  Try this algorithm on another 

pair of numbers (e.g., 203 ï 57 from last class). 

 

   

A related, but distinct interpretation is that Rio PSTs were better equipped through their 

course to analyze such work.  In Ball, et. al.ôs (2008) mapping of MKT, this item targets 

PSTsô specialized content knowledge: it asks PSTs to deconstruct the numerals into their 

constituent place values and an analyze of how those values can be manipulated 

differently from the standard algorithm.  The analysis of the two courses shows that 

MATH 291 focused more on this component of MKT than did MATH 281, and thus 

PSTs in this course were ready to address the issue on this item in greater proportion than 

MATH 281 PSTs.  Thus, Rio PSTsô knowledge was activated by this item, while Hilada 

PSTsô knowledge lay inert. 

 Alternatively, the most lopsided item in Hiladaôs favor was item #8a, in which 

PSTs were responded to a question involving the number of fractions between zero and 

one.  This item was included in the instrument despite the fact that fractions were not 

commonly addressed in both courses.  Items such as this were designed by the LMT 

project and grouped with other items that were commonly addressed by both courses, and 

in order to maintain their statistical integrity, these groupings, where they occurred, were 

retained.  Fractions were frequently discussed in MATH 281, and though the knowledge 

required for this item did not appear to be an explicit goal of the course, it is a reasonable 

corollary to the discussion described in the course notes about locating fractions on the 

number line: 
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Number lines also give a way to visualize some important facts 

about fractions.  These should remind you of analogous facts 

about decimals studied in chapter 2. 

 

1.   Rounding:  Frequently "unusual" fractions like 17/30 are 

mentally replaced with a familiar fraction that is close in 

size, such as 1/2.   

 

2. Fractions Between Fractions:  Number lines also allow us to 

"zoom in" and find fractions lurking between two given 

fractions.  For example, name one fraction between 17/30 

and 1/2.  Between 17/30 and 18/30.  Name two fractions 

between 2/3 and 3/4. 

 

 

This does appear to be a case of one classðbut not the otherðaddressing the topic.    

MATH 291 PSTs simply did not have an opportunity to learn about the ideas in this item 

over the course of the semester, while MATH 281 PSTs did.    

Of the four items on which Hilada PSTs performed substantially better (> ten 

percentage points) than Rio PSTs, three are related to fractions and were classified as 

CCK with respect to fraction concepts.  On the other hand, five of the six items on which 

Rio PSTs performed substantially better were classified as SCK.  This split in 

performance maps directly back to the split I described between the respective foci of the 

courses, and likely influenced the statistical results I reported above.  This is further 

evidence that the differences between the two courses influenced the kinds of 

mathematical understanding that PSTs developed.  It appears that these differences arose 

from a simple difference in opportunities to learn, and in important ways, this is true.  

However, these opportunities were direct consequences of the mathematical and 

pedagogical design choices made for each course.  MATH 291ôs focus on childrenôs 

thinking and unpacking of elementary school ideas generated a different perspective on 

the same algorithms and ideas as addressed by MATH 281ôs focus on operation and 



 

 125 

 

notation that sought to explain and justify using more sophisticated mathematical 

approaches.   

One item in particular forms a potential counterpoint to the analysis above.  Item 

#2, in which PSTs were asked to choose the best representation a studentôs description of 

her method for computing 1412³ , which is an application of the distributive property of 

multiplication across addition.  At the beginning of the semester, Hilada PSTs answered 

this correctly in greater proportion by 5%.  During the semester, while both courses 

discussed how to deconstruct such statements, MATH 281 focused on the use of 

algebraic properties such as distribution, while MATH 291 concentrated on place value 

arguments.  In May, the gap on this item had increased to 14% in favor of Hilada PSTs.  

This is an SCK item which both courses addressed but in different ways.  Generally 

speaking, PSTs from Rio answered these kinds of items in greater proportion than did 

Hildada PSTs, and it is unclear why it was not the case of item #2.  It may be that this 

item bore resemblance to the emphasis MATH 281 placed on rewriting mathematical 

statements using various algebraic properties of the given sets (in this case the 

distributive property).   

 Another item for which the description of the courses does not provide 

explanation is item #9b.  It was the only item for which both groups of PSTs answered 

incorrectly in greater proportion in May compared to February.  This item requires PSTs 

to interpret an example of an alternative method for multi-digit multiplication and decide 

if it is a method that will ñworkò for all such problems.  This item was classified as SCK.  

As such, Rio PSTs attended to this kind of mathematical knowledge more often than did 

Hilada, and they indeed performed better on this item than their Hilada counterparts, but 
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both groups answered correctly less often compared to the beginning-of-semester MKTI.  

This is another result for which I do not yet have an explanation, especially as this item 

was part of a group of items in which this result was not repeated. 

In addition to exploring the differences in percentage of PSTs responding 

correctly, I also noted two items in which the polarity of the gap was reversed.  For 

example, at the beginning of the semester, the proportion of MATH 281 PSTs who 

answered #6d correctly was nearly twice the proportion of MATH 291 PSTs who 

answered that question correctly.  Item #6 requires PSTs to choose appropriate 

collections of base-ten bocks to represent a number.  This item groups multiple 

representations together and asks PSTs if they are correct: in other words, do the 

relationships between the blocks represent the relationship between the place values 

expressed by the numeral?  Some choices are incorrect, one would be a typical, correct 

choice of blocks, and another would be a correct, if unconventional, choice. 

 In February, Hilada PSTs appeared to understand #6d in this collection in much 

greater numbers than did their counterparts at Rio University.  At the end of the semester, 

the Rio PSTs in MATH 291 outscored the Hilada PSTs in MATH 281 by eight 

percentage points.  Although more Hilada PSTs answered this question correctly at the 

end than at the beginning of the semester, the improvement was substantially smaller than 

that displayed by MATH 291 PSTs at Rio.  This kind of dramatic reversal from 

beginning of the semester to the end happened only one other time, and as such, warrants 

further investigation.  Why would the Rio PSTsô improvement on this item so greatly 

dwarf that of their Hilada counterparts?   
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 On the other hand, at the beginning of the semester, MATH 291 PSTs answered 

item #13e correctly 22 percentage points higher than their MATH 281 counterparts, 

while in May, MATH 281 PSTs answered 15 percentage points higher than MATH 291 

PSTs.
51

  Item #13e involves PSTsô assessment of a particular ñrule of thumbò related to 

division.  The rule of thumb is false, though it is true when the number system being used 

is whole numbers.  Counter-examples exist among integers and fractions, and fractions 

are the archetypal counter example to the rule of thumb. 

 These are the only two cases of such extraordinary turnarounds in the percentage 

differences between Hilada and Rio.  This data, along with the sub-scale analysis suggest 

that indeed, the two cohorts of PSTs learned different aspects of MKT.  In the case of 

#6d, the unorthodox choice of manipulatives, is special among the other items in the 

group because they are more straightforward uses of the blocks and thus they would not 

necessarily show differences between PSTsô MKT.  Item #6d requires a greater facility 

with and understanding of place value and representations for it, which Iôve argued that 

Rio PSTs had more opportunities to develop.  It arguably also reveals something about 

PSTsô knowledge of content and teaching, which requires teachers to choose appropriate 

representations for instruction.  Here too, I have argued that Rio PSTs had more 

opportunity to develop this aspect of their MKT.  It is not surprising then that the Rio 

PSTs would show significantly more improvement than MATH 281 PSTs. 

 In the case of #13e, it may be that this turn-around is due to the fact that Hilada 

PSTsô had greater experience with dividing rational numbersðfractions in particularðon 

which the counter-examples to this statement are often based.  Recall that MATH 291 did 

                                                 
51

 Rio University (MATH 291) PSTs answered this item correctly in nearly the same proportion from 

beginning to end of the semester, while the percentage of correct responses rose 36% among MATH 281 

PSTs.  
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not address operating with fractions explicitly,
52

 while this was a regular theme in MATH 

281.  A statement like #13e was classified as common content knowledge, which was the 

type of mathematical knowledge that was more prominent in MATH 281 than in MATH 

291, and again, it should not be surprising that MATH 281 PSTs performed better than 

their counterparts on this item.    

 At the same time, some differences were smoothed out from beginning to end of 

the semester.  There were eight items for which one campus answered correctly at least 

ten percentage points more than the other at the beginning of the semester.
53

  Of these 

eight, only items #6d and 13e (discussed above) had such a large gap at the end of the 

semester.  One explanation for this ñsmoothing effectò is the broad result of the statistical 

analysis of MKTI data: the two courses were both effective in teaching PSTs important 

mathematical ideas for teaching.  On the other hand, like the other items Iôve highlighted 

above, each of them focused on a particular sub-domain of MKT, sub-domains that 

would seem to privilege one group of PSTs over another, and interestingly, this appears 

to account for much of the ñsmoothingò effect.  Consider the fact that four of the five 

items clustered in #6, which assesses PSTsô understanding of place value and relates to 

their SCK, were answered correctly in greater proportions by Hilada PSTs than Rio PSTs 

at the beginning of the semester.  At the end of the semester, this specialized content 

knowledge that Rio PSTs had more opportunities to develop in MATH 291 closed the 

gap to within five points. 

                                                 
52

 While it is true that a statement like .67 x .37 can be translated into a statement like 
7

3

7

6
³ , this connection 

was not part of MATH 291, and I do not presume that PSTs would make this connection on their own.  

Making connections such as these appears to be the purpose of MATH 292, the next course in the sequence 

at Rio. 
53

 16 of the items on the beginning-of-semester MKTI resulted in gaps of less than 5%.  The other seven 

items had gaps of between five and ten percent. 



 

 129 

 

 The use of situated learning theory to interpret this data suggests that PSTs at the 

different universities developed measurably different MKT, but it would be incorrect to 

assert that PSTs in one setting did not develop MKT associated with the other.  For 

example, on item #9c (related to alternative algorithms for multi-digit multiplication 

which is associated with specialized content knowledge, Hilada closed a large gap that 

existed at the beginning of the semester and at the end answered this correctly in greater 

proportion than did Rio.  Conversely, Rio closed a 14 percentage-point gap to four points 

on item #13d, which states what is often referred to as the multiplication property of 

equality; this item was classified as CCK. 

 The thrust of this item analysis is therefore to support the sub-scale analysis 

which shows that Rio PSTs and Hilada PSTs gained differential understanding of MKT: 

while Hilada PSTsô learned more common content knowledge than Rio PSTs, the Rio 

PSTs learned more specialized content knowledge than Hilada PSTs.  The statistical 

analyses show that both courses seem to have helped the PSTs make significant progress 

in developing MKT and that neither course stands out against the other in terms of how 

much MKT PSTs developed.  The item analysis does not contradict this conclusion: the 

number of items with lop-sided percentage differences was relatively equally distributed.   

However, the differences in which items PSTs answered correctly demonstrate that the 

different foci of the courses may indeed have developed MKT in measurably different 

ways.  

Interview Analysis: MKT 

If the statistical analysis of the MKTI data is not definitive about the differences 

between PSTsô mathematical knowledge for teaching, the analysis of individual items 
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suggests that a complete description of the effects of these courses may require deeper 

analysis.   The interview data were collected for precisely this purpose, and I argue below 

that they provide more evidence that there were substantive distinctions among the MKT 

that PSTs developed at the two universities.    One of the limitations of a multiple choice 

assessment like the MKTI instrument is that the PSTs had no opportunity to explain why 

they answered the way that they did.  Interviews can lay bare more of PSTsô 

understanding about how children think, and whether and how they might apply their 

knowledge in teaching situations.    Below, I describe my analysis of the interviews as it 

pertains to the PSTsô knowledge of mathematics for teaching.  This component of the 

analysis offers a subtly different view of the results contained in the statistical analysis of 

the MKTI, and supports the results of the subscale analysis as well as the individual item 

analysis. 

 Recall that three PSTs from each course were selected to be interviewed.  Those 

selected were chosen on the basis of their pre-test scores on the MKTI.  One PST from 

each class was chosen that scored more than a standard deviation below the mean for 

their course sample, one PST who scored within a standard deviation of the course mean, 

and one who scored more than a standard deviation above the course mean.  The intent 

for this was to draw interviewees from a wide cross-section of each course in terms of 

mathematical knowledge for teaching.  PSTs were grouped according to these criteria and 

selected randomly to participate.  When two PSTs who were selected were unavailable to 

participate in this component of the project, another PST in that group was randomly 

selected and recruited for the interview. 
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 Although many individual statements uttered by PSTs at one university can be 

found in the transcripts of PSTs at the other, data stemming from the interviews suggest 

that the courses are in fact distinguishable along the MKT dimension.  Nothing 

demonstrates this more clearly than the answers PSTs gave to the final prompt in the 

interview.  Carla was a PST enrolled in MATH 281 at Hilada University, and Ann was 

enrolled at Rio University in MATH 291.  Both PSTs scored in the middle third of their 

respective courses.  As I described above, this middle-third pair of PSTs scored within a 

single standard deviation of their respective course means, though both scored higher on 

the pre- and post-test than the course means and medians.  Carlaôs post-test score was an 

improvement by about İ a standard deviation, while Annôs post-test score was nearly 

two standard deviations above her pre-test score.   Annôs pre-test score was lower than 

Carlaôs, but her post-test score was substantially higher than Carlaôs.
54

  

All interviewees were asked to discuss three prompts that were intended to elicit 

information about their ability to apply their mathematical knowledge to teaching 

situations. The final item among the three asked PSTs to evaluate the division 

statement 6.9· , without context or a suggestion to use a particular model or algorithm.  

PSTs were asked to solve the problem as if it were a question they needed to answer for 

themselves in a personal situation: the way they would prefer to perform the computation.  

Later, interviewees were asked how they might help a struggling student to understand 

the technique they used for division, and what kind of story could be modeled by the 

number sentence given. 
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 Carlaôs survey means were higher than Annôs at the beginning and the end of the semester. 
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   Both Carla and Ann used the standard long division algorithm to solve the 

problem, shifting the decimal point on the divisor rightward one place and then doing the 

same to the dividend.  The resulting division problem then became 690· , which could 

then be evaluated with a straightforward application of the long division algorithm.    

Carla appeared to have a strong procedural understanding of the algorithm and had 

confidence in her use of it: 

C: (laughs) So, there you go, so itôs, uh, fifteen and you donôt 

need the decimal there [to the right of the ones place], buté 

M:  Ok.  Um, why do you move the decimal like that?   

C: Um, because the divisorðno, dividðyeah, divisor, dividend, 

right? 

M:  I think so. 

C: Yeah (laughs).  Uh, the divisor canôt be a fraction.  It has to 

be a whole.  So, you move, you have to move that, and since 

youôre moving this, a, tenth, right?  This is the tenths place, 

then you have to do the same to the dividend. 

M:  Ok. 

C: And then you do your long division.  

Figure 7: Carlaôs work on interview prompt #3, evaluating the problem 6.9· .  Note in particular her use 

of the standard long division algorithm, and the use of fractions (though the statements are not true, these 

and the pictures were written during a different part of the prompt. 
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Though Carla did not demonstrate mastery of the terminology, she expressed no 

reservation about how to perform the algorithm and showed no doubt that her 

computation had resulted in the correct value.  Contrast those facts with Annôs response 

to the prompt.  Ann also used the standard algorithm for its efficiency, yet she was not 

confident that her solution was correct:  

A: I just got down here [to 30] (laughs)éUm, I donôt know if 

Iôm going to get the right answer.  I hate division.  (laughs).  

Umééé is that the right answer?  (laughs).  No? 

M:  Well, Iôm going toðwhat I want to ask you next iséwhat 

were you doing there that you just erased? 

A: Oh, I was seeing if it worked (laughs). 

M:  Did it work?  How were you doing it to see if it was the 

answer? 

A: Multiplying fifteen by point-six. 

M:  Ok.  And, did it work? 

A: Yeah. Right?  (more writing)éYeah. 

 
Figure 8: Annôs work on interview prompt #3.  Again, Ann uses the standard long division algorithm, but 

also uses multiplication to check her work. 

 

 

Ann used the standard algorithm for its efficiency, and yet lacked confidence that her 

solution was correct. Carla struggled a bit with vocabulary but she showed no hesitation 
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in explaining how the shift of decimal places led to the correct number.  On the other 

hand, Annôs first utterance after working on the problem demonstrated her discomfort.   

Ann performed the initial calculation using an algorithm which she knew to be efficient, 

but one which she could not trust to be effective, because she did not understand the 

algorithm very well.  In talking through the next part of this task, in which I asked PSTs 

how they would represent the problem to a child who struggled to understand the method 

they used to compute the answer, Ann revealed more about her uneasiness with the 

standard algorithm, and her preference for an alternative approach: 

M:  What could you do to help me?  What would you want me to 

understand that might help me understand this thing better? 

A: I donôt know.  I remember being taught how to do this[long 

division]é(laughs)éUmé 

M:  Youôve talked about these kinds of problems in class, right? 

A: Yeah, uméI feel like when we did them in class, weôd always 

like, draw them.  And we donôt, like, I donôt know.  Weôd 

never actually, like, write them out. 

M:  Ok.   

A: So when we do thisé 

M:  So, you chose to write itéYeahé 

A: Yeahé 

M:  éhow come you chose to do that?  If, I meané 

A: ôCause itôs easier (laughs). 

M: I suspect that you probably donôt do a whole lot of these in 

your daily life, right? 

A: Yeah. 

M:  Probably most of the ones youôve done like this, youôve done 

in class. 

A: Mhmm. 

M:  Right?  So, if you draw those out in class, what made you do 

that now?   

A: óCause itôs faster (laughs). 

M:  Ok. 

A: Um, I mean, I donôt know how to explain it that well.  Like, it 

[the division statement] makes more sense to me to explain it 

with the picture (laughs).  Umé 

 

Ann and Carla, though they had both used the same algorithm to generate the same 

answer to the problem, showed different levels of confidence in their knowledge, but this 

does not necessarily mean that they had developed different knowledge.  Indeed, the fact 
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that they both chose the same approach indicates that their knowledge of problems like 

these was similar.  At this level, there is support for the statistical result of the MKTI 

comparison: there was no measurable difference in PSTsô knowledge.  However, 

knowledge as viewed in situated learning theory is predicated upon a context in which 

problems occur.  Though this ñnakedò problem has a context of its own, that context has 

no special place in teaching practice.  Being able perform this computation is simply 

Common Content Knowledge to which many people have access.  For this reason, the 

task expanded beyond this initial prompt to get PSTsô thoughts about how to help a 

struggling child with the very same problem. 

In particular, I asked PSTs to talk about what representations, tools, or ideas they 

would use to help a student who was struggling to compute the answer using the standard 

algorithm.   Because both MATH 281 and MATH 291 emphasized the use of pictorial 

representations, I guided PSTs toward a use of pictures to represent the problem.  It was 

at this juncture that Ann and Carla demonstrated a substantive difference in their 

knowledge; evidence of a difference in MKT.  Ann had developed a representation and 

subsequent understanding of division that could support the connections she may be 

called upon to make as a teacher: 

 

M:  So, could you use a picture to explain this?  I mean, if Iôm 

your student, and weôve talked about this in classé 

A: I think itôd be easier to explain it with the picture. 

M:  So, could you, I meanéjust pretend with me for a minute. 

A: (laughs) 

M:  Can you go through with me how you might do that?  How 

you might explain this with a picture? 

A: Um, get, like graph paper, and make, like, one, and draw 

nine of them and then cut them into fiveðlike, point-six, 

whateveréLike a wall or whateveréUm, and then go over 

there and count them all up.  And I think it better illustrates 

what it means, rather than be likeéôCause  like, when Iôm 
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thinking about this, Iôm like, óOh, ignore the decimal and six 

goes into nine one time, andéô 

 

Annôs previous hedging was no longer evident as she described how she would 

represent the problem for a child and explained that a pictorial representation (See 

Figure 9) would have greater explanatory power for her than the standard 

algorithm. 

 

 

Figure 9: A representation of what Ann was likely describing in her explanation of how to solve 6.9·  

using a picture.  She says to draw ña wall or whatever,ò which I have interpreted as the vertical column 

representing one.  Note that there are 15 groups of .6 represented.  Ann did not create such a drawing 

during the interview, but drawings like thisðto which she referredðwere prevalent in class. 

 

 On the other hand, when Carla was asked to explain her use of the 

standard division algorithm, Carla drew on her knowledge of fractions.  Recall 

that operations with fractions were a large component of Carlaôs work in MATH 

= 1 

156.9 =·
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281, in addition to the pictorial representations similar to those that Ann 

described.  Carlaôs choice was to argue from rules about operating on fractions: 

C: I probably would look at saying that a decimal is like a 

fractioné 

M:  Uh huh. 

C: éand that this [.6]  is six tenths.  Um, and that nine, nine is 

a whole number, um, and so if weôre going toðok, so thatôs 

six tenthsðand Iôm going to make that aéinto just six, I 

have to make itðI have to multiply it byédo I have to 

multiply by ten?  Yeah.  Multiply by ten, right?  Is that right? 

M:  Seems right. 

C: So then it becomes sixty tenths, does that make sense?  Sixty 

tenths is six, yes it does. 

M:  Right. 

C: Um, so thatôs how Iômðbut this child is just learningéI 

donôt know.  I actually donôt know.  If a child thatôs learning 

how to do this, canðI would assume that if youôre doing, if 

youôre doing, um, decimals, ten you also have to understand 

the concept of fractions.   

M:  Ok. 

C: I would think.  Because if theyôre going to understand that 

thatôs, thatôséthat this is a tenth, then they have to 

understand that this is what it means. 

M:  Right, ok. 

C: That itôs six portions of ten. 

M:  Right. 

C: And, um, so to make it a whole number, they would have to 

multiply it by tené 

M:  Right. 

C: éto get the numbers to six.  And so, so if I got this to be six, 

then to make this, to make this...I canôt just leave this as a 

nine.  Then I would have to multiply the nine times ten as 

well, because whatever I do to this one, I have to do to this 

one.  So if I multiply the nine times ten, I get ninety.  So then 

it makes the problem actually, six, um, ninety divided by six, 

which is fifteen.  And, and it works becauseéit would work 

regardless.  I guess I could make this sixty and make this 

nine hundred and it would still be the same thing, or, six 

hundred and this nine thousand, and it would still be the 

same thing.  As long as weôre increasing by tens, by 

hundreds I guesséby hundreds, um, both numbers, then itôs 

ok. 
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The choice that Carla made may have been one of necessity.  The other primary 

model for interpreting these problems in MATH 281 was to draw pictures, and 

Carla was not able to draw upon this work during the interview: 

 

M:  I know that a lot of problems that you guys did together, 

pictures were a big deal. 

C: Right.  And thatôs what Iôm trying to come up withé 

M:  Iôm wondering if thereôs a picture thaté 

C: éa picture. 

M:  éthat wouldé 

C: Right. 

M:  émake that work, that there would be a way to draw that 

picture. 

C: Mmm.  Um, I mean I guess you could haveégosh I really 

canôt remember how we did the pictures for these, and it was 

not that long ago. 

 

 

Both PSTs used the long division algorithm to compute the answer to the 

problem, and Carla showed more confidence with this algorithm than Ann did, though 

when each PST confronted representing the problem to a struggling student, Ann showed 

more confidence than Carla in generating a representation that illustrates the relationships 

between the place values which are critical to evaluating the statement.  The use of 

fractions to show how to do the problem is certainly legitimate, though children who are 

learning long division are unlikely to have gained much facility with fraction operations, 

and as such, fractions may be may be an inadequate mechanism for the task.  In addition, 

this representation is further removed from typical representations for dividing with 

whole numbers, while the picture to which Ann referred is a common one among pictures 

of division with whole numbers.  Certainly, both PSTs have an incomplete understanding 
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of division and how to teach it, but this is evidence that Ann has a tool that Carla does 

not.
55

 

 The final question related to this prompt asked PSTs to come up with a word 

problem, a situation that might be best for illustrating this problemðand the concept of 

divisionðto children.  Here is where the differences between Carla and Ann stand out 

most. 

M:  Could you think of how you might devise a word problem 

that mightðthat would get the class started with a problem 

like that? 

A: UméééI always use kids and candy (laughs). 

M:  (laughs) 

A: Um, it can be like, there are nine pounds of candy, and you 

put point-six pounds in a goody bag, how many people get 

candy, or how many kids get candy, something like that.   

M:  Ok. 

A: Is thatégood (laughs)? 

M:  Alright, let me... 

A: Or, something like that (laughs)! 

M:  énine pounds of candy, you can put point-six pounds in a 

goody bag, how many kids will get candy?  

A: Or, óhow many goody bags will there beô would make more 

senseé 

M:  Alright. 

A: But, yeah. 

M:  Alrightéhow does that problem match that do you think?  

Like what about your problemé 

A: And like, what it means? 

M:  Yeah, like, what about your problem is going to generate 

talking about this, this math problem? 

A: I guess just explaining that the meaning of how many times 

will point-six fit into nine. 

 

Note Annôs use of the phrase ñI always use,ò which signifies that this kind of problem is 

something with which she has experience.  In fact, writing story problems that could be 

modeled with number sentences like these was a primary component of the work MATH 

291 PSTs did at Rio.  Ann modified the language of her initial problem (ñéóhow many 
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 In fact, Annôs interview took place in the second-to-last week of classes in Rioôs Spring semester.  Her 

class was had not completed its discussion of the long division algorithm.   At the time of  Carlaôs 

interview, her class was to meet one more time to review for the final exam. 
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good bags will there beô would make more senseéò), but otherwise did not show the 

hesitation that she demonstrated with the long division algorithm.  Her last statement also 

indicates her interpretation of the number sentence as being modeled with repeated 

subtraction as opposed to associating it with a partitioning model of division.
56

 Although 

it is possible to construct a problem around the statement 6.9· , such stories are often 

convoluted and awkward.  Repeated subtraction is typically a more natural fit.  In other 

words, Ann not only appears to understand the meaning of division here, but also has 

developed something of a catalog of stories that can be matched to division problems. 

Contrast this with the struggle that Carla has in turning these numbers into a story 

problem: 

C: Then, I would probably do something a little more practical, 

like getting a bunch of pennies.  Like, getting six pennies, 

and I could takeðóhereôs six pennies.  How many six 

pennies, um, does it take, to, to uménine dollars?ô  Right?  

Yeah.  Nine dollars. 

M:  How many six pennies does it take to make nine dollars? 

C: How many groups of six pennies, would it take to make nine 

dollars?  And then I would say, óWell, another way that you 

could look at that that would make that a lot easier, is how 

many six dollar bills are in ninety?  Except that thereôs no 

such thing as six dollar bills. 

M:  (laughs). 

C: How many piles of sixesé 

M:  Right, you could, you couldé 

C: ...how many piles of sixesé 

M:  étweak it a little bit. 

C: Right.  How many stacks of six dollars? 

M:  Ok.  So, I can see why six dollarsðstacks of six dollars 

would go into ninety dollarséthere would be fifteen of those 

stacksé 

C: Mhmm.  There would be fifteen of those stacks. 

                                                 
56

 Division is often modeled in one of two ways.   Both models associate the dividend with the total number 

of objects in the problem (e.g., Suppose there are 45 toys).  Repeated subtraction associates the divisor with 

the number of groups into which the total number of objects is to be divided (the toys are divided into 

equally-sized groups of five) and the number of groups is unknown (how many groups will there be?)  

Partitioning associates the divisor with the number of equal-sized groups into which the total is to be 

partitioned (the toys are divided into five equally-sized groups) and the size of each groups into which that 

total is to be divided is unknown (how many toys will there be in each group?).   
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M:  But if I do six penniesé 

C: Mhmm. 

M:  There are going to be a lot more than 15 groups of six 

pennies in nine dollars, arenôt there? 

C: Oh, this would be sixty pennies.  But that would make it even 

suckier.  Yeah, because, Iôm sorry, you could haveé 

M:  You could haveé 

C: éa hundred and fifty penniesé 

M:  Soé 

C: Yeah. 

Here, Carla also seems to be trying to use a repeated subtraction model for the divisionð

she is trying to figure out how many groups of a particular size fit into a totalðbut she 

demonstrates great difficulty in articulating a story that would require such a calculation.  

In particular, when attempting to use money to illustrate the numerals, she does not have 

a firm grasp on the connection between the relationships between pennies and dollars, the 

decimals in the numerals representing their monetary value, and the place values which 

they represent.  Carla wanted to associate the decimals in the naked statement with the 

decimals that are prominent in using money, but she could not connect the physical 

representation of those decimals with the numerals themselves as Ann had done.   

This is one of the key components that Ma (1999) highlights in her description of 

profound understanding of fundamental mathematics, and is the primary element of SCK.  

Ann had already developed a collection of stories that fit models for division, and Carla, 

while making progress as she talked out loud, appeared to be confronting the problem as 

if for the first time.  Ball claims that one important piece of MKT is ability to choose 

appropriate representations and examples to illustrate key mathematical ideas.  In the 

exchanges above, Carla showed some discomfort in choosing a representation for the 

number sentence 156.9 =·  and struggled even more when trying to come up with a story 

in which the procedure might be applied.  In contrast, Ann confidently gave a quick 



 

 142 

 

description of how she would draw a picture to show the relationships between the 

numbers in this situation.  These relationships form the basic sub-concepts which make 

up the larger idea(s) of division.  She said ñI always useéò as if she had much 

experience designing problems around division number sentences.  In fact, she did have 

some experience doing this, because it was a focus of the MATH 291 course which she 

had nearly completed.  MATH 281, on the other hand, did not emphasize these 

connections as strongly and so it is not surprising that this difference between Carla and 

Ann arose. 

 I claim that these differences are explained by the differences arising from the two 

courses themselves.  Carlaôs knowledge was procedurally sound and made an important 

connection between representing rational numbers both as fractions and decimals.  It was 

a reflection of the focus in her course on procedural fluency, and justification for those 

procedures across these different representations.  Based on this evidence, there is reason 

to expect that Carla could operate on rational numbers with relative ease.  When Carla 

was asked to generate a context for these calculations, she struggled.  On the other hand, 

Ann admitted a lack of confidence in working with rational numbers (even when in 

decimal form) and her experience in MATH 291 was unlikely to help her make the kind 

of connection between decimal and fraction representations that Carla made. However, 

MATH 291 clearly had an influence on Annôs use of representation when thinking about 

a context in which she was a teacher of young children.  Despite her uneasiness with the 

problem itself, Ann showed no corresponding fear of describing a picture for solving the 

problem and a related situation for which it could serve as a mathematical model.   

Though she may not have been able to use it for operations on fractions, Annôs 
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representation is robust enough to support such a conceptual move.  Carla, unable to 

bring such a representation to bear on the problem, struggled greatly to come up with a 

context in which the problem could be set.  Carlaôs knowledge about this appears to be 

confined to the Common Content Knowledge and Specialized Content Knowledge sub-

domains of MKT, while Ann shows evidence of Knowledge of Content and Teaching.  

These differences echo the differences between the courses each PST took and, I believe, 

are explained by them. 

 The different course experiences can explain these different responses, if not 

completely, then at least in large measure.  If we were to consider Carla and Ann isolated 

cases, it may be easy to dismiss them as anomalous.  After all, Ann appeared to have 

made much greater progress over the semester than Carla did on the MKTI scores.  There 

is evidence however, that Carla and Ann are not accidents, but part of a trend.   

 Consider other evidence that shows parallel results between Eliot and Maeby, 

who earned among the highest scores of their respective courses on both pre- and post-

tests of MKT.  Eliot was a student in MATH 281 at Hilada, while Maeby was enrolled at 

Rio in MATH 291.  Eliot was the only PST who completed the interview significantly 

after her course was over.
57

  Interestingly, neither Eliot nor Maeby made use of the 

standard long division algorithm to solve the problem.  Eliot immediately invoked 

division of fractions, multiplied nine times ten-sixths, and simplified.  Instead, Maeby 

used a guess-and-check strategy through multiplication.  Like Ann, Maeby showed a lack 

of confidence in her first instinct: 

                                                 
57

All  Rio PSTs were interviewed in the second-to-last week of classes, while two Hilada PSTs were 

interviewed during the last week of classes.  Eliotôs interview took place nearly a month after classes at 

Hilada had concluded. 
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MA:  éand then another, so that [refers to six] would be one.   

So, twelve, fourteen, fifteen.   

M:  Ok. 

MA:  A little drawn out, but, (laughs). 

M:  But, if thatôs how you do it, thatôséOk, so fifteen, and 

would be pretty confident with that answer?  Like if 

somebody said, óAlright, Iôll give you one hundred bucks if 

youôre right and nothing if you are wrongéô 

MA:  (laughs). 

M:  Would you feel pretty confident about that? 

MA:  Yeah. 

M:  Yeah?  Ok.  Well, you just made a face like, óOh, maybe 

not.ô 

MA:  (laughs).  Um, Iôd be about eighty-five percent confident 

(laughs).   

 

Maebyôs figure of 85% seemed high to me at the time; her demeanor and voice indicated 

that she had little confidence that she was right.  This time, it was not so much that she 

did not believe in her method for evaluating the statement (guessing and checking is a 

relatively inefficient, idiosyncratic approach which it seems unlikely she would have used 

without understanding) but rather than she felt sure that she had made a mistake along the 

way.  If Maeby showed similarities with Ann in her lack of confidence of the initial 

computation, she showed similar comfort with creating a representation of the problem 

that could help her evaluate it: 

 

M:  What could you do to make yourself more confident, other 

than getting out a calculator? 

MA:  Other than getting out a calculator?  I honestly would get 

out my graph paper and do like, what we did in class, like 

makeé 

M:  Can you give me a sketch of what that might involve? 

MA:  Um, yeah.  So, the BMU would probably be like, ten 

blocks.  So Iôd draw out thoseé.like, this is ten. 

M:  Ok. 

MA:  (whispers) one, two, three, four, fiveé 

M:  And so each one of those has ten little blocksé 

MA:  Yeah, ten little blocks, so itôd be ninety all togetheré 

M:  Alright. 

MA:  éand then uméno wait, now Iôm trying to thinkéthis is 

bad because the finalôs going to be on this (laughs)é 

M:  (laughs). 



 

 145 

 

MA:  Um, and then, so then point-six would be six blocks, and so 

youôd see how many groups of six blocks fit into that 

ninety. 

M:  Ok, so then youôd try and...would you count, would you 

circle, what would you do to figure that out?   

MA:  Uméyeah, I would probably count, like every six, and 

block it off, block it off, block off every six. 

M:  Ok. 

MA:  And then when I got that done, Iôd just count how many 

blocksé 

M:  Right. 

MA:  éIôd done. 

M:  How many blocks do you think youôd get? 

MA:  (sighs)ééso I guess youôd be doingðthat, at that point, it 

would just be ninety divided by six, because you have 

ninety blocks and youôre dividing it into like, sixes. 

M:  Oh, ok, uh huh. 

MA:  Um soééUm, maybe IôveðI donôt know, now I think Iôm 

wrong (laughs). 

M:  Well, what were you going to write down?  

MA:  I wasé 

M:  So you say thereôs ninety blocksé 

MA:  Yeah, ninety blocksé 

M:  édivided by six little bitty blocks.  What wereé 

MA:  Well, itôs divided into groups of six blocks. 

M:  Oh, groups of six blocks, ok. 

MA:  Um, so I guess that would just figure out likeéum, it 

would be, so itôd be ten is sixty blocks and we need ninety.  

Yeahéthirtyéyeah, itôd be fifteen groups of six blocks.  

Right?  Yeah. 

M:  Which is what you got here. 

MA:  Yeah.  YeséYeah! (laughs) 

M:  Alright.  So, are you more confident now that itôs fifteen? 

MA:  Yes. 

M:  Ok.  Um, ok, very interesting.  Soé 

MA:  Do you know the real answer?  Am I right (laughs)? 

 

 

Maeby could not shake the lingering doubts raised by her first computation.  Still, she 

quickly chose a BMU (ñSo, the BMU would probably be like, ten blockséò), described 

it (ñSo Iôd draw out thoseé.like, this is tenéò), and then outlined how that choice would 

lead her to an answer to the problem (ñéso then point-six would be six blocks, and so 

youôd see how many groups of six blocks fit into that ninetyéò). 



 

 146 

 

 Eliot, a Hilada student, immediately and confidently used a fraction representation 

to answer the question but, like Carla, had difficulty coming up with an alternative 

representation or generating a word problem that might require such a computation: 

M:  But how you would actually solve that? 

E: (Writes).  (Mumbles).  Yeah. 

M:  Ok.   

E: Thatôs [.6 is] an easy numberðan easy decimal for me, 

because itôs easily put into a fraction.  Um, so I put it into a 

fraction, and you multiplyðyou um, multiply by the 

reciprocal, so then you have fifteen. 

M:  Ok.  And if Iôm a kid your class, and youôve taught me how 

to do this kind of problem like this, I might come up to you 

after class, or I raise my hand during class, and I say, óYou 

know, I just donôt get this, dividing by this and then you flip 

it overécan youé?ô 

E: Yeah. 

M:  How would you do that?  Like, how am I supposed to do 

that?  Whatôs going on there?   

E: Um, itôs hard to have point-six of something, isnôt it?  Umé 

M:  Well, let me ask you this: is there something about the [281] 

class that you can draw on?  Is there something that you feel 

like you learned in that classé 

E: Yeah, Iôm just not remembering it (laughs). 

M:  Well, ok, thatôs important.  So, even if you just describedé 

E: Yeah. 

M:  éa little bit about what that might be. 

E: When we learned how to divide it was, and I donôt remember 

which way it went but you had two divided byðuh, four 

divided by two, meaning that you haveéI donôt know which 

way it went.  But you have twoðyou have four items that you 

put into two groupsé 

M:  Ok. 

E: I just canôt remember the order. 

M:  Ok. 

E: Which comes first.  So you have four ítems and you ask how 

many items can go into each group?  And so I guess itôs this 

way: if you have point-six items, which is hard to explain to 

kidsé 

M:  Mhmm. 

E: That you have six-tenths ofðprobably of, maybe like a pie. 

M:  Ok. 

E: Mmm, no, a cake, thatôs square. 

M:  Ok. 

E: So then you turnðso then you have six pieces of cakeéNo, 

you have nine pieces of cake, that need to be divided into 

point-six groups, which is really hard toðI have no clue.   

M:  Ok. 
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E: I mean, I have a clue: I learned it, I canôt remember it. 

 

 Eliot, like Carla, showed confidence and comfort with her procedure for 

computing the value.  Eliot chose to evaluate the expression using fraction 

representations exclusively, while Carlaôs approach was to use the standard algorithm.  

However, both PSTs from Hilada demonstrated facility with the computational demand 

of the problem: neither PST expressed any concern about evaluating the statement, nor 

any reservation about the answer and whether it was correct.  Eliot went so far as to call 

the problem ñeasyò (ñThatôs an easy numberðan easy decimal for me, because itôs easily 

put into a fractionéò).   Eliotôs comment that, ñI donôt remember which way it wentò 

suggests that there is a ñrightò way to interpret the problem and is evidence that she was 

unaware that division can be modeled in two ways.  Again, though repeated subtraction is 

a more natural model to use, there is nothing about the number sentence that precludes 

the use of partitioning as a model.  An ignorance of both division models could have 

played a role in Eliotôs struggle to fit the problem into a partitioning model of division.  

Recall however, that in MATH 281, referring to these models often disappeared after 

working with whole numbers and operating on fractions instead.  Likewise, Eliotôs 

MATH 281 did make use of drawings and discussed word problems for these kinds of 

mathematical statements, though these activities did not appear to make a strong impact 

on Eliot because she was unable to draw upon them in order to respond to the prompts. 

 This transcript excerpt is not simply a demonstration of Eliotôs lack of MKT.  

Rather, it shows that her MKT was possibly more concentrated in common content 

knowledge instead of other sub-domains.  Moreover, this excerpt contains evidence that 

Eliot had in fact developed knowledge of content and teaching; she acknowledged that a 
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rectangular object such as a cake would be more amenable to fraction representations 

than a circular pie.  This knowledge that some representations make more sense in 

instruction than others (it is much harder in a classroom situation to divide circles 

accurately into equal-sized groups than rectangles) is a key component of KCT.  Still, the 

ability to deploy this culinary image in a coherent story problem remained elusive for her.  

 On the other hand Maeby, who lacked confidence in her calculation, spoke with 

some authority on the different models for division and how making a decision about 

which model to use has an impact on the difficulty of the problem.   

M:  éAnd itôs interesting that you say that the, you would at 

least start out by thinking about it like thisé 

MA:  Because that way helps me...realize, I guess, what this 

means.  Um, because the way I usually start out thinking 

about it is: you canôt have point-six groupsé 

M:  Ok. 

MA:  éso that must mean that you are dividing it groups of 

point-six. 

M:  Right, ok. 

MA:  Because it can go either way with division. 

M:  Uh huh. 

MA:  So then that immediately makes it a lot easier to think 

about, because youôre like whatôs point-six of a group?  

You know what I mean? 

M:  Right. 

MA:  So that immediatelyðat least it gets you on the right track; 

you start thinking about in a certain way thatôll cause less 

problems. 

   

Like Ann, Maeby used the phrase ñThe way I usually start out thinking about it isé,ò 

which suggests that despite her computational concerns, she has experience evaluating 

these problems.  Moreover, Maebyôs original approach to the problem gave her insight 

into the meaning of division; her strategy turned the problem into a multiplication 

problem, building the number nine using multiples of .6, which in turn illuminated the 

fact that repeated subtraction was the ñeasierò way to think of the problem. 
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 In this group of PST interviewees, two students in the high performance category 

struggled to address this issue completely, but Maebyôs struggle was ameliorated with a 

representation in mind, a tool by which she could deduce (and explain) the division to a 

child.  Eliot, on the other hand, struggled in a much more fundamental way: what does 

the division actually mean?  This difference again can be interpreted through the distinct 

approaches taken by the courses that these PSTs had completed.  Maeby had more 

opportunities to develop these particular tools than did Eliot, whose MKT advantage lay 

in her computational facility.   

 Finally, consider Lindsay and Laverne, who were two PSTs representing their 

peers who scored more than one standard deviation below their respective class means on 

the beginning-of-semester MKTI.  Laverne doubled the number of correct answers she 

gave from February to May (more than two standard deviations), while Lindsayôs 

increase was more closely aligned to the effect size for both courses (approximately one 

standard deviation).  Their mean scores on the survey instruments were nearly identical at 

both points in the semester, and were lower than their respective course averages.  

Lindsay was enrolled in MATH 291 at Rio, while Laverne was enrolled at Hilada in 

MATH 281.  These PSTs, in contrast the previous interviewees I have described, both 

answered the division problem in question incorrectly though both used the standard 

division algorithm.  At first, they each responded that the solution was 1.5, instead of 15.  

Laverne eventually corrected her mistake.  Lindsay checked her answer by multiplying, 

but since she proceeded to compound the error by using the wrong numerals, the 

multiplication ( 5.16³  instead of 5.16. ³ ) confirmed for her that she arrived at the correct 

answer.  Here, the models used in their respective courses had not made a strong impact 
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on either PST; neither could recall how to apply models they had discussed in class to the 

problem at hand, though they could speak in general terms about what they were 

ñsupposedò to do.  It was as if the pictorial representation and the fraction justifications 

were just as routinizedðand just as poorly understoodðfor these PSTs as the standard 

division algorithm was: 

LA: We went over this in class the other dayéand I really 

donôt remember. 

M:  Ok. 

LA:  Because you move the decimal point overð[the instructor] 

told us why you move itðbut I donôt remember why.   

M:  Ok. 

LA:  So, I meanéI would have to, like, look at some notes or 

something to tell you that.  But I would tell him why we 

move the decimal place over oneé 

M:  Ok.  Why is that? 

LA:  I donôt remember.   

M:  Oh, ok. 

LA:  Iôve got to look at some notes. 

M:  Ok. 

LA:  I donôt remember why. 

M:  Ok. 

LA:  I just know that Iôm supposed to do it.  Let me think.  

Actually, let me think about it.   

M:  I mean, would drawing a picture help? 

LA:  It has something to do with fractions.  I donôt remember. 

Laverneôs comments suggest that she lacks the computational proficiency demonstrated 

by her Hilada classmates, Carla and Eliot.  This may explain her lower-than-average 

scores on the MKTI.  My guidance to use a picture elicited no meaningful response from 

Laverne, which may be because the pictures discussed in her class were not effective in 

helping her to understand the fundamental concepts.  But again, this was not a 

particularity of Laverne, but a trend among all the Hilada PST interviewees: pictorial 

representations of numerals did not serve as useful tools; mathematical notation did.  This 

was why Laverne, even when I suggested drawing a picture, insisted that the key to 

understanding the problem lay in fraction representations.   
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 Lindsay showed a similar lack of confidence as Laverne did, claiming that she did 

not really understand how the process worked, and was similarly non-committal about 

the details of the approach:  

LI : Because like, Iôm not really sure myself, so I donôt know, 

like how I would really explain it to a kid that it would 

make sense.  Because yeah, it makes sense to me, but I 

donôt know how to explain it to them about the zero, and 

moving the decimalé 

M:  Mhmm. 

LI : éand like bringing it up and bringing it down, and 

subtracting and checking your work.  Like, I donôt knowðI 

donôt really know how I would explain it in a way that they 

would understand. 

M:  Howðwere you doing this?  Because I didnôt get to see 

what you guys did with these, but were you doing it like 

this?  How were you doing it in class? 

LI:  We were doing it more like, you would have to draw your 

BMU.  And like, doing it with partitioning division, and 

like, repeated subtractioné 

M:  Ok. 

LI:  éand like, do it that way.  And we would have to show it.  

Like we would have, like, if youôre doing partitioning and 

like, how you go, one to this group, one to this group, one 

to this group.  And then one to this group, one to this 

group, one to this group.  You know, like that way? 

M:  Uh huh. 

LI:  So we werenôt even touching any of that.  It was, you do it 

this way, and count it up.   

M:  Ok. 

LI:  But like, Iôm shaky on that (laughs), so like, I donôt know 

how I would explain to a kidéYeah, itôs easy to be like, 

óOk, just keep going until you canôt give one to these 

groups anymore,ô buté 

M:  Uh huh. 

LI:  ébut I donôt know.   

 

Lindsay used the language of the different division models and referred to the BMU as a 

way to evaluate the problem, but only after I prompted her to think about her course.  

This is evidence that she did not make the connections on her own: the BMU and the two 

models of division are ways to unpack this problem and the process of evaluating it for 

childrenðand understand them for onesô self.  Indeed, Lindsay said as much: despite the 
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work she had done in class and her other years of mathematics preparation, division was 

simply something she could replicate (albeit, at times incorrectly) not something she 

understood:   

 

M:  What kinds of things do you think are important to 

understand about division for either of these ways of 

approaching it to make sense? 

LI:  You have to understand that youôre putting a numberð

youôre seeing how much of another number can go into a 

number.  So like, you have to think of it that way.  I mean, 

division to me is division.  Division is division, itôs just 

something I do.  I donôt really know why I do it.  Like, 

sometimes, itôs because I want to know how much of 

something I need or need to get, but I mean, I couldnôt tell 

you the meaning of division.  I couldnôt tell you like, why 

or whatever. 

M:  Ok. 

LI:  I just do it because I know I need to do it.  I mean, itôs a 

way of getting an answer I need to get.  But, I couldnôt tell 

youéthat sounds really bad (laughs).  Iôm in college and I 

canôt tell you what division is! 

 

Lindsay demonstrated her awareness of two division models, but the distinction did not 

reveal anything to her about performing computations or about how children might come 

to understand them.  Division remained a relatively meaningless computation that 

Lindsay had learned to follow directions in order to complete, but did not understand well 

enough to deconstruct for children. 

 In this last group of PSTs, the differences that were apparent between the other 

pairs are not as clear, since they each had a more fundamental difficulty with the 

problem, the meaning of division, and they stillðat the end of their courseðlacked 

models that would support their own understanding.  What may be most germane to this 

analysis is the fact that each PST spoke about solving the problem in similar ways as their 

classmates did.  The MATH 281 PSTs clung resolutely to the use of fractions to compute 

and justify a division involving decimals, and they either could not recall a pictorial 
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representation or did not mention it as relevant to the problem.  On the other hand, the 

MATH 291 PSTs inevitably sought the concept of the BMU as represented by pictures 

used in their class.  These behaviors echo the work and focus of their respective courses, 

and indicate that indeed, the way they talked about mathematics, and its proximity to 

elementary school mathematics influenced their responses during the interview.  

 Consider as well the second mathematical prompt in the interview, which 

supposed a second grade child trying to figure out the problem 5 x 2 using counters (or 

chips), and who got out a set of two counters and then a set of five counters.  PSTs were 

asked to describe what they thought the child misunderstood about multiplication, and 

whether or not the childôs idea could be ñsalvaged.ò  That is, could this be the starting 

point for a correct answer to the problem?  This prompt is aimed at PSTsô SCK as well as 

their knowledge of content and teaching.  The prompt requires PSTs to discern what a 

student is thinking given incomplete information and use a concrete representation to 

support a childôs developing understanding.  In both courses, counters were used for 

thinking about multiplication in a discrete model (such as repeated addition) and the 

operation was defined so that the first numeral in the expression represented the number 

of groups repeatedly added, while the second numeral represented the size of each group.  

Again, the MATH 281 devoted a substantial amount of time and energy demonstrating 

and justifying the consistency with which multiplication could be applied across number 

sets (whole numbers, integers, rational numbers) and the appropriate notation for 

expressing these computations.  In contrast, MATH 291, though it defined multiplication 

in precisely the same way, explored non-integer numbers (expressed as finite decimals) 

through its continued use of the BMU. 
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 Four of the six interviewees expressed some confusion about the precise 

relationship between the two numerals, namely which numeral represented the number of 

groups and which numeral represented the size of the groups.  Two of the three PSTs 

from Hilada changed their initial answers, indicating that for them, the definition was still 

unclear.  Consider the example of Eliot, whose score on the MKTI was more than a 

standard deviation higher than her peers at Hilada: 

E: Oh, oh, ok.  Welléok, so she has the right idea.  Like, that 

she needs one row of five, andðor like, rows of five.  But 

how many rows of five does she need?  And so then she has 

two, so if we did...If I made herðif I somehow showed her 

that, if we flipped those, instead of making them horizontal, 

make them verticaléSo, you have one, two.  And like show 

that you can have two rows of five.  Or, five rows of 

twoéRight now, sheôs seeing five and two and sheôs not 

understanding that itôs five groups of two.  Or, if it was the 

other way, then I guess it would beðit wouldnôt be this one, 

because the way that we teach it is five groups of two. 

 

Eliotôs last statement amended her earlier remarks that 5 x 2 could be represented as two 

groups of five.  Carla similarly equivocated when it came to creating a representation for 

5 x 2: 

M:  This seems to be really important to know which [number] is 

groups and which is how manyé 

C: I know, and Iôm not quite sure either.  So, say, ok, here we 

go, right?  Say like the way they want to be able to do it is to 

draw a diagram that can show that and that.  So this one, 

this, shows, umétheéIôm sorry, itôs actually two groups of 

fiveðI had it mixed upðand this would show five groups of 

twos. 

 

Eliot and Carla were the only PSTs who changed their minds about this issue.  Their 

corrections led them to the accepted definition of multiplication in both courses.  The 

other four interviewees did not hesitate about the correct representation for this problem.  

Two of them gave a representation contrary to that offered by their instructors, saying 
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that a proper representation would be two groups of five.  The two who not only arrived 

at the representation consistent with both courses but did so without changing their initial 

response were Maeby and Ann, both of Rio University.  Maeby and Ann were 

counterparts to Eliot and Carla respectively, in terms of their beginning-of-semester 

MKTI scores.  The four highest scoring interviewees eventually expressed 5 x 2 using 

five groups of two, but the Rio PSTs did not express any confusion or uncertainty about 

the representation, while their counterparts at Hilada did.  Here again, Rio PSTs 

demonstrated more facility in concretely representing mathematical statements, a 

reflection of the emphasis placed in their course on specialized content knowledge.  

Hilada PSTs, working with the same definition of multiplication, referred constantly to 

and made use of the commutative and distributive properties of multiplication, and 

concentrated less on generating multiplication story problems.  Rio PSTs did not focus on 

the formal mathematical arguments like their counterparts did and instead referred 

frequently to scenarios in which the definition of multiplication (# of groups multiplied 

by the size of each group) was a necessary feature of the work they did.  Thus, the 

MATH 291 PSTs had a stronger sense of this definition than did their MATH 281 

counterparts. 

 Another reason I chose this prompt was because it provided an opportunity to 

discern whether and how PSTs could build on student thinking toward a conventional 

understanding of multiplication.  This is associated with a knowledge of content and 

teaching.  When I have asked PSTs this question in the past in my own teaching, two 

typical responses are (1) Starting Over: that the child is likely thinking of addition, and 

must start over by pushing the counters aside and then creating five groups of two; and 
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(2) Salvaging: that while the child may be thinking of addition in behaving this way, a 

teacher could show the child that the five could represent places to signify each group of 

two, and that the child could arrange two counters under each of the five counters to 

express ten.  Both of these answers are problematic for different reasons.  A ñstarting 

overò response ignores the idiosyncratic and developing nature of childrenôs thinking and 

dismisses the idea as wrong and something that must be disposed of.  The ñsalvagingò 

response credits the student with sense-making and acknowledges the fact that addition 

and multiplication are related, but the presence of 15 counters (five counters to signify 

each group, and then the ten counters that display the answer) instead of ten might be 

confusing to the child and therefore be counterproductive.  I wanted to see which 

response PSTs would give and whether or not they would identify these potential 

problems.  In fact, nearly every interviewee chose a third kind of response, which might 

be considered a hybrid of the two responses I described above.  Most PSTs claimed that 

the child could use the counters she had gotten originally, but that they should be 

arranged to show the five groups of two (or in the cases of Lindsay and Laverne, two 

groups of five).  Ann articulated this position most clearly among her peers at both 

universities: 

M:  Like, can you say, óAlright, letôs start here, and then I can 

take you to where you want to goô? 

A: I guess you can like put them all in, like, a pile.  I donôt 

know.  Like, you wouldnôt get the right answer, but then 

just, like have a pile and start counting out two and sheôd 

run out because she wouldnôt have enough.  But, then you 

know, like, you form groups of two so that you have five of 

them and then you can count them all, but she didnôt, 

ócause like, you donôt know how many to start out withé 

you could just start counting out twos, and when she runs 

out start counting another pile, I meanéand then start 

grabbing from the pile until you have five. 
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Here, Ann describes using the initial response by the child to turn the discussion toward 

repeated addition, using the group of two as a starting point, and decomposing the group 

of five into groups of two, adding in new counters as necessary until one arrives at five 

groups of two.  Other than the fact the two of the three Rio PSTs initially responded to 

this task with an interpretation of multiplication consistent with their course work while 

two of the three Hilada PSTs had to change their answers, it did not result in any 

discernable patterns of differences across campuses.   

 There were three interview prompts directly targeting PSTsô MKT: I have 

described PSTsô responses to two of them.  The remaining prompt was actually the first 

mathematically oriented task in the interview; it required PSTs to examine student-

generated work on the subtraction statement 75 ï 48, respond by explaining what the 

child was doing for each, whether or not the method worked in the case presented, and if 

so, whether it would always work.  This item was intended to echo similar items on the 

MKTI and get more information about how the PSTs interpreted such problems and what 

mathematical ideas they could extract from them.   

 

Three Children Work out 75 ï 48: 

 

(a) 

27

30

3

48

75

-
 (b)  

27

257

725

48

75

=-

=+

-

  (c) 
33

48

75

-
 

 
Figure 10: Prompt for the first task in the interview 
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 In item (a), the child subtracts place values, and then adds the results of these two 

computations: 75 ï 48 = (70 + 5) ï (40 + 8) = 70 ï 40 + 5 ï 8.  Item (b) was especially 

difficult for the PSTs who addressed it.  The format of the writing obscures the fact that 

the procedure is to round the subtrahend (48) into the next multiple of ten (50) and add 

the number required in that rounding (two) to the minuend, in order to maintain the 

ñdistanceò between the numbers. The third line represents the ones calculation and the 

fourth line represents the resulting tens calculation.  During the first two interviews at 

Hilada, I chose to move on to other tasks instead of dwelling too long on it.  Item (c) is 

simply incorrect, though the child is similar to that in (a) by working within place values 

instead of regrouping across them.  This is a commonly reported mistake that children 

make, subtracting five from eight instead of the other way around, which is required by 

the problem. 

 This task was difficult to analyze across universities as I have done for the other 

tasks, because in two of the interviews time constraints prevented me from probing 

deeply about all three scenarios.    In particular, Carla and Laverne (both Hilada students) 

did not address all three tasks; neither of them discussed part (b) in any detail, except to 

express their lack of understanding of it.  These PSTs were the first interviewees of the 

six.  As I was concerned about dwelling too long on the first mathematical task in the 

interview, when discussions of items (a) and (c) did not end until past the 30-minute mark 

in a scheduled 45-60 minute interview, I chose to move on and try to acquire data from 

the other prompts in the interview protocol.  As a result, I did not get a complete set of 

responses from all PST interviewees.  For this reason, I will not describe PSTsô responses 
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to (b) in any detail; they do not shed any information that can be adequately compared 

with the othersô. 

 Part of the reason for this difficulty during the interviews is likely that the items in 

this taskðparticularly (b)ðwere flawed.  I had intentionally written the items to mimic 

those found in the MKTI, and I obscured some of the steps taken by the hypothetical 

students. For example, I did not write a negative symbol in front of the three in the third-

to-last line of item (a).  I intended to find out how well PSTs could discern the 

mathematical ideas in the limited information written by students ñA,ò ñB,ò and ñC.ò  For 

item (b), in retrospect, it seems that an alternative format might have made it more useful.  

This might mean writing out what a child might say to explain himself in a hypothetical 

transcript related to this item.  All PSTs struggled with the different items, in their own 

ways, and to that extent, their struggles may invite opportunities for understanding their 

MKT.  On the other hand, I do not think that the data from this task provide particularly 

strong evidence for drawing conclusions about the PSTsô MKT relative to one another. 

 All PSTs recognized that (c) was flawed and pointed out that it was likely that the 

child was subtracting five from eight instead of the other way around.  All but one PST 

struggled to see in (a) that the student might be subtracting three from 30 (or adding -3 to 

30) to arrive at 27, and when, in each interview I suggested that the child would do this, 

PSTs generally had difficulty understanding why.    Consider Eliotôs reaction to Child 

Aôs work.  She said,  

For A, um, I donôt really know how this works out.  But, uh, what 

I think theyôre doing is theyôre subtracting the tens places, and 

thenðI mean the ones and then the tens, so I think they did it 

again, where eightðfiveðeight minus five is three but seventy 

minus forty is thirtyéand then they subtracted those two [ three 

from 30].  I donôt really know, you know? 
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The other PSTs across campuses responded in similar ways.  Only Maeby identified that 

the child was subtracting three from thirty without prompting.  Not a single interviewee 

discerned that the child would have subtracted the three from 30 because it represented a 

negative number.   When I suggested that an adult might write the problem differently by 

putting a negative symbol in front of the three, some differences emerged.  Carla 

responded this way: 

M:  So if I putðIf I changed the way I wrote that problem by just 

putting a negative in front [of three], would thaté 

C: Mhmm. 

M:  égive you a sense of whether or not this was going to work? 

C: Yeah.  Absolutely.  But I wonder if a child whoôs just 

learning how to do this [subtract multi-digit numerals], can 

really understand the idea of negatives, you know?  This 

does worké 

M:  Right. 

C: ébut is the child really understanding that in order to 

subtract, the number that youôre subtracting from has to be 

larger?  You know? 

M:  Mhmm. 

C: And they are getting the right answer, but are they 

understanding what subtraction really is? 

 

Carla appeared to believe that this algorithm would work generally (though there is not 

direct evidence of this in the transcript: she responded only to the question of whether or 

not the negative gave her a ñsense of whetherò it would work).  Her primary concern was 

with the childôs understanding and a fundamental doubt that a child would be capable of 

such reasoning: ñI wonder if a child whoôs just learning how to do this can really 

understand the idea of negativeséò is evidence of this doubt.  Laverne, Eliot and Carlaôs 

classmate at Hilada was not sure how to evaluate the method generally, apart from trying 

multiple cases:  

LA:  Oh.  I would probably make another problem ad have him 

do it the exact same way just a couple of times, to see if it 

worked, and if it workedé 
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M:  Uh huh. 

LA:  éI might be like, óOk,ô but it depends on where I am.  If 

itôs just me and this child and weôre like, like this, by 

ourselves, weôre off somewhereé 

M:  Mhmm. 

LA:  I donôt really know what I would do.  But if we were like in 

a tutoring session where thereôs like a math specialist 

around or something, Iôd go to them.  Right away. 

M:  Uh huh. 

LA:  No hesitation.   

M:  Right. 

LA:  We probably wouldnôt have even gotten to this step.  Iôd 

have been like, óWhat is that?ô 

 

There was little consensus among the responses about (a) by PSTs at Hilada. 

 At Rio, Lindsay expressed her own doubts, but unlike Carla, she implicitly 

conceded that the child could do this.  Her concern was whether or not the childôs work 

gave evidence of such knowledge.  For her, the presence or absence of the negative 

symbol was key to whether that evidence of the childôs understanding was present: 

M: éwhat if Kid A is really thinking about this like this?ô  

And I put a negative there [next to the three]? 

LI : Well then, Kid A is right.  Because then like, if Kid A thinks 

of it as a negative, and theyôre showingðhe showed me 

that he thought of it as a negative, knowing full well that 

heôd have to take that [the three] away from thirty, itôs ok 

then, because I know that they understand that they canôt 

do eight minusðfive minus eight. 

M:  Without that negativeé 

LI : Yeahé 

M:  éyou wouldnôt feel very confident.   

LI : No. 

M:  No. 

LI : Because Iôd feel like they wouldnôt understand the concept 

of five minus eight.   

M:  Ok. 

LI : It canôt be done.  Well, it can, butéthat negative makes a 

whole bunch of difference. 

 

Lindsay did not express the reservation that Carla did that children were incapable of 

thinking in this way, but instead she felt that given the childôs workðand lack of a 

negative symbolðshe could not infer the childôs understanding of the approach.  Ann 
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expressed a similar sentiment, noting that the negative would be an important part of 

knowing whether or not the child understood what the three meant: 

A: What if they understand that this isðlike youôre taking this 

number[eight] really from this [five] , then it would work.  

But they have to know[the three is] a negative number. 

M:  So, so youôre thinking that in order for somebody to really 

use this properly they should really know what role that 

three is playing?   

A: Mhmm. 

 

Ann implies that there is not enough evidence of this fact to believe that the child can 

reliably apply this technique to multi -digit subtraction problems.  Thus, at Rio, this issue 

of looking for evidence of childrenôs understanding of the algorithm came up multiple 

times.  Maeby, Ann and Lindsayôs classmate at Rio, had a different, but related concern: 

M:  But what if I put in that [a negative symbol]?  Does that 

make it make more sense? 

MA:  Yeah.  óCause then, um, welléôcause then you get twenty 

sevenðitôs like youôre treating it as an addition problem, 

the thirty and the negative three.  So, youôre saying thirty 

plus negative three. 

M:  Mhmm. 

MA:  Um, (laughs)ébut because youôre not, exchanging, 

carrying it over, itôsðtechnically, negative three is the 

answer to five minus eighté 

M:  Uh huh. 

MA:  éum, so, yeah, ité 

M:  So, it prevents the exchangingé 

MA:  Yeah. 

M:  ébut it also means that you have to do negativeé 

MA:  Yeah, you have to realize, then you have to switch itðyou 

have to get out of subtraction mode, kind of, and make ité 

M:  Right. 

MA:  élike, addition mode. 

M:  Right. 

MA:  Because thirty minus negative three would be thirty three. 

 

Instead of thinking about whether or not the child really understood the value of the three, 

Maeby was concerned with whether or not there was evidence that the child understood 

the subtle shift from subtraction to addition.  Indeed, this kind of shift could rely on the 
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kind of representation used frequently in MATH 281 (75 ï 48 = (70 + 5) ï (40 + 8) = 70 

ï 40 + 5 ï 8), but it is identifiedðif not expressed this wayðby a PST from MATH 291 

instead. 

 There is some commonality among Rio PSTs, in the sense that they each 

expressed concern for the evidence they can find of a childôs knowledge given the limited 

information in each item.  This is an important pedagogical stance to take, but again, it 

does not necessarily reveal any difference in their MKT with respect to the Hilada PSTs.    

Summing up Results of the MKT Analysis 

 Because of the flawed execution of the last prompt during the interview, it 

generated little data about the relative MKT developed by the PSTs at the different 

campuses over the course of the semester, though other evidence from the MKTI and the 

interviews does point in a particular direction: the two sets of PSTs learned developed 

different MKT.  All of the abilities PSTs showed in the interviewsðconnecting fractions 

to decimals or generating story problems from number sentences, for exampleðare 

clearly goals of teacher education in mathematics, and are primary components of MKT 

as defined by Ball, et., al. (2008).  However, these differences are evidence that the PSTs 

learned differently in their course experiences, and as such, may have different 

knowledge to bring to bear when they arrive in classrooms.  Ma (1999) describes that a 

critical component of profound understanding of fundamental mathematics is the ability 

to ñunpackò knowledge and make it accessible to children.  The evidence in this 

collection of data indicates that MATH 291 PSTs were better prepared for this 

responsibility than were MATH 281 PSTs. 
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 Though MATH 281 and MATH 291 shared many important characteristics and 

mathematical ideas, they also showed differences that ran deep in each course.  Though 

the distinctions were not manifest in the broad statistical analyses of the MKTI, they did 

reveal that both courses helped to develop PSTsô MKT.  Sub-scale analysis of items 

classified as CCK and SCKðas well as individual item analysisðrevealed that some of 

the differences between the courses were echoed in the responses PSTs gave on that 

instrument.  This data suggests that the differences between MATH 281 and MATH 291 

might have influenced PSTs answers.   

 Interview data was similarly revealing and yet not definitive.  The fact that 

disparities arose in the answers that PSTs gave in the interviews, often paralleling the 

differing foci of the two courses indicates that they did indeed matter; PSTsô  knowledge 

was a creationðat least in partðof the context in which they learned.  Situated learning 

theory suggests that teachers will be able to apply the knowledge they learn as 

undergraduate PSTs best when the contexts of their undergraduate preparation are most 

closely matched with the teaching practice they will confront in classrooms.  The 

interview data give a more complete picture of whether and how PSTs could deploy their 

knowledge in the service of teaching tasks, but that picture is still unfinished.  The 

limited number of interviews makes it difficult to determine irrefutably that the results 

would be replicated among the other PSTs in each cohort, much less in other cohorts.     

 In short, the MKTI and interview data are inconclusive, and yet they point in the 

same direction that situated learning theory predicts they would.  One may speculate 

about more extreme conditions that would have produced less ambiguous results, but the 

advantage of these circumstances was that they were living, breathing courses, and not 
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theoretical constructs whose fidelity could be questioned upon implementation.  Despite 

the ambiguity, I have argued that these data show that how one approaches content 

courses for elementary teachersðas opposed to simply concentrating on what content is 

coveredðinfluences what PSTs learn as a result.  

 In MATH 281, PSTs were directed more frequently to aspects of elementary 

mathematics in the common content knowledge while MATH 291 PSTsô work with 

video and student thinking led them toward specialized content knowledge instead.  

Hilada PSTsô proficiency with numbers was reflected in their apparent facility with 

fractions and connections to decimals.  One might expect this flexibility across number 

sets to be robust, as it was a major focus of the course.  Rio PSTsô work appeared to 

sensitize them to childrenôs thinking and the use of pedagogically appropriate 

representations of mathematical concepts.  These representations were not only valuable 

teaching tools, but in many cases formed the foundations on which the PSTs understood 

the concepts themselves.   

 Thus, both sets of PSTs learned important mathematics for teaching, but they 

apparently developed different mathematical knowledge for teaching.  Though this is a 

primary concern of the project, it had other foci as well.  In the next section, I describe 

the data that are germane to the PSTsô relative attitudes about mathematics and teaching.  

 

PSTsô Relative Attitudes about Mathematics and Teaching 

 The attitudes survey administered to PSTs coincided with their completion of the 

MKTI instrument.  Thus, there are early- and late-semester data about PSTsô attitudes 

regarding mathematics and teaching.  With these data, we can learn something about how 
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the PSTsô attitudes changed over the course of the semester.  While Likert-type surveys 

of the kind I administered are not particularly revelatory about individual attitudes 

(Vincent, et. al., 2003), they can be useful for thinking about groups of people, allowing a 

comparison between courses. 

 Nearly all items on the survey were paired into positive and negative statements 

of the same sentiment.  For example: ñBefore class ends, a teacher needs to clarify those 

wrong answers, incorrect methods or misstatements that may have been made by 

studentsò was paired with ñHaving students determine and discuss their solution methods 

is a good use of class time, even if the discussion and questions about those methods 

takes more than one class period.ò  Another example of these pairs is: ñThe idea of 

teaching math scares meò paired with ñI am looking forward to teaching children about 

mathematics concepts.ò    PSTs responded to each item using a five-point Likert scale, 

ranging from strongly agree to strongly disagree.  The data were then coded to reflect the 

extent to which the PSTs demonstrated a comfort with mathematics and teaching that 

might be said to align with goals of the NCTM Principles and Standards for School 

Mathematics (2000).  For example, the statement ñSeeing/hearing different ways to solve 

the same problem confuses childrenò does not conform to the NCTM vision of problem 

solving in school:  

Different strategies are necessary as students experience a wider 

variety of problems. Students must become aware of these 

strategies as the need for them arises, and as they are modeled 

during classroom activities, the teacher should encourage 

students to take note of them. For example, after a student has 

shared a solution and how it was obtained, the teacher may 

identify the strategy by saying, "It sounds like you made an 

organized list to find the solution. Did anyone solve the problem 

a different way? (p. 53). 
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PSTs who responded ñStrongly Agreeò to the statement above was coded with a one and 

those who answered ñStrongly Disagreeò were coded with a five.  Similarly, for the 

counterpart item, ñStudents should hear methods that other students use to solve 

problems,ò PSTs who answered ñStrongly Agreeò were coded with a five, while those 

who strongly disagreed were coded with a one.  Each response was given a numerical 

value in the range 1-5 in this manner, with higher numbers representing a more 

ñadaptiveò set of attitudes and lower numbers ñmaladaptiveò (Bassarear, 2007).
58

  The 

twenty-one items on this portion of the survey form the ñattitudesò portion of the 

instrument.  Recall that in Chapter three, I reported that the collection of these items, 

taken together, were piloted with different PSTs previous to the data collection period 

and were shown to have a reliability coefficient (Cronbachôs alpha) of .785.  This is 

generally considered to be an acceptable value which indicates that the instrument in 

question is reliable. 

 The items in the ñattitudesò component were generic in the sense that they did not 

apply to any given situation or context, but were general statements about teaching, 

mathematics, and teaching mathematics.  In addition to this component, each survey 

included items that related directly to the course in which PST participants were enrolled.  

At the beginning of the semester, these items focused on PSTsô understanding of the 

importance of their course to help them in their goal to become teachers: ñIn this class, I 

expect to learn more about what it is like to teach mathematics.ò  At the end of the 

semester, a similar set of questions were asked, though they were from a reflective 

standpoint: ñIn this class, I learned more about what it is like to teach mathematics.ò  The 

responses to these items were similarly coded as those in the rest of the instrument, with 
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 Bassarear identifies the NCTM vision as promoting adaptive beliefs.   
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higher numbers reflecting a sense that the course should (or did) have strong relevance 

for PSTsô work toward teaching certification.  The coded responses were averaged for 

each PST, producing two scores for each administration: a mean score for responses to 

items regarding PSTsô attitudes about mathematics and teaching, and a mean score for 

PSTsô beliefs related to the relevance of their course for their goals as future teachers.  

Thus, each PST had beginning- and end-of-semester scores on the attitudes instrument, as 

well as corresponding scores for the relevance items on the survey.  Later, I will discuss 

the exploration of the relevance items.  Here, I turn to an analysis of the attitudes items 

on the survey.   

 Like the MKTI data, the survey data allow for statistical comparisons.  Since the 

distribution of mean scores on this instrument did not meet assumptions necessary for 

performing ANOVAs, Mann-Whitney tests
59

 performed on the attitudes portion of the 

survey indicate significant differences between PSTs attitudes at the end of the semester, 

even though there is no statistical evidence that they were different at the beginning.  

While there is data on this question in the interviews, the interviews were designed to 

focus more on the questions of MKT and course relevance.  As such, the survey provides 

the most robust data for answering the research question related to PSTsô attitudes about 

mathematics and teaching, and is the focus of this portion of the data analysis. 

Attitudes Survey: Quantitative Analysis 

 Again, only PSTs who completed both rounds of instruments were included in the 

analysis, and again descriptive statistics were computed for each campus, including mean 

                                                 
59

 The Mann-Whitney statistic is a non-parametric computation that can is analogous to the t-statistic used 

in ANOVAs in cases when the assumptions required for ANOVA are not met, or when the scale of 

measurement is arbitrary, such as a Likert-scale (Wackerly, Mendenhall, & Scheaffer, 1996)  
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and median raw scores (number of correct responses), standard deviation, variance, 

skewness, and kurtosis.  These descriptive characteristics of the data, in addition to the 

normality tests I described above suggest that this set is not normally distributed and 

therefore ANOVA is not an appropriate tool for testing claims about the mean survey 

scores.  Below is a table of the mean values at each campus for each administration of the 

survey. 

 

Mean Score 

on Attitudes 

Items 

(February) 

Standard 

Deviation 

(February) 

Mean Score 

on Attitudes 

Items (May) 

Standard 

Deviation 

(May) 

MATH 281 3.35 .32 3.34 .34 

MATH 291 3.41 .28 3.47 .36 
Table 8:  Mean scores and standard deviations associated with PSTs attitudes about mathematics 

and teaching 

 

 

These values indicate that each group of PSTs can be described as leaning toward the 

adaptive end of the spectrum but that these attitudes were not deeply entrenched in either 

setting.  Note also that while the score of Rio PSTs jumped a bit, the mean score at 

Hilada fell only slightly.  A value of three on the items in this survey indicate a response 

of ñNo Opinion,ò so that PSTs in both courses generally agreed with adaptive statements 

such as, ñHaving students determine and discuss their solution methods is a good use of 

class time, even if the discussion and questions about those methods takes more than one 

class period,ò and disagreed with statements such as ñBefore class ends, a teacher needs 

to clarify those wrong answers, incorrect methods or mis-statements that may have been 

made by students.ò  However, the fact that the mean scores are close to three indicates 

that these attitudes are not strongly held by PSTs as a group.   

 Since the assumptions required for ANOVA were not met, the Mann-Whitney test 

can serve as a non-parametric substitute (Wackerly, Mendenhall, & Scheaffer, 1996).  
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The test, performed for each administration of the survey, indicates that while there was 

no statistical distinction between the universitiesô mean scores at the beginning of the 

semester, at the end of the semester, a measurable difference can be detected.  In 

addition, a comparison of the mean change in attitudes scores from February to May also 

is statistically different.  The results show that MATH 291 mean survey score is 

significantly higher at the end of the semester than MATH 281 mean survey score.  This 

means that MATH 291 PSTs appear to have responded more adaptively to the items on 

the survey instrument at the end of the semester than their MATH 281 peers.  Likewise, 

the analysis suggests that the change in mean survey scores noted in the table above is 

also statistically significant.
60

 

 

 Institution N Mean Rank Sum of Ranks 

SurveyPreTestAverage 1 60 49.35 2961.00 

2 41 53.41 2190.00 

Total 101   

SurveyPostTestAverage 1 60 44.93 2696.00 

2 41 59.88 2455.00 

Total 101   

SurveyChange 1 60 44.92 2695.00 

2 41 59.90 2456.00 

Total 101   

Table 9:  Summary of ranks associated with scores at Hilada and Rio at both points in the 

semester 
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 For the end-of-semester mean scores p < .012, while in the analysis for the mean change in survey score 

p < .011 
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SurveyPreTest

Average 

SurveyPostTest

Average 
SurveyChange 

Mann-Whitney U 1131.000 866.000 865.000 

Wilcoxon W 2961.000 2696.000 2695.000 

Z -.686 -2.520 -2.533 

Asymp. Sig. (2-tailed) .493 .012 .011 

(Grouping Variable: Institution)   

Table 10:  Summary of results of the Mann-Whitney test on mean survey scores 

between Rio and Hilada at both points of the semester  

 

 

Though these changes in attitudes were statistically significant, they are indeed small.  

Attributing these results to the differences I described between the courses may be 

unwise.  However, the coincidence of these phenomenaðthe fact that PSTs from the 

course focusing on aspects of MKT that relate most closely to the practice of teaching 

responded more adaptively to items on the attitudes surveyðsuggests that there is more 

to learn about the link between attitudes about mathematics and teaching and developing 

MKT. 

 Though the interviews were not designed to elicit data on the question of how the 

courses might have influenced PSTsô attitudes about mathematics and teaching, there is 

some evidence that suggests a link between MKT and attitudes about mathematics and 

teaching.  Consider these comments made by Laverne, who scored more than a standard 

deviation below her classmates at Hilada on the MKTI:  

M:  édid this class have any influence on that? 

L:  I mean, I learned some things, and it did help improve my 

skills and the way I look at things nowé 

M:  Mhmm. 

L:  But, I still have the same attitude towards math, like, I 

donôt really like itéIf ever I become a math teacher, Iôm 

definitely going to probably have a tutor.  Cause I would 

never go to teach this and not know it.   

M:  Uh huh. 
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L:  I would rather be like, óWeôre in math class one dayð

Laverne, this is what weôre doingéô 

M:  (laughs)  

L:  I will find someone who doesðI donôt knowðsomehow, 

weôd work it out.  But I wouldnôt sit there and try to teach 

this when obviously I donôt understand it. 
 

Laverne showed serious reservations about being able to teach mathematics to children, 

and did not feel preparedðmathematicallyðto take on this responsibility.  In contrast, 

Eliot who scored more than a standard deviation above the mean MKTI score of her 

classmates at Hilada, expressed her confidence in mathematics: 

 

M:  Ok.  Was your original impression right? 

E: It wasnôt exactly.  At first it started out, um, I thought that 

they were re-teaching me the math, and sometimes 

throughout the course it felt like that and uméI donôt know, 

I like to think that Iôm good at math and so re-learning 

things that I learned in sixth grade was counterproductive 

for me. 

M:  Mhmm. 

E: But thatôs not the case for everyone.  I understand that.  So, 

the majority of the time it wasnôt just re-teachingéit wasnôt 

just re-learning the math, it was learning how to teach it.   

 

Unlike Laverne, Eliotôs experience reinforced her thought that teaching mathematics to 

children was a challenge of which she was capable.  It is reasonable to infer that the 

different levels of confidence and the perspectives shown by these PSTs would be 

mutually influential with their MKT: the more one knows, the better one is equipped to 

handle the challenges of practice, and thus the more adaptive onesô attitudes are likely to 

be. 

 The analysis of the survey data suggests again that at the end of the semester, 

there were differences between PSTs at one university and the other, differences that did 

not exist at the beginning of the semester.  This time, the differences relate to the attitudes 

about mathematics and teaching which PSTs expressed through the survey instrument.  It 
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would be difficult, if not impossible, to map this result back to specific differences 

between the courses, since the attitudes expressed in the statements given in the survey 

do not match up well with the analysis I offered above that described the two courses in 

this study.  On the other hand, this result again fits with the hypotheses I suggested at the 

end of Chapter Three.  PSTs in the course which focused most carefully on practices of 

mathematics teaching did develop different attitudes about mathematics and teaching 

than those PSTs whose work was not focused in the same way. In fact, these results 

suggest that MATH 291 PSTs developed slightly more ñadaptiveò attitudes than did their 

MATH 281 counterparts. 

PSTsô Perception of Course Relevance 

 So far, the data have supported the hypotheses I stated in Chapter Three, 

hypotheses that arose from the theory and educational research based upon situated 

learning theory.  It now appears that PSTs who engaged more closely in practices of 

teaching did in fact learn different mathematics for teaching than PSTs who focused on 

other things.  In addition, they developed different attitudes about mathematics and 

teaching.  The effect sizes attributable to the course PSTs took have been smallðbut 

significantðin most cases. In this section, I turn to analyze the data as they relate to 

another primary research question guiding this project: To what extent do prospective 

teachers see their mathematics course work as relevant to their future work? 

 The literature reports that in-service and pre-service teachers alike perceive a lack 

of fit between their undergraduate preparation and their eventual teaching practice.  There 

is an ethos among practitioners that teaching is best learned on the job, and while the 

theoretical principles discussed in teacher preparation programs are well-intentioned, they 
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do not account for the realities of daily classroom interaction.  Teacher educators, who 

often are also educational researchersðobviously disagree with this perspective, as 

theory continues to drive the work that they do.  Bridging the gap between theory and 

practice is a perpetual problem in education, but situated learning theory and the teacher 

development activities that have been associated with it in recent decades show promise 

in helping teachers to learn relevant mathematics for teaching.  The data I have presented 

from this project have supported these claims and may yet also be able to narrow the gap 

between what teachers perceive as well-meaning, but ultimately irrelevant university 

advice and the more pressing day-to-day demands of classroom life. 

 In order to find out if the MATH 281 and MATH 291 were perceived differently 

in terms of relevance, I included items at the end of the survey instrument (not included 

in the analysis of attitudes above) that asked PSTs to rate the value of their mathematics 

course to their future teaching.  At the beginning of the semester, these questions focused 

on the expectations the PSTs had for their course.  There were four Likert-scale items, 

shown below as they appeared at the end of the survey: 

1. The activities we do in this class are 

supposed to help me make 

significant progress in my goal of 

becoming a teacher. 
SA A N D SD 

2. The assignments we do in this class 

are supposed to help me make 

significant progress in my goal of 

becoming a teacher. 
SA A N D SD 

3. The exams we take in this class are 

supposed to help me make 

significant progress in my goal of 

becoming a teacher. 
SA A N D SD 

4. In this class, I expect to learn more 

about what it is like to teach 

mathematics. 

SA A N D SD 

Table 11: The four Likert-scale ñrelevanceò items on the survey. 

 

  



 

 175 

 

At the end of the semester, the first four items were re-worded to reflect not PSTsô 

expectations but the reality of their view of the course.  For example, the first item read, 

ñThe activities we did in this class helped me make significant progress in my goal of 

becoming a teacher.ò  Responses to these items were coded on a scale from one to five, 

where ñfiveò indicated that the student expected the course to be relevant to the PSTôs 

teaching practice and ñoneò no expectation of relevance.  For the end-of-semester survey 

responses, the same codes were used except that they now signified de facto evaluations 

of the course with respect to its relevance for each PSTôs future practice.  In addition, the 

May survey instrument contained three open-ended items.  These items were designed to 

indirectly gather data about the nature of their experience in the course.  These data were 

used to describe how the courses differed in Chapter Four, but they also can give insight 

into what connections PSTs saw between the course and their anticipated careers.  What 

did they remember most about the course?  How would they describe the course to a 

friend?  Shown below are the items as they appeared on the May version of the survey: 

 

1. The most memorable assignment in 

this course was: 

  
2. The most memorable activity in this 

course was: 
 

3. Suppose a friend of yours was 

thinking of taking this class and 

wanted to know more about it.  How 

would you describe the class, what 

would you say to your friend about 

what she should be ready for, and 

what would she learn? 

 

 

Table 12: The three open-ended items, contained only on the end-of-semester survey. 
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 Statistical analysis shows again that there were differences between MATH 281 

PSTs and MATH 291 PSTs in the way they evaluated their courses in terms of its 

relevance for teaching.  These results are supported by interview data and statements 

made on the open-ended items shown above.  

Statistical Analysis 

  At Hilada, the mean score on the early semester items was 4.19, while at Rio, the mean 

score was 4.40.  These scores mean that PSTs at Rio had slightly higher expectations for 

how relevant their course was going to be for their teaching career.  At the end of the 

semester, both scores were lower, indicating that their expectations had not been fully 

met.  Yet, the drop was more precipitous at Hilada: there, the mean score on these items 

was 3.29, while at Rio, the mean score was 3.97.  At Hilada, the PSTsô responses dropped 

by almost a full point.  At the beginning of the semester, their average response indicated 

that they agreed or strongly agreed that their course should be relevant to learning how to 

teach mathematics.  At the end of the semester, PSTsô responses were nearly neutral (a 

score of three indicated a ñno opinionò response) about whether or not the course was 

relevant to learning how to teach mathematics.  At Rio, this score also dropped, but not 

nearly as much, and this mean score indicated that PSTs were still in agreement that the 

course had accomplished the goals they had for the course. 

 

Mean Score 

on Course 

Relevance 

Items 

(February) 

Standard 

Deviation 

(February) 

Mean Score 

on Course 

Relevance 

Items (May) 

Standard 

Deviation 

(May) 

MATH 281 4.19 .55 3.29 .95 

MATH 291 4.40 .49 3.97 .62 
 

Table 13: Means and Standard Deviation statistics for scores on the four relevance items on the survey 
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 Are these results statistically significant, or could they have occurred simply by 

chance?  The data, like the rest of the survey data, did not meet the criteria for performing 

ANOVA
61

 making Mann-Whitney tests more appropriate for discerning differences 

between the cohorts.   This analysis shows that while the PSTsô mean response scores did 

differ significantly (p < .06) at the beginning of the semester, and then again in May, the 

mean response scores were even more clearly different (p < .001).  Though the Rio PSTs 

had higher expectations for their courseôs relevance than did their Hilada counterparts, at 

the end of the semester, those higher expectations were met better than those at Hilada.   

 

 Institution N Mean Rank Sum of Ranks 

PreFourItemSurvey 1 60 46.49 2789.50 

2 41 57.60 2361.50 

Total 101   

PostFourItemSurvey 1 60 41.42 2485.50 

2 41 65.01 2665.50 

Total 101   

 

Table 14: Summary of ranks associated with mean scores on relevance items 

 

 

 

 PreFourItemSurvey PostFourItemSurvey 

Mann-Whitney U 959.500 655.500 

Wilcoxon W 2789.500 2485.500 

Z -1.922 -4.009 

Asymp. Sig. 

(2-tailed) 
.055 .000 

Grouping Variable: Institution  

 

Table 15: Summary of results of the Mann-Whitney test on mean relevance scores 

                                                 
61

 The test statistics for both the K-S and Shapiro-Wilk tests for all mean scores on the relevance items have 

p-values less than .001, which means that one must reject the null hypothesis that the distribution can be 

approximated with a normal distribution. 
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Other data sources suggest the reasons for the difference in relevance scores at the 

end of the courses, but these quantitative data shed some light on the issue.  Correlations 

computed between all variables show that end-of-semester relevance scores are positively 

correlated with beginning-of-semester relevance scores,
62

 end-of-semester MKTI 

scores
63

, as well as institutional affiliation.
64

 
65

  Though these correlations are not 

particularly strong, they are significant.  This means that higher the mean relevance 

scores at the end of the semester were associated with higher scores on the MKTI.  It is 

reasonable to speculate that PSTs who find more connections with teaching will invest 

more heavily in the work of the course and therefore take more from it; it is a premise on 

which this project is predicated.  Though the relative difference between the cohortsô 

MKT was not definitive in the quantitative analysis, but to the extent that PSTs across 

campuses felt their course was relevant to their understanding of teaching, the evidence 

suggests it is positively correlated with MKT.  But this makes the fact that the institutions 

did differ along this dimension intriguing; why did the relevance scores differ? 

Relevance: Survey Data 

 At the end of the semester, nearly 1/5 of all PST participants (19 out of 101) 

wrote that they would describe the course to a friend as helping them learn to teach 

mathematics to children.  ñWe learn how to teach math to students and since we already 

understand standard math, they challenge us by using different bases,ò is a representative 

of this kind of response.  Interestingly, notwithstanding the statistical analysis above, 

                                                 
62

 Pearson coefficient = .321, p < .001 
63

 Pearson coefficient = .189, p < .03 
64

 Pearson coefficient = .385, p < .0005 
65

 Recall that PSTs in MATH 281 were coded with a ñ1ò while those in MATH 291 were coded with a ñ2.ò   

This positive correlation shows that a higher institution score (MATH 291) is associated with a higher 

dependent variable score.  In this case, that means that MATH 291 PSTs were associated more strongly 

with a higher relevance score. 
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fewer MATH 291 PSTs responded this way than did MATH 281 PSTs (seven compared 

to 12).  Contrast this with a related, but distinct response that did not explicitly mention 

teaching children, but instead described learning how other people think about 

mathematics: ñIn this class we learn how children think mathematically and what, as 

teachers, we can do to promote their knowledge growth.ò  In this case, seven PSTs at Rio 

responded that they learned how other people (children in particular) think about 

mathematics, but only three Hilada PSTs did.  Statements that mention ñlearning how to 

teachò and ñlearning how other people thinkò are the only ones that mention teaching 

explicitly, either in an active sense or in a more passive senseðwhen assessing childrenôs 

thinking.   The vast majority of responses to this item related that the course was about 

looking at mathematics in a different way, or understanding the reasons behind 

procedures rather than simply the procedures themselves. 

 MATH 281 (Hilada) MATH 291 (Rio) 

 

This course is about learning how to teach 

mathematics 

 

20% 17% 

This course is about learning how other 

people/children think about mathematics 

 

5% 17% 

This course is about understanding why 

procedures work 

 

43% 49% 

This course was difficult 

 
7% 13% 

 

Table 16:  Summary of common responses to the survey item asking PSTs to describe to a friend what 

to expect to learn from the course. 

 

Since 29 PSTs mentioned teaching in this way, only about 1/3 of all PSTs in the study 

would describe the course to a friend as being about teaching mathematics.  From the 

perspective of course designers, this may be a good thing, as the coursesðas described 

on the syllabusðare NOT intended to teach PSTs how to teach mathematics.   Among 
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teacher education programs, this particular goal is the traditional domain of methods 

courses and student teaching experiences.  On the other hand, it demonstrates the strong 

desire of PSTs to play out these roles early in their program instead of near the end of it.  

Interestingly, despite the fact that MATH 281 tended to use more advanced mathematical 

symbols and arguments than did MATH 291, a fewer proportion of PSTs in that course 

would warn a friend that it was difficult.  Responses to this item do not reveal major 

differences between the campuses however.  It appears that relatively similar proportions 

of each cohort answered with similar sentiments regarding what they were supposed to 

learn in the course.  The biggest gap is the one related to learning how children think; Rio 

PSTs used this description substantially more often than did their Hilada counterparts. 

 The other items on this portion of the survey asked PSTs to recall the most 

memorable aspects of the course, particularly the assignments and activities.  These 

questions were designed to gather data about what ñstuckò with PSTs.  The table below 

summarizes the kinds of responses that were given to prompts dealing with memorable 

assignments and activities, indicating how the courses differed, but also might provide 

insight into the results of the statistical analysis. 
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 MATH 281 (Hilada) MATH 291 (Rio) 

 

Most Memorable Activity or Assignment: 

Watching Video 

 

7% 46% 

Most Memorable Activity of Assignment: 

Working with Classroom Manipulatives 

 

36% 41% 

Most Memorable Activity or Assignment: 

Writing Word Problems based on Given 

Number Sentences 

 

10% 0% 

Most Memorable Activity or Assignment: 

Working in other Bases (e.g., base-five 

arithmetic)  

 

2% 61% 

Most Memorable Activity or Assignment: 

Using Graph Paper to Solve Problems 

 
0% 13% 

Most Memorable Activity or Assignment: 

Written Reflections and Projects (e.g., the 

ñStar Projectò) 

 

64% 0% 

Table 17: Responses from PSTs on open-ended items of the survey.  Percentages add to more than 

100% because some PSTs mentioned multiple activities and assignments as being most 

memorable. 

 

A glance at the column associated with Rio PSTs shows that they heavily cited activities 

that I have earlier described as being closely associated with artifacts of teaching.  The 

largest category of response, related to PSTsô work in other bases, is directly related to 

the focus in MATH 291 on place value, which is itself designed to match closely a 

fundamental concept in elementary school mathematics.  Another reason for this 

discrepancy might be that a large number of the PSTs recalling the work in other bases 

were describing the Alphabetia project I highlighted in Chapter Four.  This was an 

activity that was not replicated at Hilada.  

 Likewise, one of the categories which Hilada recalled in significantly greater 

proportions than did Rio PSTs was the ñwritten reflections and projectsò and ñwriting 

word problems from given number sentences.ò  The first of these categories is also one 
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that was particular to MATH 281: this was not an experience that occurred in both 

locations.  In MATH 281 the written reflections and projects refer to specific assignments 

given to PSTs that were of an extended nature.  Most nightly assignments given during 

class were short sets of problems taken from the textbook, and the written reflections and 

projects were a departure from this.  Writing Assignment #2 involves writing and solving 

a word problem related to the sentence 
2

1

4

1
2 · , and might in fact be the memorable  

ñword problemsò assignment to which many of the PSTs referred on the survey.  Writing 

Assignment #1 was a problem-solving exercise related to prime factorization, and Project 

#1 was an assignment related to GCF and LCM, and resembles an assignment in an 

introductory abstract algebra course.   

 Thus, PSTs overwhelmingly reported extended assignments as most memorable.  

There were relatively few of these in each course, and it is not surprising that they would 

thus stay with PSTs at the end of the semester.  Though not all PSTs gave reasons why 

they reported these assignments as memorable, the reasons can give insight into why Rio 

had higher relevance scores on the survey instrument.  HIlada responses can be 

represented by the following comments: 

We had a take home project where we had to figure out some 

nonsense dealing with lockers.  The point is that it took me a 

long time to do it and I felt really good when I finally figured 

it out.  I got an F on that project. 

 

The star problem because it took a very long time to figure out, 

but one I did I felt like I fully understood the concept and 

was very comfortable with it. 

 

The locker problem.  This really required critical thinking.  Also, 

it could be solved by various methods. 

 

The written reflections were memorable because they were more 

in depth than assignments in class. 
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The most memorable activity was the locker activity.  It was very 

fun trying to figure out which lockers would be left open, 

after you eliminated certain lockers due to prime factors, etc. 

 

The first comment was Laverneôs, who scored more than a standard deviation below her 

peers at Hilada on the February MKT.  What is notable about these comments is that they 

do not include any mention of these assignmentsô relevance to teaching, or to the larger 

goals of the course.  Contrast these reasons with those given by Rio PSTs for why 

working in other bases (likely the Alphabetian project) was their most memorable 

assignment (recall that 61% of Rio PSTs cited this as most memorable): 

Working with different bases to solve ordinary addition problems 

because it puts you in the mindset of an elementary level 

student. 

 

The most memorable assignment was making up our own 

number system because it basically introduced the concepts 

of other number systems and helped to understand a lot of 

the course. 

 

When we were asked to create our own numeration system using 

only 6 digits.  This really helped me to understand the 

concepts behind number systems. 
 

Though MATH 291 PSTs reasons do not necessarily cite the activityôs connection to 

teaching, they are consistent in connecting the activity to the overall goals of the course, 

which my analysis has suggested was more closely in touch with these practices than was 

MATH 281.   

 The general thrust of this survey data is that MATH 291 PSTs recalled more 

opportunities to connect to teaching practices, artifacts, and fundamental elementary 

school mathematical topics; they report such activities as being memorable in 

considerably larger proportions than did their MATH 281 counterparts.  It is likely that 
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this was an important reason why Rio students responded more emphatically that their 

course was relevant to their teaching practice than Hilada PSTs did.   

Relevance: Interview Data 

 The interview data support this inference.  Note that at Hilada, only thirteen of the 

61 PSTs participated in watching video, and these thirteen PSTsðaccording to interview 

dataðonly had one opportunity to do so.  Nearly 1/3 of themðfour out of the 13ð

mentioned video on the survey as the most memorable activity of the entire semester.  

This is an important result: a single viewing of children doing mathematics was the most 

memorable activity for a large proportion of the PSTs in that class.  Carla (at Hilada) 

indicated what advantages she thought video had over other activities:   

M:  Some of the time I went to class, there was talk about aéyou 

know there was a page in the book or a wordðthere were 

problems in the book that had, óSuppose kids solved 

problems this wayéô  How would you compare those kinds 

of things to seeing the video? 

C: Seeing the video is much more practical because, you know, 

óSuppose the child does this, this, and this.ô  Even though 

some of those were really interestingðand there were a few 

of thoseðthere werenôt many of those either.  Um, I think 

seeing it, and actually watching a child work through the 

processé 

M:  Mhmm.  

C: And the person that was with her, the adult that was with 

her, you know, really just kind of let her work through, and 

might have pointed out one thing or another, buté 

M:  Right. 

C: éreally let her work through it; it gave us just suchðit was 

just so visual and so like, óThere it is,ô you know, so concrete 

to understand how she went through it.  And I donôt think 

that just reading a hypothetical is as valuable. 

 

Carla thus placed a high premium on childrenôs presence in the math classroom (even if 

that presence was virtual, via video recording) as being a ñconcreteò experience of how 

children think and an opportunity to confront what decisions teachers must make in real 
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time.  Though Carla thought the interviewer in the video might have done things 

differently, the video was a unique way to present her with this dilemma: the real child 

and teacher in the video forced her to speculate how she would respond to a childôs 

thinking, laid out in front of her.  Maeby (at Rio) responded similarly, recalling that video 

presented a more immediate and real example of how children work and think: 

MA:  Um, I think that for things like this, the videos have helped 

the most, because for that we had like, each video would 

have like eight kids, and theyôd each do the problem 

differently.  Um, and soðand they usually do it on a 

blackboard, so you can see like, step by step what theyôre 

thinking about. 

M:  Uh huh. 

MA:  Um, so, I mean, thatôsðlike for B, thatôs how I was kind of 

familiar with the simplifyingé 

M:  Right. 

MA:  éportion of it, because weôve seen examples of thaté 

 éBecause it allows you to seeðlike instead of saying, óA 

kid might do this,ô like, it actuallyðit allows you to see 

like the entire thought process, from like, first step to last 

step. 

 é sometimes theyôre confusing, because I mean, theyôre 

kids.  Like, a lot of things get lost in translationé 

M:  Yeah. 

MA:  éum, so like, today, she gave us written out what she did 

and it was easier to understand.  Um, but I think overall 

itôsðeven though itôs kind of hard to understand like, 

throughout, but like, I guess when you see it all done, it 

starts like, clicking.  Like, óOh, ok, this is what theyôre 

thinking.ô   

 

Maeby connected her analysis of the first interview prompt (75 ï 48) to this work, noting 

that she could follow the logic underneath unusual procedures because of her experience 

watching the video.  Both Carla and Maeby referred to discussing video as useful 

activities for learning mathematics for teaching.  Unlike Carla and Maeby, Anne (at Rio) 

did not mention the videos in the relevance items of the survey instrument, and she did 

not raise the issue through nearly the entire interview.  However, when she was asked 
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which components of the course she thought should be included in an ideal version of 

MATH 291, Anne made similar observations as Carla and Maeby did: 

 

M:  Anything else youôd want to keep [in an ideal version of this 

course]? 

A: I think the videos helped too, like watchingéor not even just 

the videos, like when we have the pieces of paper with all the 

different word problemsðnot word problems, like, 

algorithms worked out where the kids try to do all their little 

invented algorithms and everything. Um, ócause we saw, 

like, five hundred ways to do one problem that we would 

have never thought of. 

M:  Ok. 

A: Um, and then watching kids try to do it in the video was 

justéit made you think thereôs not one way to do it (laughs), 

that they donôt think like the standard algorithm and that 

they kind of create their own thing.  (inaudible) 

M:  So the videos and the worksheets where you get the invented 

algorithmsé 

A: Mhmm. 

M:  That helped you get a sense that there were other ways of 

doing it that are out thereé 

A: Mhmm. 

M:  Um, was there anything else those helped you to do? 

A: Umé 

M:  ThoseéI meané 

A: I guess they kind of helped me to explain why things work or 

donôt work, but Iôm still working on that. 

 

Ann demonstrated less enthusiasm for the video over other activities, like examining 

student work.  But, like Maeby and Carla, she acknowledged that they gave her an 

opportunity to understand the range of ideas that she might confront as a teacher in a 

classroom of 25-30 children.  These PSTs watched the video not as students in a 

mathematics course, but as teachers.  Though none are yet certified and none yet have 

responsibility for a classroom of children, the videos gave them a new experience of what 

it means to teach mathematics.   
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 This is not to say that it is their only experience of what it is like to teach 

mathematics,
66

 but video is a unique context for the reasons I laid out in Chapter Two, 

and the PSTs echoed these sentiments during the interviews: it is a low-stakes setting 

which strip away some of the complexity of real classroom teaching that PSTs can use to 

practice taking apart the relevant mathematical ideas and consider the implications of 

studentsô understanding for the knowledge and work of the teacher.  Lindsay did not 

mention videos until I prompted her, but then implied this very concern in discussing the 

value of activities like watching video:  

M:   Is there anything you can think ofðagain, putting yourself 

in the position where you canðyou can do whatever you 

want. You can make your dream math class for teachers.  

Is there anything youôd want to do brand new that you 

wouldnôt keep or take out, but youôd plug in.?   

LI:  Mmm, maybe hands on.  Like, actually working with some 

kids.  óCause, likeébut, uhéNo, actually scratch that.  

Because like, I wouldnôt feel comfortable explaining 

something to a kid that I donôt really understandé 

M:  Uh huh. 

LI:  éso, no I donôt think Iôd add anything.  I think itôs  fine the 

way it is.  I think itôs the testing that Iôd (inaudible).  

Thatôs it. 

M:  Itôs interesting though you mentioned working with kids.   

LI:  I mean, maybe at the end.  At the end...like, very end, like 

[MATH 293]é 

M:  Right. 

LI:  óCause then by that time you should understand 

everything, but, I donôt knowé  

M:  Well, the reason I think thatôs interesting is because one of 

the things I saw you guys do today even, was watching 

videos of kids.  Um, and I know that in some of the 

assignments there have been questions like thisé 

LI:  Mhmm. 

M:  éor, you know. Andéis that a goodðor even so-so 

substitute for working with kids?   

LI:  Yeah, itôs good, ócause you get to see the kids.  Itôs just 

sometimes, you know, the videos are hard to understand 

like, the kids talking.  So yeah, itôs like, a little hard.  But I 

                                                 
66

 Teacher education research contains many examples in which the ñapprenticeship of observationò 

(Lortie, 1975) features prominently. 
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mean, they narrate for us so we understandéyeah, itôs 

good.   

M:  I mean, do you feel like that was a helpfulé 

LI:  Yeah, it was helpful. 

M:  How would you compare that to the manipulatives?   

LI:  It, well, theyôre the same.  Theyôre both helpful, because 

like one, youôre actually doing it and the other youôre 

actually seeing it.  Soé 

 

For Lindsay, the use of video was not more valuable than working with manipulatives, 

but both put her in direct contact with children in different ways.  With manipulatives, 

PSTs are working with objects that children work with to develop understanding 

(ñéyouôre actually doing itéò), while video gives PSTs an experience of how children 

think (ñéyouôre actually seeing itéò).  Though Lindsay did not elevate videos over 

other materials or activities in value to her development as a teacher, she acknowledged 

that working with living, breathing children would present a complexity for which she 

was not prepared; indeed, deciphering video was challenging enough, and it provided her 

with enough complexity to begin developing her skill extracting relevant information for 

her practice.  The same sentiment appears in all of these comments: working with these 

materials demonstrates to PSTs and gives them some experience of what knowledge 

children bring to classrooms, and the practical, mathematical decisions that teachers must 

make about what and how to engage with that knowledge.  It is not surprising then that 

PSTs who had more frequent opportunities with such tasks viewed them as directly 

relevant to their future work. 

 Beyond the use of videos, PSTs cited the use of manipulatives, and trying to 

understand alternative algorithms as the most memorable aspects of their course.  These 

are all components of the courses that made explicit their position as PSTs, and 

acknowledged, even at this early stage, their desire to enter into the teaching community, 
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and don a teaching persona.  Eliot, a student at Hiladaðand who did not watch any 

videoðcited manipulative materials as key components of her learning in the course: 

E: I would keep the activities, withðand the real-life activities, 

with base ten blocks, even though some people thought they 

were kind of stupid, and childish, andé 

M:  Mhmm. 

E: You know, I now can explain why you canôt subtract that 

[referring to five minus eight in the first interview task] 

because of base ten, because I saw it.  Because, you know, I 

worked it out.  Um, I think using things that kids will 

actually use in class like that, is really important, because 

then you start thinking like kids, in a positive sense where 

youôre on the same level as them and I can understandðat 

first I couldnôtðbut I can understand why thereôs a three 

there, like a basic check.  I think thatôs huge, using things 

that kids would be using in class.  Um, for the most part, I 

think I would teach the class pretty similarly.  I would keep 

the focus on how to teach it, and how to reach all sort of 

kids.  I mean, we had one class all about common 

misconceptions that children have when dealing with math 

problems, and I think thatôs huge.  And I maybe would have 

even done another class on that, with problems like this.  

This whole, óWhy are they doing it this way?ô óHow can you 

show them that itôs not the way to do it?ô 

 

In this response, Eliot expressed a desire to learn more about how children think about 

mathematics and common mistakes they make.  She acknowledged that there were 

elements of this in her MATH 281 course, but she also wanted to learn more about how 

to teach children math.   

 This was a common sentiment among PSTsô responses on the survey: a large 

number of them said that they would describe the course to a friend as ñlearning how to 

teachò mathematics.  17% (17/101) of PSTs wrote that they would tell a friend that the 

course was about how to teach mathematics to children.  While this may not be the 

explicit goal of the courses or the instructors, the use of video, manipulatives, student 

work, studying cases, and other artifacts of teaching practice may give PSTs the 
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impression that this is in fact what they are doing. Indeed, situated cognition theory 

suggests that, to the extent these courses mimic the mathematics done in elementary 

school, PSTs are in fact learning how to teach mathematics.  Again, it should not be 

surprising that when PSTs engage in these activities, they assigned a special relevance to 

them that they were less likely to attach to other kinds of assignments. 

 Part of the reason may be that without these connections to teaching, PSTs may 

feel like they are being treated like the children with whom they intend to work one day.  

Consider Eliotôs comments that compare MATH 281 her concurrent experience in 

MATH 282, which focuses on geometry: 

E: é make the focus about how to teach it and not 

necessarilyðI mean, itôs frustrating when you felt likeéfor 

me, itôs frustrating to feel like youôre being taught third 

grade stuff, because most of these people are freshmen and 

sophomores in college andéI mean, Iôm a junior in college 

andðit didnôt happen as much in this class, which is good.  

But itôs frustrating when you know the material.  You donôt 

want to be taughtðyou donôt want to be taught like you 

donôt know it.  

M:  Right. 

E: Soðand I think that [MATH 281] did a good job of not 

doing that, soé 
 

Here, Eliot expressed frustration with courses that did not acknowledge their developing 

role as teachers.  Carla expressed frustration that her other education courses, even those 

directly associated with disciplinary studies, did a better job of this than MATH 281: 

C: é I think Iôve learned, actually, more or come up with and 

worked with more interesting math lesson plans, in say, you 

know, like my music for education class, or my, even art for 

education.  I mean, we did really cool math things.  You 

know in art, we came up with lesson on how to, how to do 

geometric shapes ad giving kids specific angles that they 

would have to include in their art pieces and for them to add 

up all the angles that they had in their art pieceé 

M:  Uh huh. 
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C: In, uhéOh, in music, they have to count their measures, and 

then theyðyou know, thatôs simple addition obviously butð

then they could do multiplication as well, and we came up 

with little songs to remember formulas, and uméYeah, I just 

feel like, that, in other education courses, thatôs 

[constructing interdisciplinary lessons] a big focus. 

 

Carla described the fact that she saw important connections to teaching mathematics in 

her other courses and expected to see more connections like those in her course about 

mathematics.  These comments were preceded by a concern that the mathematics was too 

often a review of how to do mathematics: 

C: And, I felt like some of those things we were doing, even 

though conceptually it [concentrating on explaining 

mathematical procedures]ðI guess it helped us in the long 

run, kind of trying to understand math better, I donôt think it 

did much to show us how to teach math better, you know?  I 

guess, I guess in the long run, hopefully weôll have a better 

understanding of it ourselves, ultimately, weôll be able to 

translate that to the kids moreé      

 

Eliotôs comment that ñyou donôt want to be taught like you donôt know itò is an important 

expression of the sentiment that is at the heart of this project: one way to treat 

undergraduates like the adults they are and the teachers they will soon be, is to show 

them what elementary school mathematics is like (and how it is done) from a teacherôs 

perspective.  Without this component, teacher educators run the risk of PSTs feeling like 

they are being taught elementary mathematics all over again.
67

  This is an important 

component of my argument as it relates to situated learning theory.  Even though these 

PSTs are mathematics students and not teachers, it is possible to engage them as teachers 

by developing opportunities to think carefully about studentsô thinking and how to 

                                                 
67

 Some teacher educators might argue that this is necessary: PSTs are notoriously immature and weak 

mathematically.  The counterargument is this: if they did notðas studentsðlearn what they should have in 

the previous twelve or more years, a different approach may be necessary instead. 
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unpack the knowledge that is commonly held by many.  The goal to learn why 

procedures work is an important piece in this puzzle, but it is not necessarily the special 

domain of teachers: a goal of teaching reform efforts for many years across disciplines 

has been to help students understand more than just facts, but the reasoning and processes 

that are used in disciplines which generated them.  I have argued here that the two 

different courses oriented them differently with respect to their roles as future teachers, 

which created differences in how they viewed their coursesô relevance. 

 It is important to note Eliotôs final comment, that she felt like MATH 281 ñdid a 

good job.ò  The final prompt in the interview was to describe how an ideal version of 

their course would be similar to and different from the course they took.  All PSTs 

claimed that they would want to keep most aspects of their courses the same.  Complaints 

and changes usually centered on issues of assessment: the testing and grading structures 

in both courses were frustrating for many of the PSTs (consider Laverneôs comment from 

above about receiving an óFô on an assignment she thought she understood) and were not 

exclusive to one campus or the other.  Such sentiments underscore the fact that PSTs in 

both courses learned mathematics, they were challenged to think in ways they hadnôt 

before, and manyðif not mostðPSTs could point to ways in which they connected to 

the teaching profession. 

Summary 

 In summarizing the results of the analysis above, I return to the research questions 

I posed early in the project: 

(1) What mathematics do prospective teachers learn by engaging in activities 

of teaching practice such as examining curriculum, student work, and 

classroom video? 
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a. Do PSTs who regularly engage in such activities display 

evidence of different mathematical proficiency than PSTs who 

participate in more traditional course work? 

b. Do PSTs engaging in such activities display different 

mathematical knowledge for teaching (MKT) than PSTs 

participating in more traditional course work? 

c. Do PSTs engaging in such activities develop different attitudes 

about mathematics and teaching than PSTs participating in more 

traditional coursework? 

 

(2) To what extent do prospective teachers see their mathematics course work 

as relevant to their future work? 

a. Do different course approaches set up differing perspectives 

among PSTs on the contribution of the course to their future 

work? 

b. Do different course approaches set up differing views among 

PSTs about their confidence and abilities in mathematics? 

 

Using responses to the MKTI and survey at two distinct points in the semester, as well as 

interviews from a cross-section of each cohort of PSTs, I have employed both statistical 

and qualitative analyses to determine what answers to these questions are revealed by the 

data.  This variety of data collection methods enabled me to learn more about the PSTs 

than I could have using a single approach.  Both the interviews and MKTI data lent 

insight into PSTsô mathematical knowledge for teaching, while the survey instrument and 

interviews resulted in information about PSTsô attitudes about mathematics and teaching.  

Thus, all three data collection methods helped to shed light on question #1 broadly.  

Finally, I learned more about whether ad how PSTs saw connections between their 

coursesô structure and their future teaching practice through data generated by the survey 

instrument and interviews. 

 With respect to question #1a, there was little data in the corpus that could help 

answer it either way.  Certainly, two of three MATH 281 PSTs who participated in 

interviews showed confidence and facility with the standard division algorithm that was 
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not present among the MATH 291 PSTs.  To the extent that the MKTI assesses PSTsô 

mathematical proficiency, there is no evidence that PSTs at one university developed 

greater performance than the other.  The statistical analysis of the MKTI revealed that the 

two cohorts were statistically indistinguishable at both beginning and end of the semester.  

 This means that one cannot conclude from this data set that one cohort learned 

more than another.  However, the item analysis revealed that while this claim is 

unsubstantiated, they indeed appeared to perform best on different sub-domains of MKT.  

MATH 281 PSTs were strongest on items that focused on common content knowledge 

(this might also bolster a claim that this group developed stronger mathematical 

proficiency; see question #2c).  On the other hand, when MATH 291 PSTs showed 

stronger performance on individual items, they tended to be in the area of specialized 

content knowledge.  This sub-domain of MKT is described by Ball and colleagues (2008) 

as being particular to teaching practice, while the other might be shared knowledge 

among other communities.  The responses given by PSTs across the six interviews 

support the item analysis and show the depth of these differences.  Thus, the short answer 

to question #1b is yes. 

 As for question #1c, the data again indicate that there were differences between 

PSTs at Hilada and at Rio.  Though these differences were small, they were nonetheless 

significant statistically, and suggest that MATH 291 PSTs developed more adaptive 

attitudes toward mathematics and a greater comfort with teaching mathematics than did 

MATH 281 PSTs.  This might be offered as an answer to question #2c as well.  The 

reason for these differences remains unclear, as correlation statistics and interview data 
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suggest that the greatest factor in determining attitudes scores on the survey was the 

strength of PSTs mathematical knowledge for teaching.   

 Finally, there is the question of relevance: did PSTs at one university view their 

course as more relevant than PSTs at the other?  Here again, the hypothesis that generated 

the question (PSTs who engage in practices of teaching during their mathematics course 

work will view these courses as more relevant than those who do not) was borne out.  Rio 

PSTs reported feeling a greater connection between their course and their future practice 

than did Hilada PSTs, 

 I have offered as explanation the differences between the two courses and their 

foci.  While Hilada endeavored to place elementary mathematics on a solid logical 

foundation, concentrated on justifying and connecting arithmetic operations across 

number sets, and encouraged conventional mathematical notation, Rio looked to the 

notion of place value as a foundational principle in elementary school mathematics, 

developed robust new representations of numbers and operations, and pushed PSTs to 

confront the idiosyncratic nature of childrenôs mathematical thinking through consistent 

use of videos and student work.  The two courses made different connections to 

elementary teaching, both in number and kind; those differences had an impact on how 

PSTs viewed working in their course, the attitudes they developed about mathematics and 

teaching, as well as the mathematical knowledge for teaching they demonstrated. 

 The results of this study are not likely to reshape the landscape of mathematics 

education.  The documentable effects of the differences I outlined between the courses 

are relatively small and yet they nevertheless have implications for the field, especially as 

it attempts to learn more about how teachers learn the mathematics they need to know in 
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order to improve student understanding.  With this study, I sought to answer questions 

that I had generated informally as a community college teacher which evolved into more 

formal research questions.  The answers provided by the project can inform my teaching 

and that of many others in the field, while new questions have arisen in their place.  It is 

these issues and questions to which I will turn in the next chapter. 
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Chapter 6:  Conclusions and Further Research 
 

 

 My disappointment with service learning gave rise to an effort to find ways to 

acknowledge and take advantage of PSTsô desire (and need) to begin developing their 

craft early in their preparation.  A key component of this is for PSTs to develop strong 

mathematical knowledge for teaching which, as the phrase indicates, presupposes that 

teachersô content knowledge is tied closely to their practice.  Careful data collection 

confirmed what preliminary observation suggested: MATH 281 at Hilada University and 

MATH 291 at Rio University discussed analogous mathematical ideas, but were different 

courses that situated themselves differently with respect to teaching.  I have argued that 

as a consequence of this difference, the PSTs learned different mathematics, developed 

different attitudes about mathematics and teaching, and recalled the relevance of their 

courses with respect to their preparation as teachers differently.  All of these are predicted 

results of situated learning theory, which fundamentally and inextricably links the 

learnerôs environment to her development as a practitioner.  The results of the project do 

not offer easy solutions to problems of teacher education in mathematics, yet they do 

suggest that PSTs indeed benefit from examining mathematical ideas through the lens of 

teaching practice.  

 In returning to the research questions at the end of the last chapter, I highlighted 

the results of the data collected as they related to each question.  Here, I expand on these 

results a bit more, to argue what the implications of these findings are. 
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Question 1: What mathematics do prospective teachers learn by engaging in activities of 

teaching practice such as examining curriculum, student work, and classroom video? 

a. Do PSTs who regularly engage in such activities display evidence of different 

mathematical proficiency than PSTs who participate in more traditional 

course work? 

b. Do PSTs engaging in such activities display different mathematical 

knowledge for teaching (MKT) than PSTs participating in more traditional 

course work? 

c. Do PSTs engaging in such activities develop different attitudes about 

mathematics and teaching than PSTs participating in more traditional 

coursework? 

 

The MKTI data could be said to address questions #1a and #1b.  The answer, with respect 

to this project is a qualified ñyes.ò  Though the general statistical analyses did not reveal 

any differences between PSTsô MKT, the subscale analysis together with the item 

analysis indicates that the differences in the courses may have played a role in the 

differential achievement on CCK items and SCK items.  On one hand, it appears that 

these differences--where they existðcan be attributed simply to the different 

opportunities each cohort had to learn these things.  In a way, this is precisely what 

happened.   

 However, it is not enough simply to say that the PSTs learned different 

mathematics because they were taught different mathematics.  First, by many measures 

they were taught the same mathematics: both courses focused primarily on the four 

fundamental operations and understanding how (and why) the traditional algorithms and 

procedures associated with these concepts worked.  Second, the choice to implement a 

concentration on student thinking (for which video played a key role in MATH 291) is 

inextricably tied to a mathematical approach that seeks an authentically elementary view.  

If indeed the PSTs did learn different mathematics for teaching, one must investigate 
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carefully the circumstances of that learning: mathematical and pedagogical situative 

components are not distinct in this perspective. 

 Consider a scenario in which a teacher educator wants to incorporate student 

thinking and development into a mathematics course.  This teacher educator can think of 

this implementation in two ways: (1) begin with student thinking and determine what 

mathematics are needed to sustain this focus; or (2) begin with a mathematical approach, 

and find examples of student thinking and classroom practice that illustrate the relevant 

mathematical ideas.  For option (1), in order to lay bare childrenôs thinking about 

mathematics, the teacher educator must develop in PSTs an understanding of the 

mathematics which the child(ren) confront in their classrooms.  PSTs will not have an 

opportunity to understand this thinking without making explicit the mathematical ideas 

which form the foundation of elementary arithmetic, such as place value.  As for option 

(2), if the focus is to find examples of practice that bring insight to an a priori 

mathematical approach, the mathematical ideas with which one begins must reflect those 

in schools.  In either case, the mathematics that forms the focus of the course must have a 

close and direct relationship to the work of teaching for which the course is designed to 

prepare PSTs.  Simultaneously, the work of teaching that is of import is not devoid of a 

disciplinary context, but is dependent on the mathematics at hand. 

 Thus, I argue that it is not a coincidence that artifacts like video were not as 

preferentially incorporated into MATH 281 as they were in MATH 291: the mathematics 

which they were discussing did not always lend itself to learning anything interesting 

about what children do or how they think.  If a child misapplies an algorithm, it is 

probably not because he has misunderstood the property of distribution, or has incorrectly 
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used mathematical symbols to express the value of the statement.  Instead, it is likely to 

stem from some failure to understand or apply aspects of the base-ten number system and 

the consequent relationships between place values. These last ideas are key components 

of elementary school mathematics, and while the ideas highlighted by MATH 281 are 

neither incorrect nor irrelevant to PSTs, they were less directed toward PSTs ability to 

unpack mathematical concepts with the intuitive understandings that we well know 

children possess.  Instead, MATH 281 worked more on areas beyond elementary school, 

when curricula tend to concentrate more on generalizing operations beyond whole 

numbers and integers. 

 It may be that MATH 281 PSTs possessed a stronger sense of the mathematical 

horizon than did MATH 291 PSTs; this was another sub-domain of MKT described by 

Ball and colleagues (2008) which I did not explore in this project.  My hypothesis is that 

this would be the case. As it is, I argue that despite their relatively small magnitude, the 

differences between PSTsô MKT at each campus did exist, and is a result of the 

mathematical and pedagogical design of the courses.  One of the main advantages 

situated learning theory offers teacher education is that it brings to the fore the links 

between mathematics and pedagogy: teachers understand the mathematics they teach 

through some practice.  MATH 291 PSTsô activity was aligned more closely with 

elementary teaching practice than MATH 281 PSTs were, and thus, there were different 

manifestations of knowledge in the data. 

 Without this perspective, the data are relatively meaningless; one cannot 

determine whether or not it was the artifacts, which were used more often in MATH 291 

than MATH 281 that created these differences.  One might argue alternatively that the 
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differences may have originated in the overall mathematical approach, or other 

characteristics of the course which I have described (or not).  The design of the study was 

not sensitive enough to discern between these causes, in part because it was predicated on 

the theory that these are constituent, inextricably connected elements of the same 

situation.  The mathematical approach influences the nature and extent of the use of 

teaching artifacts and vice versa. 

 And yet, the approaches espoused in MATH 291 are not magic potions; they 

neither substitute for nor supersede factors like the knowledge PSTs bring to the course.  

The data showed that this prior knowledge was the most significant component of the 

knowledge they showed at the end of the semester.  Both MATH 281 and MATH 291 

presented to PSTs coherent mathematical frameworks on which to build their knowledge 

for teaching.  Those frameworks provided some basis for developing ideas about the 

mathematics that children are supposed to learn, how children think, and how to provide 

opportunities for developing PSTsô own mathematical knowledge. 

 As for Question #1c, again, I believe that the different nature of the courses has 

something to do with the differences in attitudes about mathematics and teaching 

revealed by the survey.  However, I do not think that the data reinforce this claim.  The 

survey items did not adequately match the differences between the courses, and it is not 

apparent to me yet how I may have generated more useful data along those lines.  Even if 

it were possible to prove such a result shaping teachersô beliefs and attitudes has not been 

shown conclusively to lead to measurably different practices in the classroom.  Such a 

result would strengthen the theoryôs claim that identity re-formation occurs through 

participation rather than by fiat.  Though the goal of learning is to change the learnerôs 
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identity, the means by which this change occurs most effectively is fundamentally 

different than situations where didactic practices are dominant.  In other words, the 

theory posits that you canôt really tell a teacher what to believe about childrenôs thinking 

or what mathematical challenges and complexities students will present to them; only in 

confronting them directly as they develop their practice will teachers (and by extension, 

PSTs) have a chance to develop the perspective that teacher educators want to reveal.  

 

Question 2: To what extent do prospective teachers see their mathematics course work as 

relevant to their future work? 

a. Do different course approaches set up differing perspectives among 

PSTs on the contribution of the course to their future work? 

b. Do different course approaches set up differing views among PSTs 

about their confidence and abilities in mathematics? 

 

 The answer to #2b, like the answers to Question #1, is a qualified ñyes.ò  It turns 

out not to be a question about quantity as much as one of type: MATH 281 PSTs 

developed confidence in different areas of mathematics than did MATH 291 PSTs, owing 

to the different foci of their courses.  The data is not conclusive about this but indicates 

that the confidences of PSTs lay in different areas.  

 Question #2a is one of the more intriguing results of this project.  The data 

indicate that MATH 291 PSTs felt that their course was significantly more relevant to 

their future teaching practice than their MATH 281 counterparts.  Here it appears that the 

use of video in the course was a primary factor in this evaluation, suggesting that PSTs 

may be more motivated by courses that explicitly acknowledge their developing role as 

teachers and implicitly move their status as students toward the background.  Recall 
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Eliotôs statement ñyou donôt want to be taught like you donôt know it,ò which referred to 

a course which treats PSTs as though they are learning the mathematics for the first time.  

While it is true that PSTs (as well as teachers and mathematicians) can always learn new 

mathematics and new perspectives on well-worn ideas, one can accomplish this by 

inviting teachers into mathematical understanding for teaching: suddenly, ñwhen are we 

going to use thisò can become ñwe are going to need a deeper understanding of 

mathematics in order to decipher what children are saying and decide how to facilitate 

their learning.ò  In my experience, PSTs are often studying to become teachers because of 

their self-professed ñlove of kids.ò  Teacher education should take advantage of this 

affectionate stance by making children a central part of their study.  

Implications for Teacher Education 

Artifacts of Teaching Practice are Not a Panacea  

A naïve hypothesis in this project was that the use of video and a concentration on 

student thinking are somehow a panacea for teaching mathematics to PSTs.  In some 

ways, I replaced my early faith in service learning with the use of video cases, believing 

that the simple implementation of the idea would create an environment in which PSTs 

somehow would learn relevant mathematics by default.  This study demonstrates the 

simplicity of that hypothesis; PSTs who watched video substantially more often than 

those who did not did not perform better (or worse) on the MKTI instrument.  On other 

measures, the differences were relatively small, and are unlikely to motivate a sea change 

in undergraduate pre-service teacher education.  Like the use of service learning, the 

benefits are probably limited in a setting like a semester-long course at a university.   



 

 204 

 

 Yet, the fact that videos, cases, and student work are somewhat less complex 

versions of service learning (or student teaching) is important.  Use of such materials has 

the advantage of allowing teacher educators to strip away obfuscating characteristics of 

classroom activity without removing the important mathematical challenges faced 

regularly by classroom teachers.  It allows teacher educators to focus PSTsô attention on 

particular (e.g., mathematical) aspects of the teaching situation.  The interview data 

suggests that PSTs who engaged in this video analysis and concentrated largely on 

student thinking had tools and concept images that they could use not only to further their 

own understanding, but that of their future students.  In fact, experience with video was 

cited directly by PSTsô for changes they saw in their abilities along these lines.  On the 

other hand, though MATH 281 PSTs arguably were more mathematically proficientðthe 

data suggests at least that their strengths were in the realm of common content 

knowledgeðthere was little evidence that they were as well prepared as the other cohort 

to articulate this knowledge to children or create opportunities to develop in them the 

same capacity.  For instance, it seems hard to imagine that an explanation of the division 

algorithm which appeals to fraction operations will be useful to children who are learning 

to divide without much experience using fractions.  Whatôs more, the analysis suggests 

that PSTs develop more adaptive attitudes to mathematics and teaching when they engage 

with these materials.  This may stem in part from the fact that they believe the work they 

are doing is directly relevant to their future practice; this was also a result of the analysis 

I offered above. 
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Listening to Pre-Service Teachers  

It is not known whether or not one sub-domain of MKT is more important than others 

when it comes to teaching effectiveness.  This means that it would short-sighted to 

conclude that one course did a ñbetterò job helping PSTs develop MKT than the other.  

The evidence does not support such a claim.  On the other hand, there are reasons why 

undergraduate content courses for PSTs might want to aim for particular sub-domains 

rather than others.  First, the very nature of common content knowledge (as defined by 

Ball, Thames, & Phelps, 2008) is that it is not confined to the world of teaching and 

learning.  This is an area of mathematical knowledge that is shared by other groups of 

people and is arguably the very sub-domain of knowledge that PSTs should already 

possess as they begin their undergraduate preparation.  The situated nature of this 

knowledge (if one chooses this lens) makes it especially well-suited to PSTs and 

teaching, as many undergraduatesðand adults in generalðdevelop whatever 

mathematical knowledge they have in the classroom context. 

 However, the roles that people play as students in these classroom contexts are 

very different from the roles they will play as teachers.  The evidence indicates that one 

can increase PSTsô knowledge while also addressing their desire to participate in the 

community of teachers.  Moreover, the question of transfer, as theorized by many 

education researchers is at stake.  What maximizes the chances that PSTs will be capable 

of applying what they did in their content courses to their teaching practice?  Situated 

learning theory argues that engaging PSTs in elements of that practice will increase the 

probability of transfer.  Recall that from the situated perspective, transfer refers to the 

consistency of activity patterns across situations, so that it is not necessarily the knower 
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that takes knowledge from one place to the next, but salient features of the situation itself 

that are transferred (Greeno, 1997).  The knower is able to attune properly to the features 

of activity that are germane to both settings depending on the learnerôs level of 

participation in the activities and her contribution to the resulting interaction (Greeno, 

1998).  I argue that it is the work of MATH 291 that more readily transfers from the 

university classroom to the elementary school classroom. 

 This is not to say that mathematics courses for PSTs should not address common 

content knowledge issues.  Knowing the differences between mean, median, and mode or 

knowing that 
0

4

0
=

 while 0

4

 is undefined are clearly necessary for teachers to 

understand.  Ball, Thames, and Phelps note that in their field observations, ñwhen a 

teacher mispronounced terms, or made calculation errors, or got stuck solving a problem 

at the board, instruction suffered and instructional time was lostò (2008, p. 399).  But this 

study offers evidence that concentrating on issues of teaching provides opportunities to 

develop, refine, and strengthen this knowledge while PSTs learn to confront the special 

knowledge and situations they will face as teachers.      

 Thus a major implication of this project is that PSTsô desire to connect 

somehowðeven indirectlyðwith the children they will teach should not be ignored by 

teacher educators. When making decisions about how to design courses, PSTs 

preferences may not be the only consideration, but these results suggest that teacher 

education may be wise to look for more ways to unite PSTs with the teaching community 

directly or indirectly.  
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Implications of Course Design 

 However, the results of this study do not compel teacher educators (among whom 

many are mathematicians, whether they identify as such or not) to shape their practice 

around the teaching community simply to make PSTs feel better about what they are 

doing or to give them a voice in their own development.
68

  The data suggest that such 

approaches not only impact PSTs attitudes and beliefs about how their academic work 

connects to teaching, but this influence extends to the opportunities PSTs have to learn 

mathematics.  The differences between the mathematical frameworks of these courses 

were interdependent on the ways in which the courses connected with teaching.  MATH 

291 concentrated on place value and its relationship to the fundamental arithmetic 

operations.  PSTs developed skills with choosing and representing BMUs, which in turn 

provided them with a basis for understanding and justifying common algorithms.  

Concentrating on place value also enabled MATH 291 to simulate the trajectory of 

elementary school mathematics by first building a system of counting in groups of ten 

and then learning to manipulate these numerals by taking advantage of the characteristics 

of the system.  MATH 281ôs focus on operation across so many number sets did not 

preclude it from incorporating childrenôs work or classroom video, but it did often require 

a mathematical trajectory that conflicts with a typical elementary school curriculum.   

The difficulty with organizing elementary mathematics material around the concept of 

operation in the way that MATH 281 did is that one must establish certain rational 

number concepts in some depth in order to operate on them.  In fact, this is what MATH 

281 did by introducing some number theoretic ideas (divisibility, GCF, and LCM, for 

example) in order to address rational number issues like simplifying fractions.  This 

                                                 
68

 There may be powerful arguments to be made in favor of both of these perspectives. 
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means that the instructor of the course must address issues of multiplication and division 

on whole numbers (which is what gives rise to rational numbers in the first place) without 

first addressing what it means to add and subtract, let alone multiply and divide.  But this 

inverts a conventional trajectory of elementary school mathematics: children learn how to 

add and subtract long before a serious discussion of multiplication or division is 

addressed, in large part because multiplication and division are deeply rooted in the other 

two arithmetic operations.  Rational numbersðas fractionsðare not a robust part of 

typical school curricula until the fundamentals of operating on whole numbers are laid as 

a foundation.  In this much more subtle way then, MATH 291 represents a more 

authentic experience of teaching elementary school mathematics, and the data indicate 

that this may have contributed to MATH 291 PSTs showing a greater capacity to 

ñunpackò the mathematical concepts about which they were learning. 

 Moreover, this authenticity did not necessarily sacrifice the mathematical 

generality sought by MATH 281ôs approach, nor did it ñdumb downò MATH 291ôs 

perspective.
69

  In a strict sense, fractions and ratio and proportion concepts were not 

explicitly part of MATH 291 at Rio.  On the other hand, PSTs, working in the context of 

decimals and BMUs, explored a construct that supports a discussion of such concepts and 

representations.  The diagrams drawn and much of the language usedðas it pertained to 

operating on ñdecimalò numerals in other basesðare directly applicable to the set of 

rational numbers, even though PSTs would likely balk at any fraction question given to 

them on a MATH 291 exam! 

                                                 
69

 Recall that a greater proportion of PSTs at Rio would describe their course as ñchallengingò or ñhardò to 

a friend. 
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I am interpreting the differences between the two courses as boiling down to the 

following: while both courses presented a coherent view of mathematics, one course 

presented a view with greater authenticity with respect to elementary school mathematics 

teaching.   Here I do not use the term ñauthenticò to mean some fidelity to one or another 

philosophy of mathematics, but instead I mean to highlight the compatibility of what 

mathematics was in each course with how mathematics is practiced in elementary school.  

The fact that this may have influenced PSTsô perception of the relevance of the course is 

an important component of what opportunities PSTs had to learn mathematics.  Aside 

from this ñmotivational factor,ò the framework used by MATH 281 necessarily appealed 

to concepts that, while mathematically coherent, did not lend themselves to the kinds of 

knowledge unpacking required of teachers in the MKT scheme and in the rhetoric of 

teaching reform. Alternatively, MATH 291ôs approach, though somewhat idiosyncratic, 

provided PSTs with opportunities to develop MKT that was less explicit in MATH 281. 

 It is worth restating Moreira and Davisô (2008) assertion that teaching 

mathematics in schools can be in direct conflict with mathematics as viewed from its 

disciplinary referent: ñTo create the real number system from nothing, that is, by 

postulating its existence as óanythingô satisfying the complete ordered field axioms, ends 

up in an inversion of what is done in schooléacademic mathematical knowledge may 

not be ónaturallyô a helpful instrument for the teacher in school practiceò (pp. 37-38).   

School mathematics and mathematics in the academy are fundamentally different things 

because they take place within fundamentally different communities, which employ 

different relationships, different structures, different organizations, and ultimately, 

different epistemologies.  One of the challenges of teacher education is to find ways to 
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bridge this gap: teachers must understand and work within both worlds as they seek to 

show children the important characteristics of one while being constrained by the realities 

of the other.  This means that in order to develop coherent models of teacher education in 

mathematics, there must be ongoing and constructive dialogue between the fields of 

mathematics and mathematics education (not simply between individual mathematicians 

and mathematics educators). 

Exploring Differences Beyond MATH 281 and MATH 291 

The results reported here are a replicationðof sortsðof those described by the 

Philip, et., al. (2008).  In that project, the authors note that PSTs who engaged with 

children via video (or in person) showed only smallðthough discernibly differentð

mathematical knowledge than peers who did not participate in such activities.
70

  PSTs 

who engaged in focused discussions of childrenôs thinking reported significant changes in 

their beliefs, while others showed smaller differences, if any.  There are analogous results 

in the analyses I have provided above, but instead of focusing on extra-curricular activity, 

it examined the work of the content course itself, attempting to discern whether and how 

this factor (held constant in Philip, et., al.ôs work) might affect mathematical knowledge 

for teaching, attitudes, and also PSTsô perceived relevance.  This kind of replication in 

educational research is not common but it is important; such research is rarely large-scale 

or truly experimental, and so understanding how similar phenomena play out in 

numerous contexts is necessary.  The two projects together appear to provide a 

compelling argument that focusing PSTs on issues of teachingðby way of examining 

childrenôs mathematical thinkingðdoes indeed change their beliefs and their ownership 

                                                 
70

 The PSTs who discussed childrenôs thinking in formal ways also scored better than those who simply 

observed classroom teachers.   
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of the mathematics as important to their practice.  The relatively small differences 

between the cohortsô MKT hereðand in Philip, et. al.ôs (2007) workðlikely means one 

of two things: (1) focusing PSTs on childrenôs thinking does not strongly influence PSTsô 

MKT in the short term (2) the influence has not been detected by these projects.  One 

question that emerges is whether or not these results are robust across a wider variety of 

circumstances.  Though I believe that evidence is mounting in favor of explanation (1), I 

do not believe that there is enough research to argue this claim conclusively. 

Even if it is true that the differences between these single-semester courses did 

not strongly impact PSTsô MKT, another question emanating from this work is: what 

happens to these PSTs beyond this first content course?  Would there be more obvious 

differences between PSTsô MKT at the end of their three-course sequence?  Would three 

courses which focus on childrenôs thinking and observing their mathematical abilities 

have a growing cumulative effect on MKT, or would any gains made in one course get 

washed out by events taking place in subsequent courses?  Additionally, the field lacks 

research on what influence a coherent undergraduate program taking on these approaches 

might have on PSTsô knowledge, attitudes, and beliefs.  Still more, what would such 

differencesðif they existðimply for PSTsô teaching at the conclusion of their programs, 

and would these differencesðif they existðhave any impact on childrenôs mathematical 

knowledge?  Some of these questions are already the focus of research programs
71

 but by 

necessity, these offer only small pieces of the puzzle.  Additional, longitudinal data of 

PSTs and their mathematical development are necessary to answer many of these 

questions. 

                                                 
71

 Some of the projects underway at the Mid-Atlantic Center for Mathematics Teaching and Learning come 

to mind. 
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   Finally, it is noteworthy that our understanding of how secondary PSTs in 

mathematics learn mathematics for teachingðor even what MKT looks like in secondary 

mathematics teachingðis even more nascent than our understanding of elementary PSTs.  

Teachers who work with more advanced students have potentially different mathematical 

goals and needs than their elementary school counterparts.  What knowledge teachers in 

these situations need and how they come to know it are not questions that have received 

much attention.  There may be parallels between the elementary level and secondary 

level, but there may also be significant differences, and these issues also should be 

explored empirically. 

Final Remarks 

 Hammerness, et., al. (2005) point out that a key component of teacher education 

should be to make the subtleties of school experience more explicit for PSTs, to sensitize 

them to issues of which students cannot be aware, but teachers must.  They write that 

teacher education should: (1) make teachersô ñapprenticeship of observationò explicit and 

offer alternative perspectives that build uponðand in some cases challengeðthis 

experience; (2) enable teachers to acquire a deep foundation of knowledge and techniques 

for giving this knowledge a conscious structure; (3) provide access to meta-cognitive 

tools for teachers to continue to develop their knowledge in and through their practice.   

 Both MATH 281 and MATH 291 accomplished these goals in subtly different 

ways, albeit for the short duration of the semester.  PSTs at Rio and Hilada frequently 

mentioned on the surveys that they learned to think of and about mathematics in new 

ways.  PSTs in interviews talked about the challenges they faced in completing the 

courses: learning why procedures work that were long taken for granted or 



 

 213 

 

misunderstood, how children think about elementary mathematics, and in some cases, 

what itôs like to be in the shoes of a child learning to do such ñbasicò mathematics.  

Consider Maebyôs comment about working in different bases: 

 [The instructor] turned it around on uséwhen she, she always 

makes us do problems, like multiplication problems, in different 

bases, whichðtheyôre annoying at the time, but they really help, 

because, I mean, if you tell me I have to do five times three, like I 

know how to do that, but if I had to do it in base eight, thatôs a 

whole different concept, and like, I have toðI have to think 

about it, like (sighs)éitôs just, you have to think about place 

value and stuff like, things that you would normallyéor you 

would automatically say the answer, you wouldnôt think about 

the place value stuff like that .  So itôs kind of putting us in a 

childôs positioné 

 

These are opportunities that are not the special province of content courses for teachers; 

teacher educators have endeavored to create these kinds of opportunities for PSTs within 

methods courses and student teaching for some time.  However, content courses are not 

independent of these other experiences that often occur late in PSTsô undergraduate 

preparation.  This study assumed the truth of the emerging consensus that there is special 

knowledge that teachers must develop in order to enhance their ability to improve student 

learning, and supports the speculation that situating PSTsô learning within the contexts 

and tasks of teaching influences them.  While it is unclear the relative effect this approach 

has on PSTsô mathematical knowledge for teaching, this project suggests that there is 

more to investigate and leaves open the possibility that one potential avenue for 

improving undergraduate teacher education is to re-cast content courses in ways that 

address the community of teachers of which PSTs will one day be a part. 

 As a teacher educator, this study has influenced my understanding of how PSTs 

learn, and what they value in undergraduate mathematics courses.  As a researcher and a 

member of the mathematics education community, this study demonstrates to me that 



 

 214 

 

there is more work to be done, and more questions to be answered, but that there is 

building evidence that understanding PSTsô developing MKT with a situated perspective 

and designing instruction with this understanding moves the field in a constructive 

direction.  In particular, I believe that this project contributes to the field by confirming 

some conclusions reached in other research but also contributing something new: this 

work provides information about how PSTs perceive their content course experiences and 

what kinds of participation draws them toward learning the mathematics we wish for 

them to learn.   

 Fennellôs question, with which I opened this essayðhow do we ensure that all 

teachers of mathematics know the mathematics and pedagogy essential for teaching the 

subjectðultimately is not answerable.  We cannot ensure that all teachers know anything 

in particular, but teacher education has a responsibility to design coherent learning 

opportunities for PSTs in which they can participate in a community of teachers, a 

community that is continuously created and nurtured as they deepen and refine their 

contributions. 
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Appendices 
 

Appendix A: Survey Items Administered to PSTs at the Beginning and End of 

the Semester 

[February 2008] 

Your Beliefs about Mathematics, Math Teaching, and This Math Course 
 

 
Strongly 

Agree 
Agree 

No 

Opinion 
Disagree 

Strongly 

Disagree 

1. One of a teacherôs major responsibilities is to 
show students how to solve problems and then 

to give them similar problems to practice. SA A N D SD 

2. Some people have mathematical minds and 

some donôt, and neither good teaching nor 

student effort can overcome that. SA A N D SD 

3. Children can develop their problem solving 

skills by working in small groups and hearing 

the ideas of other students. SA A N D SD 

4. A good math test is one that consists of a variety 

of items that are that are just like the problems 

students completed in class or in homework. SA A N D SD 

5. Having students determine and discuss their 

solution methods is a good use of class time, 

even if the discussion and questions about those 

methods takes more than one class period. 
SA A N D SD 

6. If students are expected to solve mathematics 

problems before the teacher has explained the 

problem and solution, the students will become 

frustrated. 
SA A N D SD 

7. Some students may have more aptitude for 

mathematics than others, but all students can 

learn to understand mathematics. SA A N D SD 

8. I think I will be just as comfortable teaching the 

mathematics content taught to children in 

kindergarten through second grade as the 

mathematics content taught to children in the 

fourth or fifth grade. 
SA A N D SD 

9. It is more important for children to compute 

quickly and accurately than to solve word 

problems. SA A N D SD 

10. The best way to become good at mathematics is 

to solve a lot of new problems, thinking about 

the ideas and strategies used to solve prior 

problems. 
SA A N D SD 
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11. Getting the correct answer is the most important 

goal in math class. 
SA A N D SD 

12. Students should work on mathematics problems 

before the teacher introduces the skills and 

vocabulary traditionally used to solve those 

problems. 
SA A N D SD 

13. Seeing/hearing different ways to solve the same 

problem confuses children. 
SA A N D SD 

14. A good math test is one that contains some 

challenging yet attainable problems that are not 

like problems worked in class. SA A N D SD 

15. The idea of teaching math scares me. 

SA A N D SD 

16. Before class ends, a teacher needs to clarify 

those wrong answers, incorrect methods or mis-

statements that may have been made by 

students. 
SA A N D SD 

17. Students will become engaged in mathematics if 

they are expected to figure out the solutions to 

questions. SA A N D SD 

18. Students should hear methods that other students 

use to solve problems. 
SA A N D SD 

19. Discussing wrong answers is likely to confuse 

children about the right way to work on 

problems. SA A N D SD 

20. I am looking forward to teaching children about 

mathematics concepts. 
SA A N D SD 

21. In mathematics class, a teacherôs role is to show 
students how to complete tasks and to solve 

problems, helping students who get stuck.   SA A N D SD 

 

 

ABOUT YOUR MATH COURSE 
 

5. The activities we do in this class are supposed to 

help me make significant progress in my goal of 

becoming a teacher SA A N D SD 

6. The assignments we do in this class are supposed 

to help me make significant progress in my goal 

of becoming a teacher. SA A N D SD 

7. The exams we take in this class are supposed to 

help me make significant progress in my goal of 

becoming a teacher. SA A N D SD 

8. In this class, I expect to learn more about what it 

is like to teach mathematics. 
SA A N D SD 
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[MAY 2008] 

Your Beliefs about Mathematics, Math Teaching, and This Math Course 
 

 
Strongly 

Agree 
Agree 

No 

Opinion 
Disagree 

Strongly 

Disagree 

22. One of a teacherôs major responsibilities is to 

show students how to solve problems and then 

to give them similar problems to practice. SA A N D SD 

23. Some people have mathematical minds and 

some donôt, and neither good teaching nor 

student effort can overcome that. SA A N D SD 

24. Children can develop their problem solving 

skills by working in small groups and hearing 

the ideas of other students. SA A N D SD 

25. A good math test is one that consists of a variety 

of items that are that are just like the problems 

students completed in class or in homework. SA A N D SD 

26. Having students determine and discuss their 

solution methods is a good use of class time, 

even if the discussion and questions about those 

methods takes more than one class period. 
SA A N D SD 

27. If students are expected to solve mathematics 

problems before the teacher has explained the 

problem and solution, the students will become 

frustrated. 
SA A N D SD 

28. Some students may have more aptitude for 

mathematics than others, but all students can 

learn to understand mathematics. SA A N D SD 

29. I think I will be just as comfortable teaching the 

mathematics content taught to children in 

kindergarten through second grade as the 

mathematics content taught to children in the 

fourth or fifth grade. 
SA A N D SD 

30. It is more important for children to compute 

quickly and accurately than to solve word 

problems. SA A N D SD 

31. The best way to become good at mathematics is 

to solve a lot of new problems, thinking about 

the ideas and strategies used to solve prior 

problems. 
SA A N D SD 

32. Getting the correct answer is the most important 

goal in math class. 
SA A N D SD 

33. Students should work on mathematics problems 

before the teacher introduces the skills and 

vocabulary traditionally used to solve those 

problems. 
SA A N D SD 

34. Seeing/hearing different ways to solve the same 

problem confuses children. 
SA A N D SD 

35. A good math test is one that contains some 

challenging yet attainable problems that are not 

like problems worked in class. SA A N D SD 
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36. The idea of teaching math scares me. 

SA A N D SD 

37. Before class ends, a teacher needs to clarify 

those wrong answers, incorrect methods or mis-

statements that may have been made by 

students. 
SA A N D SD 

38. Students will become engaged in mathematics if 

they are expected to figure out the solutions to 

questions. SA A N D SD 

39. Students should hear methods that other students 

use to solve problems. 
SA A N D SD 

40. Discussing wrong answers is likely to confuse 

children about the right way to work on 

problems. SA A N D SD 

41. I am looking forward to teaching children about 

mathematics concepts. 
SA A N D SD 

42. In mathematics class, a teacherôs role is to show 
students how to complete tasks and to solve 

problems, helping students who get stuck.   SA A N D SD 

 

 

ABOUT YOUR MATH COURSE 
 

9. The activities we did in this class helped me 

make significant progress in my goal of 

becoming a teacher SA A N D SD 

10. The assignments we did in this class helped me 

make significant progress in my goal of 

becoming a teacher. SA A N D SD 

11. The exams we took in this class helped me make 

significant progress in my goal of becoming a 

teacher. SA A N D SD 

12. In this class, I learned more about what it is like 

to teach mathematics. 
SA A N D SD 

 

 

13. The most memorable assignment in this course 

was: 

 
 

 

 

14. The most memorable activity in this course was: 

 
 

 

15. Suppose a friend of yours was thinking about 

taking this class and wanted to know more about 

it.  How would you describe the class, what 

would you say to your friend about what she 

should be ready for, and what she would learn? 
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Appendix B: Excerpt from Chapter Five Notes (MATH 281 at Hilada 

University) 

Packet p. 37:  Begin by having students work in groups to analyze the student-invented algorithms pictured.  

Ask them to identify the properties used. 

 

Student #3 is probably the most difficult to understand.  Apparently they began by writing the column of 4 

24's in the center of the work.  Can you work it out from there? 

 

One of the challenges of having students use invented approaches is helping them to notate what they've 

done in efficient, mathematically sensible ways.  In particular, it is common for students to abuse the 

"equals" sign, treating it as they do the equals key on the calculator:  as a signal to calculate what they've 

got so far.  It is important for students to learn early, however, that the equals sign signifies both sides are 

truly equal:  this is an essential concept in algebra.  With this in mind, consider how to notate the student 

work on the following pages.   (Perhaps assign one problem to each group and have them put it on the 

chalkboard and explain.) 

 

Class Activity 5U (p. 126) #1, 2, 3 

 Also identify the properties used in each. 

 

Homework: 

Read text 5.8 

Do p. 201 #2, 3a, 3f, 5 
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Appendix C: Excerpt from Lesson 11 Notes (MATH 291 at Rio University) 

Time: 75 min. 

Activity Flow ï Part 4 - Homework  

 

Rationale 

This activity extends the multiplication story problem activity completed in class to 

division story problems. The activity is designed to develop the preservice teachersô 

ability to write both partitioning and repeated subtraction division problems, and to help 

them connect the meanings of multiplication and division. The preservice teachers will 

learn to represent multiplication story problems, and repeated subtraction and partitioning 

division story problems with part-whole diagrams, and understand the connections 

among these different part-whole models. This will help them understand the missing 

factor interpretation of the · sign when it is introduced in the next lesson.    

 

Activity  

As a teacher, you will create word problems for students to help develop their conceptual 

understanding, procedural fluency, strategic competence, and adaptive reasoning. For the 

operation or action of division, you will want to pose problems that involve both 

interpretations of division in order to help children create meaning for this operation or 

action.  In the next activity, you will practice writing multiplication and division word 

problems.  You are writing problems for both operations because many fourth grade 

teachers complain that their students cannot see the connection between multiplication 

and division.  As you write both types of word problems, see if you can make this 

connection. 

 

Hand out L11_MultMean3DivMean1_HW.doc 

 

 

 

Instructor Notes 

1. Homework Assignment [L11_MultMean3DivMean1_HW.doc] 

 

Part 1 

Questions 1-3 list three numbers that can be combined into multiplication and division 

number sentences. Use two of these numbers (the other number will be the answer) and 

the given quantities to write three word problems: 

 

a.  one where students will use repeated subtraction division to find the answer; 

b.  one where students will use partitioning division to find the answer; 

c.  one where students will use multiplication to find the answer. 

 

Assign the same numbers to the same quantities in all three word problems. For example, 

if you write a repeated subtraction problem for part (a) in which you make 12 the number 

of apples altogether, 4 the number of apples in a tree, and 3 the number of trees, do the 
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same thing in parts (b) and (c). That is, keep 12 the number of apples altogether, 4 the 

number of apples in a tree, and 3 the number of trees in parts (b) and (c) too.  

 

Now try to make a part-whole diagram for each word problem that you write. What is the 

difference between the part-whole diagrams for repeated subtraction division problems, 

partitioning division problems, and multiplication problems? 

 

1.  Numbers: 12, 3, 4 

     Quantities:  trees, apples 

2.  Numbers: 4, 5, 20 

     Quantities: children, ounces of lemonade 

3.  Numbers:  3, 1.8, 0.6 

     Quantities: miles of road, days. 

 

Part 2 

Try to do what you did in the first three questions for these numbers:  0.9, 1.5, and 0.6. 

Pick your own quantities. 
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Appendix D: Written Reflection Assignments at Hilada University 

Written Reflection #1 (10 points) 

due date: ______________ 
 

Lots of Lockers 

 

One hundred bored students decided to pass the time with the following activity:  They 

lined up in front of a line of lockers numbered 1 to 100.  The first student opened every 

locker door.  The second student closed the door of lockers numbered 2, 4, 6, 8, etc. (i.e., 

all the even-numbered lockers).  The third student changed the door position of the 

lockers numbered 3, 6, 9, 12, etc. (i.e., every third locker).  If the door had been open he 

closed it; if it had been closed he opened it.  Similarly, the fourth student changed the 

door position of every fourth locker, the fifth student changed the door position of every 

fifth locker, and so on, until the hundredth student changed the door position of locker 

#100.   

 

Which locker doors were standing open at the end of this activity?  Why?  Be complete.  

 

 

 

 

 

Written Reflection #2  

due date:  _____________ 
 

Instructions:  Your response to this is to be typed, double-spaced.  Please answer 

completely, in well-written paragraphs.  A diagram may be hand-drawn in to accompany 

your response. 

 

Write a word problem that would be correctly modeled by the division problem  

2 1/4 · 1/2.   

 

Draw a diagram to illustrate this division in the context of your word problem.  Explain 

and show how your diagram illustrates the solution. 

 

Give a detailed numeric solution path and final answer.  Include words on your numbers 

and show each step logically.   

 

Identify what division concept your word problem illustrates ("How big is each group?" 

(partitioning), "How many groups?" (repeated subtraction), or missing factor), and 

explain how you know. 
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Rubric (10 points total) 

 

 0 points 1 point 2 points 

word problem 

 

 

incorrect operation correct operation 

but incorrect 

numbers 

clear and correct  

diagram 

 

missing or incorrect unclear or partly 

correct  

clear and correct 

numeric solution missing or incorrect 

 

unclear or partly 

correct 

clear and correct 

solution shown in 

diagram 

missing or incorrect unclear or partly 

correct 

clear and correct 

division concept 

 

missing or incorrect correct but not 

explained or unclear 

explanation 

correct and clearly 

explained 
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Appendix E: Project Assignment #1 from MATH 281 at Hilada University 

 

Project #1:  Star Patterns 

 

 

The following two figures illustrate star patterns.  The left figure, Star (8, 2), was drawn 

by starting at 0 and "skipping" two spaces clockwise until returning to 0.  In the right 

figure, each "skip" moves three spaces clockwise. 

 

 

 

 

 

 

 

 

 

    

 

 

Both of these stars belong to the "8-family" because they have 8 dots evenly spaced 

around the circle.  Notice that the number "8" does not appear, however; only the 

numbers 0 through 7 are used as labels. 

 

Many patterns can be seen in these star figures.  Collect data for the 8-family, the 7-

family, the 9-family, and the 12-family on the following pages.  After collecting this data, 

answer the questions below.  For each, give the most general outcome, not just particular 

or special case(s).   

 

1.  When will two stars in a family be identical?  In other words, when will star (a, b) 

look exactly like star (a, c)?  Include an example to illustrate. 

 

2.  For star (a, b), what happens when b divides evenly into a?  Include an example to 

illustrate.   

 

3.  When will star (a,b)  touch every number?  Write a rule in English and then write a 

mathematical formula in terms of a and b.  Give an example and a non-example.   

 

4.  a.  In general, how many points will star (a, b) touch?  Give a rule in English and then 

write a mathematical formula in terms of a and b.  Give an example.   

      b.  Explain why your formula in 4a works.  (Hint:  think about LCM). 

 

5.  (Optional)  Star (8, 3) above makes three clockwise circuits of the star in the process 

of connecting all the dots.  How many circuits does star (a, b) make?  Give a rule in 

English and then write a mathematical formula in terms of a and b.  Give an example.  

Star (8, 2) 

0 

1 

2 

3 

4 

5 

6 

7 

0 

1 

2 

3 

4 

5 

6 

7 

Star (8, 3) 
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   Star (8, 1)     Star (8, 2)     Star (8, 3)      Star (8, 4) 

  Star (8, 5)     Star (8, 6)     Star (8, 7)    Star (8, 8) 

   Star (7, 1)      Star (7, 2)             Star (7, 3) 

 Star (7, 4)    Star (7, 5)           Star (7, 6) 
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 Star (9, 1)   Star (9, 2)              Star (9, 3)    Star (9, 4) 

   Star (9, 5)      Star (9, 6)        Star (9, 7)       Star (9, 8) 
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Appendix F: Project Assignment #1 from MATH 281 at Hilada University  

[Refer to Beckmann, 2007] 

Project #2 (20 points) 

due date:  _____________ 

 
Follow the instructions in the text for the following problems: 

 

p. 270 #3 

 

p. 270 #4 

 

p. 271 #12 

 

p. 272 #17 
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